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ABSTRACT 

 

In this work it was demonstrated for the first time that Alkaline Phosphatase 

(ALP) enzymes spotted and dried onto a nitrocellulose membrane remained active. 

This was accomplished by passing a fixed volume of the BCIP/NBT substrate solution 

over the immobilized enzymes and measuring the resulting color density at the spot 

where the enzymes were spotted.  A dose response curve was produced of the 

concentration of the enzymes spotted on the test area versus the color density 

measured at the spot after the substrate had flowed past it indicating that the assay 

produces quantitative as well as qualitative results. This experiment was conducted in 

paper based lateral flow devices.  

In a second experiment, prior to the flowing of the substrate over the test spot 

where ALP enzymes were immobilized, a solution of Sodium Orthovanadate 

(Na3VO4) was introduced to the system. Sodium Orthovanadate (Na3VO4) is an 

inhibitor to ALP. By varying the concentration of Na3VO4 in the solution that flowed 

past the enzymes, a certain number of the enzymes were deactivated. When 

subsequently the BCIP/NBT substrate solution was flowed over the enzymes, the 

intensity of the color produced depended on the concentration of Na3VO4. It was then 

possible to generate again a dose response curve, of the concentration of the Na3VO4 

inhibitor in the solution versus the color density at the spot where the enzymes were 

dried. This is a novel result in that it is again the first time where an inhibitory activity 

assay was run on a paper based lateral flow device. This experiment also demonstrated 

that the bond between the Na3VO4 molecules and the immobilized ALP molecules is 



 

 

strong enough so that at least not all of the inhibitor molecules were washed away by 

the substrate solution.  



 

iv 

 

ACKNOWLEDGMENTS 

 

I would like to thank my advisor, Dr. Mohammad Faghri, who supported me from 

when I started work with his microfluidics group as an undergraduate research 

assistant, through my studies abroad, to the completion of my graduate studies. His 

enthusiasm for microfluidics inspired innovations and brought an atmosphere of 

learning and discipline to the group. I am also very grateful to Dr. Constantine 

Anagnostopoulos, who always had fresh ideas when mine ran dry and was always able 

to explain the more difficult concepts in ways I could easily understand. I would also 

like to thank Dr. Sigrid Berka, who encouraged me to study abroad during my 

graduate studies and supported me both here at URI and at TU-Braunschweig. I also 

want to thank Dr. David Heskett, who is a great physics professor and an even better 

neighbor. A big thanks also goes to my laboratory colleagues, Dr. Peng Li, Dr. Hong 

Chen, Dr. Toru Yamada, Dr. John D. Jones, Michael Franzblau, Nick DeFilippo, Alex 

Pytka, Alexander Sherry, Michael Godfrin, and Jeremy Cogswell, who frequently 

aided me in their respective academic fields. This work is a continuation of the work 

done by the aforementioned people and would only be possible with the solid 

foundation they built. I would also like to thank Dr. Yow-Pin Lim, who taught me 

about some of the complexities of diagnostic biology and provided many of the 

reagents needed to make this work possible. A big thank you also goes to Kevin, 

Tunde, Aaron, and Sogand, for helping me to run experiments, fabricate chips, and 

keep me sane on long days. I am also very grateful to the faculty and staff of the 

Mechanical Engineering Department without whom this work would not have been 



 

v 

 

possible. Finally, I want to thank my family for their love and support for the many 

years that I have been a student.   



 

vi 

 

TABLE OF CONTENTS 

 

           

ABSTRACT .................................................................................................................. ii 

ACKNOWLEDGMENTS .......................................................................................... iv 

TABLE OF CONTENTS ............................................................................................ vi 

LIST OF TABLES .................................................................................................... viii 

LIST OF FIGURES .................................................................................................... ix 

LIST OF ABBREVIATIONS ................................................................................... xii 

1 Introduction ............................................................................................................ 1 

1.1 Inter-alpha inhibitor protein and its link to sepsis ................................................... 1 

1.2 Sandwich ELISA .......................................................................................................... 3 

1.3 Competitive ELISA ...................................................................................................... 4 

1.4 Point of care devices .................................................................................................. 5 

1.5 Paper-based lateral flow devices .............................................................................. 6 

1.5.1 Lateral flow immunosorbent assay ................................................................... 7 

1.5.2 LFIA with multiple fluids .................................................................................... 8 

1.5.3 IαIP ELISA on PBD ............................................................................................. 11 

1.6 Objective and Motivation ........................................................................................ 12 

2 Review of Literature ............................................................................................ 14 

2.1 Enzymatic assay for glucose and protein concentration quantification ................ 14 

2.2 Alkaline phosphatase ............................................................................................... 16 

2.3 Inhibitory activity of sodium orthovanadate on ALP .............................................. 20 

2.4 Paper-based fluidic valve ......................................................................................... 21 

3 Methodology ......................................................................................................... 26 

3.1 Chip Fabrication Introduction .................................................................................. 26 

3.1.1 Paper-based chip fabrication ........................................................................... 28 

3.1.1.1 Filter paper patterning ..................................................................................... 28 

3.1.1.2 CO2 laser cutter settings .................................................................................. 29 



 

vii 

 

3.1.1.3 Wax melting ..................................................................................................... 33 

3.1.1.4 Chip assembly ................................................................................................... 34 

3.1.2 Protocol development chip ............................................................................. 36 

3.1.3 Spray adhesive method ................................................................................... 37 

3.2 Alkaline phosphatase activity .................................................................................. 40 

3.3 Sodium orthovanadate inhibitory activity .............................................................. 43 

3.4 ALP substrate volume test ....................................................................................... 45 

3.5 Trypsin activity ......................................................................................................... 45 

3.6 Inter-alpha inhibitor protein inhibitory activity ..................................................... 49 

4 Findings ................................................................................................................. 51 

4.1 Alkaline phosphatase activity .................................................................................. 51 

4.2 Sodium orthovanadate inhibitory activity .............................................................. 56 

4.3 ALP substrate volume test ....................................................................................... 59 

4.4 Enzymatic and inhibitory activity of trypsins .......................................................... 61 

4.4.1 Trypsin activity ................................................................................................. 61 

4.4.2 Trypsin activity with increased substrate volume .......................................... 61 

4.4.3 Inter-alpha inhibitory protein activity ............................................................. 63 

5 Conclusion and Future Work ............................................................................. 64 

5.1 ALP enzyme and inhibitory assay ............................................................................ 64 

5.2 Trypsin activity ......................................................................................................... 66 

APPENDICES ............................................................................................................ 70 

Appendix A ........................................................................................................................... 70 

Appendix B ........................................................................................................................... 71 

Appendix C ........................................................................................................................... 72 

Appendix D ........................................................................................................................... 75 

BIBLIOGRAPHY ...................................................................................................... 79 

 

  



 

viii 

 

LIST OF TABLES 

 

Table 1: CO2 laser cutter setting for various materials [19] ........................................ 30 

Table 2: The average mean gray value (MGV) and 95 % confidence interval of 

different concentration of ALP in mg/mL shown as RGB brightness values. ............. 53 

Table 3: The average mean gray value (MGV) and 95 % confidence interval of 

different dilutions of Na3VO4 as RGB brightness values. .......................................... 57 

Table 4: The average mean gray value (MGV) and 95 % confidence interval 

when various substrate volumes are used for three ALP enzyme concentrations. ...... 59 



 

ix 

 

LIST OF FIGURES 

 

Figure 1: A: Plasma IaIP levels in newborn sepsis. Blood from newborns with 

clinically proven sepsis were collected at the time of diagnosis (positive blood 

culture) and blood from age-matched newborns without evidence of sepsis, were 

collected as control. B: Septic newborns grouped based on pathogens found in 

blood culture. [6] ............................................................................................................ 2 

Figure 2: Steps in building of sandwich assay. [9] ....................................................... 4 

Figure 3: Steps in competitive assay. [9] ...................................................................... 5 

Figure 4: Lateral flow immunosorbent assay test and its components. [12]................. 8 

Figure 5: Lateral flow immunosorbent assay(LFIA) vs a typical ELISA [13] ............. 9 

Figure 6: Schematic representation and photographs of the cross sections of four 

buttons. Buttons 2 and 4 were switched on by compression with a ball point pen. 

[16] ............................................................................................................................... 10 

Figure 7: Schematic of the layers of a basic paper-based fluidic valve. [17] ............. 10 

Figure 8: Schematic of the layers of a three-fluid basic paper-based device. [18] ..... 12 

Figure 9: Schematic for a multiplexed paper-based later flow device for the 

colorimetric quantification of glucose and protein in urine. ........................................ 15 

Figure 10: DNase I assay on hydrophobic paper as functions of both assay time 

and enzyme concentration [23]. ................................................................................... 16 

Figure 11: Activity (Dv) of paper with immobilized ALP probed by BCIP/NBT 

substrate dilutions under various ALP immobilization conditions by filtration:  a) 

Cacium Carbonate (CC) flocs, b) CC colloids, and  c)  S. Added ALP 

concentration: 0.0125 mg/mL. [28] ............................................................................. 18 

Figure 12: Three active and three deactivated ALP enzyme sample reacting with 

the liquid substrate BCIP/NBT [30]. ............................................................................ 19 

Figure 13: ALP activity test showing signal intensity at various concentrations of 

mouse monoclonal antibodies tagged with ALP. [19] ................................................. 20 

Figure 14: Inhibition of ALP activity by orthovanadate. Double-reciprocal plot 

for human liver alkaline phosphatase (40 ng/mL) at pH 9.0. Orthovanadate 

concentrations were: ○, none; ■, 2.5 µM; ∆, 5.0 µM; ●, 10 µM. [31] ........................ 21 



 

x 

 

Figure 15: A surfactant molecule and its parts (top). Surfactant molecules in 

water poking their hydrophobic tails through the water-air interface (left). 

Saturation of water-air interface and formation of surfactant micelles (right). [36] .... 22 

Figure 16: (a) Symbolic and schematic of one-way fluidic valve. (b) Illustration 

of working mechanism of surfactant bridging the hydrophobic gap. (c) Time-

sequential photographs showing (green) water wicking toward two identical one-

way fluidic valves positioned in opposite directions. [17] ........................................... 24 

Figure 17: Schematic of the layers of a basic 3-d paper-based fluidic valve. [17] ..... 25 

Figure 18: Chip layer and fluid flow paths [18].......................................................... 29 

Figure 19: Cutting guides [19] .................................................................................... 31 

Figure 20: Nitrocellulose fixture for laser cutting ...................................................... 33 

Figure 21: Before and after melting of top layer of protocol development chips. 

(showing the top and bottom sides of the filter paper)  [19] ........................................ 34 

Figure 22: Chip layers and materials for double sided tape assembly [19] ................ 35 

Figure 23: Chip layers and materials for protocol development chip assembly 

[19] ............................................................................................................................... 36 

Figure 24: Design of protocol development chip with layers combined with spray 

adhesive [19] ................................................................................................................ 38 

Figure 25: Chip layers and materials for assembly of protocol development chip 

using the spray adhesive method [19] .......................................................................... 39 

Figure 26: Example of scanned chip with positive signal of enzymatic activity 

(left) and with its colors inverted (right). ..................................................................... 42 

Figure 27: Unconverted (left) and converted (right) BAPNA solution using 

trypsin as the catalyzing enzyme.................................................................................. 48 

Figure 28: Example of scanned chips with inverted colors, one with a visually 

high signal (left) and one with a visually low signal (right). ....................................... 52 

Figure 29: Model of enzyme activity using various concentrations of alkaline 

phosphatase. ................................................................................................................. 54 

Figure 30: Protocol development chip with 1e
-3

 mg/mL ALP concentration with 

the colors inverted (left) and a closer view of the detection spot (right). .................... 54 

Figure 31: Detection spot with a 0.5 mg/mL ALP concentration. High signal 

(white) is visible on the upstream edge of the v spot and no signal (black) is 

pocketed within that edge............................................................................................. 56 



 

xi 

 

Figure 32: Model of enzyme inhibitor activity using various dilutions of sodium 

orthovanadate. .............................................................................................................. 58 

Figure 33: ALP enzyme activity test showing the effect of a change in substrate 

volume on the measure signal on three different enzyme concentrations. .................. 60 

Figure 34: Inverted color scans of enzymatic activity test using 400 µL of 

BAPNA substrate solution over 0.2 mg/mL trypsin spot (left) and over TEA 

buffer spot (right). ........................................................................................................ 62 

Figure 35: Enzyme activity test using 400 µL of BAPNA substrate solution over 

0.2 mg/mL trypsin spot. ............................................................................................... 63 

Figure 36: Optical density at 405 nm light for various inhibitory activities (i.e. 

various IαIP concentrations) [20] ................................................................................. 67 

Figure 37: Design of two-fluid protocol development chip [19]. ............................... 69 

  



 

xii 

 

LIST OF ABBREVIATIONS 

 

AKD Alkyl ketene dimer 

AcdP Acid phosphatase 

ALP Alkaline Phosphatase 

ASSURED Affordable, Sensitive, Specific, User-friendly, Rapid and 

robust, Equipment-free, and Deliverable 

AuNP Gold Nanoparticles 

B- IαIP Biotinylated Inter-Alpha Inhibitor Protein 

CMC Critical micelle concentration 

DNase I Deoxyribonuclease I 

DPI Dots per Inch 

DAB Diaminobenzidine 

ELISA Enzyme-linked immunosorbent assay 

NBT/BCIP Nitroblue Tetrazolium/ 5-Bromo-4-chloro-3-indolyl 

phosphate 

ELISA Enzyme Linked Immunosorbent Assay 

FC-72 Perfluro-Compound 

HA Hyaluronan 

HRP-Strep Horse Radish Peroxidase-Streptavidin 

IαIP Inter Alpha Inhibitor Protein 

IU/L International units per liter 

LFA Lateral Flow Assay 



 

xiii 

 

LFD Lateral Flow Devices 

LFTS Lateral Flow Test Strips 

LOD Limit of Detection 

MAB 69.26 Monoclonal Antibody 69.26 (specific to IαIP) 

mg/mL Milligrams per milliliter 

MGV Mean Gray Value 

mIU/mL Million International Units per Milliliter 

NBT/BCIP Nitro blue tetrazolium chloride / 5-bromo-4-chloro-3-

indolyl phosphate 

PDMS Polydimethylsilaxane 

PBD Paper Based Device 

POC Point of Care 

RGB Red Green Blue 

TBPB Tetrabromophenol blue 

TEA Triethanolamine 

TRIS Tris (hydroxymethyl) aminomethane 

U Units of enzymatic activity (U = 1 µmol/min) 

vol.% Volume Percentage 

wt.% Weight Percentage 

  

 



 

1 

 

1 Introduction 

 

 Hospitalizations for sepsis in the USA surpassed 1,000,000 people in 2008 [1]. 

Sepsis is fatal for up to half of the people who get it [2] [3]. The Center for Disease 

Control and Prevention (CDC) defines sepsis as “the body’s overwhelming and life-

threatening response to infection which can lead to tissue damage, organ failure, and 

death [4].” From pneumonia to a scraped knee, sepsis can stem from any infection in 

the human body and is characterized by inflammation as a response to a foreign 

microbial infection. The most common symptoms for sepsis are fever, chills, rapid 

breathing, elevated heart rate, confusion, disorientation, muscle and joint pains, a 

sense of impending doom, rash, and poor feeding (infants and children) [5]. Because 

these symptoms are unspecific, a diagnosis of sepsis is often delayed [6]. The 

progression of sepsis in some patients seems to be very slow and they will deteriorate 

in the late stages of their illness, yet in others, it progresses much more quickly and 

can be fatal within a few hours [5]. Diagnosis usually relies on blood or tissue cultures 

that take 6-48 hours. Cultures give false negative results in 30 % of the cases due to 

antibiotics taken before the test or because sepsis can also be related to toxins 

produced by the pathogen rather than the pathogen itself [2]. For these reasons, a rapid 

detection of sepsis is critical to the effort in increasing patient outcomes.  

 

1.1 Inter-alpha inhibitor protein and its link to sepsis 

Until recent years, the search for biomarkers for sepsis has been largely 

unsuccessful [2]. In 2000, changes in Inter-alpha Inhibitor Protein (IαIP) levels were 
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linked to inflammation and septic shock, and an IαIP specific enzyme-linked 

immunosorbent assay (ELISA) was developed [7]. IαIP are plasma-associated serine 

protease inhibitors that are mainly produced by the liver. Plasma levels in adult sepsis 

patients are decreased by 20 – 90 % and are inversely correlated with unfavorable 

patient outcomes. In 2009, a decrease in IαIP levels in neonates has also been 

discovered to indicate bacterial sepsis [6], which can be seen in figure 1. The 

administration of IαIP to neonatal mice with sepsis has showed improved survival 

rates [8], reinforcing the link between IαIP and sepsis.  

 

Figure 1: A: Plasma IaIP levels in newborn sepsis. Blood from newborns with 

clinically proven sepsis were collected at the time of diagnosis (positive blood culture) 

and blood from age-matched newborns without evidence of sepsis, were collected as 

control. B: Septic newborns grouped based on pathogens found in blood culture. [6] 
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1.2 Sandwich ELISA 

 A sandwich ELISA, specific to each of the heavy chains of IαIP, can 

quantitatively measure the level of IαIP [7]. A sandwich assay is typically built up on 

a 96-well micro-titer plate. A ‘capture’ antibody is immobilized (anchored) on the well 

surface. Next a sample solution is added to the wells that contains the analyte. The 

immobilized capture antibodies will bind to the analyte to form the base of the ‘assay 

sandwich.’ Next, a buffer solution is used to wash away any unbound proteins, after 

which a labeled antibody solution is introduced to the assay, completing the 

‘sandwich’ as shown in figure 2. These antibodies are tagged with an enzyme that in 

the presence of a matched substrate will produce a detectable color change [9].  
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Figure 2: Steps in building of sandwich assay. [9] 

 

1.3 Competitive ELISA 

 A sandwich assay is more applicable to high molecular weight analytes such as 

proteins or allergens. For the detection of low molecular weight analytes, a 

competitive assay is used. The principle behind this assay is that analytes from the 

sample must compete with added labelled analytes for immobilized binding sites. The 

capture antibody specific to the analyte in question is immobilized on the well surface 
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just like in the sandwich assay. Next, a prepared sample solution with the added 

labeled analytes mixed with the latent sample analytes is introduced. If a high 

concentration of sample analyte is present, fewer labeled analytes will find binding 

sites, decreasing signal and vice versa. Figure 3 shows a representation of this 

competitive assay principle [9]. 

 

 

Figure 3: Steps in competitive assay. [9] 

 

 

1.4 Point of care devices 

Not only for sepsis, but many other diseases progress quickly or can progress 

unnoticed for a long period of time, thus requiring a quick, cheap, and simple means 

of diagnosis [10]. Point of Care (POC) devices are an exciting development in medical 

diagnostics that can be used outside of hospital/laboratory settings and can be used 

from range of detection applications from diseases and pathogens to explosives and 

toxins.  POC devices are usually one of three main categories: permanent integrated 
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instruments, permanent instruments with disposable components, or pure disposables. 

Permanent integrated instruments require the instrument to purge itself of one sample 

before analyzing another to prevent contamination, and require calibration by a trained 

technician, which may not be useful in a remote setting [11]. These devices are not 

typically affordable by individuals and will therefore only useful in labs and hospitals. 

Permanent instruments using disposable components have a permanent but portable 

analyzer that uses disposable cartridges. The analyzer controls the pumping, thermal 

control, timing, and detection. The disposable cartridges are typically made of glass, 

silicon, or polydimethylsiloxane (PDMS) and are patterned to contain a microfluidic 

circuit with reaction and detection chambers where the chemical or biological 

reactions take place [12] [13]. This prevents the cross contamination from one sample 

to the next but cartridges can still be rather expensive to manufacture. Pure 

disposables radically reduce the material and reagent costs of these tests. They are 

typically run on a paper or other fibrous substrate that can wick fluid through capillary 

action, removing the need for external pumps. These lateral flow devices (LFD) also 

reduce the volumes of the reagents needed reducing cost even more. The most 

noticeable drawback of pure disposable devices is their decreased sensitivity and most 

cannot produce quantitative results [11].  

 

1.5 Paper-based lateral flow devices 

Guidelines from the World Health Organization suggest that for the developing 

world, POC diagnostic devices should follow the acronym ASSURED: Affordable, 

Sensitive, Specific, User-friendly, Rapid, and robust, Equipment-free, and Deliverable 
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to the end-users [12] [14]. Paper-based lateral flow devices (PBD) easily cover the 

majority of these guidelines, though their sensitivity and specificity are often lacking. 

The simplest of such tests are dipsticks such as pH test strips that are treated with a 

range of concentrations of acid-alkali solutions and will change to certain color 

depending on the pH of the sample solution being tested [12].  

 

1.5.1 Lateral flow immunosorbent assay 

A more complex PBD, a lateral flow immunoassay (LFIA), matches biological 

reagents to the material properties of the substrate (usually a filter paper or 

nitrocellulose) to detect various biomarkers in blood, urine, or saliva.  As can be seen 

in figure 4, a LFIA typically has a sample inlet, a conjugate pad, a detection 

membrane that includes a test line and a control line, and an absorption pad to drive 

the flow. The main strip of fluid channel is usually made from hydrophilic filter paper 

to allow the capillary wicking of water-based fluids, while the detection membrane is 

typically made of porous nitrocellulose or nylon that are tailored to be used with 

biological reagents.  

LFIA commonly use the ‘sandwich assay’ model for their biological scheme. 

After the sample fluid is introduced at the sample inlet, it flows through the conjugate 

pad, where labeled antibodies conjugate (combine) with the analytes in the sample. 

The conjugate then flows farther down the strip passed the test and control lines, 

where ‘capture antibodies’ are immobilized and ready to bond with them. The 

accumulated tagged sandwich complexes can then be detected in many different ways 
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depending on how it was labeled, such as colloidal gold, colored dyes, fluorescent 

dyes, and magnetic components [15].  

 

Figure 4: Lateral flow immunosorbent assay test and its components. [12] 

 

1.5.2 LFIA with multiple fluids 

For more complex chemistries, more reagents (i.e. more types of fluids) need 

to be introduced to the LFIA. For enzyme linked immunosorbent assays (ELISA), the 

labeled antibody is tagged with an enzyme that on its own does not give off any kind 

of signal. An additional substrate solution needs to be added to the system and when 

the substrate comes into contact with the enzyme, the enzyme will cleave the 

substrate. One of the products after conversion will be measurable through a 

colorimetric or electrochemical signal [13]. The difference between a conventional 

ELISA test on a micro-titer plate and an ELISA being run on an LFIA can be seen in 

figure 5. 
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Figure 5: Lateral flow immunosorbent assay(LFIA) vs a typical ELISA [13] 

 

Until recent years, LFIA were only able to handle one fluid at a time. Martinez 

developed a way to handle multiple fluids by inventing a mechanical fluidic switch, 

where the user can push a button to trigger fluid reservoirs. Figure 6 shows the various 

paper layers that are need to fabricate the mechanical switch [16]. The requirement for 

the user to trigger fluids at appropriate times adds the possibility of user error, which 

is very important to avoid for a diagnostic device. Through the invention of a paper-

based fluidic valve [17], complex fluid circuits can now be designed to automatically 

sequentially load multiple fluid reagents. A representative schematic of a paper-based 

fluidic valve can be seen in figure 7.  
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Figure 6: Schematic representation and photographs of the cross sections of four 

buttons. Buttons 2 and 4 were switched on by compression with a ball point pen. [16] 

 

 

Figure 7: Schematic of the layers of a basic paper-based fluidic valve. [17] 
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1.5.3 IαIP ELISA on PBD 

Once multi-fluid PBDs were possible, Giannakos was able to rapidly measure 

IαIP levels using the competitive ELISA method. He used a similar version of the 

three-fluid PBD designed by Gerbers and Foellscher [18] shown in figure 8, 

containing a sample inlet and two fluid reservoirs for the two additional fluid reagents 

required. The sample volume containing the unknown concentration of IαIP is 

incubated with an HRP-Strep solution prior to testing to form a conjugate. The sample 

fluid flows by capillary action through the device and over the nitrocellulose detection 

spot, where immobilized capture antibodies bind to the conjugates flowing by, 

anchoring them. Meanwhile, the sample fluid is following another fluid timing 

channel that then triggers the first reservoir containing a PBS wash. This new fluid 

introduced to the system flows through the detection spot, washing any unbound 

conjugates. The next fluid to be triggered from the second reservoir contains the 

substrate, DAB. When the DAB substrate molecules flow passed the immobilized 

HRP enzymes, they become converted into a colored precipitate that can then be 

measured colorimetrically. The amount of color change in the detection area produces 

a quantitative measurement of the IαIP concentration in the sample solution [19].  
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Figure 8: Schematic of the layers of a three-fluid basic paper-based device. [18] 

 

 

1.6 Objective and Motivation 

Each additional fluid reagent needed for bio-tests on a PBD adds to its 

complexity. To detect an enzyme inhibitor concentration quantitatively in a fluid 

sample, it may be possible to reduce the number of assay fluids to two by utilizing the 

enzyme inhibitory behavior instead of treating it as a neutral analyte like in the ELISA 

method. Inter-alpha inhibitory protein (IαIP) blocks the enzymatic activity of trypsin. 

Lim uses a 95-well micro-titer plate method to build this assay. First, the trypsin 

enzyme is added to the unknown sample concentration of IαIP and set to incubate for 
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at least 5 minutes at 37 °C to allow for the trypsin to IαP interaction. Next, the 

substrate solution, BAPNA, is added and is allowed to develop for precisely 30 

minutes at 37 °C. The color of the resulting fluid is then read at 405 nm to measure the 

change in color [20].  

A two-fluid PBD could be designed for this test with a sample inlet and one 

fluid reagent reservoir. In the nitrocellulose detection spot, a known quantity of the 

trypsin enzyme is immobilized. The substrate, BAPNA, will start in the reservoir and 

an unknown concentration of the inhibitor, IαIP, will be in the sample solution.  

The enzyme, alkaline phosphatase (ALP), has been used by this lab to label 

detection antibodies for ELISAs done on a PBD and quantitative results could be 

obtained. Because ALP’s enzymatic activity has already been seen working in a 

porous nitrocellulose detection area, it was used to model an enzymatic activity test. 

Sodium orthovanadate, an inhibitor for ALP, was used to model enzyme inhibitory 

activity in a two-fluid PBD.  
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2 Review of Literature 

 

2.1 Enzymatic assay for glucose and protein concentration quantification  

A group from Harvard University used a multiplexed paper-based lateral flow 

device, which can be seen in schematic form in figure 9, for a both glucose and protein 

detection in urine [21]. SU-8 2010 photoresist was used on chromatography paper to 

pattern the hydrophobic fluid barriers and the hydrophilic paper channels for the 

devices. The glucose assay they used is based on the oxidation of glucose to gluconic 

acid and hydrogen peroxide, which is catalyzed by glucose oxidase (notatin). That is 

immediately followed by the reduction of the hydrogen peroxide and oxidation of 

iodide to iodine, which is catalyzed by horseradish peroxidase (HRP) [22]. The protein 

assay they used is based on the nonspecific binding of tetrabromophenol blue (TBPB) 

to proteins through electrostatic and hydrophobic interactions. The phenol in TBPB 

deprotonates and changes color from yellow to blue. The brown color of iodine and 

the blue color from the TBPB were then quantified colorimetrically by the use of a 

phone, digital camera, or scanner. These images could be sent electronically to an 

offsite lab to be analyzed or potentially be analyzed by smartphone application. 
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Figure 9: Schematic for a multiplexed paper-based later flow device for the 

colorimetric quantification of glucose and protein in urine. 

 

Zhao [23] based a paper-based enzymatic assay on blue colored gold 

nanoparticle (AuNP) aggregates, modified with S1 and S2 that are cross-linked via 

DNA hybridization. The cross-linked DNA is cleaved by the enzyme 

Deoxyribonuclease I (DNase I), which breaks the aggregates. Well dispersed AuNPs 

appear as a red color. As can be seen in figure 10, the assays were carried out on both 

hydrophilic and hydrophobic filter paper spots at varying concentrations of DNase I, 

and photos were taken every 10 seconds.



 

16 

 

 

Figure 10: DNase I assay on hydrophobic paper as functions of both assay time and 

enzyme concentration [23]. 

 

2.2 Alkaline phosphatase 

 Tests for alkaline phosphatase (ALP) may be used to diagnose liver or bone 

disease. Increased ALP levels can also be seen in children undergoing growth spurts 

and in pregnant women. Normal ALP levels in blood from adults are 44 to 147 IU/L 

[24]. ALP is also found in neutral or alkaline soils, while acid phosphatase (AcdP) is 

found in acidic soils. An appropriate pH for crop growth can then be defined as a soil 

with a proper AcdP/ALP activity ratio [25]. 

The substrate for ALP to be used in the enzyme activity tests needs to convert 

on the same time scale as the fluid flowing passed the detection spot, which typically 

takes less than 10 minutes depending on the fluid volumes and channel geometries. 
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NBT/BCIP was chosen as color development happens in ~5 minutes [26]. Another 

advantage of this substrate is that the product after conversion is a dark purple 

precipitate that can be easily seen on a white nitrocellulose background. The fact that 

it precipitates allows the color to accumulate in the porous nitrocellulose, because the 

particles are too large for unhindered flow [27]. 

Peng [28] used a spot test on filter paper to test ALP activity with the 

NBT/BCIP substrate. ALP was immobilized on filter paper using a vacuum method. 

Three microliters of various dilutions of BCIP/NBT substrate solution were added to 

the spot and left to convert for 30 minutes. It was scanned at 600 dpi and converted 

from RGB brightness values to a mean gray brightness value (V) using the formula 

(V=0.299R+0.587G+0.114B), which are the default weighting factors used to convert 

RGB to YUV, the color encoding system used for analog television [29]. Ideally, 

weighting factors to match the dark purple color produced by this substrate conversion 

should be used. Peng’s data can be visualized in figure 11.  
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Figure 11: Activity (Dv) of paper with immobilized ALP probed by BCIP/NBT 

substrate dilutions under various ALP immobilization conditions by filtration:  

a) Cacium Carbonate (CC) flocs, b) CC colloids, and  c)  S. Added ALP 

concentration: 0.0125 mg/mL. [28] 

 

 

A group from Monash University, in Austrailia, patterned a multiplexed PBD 

using alkyl ketene dimer (AKD) to hydrophobize filter paper and a plasma treatment 

through a metal patterning mask to rehydrophilize the regions designated to be fluid 

channels [30]. The ALP was divided into two parts; one was heated for 10 minutes at 

>70 °C to deactivate the enzyme. They spotted the active and deactivated ALP into 

designated filter paper tests spots at the ends of fluid channels. As can be seen in 

figure 12, after the substrate, BCIP/NBT, was added at the intersection of the six 
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channels and allowed to wick for a short time, test spots with active ALP enzymes 

changed to a purple color, whereas test spots with the deactivated ALP did not.  

 

 

Figure 12: Three active and three deactivated ALP enzyme sample reacting with the 

liquid substrate BCIP/NBT [30]. 

 

 Giannakos [19] immobilized various concentrations of mouse monoclonal and 

polyclonal antibodies tagged with ALP onto a nitrocellulose detection area in a PBD. 

He also used the BCIP/NBT substrate but in a lateral flow format rather than the direct 

spotting and incubation. The chips were scanned and analyzed the same way as Peng’s 

in method [28], though only single data points were gathered for each concentration, 

leaving a lot of uncertainty. Figure 13 shows the data gathered with error bars equal to 

plus and minus two standard deviations of the individual pixel brightness values that 



 

20 

 

were averaged together to form each data point. These error bars were calculated 

incorrectly, as they should be two times the standard deviation of multiple RGB mean 

gray value data points, should the same 95 % confidence level scheme be followed.  

 

 

Figure 13: ALP activity test showing signal intensity at various concentrations of 

mouse monoclonal antibodies tagged with ALP. [19] 

 

 

2.3 Inhibitory activity of sodium orthovanadate on ALP 

 Seargeant found that sodium orthovanadate can be used to inhibit the 

enzymatic activity of ALP produced by a human liver, small intestine, or kidney. The 

inhibition of ALP activity by orthovanadate can be seen in figure 14. The specific 

activity of the enzyme from liver was 1300 U/mg [31]. One unit of enzymatic activity, 

U, is equal to the amount of enzyme that decomposes 1 µmole of substrate per minute 

at room temperature [32].  
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Figure 14: Inhibition of ALP activity by orthovanadate. Double-reciprocal plot for 

human liver alkaline phosphatase (40 ng/mL) at pH 9.0. Orthovanadate concentrations 

were: ○, none; ■, 2.5 µM; ∆, 5.0 µM; ●, 10 µM. [31] 

 

 

2.4 Paper-based fluidic valve 

What makes multi-fluid PBDs possible is a single-use paper-based fluidic valve 

developed by Dr. Hong Chen. He used the chemistry of surfactants to allow water 

based fluids to wick through hydrophobic paper. Surfactants, like the tween20 used in 

these valves, is a molecule that has both a hydrophilic head and a hydrophobic tail. 

Surfactants are surface active molecules that, when mixed with water, will poke their 

hydrophobic tails through the water-air interface, as seen in figure 15. Once the water-

air interface is saturated a so-called critical micelle concentration (CMC) is reached, 
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the surfactant molecules begin to form micelles, clusters of surfactant molecules that 

form the lowest energy state of the system. The CMC is important because, below the 

CMC, changes in concentration have large effect on the surface properties. Above the 

CMC an increase in surfactant concentration only has a small effect on surface 

properties, while there is a large increase in fluid viscosity [33]. Surfactant molecules 

will also form monolayers on hydrophobic surfaces (like channel boundaries or 

suspended particles), making them hydrophilic for however long the surfactant layers 

remain [34] [35].  

 

 

Figure 15: A surfactant molecule and its parts (top). Surfactant molecules in water 

poking their hydrophobic tails through the water-air interface (left). Saturation of 

water-air interface and formation of surfactant micelles (right). [36] 

 

 

 Chen developed the 2-d fluidic valve by first patterning fluid channels in filter 

paper, as seen in figure 16a, by chemically treating the channel boundaries to be 

hydrophobic. He left a hydrophobic gap between a circular channel and a surrounding 
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hydrophilic channel. In the circle he spotted the surfactant tween20 and allowed it to 

dry. Water-based fluid wicking from the non-surfactant side of the ‘one-way fluidic 

valve’ would stop flowing upon reaching the hydrophobic gap. Were the fluid to flow 

from the other side, it would mix with the surfactant, allowing it to bridge the small 

hydrophobic gap. As can be seen in figure 16b, the tails of the surfactant molecules 

adsorb to the hydrophobic filter paper fibers and exposing only their hydrophilic heads 

to the water, essentially building a hydrophilic bridge across the hydrophobic gap. In 

figure 16c, green colored water can be seen at various time intervals flowing through 

paper channels and interacting with two identical one-way fluidic valves but from 

opposite sides. The left valve opened after the water mixed with the surfactant that 

was spotted in the center. The right valve did not open as no surfactant was present on 

that side of the valve.  
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Figure 16: (a) Symbolic and schematic of one-way fluidic valve. (b) Illustration of 

working mechanism of surfactant bridging the hydrophobic gap. (c) Time-sequential 

photographs showing (green) water wicking toward two identical one-way fluidic 

valves positioned in opposite directions. [17] 

 

Chen was also able to develop an improved version of the one-way fluidic 

valve that is built from multiple layers of filter paper and double sided tape. As can be 

seen in figure 17, hydrophilic filter paper channels are lined up to intersect over a hole 

in water impermeable double sided tape. A hydrophobic filter paper disc is set in the 

hole to block fluid flow and maintain contact between the two filter paper layers 

through the hole. Surfactant is spotted on one of the filter paper sides to allow fluid 

flow to pass the hydrophobic filter paper disc only from that side. This basic 3-d one-

way fluid valve became a major building block in the development of complex paper-
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based fluidic circuits that could then be used for biomarker detection using a variety of 

multi-fluid assays. 

 

Figure 17: Schematic of the layers of a basic 3-d paper-based fluidic valve. [17] 
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3 Methodology 

 

 In this chapter, the methodology for the fabrication of the paper-based lateral 

flow devices will be explained in detail. This includes a list of the materials needed, 

the required tools and equipment, the fabrication of individual parts, the process to 

assemble the parts, and how to prepare the reagents and experiments for enzyme 

activity and enzyme inhibitor activity tests. Small tweaks to the conventional 

fabrication process are also discussed. 

 

3.1 Chip Fabrication Introduction 

What makes the paper-based lateral flow devices designed by this research 

group unique is the ability to automatically handle multiple fluid reagents and 

sequentially introduce them to the assay. Wax is printed onto filter paper and then 

melted to produce hydrophobic walls impenetrable by water based fluids. The 

patterning of these walls produces fluid channels and other fluid manipulation 

structures like paper level changes and 3d fluidic valves. Important parameters to 

consider when designing such a chip are channel geometries (length and width), valve 

sizes, filter paper porosity and dimensions, and wax melting times. 

A typical chip design used by this research group is one designed by Gerbers 

and Föllscher [18]. Despite the fact that in the meantime there have been 

improvements to this design, it is still a good representation of chips currently being 

used. The top layer contains a sample inlet, two reservoirs, a potential conjugate pad, a 

detection zone made of nitrocellulose, and a large connection to the waste pad. The 
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second layer is a connection layer that separates the top layer from the timing 

channels. In this design it is made from double sided tape, filter paper discs treated to 

by hydrophobic, filter paper discs that contain the surfactant tween20, and some native 

filter paper discs, as well as a large piece of glass fiber paper to help absorb and 

transfer waste fluid to the absorption pad. This layer is improved in the work by Alex 

Giannakos [19]. He replaces the double sided tape with 3M
®
 Super 77 Multipurpose 

Adhesive and consolidates the hydrophobic and surfactant discs into the filter paper 

layers. This improvement will be seen in the fabrication of the protocol development 

chip described in section 3.1.2. The second filter paper layer contains the fluid timing 

channels that connect the sample inlet to the reservoirs and back to the main straight 

fluid channel containing the detection zone. The geometry of these the timing channels 

determine the incubation times between the sequential loading of the fluid reagents. 

Below the timing channel, another tape layer is used to separate the timing channel 

from the waste/absorption pad made of blotting paper. Once all of the fluid channels in 

the device are wetted, the blotting paper layer is the primary source of capillary flow 

and causes the fluid reagents to continue flowing throughout the entire chip. The 

dashed lines with the arrows show the desired paths for the various fluids to flow 

through the chip and all ending in the waste/absorption pad.  
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3.1.1 Paper-based chip fabrication 

Materials, software, and equipment needed for paper chip device fabrication: 

 Corel Draw
®
 Software 

 Xerox
®

 ColorQube
®
 8570 solid ink printer 

 Xerox
®

 Genuine Solid Ink Black 

 Epilog
®

 Mini 24 CO2 laser cutter 

 Isotemp
®
 Model 280 vacuum oven 

 Whatman
®
 Grade 41 (9572190) filter paper (8x10 in) 

 Whatman
®
 Grade GB003 Blotting paper (20x20 cm by 0.8 mm  thick) 

 Whatman
®
 12 µm Nitrocellulose 47 mm Diameter (G3514143) 

 Sterlitech
®
 GA-55 Absorbent paper 

 Ace Hardware
®
 double-sided carpet tape (No. 50106) 

 3M
®
 Super 77 Multipurpose Adhesive 

 Reynolds
®
 parchment paper 

 Acros Organics
®
 Allytrichlorosilane  

 Sigma Aldrich
®
 Tween 20 

 

3.1.1.1 Filter paper patterning 

 Whatman’s
®
 Grade 41 (9572190) filter paper was chosen to carry the fluids in 

the paper-based lateral flow devices. Corel Draw
®

, or another vector based drawing 

software like AutoCAD, is used to design the patterns that are then printed onto the 

filter paper. The ColorQube
®
 8570 solid ink printer from Xerox

®
 was used to print 
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Xerox
®
 Genuine Solid Ink Black onto the filter paper to pattern what will be the 

hydrophobic walls for the fluid channels, reservoirs, fluid inlets, and 3d fluidic valves.  

 

Figure 18: Chip layer and fluid flow paths [18] 

 

3.1.1.2 CO2 laser cutter settings 

Using the same drawing software, cut-files are designed to be used with the 

Epilog
®
 Mini 24 CO2 laser cutter. This allows for multiple chips to be cut from larger 

sheets of filter paper, scaling up the fabrication speed. For the design shown in figure 
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18, six paper-based later flow devices are printed per chip and six chips can be printed 

on a single 8 x 10 inch (203 x 254 mm) piece of filter paper. Along with any holes that 

need to be cut into the filter paper layers or double sided tape, the edges of the chips 

need to be precisely cut to dimension so that they can be fit into alignment fixtures 

used during assembly. Not only the filter paper layers but the double sided tape, glass 

fiber paper, nitrocellulose pieces, conjugate pads, and blotting paper layer need to be 

laser cut. As can be seen in table 1, each material is cut using different power, speed, 

and frequency setting of the CO2 laser cutter.  

 

Material  Vector Speed  Vector Power  Frequency  

Blotting Paper  (waste/absorption) 40 %  60 %  5000  
Double-sided tape  50 %  35 %  5000  
Filter paper  40 %  15 %  5000  
Glass fiber (absorption area)  50 %  10 %  5000  
Glass fiber (conjugate pads)  50 %  10 %  3025  
Nitrocellulose (cut 25x)  50 %  2 %  4250  
    

 

Table 1: CO2 laser cutter setting for various materials [19] 

 

 Cut files are designed as vector files in such a way that the laser can follow a 

path to cut. To align the designed cut file to the wax printed structures on the filter 

paper, alignment guide markers are used. For the initial rough placement of the filter 

paper, two orthogonal black wax lines (can be seen in figure 19) that are printed along 

with the wax patterns is aligned with the edge rulers of the laser cutter. Using the 

preprogrammed filter paper cut align laser cutter settings, hairline width crosses are 

cut over alignment guides also seen in figure 19. The main purpose of the alignment 

lines is to place the wax printed filter paper parallel to the cut file. The alignment 
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guides can then be used to shift the cut file horizontally, in the x-direction, and 

vertically, in the y-direction, to precisely match the placed wax printed filter paper. 

There are two alignment guides per sheet. Should both alignment guides show 

differing offsets, it means the wax printed filter paper is not placed with the wax 

alignment lines parallel with the ruler edges of the laser cutter and needs to be 

adjusted.  

 

 

 

Alignment lines 

 

Alignment guides 

Figure 19: Cutting guides [19] 
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 To cut the waste/absorption pad pieces, the blotting paper cut file is used. The 

Whatman Grade GB003 blotting paper is simply aligned along the laser cutter ruler 

edges and do not need additional alignment steps as no wax structures are printed on 

it. As blotting paper is thicker, it needs additional power to be cut. The power, 

frequency, and speed settings from table 2 are used.  

 The nitrocellulose detection areas are cut from circular pieces 47 mm in 

diameter. A fixture, seen in figure 20,  is used to secure the nitrocellulose and keep it 

flat during cutting. The cut file is pre-aligned to the fixture and alignment tolerances 

are taken into account so that any additional alignment steps are not necessary. During 

most cuts, a ventilation fan is used to suck out smoke from the burning materials. For 

the nitrocellulose cut, the fan is left turned off as it can suck the small cut pieces of 

nitrocellulose out of the fixture and render them useless. It is important to use gloves 

when handling all of these materials as the oils from your skin can affect the fluid 

properties of the paper. With nitrocellulose it is of paramount importance as 

contaminants from the skin can have an adverse effect on the surface chemistry, which 

then interferes with the binding chemistry of proteins and other biological reagents on 

the nitrocellulose detection site.  
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Figure 20: Nitrocellulose fixture for laser cutting 

 

3.1.1.3 Wax melting 

 The wax printer only prints the wax ink onto the surface of the filter paper. To 

form solid hydrophobic wax barriers, the wax needs to be melted and absorbed 

through the thickness of the filter paper. The wax printed filter paper layers are heated 

for 25-35 seconds at a temperature of approximately 130 °C-140 °C in a Isotemp
®
 

Model 280A vacuum oven from Fisher Scientific. Before melting the back side of the 

wax printed filter paper remains white native filter paper. After the melting step, the 

black wax patterns can be seen absorbed all the way through the thickness of the filter 

paper as shown in figure 21. It is important to note that the printed wax structures will 

intrude laterally up to 0.5 mm into the native paper regions during melting and need to 

be compensated for in the initial design [19]. This expansion also happens to the wax 
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printed alignment markers used during laser cutting, which makes it important to laser 

cut the chips to size before melting as the markers will be far less precise post melting. 

 

Before melting After melting 

  

Figure 21: Before and after melting of top layer of protocol development chips. 

(showing the top and bottom sides of the filter paper)  [19] 

 

3.1.1.4 Chip assembly 

 Before assembly, designated spots on the hydrophobic layer need to be treated 

with a solution of allytrichlorosilane. This treatment makes these areas chemically 

hydrophobic but do not fill the filter paper pores like the wax. Surfactant is also 

deposited in assigned locations on the second filter paper layer. The combination of 

the chemically hydrophobic spots and the surfactant produce the fluidic valve 

described in section 2.3. After all the layers and materials have been prepared, the chip 

can be assembled. The edge of each layer was cut to fit a red alignment tool that can 

be seen in figure 22. The layers are combined, starting by inserting the blotting paper 

layer into the alignment tool. The third tape layer, which separates the fluid channels 
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from the second filter paper layer from the absorption pad, is aligned and pressed 

firmly onto the blotting paper in the alignment tool. The second filter paper layer is 

placed on top of that and is followed by the second tape layer and then the 

hydrophobic layer. The pieces of nitrocellulose and the conjugate pads are then 

precisely placed on designated locations on the hydrophobic layer. The first tape layer 

is then aligned and placed over the hydrophobic layer, securing the nitrocellulose 

pieces and conjugate pads. The first filter paper layer is then placed onto the first tape 

layer followed by the top clear tape layer, which is there to prevent evaporation and 

contamination from and to the chip.  

 

 

Figure 22: Chip layers and materials for double sided tape assembly [19] 
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3.1.2 Protocol development chip 

 A protocol development chip was developed as a way to focus on a biological 

test and its reagent interactions that only uses two fluids instead of three. As can be 

seen in figure 23, its functional components are filter paper channels, a single fluidic 

valve, a nitrocellulose detection area, and a blotting paper absorption pad. It is 

fabricated the same way as the three-fluid chip but requires only a single spot to by 

chemically treated with allytrichlorosilane to be hydrophobic. Because of the smaller 

size, eight paper based devices fit on each chip, two more than with the larger three-

fluid design.  

 

Figure 23: Chip layers and materials for protocol development chip assembly [19] 
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3.1.3 Spray adhesive method 

 A student from this research group, Benedikt Beermann, replaced the tape 

layers with a spray adhesive. This reduces the chip complexity and shortens the 

fabrication time by up to 80 % [37]. Figures 24 and 25 show the modifications made 

to the wax patterns on the filter paper layers. The surfactant is now directly spotted 

onto the fourth filter paper layer and a hydrophobic disc is used in place of the 

hydrophobic layer. To assemble the layers, the same procedure is used with the 

alignment tool except for the fact that the layers need to be sprayed with the adhesive 

before being attached to chip in the alignment tool. The adhesive is sprayed in two 

passes from approximately 1-2 feet away and as evenly across the chips as possible.   
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Figure 24: Design of protocol development chip with layers combined with spray 

adhesive [19] 
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Figure 25: Chip layers and materials for assembly of protocol development chip using 

the spray adhesive method [19] 

 

 For the enzyme activity and enzyme inhibitor activity tests the chip was 

simplified even further. The second and third layers were removed from the design, 

essentially removing the reservoir and paper based fluidic valve from the chip, and 

turning it into a conventional strip test. This change was done to focus the research on 

the biological and chemical aspects of the chips. Lacking the automatic sequential 

loading of fluids to the chip, reagents for this simpler protocol development chip 

needed to be added to the sample inlet by hand. This avoids the need to optimize 

channel geometries for timing channels and fluidic paper valves, removes the chance 

of unknown effects from the surfactant, tween20, on the biological reactions, and 
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allows for variations in incubation times without having to optimize a new chip 

design. These simplified chips were also ideal for testing enzyme activity as it made it 

easy to vary reagent volumes without having to change the chip design.  

 

3.2 Alkaline phosphatase activity 

 The enzyme, alkaline phosphatase (ALP), was used as an initial benchmark to 

measure enzyme activity with a paper based lateral flow device. It was chosen as it 

quickly converts the substrate, BCIP/NBT, into a dark purple precipitate that is highly 

visible when present in white nitrocellulose. Depending on the pore size of the 

nitrocellulose, the precipitate will also be physically hindered from flowing 

downstream in the chip.  

 

Materials, equipment, and reagents needed for ALP activity test: 

 Simplified single-fluid protocol development chips 

 BioLabs
®
 Biotinyated Alkaline Phosphatase (0.5 mg/mL) 

 Sigma Fast
TM

 BCIP/NBT (No. B5655) 

 1X PBS 

 Deionized water (dH2O) 

 1M Hydrochloric (HCl) in dH2O 

 1M Sodium hydroxide (NaOH) in dH20 

 Sodium orthovanadate (Na3VO4)  

 ImageJ
®
 1.49v (imaging software) 

 Fujitsu
®
 ScanSnap

®
 iX500 scanner 
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The substrate, BCIP/NBT, comes in tablet form. One tablet is dissolved in 10 mL 

of ultra-pure dH2O by vortexing. The volume of this solution can be made variable for 

a specific test but the concentration is usually kept the same for all experiments. The 

alkaline phosphatase (ALP) solution is aliquoted in 1X PBS from the stock 0.5 mg/mL 

solution. To test the enzymatic activity of ALP, concentrations of 5e-4, 1e-3, 5e-3, 1e-

2, 5e-2, and 1e-1 mg/mL were used. To have a background measurement to compare 

the signal to, a separate solution was used with PBS with no ALP present (0 mg/mL 

ALP).  

Each chip contains eight tests, one of which was assigned to be for the background 

measurement, where 1 µL of PBS was spotted. The remaining seven were spotted with 

1µL of a defined concentration of ALP. Six different concentrations of ALP were 

tested using six chips (seven tests + one background per chip). After the spots were 

allowed to dry for 10 minutes, clear scotch tape was used to cover the nitrocellulose 

detection spot. A small gap was left at the sample inlet to introduce the substrate 

solution. 40 µL of the substrate solution was pipetted into each sample inlet. As the 

substrate flows passed the spotted ALP on the nitrocellulose detection spot, a color 

change can be seen in the center of the spot should the concentration of the ALP 

enzyme be high enough. It should be pointed out that conventional enzyme activity 

tests use a stop solution to stop the enzyme from converting the substrate at a specific 

time interval at which the optical density will be measured. For this lateral flow device 

a stop solution, such as a 3M NaOH solution, is not necessary because any 

unconverted substrate flows passed the detection spot into the waste area and is then 

out of reach of the immobilized enzyme.  
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After the substrate has finished flowing, the chip is allowed to dry for an hour and 

is then scanned in color at 600 DPI. Figure 26 shows an example scan of a single chip 

with seven tests (plus one background at the bottom right). The image is opened using 

the ImageJ software and the colors are inverted. In ImageJ and using a Red, Green, 

Blue (RGB) color scheme, the signal is measured per pixel as a brightness value in the 

range from 0 to 255. A circle is drawn around the detection spot (yellow circle in 

figure 26) and the pixel values within this area are averaged and converted to a mean 

gray value. The equation used to find the mean gray value from the three color 

measurements was the standard V=(R+G+B)/3. White has a mean gray value of 255, 

while black has a mean gray value of 0. It should be noted that the brightness values of 

the colors can be weighted to optimize the signal strength should the signal be of a 

specific color other than white. An ImageJ macro to adjust the brightness value 

weighting can be found in appendix A. The mean grey values of the detection spots 

and the background are recorded and plotted. 

 

Figure 26: Example of scanned chip with positive signal of enzymatic activity (left) 

and with its colors inverted (right). 



 

43 

 

3.3 Sodium orthovanadate inhibitory activity 

 In this section sodium orthovanadate (Na3VO4) is used in solution form to 

inhibit the enzyme activity. This is to test how varying concentrations of an inhibitor 

in a sample solution will block the enzyme from converting substrate.  

To make the sodium orthovanadate solution, the following steps need to be followed: 

1. Dissolve 3.68 g of Na3VO4 (moleculare weight = 183.91 g/mol) to 90 mL 

ultrapure dH2O. Once it is dissolved, bring the volume up to 100 mL. 

2. Depending on the pH of the solution, slowly add tiny amounts of either 1 M 

NaOH or 1 M HCl while stirring to adjust the pH to 10. Adding HCl will lower 

the pH but turn the solution yellow.  

3. To make the solution clear and colorless, boil the solution by heating in a 

microwave for 5-15 seconds. 

4. Allow it to cool on ice until it reaches room temperature. 

5. The pH will have risen above 10 and will need to be readjust to 10 by mixing 

in small amounts of the 1 M HCl.  

6. By repeating steps 3-5 a few times, the pH should stabilize at ~10 and adding 

more HCl will result in little to no yellow color. 

7. Aliquot and store activated Na3VO4 at -20 °C. 

 

The chips that are used for this test are the same simplified protocol development 

chips used in the ALP activity experiment. An ALP concentration of 0.05 mg/mL was 

chosen as it gives a high signal, meaning high ALP activity, yet is not oversaturated 

(from ALP activity experiment results section 4.1). The idea is that with increased 
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inhibitor concentrations, the signal will decrease. The sodium orthovanadate solution 

is aliquoted in 1X PBS into concentrations of 1:1, 1:10, 1:100, 1:1000, 1:10000, and 

1:100000. As a control, PBS is used without any Na3VO4 present, which should give a 

high signal, meaning high enzyme activity and low inhibitory activity. For the 

background signal, some detection spots have pure PBS spotted, without the presence 

of ALP. This should give a low signal, meaning low enzyme activity and can be 

compared to high inhibitory activity. 

 To run the experiment, 1 µL of the 0.05 mg/mL ALP solution is spotted on the 

nitrocellulose detection spot. After allowing it to dry for 10 minutes, clear scotch tape 

is applied to cover the detection spot, leaving a gap for the sample inlet. Next, 40 µL 

of the inhibitor aliquots are introduced to the chips at the sample inlets. Each chip has 

a designated Na3VO4 concentration associated to it. For this test, two chips with eight 

paper devices each are used for each inhibitor concentration. After the inhibitor 

solution has fully wicked through the chip (seen by the depletion of the inlet drop), the 

chips are allowed to dry/incubate for 10 minutes. Once the 10 minutes are over, 40 µL 

of the BCIP/NBT substrate solution is introduced to the devices at the sample inlets. 

As the substrate solution passes the nitrocellulose detection spot, a purple color may 

be seen depending on the concentration of inhibitor used on that chip. The chips are 

then allowed to dry for one hour before being scanned in to collect the quantitative 

data.  

 The same scanning procedure is used as with the ALP activity experiments in 

the previous section. The chips are scanned in color at 600 DPI, their colors are 

inverted using ImageJ, and a mean gray value is measured from a circular area chosen 
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in the detection spot. The difference for these chips though is that a high signal means 

low ALP enzyme activity and thus a high Na3VO4 inhibitory activity, while a low 

signal means high ALP activity and thus a low Na3VO4 activity.  

 

3.4 ALP substrate volume test 

 For this experiment, the effect of the substrate volume was investigated. The 

idea was to see, if at low ALP enzyme concentrations, whether increasing the 

BCIP/NBT substrate volume would increase the signal. The chips and reagents were 

set up the same way as in the ALP enzyme activity test in section 3.2. The only 

differences were the volume of substrate introduced and the enzyme concentration. 

The substrate volumes for this experiment were 20, 40, 60, 80, and 100 µL and the 

ALP enzyme concentrations were 0.1, 0.01, and 0.001 mg/mL ALP in PBS. It takes 

approximately 20 µL of fluid for the substrate to even reach the nitrocellulose 

detection spot. Therefore, when looking at the data, signal will only start appearing 

with volumes higher than 20 µL for all tests. After the chips were dried following the 

same procedure as the other ALP enzyme activity tests, the chips were scanned and 

the data analyzed using ImageJ.  

 

3.5 Trypsin activity 

 The next tests were done as a precursor to the full-fledged sepsis test. For 

sepsis, the concentration of the enzyme inhibitor, inter alpha inhibitor protein (IαIP), is 

measured.  This inhibitor blocks the enzyme activity of trypsin from converting the 
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substrate, BAPNA. Before testing the activity of the inhibitor, the enzyme activity of 

trypsin first needs to be tested.  

 

The materials, equipment, and reagents needed for trypsin enzyme activity tests: 

 Simplified single-fluid protocol development chips 

 Sigma® TPCK-treated Trypsin (0.2 mg/mL in 1 mM HCl) 

 Sigma® BAPNA (N-Benzoyl-L-arginine)-p-nitroaniline HCl (21 mg/mL in 

DMSO) 

 1X PBS 

 Deionized water (dH2O) 

 1M Hydrochloric (HCl) in dH2O 

 1M Sodium hydroxide (NaOH) in dH20 

 ProThera® Inter-alpha Inhibitor Protein 

 ImageJ
®
 1.49v (imaging software) 

 Fujitsu
®
 ScanSnap

®
 iX500 scanner 

Before any trypsin enzyme activity experiments could be carried out, the 

following reagents needed to be prepared: 

Trypsin solution (50 mL 0.2 mg/mL Trypsin in 1 mM HCl) [20] 

1. Mix 50 µL of 1 M HCl with 50 mL dH2O 

2. Weigh 0.01 g of Trypsin and add 50 mL of 1 mM HCl 

3. Mix by swirling 

4. Aliquot 400 µL of resulting solution into small vials.  

5. Store at -20 °C 
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TEA Buffer (100 mL 0.2 M TEA pH 7.8) [20] 

1. Weigh 3.714 g of TEA (in powder form) 

2. Add approximately 90 mL of dH2O to TEA and allow to dissolve 

3. Use a pH meter or litmus paper to measure pH of solution 

4. Add small amounts of NaOH to the solution to raise the pH to 7.8 

 Using a 1 M NaOH in dH2O solution can speed up this process 

5. Once the desired pH is achieved, add dH2O until the solution volume is 100 

mL. 

6. Mix well using vortexer. 

 

BAPNA solution (1 mL 21 mg/mL L-BAPNA in Dimethyl Sulfoxide) [20] 

1. Weigh 0.021 g of L-BAPNA. 

2. Add 1 mL of dimethyl sulfoxide to L-BAPNA 

3. Vortex solution to mix well. 

4. Aliquot 200 µL of solution in small vials and store at -20 °C. 

 

Hide Powder Azure substrate solution (1 mL 4.17 mg/mL) [38] 

1. Weigh 10 mg of Hide Powder Azure. 

2. Add 2.4 mL of Tris Buffer (pH 7.8) to Hide Powder Azure. 

3. Vortex solution to mix well. 

4. Store at -20 °C. 
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Figure 27: Unconverted (left) and converted (right) BAPNA solution using trypsin as 

the catalyzing enzyme. 

 

 Before carrying out a model enzyme activity test on the simplified single-fluid 

protocol development chips, 200 µL of a 1:3 trypsin in TEA buffer solution is mixed 

with 200 µL of 1:5 BAPNA in dH2O dilution in a vial to test whether the enzyme is in 

fact active. After allowing the solution to incubate at room temperature for 30 minutes, 

the mixture should have turned a bright yellow. It is compared to an unconverted 

BAPNA solution in figure 27. 

Just like in the ALP enzyme activity experiments, 1 µL of the enzyme solution, 

which in this case is a 1:3 trypsin in TEA buffer solution, is spotted on the 

nitrocellulose detection spots in the simplified single-fluid protocol development 

chips. Varying concentrations of trypsin are spotted as a way to model varying 

enzyme activity denoted by the unit ‘U’. The unit ‘U’ is defined as the amount of 

enzyme that catalyzes the conversion of 1 µM of substrate per minute. After the spots 

are allowed to dry for 10 minutes, they are covered by clear scotch tape, covering the 
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nitrocellulose detection spot and the main fluid channel but leaving a gap for the fluid 

inlet at the opposite end of the fluid channel. A 40 µL volume of a 1:5 dilution of the 

premade BAPNA solution to dH2O is then added at the fluid inlet and any color 

development is observed at the detection spot under the clear tape. The conventional 

trypsin activity tests use a stop solution, such as Basic Pancreatic Trypsin inhibitor 

(BPTI) or concentrated acetic acid (C2H4O2), to stop the trypsin from continuing the 

cleaving of BAPNA substrate during the optical density measurements. For lateral 

flow devices a stop solution is not necessary as any unconverted substrate will have 

flowed into the waste pad, away from the immobilized trypsin enzyme. After the chips 

are allowed to dry for an hour, they are scanned and the detection spots are analyzed 

using ImageJ and the same procedure for the ALP tests described in section 3.2. The 

weighting of the RGB colors can be tuned to detect a yellow color as opposed to the 

dark purple color in the ALP tests. When the colors are inverted in RGB, a yellow 

color becomes blue. For a blue signal, the RGB weighting equation is:  

𝑉 = (0 × 𝑅) + (0 × 𝐺) + (1 × 𝐵) 

 

3.6 Inter-alpha inhibitor protein inhibitory activity 

 Once concentration curve has been made for trypsin to signal strength, a 

concentration is chosen with the highest consistent signal that does not show signs of 

oversaturation. A new reagent, an inter-alpha inhibitor protein (IαIP) solution, is 

introduced to the experiment. This protein, IαIP,  is a biomarker for various stages of 

sepsis and its concentration may be detected using this experiment. Each IαIP 

molecule has the ability to block the activity of a trypsin molecule from converting the 
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BAPNA substrate into the yellow dye. The more of the IαIP present in the solution, 

the more trypsin enzymes are deactivated, which in turn would produce less of a 

yellow color after the BAPNA solution is introduced.  

 To begin the experiment, 1 µL of the chosen concentration of the trypsin 

solution is spotted onto the nitrocellulose detection area and allowed to dry for 10 

minutes. Clear plastic tape is then used to cover the detection area, leaving a gap for 

the fluid/sample inlet at the opposite end of the main fluid channel. Next, 40 µL of the 

varying concentrations of IαIP are added to the fluid inlet and allowed to flow through 

the chip and incubate for 10 minutes. Afterwards, the 1:5 dilution of the premade 

BAPNA solution to dH2O is added at the fluid inlet and any color development is 

observed at the detection spot. The chips are then left to dry for one hour and then 

scanned. Using ImageJ, the chips are analyzed using the same procedure as in the 

previous test, section 3.5, and using the same RGB mean gray value method and color 

weighting for an inverted yellow to blue signal. The same test was done again using 

only the highest trypsin concentration available and increasing the substrate volume to 

400 µL, pipetting the substrate 20 µL at a time to avoid the fluid from overflowing. 
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4 Findings 

 

 The first thing that needed to be tested was to see whether a basic enzymatic 

activity test could be performed using a paper-based lateral flow device. To prove that 

such a test is possible, a well-known enzyme, alkaline phosphatase (ALP), with 

respective substrate, BCIP/NBT, and inhibitor, sodium orthovanadate, combination 

was selected to be tested using a simplified version of the protocol development chip 

fabricated in-house. This simplified chip was developed as a way to focus the research 

on the biological test and its behavior in a porous substrate, which in this case is 

nitrocellulose. Using this chip avoided interactions with other aspects of the chip such 

as the surfactant and chemicals, which are used for paper sizing, present in the paper-

based fluidic valves. As there was only the one single fluid channel in this design, the 

timing between the introductions of fluid reagents as well as incubation times were all 

done manually. This is advantageous when testing new unproven biological tests as 

the incubation times still need to be optimized and can then be easily adjusted. Should 

the original protocol development chip be used for such tests, the chip design would 

have to be altered every time the timing of the fluid reagents needs to be changed by, 

for example, changing the fluid channel lengths.  

 

4.1 Alkaline phosphatase activity 

 To model different levels of enzymatic activity of alkaline phosphatase (ALP), 

concentrations of 0, 5e
-4

, 1e
-3

, 5e
-3

, 1e
-2

, 5e
-2

, and 1e
-1

 mg/mL of ALP in 1X PBS were 

spotted and allowed to dry on the nitrocellulose detection spots. After the drying and 
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taping step, the substrate solution of BCIP/NBT is introduced to the chip and allowed 

to flow past the detection spot. The immobilized ALP cleaves the substrate molecules 

with one of the product molecules being a dark purple precipitate. Depending on the 

amount of ALP present, a varying amount of the substrate is converted, which can 

then be detected by the amount of color change.  The chips are scanned, the colors are 

inverted, and the detection zones are analyzed using ImageJ. The mean gray value of 

all the pixels in this zone is calculated where the maximum signal strength has a value 

of 255 (white) and minimum signal strength of 0 (black). For a the dark signal in this 

test, the equation used for the mean gray value is: V = ( R + G + B ) / 3. Figure 28 

shows a selection of two chips with the color inverted that show an example of high 

signal and one of low signal. A complete set of all the images of scanned chips can be 

found in appendix B. 

      

Figure 28: Example of scanned chips with inverted colors, one with a visually high 

signal (left) and one with a visually low signal (right). 
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 Each chip contains eight paper based lateral flow devices, seven of which are 

had the spotted ALP and the eighth was used to measure the background signal as no 

ALP was spotted there. The mean gray values of the seven tests of each concentration 

were averaged together and the standard deviation calculated. For the error bars that 

will be used to graph the data, a 95 % confidence interval was used, which equates to 

two times the standard deviation, plus and minus the average of the data points. The 

average of these data points can be seen in table 2 and the expanded version 

containing all of the data in appendix C.  

 

 
Background 5e

-4
 1e

-3
 5e

-3
 1e

-2
 5e

-2
 1e

-1
 

Avg. MGV 16.40 12.99 20.64 26.48 45.34 70.74 78.82 

95% confidence 8.34 3.83 6.60 5.37 8.60 11.49 18.35 

 

Table 2: The average mean gray value (MGV) and 95 % confidence interval of 

different concentration of ALP in mg/mL shown as RGB brightness values. 

 

Figure 29 shows a comparison of the signals produced by these various ALP 

concentrations. A distinct trend can be seen that with an increased ALP concentration, 

the signal increases as well. At an ALP concentration at or below 1e
-3 

mg/mL the 

measured signal goes below the measured signal of the background. Interestingly 

enough, when visually looking at the spot at such low concentrations, the signal can 

still be seen like in figure 30, yet the measured values sink within the error range of 

the background. It should also be pointed out that the error bars increase in size with 

an increase in enzyme concentration. 
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Figure 29: Model of enzyme activity using various concentrations of alkaline 

phosphatase.  

 

     

Figure 30: Protocol development chip with 1e
-3

 mg/mL ALP concentration with the 

colors inverted (left) and a closer view of the detection spot (right).   

0

10

20

30

40

50

60

70

80

90

100

Background 5e-4 1e-3 5e-3 1e-2 5e-2 1e-1

M
e

an
 g

ra
y 

va
lu

e
 (

R
G

B
) 

ALP concentration [mg/mL] 

Alkaline Phosphatase (ALP) Activity 



 

55 

 

The stock ALP solution was acquired having a concentration of 5 mg/mL. The 

reason that the highest concentration shown in the data set in table 2 and figure 29 is 

1e
-1

 mg/mL, is that above those ALP concentrations the chip becomes oversaturated. 

At such high enzyme concentrations, the ALP converts the substrate far too quickly 

and the resulting precipitate clogs the porous substrate. This clogging forces the 

remaining substrate fluid to wick around the sides of the detection area, where no 

enzyme is present, and thus will not be converted. Figure 31 shows an example of 

such a case, where at the upstream edge of the spotted enzyme, there is a high 

concentration of visible white signal but has a dark band downstream that is darker 

than the corresponding background signal on the edges of the detection area. It is 

assumed that because the unconverted substrate wicks around the sides, the center of 

the detection spot does not encounter any fluid with substrate and thus is the local area 

with the lowest brightness values. Because the center of these spots are so dark (in the 

inverted image), the mean gray value, calculated from all of the pixels within the 

detection spot, will have a much lower value than expected.  
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Figure 31: Detection spot with a 0.5 mg/mL ALP concentration. High signal (white) 

is visible on the upstream edge of the v spot and no signal (black) is pocketed within 

that edge. 

 

 

4.2 Sodium orthovanadate inhibitory activity 

 The next step was to discover the effect of an inhibitor, in this case sodium 

orthovanadate (Na3VO4), on the enzyme, ALP, when the reagents interact in the 

porous nitrocellulose. After a rudimentary signal to enzyme concentration curve was 

made from the ALP activity test in section 4.1, an ALP concentration of 0.05 mg/mL 

was chosen as high color brightness values were measured using this concentration 

and at that concentration there was no danger of oversaturation the detection area. A 

high starting brightness value is important for this test because the introduction of an 

inhibitor was expected to decrease these brightness values. After the immobilizing of 

the 0.05 mg/mL of the ALP solution, the inhibitor solution with various concentrations 
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of sodium orthovanadate were introduced to the chip at the fluid inlet and allowed to 

wick through the chip and across the detection spot. In that step the activated inhibitor 

is expected to deactivate a certain amount of the enzymes depending on the 

concentration of inhibitor introduced. The more enzymes that become deactivated, the 

fewer the enzymes that will be active when the substrate is introduced, decreasing the 

rate at which the substrate is converted into the detectable precipitate. Table 3 shows 

the average mean gray values measured for each corresponding inhibitor dilution. For 

the control tests, in place of the inhibitor solution, PBS was used to keep as many 

parameters as constant as possible. Theoretically, the control spot should have the 

highest average brightness value as none of the enzymes are deactivated by the 

inhibitor. To have a background measurement to compare the results to, some tests 

were done that replaced both the inhibitor solution and the spotted ALP solutions with 

PBS. The background should theoretically have the lowest average brightness value as 

there is no enzyme to convert the substrate. The 95 % confidence interval was 

calculated as two times the standard deviation of all the data points for each respective 

inhibitor concentration and was used for the error bars in figure 32.  

 

 Control Background 1:1 1:1e
1
 1:1e

2
 1:1e

3
 1:1e

4
 1:1e

5
 

Av. MGV 105.37 29.28 24.13 41.09 56.52 88.28 104.97 109.89 

95% conf. 15.15 3.69 3.17 6.91 9.62 13.52 19.89 22.17 

 

Table 3: The average mean gray value (MGV) and 95 % confidence interval of 

different dilutions of Na3VO4 as RGB brightness values. 
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 In figure 32, the tabulated numbers can be visually compared and it is easily 

recognizable that with an increased concentration of inhibitor the measured mean gray 

value decreases as expected. At inhibitor concentrations below the 1:1e
3
 dilution, the 

range in the error bars start to blend together. At the highest inhibitor concentration the 

measured mean gray value sinks below the measured mean gray value of the 

background tests. It should also be pointed out that with an increase in inhibitor 

concentration, the size of the error bars also increase. Possible solutions to these 

phenomena will be discussed in chapter 5.  

 

 

Figure 32: Model of enzyme inhibitor activity using various dilutions of sodium 

orthovanadate. 
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4.3 ALP substrate volume test 

 Because it is the substrate that is converted into the detectable signal, and 

because there is a wide range of volumes that potentially could be used for these 

devices, an appropriate volume needed to be found for such tests. The idea was that by 

increasing the volume of substrate passing the detection area, the signal would also 

increase proportionally, because the enzymes immobilized on the surface of the 

nitrocellulose detection spot continually convert the substrate as it is flowing by. For 

this test, ALP concentrations of 0.1, 0.01, 0.001 mg/mL, and one ‘background’ with 

no enzyme present were used. For each of these concentrations, substrate volumes of 

20, 40, 60, 80, and 100 μL were added. Table 4 shows the data from this experiment. 

 

 
20 µL 40 µL 60 µL 80 µL 100 µL 

0.001 mg/mL      

Avg. MGV 2.43 32.69 38.92 43.41 41.89 

95% conf. 2.12 4.76 5.71 4.89 13.71 

0.01 mg/mL 
     Avg. MGV 5.67 70.77 81.18 83.12 80.53 

95% conf. 6.94 7.28 4.62 15.79 9.09 

0.1 mg/mL 
     Avg. MGV 15.54 126.75 151.12 165.71 172.41 

95% conf. 5.77 18.96 4.32 11.88 11.60 

      

Background 4.094 39.53 39.74 37.29 34.66 

      

Table 4: The average mean gray value (MGV) and 95 % confidence interval when 

various substrate volumes are used for three ALP enzyme concentrations. 

 

 A visual representation of this data can be seen in figure 33. It is immediately 

noticeable that there is a huge jump in signal from 20 µL to 40 µL. This is due to the 

length of the wicking channel before the substrate reaches the nitrocellulose detection 
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area where the enzyme is immobilized. It takes approximately 20 µL for the fluid front 

to reach the detection spot so very little of the substrate solution crosses the detection 

spot and is converted. For each substrate volume tested, an increase in enzyme 

concentration also increased the measured signal. When looking at each enzyme 

concentration individually, an increase in substrate volume from 40 µL to 100 µL only 

made a noticeable change at the high enzyme concentration line of 0.1 mg/mL. The 

signal measured at the lowest concentration of 0.001 mg/mL did not have a 

quantitative signal above the brightness value measure from the background. These 

phenomena and potential solutions to problems are discussed in chapter 5. 

 

 

Figure 33: ALP enzyme activity test showing the effect of a change in substrate 

volume on the measure signal on three different enzyme concentrations.   
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4.4 Enzymatic and inhibitory activity of trypsins 

 Inter-alpha inhibitor protein (IαIP), an inhibitor for the enzyme, trypsin, and a 

biomarker for sepsis, is the next analyte of interest to be detected using an enzyme 

inhibitor activity assay. Because these reagents behave similarly to the ALP/sodium 

orthovanadate assay, the tests using trypsin and IαIP were developed the same way.  

 

4.4.1 Trypsin activity 

 Before the detection of the inhibitor can be done, the enzymatic activity of the 

trypsin needed to be tested. Various concentration of the trypsin solution were spotted 

and immobilized on the nitrocellulose detection area and after it was allowed to dry, 

covered by a piece of transparent tape. A 40 µL volume of the substrate, BAPNA, was 

then introduced to the fluid inlet and allowed to wick through the paper-based lateral 

flow device and over the nitrocellulose detection area where the trypsin was 

immobilized. As the fluid crossed the detection area there was no visible change in 

color.  

 

4.4.2 Trypsin activity with increased substrate volume 

 The same test was repeated with some changes in an effort to obtain even a 

very faint color change. For this test the highest concentration of trypsin available (0.2 

mg/mL) was used. Also, the volume of substrate added to the chip was increased from 

40 µL to 400 µL. To avoid the substrate fluid from overflowing, 20 µL were added to 

each test every 5 minutes until the 400 µL total is reached. When this test is done with 

the conventional 96-well microplate method, it takes over 30 minutes for the 
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BCIP/NBT substrate to be converted by the trypsin enzyme. Adding the 5 minute 

wicking time also gave the paper-based lateral flow method more time for the 

substrate to be converted. With 40 µL the fluid will stop flowing in less than 5 

minutes, while with the 400 µL procedure, it takes ~100 minutes.   

 

    

Figure 34: Inverted color scans of enzymatic activity test using 400 µL of BAPNA 

substrate solution over 0.2 mg/mL trypsin spot (left) and over TEA buffer spot (right).   

 

 

Figure 34 shows a scan of the test where the highest blue brightness value was 

measured and a scan of a chip where no substrate was converted. The dark blue 

colored signal is difficult to see on the black background with the naked eye but can 

be measured using ImageJ. Figure 35 shows the measured values for all of the tests 

and shows that with trypsin there will be a slight color change but inconsistently. Only 

four of eight tests with the trypsin spotted showed a meaningful change in color. The 

rest had a color brightness value comparable to the tests done without any 

immobilized trypsin. The waste pads did show some signs of a faint yellow hue after 

drying, indicating the presence of converted substrate for both cases. It should be 
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pointed out that not many tests were done for this experiment and there are many 

uncontrollable parameters. There is a chance that these results may not be repeatable, 

though they could definitely be improved by controlling parameters, optimizing the 

volume of trypsin spotted, and the method of spotting the trypsin.  

 

 

Figure 35: Enzyme activity test using 400 µL of BAPNA substrate solution over 0.2 

mg/mL trypsin spot.   

 

4.4.3 Inter-alpha inhibitory protein activity 

 For this test it is necessary to have a control and high starting signal as the role 

of the inhibitor in this assay is to decrease the enzymatic activity, which in turn 

reduces the resulting signal. Because the previous test (section 4.4.2) did not produce 

high enough signal, the experiments for this section could not be carried out.  
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5 Conclusion and Future Work 

 

 The research done into enzymatic activity and enzyme inhibitory activity 

assays on paper-based lateral flow devices progressed in several ways over the course 

of this research. The most important of these was the proof of concept that enzymatic 

activity and enzyme inhibitory activity tests are possible on a paper-based lateral flow 

device. The conventional method for an enzymatic activity and enzyme inhibitory 

activity tests are run using elaborate and expensive methods that require large amounts 

of sample fluids and reagents, expensive equipment, a laboratory, and a trained 

technician [20]. This new method potentially allows for the elimination of all of these 

requirements with some additional optimization and product design work.  

 

5.1 ALP enzyme and inhibitory assay 

 For the alkaline phosphatase (ALP) enzyme, data was acquired showing the 

possibility of a signal to enzyme concentration calibration curve (figure 29 in section 

4.1). The very rough method of spotting the enzyme, however, causes rather large 

ranges in measured values for tests with identical parameter sets. Once that has been 

optimized, a calibration curve useful for marketable products will be possible. For the 

enzyme inhibitory activity of sodium orthovanadate, using the ALP assay, the same 

conclusions can be made. A preliminary signal to inhibitor concentration curve (figure 

32 in section 4.2) was achieved, yet the error range of this data also leaves much room 

for improvement through optimization and other engineering methods. This curve also 
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proves that the binding of the inhibitor to the enzyme is strong enough and will not be 

broken as the substrate solution flows by.  

The shape of the spot that changes color is far smaller than the area that gets 

wetted when spotting the ALP enzyme solution, which indicates that the ALP 

molecules quickly immobilize on the nitrocellulose during the spotting. The volume 

and concentration of the enzyme spotted both have an effect on the final size and 

shape of the immobilized enzyme and cannot be measured or controlled before the 

tests are carried out. A new method for the deposition of the enzyme reagent needs to 

be found. Using an inkjet printer has proved promising to precisely deposit small 

volumes of biological liquid reagents [39]. Printing the enzyme as a test line instead of 

a spot will not only solve the problem of controlling the size, shape, and concentration 

of the immobilized enzyme detection area, but also the problems with uneven 

brightness values measured and the wicking of substrate fluid around the sides of the 

detection spot. Many of these problems are due to local areas of a highly concentrated 

substrate precipitate particles clogging the small pores in the nitrocellulose. If the 

enzymes were printed as a test line similar to conventional lateral flow tests, the 

substrate and other reagents will not be able to bypass the functionalized detection 

spot, preventing the loss of a large portion of the signal strength. 

To improve these tests even further, a washing step can be introduced to the 

chip design. After the substrate solution is finished flowing, any unconverted substrate 

could be washed away with an additional fluid, because as the fluid dries, any 

unconverted substrate may cleave to give falls signal both in the detection area and on 

the background. Increasing the color brightness of a background measurement will 
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have a huge effect on the signal to noise ratio as the noise is calculated from the 

background brightness value. Also another enzyme, horseradish peroxidase (HRP) 

could be used along with an appropriate precipitating substrate like 3,3’-

Diaminobenzidine (DAB), to perform similar enzymatic activity tests. As a potential 

application, the inhibitory activity of cyanide on the HRP enzyme could be 

quantitatively be measure with a similar PBD assay as the ALP enzyme inhibitory 

activity assay. HRP also has the advantage that it is also useable at a wider range of 

pH levels [40]. 

 

5.2 Trypsin activity 

 The enzymatic activity tests done using trypsin had far less promising results. 

The chemistry involved in this test does not fit well with paper-based lateral flow 

devices. There are several problems that need to be addressed. The first, the time 

required for the enzyme, trypsin, to convert the substrate, BAPNA, into its colored 

product, from which one receives the signal, take much longer than in the ALP 

activity tests. The substrate takes over 30 minutes to convert in the conventional 96-

well microplate method, while it takes less than 3 minutes for the same volume of 

substrate solution to flow through the paper-based lateral flow device. Another issue is 

that the colored product is not a precipitate like in the ALP assay, but a soluble yellow 

dye. The advantage of a colored product that is a precipitate is that it will stay stuck 

between the pores of the nitrocellulose detection spot producing small areas of high 

concentration that can be easily detected. The soluble dye, however, will continuously 

be washed into the waste/absorption pad as fresh substrate solution enters the 
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detection area. The yellow color of the dye produced in the trypsin/BAPNA assay is 

also difficult to see and measure on the white nitrocellulose background. The simplest 

solution would be to find an alternative substrate that when converted by trypsin, turns 

a darker color. Hide-Remazol Brillian Blue R from SigmaAldrich
®
 may be a substrate 

worth investigating for future tests. This substrate is converted from a blue color to 

orange (595nm), colors that contrast each other strongly and can easily be detected on 

the white nitrocellulose background. Ideally, a substrate that also precipitates when 

converted should be chosen. It is unclear at this point whether this substrate is a 

precipitate before or after it is converted. Eventually the paper-based lateral flow 

devices with the trypsin/IαIP assay should produce results comparable to the 

conventional 96-well microplate method like in figure 36, which shows the optical 

density with respect to the inhibitory activity of the IαIP. 

    

Figure 36: Optical density at 405 nm light for various inhibitory activities (i.e. various 

IαIP concentrations) [20] 
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 After the reagent concentrations, volumes, and incubation times for these 

assays are optimized, a full 3d paper-based lateral flow device can then be designed 

with appropriate timing channels to account for the incubation times, and paper-based 

3d fluidic valves to trigger and sequentially load various fluidic reagents. The assays 

done in this work all require a minimum of two fluids when they are run, the sample 

fluid containing the inhibitor solution (or a wash if only and enzyme activity test) and 

the substrate in a separate reservoir. The order and timing at which each of them enters 

the detection zone are automatically controlled by the chip. A protocol development 

chip, a two fluid design, as can be seen in figure 37, was designed to handle two fluids 

in a sequential loading scheme [19]. The sample fluid holding an unknown 

concentration of the enzyme inhibitor is added at the sample inlet. A defined volume 

of substrate will be added at the reservoir inlet and its flow will be stopped due to a 

hydrophobic fluidic valve in the layer beneath it. Once the sample fluid reaches the 

other side of the fluidic valve, it mixes with a surfactant dried in the paper and opens 

the valve, opening a path for the substrate solution to flow through the detection spot. 

The design would have to be optimized to account for incubation times but would 

roughly function as is.  
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Figure 37: Design of two-fluid protocol development chip [19]. 
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APPENDICES 

 

Appendix A 

 

“MeasureRGB” Macro for ImageJ to weight specific colors 

// "MeasureRGB" 

// This macro demonstrates how to separately measure 

// the red, green and blue channels of an RGB image. 

 

  requires("1.35b"); 

  if (bitDepth!=24) 

     exit("This macro requires an RGB image"); 

  setRGBWeights(1, 0, 0); 

  run("Measure"); 

  setResult("Label", nResults-1, "Red"); 

  setRGBWeights(0, 1, 0); 

  run("Measure"); 

  setResult("Label", nResults-1, "Green"); 

  setRGBWeights(0, 0, 1); 

  run("Measure"); 

  setResult("Label", nResults-1, "Blue"); 

  setRGBWeights(1/3, 1/3, 1/3); 

  run("Measure"); 

  setResult("Label", nResults-1, "(R+G+B)/3"); 

  // weights uses in ImageJ 1.31 and earlier 

  setRGBWeights(0.299, 0.587, 0.114); 

  run("Measure"); 

  setResult("Label", nResults-1, "0.299R+0.587G+0.114B"); 

  updateResults(); 
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Appendix B 

 

ALP activity test scans 

ALP concentrations [mg/mL] 

1 A 2 B 3 C 

0.1  0.05  0.01  0.005  0.001  0.0005  

 

 

 

ALP activity test data in table format 

 ALP concentration [mg/mL] 

 1e-1 5e-2 1e-2 5e-3 1e-3 5e-4 

Measured 

RGB 

brightness 

values  

98.034 

73.034 

78.423 

78.405 

84.051 

69.591 

70.226 
 

71.98 

66.075 

64.844 

71.786 

76.662 

80.087 

63.702 
 

50.153 

48.813 

36.884 

44.613 

47.656 

41.815 

47.468 
 

22.236 

30.824 

26.991 

24.086 

25.861 

26.181 

29.147 
 

19.47 

17.146 

19.703 

20.295 

26.528 

24.359 

17.003 
 

11.703 

13.011 

16.042 

12.78 

11.115 

10.783 

15.485 
 

 

 



 

72 

 

Appendix C 

 

Sodium orthovanadate inhibitory activity test scans 

Sodium orthovanadate concentration (from ~200mM solution) 

1 2 3 4 5 6 B C 

1:1 1:1e-1 1:1e-2 1:1e-3 1:1e-4 1:1e-5 Background Control 
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Sodium orthovanadate inhibitory activity data in table format 

 Sodium orthovanadate concentration (from ~200mM solution) 

 Control BG 1:1 1:1e1 1:1e2 1:1e3 1:1e4 1:1e5 
R

G
B

 b
ri

g
h
tn

es
s 

v
al

u
es

 (
ra

n
g
es

 f
ro

m
 0

-2
5
5

) 
 

109.75 

106.35 

106.57 

97.33 

108.52 

99.82 

110.21 

112.54 

101.46 

112.08 

91.18 

102.27 

110.26 

122.48 

99.40 

95.72 
 

29.00 

29.95 

30.89 

31.96 

28.09 

29.51 

27.49 

32.09 

27.01 

26.05 

28.67 

32.18 

28.83 

26.82 

29.98 

29.93 
 

27.92 

22.64 

23.14 

22.51 

23.18 

24.11 

24.31 

23.82 

23.80 

25.18 

26.27 

23.83 

26.61 

24.25 

22.55 

22.04 
 

41.04 

35.78 

48.19 

40.50 

45.58 

39.73 

44.74 

40.98 

40.00 

43.35 

39.24 

39.01 

38.24 

42.14 

44.35 

34.53 
 

60.15 

51.09 

64.11 

52.37 

57.19 

58.34 

58.21 

53.54 

57.56 

48.81 

48.94 

53.47 

59.98 

57.87 

66.32 

56.44 
 

80.49 

86.41 

99.11 

82.67 

97.10 

95.91 

87.99 

81.02 

83.24 

101.95 

87.12 

87.33 

81.58 

88.63 

91.38 

80.54 
 

107.73 

108.89 

94.04 

87.79 

103.30 

117.54 

113.54 

95.25 

93.78 

115.48 

114.50 

93.29 

108.38 

117.24 

114.16 

94.65 
 

119.17 

113.81 

100.27 

95.48 

100.27 

109.87 

105.61 

118.71 

117.93 

103.32 

128.00 

86.16 

119.95 

113.98 

123.85 

101.93 
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Appendix D 

 

Substrate volume test scans 

Substrate volume [μL] for ALP conc. 0.1 mg/mL 

20 40 60 80 100 

 

 

Substrate volume test data in table format 

 Substrate volume [μL] for ALP conc. 0.1 mg/mL 

 20 40 60 80 100 

R
G

B
 b

ri
g
h
tn

es
s 

v
al

u
es

 (
ra

n
g

es
 

fr
o
m

 0
-2

5
5
) 

 

13.31 

18.98 

11.97 

14.62 

19.68 

17.41 

12.84 
 

127.26 

109.31 

120.58 

130.84 

128.97 

143.02 

127.33 
 

152.02 

151.42 

147.55 

150.10 

151.93 

149.81 

155.07 
 

164.08 

162.55 

161.03 

160.37 

164.76 

179.02 

168.21 
 

175.10 

172.53 

168.26 

177.79 

178.46 

174.30 

160.49 
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Substrate volume test scans  

Substrate volume [μL] for ALP conc. 0.01 mg/mL 

20 40 60 80 100 

 

 

Substrate volume test data in table format 

 Substrate volume [μL] for ALP conc. 0.01 mg/mL 

 20 40 60 80 100 

R
G

B
 b

ri
g
h
tn

es
s 

v
al

u
es

 (
ra

n
g

es
 

fr
o
m

 0
-2

5
5
) 

 

13.03 

4.87 

8.56 

3.48 

1.91 

6.59 

4.86 
 

71.15 

71.11 

63.42 

71.07 

76.75 

72.15 

69.82 
 

82.14 

84.71 

79.69 

82.83 

82.27 

77.38 

79.30 
 

96.96 

91.88 

80.85 

78.07 

77.05 

83.92 

73.11 
 

80.90 

84.89 

85.42 

79.67 

75.12 

84.65 

73.14 
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Substrate volume test scans  

Substrate volume [μL] for ALP conc. 0.001 mg/mL 

20 40 60 80 100 

 

 

 

Substrate volume test in table format 

 Substrate volume [μL] for ALP conc. 0.001 mg/mL 

 20 40 60 80 100 

R
G

B
 b

ri
g
h
tn

es
s 

v
al

u
es

 (
ra

n
g

es
 

fr
o
m

 0
-2

5
5
) 

 

2.68 

4.14 

1.00 

2.07 

3.00 

3.10 

1.04 
 

31.55 

37.50 

29.76 

32.49 

31.03 

34.53 

31.99 
 

39.02 

43.00 

34.90 

39.18 

36.61 

42.81 

36.95 
 

45.70 

46.86 

42.40 

43.70 

38.95 

44.52 

41.79 
 

45.20 

51.25 

47.16 

33.42 

30.54 

43.15 

42.56 
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 Substrate volumes [μL] for background measurements  

(ALP conc. 0 mg/mL) 

R
G

B
 b

ri
g

h
tn

es
s 

v
al

u
es

 (
ra

n
g

es
 

fr
o

m
 0

-2
5
5

) 20 40 60 80 100 120 140 160 

4.09 

 

39.53 

 

39.74 

 

37.29 

 

34.66 

 

23.82 

 

22.94 

 

20.68 
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