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Abstract 

This research focuses on the relative advantages and disadvantages of using price-based 

and quantity-based controls for electricity markets. It also presents a detailed analysis of 

one specific approach to quantity based controls: the SmartAC program implemented in 

Stockton, California. Finally, the research forecasts electricity demand under various 

climate scenarios, and estimates potential cost savings that could result from a direct 

quantity control program over the next 50 years in each scenario. 

The traditional approach to dealing with the problem of peak demand for electricity is to 

invest in a large stock of excess capital that is rarely used, thereby greatly increasing 

production costs. Because this approach has proved so expensive, there has been a focus 

on identifying alternative approaches for dealing with peak demand problems. 

This research focuses on two approaches: price based approaches, such as real time 

pricing, and quantity based approaches, whereby the utility directly controls at least some 

elements of electricity used by consumers. This research suggests that well-designed 

policies for reducing peak demand might include both price and qua_ntity controls. 

In theory, sufficiently high peak prices occurring during periods of peak demand and/ or 

low supply can cause the quantity of electricity demanded to decline until demand is in 

balance with system capacity, potentially reducing the total amount of generation capacity 

needed to meet demand and helping meet electricity demand at the lowest cost. However, 

consumers need to be well informed about real-time prices for the pricing strategy to 

work as well as theory suggests. While this might be an appropriate assumption for large 

industrial and commercial users who have potentially large economic incentives, there is 



not yet enough research on whether households will fully understand and respond to real­

time prices. 

Thus, while real-time pricing can be an effective tool for addressing the peak load 

problems, pricing approaches are not well suited to ensure system reliability. This 

research shows that direct quantity controls are better suited for avoiding catastrophic 

failure that results when demand exceeds supply capacity. 

Real-time pricing has many advantages, but consumer response to real-time prices is not 

reliable enough to protect against catastrophic system failure. The reason is the 

distinction between higher (but well-behaved) increases in marginal supply costs versus 

system failure. Peak demand problems do not develop smoothly and gradually. Instead, 

peak demand problems are characterized by infrequent but serious crises whose timing is 

largely unpredictable. It is the potential for system failure that requires rapid temporary 

changes, and it is here that pricing measures appear to subject some severe practical 

limitations. Real-time pricing cannot guarantee a sufficient demand reduction to avoid 

system failure. The price elasticity for electricity demand is largely unknown, particularly 

at extreme temperatures. A one-time high hourly p#ce may not be able to produce the 

necessary reduction in demand quickly or predictably enough to avoid catastrophe. This 

suggests one major advantage of direct quantity controls: if the control is effective and 

can be deployed quickly, regulators can be assured of avoiding system catastrophe. For 

these reasons, the ideal peak demand policy might contain a mixture of tools, with real­

time pricing and direct load controls to reduce peak demand and maintain system 

reliability under different climate change scenarios. 
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Chapter 1. Introduction 

This study evaluates the impact of a direct load control policy intended to reduce peak 

demand for electricity by limiting residential consumers' demand for electricity for air 

conditioning during critical peak hours under different future climate change scenarios. In 

order to put the research in context, the study first provides background on the electricity 

industry, including the technology for producing and delivering power, the history of 

policy and regulation directed toward it, and recent experience with restructuring in the 

United States. The study then presents the unique attributes of electricity that create 

problems for those charged with supplying power, particularly the problems of balancing 

supply and demand in real time, which is essential to maintaining reliability. With this 

background, a major objective of this study is to assess the relative advantages and 

disadvantages of using real time prices for electricity to balance supply and demand, as 

compared to using direct load controls. The study also the study examines how electricity 

demand for cooling will change as global climate change warms the planet and the role 

for current strategies to manage peak demand. 

The rapid growth of peak demand in recent decades has brought peak demand to the fore 

in discussions on electricity and energy policy. Although the emphasis on addressing peak 

demand is fairly recent, the issues are as old as the electricity utility system itself. First, the 

necessity for real time production and the large divergence between peak and off-peak 

demand create the need for considerable excess capacity, much of which is idle for a large 

fraction of the time. For example, in 2006, the highest peak load year on record in New 

England, 15% of all generation capacity ran 0.9% of the time or less, and 25% of all 

capacity ran 2.9% of the time or less. This combined with high costs and long lead times 
1 



for capacity expansion means that it is very expensive to meet peak load without some 

form of demand management that smoothes consumption over time. Another issue is 

that modern society is highly dependent on reliable electricity supply. Thus, there is, in 

essence, a political mandate to meet demand virtually 100% of the time. These issues 

combine to make the connection between system peak demand and system reliability an 

important driver of public policy in the electric utility sector. 

Electricity demand varies minute-to-minute. Cost considerations necessitate that base 

load power generation uses technologies that have low operating costs and high capital 

costs because the plants are highly efficient. In contrast, since peak load generation 

capacity operates only a small fraction of the time, cost considerations dictate the use of 

technologies with lower capital costs and higher operating costs. Hence, the cost of 

electricity production varies considerably over time. However, the highly variable nature 

of the marginal cost of generating electricity is not reflected in the flat retail electricity 

prices paid by end users. Therefore, in order to balance supply and demand in real time, 

generators must produce sufficient electricity to meet customer demand at each point in 

time at a fixed retail price. As demand increases so does the likelihood of a system outage, 

which is highest during peak times1
. As a result, utilities must build capacity to supply 

electricity for the most extreme peak loads, which may only occur for one or two weeks 

of the year. 

An analogy with another form of infrastructure helps highlight this problem. Building 

sufficient electrical generation capacity to serve peak demand is akin to expanding a 

1 
The electric utility sector has traditionally focused on peak demand because the likelihood of system 

outages (often measured by the "loss of load probability" or LOLP) is by far greatest at peak 

times(Koomey & Brown, 2002) . 
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highway to 10 lanes each way in order to accommodate rush hour traffic without 

congestion. While this alleviates congestion during the morning and afternoon rush, the 

rest of day those 20 lanes will be sparsely populated with vehicles. The costs for building 

such a highway are prohibtively high and do not make sense when the need for all 20 

lanes is only for a few hours a day. Peak demand problems on highways are handled by 

having highly congested roads during rush hours, when traffic greatly exceeds the 

highway's carrying capacity. This is not done with electricity because the electrical system 

would fail on a regular basis if demand exceeded system capacity and this is viewed as 

unacceptable by society at large. Generators must build the infrastructure, regardless of 

cost, in order to meet peak demand, leading to higher than necessary wholesale and retail 

electricity prices and bills 

In this traditional model there is no way of ensuring reliability except by building capacity 

that is rarely used, and building such large amounts of excess capacity has been very 

costly. A more cost effective approach to reliability and meeting peak load would be to 

involve customers in the decision-making. If customers were faced directly with a choice 

between paying the full costs of building new capacity that would only run a few hours 

per year, versus the alternative of shifting a fraction of their consumption to off-peak 

hours, perhaps many customers would choose to reduce their peak use. The relative costs 

of building new capacity versus reducing peak demand emphasize this point. Using the 

capital cost of a simple cycle gas turbine as the basis of the cost for peaking capacity, 

Spees (2008) estimates that the price of peaking capacity is $94/kW year annually. Thus, 

the capital cost associated with a generator that runs exactly 1 hour per year is 
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$93,720/MWh2
. By contrast, a survey of utilities finds that the cost of coincident peak 

load reductions ranges from $18 to $25/kW year- less than one fourth of the $94/kW 

year it costs to build new capacity. Clearly, reducing peak demand could potentially be a 

much cheaper means of meeting peak demand than building more capacity. 

This topic is of particular importance in the face of climate change. Hotter temperatures 

and extended heat waves will lead to more frequent and harder-to-predict peaks3
• Many 

systems are already beginning to feel the strain of rising temperatures, causing policy 

makers at all levels of government to start examining policies aimed at reducing peak 

demand and increasing the resiliancy of the grid. Thus, there is considerable potential 

benefit to implementing demand management strategies to reduce episodic peak demand. 

There are two general categories of policies that can be used to reduce peak demand: 

price-based policy and quantity-based policy. Price-based policies focus on charging 

customers for electricity based on contemporaneous competitive wholesale market prices 

that reflect marginal supply costs. The resulting price elasticity exhibited by customers 

when responding to changes in real-time marginal supply costs would reduce electricity 

demand during peak hours and increase demand during off-peak hours. With quantity-

based policies, the utility directly controls the amount of electricity that is used by the 

household, business, or factory during peak periods. In one approach, consumers are paid 

incentives to join a program under which the utility controls appliances within the home, 

2 
By contrast, a base load generator operating all the time would be a capital intensive coal plant with 

a lower operating cost than a peaking gas generator. The per unit cost of this generator is 
$26.06/MWh. 
3 

The chaotic nature of weather makes it unpredictable beyond a few days. A major limiting factor to 
the predictability of weather beyond several days is a fundamental dynamical property of the 
atmosphere. Hence, changes in the properties of the atmosphere could potentially make it harder to 
predict the weather. 
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most commonly air conditioners. Quantity-based policies are a more direct tool for 

reducing peak demand, offering customers incentive payments to reduce their electricity 

consumption during peak periods. 

The remainder of this dissertation is organized as follows: Chapter 2 provides 

background on the electricity industry, including the technology for producing and 

delivering power, the history of policy and regulation regarding electricity markets, and 

some recent experience with restructuring of electricty markets in the U.S. Chapter 2 also 

explains the significance of peak demand in the electric power industry. Chapter 3 reviews 

two different types of policy tools used to reduce peak demand: real-time pricing and 

direct quantity controls. Chapter 3 also introduces the SmartAC™ program- a direct 

control program that limits the amount of electricity demanded by participating consumer 

air conditioning systems. Chapter 4 is a review of the economic literature on how price­

based policies are used to manage peak demand, and then compares the relative efficiency 

of using price-based versus quantity-based policies for reducing peak demand. Chapter 5 

and 6 focus on the analysis of the quantity-based SmartAC™ program for reducing peak 

demand. Chapter 5 illustrates several of the issues arid challenges associated with this type 

of analysis. Chapter 6 reports the results on estimating the impact that the SmartAC 

program had on peak demand in 2007, and presents projections for how effective this 

type of direct control policy might be under various climate change scenarios. Finally, 

Chapter 7 presents policy recommendations, suggestions for areas of future research, and 

conclusions. 
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Chapter 2. Understanding the Structure of the Electricity Industry 

In order to put this research in context, this chapter provides background on the 

electricity industry, including the technology for producing and delivering power, the 

history of policy and regulation directed toward it, and recent experience with 

restructuring in the United States. This chapter concludes that the long lead times 

associated with building new capacity, the lack of price response in the face of time­

varying costs, the large differences between peak demand and average demand, and the 

necessity for real-time delivery of electricity all make the connection between system 

reliability and peak demand an important driver of public policy in the electricity sector. 

This chapter also concludes climate change will exacerbate the peak demand problem. 

2.1 Brief History of the Electricity Industry 

For most of its history, the electricity industry was characterized by utilities operating as 

regulated geographic monopolies. These utilities were vertically-integrated, meaning that 

the same company owned and operated all of the infrastructure necessary for electricity 

generation, long-distance transmission, and final distribution and sale to end-users. The 

industry was regulated by federal and state governments; the former generally controlling 

the "wholesale" side and the latter controlling the "retail" side. Wholesale refers to the 

generation and transmission of electricity, while retail refers to the sale of electricity to 

residential, commercial, and industrial end users. Operating under monopoly conditions 

meant that only one electricity provider was available in most states or regions. This 

arrangement avoided the costly duplication of transmission wires and power plants, and 

for the privilege of being the sole provider of electricity, the utility submitted itself to the 

6 



oversight of the state Public Utilities Commission (PUC), which set retail electricity prices 

at a level that allowed the utility to earn a limited profit. Subject to rate-of-return 

regulation, the utilities charged their retail customers average-cost rates that included the 

return on the utilities' investments in generation, transmission, and distribution 

infrastructure 4• 

Competition on the wholesale side of the industry began as an unintended by-product of 

the 1978 Public Utility Regulatory Policy Act (PURPA), passed to promote alternative 

sources of energy by requiring utilities to purchase electricity from a limited set of 

approved generators. Despite flawed implementation, PURP A showed that the grid could 

work with non-utility generators. Congress enacted the Energy Policy Act in 1992 to 

open access to the transmission system to any independent power producer wishing to 

compete in the wholesale market. Four years later, the Federal Energy Regulatory 

Commission (FERC) issued its Orders 888 and 889, the first of many enabling 

regulations toward this end. Order 888 also required "functional unbundling" of 

wholesale power prices, requiring utilities to separate the rates for generation, 

transmission, and ancillary services5
• 

4 
The process works a little differently for publicly owned electric companies, such as municipal 

utilities and rural cooperatives. Because municipal utilities {"munis") are owned by the local 
government in the area they serve, and cooperatives are owned by the customers themselves, they 
may have less incentive than investor-owned utilities to take undue advantage of their monopoly 
position. Accordingly, in most states, publicly owned utilities and cooperatives set their own prices. 
5 

Ancillary services are the power-related functions necessary to keep the grid working and reliable. 
Examples include maintaining central control over generators to adjust power instantaneously to deal 
with momentary power surges and reductions in demand; adjusting generation to adapt to 
predictable hour-to-hour and daily variation in demand; and providing power in response to 
unexpected generator or transmission system failure. Ancillary services have traditionally been 
supplied by vertically integrated utilities with the cost included in the price of electricity. 
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Today, most restructured electricity markets follow a generic model. This model is 

characterized by a competitive wholesale electricity market in which sellers (generators) 

and buyers (utilities) transact by making supply and demand bids. An Independent 

System Operator (ISO) oversees the wholesale electricity market by managing the high­

voltage transmission owned by newly created regulated transmission and distribution 

(f&D) companies, which descend from the formerly integrated utilities. In turn, the 

distribution utilities resell electricity to final users. 

2.2 Characteristics of Electricity 

Electricity is an unusual commodity in many respects. One is that the power produced by 

a particular generator does not necessarily go to that generator's customers. More 

precisely, if a generator sells N kilowatts of power to its customers, it is merely 

committing to inject N kilowatts of electricity into the overall electricity system at the 

same time that its customers are pulling N kilowatts from the grid. It is as if Starbucks 

sold M cups of coffee by dumping that volume of coffee into a common vat mixed with 

coffee from every other coffee shop, out of which its customers had the right to pour M 

cups. As a consequence, the distinction between the grid and the power pooled within it 

can become blurry. If coffee were sold as in the Starbucks scenario, one might well 

expect that the owner of the vat- the grid- might find itself becoming involved with the 

wholesale purchase and retail sale of the coffee within it. This blurriness could be 

especially pronounced when it comes to ensuring a reliable supply of electricity. This 

section discusses the characteristics of electricity that affect the structure of wholesale 

electricity markets. 
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Perhaps the most crucial feature that distinguishes electricity from other commodities is 

the need to keep supply equal to demand on virtually a minute-by-minute basis. For most 

other commodities, buyers can wait if the item is not on the shelf or if the telephone line 

is busy. Sellers sometimes may have to backorder a "hot" item or keep inventory around 

a little longer when items do not sell as fast as expected. Both of these can be costly and 

inconvenient, to be sure, but they are not catastrophic in the way that a mismatch 

between electricity demand and supply can be. If more electricity is demanded than 

generated, brownouts or blackouts follow. If more electricity is supplied than used, the 

heat from the extra energy can damage transmission and distribution lines. 

Keeping electricity supply just equal to demand, by varying either production or use, is 

called load balancing. Two properties of electricity exacerbate the problem of keeping 

loads balanced. First, the cost of storing electricity in substantial quantities is prohibitive. 

With most commodities, if a seller thinks that demand could be stronger than expected, 

he can keep an inventory of the commodity available of the shelves or in a warehouse. 

This tactic is not available for suppliers of electricity. Batteries are too expensive to store 

much power for most users, and at least up to now, generation on-site is prohibitively 

costly for all but large industrial users or commercial facilities that cogenerate electricity as 

a by-product of energy available from other production processes or space heating 

systems. Hence, when users want electricity, the generators have to be producing it at that 

moment, and the transmission and distribution systems have to be able to deliver it. 

The second problem is that load imbalances can take down the entire grid or entire 

regions with the grid, not just those who are customers of a particular distribution utility 

that happens not to have procured enough to meet their demands. The power procured 
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by everyone essentially becomes part of a common pool from which all users draw. If 

what is there does not suffice, all customers on that grid lose, even if the cause of the 

insufficient supply is a failure to produce by one generator or unanticipated demand from 

just one utility's customers. 

In short, the inability to store large amounts of electricity means that supply must 

constantly be kept equal to demand. The systemwide nature of the effect means that the 

costs of failing to keep loads in balance are borne by everyone on a grid and not just the 

utility that happens to be out of balance. Accordingly, utilities are responsible for 

anticipating customer demand and procuring sufficient power to cover demand, as 

necessary to maintain the appropriate balance. 

2.3 Wholesale Market Structure 

In order to perform well, markets need to be structured around the key elements of the 

commodity being sold. In this case, the need to maintain a constant balance of supply and 

demand, coupled with customers' highly variable demand, requires that power systems 

are characterized by a range of generating technologies in terms of their capital and 

operating costs. These range from highly capital-intensive baseload plants that are 

designed to run continuously at low operating costs, to peaker plants that are relatively 

inexpensive to build and can start up quickly in order to meet peak demand, but generally 

have high fuel costs during the relatively few hours per year that they operate. Therefore, 

generator decisions (which plants to run and for how long) are made based on marginal 

operating costs, which are dominated by fuel costs. Plants are generally dispatched to 

serve electricity demand based on marginal costs based on what is called "merit order," 
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i.e. plants with the lowest marginal costs run first. That way, the least expensive plants 

run the most, minimizing production costs and, thus, minimizing total electricity costs. 

Variations in energy demand result in different combinations of power plants, and 

therefore, different production costs. When demand is low, only low-cost plants operate. 

When demand is high, such as during summer peaks, almost all available generation is 

needed, and therefore production costs are high. 

Because retail power demand varies considerably during the course of the day and year, 

the system has to be sized to meet demand during peak periods as well as on average. 

This means that if all generating plants are needed to meet peak needs, some of those 

plants will sit idle during off-periods. Thus, generation companies select highly efficient 

power plants with the lowest marginal costs, including capital and operating costs, to run 

at full capacity all of the time. These are called base load plants. Baseload plants tend to 

be nuclear, coal-fired, or big hydroelectric power plants because they are cheaper to run 

for prolonged periods and are expensive to start up and shut down (cycled). 

Generators that are only used to meet occasional peak demand are called peaking plants. 

Peaking plants might be compared to a beachfront hotel. During the sumer the hotel is 

booked solid and needs every room it has available to rent. During the rest of the year 

most of the rooms are empty; however, the hotel still has to pay its fixed costs (mortgage, 

taxes, etc.) to have those rooms available when they are needed in the summer. The hotel 

charges based on paying its fixed costs on the whole hotel even if most of the rooms are 

empty most of the year. In the same way, generation companies must charge to cover the 

capital costs they require to meet peak electricity demand. Power plants used to meet 

peak loads do not need to run for many hours over the course of the year, generally fewer 
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than 200 to 400 hours per year (between 3 and 5 % of the time). As a result, generation 

companies prefer to spend less on plant construction and use plants that can be cycled. 

This means the plants have to use fuels with high heat content and associated higher cost, 

typically natural gas or oil. Combustion turbines are comparatively easy to cycle, so they 

are often the plant of choice for peak demand. 

Since demand for power varies as a function of time, rising and falling each day- being 

greater during weekdays than on weekends and rising during summer and winter due to 

air conditioning and heating usage- generators use different combinations of power plants 

to meet demand. This means that the marginal cost of supplying power is highly variable. 

The retail prices that customers pay for electricity, however, rarely change. 

The tables and figures below show that peaking plants add costs in two ways. First, 

because they are inefficient and burn high-heat fuels, peaking plants have high operating 

costs, meaning that the marginal cost of supplying electricity is very high during peak 

events. Second, even though the capital cost of building peaking plants is relatively low, 

because they run so few hours per year, they have high capital cost per unit of electricity 

actually produced. For example, .a typical New England peaking plan, designed in the 

1960s or 1970s and running on oil costs approximately $250 to produce 1 MWh of 

electricity. Newer natural gas base load plants cost about $74 to produce the same amout 

of electricity (see Figure 2-3). Thus, the older peaking plants use about 88% more fuel 

than newer base load plants (see Figure 4) (Philipson & Willis, 1999) . Figures 2-4 (a) and 

(b) shows data from the ISO-New England Marginal Emissions Analysis. For the New 

England region, carbon dioxide emissions (COi) during day-time peak hours (8am to 

1 Opm) are 20% higher than during off-peak hours. Nitrogen oxide emissions are about 

12 



30% higher during peak hours and sulfur dioxide emissions are just over 20% higher 

during peak hours (Independent System Operator- New England, 2008)6. This is most 

likely because the additional generation that is brought on line to meet the higher demand 

during peak periods has higher emissions rates. These typically are older resources with 

lower thermal efficiency. 

Table 2-1 presents the estimated capital costs of constructing new power plants based on 

different generation technologies and Figure 2-1 presents price trends of coal, natural gas, 

and oil. As indicated above, because generators' operating costs are largely driven by the 

price of fuel, plants that burn natural gas or oil have higher marginal supply costs than 

coal-fired plants. Based on Table 2-1, gas turbines have the lowest capital costs and the 

shortest construction times. In comparison, photovoltaic, fuel cell, and solar generators 

are ten times more expensive than a peaking gas generator. 

Though the fuel source is clean, cheap, and renewable, most renewable generation 

technologies are expensive compared to power plants burning fossil fuels7
• Based on 

Table 2-1, advanced open cycle gas turbines have the lowest capital costs and the shortest 

construction times. In comparison, photovoltaic, fuel cell, and solar generators are ten 

times more expensive than a peaking gas generator. Among renewable generation 

technologies, wind generators are the least expensive. One reason renewable generators 

are not cost-competitive with traditional generators is their low capacity factors. The 

capacity factor is one measure of the productivity of a power plant (see Table 2-2). The 

6 
Emissions rate (lbs/MWh)=Calculated total emissions in time period from marginal fossil units/Total 

MWh in time period from marginal fossil units. 
7 

The costs of building and operating traditional fossil-fuel burning power plants generally do not 
include the social costs associated with electricity generation, such as increased air pollution, 
increased greenhouse gas emissions, or climate change. 
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capacity factor compares the plant's actual production over a given time period with the 

amount of power the plant could have produced if it had been running at full capacity for 

the same amount of time. Because traditional power plants run on fuel, a baseload plant 

will normally run much of the time unless it is idled by equipment problems or for 

maintenance. A capacity factor of 80% is typical for conventional baseload plants. A wind 

turbine, however, is "fueled" by wind, which blows steadily at times and irregularly at 

other times. Although modern utility-scale wind turbines typically operate 65% to 90% of 

the time, the wind is usually not blowing strong enough for the turbine to spin at full 

capacity. Therefore, a capacity factor of 25% to 40% is common. This makes the per unit 

cost of electricity much higher than it would be if the wind turbine operated at full 

capacity all of the time. Most of the generating technologies mentioned here are not cost 

competitive at this time, except perhaps in niche applications such as in developing 

nations where there is inadequate infrastructure in place for traditional generation. Wind­

powered generation is gaining a foothold in the U.S., however the financial feasibility of 

wind projects is largely dependent on federal and state tax credits, net metering laws, and 

the forecasted price of wholesale electricity. 
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Table 2-1. Estimated capital cost of constructing a power plant by type of 
technology 

Generating Type Typical Capital Heat Rate Relative Best Cents/kWh 
Size Cost (BTU/kWh) O&M Base 

~~ ~$/k~ Peaking 
Gas turbine, pre 1990 600 350 12,000 1.00 2.3 8.1 
Gas-steam, 2010 500 400 9,700 0.88 2.0 

Combined cycle, pre 1990 50 400 10,500 1.15 2.2 7.9 
Internal combustion, pre 100 400 13,800 0.80 8.6 15.0 
1990 
Gas-steam, pre 1990 500 425 10,300 1.00 2.4 
Internal combustion, 2010 0.05 425 12,000 0.50 5.0 11.0 
Coal-steam, pre 1990 450 450 10,900 1.01 2.5 
Gas turbine, 2010 50 450 11,200 0.85 2.3 8.9 
Combined cycle, 2010 150 450 9,300 0.93 1.9 8.5 
Coal-steam, 2010 500 475 9,200 0.90 < 1.9 
Micro gas turbine, 2010 0.05 500 12,000 1.50 4.7 13.0 
Fuel cell, 2010 0.05 600 11,000 1.66 5.2 13.0 
Nuclear, 2010 800 800 11,000 1.20 2.5 
Fuel cell, 1998 0.05 900 12,500 2.00 11.0 16.0 
Nuclear, pre-1990 5 1,000 11,500 1.25 3.0 
Hydroelectric 350 1,400 n/a 0.25 2.0 
Wind, best conditions, 0.5 1,800 n/a 0.80 7.3 
2010 
Solar thermal, 2010 150 1,900 n/a 1.33 4.0 13.0 
Photovoltaic, fixed, 2010 0.005 2,500 n/a 0.80 9.2 
Photovoltaic, tracking, 0.005 2,500 n/a 1.15 9.2 
2010 

Source: (Philipson & Willis, 1999) 
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Figure 2-1. Estimated capital cost of constructing a power plant by type of 
technology Source: (Philipson & Willis, 1999) 

Table 2-2. Capacity factor by generation technology 

Technology Capacity Factor 

Gas turbine combined cycle 80-90% 

Nuclear 90% 

Average U.S. coal plant 68% 

Biomass 68% 

Geothermal 90% 

Hydroelectric 44% 

Wind 30% 

Solar 20% 

Source: (Energy Information Administration, 2007) 
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Figure 2-3. Average energy consumed by combined cycle power plants to 
produce 1 kWh of electricity Source: (Philipson & Willis, 1999) 
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2.4 Minimizing Costs through Economic Dispatch 

The practice of meeting demand by sequentially activating technologies with the lowest 

marginal operating costs is called "economic dispatch." Economic dispatch benefits 

electricity customers in a number of ways. By systematically seeking the lowest cost of 

energy production consistent with electricity demand, economic dispatch reduces total 

electricity costs. To minimize costs, economic dispatch typically increases the use of the 

more efficient generation units, which can lead to better fuel utilization, lower fuel useage, 

and lower greenhouse gas emissions than would result from a less efficient generation 

mix. In principle, retail customers will benefit if the savings are passed through in lower 

retail rates. Economic dispatch methods are also flexible enough to incorporate policy 

goals such as promoting fuel diversity or respecting demand reductions as well as supply 

resources. 

Economic dispatch principles and operation are the same in both vertically-integrated 

utilities and deregulated wholesale markets. In wholesale power markets, generators offer 

blocks of electricity for various time periods at prices that reflect their marginal operating 

costs. System operators match s:upply bids to demand forecasts, determining which 

generators to dispatch, and setting hourly wholesale market prices as the highest supply 

bid accepted (all of the accepted bids are paid the market clearing price). If the auction is 

competitive, the market-clearing price is equal to the short-run marginal cost of the most 

expensive generator dispatched. 

Figure 2-5 illustrates the uniform-price aution, in which the price bid by the marginal 

utility is awarded to all successful bidders. The solid line in the figure is the additional 
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(marginal) cost of generation per MW, while the dashed line is the average total cost, 

including fixed costs, of generating each MW. The three cost levels represent baseload, 

shoulder, and peaking units. The vertical line is the number of MW demanded during a 

particular period, as estimated by the ISO. In a competitive market, all generators would 

bid their marginal cost for each unit and the market clearing price would be P. Since the 

market-clearing price is paid to all generators in a uniform price auction the total amount 

paid to generators per hour would be price multiplied by the number of MW. At times of 

high demand, such as shown in the figure, the auction pays baseload generation a price 

that can be several times higher than the marginal supply cost for that plant. For example, 

during peak periods, baseload power that costs perhaps $30 per MWh would be paid 

$500 per MWh. However, in a competitive market, the highest cost peaking units are 

never paid more than their marginal cost and so they never recover their fixed costs. As a 

result, investors are often unwilling to build new peaking plants. This is one reason why 

wholesale electricity markets are not perfectly competitive. 
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Figure 2-5. Wholesale market structure 
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Table 2-3 is another illustration .of a uniform price auction where all successful bidders 

get paid the clearing price. Here, a set of bids has been sorted by cost from highest to 

lowest, against a need for 22,057 MW. The market clearing prices is $0.23/kWh, which all 

successful bidders are paid. Operators of "must run" power plants and any others that 

will take whatever price they can get simply bid zero. 
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Table 2-3. Uniform price auction stack, England-Wales Poolco 

Bid number 31 5001v1W at $0.243/k\\'11 

Bid number 6 6001\11\\T at $0.238/k\Vh 

Bid number 3 1110 M\V at $0.234/k\Vh 

Bid number 28 5001vl\V at $0.232/k\Vh 

Bid number 1 2100 M\V at $0.230/k\Vh 
22.057 M\V 

Bid number 43 1210 :tvl\V at $0.219/k\Vh 

Bid mm1ber 5 1500 M\V at $0 .214/kwh 

Bid number 23 1430 M\Vat $0.211/k\Vh 

Bid mm1ber 27 3200 Ivl\V at $0.209/k\Vh Bids taken 

Bid number l3 1380 1\1\V at $0.204/k\Vh 

Bid number 19 1430 M\V at $0.20/k\Vh 

Bid number 22 200 MW at $0.20/kWh 

Bid number 9 3500 M\Vat $0.14 4/kWh 

Bid number 2 41001v1\V at $0.00/k\Vh 

Bid number? 2500 l\'IVl at $0.00/k\Vh 

Source: (Philipson & Willis, 1999) 

Many factors influence economic dispatch in practice. These include transmission 

limitations, reliability concerns, fuel constraints, and environmental regulations. For 

example, congestion often arises when restrictions prevent the least expensive supply of 

energy from serving demand in a particular area. This might happen if transmission lines 

do not have enough capacity to carry all of the electricity needed to meet demand in a 
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particular location. The locational marginal price (LMP) reflects the cost of supplying 

more expensive electricity to that location, providing a market-based method for pricing 

electricity that cannot be served by the lowest-cost generator. Because economic dispatch 

requires a balance between economic efficiency, reliability, and other factors, it is best 

thought of as a constrained cost-minimization process. 

It is useful to divide economic dispatch into two separate stages: day-ahead commitment 

and real-time dispatch. Day-ahead planning means scheduling power plants for each hour 

of the next day's dispatch based on load forecasts for the next day. The planner selects 

generating units to be dispatched the next day based on each plants' generation capacity, 

efficiency, operating costs, variable costs of environmental compliance, start-up costs, 

and ramp-rate (how quickly the generator can be brought on line). Real-time dispatch 

occurs in real time and is performed by the regional transmission operator (RTO) or 

independent system operation (ISO). The regulator monitors the hourly dispatch 

schedule, load, generation, and interchange (imports and exports) to ensure the balance of 

supply and demand. Often, the regulator must modify the merit order to account for grid 

conditions and operational reliability needs. In real time, many of the adjustments to 

least-cost dispatch are to prepare for, or respond to, contingencies that affect grid 

reliability. 

2.5 The Significance of Peak Demand 

Peak demand issues came to the fore at the beginning of the decade because of the 

California electricity crisis of 2000 and 2001. Uncertainties surrounding the reliability of 

electric power systems in restructured markets is one of the latest reasons for such 
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retail electricity rates rarely reflect the daily or hourly changes in the wholesale price, in 

part due to the widespread lack of advanced metering technology capable of charging 

customers for their electricity use in real-time, and an associated lack of end-use device 

technologies capable of tracking and responding to such time-varying price signals. Even 

when metering technologies are capable of monitoring such price signals, sometimes bills 

are delivered on a monthly basis, thus sidestepping the most powerful potential effect of 

real-time prices, the immediate behavioral feedback. 

System planners are not only concerned with meeting the system peak demand, but also 

with local and regional peak demands that may result in outages due to local transmission, 

distribution, and generation constraints (in fact, local outages are far more common than 

system outages). Beyond system reliability, there are additional reasons why peak demand 

is an important public policy issue. Peak demand raises environmental concerns because 

the system's highest marginal cost plants operate during peak hours and these plants are 

often the most inefficient, and thus produce more greenhouse gas emissions per unit of 

electricity produced than baseload plants. Many peaking plants are fired by natural gas or 

fuel oil, raising issues of fuel security (for oil) and diversity /price stability (for natural gas). 

Facility siting is another concern. As the magnitude of peak demand increases, the size of 

the electricity system must also grow, leading to more generators, transmission, and 

distribution lines. There is growing resistence (and growing competition from other uses) 

to using scarce land resources for siting this infrastructure. 

A major concern, at least for economists, with peak demand is economic efficiency. In 

the traditional situation of unresponsive demand, the only way to ensure reliability is to 

build capacity that will rarely be used. The process of building large amounts of excess 
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capacity has been very costly. Consider the following set of figures, which illustrate the 

peak load problem. Figure 2-6 shows power use chronologically for every hour in 2006. 

Figure 2-7 shows those hourly loads rank ordered from the lowest load hour to the 

highest load hour (peak) for all 8,760 hours in the year. In 2006, the highest peak load 

year on record in ISO-New England (ISO-NE), 15% of all capacity ran 0.7% of the time 

or less, 20% of capacity ran 0.97% of the time or less, and 25% of all capacity ran 3.0% of 

the time or less. Figure 2-8 shows how much capacity is needed just to serve peak load. 

In the figure, the peak load hours are highlighted and the width of the textured bands 

indicates the number of MW that can be considered peak hours: the bands' widths show 

the quantity of capacity that must exist just to serve demand during peak hours. The last 

band from the left indicates the amount of capacity built just to serve the top 30 hours 

(corresponding to a capacity factor of 0.34%); the combination of all of the bands 

indicates the amount of capacity that exists to serve the top 500 hours (corresponding to 

a capacity factor of 5.7%). Figure 2-9 compares peak load growth and average annual 

load growth in New England. 
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Figure 2-6. New England load profile, 2006 Source: (Independent Service Operator­
N ew England, 2006) 
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Figure 2-8. Histogram of ISO-NE hourly loads, 2006 Source: (Independent Service 
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Figure 2-9. Yearly average demand compared to yearly peak: 365 day average vs. 
single day peak Source: (Independent Service Operator- New England, 2006) 

Figures 2-10 and 2-11 demonstrate that electricity supply costs increase when the 

intensity of electricity demand (peaks and hourly loads) increases. The total electric bill 

increases during high demand preiods because both electricity usage is higher and the 
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wholesale price of electricity increases. This is demonstrated by the fact that New 

England's 10% highest 2006 hourly loads were 14% of annual electricity consumption, 

but 19% of energy costs (estimated energy costs are based on a weighted average of real 

time and day-ahead prices). Conversely, the lowest 10% of 2006 hourly loads were 8% of 

annual energy use, but only 6% of 2006 costs.Table 2-4 demonstrates that the magnitude 

of demand clearly affects wholesale electricity price. 
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Figure 2-10. 2006 New England electricity consumption and cost by hourly load 
deciles Source: (Independent Service Operator- New England, 2006) 
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Figure 2-11. 2006 New England average wholesale electricity price by hourly load 
deciles Source: (Independent Service Operator- New England, 2006) 
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Table 2-4. 2006 New England hourly load deciles8 

Top 10% 

9 14% 12% $ 73.54 

8 12% 11% $ 67.87 

7 11% 11% $ 64.90 

6 10% 10% $ 64.15 

5 9% 10% $ 61.34 

4 8% 9% $ 56.42 

3 7% 8% $ 51.68 

2 6% 8% $ 46.08 

Bottom 10% 4% 7% $ 40.35 

Source: (Independent Service Operator- New England, 2006) 

8 . 
These data are based on ISO day ahead and real-time data for the ISO-NE Control Area, so standard 

offer prices and customers with independent bilateral contracts will not have the same energy costs or 
price signals. However, all generators have access to comparable market information and fuel costs so 
over the long run standard offer and bilateral contract prices are likely to approximate the ISO market 
prices. The ISO New England 2006 Annual Market Report indicated that the 51% of loads were served 
by bilateral contracts, 45% by the day-ahead market, and 4% by the real time market. 

The formula for calculating hourly costs is: 

Day-Ahead Price x Day-Ahead Demand+ Real-Time Price x Demand Differential=Cost 

The price per MWh is calculated by dividing the cost to serve the hour by the real-time 
demand: 

Cost/Real-time Demand=Price per MWh 
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If load curves could be flattened (through load management or responses to time-varying 

prices) then a more efficient use of capital could result. In addition, when the system is 

close to peak, small increases in demand can lead to large increases in marginal costs per 

kWh because of the inelasticity of supply at that time. 

2.6 The California Electricity Crisis 

Concerns about peak demand can be seen more broadly as a need to ensure that supply 

and demand remain in balance at any instant. The California power crisis in 2000 and 

2001 illustrates the magnitude of the problems that can arise when markets are not well­

structured. In 1998, California began a process to open retail electricity markets to 

competitive suppliers. During the transition from regulated to competitive retail markets, 

regulators capped retail electricity rates to protect customers from high prices. At this 

time, regulators also created the California ISO (CA ISO) to oversee the transmission 

system and an independent power exchange, the PX, where wholesale electricity would 

be traded. Retail restructuring was going reasonably well until the early summer of 2000 

when wholesale electricity prices began to skyrocket as a result of a combination of 

factors. Generation capacity had not kept pace with demand, which had increased 11 % 

since the 1990s. And, the problem of inadequate capacity was exacerbated by drought 

conditions in the West, which diminished hydroelectric production to less than 75% of 

1999 levels. Furthermore, the price of natural gas, which was becoming more commonly 

used, tripled. Wholesale prices began to spike to levels nearly 10 times those reached in 

the previous two years. 
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While wholesale prices skyrocketed, retail electricity prices were kept low through price 

caps. Low retail rates provided no incentives for customers to curtail or shift their 

demand to off-peak or lower-cost hours. Thus, utilities were forced to purchase wholesale 

power at prices that were five times the capped retail rate in order to meet demand. To 

illustrate, at one point the average wholesale price was $.0126/kWh compared to the limit 

of $0.054 that Pacific Gas & Electric was allow to charge its retail customers. Unable to 

cover their costs, California's three large utilities (Pacific Gas & Electric (PG&E), San 

Diego Gas & Electric (SDG&E), and Southern California Edison (SCE)) began to 

declare bankruptcy. Fearing they would not get paid, independent power producers 

refused to deliver electricity and rolling blackouts ensued. In the end, PG&E and 

SDG&E were left $13 billion in debt, Governor Gray Davis declared a state of 

emergency, and the state itself began to buy power on behalf of the utilities. It was 

estimated that a one-day blackout cost $100 million in losses for California businesses. 

The California crisis drew national attention not only to the problem of peak demand, but 

also to the potential for wholesale market manipulation. Independent generators 

unilaterally had the ability and incentive to exercise inarket power and withhold output in 

order to raise wholesale prices. Enron-a leading player in the California energy markets 

and controlling 3,500 MW of electricity (enough for more than 2.6 million homes)-was 

eventually convicted of intentionally shutting down generators and withholding supply in 

order to manipulate energy prices. 

The California crisis brought renewed attention to the problem of peak demand and the 

disconnection between highly variable wholesale prices and static retail rates. In the 

opinion of many, the worst effects of the energy crisis could have been alleviated if 
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customers had access to real-time prices that provided incentives for customers to shift 

their electricity use to off-peak periods. In fact, the International Energy Agency 

estimated that a 5% decrease in peak demand would have reduced peak wholesale prices 

by as much as 50% (Harrington, 2003) .The crisis underscored the notion that well­

functioning electricity markets must include mechanisms to handle peak load problems 

and showed that reducing peak demand can improve system reliability, avoid costly fuel 

expenditures, reduce capital expenditures on generating capacity, and reduce generators' 

ability to exercise market power. 

2. 7 Drivers of Peak Demand 

Weather tends to be the most important driver of peak demand. In warmer regions of the 

U.S. air conditioning loads drive peak demand on the hottest summer afternoons. For 

colder regions, peak demand is in the winter and is driven by the demand for electric 

heating on the coldest mornings of the year. For example, planners at ISO-NE report 

that between 40 and 50% of peak summer demand is due to air conditioning load; during 

2006 which had the highest peak on record, the system peak was more than 50% greater 

than the average system load. P~ak loads are largely determined by temperature and the 

highest peaks loads often coincide with the hottest days of the year. Figures 2-12 and 2-13 

illustrate the relationship between temperature and electricity demand. In New England, 

system peak almost always occurs during the summer months. 
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Figure 2-12. 2006 New England system peak, hourly temperature vs. hourly 
electricity demand Source: (Independent Service Operator- New England, 2006) 
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The figures above illustrate peak demand is growing relative to base demand. Much of 

this growth can be attributed to the rise in central air conditioning. Twenty years ago only 

about one-quarter of U.S. homes had central air conditioning; by 2005 it was up to 62%, 

and 89% of new homes completed in 2006 had central air (U.S. Census Bureau). Figure 

2-14 illustrates how the proportion of homes with air conditioning, either a central system 

or a window unit, is growing in three different metropolitan areas on the East Coast. 

From 1998 to 2007, the proportion of homes with any kind of air conditioning grew 

from 64% to 82% in Boston, MA and from 70% to 82% in Hartford, CT. Washington 

D.C. and its suburbs in Virginia and Maryland have almost 100% residential air 

conditioning saturation. A 2-zoned central air conditioner in a large residence (about 

3,500 square feet) uses about 1.5 kW when operating- approximately the same amount of 

electricity as 15 100 watt light bulbs, a hair dryer, 2 microwaves, 4 large desktop PCs, 2 

refrigerators, and a 1.5 horsepower well pump motor all taken together (Philipson & 

Willis, 1999) . As a result, on a handful of hot days each summer, these regions use 

enormous amounts of electricity for cooling. 
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Figure 2-14. Residential air conditioning saturation in East Coast metropolitan 
areas Source: (U.S. Census Bureau, 1998, 2007) 
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Figure 2-16. HV AC electricity consumption in U.S. households, 2001 (Energy 
Information Administration, 2005) 

Figure 2-15 shows that air conditioning has the second largest share of household 

electricity use behind kitchen appliances and Figure 2-16 shows that air conditioning 

makes up just over half of all electricity consumption by heating, ventiliation, and air 

conditioning equipment in the U.S. To compare, electricity consumption by HVAC 

equipment in 2001 was 356 billion kWh, electricity consumption by all kitchen appliances 

was 305 billion kWh, and electricity consumption by all household electronics was 82 

billion kwh. 

2.8 Climate Change and Peak Demand 

Climate change-induced temperature increases may exacerbate existing peak demand 

problems. The first issue is that rising summer temperatures and more frequent extreme-

heat events are likely to increase air conditioner ownership and use, leading to 

increasingly peaky summer demand and raising the risk of power shortages during heat 
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waves. The peaks are likely to be greater in magnitude and frequency, cutting into existing 

capacity margins. Also, as the unpredictability of yearly climate patterns increases, peak 

demand will be harder to anticipate. For example, if California had to meet its future 

electricity demand with the generation resources it has available today, given rising 

temperature forecasts there is the potential for peak electricity demand to exceed supply 

by as much as 17%. The number of extreme heat days for some parts of California are 

predicted to increase by four fold by the end of the century. 

Though demand continues to grow, new development of traditional generation options 

are becoming increasingly limited- many coal plants have been deferred or cancelled in 

the drive to reduce greenhouse gas emissions from fossil fuel combustion9
• Furthermore, 

changes in precipitation levels and changes in the patterns and timing of snowmelt would 

alter the amount of electricity that hydroelectric facilities could generate, particularly in 

the late spring and summer months when demand is the highest. In regions that depend 

on hydropower generation, this could have a significant impact. For example, 

hydropower generation currently contributes about 15% of California's in-state electricity 

production, with a range from 9 to 30%, due to variations in climatic conditions. Two 

recent studies project losses in annual hydropower generation on the order of 10 to 30% 

by the end of this century if precipitation levels in California decline (Cayan et al., 2008). 

The value of hydroelectric power will also fall as more precipitation in California falls as 

9 
In 2007, the construction of at least 59 proposed coal-fired power plants was cancelled (Sierra Club, 

2009) . In particular, Texas utility TXU's cancellation of 8 coal-fired power plants made headlines 
nationwide. As part of a $45 billion buyout, TXU settled a series of lawsuits with the Environmental 
Defense Fund and the Natural Resources Defense Council and agreed to cancel 8 of its planned 11 new 
Texas power plants, as well as several new coal-fired plants in Pennsylvania and Virginia, back federal 
legislation to create a cap & trade system regulating carbon dioxide emissions, and double spending 
on energy efficiency. In return, EDF and NRDC agreed not to campaign against the remaining 3 power 
plants. In March 2007, TXU announced its official withdrawal of the air permit applications for the 8 
cancelled plants. 
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rain instead of snow. Snow plays an important role in equalizing water flows, since 

virtually all precipitation in California falls in the winter. Big stonns drop a lot of snow 

and rain; the snow in the mountains stays frozen until spring, when it melts slowly over 

the spring and early summer. This helps equalize stream flows over time and avoids 

major river flood events during storms, which would otherwise overflow all dams, and 

release large amounts of water to the ocean in uncontrolled flood events (Philipson & 

Willis, 1999). As even without decreased precipitation, warming will result in less efficient 

patterns of water flow into reservoirs, and thus less opportunity for generating 

hydroelectric power. 

2. 9 Conclusion 

Electricity planners and regulators have traditionally focused on peak demand because the 

likelihood of system outages is by far the greatest at peak times, but society is rightly 

concerned about peak demand for other reasons as well, including economic efficiency, 

environmental impacts, and fuel security and diversity 

This chapter concludes that the long lead times associated with building new capacity, the 

lack of price response in the face of time-varying costs, the large difference between peak 

demand and average demand, and the necessity for real-time delivery of electricity all 

make the connection between system reliability and peak demand an important driver of 

public policy in the electricity sector. The California energy crisis illustrates that the 

combination of limited generation capacity, very inelastic demand, impediments to 

flexible pricing, and an inability to store electricity was a recipe for soaring marginal 

supply costs and rolling blackouts. 
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This chapter also concludes that weather is an important driver of peak demand and that 

one important pathway through which climate change is likely to affect the electric power 

system is growth in cooling demand. 

Peak load management programs are one way to balance electricity supply and demand, 

reduce the strain on the electric system, and limit the use of the more expensive and least 

efficient power plants. The following chapter introduces peak demand management 

strategies, including time-varying price signals and quantity controls for reducing peak 

demand. 
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Chapter 3. Strategies for Reducing Peak Demand 

This chapter explains two strategies for reducing peak demand: time-varying prices and 

direct control. This chapter explains that time-varying prices can reduce peak demand by 

giving customers incentives to shift some of their peak electricity consumption to off­

peak hours by charging higher prices during peak hours. Also, this chapter explains that 

distribution utilities can use direct control strategies to reduce peak demand by providing 

subsidies to their customers for investments intended to reduce their peak electricity 

consumption. 

As discussed in Chapter 2, considerable cost savings are possible if peak demand for 

electricity can be reallocated to off-peak periods. At least in theory, an incentive-based 

approach might accomplish this by having prices that vary temporally to reflect the real­

time marginal costs of electricity production. Peak demand management policies are 

different from policies that encourage broad energy conservation or improved efficiency. 

Policies that fall under the latter category tend to focus on reducing overall energy 

demand, while those in the former category focus on smoothing demand over time. Both 

are important parts of energy conservation efforts. There are two approaches used to 

reallocate demand from peak to off-peak periods. One way to facilitate peak demand 

reductions is to offer customers time-varying prices that charge customers a higher price 

for electricity consumed during peak periods and a lower price for electricity during off­

peak periods. Another approach is to pay customers an incentive in exchange for direct 

control over the customers' appliances. Then, the utility directly controls the amount of 

electricity that is used by the household or business during peak periods. This chapter will 

describe both approaches. 
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3.1 Real-time pricing 

Currently, consumers are able to make informed choices about when to use their cell 

phones; most plans offer a certain number of minutes to use during peak hours and 

unlimited off-peak usage-plans with more peak minutes are more expensive. Customers 

can choose a plan based on their willingness to pay for the option to talk during peak 

hours. Although electricity prices fluctuate just as much over the course of a day, the vast 

majority of customers are not on billing plans that charge different prices for using 

electricity during different times of the day. If customers' bills reflected the costs of 

electricity at different times, they would have an incentive to make more informed 

decisions about when and how they use electricity throughout the day. This is known as 

real-time pricing (RTP). The fundamental idea behind RTP is to provide accurate price 

signals to customers that convey the true cost of supplying electricity. Since electricity 

cannot be stored economically, and it has to be consumed immediately, and since 

generation plants of varying efficiency are used to meet peak demand, the cost of power 

varies by time-of-day and day-of-year. If clear price signals were conveyed to customers, 

they could decide whether to continue buying powe·r at higher prices or reduce their 

demand during peak hours. This promotes economic efficiency in the consumption of 

electricity. It can also lead to substantial savings in the aggregate for society, making RTP 

an important public policy issue. 

Figure 3-1 illustrates a traditional peak demand scenario. At a particular point in time, the 

retail price for electricity is PR At this price, customers demand the quantity of electricity 

Qo Because electricity supply and demand have to be balanced in real-time and because 

electricity cannot be economically stored, to meet peak demand generators must run the 
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most expensive and least efficient power plants. The generators used to serve peak 

demand, referred to as "peaking plants", have relatively low capital costs and high 

variable costs. But, because peaking plants run for only a fraction of the hours in the year, 

the capital cost per operating hour is high. The marginal cost of supplying electricity rises 

to Pw as demand increases to Q0 , but PR is fixed so customers have no incentive to 

reallocate their demand from peak to off-peak hours as marginal supply costs rise. The 

result is costly investments in generating infrastructure that sits idle during all but a few 

hours each year and expenditure on high-cost fuel to meet peak demand. 

Price 
Peak Demand 

Supply = D.fargirn1l Cost 

Pw 

\ 'iX11ole.sale Cost 

Price Insensitive Demand 

\ Fixed Rern:il Price 

Qd Quantity (k\V) 

Figure 3-1. Impact of fixed retail rates on peak demand 

RTPs can mitigate peak load problems by giving customers incentives to shift their 

electricity demand from peak to off-peak periods. Figure 3-2 illustrates the same peak 

demand scenario as Figure 3-1 . Only here, the customer faces RTPs, which change in 

response to wholesale market conditions. As PR rises to reflect the increasing cost of 
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response to wholesale market conditions. As PR rises to reflect the increasing cost of 

supplying electricity to meet peak demand, customers demand less electricity at the higher 

price. Instead of demanding the amount of electricity Q0 , peak demand is only Q0 '. As a 

result, the system does not need as much peaking capacity or costly fuel to serve peak 

demand. 

Price 
Peak Denund 

Supply = Marginal Cost 

j 
\ \\11olesale Cost 

Price Responsive Demand 

Price Insensitive Denund 
p~ 

+ 
Pi<i--~~~~~~~~~~~-..~-+.....;i..---+.;.....--1-~ 

\ Fixed Retail Price 

Q'd - Qd Quantity (k\\~ 

Reduction in Peak Demand 

Figure 3-2. Impact of RTP on Peak Demand 

Figure 3-3 illustrates the increase in social welfare associated with reallocating demand 

from peak to off peak. Reallocating demand from peak to off peak improves system 

reliability, facilitates reductions in capital investments in capacity, and helps avoid costly 

fuel expenditures. Shifting demand from peak to off peak increases consumer surplus, 

which is the amount by which customers benefit from buying electricity at a price that is 

less than they would be willing to pay. 
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Off-Peak Dem nd Greater than Marginal Cost 
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Quantity (k\\') 

Figure 3-3. Reallocating demand from peak to off-peak 

How much will be saved by RTP depends on two things: first, how much demand 

customers will shift from peak to off peak and second, how much generation investment 

and fuel expenditure can be offset by this demand reduction. The first item itself depends 

on two things: how rapidly utilities and regulators move to install new pricing designs that 

provide RTPs to customers and how sensitive customers' demand is to the price signals. 

3.1.1 Advanced Metering Infrastructure 

A prerequisite to the provision of RTP is the installation of advanced metering 

infrastructure (AMI). In a recent report on AMI, the Federal Energy Regulatory 

Comissions (FERC) presented the hardware and total capital cost information in Table 5-
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1 updated here for inflation and annualized over 20 years using an 8% cost of capital 

(Federal Energy Regulatory Commission, 2006b). Before annualizing, average AMI costs 

range from $100 to $200 for just the meter, and between $200 to $300 including 

installation, communications, and infrastructure costs. Table 3-1 indicates that installing 

AMI costs between $15 to $27 per meter annually in hardware costs or $26 to $32 

annually in total capital costs. In addition to enabling RTP, AMI has operational benefits 

that save utilities money such as avoided meter reading costs, faster outage detection, 

improved customer service, better management of customer connects and disconnects, 

and improved distribution management. For example, in Northern and Central 

California, Pacific Gas & Electric Company estimates that 89% of its AMI investment of 

approximately $1,500 million can be recovered through operational benefits (Faruqui et 

al., 2007) . An important issue in determining the actual cost of AMI to a given utility is 

whether the utility as recently installed automated meter reading technology (AMR). AMR 

allows for drive-by meter-reading but does not have full two-way capabilities for 

communicating price and reliability signals from the utility to the customer. If the utility 

has not yet installed AMR, then the cost of switc~g directly to AMI is not that 

significant ($100-$200 per meter). But, if the utility has recently installed AMR then the 

cost is much higher ($300-$500 per meter). In that case, it might be easier for the utility to 

phase in AMI during new construction or when existing meters are replaced for other 

reasons. 
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Table 3-1. Hardware costs and total capital costs for AMI systems (2007 dollars) 

= UtiJitylO Year Meter Total Total Annualized Annualized 
(millions) Cost Capital Hardware Capital 

(millions) Costs Costs per Costs per 
(millions) Meter Meter 

DLC 1996 0.6 $159 $26.79 

Virginia 1997 0.5 $114 $25.81 

Power 

JEA 2001 0.7 $352 $25.55 

PPL 2002 1.3 $259 $370 $20.29 $28.98 

Bangor 2004 0.1 $17 $33 $15.29 $30.58 
Hydro 

TXU 2005 0.3 $40 $81 $16.40 $32.54 

PG&E 2005 9.8 $1,536 $2,828 $15.96 $29.39 

SDG&E 2006 2.3 $411 $679 $18.16 $30.06 

Source: (Federal Energy Regulatory Commission, 2006a) 

According to the FERC report, AMI currently reaches 6% of electric meters in the U.S. 

Certain states, such as Pennsylvania and Wisconsin have AMI penetration rates in excess 

of 40%. AMI penetration rates are in the double-digits in 8 states (Federal Energy 

Regulatory Commission, 2006a)-. Most utilities with AMI, however, do not offer RTP. 

Utilities, along with state public utility commissions, are uncertain whether customers 

will respond to price signals and some are also afraid of customer backlash to potentially 

volatile price signals. 

10 
Utility full names are Duquesne Light Company(DLC), (Dominion) Virginia Power, Jacksonville Electric 

Authority (JEA), Pennsylvania Power and Light (PPL), Bangor Hydro Electric Company, Texas Utilities 
(TXU), Pacific Gas and Electric Company (PG&E), and San Diego Gas and Electric (SDG&E). 
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3.1.2 Potential for Reducing Peak Demand 

Since the 1970s there have been many research efforts to determine small residential and 

commercial customers' sensitivity to changes in electricity prices (Barbose, Goldman, & 

Neenan, 2004; Faruqui & Sergiei, 2009; Goldman, Barbose, & Neenan, 2006; 

McDonough & Kraus, 2007) . There has been a good deal of skepticism that small 

customers, who constitute the majority of electricity users, will respond to RTPs by 

reducing their demand during peaks. Recent research, however, shows that even if 

customer demand is not very sensitive to changes in price, surprisingly large peak load 

reductions can be achieved. For example, at elasticity equal to -0.1 and -0.2, peak demand 

can be reduced by 10.4% and 15.1%, respectively. The magnitude of these peak load 

reductions translates into dollar savings of $15-$43 billion (based on the 2006 capital 

costs of gas and coal generation) (Spees, 2008). 

To illustrate this computation, consider the value of a 5% reduction in peak demand. The 

first benefit is the reduction in the need to install peaking generation capacity. This is a 

long run benefit and consists of the sum of avoided capacity and energy costs. It can be 

estimated based on the capacity cost of a simple cycle combustion turbine. The second 

benefit is the avoided energy costs that are associated with the reduced peak load. Third 

is the reduction in transmission and distribution (T&D) capacity. This is also a long run 

benefit, but is harder to quantify and is very dependent on local distribution constraints. 

If transmission lines carry power beyond their designed capacity, they can overheat and 

fail. A 5% reduction in U.S. peak demand of 757,056 MW amounts to 37,853 MW of 

peak demand (Faruqui et al., 2007). The amount of peaking capacity that is needed to 

tneet this peak demand can be computed by allowing for a reserve reliability margin of 
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15% and T&D line losses of7.1% (Spees, 2008). This equates to 47,013 MW, or roughly 

625 combustion turbines11
. Opinions on determining the value of the avoided cost of 

peaking capacity range from low to high. Using a conservative value of the avoided cost 

of capacity of $52/kW-year, the total value of avoided capacity costs is $2.4 billion per 

year (Faruqui et al., 2007). Using a higher value of the avoided cost of peaking capacity of 

$94/ kW-year (Spees, 2008), the total value of avoided capacity costs is $4.4 billion per 

year. 

Using the relationship that was observed between annual capacity and energy benefits in a 

recent analysis of the Pennsylvania-New Jersey-Maryland ISO (PJM), the annual value of 

avoided energy costs is estimated at $300 million (Faruqui et al., 2007). 

In addition, there would be a reduction in T&D capacity needs. As noted earlier, T&D 

needs are location-dependent and much harder to estimate. Still, they are unlikely to be 

zero and a conservative estimate puts them at 10% of the savings in generation capacity 

and energy costs (Faruqui et al., 2007). Using this estimate, the range of potential savings 

in T&D costs from a 5% reduction in peak demand is $240 million and $440 million per 

year. 

Using the conservative value of avoided peaking capacity, adding the three components 

yields long-run benefits of $3 billion per year, as shown in Figure 3-4. Over a 20 year time 

horizon, these represent a discounted present value of $35 billion (assuming an 8% 

discount rate). 

11 . 

These turbines generally come in sizes ranging from 50 to 100 MW (Faruqui, Hledik, Newell, & 
Pfeifenberger, 2007) . 

so 
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Figure 3-4. Annual long run benefits of a 5% reduction in peak demand 

These long run benefits from shifting demand from peak to off peak can be viewed as an 

efficiency gain because they involve real savings in total resource costs on average over 

time. In theory, there should also be an immediate reduction in the wholesale market 

price for energy and capacity because of the reduction in demand. In areas that are 

capacity constrained, the short run benefits could be larger than the long run benefits. 

These price-mitigation benefits would persist only temporarily until generation capacity 

adjusts to the new lower peak demand. 

The benefits of reducing peak load can be compared to the cost of installed the enabling 

AMI. Assuming an approximate cost of $200 per meter (Federal Energy Regulatory 

Commission, 2006b), and assuming that AMI replaces the remaining 94% of the 138.4 

million meters in the U.S., an investment of $27 billion will be necessary. If 50% to 80% 

of these costs are recovered through operational benefits, the remaining cost of the AMI 

is between $5.4 billion and $13 billion. Therefore, the net costs of AMI that would need 
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to be recovered through savings from peak demand reductions are 15 % to 3 7% of the 

$35 billion in long run savings. If, however, most of the peak demand reductions come 

from a small number of customers, most of the benefits can be achieved by placing only 

a small number of customers on AMI at a much reduced cost. Recent research indicates 

that most of the peak demand reductions come from the very largest 20% of customers 

on RTP (Spees, 2008). This means that AMI cost is justified for industrial, commercial, 

and a fraction of the largest residential customers. With large industrial customers, the 

administrators of a demand-management program can examine a large quantity of energy 

use all under one roof, rather than incurring the costs of interacting with many small 

residential customers in order to have affected the same total load. 

There are additional benefits to RTP that are not captured above. These include more 

competitive energy and capacity markets, reduced price volatility, improved system 

reliability resulting in fewer outages, and fewer GHG emissions during peaks. For 

example, the average emissions rates in the U.S from natural gas-fired generation are: 

1135 lbs/MWh of carbon dioxide, 0.1 lbs/MWh of sulfur dioxide, and 1.7 lbs/MWh of 

nitrogen oxides (United States Environmental Prott;ction Agency, 2007a) Therefore, a 

37,853 MW reduction in peak demand avoids approximately 21,481 tons of carbon 

dioxide emissions, 3,785 lbs of sulfur dioxide, and 64,350 lbs of nitrogen oxides. 

3.1.3 Barriers to the Adoption of RTP 

There are several barriers to the adoption of RTP. Chief among them is the 

entrenchment of average cost pricing. Historically, the role of state regulators has been to 

design electricity prices based on allowable cost revocery and on allocating those costs 

fairly across customer classes. Despite the potential for saving $35 billion by reallocating 
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peak demand to off-peak, the economic efficiency of rate design, in the sense of setting 

price equal to marginal supply costs, has typically been given low priority. There is 

resistence from regulators and consumer advocates to exposing customers to unstable 

prices. Recent research shows, however, that even if customers have no means of 

knowing or responding to the RTP, over the course of the year the low off-peak rates 

balance out the extremely high peak rates. Even customers with high coincident peak 

demand would not have a large change in average price (Spees, 2008) . This indicates that 

regulators should not worry about the effect of RTP on poor or unresponsive customers. 

Just as consumers have learned to respond to the volatile prices of gasoline, airline tickets, 

and other commodities, they can learn to respond to electricity prices. The largest 

difference is that customers purchase electricity every hour of the year and therefore 

some customers will want to automate their response to changing prices. Futher, for the 

customers that place a high value on price stability, utilities could provide any 

combination of hedges or flat rates; these rates would charge a premium above the RTP 

rate reflecting the higher cost of service. 

Interestingly, a move toward time-varying rates might get the push that it needs from the 

automobile industry. The transportation sector is responsible for 124 million of the 346 

MMTC02e generated annually in New England, or 35% of total greenhouse gas 

emissions (Environment Northeast, 2006). Plug-in hybrid electric vehicles (PHEVs) and 

electric vehicles (EVs) such as GM's Chevy Volt have the potential to reduce GHG 

emissions from the transportation sector, reduce the nation's dependence on oil imports, 

and improve air quality because PHEV s are far more efficient than internal combustion 

engine vehicles. For example, if PHEV s comprise 50% of New England's light duty 
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vehicle fleet by 2050, regional GHG emissions will be reduced by 11 to 15 million tons of 

C0
2
e, a reduction of 8%-12%. There is an abundant supply of off peak generation and 

transmission capacity to supply electricity for transportation- recent research shows that if 

60% of the U.S. light duty vehicle fleet was electrified, it would use 7%-8% of grid-

supplied electricity in 2050. A lower, off peak electricity price will encourage PHEV 

drivers to charge their cars during off peak hours and the additional off peak demand will 

smooth utilities load profiles. This will lead to a more efficient use of generation and 

transmission capacity and lower the average cost of supplying electricity. PHEV s can also 

be used to enable intermittent renewable resources, which often provide the most power 

during off peak periods12
• 

3.2 Introduction to the PG&E SmartAC Program™ 

This section will use a case study to help explain direct control strategies for reducing 

peak demand. Direct control strategies work by limiting consumers' electricity 

consumption during peak hours. This section will describe the SmartAC™ program in 

order to illustrate how this strategy works. This research also analyzes the past and future 

effectiveness of the SmartAC program in reducing peak demand under different climate 

change scenarios. Thus, this section also provides background on the SmartAC program 

that is important for understanding the analysis in Chapter 6 of this research. 

12 Th . ere 1s growing interest and momentum in a concept known as "vehicle-to-grid" or V2G. V2G 
describes a system in which power can be sold to the grid by an PHEV that is connected to the grid 
when it is not in use for transportation. Alternatively, when the car batteries need to be fully charged, 
the flow can be reversed and electricity can be drawn from the grid to charge the battery. Since most 
vehicles are parked 95% of the time, their batteries could be used to let electricity flow from the car to 
the power lines and back. Better Place is one such company that is proposing to provide this service. 
Better Place's is also proposing to provide utility companies with energy demand management 
capabilities that can minimize charging requirements during peak electricity consumption hours by 
leveraging connectivity with the car and known user profiles. 
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Ideally, all customers would have the opportunity to purchase energy at prices reflective 

of real-time marginal supply costs. In the absence of RTPs, some utilities and ISOs offer 

customers payments for allowing household air conditioners to be retrofitted with a 

device that allows remote control by the utility during periods of peak electricity demand. 

PG&E's SmartAC Program is an active demand management program designed to 

reduce peak demand by limiting the amount of electricity used for air conditioning. The 

utility does this by installing programmable thermostats on participating customers' 

central air conditioners. When the energy situation becomes critical, PG&E sends a signal 

to incrementally raise the temperature setting on the thermostat. This reduces the power 

required by air conditioners, helping to reduce the overall drain on the power system. 

The SmartAC Program first began enlisting customers in the spring of 2007. At the end 

of August, 2007 the program had approximately 8,800 participants and by January, 2008 

26,000 participants were enrolled. The target is to have 400,000 customers enrolled by 

2010. The vast majority of participants are residential customers from San Joaquin 

County, specifically from Stockton, CA and its surrounding areas. 
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Map 3-1. Location of Stockton, CA Source: (City of Stockton,) 

Stockton is located 45 miles east of San Francisco and south of Sacramento. Stockton is 

notoriously hot in the summer, partly because the Coastal Range mountains block the 

cool ocean breezes from cooling the city. Stockton is the fourth largest inland city in 

California (behind Sacramento, Fresno, and Bakersfield) with an immediate population of 

290,000 and 690,000 in the metropolitan surrounding area. 
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pG&E recruits residential and small commercial(< 200 kW) customers13 with central air 

conditioning14 for the program. PG&E explains that on hot summer days, when 

hundreds of thousands of air conditioners are used, demand for electricity is at its highest 

and approaching system capacity. By reducing the power air conditioners require, the 

program reduces the risk of a power outage. The program also advertises other benefits 

for customers who participate- participants are given a one-time incentive payment of $25 

for participating. In addition, all system customers benefit from reduced air pollution and 

smog, improved system reliability from reduced pressure on power plants during critical 

peak demand hours, and avoided expenditures on expensive peak period electricity. 

Participants are guarenteed that the program will only operate during system peak periods 

between 10 am and 6 pm, Monday through Friday (excluding holidays and weekends) on 

those summer days when electricity demand threatens to exceed supply capacity. The 

program operates no more than 100 hours per year and no more than 6 consecutive 

13 
The program does not allow customers on life support or medical baseline customers to participate. 

14 
All of the customers participating in the SmartAC™ program have central air conditioners. Central air 

conditioners are split systems, the condenser and compressor are located in an outdoor unit while the 
evaporator is mounted in the air handler unit. The air conditioner transports heat out of the home 
using a refrigerant such as hydrofluorocarbons (HFCS). The compressor converts the refrigerant into a 
high temperature, high pressure gas. As that gas flows through the condenser coil, it loses heat and 
condenses into a high temperature, high pressure liquid. This liquid refrigerant travels through copper 
tubing into the evaparator coil. There, the refrigerant expands. Its sudden expansion turns the 
refrigerant into a low temeprature, low pressure gas. This gas then absorbs heat from the air 
circulating in the duct work. The cooled air is then distributed back through the home or building. 
Meanwhile, the heat absorbed by the refrigerant is carried back outside through copper tubing and 
released into the outside air. 

Air conditioners also dehumidify the air. As the warm air circulating through the ducts passes over the 
evaporator coil, it is quickly cooled and can no longer hold as much moisture as it did at a higher 
temperature. The excess moisture condenses on the outside of the coils and is carried away through a 
drain, similar to what happens when moisture condenses on the outside of glass of ice water on a hot, 
humid day. 

57 



hours. Although most participants do not notice the temperature increase when the 

SmartAC is activated (in a recent survey, only 6% reported a change in temperature 

during activation), participants who do become uncomfortable during an event can opt­

out of the day by going online to manage their SmartAC devices or by calling a toll-free 

phone number. If a participant opts-out, the air conditioner operations and thermostat 

settings will be returned to their pre-event condition. 

3.3 How the SmartAC Program Works 

The programmable thermostat control technology controls the central air conditioner, 

which in turn controls the indoor temperature. When the utility activates the thermostats, 

the thermostats increase the temperature to which the house is cooled. If the air 

conditioner is in cooling mode when the temperature setting is raised, the air conditioner 

may tum off until the house reaches the new temperature setting. If the air conditioner is 

already off, it may remain off for a longer period so as to allow the inside temperature to 

reach the higher temperature setting. The advantage of this approach is that it allows the 

utility to control how much the inside temperature rises. No customer should experience 

an indoor temperature increase greater than the thermostat setpoint. In theory, raising the 

temperature settings on all participating air conditioners distributes the temperature 

increase e~enly across the participating population regardless of house and air conditioner 

characteristics. 

Raising the temperature setting has an indirect effect on air conditioner energy use. How 

a particular air conditioner responds to the increased temperature setting depends the 

physical characteristics of the home, such as insulation, age, and square footage, that 
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determine how quickly the home heats up. How much electricity the air conditioner uses 

to cool the home also depends on the characteristics of the air conditioner itself, mainly 

its age, efficiency, and size. Usually, when SmartAC raises the temperature setting, the air 

conditioner either shuts off or stays off until the indoor temperature reaches the new 

setting. When the house reaches the new temperature setting the air condtioner begins 

cooling again in order to maintain that temperature. Air conditioner usage is 

fundamentally a function of the differential between the outside temperature and the 

inside temperature, so increasing the temperature setpoint will reduce the amount of 

energy needed relative to the cooler temperature setting. 

When programmable thermostats were first deployed for peak demand management 

programs, the most common control strategy was a single temperature setting increase of 

three, four, or five degrees Fahrenheit. An increase of this sort has two important 

implications for peak demand management. First, the demand reduction is greater 

immediately following the temperature setting increase. During the initial period of 

readjustment the majority of participating air conditioners shut off as the indoor 

temperature slowly increases to the new setting. The peak demand reduction is large and 

is maintained until the air conditioners reach the new temperature setting, at which point 

the air conditioners begin cooling again. From a system perspective, this inability to 

maintain a constant peak demand reduction can be a limitation. Second, a "block" 

temperature increase such as this can cause customers to be hot and uncomfortable. As 

described above, the majority of air conditioners shut off as the household temperature 

rises to the new setting. For what could be a substantial period of time, the circulation 
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system does not blow cool air. From a customer comfort perspective, the block 

temperature setting increase also has disadvantages. 

Utilities have experimented with different strategies to overcome the limitations of the 

block increase. Increasing the temperature setting by one or two degrees every hour or 

every couple of hours should, in theory, mitigate the problematic aspects of the block 

temperature setting increase. Instead of experiencing a large, immediate peak demand 

reduction and resulting lack of cooling in one long period, the periods of temperature 

equilibrium readjustment are shorter and spread out through the afternoon and evening. 

The SmartAC program chose to use a gradual temperature change for all participating 

customers during the summer of 2007; customers' temperature settings were raised 1°F at 

the beginning of the first, third, and fifth hours of the system contingency. This strategy 

is referred to here as the "gradual" strategy; PG&E also experimented with a "steep" 

strategy in which the temperature setting increased 1°F per hour for each of the first four 

hours of the system contingency. After the fourth house, the "steep" strategy stays at a 

4°F increase for the duration of the emergency. All else being equal, the steep strategy 

should provide a bigger peak demand reduction during the early hours of the system 

emergency than the gradual strategy. 

The discussion of the SmartAC™ program will be returned to in Chapter 6, which 

analyzes the impact of thermostat re-set programs on reducing peak demand and explores 

the potential for using such programs to reduce peak demand in a future characterized by 

rising temperatures and climate change. 
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3.4 Conclusions 

This chapter concludes that real-time prices and direct control strategies can reduce peak 

demand. Real-time prices can give customers incentives to move some of their peak 

electricity to off-peak hours by charging higher prices during peak periods. In the absence 

of RTPs, some utilities provide subsidies to their electricity customers for investments 

intended to reduce their peak electricity consumption, including payments for allowing a 

household air conditioner to be retrofitted with a smart thermostat that allows the utility 

to remotely limit the air conditioner's electricity consumption during periods of peak 

demand. 

This chapter demonstrated that the regulated price of electricity to customers, based on 

average cost, is often below the marginal cost of producing electricity, particularly in peak 

periods or when costs of pollution are not taken into account. The difference between 

marginal cost and price means that customers have insufficient incentives to reallocate 

consumption from peak periods to off-peak periods. All of the benefits of peak demand 

management, including cost savings, reduced price volatility, improved system reliability, 

more competitive markets, and fewer GHG emissions during peak hours, are large 

enough to warrant attention by policymakers and regulators. 

However, there are several barriers to the adoption of both RTP and direct control 

programs. These barriers include regulatory policies and rate freezes, customers' and 

policymakers' apprehensions about price volatility, and perceptions about the availability 

and cost of enabling technologies. Unless these barriers are addressed, the full potential 

of peak demand management will not be realized. 
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Chapter 4. Literature Overview 

This chapter will provide an overview of the economic literature pertaining to 2 issues 

related to peak demand. The first issue covered in the economic literature is peak load 

pricing. This chapter will provide an overview of how pricing methods evolved to 

manage peak demand. The second issue covered in the literature is the relative efficiency 

of price- and quantity-based methods for managing peak demand problems. This chapter 

will provide an overview of the Weitzman framework for comparing the relative 

efficiency of these methods and then apply the framework to problem of peak demand 

for electricity. This chapter concludes that direct control methods are more efficient than 

pricing methods for reducing peak demand for electricity, mainta.inirig reliability, and 

avoiding catastrophic blackouts. 

As discussed in Chapter 2, the crux of the peak demand problem is that there are high 

fixed capital costs associated with increasing capacity, low marginal variable costs, and 

highly variable demand. Further, because electricity cannot be economically stored and a 

constant balance between supply and demand must .be maintained, electricity must be 

generated at the moment it is demanded. 

In this traditional situation, the only way to ensure reliability is to build sufficient capacity 

to meet demand at all times, even though that capacity is rarely used. Consequently, there 

is excessive capacity during low demand periods and there will still be rare instances when 

capacity is exceeded inadequate capacity. The economic literature on peak load pricing 

addresses situations such as this. Peak load pricing is commonly used by the 

telecommunications industry, airlines, hotels, and theatre tickets to reallocate demand 
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from peak to off peak periods by charging a higher price for peak demand and a lower 

price for off peak demand, thereby providing incentives to smooth demand over time 

with the goal of achieving more efficient capital utilization. 

Peak load pricing has been studied extensively by economists ( M. Crew, Fernando, & 

Kleindorfer, 1995), both in the context of regulated industries (telecommunications, 

electric utilities) and unregulated sectors. This chapter summarizes key issues related to 

peak load management and reviews the literature on peak load pricing. First, this chapter 

will review the economic literature on peak load pricing. Second, this chapter will 

examine the relative efficiency of using peak load pricing or direct demand management 

to reduce peak electricity demand. 

4.1 Peak Load Pricing 

The economic literature on peak load pricing has focused primarily on the variations in 

the marginal costs of generating electricity. Two fundamental types of economic analysis 

can be distinguished in the literature. The most basic model of economic theory begins by 

casting the characteristics of the electricity market into an abstract and highly simplified 

form. The second type of econo.mic analysis found in the literature ill.valves engineering-

economic models that are used by electric utilities to minimize their overall costs of 

supplying power. Characteristically the literature on such models is grounded in a wealth 

of detail about the complexities of real-world markets and power systems15
. 

~ . 

See, for example, Berrie (1968); Kirchmayer (1958); Lindquist (1958); Little (1955); and Morlat 
(1964). 
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4.1.1 The Basic Model 

The economic theory of peak load pricing originates in the seminal papers of Boiteux 

(1949) and Steiner (1957). As applied to electricity, the Boiteux-Steiner model, in its basic 

form, postulates that throughout the year there is a uniform demand for electricity in each 

of two 12-hour periods, shown as day and night in Figure 4-1. A single generating 

technology is available. The marginal operating cost of generating each kilowatt-hour of 

electricity is equal to b. In addition, total capacity must be sufficient to meet peak 

demand. The capital cost of capacity per kilowatt-hour is equal to c, or ~=c/ (12 x 365) 

dollars per kilowatt for each hour of peak use (Mitchell, Manning, & Acton, 1978). Thus, 

~ represents the marginal cost of peak generation capacity. 

The levels of demand in each period are assumed to vary inversely with the price of 

electricity in that period, and to be independent of the price in the other period16
. Thus, 

there are two demand curves for the quantities of electricity demanded during the day 

(12QD) and night (12QN) in Figure 4-2. In this model, the marginal costs per kWh of 

output at night (off-peak) are the operational costs, b, since generating additional 

electricity will require more fuel .but no additional capacity. In the peak period, however, 

capacity is constrained and generating additional electricity will require building more 

capacity, so that the peak period marginal cost is b+~ per kWh (Bergstrom & MacKie-

Mason, 1991; Mitchell et al., 1978; Steiner, 1957; Turvey, 1968). 

16Th. 
is assumption is probably too strong. A well-known counter-example occurred in 1964 when 

AT&T began lowering rates for long-distance phone calls after Sp.m. They found themselves deluged 
With calls from people who formerly called during the day. The interdependence of demands can be 
handled with an increase in mathematical complexity. This section will touch on this issue. See I 
Pressman, "A Mathematical Formulation of the Peak Load Pricing Problem." Bell Journal of Economics, 
1970. 
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Figure 4-3. Marginal cost pricing 

If a single price per kWh is charged in both periods, and the utility is allowed to recover 

costs but not make excess profit, then- as shown in Figure 4-2- an average price p must 

be set equal to the average cost per kWh, and customers will demand 12Q0 during the 

day and 12QN at night17
• 

If, however, prices are set equal to marginal costs in each period, the equilibrium 

quantities of electricity supplied and demanded will be 12Q* 0 and 12Q* N as shown in 

Figure 4-3. In contrast to the single price case, the peak price is higher and less capacity is 

needed to meet 12Q*0 . This market equilibrium is the optimal pricing solution in the 

17 
The value of the average price is found by solving the equation: 

Total Revenue=Total costs: pQD(p) + pQN(p) = (b+ /J)QD(p) +bQN(p) . 
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following sense. Of all the possible pairs of day and night prices, the prices equal to 

marginal costs maximize the difference between the value that consumers place on the 

amount of electricity they use and the cost of its production. This difference is the 

economic surplus that is realized by having electricity available to the community. 

Marginal cost pricing ensures that in each period productive resources will be used to 

supply electricity up to- but no further than- the point at which the value of the last unit 

of electricity consumed is just equal to the cost of its supply. 

The Boiteux-Steiner model is a simplification that does some violence to reality. Its virtue 

is the clarity with which it links the design of the optimal rate structure- two periods with 

separate prices, each equal to marginal costs- to the structure of the costs of production 

and to the demand conditions facing the utility. 

4.1.2 More General Models 

The economic theory expressed in the Boiteux-Steiner model has been extended and 

made more realistic in several directions. Papers have generalized the demand 

assumptions to provide for any number of periods of varying lengths (Williamson, 1966) , 

and to accommodate variations ill demand within periods (Wenders, 1976). A number of 

authors have addressed the potential complication of a "shifting peak," where higher 

peak prices shift so much peak demand to the off peak period that the formerly off peak 

period becomes the new peak (Bailey & White, 1974; Bergstrom & MacK.ie-Mason, 1991; 

Berlin, Cicchetti, & Gillen, 197 4; Hirshleifer, 1958; Mitchell et al., 1978)18
• And extensive 

is "P 
eak shifting" can especially be a problem at the boundaries of the peak and off-peak periods. For 

example, if the price of cell phone calls is free after Spm, many people will wait until S:Olpm to make 
calls, thereby overwhelming the system. Demand at S:Olpm could be much higher than demand 
during the "peak" at 4:59pm. But, most people probably will not delay their calls until 2am. This 
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efforts have been made to expand the analysis to encompass stochastic variations in 

demand (Chao, 1983; M. A. Crew & Kleindorfer, 1978). 

The Boiteux-Steiner model has also been generalized to include more realistic supply 

conditions. As discussed earlier, generators minimize total costs by using a range of 

generating technologies in terms of capital and operating costs to meet demand. Models 

that incorporate this feature have been developed by Crew and Kleindorfer (197 6) and 

Wenders (1976). By working with models that incorporate continuous production 

coefficients, rather than fixed proportions of capital and fuel, Boiteux (1949) and Panzar 

(1976) have incorporated the nonlinear response of generators to levels of demand. 

Additional models address economies of scale (Mohring 1970) and storage (Gravelle 

1976; Nguyen 1976). 

As the theoretical economic models have grown more realistic, their normative 

prescriptions have become increasingly detailed and are not easily summarized. The 

optimal prices for each period incorporate considerations of expected shortages, the long-

run substitution of capital for fuel, and constraints that ensure that revenues will cover 

costs. In many of the more general models, the optimal prices require that the off-peak as 

well as peak-period prices include some elements of capacity costs (Mitchell et al., 1978). 

4.2 Deriving Peak and Off-Peak Prices 

Bergstrom and Mac.Kie-Mason use simple analytics to derive the appropriate peak and 

off-peak prices for a situation characterized by two periods, a fixed level of capacity, and 

implies that demand is more continuously variable over time, not just simple on-peak vs. off-peak as in 
the Boiteux-Steiner basic model. But, it also provides a lesson for charging off-peak prices that are 
implemented as simple step functions. 
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highly variable demand. In the off-peak period there is excess capacity, but in the peak 

period the capacity constraint is binding. As demonstrated above, the marginal cost of 

generating electricity in the off-peak period is only the marginal operating cost (fuel 

costs). But, when the capacity constraint is binding in the peak period, the marginal cost 

of generating electricity is the marginal cost of building new capacity plus the marginal 

operating costs. Off-peak demand is a substitute for peak demand, and vice versa. 

Similar to the illustration in section 4.1, marginal operating costs are equal to b and 

marginal capacity costs are equal to k=b+~. PP and P0 denote the prices charged in the 

peak and off-peak periods, respectively, and dp and d0 denote electricity consumption in 

each period. Bergstrom and MacKie-Mason also assume that customers have a utility 

function for electricity consumption of the form U (dp, d0). The utility function is 

homothetic, twice differentiable, and strictly quasi-concave19
. The assumption of 

homothetic separability makes the ratio of peak demand to off-peak demand a function 

of the ratio of peak price to off-peak price. 

Peak and off-peak demand are functions of the price in each period such that dp(P P ,P 0) 

and d0 (P0 , Pp)· The marginal rate of substitution between peak and off-peak consumption 

1s: 

(4.2.1) 

19 . . 
A utility function that can be written as U(d)=g(h(d)) where g(·) is a monotonically increasing 

function and h(d) is homogenous of degree one, twice differentiable, and strictly concave. 
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On the assumptions of the utility function, given the prices Pr and P0 demand will be 

determined by the same ratio of prices. That is, the demand function satisfies 

(4.2.2) 

This should also be true for any continuous utility function. The function x(e) can be 

defined implicitly by MRS(x(e))= e so that x(e) is the ratio of peak demand and off-peak 

demand corresponding to a price ratio of e=Prf P0 . Because peak demand is greater than 

off-peak demand when the two periods are priced the same, x(P)>1. For any Q such that 

x(e) ~1, there is a unique set of equilibrium prices (P0 P0) and demands (dp, d0) that make 

peak demand equal to capacity. 

For example, assume that the electric utility is allowed a rate of return on capacity equal 

to ck. Also assume that the utility function is specified as 

(4.2.3) 

Equation ( 4.2.3) implies that the customer values electricity consumed during the peak 

period twice as much as electricity consumed off peak. If peak consumption is a perfect 

substitute for off peak consumption and the price, p, is the same in both periods, then the 

only demand for electricity will be during the peak period. This means that the entire cost 

of capacity be paid by peak usage, so that p=ck. But, peak load pricing would equalize peak 

and off-peak demand when Pr=2P0 . At these prices, the customer is indifferent between 

peak and off-peak consumption and consumption in both periods will equal capacity. The 

profit constraint is satisfied when Pr+P0= ck. Since Pp=2P0 , it must be that with peak load 

pricing Pr=2 ck/3, and P0= ck. · In this case, peak load prices are lower than the uniform 
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price in both periods. Even though the intention of peak load pricing is to shift demand 

from the peak period to the off-peak period, lower prices in both periods can lead to 

higher overall demand for electricity. 

In the above example, peak load pricing lowers prices in both periods, but this is not 

always the case. Other utility functions lead to peak prices that are higher than the 

uniform price. Consider the case of perfect complements, where at any price, the 

customer always wants to consume exactly twice as much in the afternoon as in the 

morning. Let 

(4.2.4) 

At any price, the customer chooses dp/ d0 =2. No matter what price is set, the utility can 

utilize all of its capacity in the peak period and only half of its capacity in the off peak 

period. Therefore, the profit constraint is satisfied for any pair of prices (P,,,P0) when 

Pp+P0 / 2= ck. In this example, moving from uniform pricing to peak load pricing results 

in an increase in the peak price and a decrease in the peak price. 

4.2.1 Solving for Prices by Welfare Maximization 

One can also solve for peak and off-peak prices using a welfare maximization problem 

(Williamson, 1966). The appropriate objective function can be stated as 

(4.2.5) 

where 
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jP;dQ are the respective areas under the demand curves 

Co is the off peak operating cost and a function of Q(= h(Q1)) 

c is the on peak cost and has two components: ci is the peak operating cost (=g(Q2 )) 
p 

and c; is the cost of capacity ( = k(Q2 )). 

Maximizing W leads to the following necessary conditions: 

Where 

h'(Q1) is the off peak marginal operating cost; 

g'(Qi) is the peak marginal operating cost; and, 

k'(Qi) is the peak marginal capacity cost. 

Solving the first order conditions yields the following price solutions: 

Pi= h'(Ql) 

Pi = g '(Qi) + k '(Q2) 

The price solution states that the off peak price of electricity is set equal to off peak 

marginal operating costs and that peak price is set equal to peak marginal operating costs 

plus peak marginal capacity costs20
. 

20 
The argument has been made that it is neither appropriate nor equitable to assign all of the capacity 

costs to the peak period. The thought is that the capacity costs of base load plants should be assigned 
to all periods, the capacity costs of shoulder plants should be assigned to shoulder and peak periods, 
and the capacity costs of peaking plants should be assigned to peak periods. This distribution of costs 
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Figure 4-4 depicts customers' off-peak and peak demand curves imposed on a single 

supply curve. The different price and quantity pairs mapped out represent different 

market circumstances. According to Figure 4-4, at a uniform price of P unifonn> during off-

peak periods customers consume Q u OP at a total cost of CF uniform · Q u op)· Under the 

uniform price, consumer surplus is equal to area (h) and producer surplus is equal to 

would reflect the respective contribution of each plant to meeting demand. This argument falls apart, 
however, when discussed in terms of opportunity cost. The opportunity cost of anything is the value of 
what is given up when a resource is used for one purpose that precludes its use for other purposes. 
Thus, the opportunity cost of using generating capacity that would otherwise be sitting idle is zero. If 
off peak consumption is made to pay a price greater than zero for capacity costs, the result will be 
under-consumption of off-peak electricity. In effect, off-peak users would be subsidizing peak users. 
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(i+k). Thus, total social welfare equals (h+i+k) . If peak load pricing is used and the off­

peak price is set at P Off-Peak' customers will consume Q* OP at a total cost of (P Off-Peak· 

Q*or).Under these conditions, welfare is measured by the sum of producer and consumer 

surplus. Consumer surplus is the area under the off-peak demand curve and above the 

price line Poff-Peak' indicated in Figure 4-4 by the box labeled i and the triangles h and j. 

Producer surplus is the area in Figure 4-4 above the supply curve and below the price line 

Poff-Peak' as indicated by (k+n). Welfare is the sum of the producer and consumer 

surpluses, the area defined by (i+h+j+k+n) . Thus, the social loss from using a uniform 

price instead of peak and off-peak prices is (j+n) . This is referred to as deadweight loss. 

The uniform price also leads to inefficiencies in the peak period because the price is 

below the marginal supply cost. Using electricity that costs more to produce than 

customers' value for consuming it results in a deadweight loss to society equal to the area 

(d + b). To see this, if customers are charged a single uniform price for both the peak and 

off-peak period of P Uniform' during peak hours customers will consume Q u P at a total cost 

of (P Uniform · Q u p)· Consumer surplus is area (a + g + h) and there would be no consumer 

surplus. If peak load pricing is used and the peak period price is set at Preak' customers 

will consume Q *p at a total cost of (Preak ·Q*r)· The measure of welfare is again given by 

the sum of consumer and producer surplus. Consumer surplus is the area to the left of 

and above the peak demand curve and above PPeak' the area (a). Producer surplus is the 

area above the supply curve, to the left of the peak demand curve, and below PPeak- the 

area (h + g +I+ j + k + n + y). Again, welfare is the sum of producer and consumer 

surplus, or the area defined by (a+ h + g +I+ j + k + n + y). 
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4.3 Price vs. Quantity Controls for Reducing Peak Demand 

This section will use the Weitzman framework to compare the relative efficiency of using 

either price-based or quantity-based policies to maintain system reliability. 

Maintaining system reliability is a public good that will be undersupplied in competitive 

markets. To see why this is, consider the interconnected nature of the grid. A grid works 

very well as a power distribution system because it allows sharing. If a power company 

needs to take a power plant off line for maintenance, other parts of the grid can 

compensate. This makes the grid redundant and reliable most of the time. However, there 

can be times, particularly at peak demand, when the interconnected nature of the grid 

makes the entire system vulnerable to collapse. For example, consider a hot summer 

afternoon when the grid is operating close to its maximum capacity. If something 

(lightening strikes, mechanical failures, sudden surges in demand, etc.) causes a power 

plant to suddenly trip off line, the other plants connected to it have to spin up to meet 

the demand. If all of the power plants were already operating near maximum capacity, 

then the plants cannot handle the extra load. To prevent the plants from overloading and 

failing, they will disconnect from the grid as well, and the overload will cascade through 

the grid. In nearly every major blackout, the situation is the same. Thus, the probability of 

such a failure occurring is a decreasing function of the amount of capacity physically 

available to the system for dispatch and an increasing function of the demand on the 

system. Whenever generation capacity is added or peak demand is reduced, the 

probability of a system failure goes down. Since power outages impose widespread costs, 

reducing the probability of a failure creates benefits that accrue largely to parties other 

than the capacity-adder or demand-reducer. Thus, capacity additions create a classic 
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positive extemality by improving the reliability of the system. Economic theory tells us 

that the existence of this positive extemality suggests that peaking capacity and demand 

reductions will, in equilibrium, be undersupplied by a competitive market. The magnitude 

of this extemality depends on the product of the social cost of the outage and the 

probability of an outage occurring. 

The problem is exacerbated because the electricity delivery system is instantaneous and 

uses "pull" rather than "push" technology, so that customers ultimately determine the 

amount of electricity that travels through the wires, not the utility. The system is 

vulnerable to catastrophic failure if customers "pull" more electricity than the system can 

handle. Such failures impose widespread costs; any action that causes a reduction in the 

likelihood of such failures creates a positive externality. 

This situation is illustrated in Figure 4-5. The expected short-run peak demand situation 

corresponds to the short-run demand curve labeled SRD1• Thus, at quantity equal to Q* 

and price equal to P*, the market is in both short-run and long-run equilibrium. If 

demand increases, however, we move up the short-run demand curve. At some point, as 

available capacity is fully utilized, this curve becomes vertical and further increases in 

demand cannot be accommodated. As shown in the figure, this situation is far more likely 

if the short-run demand curve is highly inelastic. 
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The recognition of reliability as an extemality problem leads to the question of whether 

public policy should seek to affect the structure of electricity markets in such a way as to 

"internalize" the extemality and thereby move the competitive equilibrium closer to the 

socially optimal level of reliability. There is, of course, a large economic literature on 

policies designed to internalize externalities, developed primarily in the context of the 

negative externality created by environmental pollution. Some of the analysis from that 

literature can be adapted to explore possible policy responses to the reliability extemality. 
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The standard analysis of externalities says that the optimal level of the externality­

generating activity can be determined by finding the point at which the marginal social 

benefit associated with the externality is equated to the marginal cost of the activity that 

produces the benefit. In the present context, this means that the marginal value of 

electricity use (or, conversely, the value of reducing the probability of a system failure) 

should be equated to the marginal cost of producing electricity. To make the discussion 

concrete, and to allow for the analysis of both price- and quantity-based demand 

reductions, this discussion is couched in terms of maintaining system reliability by 

reducing peak demand. 

The marginal cost of generating electricity for peak demand has two components: 

marginal supply costs and the expected cost of a power failure, which is a decreasing 

function of total capacity and increasing function of peak demand. Both marginal supply 

costs and the expected costs of a failure increase rapidly as demand approaches maximum 

system capacity. Supply costs increase because inefficient peaking plants that run on high 

cost fuels are needed in order to generate enough electricity to serve peak demand. The 

expected costs of a system failure increases as demand threatens to exceed supply 

capability. In fact, one could argue that the probability of system failure goes to certainty 

as demand approaches the maximum system capacity. The resulting marginal cost curve is 

the sum of the two components and its slope is steeper than either curve taken alone. 

Figure 4-6 is one representation of what the marginal cost of electricity supply might look 

like, as a function of aggregate electricity demand. 
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Figure 4-6. Marginal costs and benefits at peak demand 

The marginal benefit (MB) curve represents the value of electricity use. Of course, the 

value of electricity use is the value of not having an interruption so the marginal benefit 

curve can also be interpreted as the value of reducing the probability of system failure. As 

peak demand rises, the probability of a power outage of any magnitude rises as well. What 

matters for this analysis is the marginal effect on expected benefits of decreasing peak 

demand. This can be treated as a decreasing function of demand. That is, as peak demand 

falls, interruptions become less likely and each successive decrement of peak demand has 

less effect in terms of making them rarer still. 

The socially optimal level of peak demand is where the marginal benefit is equal to the 

marginal cost, indicated Q* in Figure 4-6. In contrast, if fixed retail rates are capped 

below P* at PF, customers will demand electricity at a level equal to QF. This means that 
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traditional fixed rate pricing structures result in a risk of a system failure that is greater 

than the socially optimal level of risk. 

In the simple situation described by Figure 4-6, regulators and policy makers can 

unambiguously improve market efficiency by dealing with the reliability externality. 

Further, they can, in this simple situation, do this using two equivalent policy instruments: 

they can allow retail prices to adjust to reflect real-time or near real-time marginal supply 

costs or they can directly manipulate customers' electricity use to maintain Q*. In theory, 

these approaches are equivalent. When prices are used as planning tools, the basic 

operating rules from the regulator implicitly specify that customers will maximize their 

utility at the given prices. When direct demand management is used, the regulator 

explicitly limits electricity demand at a certain level. From a strictly theoretical point of 

view, the two methods are equivalent- no matter which method is fixed, there is always a 

corresponding way to set the other which achieves the same results when implemented. 

A number of factors make this theoretical equivalence between price-based and quantity­

based policies breakdown. The most important is that neither of the curves in Figure 4-6 

is known with certainty, even in .some average or expected value sense. System planners 

need to determine the correct level of peak demand reductions on the basis of only very 

vague information about both the marginal benefit and marginal cost functions. This 

issue was addressed by Weitzman's (1974) seminal paper on the relative efficiency of 

price and quantity based policies and has been analyzed in detail in the pollution control 

context, where the issue is whether to tax pollution or impose regulations dictating 

permissible pollution levels. The basic result is that setting the quantity (using direct 

demand control, in this case) at its apparently optimal level will lead to smaller average 
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errors than would setting prices equal to marginal supply costs, if the marginal benefits 

are declining rapidly at the point where marginal benefits apparently equal marginal cost. 

In other words, if there is a "threshold" above which the marginal benefit of demand 

reductions is very low and below which the marginal benefit is very high, then the 

optimum must be near this threshold, regardless of where the cost function turns out to 

lie. Conversely, if the marginal benefit function is particularly flat in the region of the 

optimum, the correct Q* depends a lot on where the marginal cost curve lies; by setting 

price the planner will "track" movements in that function and will be more efficient than 

the quantity approach on average. 

The implication of this classic quantity vs. price issue in the present context warrants a 

closer look. Figure 4-7 illustrates the case in which the exact location of the marginal cost 

curve is unknown to the planner or regulator. This illustration, however, also assumes 

that the location and shape of the marginal benefit curve are known with certainty. In this 

case, the marginal cost curve could lie in 3 possible locations. The probability of each is 

one-third and the height of MC1 is equal to the average heights of MC2 and MC3, making 

MC1 the mean location for the actual marginal cost curve. 

Given the possible outcomes for the marginal cost curve, and knowing the location of the 

marginal benefits curve, the optimal level of peak demand is Q*. If the actual marginal 

cost curve, MC, is equal to MC1, then Q* can be maintained either through actively 

limiting customer demand to Q* or by setting price equal to marginal cost so that price 

equals P*. If the planner uses advanced technologies to directly maintain customer 

demand at Q* and the actual marginal cost curve turns out to be MC2, the resulting level 

of peak demand will be too low compared to the socially optimal level of peak demand, 
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QQz· Triangle B is the measure of the resulting inefficiency. On the contrary, if the actual 

marginal cost curve turns out to be MC3, the resulting level of peak demand will be too 

high compared to the socially optimal level, QQ1• The deadweight loss is illustrated by 

triangle A. 

The planner also has the choice to use a price-based policy and set price equal to the 

marginal supply cost. The planner's best guess is that MC= MC1• If the planner is wrong 

and MC=MC2, the actual level of peak demand, Q*, will be lower than the optimal peak 

demand, Qr2. Triangle D captures this inefficiency. Conversely, if MC=MC3, the actual 

level of peak demand will be higher than the optimal, Qr y The inefficiency is measured 

by area C. 
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Figure 4-7. Relative efficiency of price- and quantity- based policies for peak 
demand reduction with uncertain marginal cost· 

Itis clear from Figure 4-7 that (C+D) is greater than (A+B). This implies that using a 

quantity-based approach will lead to smaller average errors than setting price equal to 

marginal cost if the marginal benefits are declining rapidly at the point where marginal 

benefits apparently equals marginal cost. This representation of the marginal benefit 

function suggests that there is a threshold above which the marginal benefit of peak 
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demand reduction is very low and below which the marginal benefit is very high. Setting 

Q* at this threshold minimizes losses due to uncertainty. 

In general, the planner can decide whether it is better to use direct demand control 

policies or set price equal to marginal supply costs based on the relative steepness of the 

marginal benefit and marginal cost functions. As an example, consider the case where 

MC=MCy This is illustrated in Figure 4-8. Holding the slope of the marginal cost curve 

constant, the marginal benefit function gets flatter. As the marginal benefit function gets 

more elastic, the optimal point where marginal cost equals marginal benefit shifts to the 

left, closer to Qr 3 and minimizing the deadweight loss resulting from the uncertainty. So, 

if the slope of the marginal benefit function is expected to be flatter than the slope of the 

marginal cost function, price controls are the more efficiency policy option for 

maintaining system reliability. 
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Figure 4-8. Relative efficiency of price-based policies for inelastic and elastic 
marginal benefit functions 

Intuition suggests that the case described by Figure 4-7 (the marginal benefits of reducing 

peak demand are very high as demand approaches a reliability threshold) is an accurate 

representation of real-life peak demand conditions. As discussed above in this section, 

under normal demand conditions the grid is highly redundant and resilient to 

disturbances. But, if the grid is operating under peak demand conditions and all of the 

generators are running at 100% capacity, a single contingency can cascade through the 

grid, causing rolling blackouts and brownouts. Consider the reported costs of system 
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failure: a rolling blackout across Silicon Valley totaled $7 5 million in losses; in 2000, the 

one-hour outage that hit the Chicago Board of Trade resulted in $20 trillion in trades 

delayed; Sun Microsystems estimates that a blackout costs the company $1 million every 

minute; the Northeast blackout of 2003 resulted in a $6 billion economic loss to the 

region (U.S. Department of Energy Office of Electricity Delivery and Energy Reliability, 

2009). 

Proponents of real-time prices often claim that price-mechanisms offer considerable 

efficiency gains over quantity-based controls for reducing peak demand and maintaining 

system reliability. This may be true if the damages from peak demand occur gradually: a 

slight increase in peak demand means slightly more damage. Under this assumption, 

RTPs make sense. Rather than attempting to limit peak demand to a fixed target at any 

cost, retail electricity prices should be adjusted to reflect real-time marginal supply costs 

and the level of electricity consumption at any point in time will be determined by 

customers' price elasticity of demand. This remains true as long as the damage from peak 

demand is gradual. But, if one assumes that the damages from peak demand and the 

associated risk of system failure rise dramatically beyond a particular threshold, intuition 

suggests that it will make sense to adopt quantity-based controls that assure that demand 

will not exceed a given margin of reliability. Extending Weitzman's analysis to account for 

this threshold effect shows that to be the case as shown in Figure 4-7: if one assumes that 

catastrophic damages occur once peak demand exceeds a specific threshold, one finds 

that quantity controls are indeed desirable. 
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4.4 Conclusion 

The first part of Chapter 4 reviewed the economic literature on electricity pricing, 

particularly peak load pricing. As developed by Boiteux and Steiner, the peak load pricing 

model sets the price in the peak period equal to the sum of marginal capacity costs and 

marginal operating costs and sets the price in the off-peak period equal to just the 

marginal operating costs. Offering a lower price during off-peak hours creates an 

incentive for customers to reallocate some of their electricity demand from the peak 

period to the off-peak period. There is, however, one important drawback to using peak 

load pricing as a peak demand reduction tool. That is, peak load pricing depends on 

knowing when the off-peak and peak periods occur. Peak electricity demand, however, 

can only be predicted by the forecasted weather and can only be anticipated on relatively 

short notice. While peak load pricing is well-suited for smoothing demand for services or 

commodities that follow regular patterns (cell phone plans, airline tickets, hotel 

reservations), it may not be as effective in reducing episodic spikes in electricity demand. 

The second part of Chapter 4 compared the relative efficiencies of using price-based or 

quantity-based policies to reduce peak demand. Using Weitzman's framework for 

comparing price-and quantity-based policies, the discussion showed that price-based 

policies are pref erred when the marginal benefits curve for peak demand reductions is 

relatively flat, but as the marginal benefit curve becomes increasingly steep, it will 

eventually tip the scales in favor of quantity-based policies. But, Weitzman's framework is 

a simplification that does not capture the range of issues involved with quantity-based 

policies. The next two chapters will examine these issues. Chapter 5 is designed to be an 

introduction to the challenges facing the estimation of peak demand reductions from the 
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use of quantity-based policies. Chapter 6 describes the methods used to estimate the peak 

demand reductions achieved by the quantity-based SmartAC program and predict the 

effectiveness of such a program under various climate change scenarios. 
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Chapter 5. Introduction to Evaluating Peak Demand Reduction 
Programs 

This chapter describes the important challenges facing the use of quantity-based policies 

for reducing peak electricity demand. The chapter concludes that there are several 

analytical and theoretical challenges associated with estimating customers' baseline 

electricity consumption. In the case where incentive payments are paid according to the 

magnitude of the demand reductions, these challenges may result in overpaying 

customers. 

As discussed in Chapter 3, the SmartAC™ program reduces demand during peak periods 

by limiting participating customers' demand for electricity for air conditioning. An 

important issue for the SmartAC™ program, and others like it, is determining how much 

peak demand is reduced. Knowing the magnitude of the demand reduction is important 

to system planners who must be able to account for anticipated peak demand reductions 

in supply procurement planning, and evaluate the cost-effectiveness of such programs. In 

cases where incentive payments are paid according to the magnitude of the demand 

reduction, accurate estimates are required to properl.Y compensate customers. 

Determining the size of the demand reduction is a matter of subtracting a customer's 

actual electricity consumption during peak hour when the customer's air conditioner 

thermostat is subject to re-set by the utility from an estimate of what the customer would 

have otherwise consumed if not for the utility intervention. The former measure is collected by 

a data logger or meter on the air conditioner, but the latter measure must be estimated. 

This estimate is referred to as the customer baseline. Conceptually, the customer baseline 

is the quantity of electricity the customer would have used in the absence of any action 
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taken the utility to reduce peak demand. It is important that the customer baseline is not 

directly observable and must be estimated through one of several different statistical 

methods. Most estimation methods can be categorized as either an average or a weather­

based regression model. 

5.1 Methods for Estimating Customer Baselines 

5.1.1 Averaging Method 

An averaging method simply estimates the customer's baseline for a particular day and 

time of day by calculating his average electricity consumption during each hour over the 

previous 10 to 12 days. For example, the baseline for the hour ending at 1 pm is the 

average over all the selected days of the demand on those days for the hour between 12 

noon and 1 pm. The choice of exactly which days and how many days to average over is 

one significant issue with the averaging method. Most of the methods that use a version 

of averaging use 10 or 11 business days prior to the "curtailment day," or the day that the 

utility limited the customer's peak demand. Other common strategies include restricting 

the averaging to the 10 days with the highest average demand out of the last 11 or the 5 

days with the highest average out of the last 10. Eliminating the lower demand days 

creates a baseline that reflects demand conditions that most approximate those conditions 

when demand reductions are likely to occur-i.e., when it is hot and peak demand is high. 

Often, an adjustment factor needs to be applied to the baseline estimate in order to 

address systematic day-specific effects (other than temperature) that.may bias the baseline 

estimate. Day-specific effects could include wind, humidity, or cloud-cover that is out of 

the normal range. Non-weather related day-specific effects such as events in the news or 
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holidays could also impact customers' electricity use. There are several approaches to this 

"same-day" adjustment. The first is an additive adjustment- a constant is added to the 

provisional baseline for each hour of the curtailment period. For a simple additive 

adjustment, the constant is calculated as the difference between the actual electricity 

demand and the provisional baseline estimate for some period prior to the curtailment. 

The second approach is a scalar adjustment. The provisional baseline estimate for each 

hour of the curtailment period is multiplied by a fixed scalar, which is calculated as the 

ratio of the actual load to the provisional baseline for some period prior to the 

curtailment. The final option is referred to as a weather-based adjustment. A model of 

demand as a function of weather is fit to historical load data. The fitted model is used to 

estimate demand a) for the weather conditions of the days included in the provisional 

baseline estimate and, b) for the weather conditions of the curtailment day. The 

difference or ratio of these two estimates is calculated and applied to the provisional 

baseline as an additive or scalar adjustment. 

5.1.2 Weather-Based Regression Model 

Weather-based regression models are an alternative to averaging. Regression models are 

used to develop a baseline demand curve based on dependent variables related to 

weather, building operations, or other factors. In the context of calculating peak demand 

reductions from customer baselines, the regression model uses electricity consumption 

data for a particular customer (or even a particular appliance) and weather data specific to 

the customer's location. The model estimates the relationship between electricity 

consumption and the outside temperature using all available data except data from 

curtailment days. The model is fit to those data and applied to the conditions during peak 
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demand in order to estimate what that customer's demand would have been in the 

absence of the demand reduction. In most cases, the model is fit separately for each 

customer in order to control for differences in customers' homes, appliances, and 

personal preferences. 

In these models, each observation corresponds to a particular day and hour (or finer time 

interval). The dependent variable is the customer's demand at that day and hour, and in 

most applications, a different set of coefficients is estimated for each hour of the day. The 

explanatory variables are typically weather variables and day-type indicators that 

distinguish weekdays from weekends. This is somewhat different from contexts where a 

model must yield reasonable results across a population of customers over a broad time 

frame. 

There are many different approaches to regression modeling that vary with respect to the 

general method used (e.g. classical versus Bayesian), estimation algorithms (e.g. Ordinary 

Least Squares, Generalized Least Squares, Maximum Likelihood Estimation), functional 

specification (e.g. conditional demand analysis, change modeling, etc.), the use of control 

groups (e.g. participants versus non-participants), and the variables that are explicitly 

included in the model specification. 

There are several differences among various specifications of weather-based regression 

models. The first is the type of weather variable or variables included in the model. 

Typically, temperature, degree-days, and/ or a temperature-humidity index (THI) are used, 

although some modelers include additional weather terms such as precipitation, cloud 
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clover, sunshine, and wind speed. Temperature and humidity are the dominant drivers of 

cooling demand. 

Cooling degree days (CDD) is a quantitative index designed to reflect the demand for 

energy needed to cool a building. More specifically, the number of cooling degrees in a 

day is defined as the difference between a chosen reference value and the daily average 

temperature. The reference value, often referred to as the "base temperature", is generally 

the lowest temperature below which no air conditioning is necessary. The value of 6S°F is 

often taken as the base temperature because experience shows that at 65°F neither 

heating nor cooling is generally required. Thus, if the daily average temperature for a 

given day is 78°F and the base temperature is 65°F, this would be measured as 13 degree 

days. However, cooling degree days can be calculated using any base temperature- the 

most appropriate base temperature depends on the patterns and preferences of the 

building's occupants. Cooling degree days can be added over periods of time to provide a 

rough approximation of seasonal cooling requirements21
• In the course of a year, for 

example, Key West, Florida has 4,383 cooling degree days whereas Anchorage, Alaska has 

1 (National Climatic Data Center, 2009) . Thus, one can say that, for a given home of 

similar structure and insulation, more than 4,000 times (roughly) the energy would be 

required to cool that home in Key West than in Anchorage. 

21 c 1· oo ing degree days only offer a rough approximation of energy requirements for heating and 

cooling because the relationship between energy demand and cooling degree days is not linear and 

the cooling base matters a lot if one is trying to forecast electricity use. For example, with a base of 65 

degrees, 10 days at 68 would probably imply very little air conditioning use. But one day.at 95 

(=65+10*3) would imply a lot more air conditioning. 
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If the building in question is consistently in cooling mode across the span of the data 

used in the regression, degree-day variables offer no advantage over temperature 

variables. However, if the data include milder conditions when cooling (or heating) is not 

required, degree-day variables generally perform better. In effect, degree-days "count" 

temperature only when it is high enough to require cooling. 

The second difference among regression models is whether a fixed degree-day base is 

used. If degree-day variables are used, the degree-day base may be fixed in advance or 

determined by the regression. As mentioned above, the base temperature for a building is 

the lowest temperature at which cooling is desired. Thus, the more accurate the base 

temperature is, the more closely degree-days will be correlated with electricity demand. If 

the base temperature used is too low, the model will tend to underestimate demand in hot 

weather and overstate demand in cooler weather. If the base temperature used is too 

high, the opposite occurs. The appropriate degree-day base varies considerably across 

homes and other buildings, depending on the home's insulation, shading, and other 

factors the affect the indoor temperature. A meaningful way to determine the best base 

temperature for a given building is by analyzing cooling demand data in relation to 

temperature data. Models that allow the degree-day base to vary across homes tend to 

have lower systematic error, but also are more complex and more time-consuming to fit. 

Also, these models are less well determined if data are limited, which means that a 

relatively long history of electricity demand and weather data is necessary. 

A third difference among models is whether lagged weather terms are included. Lag 

temperature or degree-day terms are used to account for heat build-up over time in a 

home. This is the effect of "thermal mass." One approach is to include the weighted 
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average of degree-days for the past 48 hours, with the weights exponentially decreasing. 

Simpler approaches put multiple temperature or degree-day variables into the model at 

different lags. Lagging humidity is not highly meaningful because buildings do not trap 

humidity in the way they trap heat. 

A fourth difference is whether the explanatory variables are hourly or daily. Although the 

estimated coefficients are almost always allowed to vary by hour of the day, the 

explanatory variables may vary only daily. Because buildings store heat, the amount 

electricity used for cooling does not respond instantaneously to the outside temperature, 

but depends on the temperature over the course of the day. Lagged weather variables can 

account for this effect, but modeling demand in a given hour as a function of the daily 

average temperature can often work as well without the added complexity. In part, this 

approach works because the variation in temperature over the course of the day is similar 

from day to day. Thus, the 1 Oam coefficients of daily average temperature tend to be 

smaller than the 4pm coefficients. This is partly because there is less heat build-up in the 

home by 1 Oam and partly because the actual outdoor temperature for a given daily 

average is lower than that at 4pm. 

Common models estimate weather-sensitive electricity demand as a function of daily 

temperature, hourly temperature, heating and cooling degree-days, heating and cooling 

degree-hours, both degree-days and lagged degree-days, or a temperature-humidity index. 

Table 5-1 summarizes some of the most prominent advantages and disadvantages of 

various baseline methodology components. 
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Table 5-1. Advantages and Disadvantages of Baseline Estimation Methods Based 
on Qualitative Considerations 

Baseline Method 

Average (any) 

Average (highest 5 
out of 10 days) 

Regression 

Advantages 

• Simple, easy to use 
& understand, low 
cost 

• Partial adjustment 
for weather­
sensitive demand 

• Provides baseline 
corresponding to 
particular weather 
conditions of 
curtailment day 

• If a full season of 
data is available, 
regression will yield 
accurate 
coefficients 

Source: (Goldberg & Agnew, 2003) 

• 

• 

• 

• 

• 

• 

Disadvantages 

Tends to underestimate 
baseline for weather-sensitive 
demand 

Also tends to underestimate 
baseline for weather-sensitive 
demand 

Including cooler days in the 
averaging calculation can 
result in over-inflated 
customer baselines. 

More complex, harder to 
understand, higher cost 

If observations do not 
include weather as hot as the 
curtailment day, model 
estimates may underestimate 
baseline 

Model estimates based on 
limited data ~ght be 
inaccurate 

5.1.3 Theoretical Issues with the Use of Customer Baselines 

Programs that pay consumers for demand reduction below some baseline face several 

challenges that are inherent in defining the baseline. These challenges include moral 

hazard, adverse selection, and the double-payment problem. 
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Moral Hazard 

Moral hazard occurs when the customer anticipates a peak demand "event." In one case 

of moral hazard, the customer might intentionally increase his electricity consumption in 

the hours leading up to the curtailment period in order to increase his baseline so as to 

receive a higher payment. For example, a customer with an on-site generator might turn 

off his generator temporarily to establish an artificially high level of consumption and 

then turn the generator back on to collect incentive payments for what is otherwise 

normal consumption behavior. In another case, a customer might pre-cool, or increase 

cooling in the hours prior to the curtailment event in order to retain his comfort level 

longer if air conditioning is being controlled during the curtailment. Other concerns, such 

as adjusting manufacturing processes in anticipating of the curtailment event, are more 

relevant to commercial and industrial customers. If gaming or pre-cooling occurs, savings 

estimates based on the two hours prior to the curtailment event will be overstated 

whereas anticipatory behavior by customers such as canceling production orders or 

encouraging employees to go home early, could lead to under-estimating demand savings. 

Adverse Selection 

Adverse selection could result in payments for demand reductions that would have 

occurred anyway, and which had nothing to do with the program incentives. The adverse 

selection problem arises from asymmetrical information about a customer's true baseline. 

Since the baseline is not directly observable to regulators, customers usually have better 

information on their baseline consumption levels than the regulator and can use this 

information to their advantage in their decision to participate in a demand reduction 

program. Therefore, the program is likely to attract disproportionate participation from 
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customers who anticipate lower consumption for reasons having nothing to do with the 

incentives paid by the program to reduce demand. For example, at the commercial or 

industrial level, if last year's or last season's consumption is used to estimate the customer 

baseline, firms whose electricity usage has been reduced since that time have a greater 

incentive to participate in the program .. Therefore, payments could be made for load 

reductions that would have occurred anyway. At the same time, firms that are entering 

their high demand season, or have grown rapidly since last year simply will not join the 

program. 

Double Pqyment Problem 

The use of a baseline as the basis for demand reduction payments is susceptible to paying 

excessive demand reduction incentives to customers (the double payment problem), and 

cause customers to forego consumption whose value exceeds the cost of producing the 

energy22
• This can happen when the sum of the bill savings and the incentive payments, 

which are computed relative to the estimated baseline, exceed the cost of producing the 

electricity. Such excessive compensation for demand reductions causes inefficient price 

formation in wholesale energy markets. That is, despite the availability of relatively 

inexpensive energy in the wholesale market, excessive incentives may cause customers to 

22 
The double payment gives participants an incentive to defer consumption when the value of 

consumption is greater than the LMP and/or to switch to alternative energy sources that cost more to 
operate than the LMP. Such a program design, therefore, results in an inefficient market outcome and 
an inefficient use of resources. For example, if the retail price of electricity is $80/MWh and the LMP is 
$90/MWh, a customer who is paid the LMP to reduce consumption would be able to earn an 
additional $20/MWh by using a $150/MWh on-site generator ($80 bill savings+ $90 payments-$150 
generator=$20 net gain) to reduce its net metered consumption. Thus, the program compensation 
design encourages the use of a more expensive $150/MWh resource even though a less expensive 
$90/MWh resource in the wholesale market was available to serve the customer's demand. 
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forego more valuable energy consumption or cause customers to substitute higher cost 

sources of energy. 

To see the double payment problem, consider a customer who usually consumes a 

baseline quantity of electricity, BCL, at price Px. When the wholesale price Pis greater 

than Px, the customer wants to consume a quantity less than his baseline, q. The demand 

reduction is DR=x-q. 

If the difference between what the customer would have consumed and his actual 

consumption, DR, is called a "demand resource," it seems reasonable to say that the 

customer should be paid the wholesale market price P for its "demand resource," just as 

generators are paid for their supply resources. It also seems reasonable to say that no 

customer should have to pay for something he does not consume. Taken together, those 

statements imply that if q< x, the customer should pay P for the quantity, q, that he does 

consume and should be paid P for the amount of the demand reduction, DR. Thus, the 

net payment to the customer would be: 

Net Payment to Customer = (P x DR)-(P x q). 

Since q=x-DR, this can be rewritten as: 

Net Payment to Customer = (P x DR) - P x (x-DR) 

= 2PDR-Px. 

This says that a customer who consumes less than its fixed BCL of x should buy x at the 

market price and then be paid a price of 2P for selling back "demand resources." 
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There are several solutions to the double-payment problem. First, economic demand 

response programs can be eliminated in favor of real-time pricing programs. Second, a 

customer could be required to purchase his baseline. If he does not consume all of the 

electricity that he has paid for, he will be compensated for the unused energy. Lastly, the 

simplest solution is to only pay customers the real-time price for electricity that they do 

use. 

5.2 Conclusions 

This chapter described the important analytical and theoretical challenges facing baseline 

approaches for estimating the impact of quantity-based policies that limit customer 

demand during peak hours. This chapter concludes that the weather-based regression 

method has several important advantages that make it preferred to the averaging method. 

This chapter also describes the theoretical problems of moral hazard, adverse selection, 

and the double-payment problem. This chapter concludes that in cases where incentive 

payments are paid according to the magnitude of the demand reduction, these challenges 

can result in overpaying customers. 

Considering these challenges, it is important to remember that price-based policies, such 

as real-time pricing, can reallocate electricity demand from peak periods to off-peak 

periods without these challenges. 

Both quantity-based and price-based policies are an essential element of California's 

energy strategy, as articulated in the state's Energy Action Plan (EAP II), which directs 

the state's investor owned utilities to subscribe at least 5% of system peak demand into 
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either price-based or quantity-based control programs. Currently, both types of programs 

are administered by California's 3 regulated investor-owned utilities: PG&E, SCE, and 

SDG&E. The utilities generally offer their large commercial and industrial (C&I) 

customers options to participate in both types of programs for reducing peak demand. 

For example, PG&E offers a Critical Peak Pricing (CPP) program to its large C&I 

customers that provides lower energy rates on non-peak days in exchange for higher rates 

(up to five times the otherwise applicable rate) on peak days. Most of the programs 

available to residential and smaller commercial customers, however, are quantity-based 

programs23
, such as the SmartAC program described in Chapter 3. Chapter 6 analyzes the 

effectiveness of the quantity-based SmartAC program in reducing peak demand and 

forecasts how such a program will help reduce peak demand under various climate 

change scenarios. 

23 
Both price-based and quantity-based programs for residential and small commercial customers will 

most likely grow as utilities' proposals for advanced metering infrastructure make their way through 
the regulatory approval and implementation process. 
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Chapter 6. Evaluating the Role of Residential Air Conditioning in Reducing Peak 
Demand 

6.1 Introduction 

This chapt~r will evaluate the role that direct quantity control policies will have in 

reducing peak demand in a future characterized by hotter summer temperatures and 

climate change. Doing this will take 4 main steps: 

1. Model the effect of temperature on electricity demand for air-conditioning. 

2. Estimate the magnitude of peak demand reductions from the quantity-based 
SmartAC™ program. 

3. Forecast electricity demand for cooling over a range of possible climate change 
scenanos. 

4. Examine the role for air conditioner thermostat re-set programs in reducing peak 
demand over a range of possible climate change scenarios. 

The first step is carried out by modeling electricity demand from a particular air 

conditioner as a non-linear function of the outside temperature and the time of day. The 

second step involves determining how much PG&E reduced peak demand by raising the 

cooling setpoint on participating customers' air conditioners during the summer of 2007. 

This also takes several steps. The first step is to use the non-linear model mentioned 

above to estimate the electricity demand for a particular air conditioner as a function of 

the outside temperature and the time of day, based on historical demand and weather 

data. Next, given specific peak demand-day conditions (daily average temperature, time of 

day), the amount of electricity the customer would have consumed absent the utility 

Intervention is estimated. Lastly, the amount of electricity the customer's air conditioner 
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actually consumed is subtracted from the estimate of what it would have consumed but 

for utility intervention. The difference is interpreted as the peak demand reduction. 

The third and fourth main steps are to forecast future electricity demand for air 

conditioning and potential demand reductions across a range of possible climate change 

scenarios. Forecasting concerns extrapolating the findings from ex post evaluations to a 

set of conditions that differ from those that have occurred in the past. Most climate 

scientists agree that future climate conditions and patterns will be out of the range of 

historical weather. The challenge here is that the functional relationship between energy 

demand for cooling and temperature may differ under these extreme conditions from 

what is was under the observed conditions. A related challenge is to address not only the 

degree of uncertainty associated with the ex post evaluation parameters, which is largely 

tied to the accuracy and statistical precision of model parameters, but also the uncertainty 

associated with the climatic predictions that underlie the forecast. Everything is uncertain 

in the future, and providing point estimates based on specific values for key variables can 

significantly overstate the true confidence that underlies the estimates. To address this 

uncertainty, this chapter will report ranges of forecas.ted energy demand for air 

conditioning across several possible climatic futures. 

To aid the reader, this chapter is divided into two main parts, with several sections and 

subsections within in part. Part I estimates peak demand reductions from the SmartAC 

program during the summer of 2007 based on historical weather and electricity 

consumption data. Part II forecasts future demand for electricity for cooling under 

different climate change scenarios. 
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The conclusion of the analysis is that direct load control programs that limit consumers' 

demand for electricity for air conditioning during critical hours are effective in reducing 

peak demand. This research also concludes that this type of direct control program has a 

smaller impact on peak demand at extremely hot daily average temperatures. This means 

that this type of direct control program will reduce peak demand more effectively if the 

impact of climate change on daily average temperatures is moderate. Likewise, this 

research concludes that this type of program may reduce peak demand more effectively in 

regions of the country with moderate temperatures and low humidity, such as northern 

California and the Pacific Northwest. 

Part I. Estimating Peak Demand Reductions 2007 

6.2 Electricity Consumption Data 

This analysis uses two important sources of data. The first is the electricity consumption 

of each participating air conditioner and the second is the daily average temperature in 

Stockton, CA. 

Data on each participating air conditioners' energy use was collected by data loggers 

installed on the customers' air conditioners; the data loggers recorded each air 

conditioner's energy use in either one-minute or fifteen-minute intervals. The data loggers 

used were the HOBO Energy Logger Pro TM (for one-minute data) and the DENT 

DATApro™ Data Logger (for fifteen-minute data). Both loggers used a current 

transformer, installed around a single leg of an air conditioner, to monitor the voltage of 

the electromagnetic field produced by an alternating current, and were programmed to 
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convert that voltage reading into amps. Four different sized current transformers were 

used for this study: 20, 70, 100, or 150 amp. The one-minute or fifteen-minute interval 

data that was stored in the loggers included the date, time, and average amps during the 

interval. The DATApro TM loggers, which recorded information on fifteen minute 

intervals took instantaenous amp readings every minute and recorded the average of 

those readings at the end of every fifteen minute interval. The HOBO data loggers 

recorded amp readings every minute. During the data cleaning process, the one-minute 

data was converted to a format consistent with that recorded by the fifteen-minute data 

loggers; the average amps over fifteen minute intervals was calculated. Amps were 

converted to kW24 using the measured voltage at each site. If the voltage could not be 

measured, the average measured voltage (220v) calculated across all air conditioners was 

substituted. There is little variation in voltage across all air conditioners. 

The data loggers were installed on a sample of 300 air conditioners. The sample was 

selected from the population of 2,917 participating customers at the start of the summer 

of 2007. The sample design and sampling was done by Kema, Inc. and will only be 

explained briefly here. The sample design had 6 strata, based on the type of controlling 

device, tons of air conditioning per household, and whether multiple central air 

conditioners were present in the home25
• The purpose of the stratification was to reflect 

changes in the composition of the population of participating customers as the program 

grows. 

24 

25 
Watts=voltage x amps. 
One ton of cooling is equal to 12,000 BTUs. 
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It is also important to know how much the sample of customers uses their air 

conditioners. There can be no demand reduction from an air conditioner that is not 

operating because its electricity consumption is already zero. Air conditioners that are 

used frequently are more likely to contribute to the peak demand reduction than air 

conditioners that are rarely turned on. Figure 6-1 shows that 3% of the sample never 

operates their air conditioner, 59% only use air conditioning on the hottest days of the 

summer, and 15% use air conditioning every day of the summer. This sample make-up is 

useful for evaluating the impact of the thermostat re-set because almost all of the sample 

(96% to 97%) probably uses air conditioning on the very hottest days of the summer, 

when peak demand is most likely to occur and demand reductions are the most valuable. 

Don't know Not ilt aU 
1% 3% -------Everyday dul'ing 

cooling season 
15% 

n=222 

Figure 6-1. Reported air conditioning use among sample participants 
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6.3 Weather Data 

The second important data source for this analysis is weather data for the Stockton area. 

PG&E provided KEMA, Inc. with observations of dry bulb temperature and relative 

humidity in half-hour intervals for three weather stations in Stockton and its surrounding 

areas for the period from January 1 through December 31, 2007. 

The relevant temperature variable for this analysis is the daily average temperature. This is 

because homes and other buildings heat up and cool down more slowly than the outside 

temperature- thus, the daily average temperature captures the range of temperatures that 

the home experiences over the course of the day and is a better gauge of how much 

energy will be needed for cooling than the day's maximum temperature. The daily average 

temperature is calculated as: 

DAT= (Maximum Temperature+ Minimum Temperature)/2. 

In addition, PG&E provided KEMA, Inc. with historical weather data for Stockton that 

included observations of daily average temperature for the period from May 1 through 

October 31 for the years 1983-2006. This allows a comparison between the summer of 

2007 and the previous 23 years. These data establish percentile cut-offs to identify the 

one, five, and ten percent hottest days across the 23 years. The first percentile contains 

days with daily average temperature above 87.5°F, the fifth percentile contains days with a 

daily average temperature above 83.1°F, and the tenth percentile contains days with a 

daily average temperature above 80°F. The first and fifth percentiles are particularly 

ttnportant for the SmartAC program because it is on hot days such as these when 
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electricity demand for cooling skyrockets and peak demand reductions are especially 

important. 

The historical weather data allow us to characterize the summer of 2007 in relation to 

past weather. Based on counts of days above the three thresholds, 2007 was a typical 

summer compared to the ten previous summers. Figure 6-2 shows the count of days in 

each temperature percentile and Figure 6-3 just shows the number of days each year in 

the first percentile (with a daily average temperature equal to or greater than 87.5°F). 
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Figure 6-3. Number of days per summer in the t8' daily average temperature 
percentile 

Figures 6-4 and 6-5 show that the summer of 2006, along with the summer of 1998, had 

the highest number of days in the first percentile (with daily average temperature equal to 
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or above 87.5°F). The summer of 2007 only had half as many of these most extreme hot 

days compared with 2006 and only two thirds of the 5th percentile days compared to 

2006. 

1997-2007 2007 1997-2007 2007 1997-2007 2007 

1st Percentile 5th Percentile I 0th Percentile 

Figure 6-4. Average temperature in the 1"1, 5th, and 10th percentiles, 1997-2007 vs. 
2007 
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Figure 6-5. 2007, 1"\ 5th, and 10th temperature percentile days in Stockton, CA 
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There were 25 days during the summer of 2007 where the daily average temperature 

exceeded 80°F in the Stockton area. Figure 6-5 shows the daily average temperature on 

the hottest days of the summer. Figure 6-6 overlays the 4pm humidity for each of those 

days. Interestingly, the hottest days of 2007 were not particularly humid. The average 

4pm humidity over the course of the summer is 69.3% while the average 4pm humidity 

for the 25 hottest days is 48.8%. 
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Figure 6-6. 2007, t8\ 5th, and 10th temperature percentile days and percent 
humidity, Stockton, CA. 

6.4 Analysis of PG&E SmartAC TM Peak Demand Reductions 

This section describes the method used to estimate peak demand reductions under the 

quantity-based SmartAC program. This process proceeds in three steps. First, we estimate 

the parameters of the demand relationship at the individual level. Then, we compare 

estimated peak demand to observed peak demand on "curtailment days" in order to 
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determine the reduction in peak demand resulting from the thermostat re-set. Finally we 

use the relationship between energy demand and temperature to forecast energy demand 

for cooling under different climate scenarios. This allows us to project potential peak 

demand reductions from quantity-based policies. 

Now each of these steps will be described in detail. 

6.4.1 Specify the demand relationship 

The weather-based regression model used in this case estimates air conditioner electricity 

demand as a function of dry bulb temperature in the form of average daily cooling 

degree-days. Each of the 24 hourly demand indicator variables is regressed against an 

hour-specific intercept term and degree-day terms. The resulting parameters, though 

based on only a single daily temperature measure, provide an hourly estimate of demand 

as a function of weather. 

Equation 6.3.1 shows the model in equation form. The model is fit separately for each 

participating air conditioner in order to account for differences in building characteristics, 

personal preferences, and customer behavior. 
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(6.3.1) 

where 

= sum of 15-minute interval electricity consumption at hour h of day d for unit}; 

cooling degree-days at the cooling base temperature •q for unit}, on day d, 

hour h based on daily average temperature; 

cooling degree-days at the cooling base temperature •Vi for unit}, on day d, 

hour h based on daily average temperature, where • c; <•Vi< DAT; 

&Jdh regression residual; 

a1h, /3CJh,/3Vih = coefficients determined by the regression; and, 

•c;, •Vi cooling base temperatures determined by choice of optimal regression 

The degree day variables are calculated as: 

CATq) = max(Td -Tq ), O) 

Vd(Tv; ) = max(Td -Tv;),O) 

(6.3.2) 

Tdis the daily average temperature, calculated as the mean of the daily minimum and daily 

maximum temperatures for day d. As indicated above, because of thermal lags in the 

house, this form of daily temperature tends to be a better predictor of cooling demand 

than the current hourly temperature, or an average for particular hours of the day. 

The model is fit separately for each participating air conditioner across a range of cooling 

degree day base temperatures. As discussed above, the ideal cooling base temperature is 

the minimum ambient temperature at which air conditioning use begins and below which 

there tends to be no demand for electricity for cooling. It is important to note that this 
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model uses two cooling degree-day variables. Originally, the model only had one cooling 

degree-day base temperature, '!q . However, this model specification systematically 

underestimated the per-air conditioner demand reduction at extremely hot daily average 

temperatures, specifically daily averages exceeding 85°F. It is likely that the underestimate 

arises due to non-linearity of air conditioner use with respect to degree days. At low 

degree days, few people might use air conditioning. As temperature rises, more people 

use air conditioning and more energy is used per unit. For example, one could imagine 

that more electricity would be used for cooling in one day with a daily average 

temperature of 85°F than in 5 days at 69°F. While the model estimates indicate that 

demand reductions level off at approximately 0.40 kW per air conditioner at 85°F, the 

meter readings captured by the data loggers show that the average demand reduction at 

88.5°F was 0.90 kW per air conditioner. Several explanations were considered, including 

that the thermostats were overzealous in their control and this had a greater effect at 

higher temperatures. Another explanation was that daily average temperatures this high 

are rare and there simply are not many observations at this level, causing the model to 

underestimate electricity demand at extremely high temperatures. This research 

hypothesized that the relationship between electricity demand and daily average 

temperature is not constant across the whole range of possible temperatures; that, in fact, 

at a certain high temperature the rate at which the air conditioner draws electricity to keep 

the home cool increases. Thus, raising the temperature setting would result in a bigger 

demand reduction. The objective then was to determine whether a "breakpoint" 

temperature truly existed, and if so, was the relationship between cooling demand and 

temperature significantly different at temperatures beyond the breakpoint. This approach 
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gave the model flexibility to estimate a different relationship between electricity demand 

and temperature over moderate and extreme temperature ranges. Specifications that 

allowed for more than two ranges were also tried, but resulted in statistically insignificant 

coefficients. 

The model is fit separately for each participating air conditioner across a range of cooling 

degree day bases, allowing for the most accurate combination of cooling degree day base 

temperatures for each customer. 'CJ. representing the minimum ambient temperature at 

which cooling begins, ranged from 66°F to 84°F in increments of 2 degrees; 'VJ. 

representing the "breakpoint" temperature, ranged from 78°F to 90°F, also in increments 

of 2 degrees. The model was fit separately for each air conditioner across every 

combination of ' CJ and ' VJ· Maximum likelihood was used to estimate the parameters and 

estimates with the highest value for the likelihood function were selected26
• Figures 6-7 

and 6-8 show the distribution of selected cooling degree day base temperatures (tCJ and 

'VJ ) across the sample of air conditioners. 70°F was the most frequently estimated cooling 

degree day base temperature for ' CJ and 78°F and 90°F were the most frequently estimated 

breakpoint temperatures. 

Once the most appropriate cooling base and breakpoint temperatures are estimated for 

each customer, ' CJ and ' VJ are used to calculate the two cooling degree day measures in 

Equation (6-3-1 ). Suppose that a base temperature of 70°F and a breakpoint of 82°F was 

the combination with the highest value for the likelihood function. If the daily average 

temperature for one observation is 84°F (an extremely hot summer day), Clrq) would be 

26 
The Akaike's Information Criterion (AIC) was used to compare the competing models. The AIC is 

computed as 

-21n(I} +2k where Lis the likelihood function and k is the number of free parameters. 
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equal to 14 degree days and Vlrv) would be equal to 2 degree days. However, consider a 

different customer for whom the most appropriate cooling degree day base temperature 

is also 70°F, but the best breakpoint temperature is 86°F. In this case, if the daily average 

temperature for one observation is 84°F, Clrc) is equal to 14 degree days but V JrvJ is 

equal to zero. 

4% 2%2% 

$t66 ir68 :,' 70 •72 'l 74 m 16 1!11)78 0 80 * 82 lil84 

(degrees Fahrenheit) 

Figure 6-7. Cooling degree day base temperature, tci 
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Figure 6-8. Cooling degree day "breakpoint" temperature, 'tvi 

The model was also estimated with no breakpoint temperature parameters. The log 

likelihood ratio of the model specification with the breakpoints is compared to that with 

no breakpoints and the specification with the highest value for the likelihood function is 

chosen. 

6.4.2 Estimate the parameters of the demand relationship 

The optimal model for each participating air conditioner includes a set of estimated 

parameters. Depending on the optimal model chosen, the model may or may not include 

"breakpoint" cooling parameters. The most common optimal model including both the 

cooling base and breakpoint parameters is provided in Equation (6.3.3). 
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A A A A A 

Ldh = a 1h+ /Jc1h Cd(TCJ) + f3v1h VArVJ) (6.3.3) 

Where the hat variables on the right hand side represent estimated parameters from the 

/\ 

regressions and L;hd is the estimated demand for air conditioner i in hour h on day d. 

The weather-based regression model estimates a base load as well as the cooling and 

breakpoint parameters. Where air conditioner demand is the only dependent variable 

being modeled, the expectation is that the base load is zero unless the air conditioner is a 

heat pump, or there is some ongoing low-level demand load used by the condenser. In 

instances where the model produced base load parameters that were, in aggregate, 

negative, the base load parameters were set to zero. 

The following tables report the range of results from estimating the model across all 

participating air conditioners. Table 6-1 shows the range of estimates of cxih' the base load 

parameter, across all hours of the day. Table 6-2 shows the range of estimates of ~Cih' the 

coefficient on the cooling degree days from the base temperature, and Table 6-3 shows 

the range of estimates of ~Vih> the coefficient on the c.ooling degree days from the 

breakpoint temperature. Table 6-4 reports the range of goodness-of-fit statistics, 

including R2 and adjusted R2
• The mean R2 is 0.58 and the mean adjusted R2 is 0.56, both 

with a standard deviation of 0.2. The maximum R2 across all the regressions is 0.92. 

As discussed in Chapter 5, humidity and lagged temperature variables are sometimes used 

as explanatory variables. Humidity was not used in this analysis because Stockton, CA is 

notoriously dry and humidity does not play a significant role in driving cooling load. 

Lagged temperature variables were not included because of the anticipated complexity 
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that lagged values would add when forecasting cooling demand under various future 

climate change scenarios. 

Table 6-1. Estimated coefficient txih for hour hand air conditioner i. 

Coefficient Mean Standard Minimum Maximum Median 
Deviation 

(Xi lam 
0.02 0.08 -0.13 0.61 0.00 

(Xi2am 
0.01 0.08 -0.10 0.64 0.00 

(Xi3am 
0.01 0.07 -0.08 0.58 0.00 

(Xi4am 
0.01 0.07 -0.16 0.58 0.00 

(XiSam 
0.01 0.06 -0.16 0.58 0.00 

(Xi6am 
0.01 0.06 -0.12 0.57 0.00 

(Xi7am 0.01 0.07 -0.12 0.54 0.00 

(Xi8am 
0.02 0.08 -0.10 0.91 0.00 

(Xi9am 0.02 0.10 -0.09 1.31 0.00 

(Xi10am 0.01 0.08 -0.19 0.72 0.00 

(Xi11am 0.01 0.07 -0.19 0.56 0.00 

(Xi12pm 
0.01 0.08 -0.27 0.58 0.00 

(Xilpm 0.01 0.08 -0.22 0.63 0.00 

(Xi2pm 0.02 0.10 -0.11 0.76 0.00 

(Xi3pm 0.04 0.12 -0.18 1.02 0.01 

(Xi4pm 0.06 0.14 -0.13 1.30 0.02 

(XiSpm 0.09 0.17 -0.11 1.52 0.04 

(Xi6pm 0.11 0.18 -0.10 1.45 0.06 

(Xi7pm 0.11 0.15 -0.12 0.88 0.06 

(Xi8pm 0.08 0.11 -0.07 0.72 0.05 

(Xi9pm 0.05 0.11 -0.13 1.13 0.02 

(Xi10pm 0.03 0.14 -0.26 1.25 0.00 

(Xi11pm 0.02 0.09 -0.29 0.63 0.00 

(Xi1 2am 0.01 0.08 -0.17 0.60 0.00 
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As expected, the estimated coefficients are larger for the daily peak hours between 3pm 

and 7pm and lower during the morning and night. 

Table 6-2. Estimated coefficient ~Cih, for cooling degree day base temperature 'tci 

for hour h and air conditioner i. 

Coefficient Mean Standard Minimum Maximum Median 
Deviation 

~Cilam 0.03 0.05 -0.33 0.27 0.01 

~Ci2am 0.02 0.04 -0.31 0.28 0.00 

~Ci3am 0.01 0.04 -0.30 0.37 0.00 

~Ci4am 0.01 0.04 -0.31 0.41 0.00 

~CiSam 0.01 0.06 -0.21 0.82 0.00 

~Ci6am 0.01 0.03 -0.12 0.45 0.00 

~Ci7am 0.01 0.02 -0.05 0.13 0.00 

~Ci8am 0.00 0.02 -0.09 0.21 0.00 

~Ci9am 0.00 0.02 -0.14 0.13 0.00 

~Ci10am 0.01 0.03 -0.23 0.33 0.00 

~Cillam 0.02 0.04 -0.09 0.28 0.00 

~Ci12pm 0.03 0.06 -0.09 0.48 0.01 

~Cilpm 0.04 0.06 -0.14 0.36 0.02 

~Ci2pm 0.06 0.08 -0.15 0.68 0.04 

~Ci3pm 0.09 0.11 -0.21 0.84 0.07 

~Ci4pm 0.13 0.12 ..:0.18 0.83 0.10 

~CiSpm 0.16 0.14 -0.22 1.02 0.14 

~Ci6pm 0.18 0.13 -0.22 1.00 0.16 

~Ci7pm 0.18 0.15 -0.77 0.83 0.17 

~Ci8pm 0.15 0.13 -0.47 0.83 0.13 

~Ci9pm 0.12 0.19 -0.59 2.45 0.10 

~Ci10pm 0.09 0.18 -0.34 2.60 0.06 

~Cil lpm 0.06 0.10 -0.11 0.92 0.03 

~Ci1 2am 0.04 0.08 -0.09 0.99 0.01 
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similarly, Table 6-2 shows that the estimated coefficients are greater during the late 

afternoon or evening hours when electricity use is highest and temperatures are likely to 

be the highest of the day. 

Table 6-3. Estimated coefficient ~Vih, for cooling degree day base temperature 'tvi 

for hour h and air conditioner i. 

Coefficient Mean Standard Minimum Maximum Median 
Deviation 

~Vi1am 0.04 0.24 -0.79 2.36 0.00 

~Vi2am 0.05 0.24 -0.36 2.28 0.00 

~Vi3am 0.04 0.20 -0.48 2.22 0.00 

~Vi4am 0.03 0.1 7 -0.25 2.24 0.00 

~ViSam 0.02 0.16 -1.19 1.55 0.00 

~Vi6am 0.02 0.12 -0.41 1.03 0.00 

~Vi7am 0.02 0.12 -0.23 1.03 0.00 

~Vi8am 0.03 0.13 -0.31 1.22 0.00 

~Vi9am 0.05 0.36 -0.53 5.39 0.00 

~Vi10am 0.08 0.56 -0.47 8.43 0.00 

~Vi11am 0.10 0.48 -0.31 6.89 0.00 

~Vi12pm 0.11 0.38 -0.50 4.29 0.00 

~Vi1pm 0.14 0.37 -0.62 2.50 0.01 

~Vi2pm 0.14 0.38 -1.11 2.76 0.03 

~Vi3pm 0.11 0.40 -2.05 2.30 0.02 

~Vi4pm 0.07 0.40 -2.12 2.88 0.00 

~ViSpm 0.05 0.51 -2.77 4.81 0.00 

~Vi6pm 0.01 0.61 -6.84 4.39 0.00 

~Vi7pm -0.01 0.61 -5.09 4.59 0.00 

~Vi8pm 0.04 0.50 -4.32 3.56 0.00 

~Vi9pm 0.04 0.64 -4.96 2.82 0.00 

~Vi10pm 0.09 0.61 -6.42 4.47 0.02 

~Vi11pm 0.08 0.43 -2.40 3.32 0.00 

~Vi12am 0.06 0.29 -2.13 1.62 0.00 
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Table 6-4. Goodness-of-Fit Statistics I 

11 - Coefficient Mean Standard N Minimum Maximum Median 
Deviation 

Adj. R2 0.56 0.20 284 -0.01 0.92 0.57 I 

LCXi1am-O\z4am 
0.78 1.67 284 0.00 13.76 0.31 

L~Ci1am-~Ci24am 1.44 0.97 284 0.00 5.53 1.22 

L~Vi1am-~Vi24am 1.43 2.89 262 0.00 27.45 0.47 

'tCj 
71.89 4.52 284 66 84 70 

'tv; 
77.47 22.95 284 0.00 90 82 

Figures 6-9 (a), (b), and (c) illustrate the results of the regression for three different air 

conditioners. In each plot, the blue circles represent air conditioners' estimated electricity 

demand over a range of daily average temperatures from 65°F to 80°F. In other words, 

/\ 

the blue circles are the L Jdh from Equation (6-3-3). The red stars are the observations of 

electricity demand over this range of temperatures, as recorded by the data loggers. This 

is the actual metered electricity consumption. 
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Figure 6-9. Estimated electricity demand vs. observed electricity demand for three 
participating air conditioners 

6.4.3 Calculating Peak Demand Reductions on "Curtailment D ays" 

Having established each customer's baseline demand for air conditioning over a range of 

daily average temperatures, the next step in the analysis is to calculate the peak demand 

reduction from each air conditioner when the thermostat temperature setting is raised. 

The SmartAC program included 15 curtailment events during the summer of 2007. Of 

those, two were conducted for the entire program population and the remainder of the 

events were conducted for the sample only. The two population events occurred under 

relatively mild conditions but several of the sample-only events occurred on the hottest 
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days of the summer. Table 6-5 lists the curtailment events that summer, in order of 

observed descending daily average temperature. The start time is the beginning of the 

peak period when the thermostats' temperature settings were raised and the end time is 

when utility intervention ceased. 

Accounting for "Steep" Re-set vs. "Gradual" Re-set 

As mentioned in Chapter 3, the utility wanted to experiment with two different 

thermostat re-set strategies: a "steep" ramp and a "gradual" ramp. To test the impact of 

the alternative re-set strategies, the sample group was divided into groups A and B and 

the curtailment days alternated between "A" days and "B" days. On "A" days, group A 

was subject to the steep ramp (raising the temperature setting by 1 degree Fahrenheit per 

hour for four hours) and group B was subject to the gradual ramp (raising the 

temperature setting by 1 degree Fahrenheit at the beginning of the first, third, and fifth 

hours). On "B" days, group B was subject to the steep ramp and group A was subject to 

the gradual ramp. This experimental design was used because it helps isolate the impact 

of the ramping strategy from the effect of factors other than temperature. For example, 

suppose that customers are more likely to override the utility re-set on Wednesdays than 

on Fridays, but this is not known a priori. If the entire sample was subject to the steep 

ramp on Wednesday and the gradual ramp on Friday, incorrect conclusions might be 

reached based on observed behavior. By measuring the difference between the two 

different thermostat re-set strategies, the analysis will produce estimates of demand 

reduction for both strategies as well as overall. Table 6-5 indicates which curtailment days 

are "A" days and which are "B" days. On the two curtailment days that involved the 

entire participating population, only the steep ramping strategy was used. 
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Table 6-5. Curtailment event days in descending order of observed daily average 
temperature, 2007 

8/30/2007 87.5 3pm 7pm A 

8/28/2007 84.5 3pm 7pm B 

8/21/2007 83.5 2pm 7pm B 

8/22/2007 83.5 2pm 7pm A 

7/23/2007 81.5 l2pm 4pm B 

8/10/2007 78.5 2pm 6pm A 

8/1/2007 77.5 2pm 6pm A 

7i27/2007 76.5 2pm 6pm B 

7/26/2007 75 2pm 6pm A 

8/9/2007 75 2pm 6pm B 

9/10/2007 74.5 4pm 7pm A 

9/26/2007 74.5 2pm 7pm All 

7/17/2007 73 12pm 5pm A 

7/12/2007 71.5 2:30pm 6pm All 

Peak D emand Savings E quation 

The per-air conditioner reduction is calculated per Equation (6.3.4). 

(6.3.4) 

/\ 

Sihd = L hd - Lhd 

where 

sihd is the peak demand reduction (savings) on day d, during hour h, for unit i ; 
/\ 

L ;hd is estimated energy demand on day d, during hour h, for unit i; and, 

Lhd is observed energy demand on day d, during hour h, for unit i. 
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Adjusting for Day-Specific Events 

The weather-based regression model estimates a basic, customer-specific estimate of 

program savings. However, these estimates need to be taken a step further to address 

systematic day-specific effects that may bias these estimates. Day-specific effects could 

include wind, humidity, and cloud-cover that are out of the normal range. There are two 

ways to adjust the basic model estimates for systematic, day-specific effects. One adjusts 

each customer's estimated demand based on observed demand prior to the event. The 

other uses a comparison group, leaving half of the sample uncontrolled during each 

event. 

Without using a comparison group, the simplest adjustment approach shifts or scales the 

provisional baseline to align it with the actual conditions of the curtailment day. 

Effectively, the regression model provides a temperature-specific load shape for the 

customer and the adjustment shifts the modeled load shape up or down so that it 

matches the observed customer load during an earlier time interval on the day of the 

event. This approach maximizes the accuracy of the event savings estimate. 

Here, the provisional baseline is adjusted to better reflect the customer's demand during 

the two hours prior to the curtailment event. The adjustment factor is calculated per 

Equation (6.3.5). 

(6.3.5) 
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Where A
1 

is the adjustment factor, Pis the two-hour period immediately prior to the re-

set, and nh is the number of 15 minute intervals in period P. 

The adjusted baseline estimate is calculated as follows: 

(6.3.6) 

Where S ~ and S ',11 are the adjusted savings estimates. Compared to the comparison group 

approach, this adjustment method provides a larger sample size of re-set air conditioners, 

and corresponding smaller standard error. However, this method does not reflect 

systematic effects that only occur during the curtailment period. Additionally, if the re-set 

affects pre-curtailment usage (for example, pre-cooling in anticipation of a likely 

curtailment period later in the day), the adjustment can introduce other error into the 

estimate. The adjustment approach assumes that, on average, the two hours prior to the 

re-set period are representative of the demand during the re-set period. It also assumes 

that the adjustment should be applied additively to the intervals of the curtailment period, 

rather than multiplicatively as a proportion. This is a standard approach for estimating 

customers' baselines and is generally considered to be simpler and less prone to scaling 

errors than a scalar approach. 

Illustration of Peak Demand Savings 

Figures 6-11 (a), (b), and (c) show the observed electricity demand, estimated demand, 

and adjusted estimated demand on the three hottest curtailment days for one participating 
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air conditioner. The unadjusted savings can be interpreted as the area between the red 

line and the blue line, while the adjusted savings can be interpreted as the area between 

the orange line and the blue line. 

As discussed above, the regression model estimated electricity demand on an hourly basis. 

The meter data, however, was available on a quarter-hour basis. The demand reduction 

for each quarter-hour interval was calculated analogously to the hourly equations 

indicated above. For the quarter-hour estimates, the demand in each time increment was 

estimated using the regression coefficients for the hour that included that increment. 

The first half-hour of each curtailment event was not included in the savings calculation 

because the participating air conditioners are re-set randomly throughout the first half­

hour. However, the demand reductions are calculated through the official end of each 

curtailment event. There is the possibility of "snap-back" following the peak period. 

"Snap-back" refers to higher-than-normal electricity consumption as the air conditioner 

tries to cool the room back down to its regular temperature setting. The impact of snap­

back on electricity demand is not included in this analysis. 
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Figure 6-10. Estimated versus Observed Electricity Demand 

Results 

Demand savings are estimated using the difference between site-level estimated demand 

and actual consumption. On mild days when there is _little cooling there may be 

effectively no savings. In these cases, the per-air conditioner savings represents the model 

error relative to observed demand. When this is the case, small negative savings results 

are possible. Table 6-6 provides demand reduction estimates per participating air 

conditioner, in order of observed descending daily average temperature. The estimated 

demand reduction on the hottest curtailment day of the summer generated an average of 

0.69 kW of energy savings per participating air conditioner. With repetition, in 95% of 
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cases, the average demand reduction per-air conditioner will fall between the upper and 

lower confidence interval bounds 

Table 6-6. Average air conditioner demand reduction per curtailment day, 2007. 

0.72 
8/30/2007 87.5 0.44 0.37 
8/2112007 86.5 0.20 0.15 
8/28/2007 84.5 5 0.10 0.05 
8/22/2007 83.5 5 0.15 0.18 0.12 
7/23/2007 81.5 4 0.02 0.04 -0.01 
8/ 10/2007 78.5 4 0.06 0.09 0.04 
8/1/2007 77.5 4 -0.15 -0.13 -0.18 

7/27/2007 76.5 4 -0.14 -0.11 -0.16 
7/26/2007 75 4 -0.10 -0.08 -0.12 

8/9/2007 75 4 -0.10 -0.08 -0.11 
9/10!2007 74.5 5 0.00 0.02 -0.02 
9/26/2007 74.5 3 0.09 0.11 0.08 
7/17/2007 73 5 -0.08 -0.06 -0.09 
7/ 12/2007 71.5 3.5 -0.07 -0.06 -0.08 
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Table 6-7 provides the hourly savings estimates on the three hottest curtailment days of 

the summer. As expected, the largest demand reduction occurred between 6pm and 7pm 

on August 31, the last day of an extended heat wave. Savings reported at this time average 

1.38 kW. Figure 6-11 shows the increase in savings across the days and the trend of 

savings across the hours on each of the three curtailment days. August 29th, the day of the 

system peak, had a daily average temperature of 89°F. The maximum temperature for that 

day was 103°F, between 4pm and 6pm. Air conditioner use and measured savings 

generally increase as heat waves extend to multiple days. This is clearly the case for this 

four day period. This trend would point to a system peak reduction estimate falling 

between the estimates of the 281
h and the 30th. 

Table 6-7. Average savings at system peak, August 2007 
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Figure 6-11. Trends in Average Savings at System Peak, August 2007 

Comparing Peak Demand Savings: "Steep" Re-set vs. "Gradual" Re-set 

As mentioned above, the analysis also looked at the effectiveness of the two different re-

set strategies. Participants were randomly assigned to two groups, and remained in the 

same group throughout the summer. The two thermostat control strategies were applied 

to the two groups alternately in order to control for µifferences in the subgroups. Table 

6-8 provides the results for the tWo re-set strategies during the three hottest curtailment 

days. As expected, the steep strategy generates more savings at the beginning of the 

curtailment period, while the gradual strategy generates more savings towards the end of 

the curtailment. Figure 6-12 also focuses on the hourly savings for the different re-set 

strategies. 
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Table 6-8. Comparing demand reductions from steep and gradual re-set strategies 
during system peak, August 2007 

Date Daily Hour Ste~ Re-set Strat<:gy_ Gradual Re-set Strategy 
Average Average Standard Average Standard 

Temperature Demand Error Demand E rror 
Reduction Reduction 

8/31/2007 88.5 3...E_m 0.44 0.09 0.32 0.08 
4Q_m 0.69 0.09 0.57 0.09 
5...E_m 0.88 0.11 0.77 0.11 
<1:>_m 0.89 0.11 1.21 0.12 

~m 1.08 0.12 1.18 0.11 

8/ 30/ 3007 87.5 4Qm 0.05 0.05 -0.08 0.05 

~m 0.31 0.07 0.24 0.09 
<1:>_m 0.69 0.11 0.83 0.15 

~m 0.44 0.12 0.90 0.14 

8/29/ 2007 84.5 ~m 0.25 0.08 0.15 0.07 

5..E_m 0.24 0.09 0.20 0.08 
6..E_m 0.34 0.10 0.44 0.10 
7..E_m 0.26 0.09 0.37 0.11 
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Figure 6-12. Comparison of hourly savings from steep and gradual re-set strategies 
during system peak, August 2007 

Part II. Forecasting Peak Demand Reductions 2010-2100 

Part II of this chapter forecasts the potential reductions in peak demand in California 

under different climate change scenarios. The forecasts in this section are based on the 

demand relationship developed in Section 6.4.1 and projections from different global 

climate models. As mentioned in the introduction, Part II concludes that programs like 

SmartAC have a smaller impact on peak demand at extremely hot daily average 

temperatures. This means that this type of direct control program will reduce peak 

demand more effectively if the impact of climate change on daily average temperatures is 

moderate. Likewise, Part II concludes that this type of program may reduce peak demand 
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more effectively in regions of the country with moderate temperatures and low humidity, 

such as north em California and the Pacific Northwest. 

6.5 Electricity Demand and Peak Demand Reductions under Future Climate 
Change Scenarios 

California's electric power system is confronting several technical and regulatory 

challenges. Electricity demand is growing at a rate exceeding that at which new supplies 

are being added to the system. Transmission constraints are becoming increasingly costly. 

And, following the electricity crisis of 2000 and 2001, the state's move toward 

deregulation was suspended and there is no consensus on the appropriate path forward. 

These issues are being faced in the context of an effort to increase the share of renewable 

sources in the electricity system- the renewable portfolio standard. And these challenges 

are magnified by the need to address the potential consequences of climate change. 

Developing strategies to reduce greenhouse gas emissions has, in recent years, emerged as 

a major public policy issue in California. 

California is unique in its emphasis on demand-side policies and programs to meet the 

state's energy challenges. Thus, California is preparing for the potential effects of climate 

change on the operation of the state's power system, on both the demand and the supply 

sides. This is also one of the most difficult areas for research and policy planning, 

inasmuch as it involves the future interactions among the climatic system, a highly 

complex engineered electrical system, socio-economic trends and human behavior, all of 

which are difficult to predict. The objective of the analysis in following sections is to 

forecast the potential contribution of air conditioner control programs to reducing peak 

demand in a future characterized by rising temperatures and climate change. 

137 



This analysis uses recent projections of regional climate change affecting California to 

generate simple illustrative estimates of possible peak demand savings from residential air 

conditioner control programs. The analysis is carried out in several steps. First, climate 

change projections are used to generate a collection of possible climatic futures for the 

Stockton area of California. These future scenarios are based on assumptions of different 

levels of greenhouse gas emissions, and thus, different levels of future warming. Next, the 

weather-based regression model described earlier is used to forecast customers' baseline 

electricity demand for air conditioning under the future climate scenarios. The last part of 

the analysis estimates the magnitude of the peak demand reduction and total cost savings 

possible under different rates of program participation in San Joaquin County. 

6.5.1 California Climate Change Scenarios Project 

In May 2005, the California Energy Commission and the California Environmental 

Protection Agency commissioned a report describing the potential impacts of climate 

change on key state resources. The Scenarios Project was conceived of early in summer 

2005 out of discussions among State administrators and scientists from various California 

universities, federal and state agencies, and non-governmental organizations. The purpose 

of the project was to develop a collection of potential climate scenarios, targeted 

regionally on California. These scenarios are not intended to provide forecasts, but rather 

are meant to explore a range of possible futures of California climate. The Scenarios 

Project was directed by a team of state government staff and non-governmental scientists, 

including those from the California Climate Change Center, an effort engaged to study 

long-term climate issues in California. The Project builds upon previous efforts to assess 

potential climate change impacts in California. In particular, it extends the work of 
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Hayhoe et al. (2004), which compared the projected impact of climate change in 

California under differing emissions scenarios. 

The climate projections for the Scenarios Projects are from three global climate models 

for three greenhouse gas emissions scenarios. The climate models chosen were among 

those that were prepared and evaluated by the Intergovernmental Panel on Climate 

Change (IPCC). The three global climate models (GCMs) chosen were: the Parallel 

Climate Model (PCM), the NOAA Geophysical Fluid Dynamic Laboratory (GFDL), and 

the UK Hadley Center HadCM3 model. The choice of models was based on several 

factors, including the ability of produce a realistic simulation of California's recent climate 

history- particularly the distribution of monthly temperatures and seasonal cycle of 

precipitation. The selection of models was also designed to include models with differing 

levels of sensitivity to increases in greenhouse gas emissions27
• The GFDL model is a 

medium climate sensitivity model and the PCM model has relatively low climate 

sensitivity. 

The scenarios were developed based on three levels of greenhouse gas emissions 

described in the IPCC Special Report on Emissions Scenarios. The "A2" emissions 

scenario assumes that greenhouse gas emissions continue to climb throughout the 

century, reaching almost 30 gigatons (Gt/year) per year. In this scenario, C02 

concentrations reach more than triple their pre-industrial levels by the end of the twenty-

first century. The "B1" scenario is assumes that global C02 emissions peak at 

27 
"Sensitivity" refers to the models' predictions of the change in mean global surface temperature 

from a doubling of atmospheric C02 concentration above the pre-industrial level. The sensitivity of the 
PCM is approximately 3.2°F, the GFDL's sensitivity is approximately 5.4°F, and HadCM3's sensitivity is 
approximately 5.9°F. The IPCC has stated that the likely range for this quantity is 2.7 to 8.1°F. 
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approximately 1 Gt/year in the mid-twenty-first century before dropping below current 

levels by 2100. This yields a doubling of C02 concentrations relative to its pre-industrial 

level by the end of the century, followed by a leveling of the concentrations. The third 

scenario was used in conjunction with the HadCM3 model; "A1Fi" has high emissions 

until about 2080, when they finally level off by the end of the century. The A1Fi 

emissions result in C02 concentrations that reach about 950 parts per million (ppm) in 

2100. 

The GCMs chosen for the Scenarios Projects were selected because they accurately 

reflect California's recent climate history. But, GCMs generally forecast climate for large 

regions, such as all of North America or perhaps the western U.S. The researchers at the 

Scenarios Project had to "downscale" the GCMs to reflect the impacts of climate change 

on the local level in California. There are different methods of downscaling- that is, 

taking the large-scale signal from the GCM and translating it to the local scale. The 

Scenarios Project used a statistical bias correction technique and downscaling technique 

originally developed by Wood et al. (2002) for using global model forecast output for 

long-range stream flow forecasting. This is an empirlcal technique that maps precipitation 

and temperature during a historical period from the GCM to the concurrent historical 

record. To do so, the Scenarios Project used a gridded National Climatic Data Center 

Cooperative Observer station data set. This data set, developed at a spatial scale of 1/8° 

(approximately 7 miles (12 km)), was aggregated to a 2° latitude-longitude spatial 

resolution (approximately 137mi x 137 mi. (220 km x 220 km)). 

Downscaling the GCMs showed potential warming that can be grouped into three 

ranges- a lower warming range (3 to 5.4°F), a medium warming range (5.5 to7.9°F) , and a 
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higher warming range (8 to 10.4°F). The Scenarios Project did not attach probabilities to 

any of these outcomes. If greenhouse gas emissions trends follow the higher emissions 

scenarios (Al Fi or A2), California can expect substantial impacts on its economy, 

ecosystems, and the health of its citizens. However, if global emissions follow the lower 

emissions trend (Bl), temperatures would likely not rise above the lower warming range 

and many of the most severe impacts could be avoided. However, if the actual climate 

sensitivity to greenhouse gas emissions reaches the level of the more sensitive GCM 

models used, an even lower emissions path than the B 1 scenario may be required to avoid 

the medium and higher warming ranges. 
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6.5.2 Weather Generator Simulations 

Using climatic scenarios supplied by the California Climate Change Center28
, new 

projections of possible climatic futures were generated using a computer program called 

ClimGen. The data from the California Climate Change Center can be described as 

downscaled, constructed analogues data. There are six climatic scenarios specific to a 12 

km square grid centered on Stockton, CA (37.9375N, 121.1875 W). There are two 

scenarios for the PCM and GFDL models described above- one for the A2 emissions 

scenario and one for the B 1 emissions scenario. Each scenario includes a projection of 

daily minimum temperature, maximum temperature, precipitation, and wind speed from 

January 1, 1950 through December 31, 2100, including leap years. 

The California climatic scenarios were used as a basis to generate new climatic projections 

for each GCM/ emissions scenario combination using ClimGen. ClllnGen is a weather 

generator- it is a computer program that uses existing weather records to produce long 

series of synthetic daily climatic data. The statistical properties of the generated data are 

expected to be similar to those of the actual data. Several computer programs have been 

developed that are capable of producing stochastically generated weather data from 

existing daily data. Examples include WGEN (Richardson and Wright, 1984), CLIGEN 

(Arnold and Elliot, 1996), CLIMAK (Danuso et al., 1997), and ClimGen (Stockle et al, 

1998). The general principles of ClimGen are similar to WGEN, the first and most widely 

used weather generator, but with significant modifications and additions. Given the 

28 
The constructed analogues data was developed by Dan Cayan, Hugo Hidalgo, Tapash Das, Mike 

Dettinger, and Mary Tyree from the University of California-San Diego. Permission to use this data was 
granted by Dan Cayan, Scripps Institution of Oceanography at the University of California-San Diego. 
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appropriate data, ClimGen generates precipitation, daily maximum and minimum 

temperature, solar radiation, air humidity, and wind speed. 

For each GCM/ emissions scenario combination, ClimGen was used to stochastically 

generate 300 weather scenarios based on the original California downscaled data. Each 

scenario includes 365 (366 for leap years) daily projections for minimum and maximum 

temperature. The daily projections for minimum and maximum temperature were 

averaged over all of the ClimGen-generated scenarios, yielding one scenario for each 

GCM/ emissions combination. Thus, each of the final 6 scenarios includes daily minimum 

and maximum temperature from January 1, 2010 to December 31, 2100. 

The figures below illustrate the climate impacts projected by the PCM and GPDL model 

simulations. Due to differences in the two models' parameterizations, sensitivities, and 

responses to atmospheric greenhouse gas levels, there are substantial differences between 

the projections by the two models. As mentioned above, PCM has relatively low 

sensitivity of regional temperature to greenhouse gas levels and the GPDL model has a 

relatively high sensitivity. Northern California temperature warms significantly between 

2010 and 2100, with mean temperature increases ranging from 2.5°P in the lower 

emissions B1 scenario within the less responsive PCM model to 8.14°P in the higher 

emissions A2 scenario within the more responsive GPDL model (see Table 6-9 and 

Figures 6-12 and 6-13). Temperature changes occur rather steadily through the century, 

with annual temperature increases in Northern California reaching 0.33 °P and 0.68°P, 

respectively in the PCM Bl and GPDL A2 scenarios as an average over 2010 to 2050. 

While the warming slows under the PCM B 1 scenario to 0.3 °P during the latter half of the 

century, under the GPDL A2 scenario it increases to 1.35 °P annually. 
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Measuring cooling degree days helps to put this warming into perspective (see Figure 6-

14). Using a daily average temperature of 65 °F as the cooling base temperature, the 

number of annual cooling degree days was calculated for 2010 to 2100. Under the PCM 

Bl scenario, between 2010 and 2019 there are projected to be about 1,261 cooling degree 

days in the Stockton area. By the middle of the century this number rises to 1,495, and by 

2100 the region will experience about 1,642 cooling degree days. This is roughly 

equivalent to moving from Stockton to Fresno, CA or from Newark, NJ to Nashville, 

TN. Under the GFDL A2 scenario, cooling degrees days increase from 1,526 in the early 

part of the century to 1,959 by mid-century, and to 2,798 cooling degree days by 2100. 

This warming is roughly equivalent to a move from Raleigh, NC to New Orleans, LA29
• 

To put this in perspective, peak electricity demand at 68°F in N orthem California is 

roughly 26,000 MW. At 86°F, or 18 cooling degree days, peak electricity demand in 

Northern California climbs to 37,000 MW (Barnett et al.). 

In both models, beyond the first three decades of the century warming is greater under 

the higher emission A2 scenario than under the lower emission B 1 scenario. The warming 

during the century is approximately linear in each sunulation, although there are 

substantial year to year variations in temperature. Three of the simulations (all except 

PCM Bl) yield more warming in the summer than in the winter. July daily average 

temperatures rise from 76.3 °F to 78.8°F (+ 2.5 °F) and from 77.4°F to 85.6°F (+8.2 °F), 

in the PCM Bl and GFDL A2 scenarios, respectively. January daily average temperatures 

rise from 48.0 °F to 49.4 °F (+1.4 °F) and from 46.6 °F to 53.8 °F (+7.2 °F), in the PCM Bl 

29 
Annual cooling degree days: Newark, NJ: 1,220; Raleigh, NC: 1,521; Nashville, TN: 1,652; New 

Orleans, LA: 2,773 

From the National Climatic Data Center, NOAA. Available from 
http://www.ncdc.noaa.gov/ oaf climate/ on Ii ne/ ccd/n rmcdd. txt 

144 



and GFDL A2 scenarios, respectively. Recent research indicates that the accentuation of 

summer warming is common to all continental areas and may be affected by earlier and 

greater drying of continental land surfaces. If the projected summer amplification of 

warming occurs, it has important implications for impacts such as the occurrence of heat 

waves, energy demand, and peak electricity demand. 

In the 30 years from 2010 to 2040, warming- even under the lower emissions scenario B 1 

ranges from 0.7°F in summer and to as great as 2.2 °F in the GFDL Al scenario. Already, 

this near-term warming is sufficient to increase substantially the number of warm days in 

summer, effectively eliminating summers that fall into the cool third of the temperature 

distribution in the GFDL projections. The occurrence of extremely warm daily average 

temperatures, exceeding the 95th percentile of their historical distributions, tallied for the 

PCM and GFDL Bl and A2 simulations (see Figure 6-15), increases by 3 to 500 times 

from 2010 to 2100. Again, the projected increase in extremely hot days has important 

implications for the impact on peak electricity demand and the role of demand 

management strategies since air conditioning use tends to increase on extremely hot days. 

145 



Table 6-9. Daily average July temperatures, Al and B2 emissions scenarios 

Daily Average July Temperatures 
(degrees Fahrenheit) 

PCM GFDL 

High Low High Low 
Emissions Emissions Emissions Emissions 

2010-2019 76.42 76.32 77.47 77.61 

2020-2029 77.04 77.34 78.20 77.45 

2030-2039 77.80 77.15 79.53 79.48 

2040-2049 78.87 77.34 79.68 78.41 

2050-2059 79.00 78.65 80.21 78.30 

2060-2069 79.21 77.97 81.01 79.37 

2070-2079 80.73 78.64 82.61 78.08 

2080-2089 81.29 79.59 83.55 79.23 

2090-2100 81.61 78.86 85.62 80.12 
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Figure 6-13. Daily average temperature, 2010-2100, PCM 

Figures 6-13 (a) and (b) above show the rise in summertime daily average temperatures 
between 2010 and 2100 as predicted by the PCM model. If GHG emissions are low, daily 
average July temperatures are predicted to rise too just over 78°F, while if GHG 
emissions are high those temperatures could rise to almost 82°F. 
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Figure 6-14. Daily average maximum temperature, 2010-2100, PCM 

Figures 6-14 (a) and (b) above show the rise in summertime daily maximum temperatures 
between 2010 and 2100 as predicted by the PCM model. If GHG emissions are low, 
tnaximum daily temperatures in July will be about 96°F, and if GHG emissions are high 
tnaximum daily temperatures will be about 98°F. 
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Figure 6-15. Daily average temperature 2010-2100, GFDL 

Figures 6-15 (a) and (b) above show the rise in summertime daily average temperatures 
between 2010 and 2100 as predicted by the GFDL model. If GHG emissions are low, 
average daily temperatures in July will be about 80°F, and if GHG emissions are high 
average daily temperatures will be about 86°F. 
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Figure 6-16. Daily average maximum temperature 2010-2100, GFDL 

Figures 6-16 (a) and (b) above show the rise in summertime daily maximum temperatures 
between 2010 and 2100 as predicted by the GFDL model. If GHG emissions are low, 
average maximum temperatures in July will be about 95°F, and if GHG emissions are 
high average daily temperatures will be about 103°F. · 
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a. Annual cooling degree days 2010-2100, PCM 
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Figure 6-17. Annual cooling degree days based on 65°F cooling base temperature 

Figures 6-17 (a) and (b) illustrate the increase in the number of cooling degree days (from 
a 65°F base temperature) predicted to occur in the Stockton area by the PCM and GFDL 
models. 
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Figure 6-18. Daily extreme (95th percentile) temperature occurrences 

Figures 6-18 (a) and (b) illustrate the number of days in each decade where the daily 
average temperature reaches 83.1°F. The graphs illustrate that those extremely hot days 
will remain relatively rare until the very end of the century as predicted by the PCM 
model, but will become increasingly frequent under the GFDL model, approaching more 
than 600 days in the last decade of the century. 
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6.6 Forecasting Electricity Demand for Air Conditioning 

One of the purposes of this evaluation is to establish predicted per-air conditioner 

electricity demand across a range of climate change temperature scenarios for the 

Stockton area of California, assuming static air conditioning technology. These per-unit 

projections multiplied by the population provide estimates of future electricity demand 

for cooling. The analysis presented in this section provides illustrations of forecasted 

electricity demand and shows how air conditioner re-set programs can reduce peak 

demand in the future. 

Forecasting electricity demand requires a model that relates changes in electricity demand 

to changes in the exogenous variables that drive demand. Several issues are unique to 

forecasting electricity demand in a future characterized by climate change. First, the 

analysis requires developing estimates for values of key drivers that are outside the 

boundaries of historical experience. For example, in the future California will experience 

extremely hot days with daily average temperatures that have not occurred in the past. In 

this range, the relationship betwe~n electricity demand and daily average temperature may 

differ from the relationship that exists within a narrower range of temperatures. Second, 

ex ante estimates are subject not only to the uncertainty associated with ex post estimates, 

but also to the additional uncertainty associated with exogenous factors that drive 

demand, such as uncertainty in weather, customer characteristics, etc. Lastly, customer 

education and technological innovation might impact the effectiveness of air conditioner 

re-set programs. 
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Forecasting electricity demand under various climate change scenarios presents certain 

challenges, as the functional relationship between electricity demand and temperature 

may differ under extreme conditions from what it is under historical conditions. For 

example, the relationship between the change in energy use associated with air 

conditioning and a change in temperature is reasonably linear over some range of 

temperatures, but highly non-linear at both the low and high end of the temperature 

range. A change in temperature from, say, 65 to 70 degrees will produce very little, if any, 

change in energy use because air conditioning typically is not running at either of those 

temperatures. Similarly, a change in temperature from 100 to 105 degrees may produce 

little change in air conditioning energy use if most air conditioners are already running flat 

out at 100 degrees30
, so higher temperatures do not increase energy use. For the same 

reasons, air conditioner re-set programs might not be effective at those temperatures, 

regardless of the magnitude of the incentive provided, since thermostat adjustments at 

these extremes will have little impact on energy use 

With forecasting, it is important to consider not only the degree of uncertainty associated 

with the ex post estimation parameters, which is largely tied to the accuracy and statistical 

precision of model parameters, but also the uncertainty associated with the drivers that 

underlie the forecasts. Everything is uncertain in the future, and providing point estimates 

based on specific value for key variables can significantly overstate the true confidence 

that underlies the estimates. 

30 
The threshold temperature above which most or all air conditioners will be running will vary 

depending on the typical unit sizing practices for a location. It may be that many air conditioners will 
still be cycling above 100 degrees in some locations but most will be on in other locations. 
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Incorporating uncertainty into forecasts of electricity demand is straightforward using 

Monte Carlo simulation methods or similar approaches. With Monte Carlo analysis, each 

variable that drives demand can be represented by a probability distribution defined by an 

explicit set of characteristics. Correlations among exogenous variables can also be 

accommodated. The researcher draws a value from each input distribution and predicts 

the demand associated with that set of input values. This process is repeated many times 

(1,000 draws from each distribution is relatively common) in order to simulate the 

distribution of impact estimates that reflects the uncertainty associated with the 

exogenous variables as well as the model parameters. 

6.6.1 Steps for defining uncertainty of forecast estimates 

Since the parameters of the demand relationship are estimated, they are random variables, 

and the resulting estimate of electricity demand is still a random variable. Researchers are 

often interested in making inferences or constructing confidence intervals, but realistically 

wish to incorporate the uncertainty relating to the parameters in to the confidence 

intervals. However, demand is a non-linear function of the parameters, and depending on 

the relationship specified, may have different or unknown distributions. In this case, the 

best approach is to simulate the confidence intervals. This can be done using the Krinsky­

Robb procedure. Krinsky and Robb (1986) caution that researchers should be wary of 

using linear approximations to get estimates of elasticities that are non-linear functions of 

random variables. Instead, Krinsky and Robb suggest a simulation approach to generate 

confidence intervals when the parameters are treated as random variables (Haab & 

McConnell, 2003;Jeanty, 2007; I. Krinsky & Robb, 1986b; I. Krinsky & Robb, 1990). 

Because parameters are correlated, one cannot generate confidence intervals simply using 
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independent random draws of each of the random parameters. Rather the simulation 

must use the estimated variance-covariance matrix of the regression coefficients to 

accurately estimate confidence intervals for the predicted value. The Krinsky-Robb 

procedure involves the following steps: 

1. Obtain the regression output, recording the parameters and their respective 
standard errors; 

~ 

2. Obtain the vector of parameter estimates , /3 ,and the variance-covariance matrix 

V(/3). 
' 

3. Calculate the Cholesky decomposition, C, of the variance-covariance matrix such 

that CC'= V(/3); 

4. Randomly draw a vector x with k independent elements from the standard 
normal distribution; 

5. Calculate a new vector of parameter estimates Z such that Z = /3 + C 'x; 

6. Use the new vector Z to calculate the demand forecasts; 

7. Repeat steps 4,5, and 6 N times to obtain an empirical distribution of demand; 

8. Sort the N values of the demand function in ascending order and obtain a 95% 
(90%) confidence interval around the mean by dropping the top and bottom 
2.5% (5%) of the observations. 

The following section describes the results of forecasting electricity demand under two 

global climate change models and two emissions scenarios, following the method 

described by the steps listed above. 

6.6.2. Obtaining Regression Output from a Random Effects Model 

Typically, electricity load analysis involves both a time series and a cross-sectional 

dimension. This type of data is referred to by a variety of names, including panel data. 
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Panel data is often referred to as "balanced" if the dataset includes observations on every 

individual in every time period and "unbalanced" if the dataset involves different 

numbers of individuals in each time periods. With this type of data, researchers are able 

to account for a significant share of omitted variables, including those that are 

unobservable or not recorded, leading to better specified, more robust regression models. 

Panel data can control for omitted and sometimes unobserved factors that vary across 

individuals but are fixed over time periods within the study and for factors that are fixed 

for all customers but vary over time. For example, the square footage of the home, the 

inches of insulation in the walls, or the temperature at which the resident likes to keep his 

or her home (e.g. some prefer cooler temperatures in their home while others prefer to 

keep it warmer) are examples of factors that might be constant for a particular individual 

over time. Other factors might be constant over all individuals within a single time 

period, such as available technology or economic conditions. Oftentimes, there is simply 

an enormous number of relatively minor factors that vary across people that are difficult 

to identify, and some of the factors might change for some households in some time 

periods (e.g. household size), while others might not: Models for analyzing panel data 

(ANOV A, AN COVA, MANOV A, etc.) allow each individual to act as his own control 

and account for the effects of the fixed, but unmeasured characteristics of each customer. 

However, the ability to control for fixed effects comes at a price. By controlling for fixed 

effects, these models cannot incorporate the impact of explanatory variables that are 

time-invariant (e.g. air conditioner ownership) except through interactions with time­

variant variable (e.g. temperature). In other words, a fixed effects model only controls for 

the variation within the individual units; it does not control for the variation across 
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individual units. Some researchers feel that the variation across individual units should be 

treated in a fashion similar to the general ignorance represented by the error term, and 

have accordingly proposed the random effects model. In the random effects model there 

is an overall intercept and an error term with two components: B;1 + u; . The Bu is the 

traditional error term unique to each observation. The U; is an error term representing an 

effect for the l' cross sectional unit that varies across individuals but is constant for a 

given individual over time. 

The random effects model is appropriate if the data are drawing observations from a 

large population and one wishes to draw inferences regarding other members of that 

population. This is the case here; the air conditioner load data are drawn from a sample of 

300 customers among hundreds of thousands of customers in the Stockton area and the 

objective is to extend the forecast to the population. 

The random effects model has a major drawback, however: it assumes that the random 

error associated with each cross-section unit is uncorrelated with the other regressors, 

something that is not likely to be the case. The result is bias in the coefficient estimates 

from the random effects model. This may explain why the slope estimates from the fixed 

and random effects models are often so different. As with any dataset that includes a 

large number of time series observations, even trivial differences in results can be 

statistically significant when in fact the different between the two models is very minimal. 
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As a result, the magnitude of difference in results may be more important than 

statistically significant results, i.e., is the magnitude of the difference meaningful31
• 

The random effects model estimated here can be viewed as a two-way design with 

covariates: 

K 

Lu= int;1+ LPcuC/rcJ + U;1 i=l, ... ,N; t=l, .... ,T 
k=I 

(6.6.1) 

Where N is the number of cross-sections, T is the length of the time series for each 

cross-section, and K is the number of exogenous variables. Here, N is equal to 300- the 

number of air conditioners in the sample. T varies across cross-sections because some 

cross-sections have missing observations, but T is equal to about 3,050 time-series 

observations for each cross-section (hourly load observations on non-holiday weekdays 

between May 12, 2007 through October 31, 2007). 

The hour-specific dummy variables that are included in Equation 6.4.1 are dropped from 

Equation 6.6.1. This is because the objective of the latter model is to forecast what will 

happen in the future as temperatures rise. If included, the hour-specific dummy variables 

might capture some of the explanatory power that should be assigned to daily average 

temperature. For example, if August 8, 2015 at 5pm is predicted to be exceptionally hot, 

one would not want to capture that effect with a time-specific dummy, which says for 

some unknown reason a lot of electricity will be used on August 8th at 5pm. Instead, one 

31 
Two additional topics that are particularly relevant when working with load data are autocorrelation 

and heteroskedasticity. Having both cross-sectional and time-series dimensions, there are multiple 
ways in which the errors can be related. Basic panel data methods generally assume: 1) no correlation 
between the error terms of units in the same time period; 2) no correlation across units in different 
time periods; 3) no auto-correlations within units over time; and 4) constant variances over time 
within a unit (different variances across units are allowed). 
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would want a model that explains electricity use by the fact that it was unusually hot at 

that time. Excluding the time-specific dummy variables allows the temperature variable to 

capture more of the explanatory power. Because the temperature variable interacts with 

the hour of the day, they still capture the variation in electricity use across a 24 hour span. 

The model specification depends on both the cross-section and the time-series to which 

each observation belongs- this is called a model with two-way effects. The specifications 

for the two-way model are 

Where &i1 is a classical error term with zero mean and a homoscedastic covariance matrix. 

In the two-way case, 

E(vJ = O,E(v2J = o-?;E(vy) = 0 for i * j and vi is uncorrelated with &u for all i and t; 

E( e1 ) = 0, E( e2
1 ) = o-:; E( e1es) = 0 fort* s and e1 are uncorrelated with vi for all i and t. 

Thus, the model is a variance components model, with the variance components 

o-;, o-:, and o-: to be estimated. The estimation method is an estimated generalized least 

squares (EGLS) procedure that involves estimating the variance components in the first 

stage and using the estimated variance covariance matrix thus obtained to apply 

generalized least squares (GLS) to the data. 

Table 6-10 contains the estimated variances and Table 6-11 lists the estimated parameters 

from the random effects model. 
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Table 6-10. Random Effects Model: Variance Components 

Table 6-11. Random Effects Model: Estimated Parameters 

6.6.3. Krinsky & Robb Procedure for Confidence Intervals 

Single individual measures of energy demand from Equation 6.6.1 depend on the 

covariate matrix and the parameter vector (3. Since the parameters are estimated, they are 

random variables and the resulting estimate of demand is still a random variable. 
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Researchers are often interested in making inferences or constructing confidence intervals 

about the measures of interest, but realistically wish to incorporate the uncertainty 

relating to the parameters into the confidence intervals. However, in this case (and in 

many others) demand is a non-linear function of the parameters. The general nature of 

the problem is that one cannot derive the distribution of the forecasts analytically when 

they are non-linear functions of random variables. Depending on the algebraic 

formulation of demand as a function of the parameters, mean demand may have a variety 

of different and unknown distributions. In this case, the best approach is to simulate the 

confidence intervals. This can be done with the Krinsky and Robb procedure (Haab & 

McConnell, 2003; I. Krinsky & Robb, 1986a) . 

The Krinsky and Robb procedure for estimating the variance of a function of estimated 

parameters relies on the asymptotic properties of the maximum likelihood parameter 

estimates to simulate the asymptotic distribution of the derived demand function. By 

repeatedly drawing from the asymptotic distribution of the parameter estimates, one can 

construct a Monte Carlo simulated distribution of th.e estimate of energy demand. This 

method was introduced to the economic literature in the context of calculating the 

variance of estimated elasticities by Krinsky and Robb (I. Krinsky & Robb, 1986a) . 

The Krinsky-Robb procedure utilizes the asymptotic normal property of the maximum 

likelihood parameter estimates, and the property of a normal distribution that every k­

dimensional normal distribution of N (µJ) is a linear transformation of k independent 

N(0,1) normals. The Krinsky-Robb procedure is based on taking random draws from an 
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N(0,1) distribution. Given the information on the asymptotic mean and variance of~' the 

A A 

N(0,1) variates can be transformed to N(/J,V(/3)). 

The Krinsky-Robb procedure was executed here by drawing 50032 observations on the 

parameter vector ~ from the estimated multivariate normal distribution of the parameters. 

At each draw, electricity demand was calculated, resulting in 500 draws from the empirical 

distribution. The resulting draws can be used to calculate the sample average electricity 

demand. By ranking the draws in ascending order, a 90% confidence interval around the 

mean electricity demand is found by dropping the top and bottom 5% of observations. 

The typical confidence interval constructed this way is not symmetric, reaffirming the 

absence of normality for energy demand. The first step in carrying out the Krinsky-Robb 

procedure is getting the N parameter vector draws from the multivariate normal 

distribution. 

Let V(/J) represent the K x K estimated covariance matrix for the estimated parameter 

vector /3 of column dimension K. Let xk be a K-dimensional column vector of 

independent draws from a standard normal density function. Finally, let C be the K x K 

lower diagonal matrix square root of V(/J) such that CC'= V(/J). The matrix C is 

sometimes referred to as the Cholesky decomposition matrix. A single K-vector draw 

from the estimated asymptotic distribution of the parameters /Jd is: 

32 
N=SOO. In most cases, N is at least equal to 1,000. Due to computational constraints, however, N 

was limited to 500. 
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Calculating the measure of electricity demand at each draw produces N observations 

from the asymptotic distribution of the demand function. 

6.7 Results 

6.7.1 Range of Per-Unit Electricity Demand Over Time 

The Krinsky-Robb procedure was used to forecast average electricity demand per air 

conditioner across 4 future climate scenarios. As described earlier, the possible climate 

futures were generated from the GFDL and PCM global climate models under high and 

low emissions rates of greenhouse gas emissions. The average demand and lower and 

upper bounds of a 90% confidence interval were forecasted using the vector of parameter 

estimates and variance-covariance matrix from Equation (6.6.1). The analysis was limited 

to forecasting hourly electricity demand and the associated confidence intervals for the 

hours between 12pm and 7pm on each day of July and August in the first year of each 

decade for the period between 2010 and 2099. The forecasting was limited to this period 

because the afternoon and early evening hours are the most likely to be "peak hours," and 

July and August are typically the hottest months of the year in California. The correlation 

between hours is accounted for by drawing from the complete variance-covariance 

matrix. 

The projected demand estimates in the fixed scenario are derived from the unit-level kW 

models. For any hour and daily average temperature, the estimated demand is determined 

by Equation (6.6.2): 

(6.6.2) 
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If the daily average temperature is above the cooling degree day base then electricity 

demand will be greater than zero. Projected demand was estimated for each hour of the 

day across a range of daily average temperatures from 67°F to 95°F for all air conditioners 

in the sample. 

Figure 6-19 (a) through 6-19 (d) illustrate the upper and lower bounds of 90% confidence 

intervals for the average base load demand per-air conditioner over the period from 2010-

2090. Figures6-19 (a) and (b) illustrate the range of base load demand that can be 

expected in scenarios based on the GFDL climate model and Figures 6-19(c) and (d) 

illustrate the range of expected per-unit demand in scenarios based on the PCM climate 

model. 
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Figure 6-19. 90% Confidence Intervals around Mean Per-Unit Base Load Demand 

Figure 6-20 (a) through (d) illustrate the upper and lower bounds of a 90% confidence 

interval around the forecasted mean per-AC electricity demand at system peak. System 

peak was assumed to occur at the highest daily average temperature of the summer. The 

figures show that if the rate of greenhouse gas emissions is low in 2010 per-unit electricity 

demand at the time of system peak is forecasted to be between 1.0 kW and 1.4 kW; in 

2050, between 1.25 kW and 1.5 kW; and in 2090, between 1.18 kW and 1.51 kW. If, 

however, the rate of greenhouse gas emissions is high, per-unit peak demand is forecasted 

to be between 1.32 kW and 1.42 kW in 2010; between 1.3 kW and 1.7 kW in 2050; and 

between 1.4 kW and 2.3 kW in 2090. Figure 6-20 (a) and (b) show the range of forecasted 

per-unit peak demand based on the GFDL climate model and (c) and (d) show the range 

of forecasted per-unit peak demand based on the PCM climate model. 
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6. 7 .2 Forecasting Mean Base Load Demand, Peak Demand, and Peak Demand 
Reductions 

This section presents the forecasts of base load and peak demand at the per-air 

conditioner level. That is, the results are expressed as average per-unit base load demand 

and average per-unit peak demand. While the Krinsky-Robb procedure was used to 

forecast electricity demand as a function of time and temperature across the afternoon 

and evening hours in July and August between 12pm and 7pm, the results presented here 

are all for demand during the hour ending at 6pm. 

Table 6-12 shows the forecasted average per-unit base load and peak demand across the 

four climate and emissions scenarios. It is important to keep in mind that peak demand as 

expressed in the tables below is electricity demand for cooling at the probable time of 

system peak-this figure does not include electricity demand for all other customer loads 

that might be operating at the time of system peak. Recall from Chapter 2, air 

conditioning accounts for 15% of residential end-use loads (see Figure 2-15, page 37) and 

that air conditioning accounts for between 40% and 50% of the total peak load 

(Yoshimura,2009). 

Table 6-12 shows the range of average per-unit electricity baseload demand and peak 

demand during the beginning, middle, and later parts of the 21st century. As expected, the 

range of both baseload demand and peak demand increases over time and demand is 

higher in the high greenhouse gas emissions scenario than in the low emissions scenario. 
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Table 6-12. Forecasted Range of Electricity Demand for Air Conditioning 

Year Emissions Baseload Demand _(k~ Peak Demand _(kW) 
Scenario Lower l Upper Lower l Upper 

Bound Bound Bound Bound i I 
2010-2030 Low 0.40 1.09 1.00 1.48 

High 0.50 1.16 1.09 1.61 

2040-2060 Low 0.77 1.31 1.11 1.70 
High 1.05 1.45 1.30 1.74 

2070-2090 Low 0.75 1.66 1.09 1.94 
High 0.98 2.29 1.34 2.29 

Table 6-13 below lists the average per-unit baseload demand and peak demand every 10 

years beginning with 2010. Peak demand is assumed to occur on the day with the highest 

daily average temperature of the summer. 
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Table 6-13. Avera e Per-Unit Base Load and Peak Demand for Coolin 

GFDL High 2010 91 0.71 2.74 
2015 91 1.00 2.74 
2025 88 0.99 2.32 
2030 88 1.13 2.32 
2040 88 1.22 2.32 
2050 89 1.42 2.46 
2060 89 1.34 2.46 
2070 94 1.32 3.17 
2080 95 1.81 3.30 
2090 95 2.26 3.31 

GFDL Low 2010 85 0.80 1.89 
2015 86 0.69 2.04 
2025 87 0.98 2.18 
2030 84 0.60 1.75 
2040 91 1.28 2.74 
2050 90 1.17 2.60 
2060 92 0.96 2.88 
2070 96 1.63 3.44 
2080 91 1.10 2.74 
2090 88 1.02 2.32 

PCM High 2010 84 0.70 1.75 
2015 83 0.52 1.61 
2025 84 0.79 1.75 
2030 88 0.76 2.32 
2040 88 1.12 2.32 
2050 85 1.07 1.89 
2060 . 90 1.29 2.60 
2070 85 1.00 1.89 
2080 90 1.29 2.61 
2090 89 1.25 2.50 

PCM Low 2010 80 0.42 1.21 
2015 81 0.54 1.34 
2025 87 1.07 1.21 
2030 85 0.64 1.89 
2040 83 0.79 1.61 
2050 85 0.99 1.89 
2060 89 0.98 2.46 
2070 82 0.77 1.48 
2080 86 0.82 2.04 
2090 84 0.88 1.75 
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Figure 6-21 (a) through (d) graphically illustrate average per-unit base load demand and 

peak demand in each of the four climate and emissions scenarios. 
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Figure 6-21. Average Per-Unit Base Load Demand and Peak Demand 2010-2090 
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6. 7 .3 Percent Change in Base Load and Peak Demand from Reference Year 2007 

Table 6-14 and Figures 6-22 (a) through (d) show the percent change in base load and 

peak demand in each year from demand in 2007. Base load demand is calculated as 

average demand during the hour-ending at 6pm across all days in July and August. Peak 

demand is calculated as average demand during the hour-ending at 6pm on the day with 

the hottest daily average temperature of the summer. Peak demand will also depend on 

the number of consecutive hot days. It is interesting to see that average per-unit base load 

demand is forecasted to increase much more than peak demand- up to five times more in 

some cases. The most likely explanation is the increasingly frequency of very hot (daily 

average temperature greater than or equal to 78°F) days and the decreasing frequency of 

mild summer days- thus, pushing up the average base load demand. Table 6-14 suggests 

that, in this region of California, electricity demand would actually become less "peaky" 

over time; if average per-unit base load demand increases more than average peak 

demand, the gap between base load and peak load should shrink. This means that the grid 

would need less total peak load generating capacity, and could also mean that peak load 

capacity could sit idle for a smaller fraction of the tiffie. 

This result is also interesting because it is so starkly different from Franco and Sanstad's 

(2008) estimated changes in annual electricity and peak load demands for the same 

climate and emissions scenarios. Franco and Sanstad's study is not directly comparable to 

the analysis here because the authors estimate total annual and peak electricity demand, 

not just demand for electricity for cooling. Another considerable difference is that Franco 

and Sanstad look at the entire state of California, which has many different climate zones, 

while this analysis is limited to a 12 km2 region in a notoriously hot area. Franco and 
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Sanstad also compare their forecasts to electricity demand from 1960 to 1990, which is a 

much longer reference period than is used in this analysis. Nevertheless, it is interesting to 

note the difference between the analyses. Using the PCM model, Franco and Sanstad 

forecast that annual electricity demand will grow between 0.8% and 1.1 % from 2005 to 

2034; between 1.6% and 2.3% from 2035 to 2064; and between 2.9% and 4.8% from 

2070 to 2099. Under the same conditions, the authors estimate that peak demand will 

grow between 1.0% and 1.5% during the period from 2005 to 2034; between 1.6% and 

2.5% from 2035 to 2064; and between 4.2% and 5.7% from 2070 to 2099. Using the 

GFDL model, Franco and Sanstad estimate that annual electricity demand will increase 

between 2.3% and 2.6% between 2005 and 2034; between 3.8% and 4.6% from 2035 to 

2064; and between 5.3% and 9.9% from 2070 to 2099. Peak demand was estimated to 

increase more in this case- between 3.8% and 4.2 % from 2005-2034; between 5.1 % and 

5.2% from 2035-2064; and between 7.5% and 12.4% from 2070-2099. 
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6-14. Percent Chan e in Base Load Demand and Peak Demand from Reference Year 2007 

GFDL High 2010 22% 41% 
2015 70% 41% 
2025 69% 19% 
2030 93% 19% 
2040 108% 19% 
2050 141% 26% 
2060 128% 26% 
2070 124% 62% 
2080 208% 69% 
2090 284% 70% 

GFDL Low 2010 37% -3% 
2015 18% 4% 
2025 67% 12% 
2030 3% -10% 
2040 118% 41% 
2050 99% 33% 
2060 64% 48% 
2070 178% 77% 
2080 87% 40% 
2090 73% 19% 

PCM High 2010 19% -10% 
2015 -11 % -17% 
2025 35% -10% 
2030 30% 19% 
2040 90% 19% 
2050 83% -3% 
2060 120% 33% 
2070 71% -3% 
2080 120% 34% 
2090 113% 28% 

PCM Low 2010 -28% -38% 
2015 -7% -31% 
2025 82% -38% 
2030 9% -3% 
2040 35% -17% 
2050 69% -3% 
2060 67% 26% 
2070 31% -24% 
2080 40% 4% 
2090 49% -10% 
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6. 7.4 Peak Demand Reductions from a 5° Thermostat Re-set 

One of the purposes of this analysis is to establish predicted peak demand reductions 

across the four climate and emissions scenarios. When the per-unit projections are 

multiplied by the population of households with central air conditioning in the Stockton 

area, these projections can inform regulators the extent to which air conditioner re-set 

programs can reduce peak demand. 

The demand reduction projections are derived from the demand relationship specified by 

Equation 6.6.1. The model provides an estimate of average air conditioner demand as a 

function of degree days. The model optimizes the choice of degree day base thereby 

identifying, on average, the outdoor temperature above which the air conditioner starts to 

be used. Above that temperature, the model indicates the average load used for cooling 

for each temperature levels. The demand reduction forecasts use a change in outdoor 

temperatures a proxy for indoor thermostat set-point increase. This means that a five 

degree increase in the thermostat set-point is analogous to cooling the house at an 

outdoor temperature that is lower by five degrees. The analysis assumed that participating 

customers' AC thermostats would be turned up by 1° per hour for 5 hours, ending at 

6pm. Then, hour-specific load differentials were estimated for various temperature 

differentials. 

Table 6-15 and Figure 6-23 (a) through (d) report the average per-unit peak demand 

during the hour between 5pm and 6pm, the average per-unit peak demand with a 5° 

thermostat re-set, and the average per-unit percentage peak demand reduction. The 

180 



average peak demand reduction ranges from 18% to 50% of per-unit peak demand, 

which is consistent with the estimated load reductions from 2007. 
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Table 6-15. Potential Peak Demand Reduction from a 5° Thermostat Re-set 

GFDL High 2010 2.74 2.04 26% 
2015 2.74 2.03 26% 
2025 2.32 1.61 30% 
2030 2.32 1.61 30% 
2040 2.32 1.61 30% 
2050 2.46 1.75 29% 
2060 2.46 1.75 29% 
2070 3.17 2.59 18% 
2080 3.30 2.60 21% 
2090 3.31 2.60 21% 

GFDL Low 2010 1.89 1.26 34% 
2015 2.04 1.34 34% 
2025 2.18 1.48 32% 
2030 1.75 1.08 39% 
2040 2.74 2.04 26% 
2050 2.60 1.89 27% 
2060 2.88 2.18 25% 
2070 3.44 2.74 20% 
2080 2.74 2.04 25% 
2090 2.32 1.63 30% 

PCM High 2010 1.75 1.08 39% 
2015 1.61 0.95 41% 
2025 1.75 1.08 39% 
2030 2.32 1.64 29% 
2040 2.32 1.61 30% 
2050 1.89 1.21 36% 
2060 2.60 1.89 27% 
2070 1.89 1.21 36% 
2080 2.61 1.89 27% 
2090 2.50 1.75 30% 

PCM Low 2010 1.21 .60 50% 
2015 1.34 .70 48% 
2025 1.21 1.34 
2030 1.89 1.20 36% 
2040 1.61 0.95 41% 
2050 1.89 1.21 36% 
2060 2.46 1.80 27% 
2070 1.48 0.83 44% 
2080 2.04 1.34 34% 
2090 1.75 1.08 39% 
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6.8 Peak Demand and Peak Demand Reductions at the Population Level 

The next step in assessing potential savings from peak load reduction is to expand the 

per-unit level demand reduction projections to the population level. Doing so will 

provide regulators with an estimate for the magnitude of potential peak demand savings 

under various climatic conditions. 

6.8.1. Total Population 

The population under consideration consists of the total number of households in San 

Joaquin County, which is the county where Stockton is located. 

Map 6-2. San Joaquin County, California 

The California Department of Finance (DOF) publishes long-term population 

projections. The most recent projections show that California's population is going to 

grow faster in the hotter inland areas than on the coast. Based on DOF's projections, the 
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number of households in San Joaquin County will increase from 265, 7 40 in 2010 to 

639, 416 in 2050 (based on an average of 2. 79 persons per household) (California Energy 

Commission, 2007; Heim & Martindale, 2007) . 

6.8.2 Determining Eligible Households 

Before the per-unit level projections can be expanded to the population, the approximate 

number of households with central air conditioning in Stockton must be determined. The 

California Statewide Residential Appliance Saturation Survey (2004), which provides an 

overview on equipment saturations throughout the state, provides key statistics on central 

and room air conditioning. Used in conjunction with demographic and socio-economic 

information collected by the State of California Department of Finance and the U.S. 

Census Bureau, one can approximate the number of households with central air 

conditioning in Stockton. 

The information that was most pertinent and useful was the saturation of air conditioning 

by household income level and by type of dwelling (single family, condo, etc.). Income 

plays a big role in air conditioning growth (Figure 6-24) - households at lower income 

levels are more likely to have room air conditioners and households at the higher end of 

the income spectrum are more likely to have central air conditioning systems. 
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The distribution of household income in San Joaquin County is provided by the U.S. 

Census 2005-2007 American Community Survey. Multiplying the percentage of the 
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population in each income group by the saturation of central air conditioning that group 

gives an approximate number of households with central AC in San Joaquin County. 

Using this method, there are about 91,715 households, or 44% of the total number of 

households, with central air conditioning. 

6.8.3 Results: Peak Demand Reductions 

It is unlikely that smart thermostats will be deployed in every household in the near 

future, so three scenarios are examined. In the first scenario, 15% of eligible households 

(those with central air conditioning) have smart thermostats and are enrolled in a peak 

demand reduction program. In the second scenario, 50% of households with central air 

conditioning have a smart thermostat. And in the third scenario, 100% of households 

with central air conditioning have smart thermostats. All of the scenarios are based on 

population projections from 2010 to 2050 from the California Department of Finance, 

and the number of households is calculated by assuming 2. 79 persons per household. 

Population and number of households are held constant from 2050 to 2090. Central air 

conditioning saturation is assumed to increase at a rate of 1 % annually, until reaching 

89% in 2060. Air conditioning saturation is held constant at 89% from 2060 to 2090. 

The results from the first scenario are shown in Table 6-16. Peak demand, peak demand 

with a 5°F thermostat re-set, and the peak demand reduction were calculated as follows: 

Peak Demand = 
Number of Households with Central AC x Average Peak Electricity Demand 

Peak Demand with 5° Re-Set = 
(Number of Households without Smart Thermostats x Average Peak Electricity Demand) 
+ (Number of Households with Smart Thermostats x Peak Electricity Demand at 5° 
Temperature Differential) 
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Peak Demand Reduction= 
Peak Demand - Peak Demand with 5° Re-Set 

The table shows that if smart thermostats are installed in 15% of households with central 

air conditioning, raising the temperature setting by 5°F during a contingency can reduce 

peak demand between 4% and 15%, depending on the climatic conditions. Forecasts 

based on the GFDL climate model predict more conservative demand reductions of 

between 4% and 6%, while forecasts based on the PCM climate model predict greater 

reductions on the order of 7% to 15% of peak demand. This is the expected result. As 

mentioned earlier, the relationship between the change in energy demand for cooling and 

a change is temperature is highly non-linear at the high-end of the temperature range. 

This means that a change in temperature from, say, 100 to 105 degrees may produce little 

change in air conditioning energy use if most air conditioners are already running flat out 

at 100 degrees, so energy consumption cannot increase as the temperature climbs. For the · 

same reasons, air conditioner re-set programs might not be very effective at extremely hot 

temperatures, regardless of the magnitude of the incentive provided, since the thermostat 

adjustments at these extremes will have little impact on energy use. Since the 

temperatures forecasted by the GFDL model are sigllificantly greater than those 

forecasted by the PCM model, it is expected that raising the temperature setting by 5° on 

participating air conditioners' thermostats will have less impact in the GFDL model 

scenarios than in the PCM scenarios. Thus, one conclusion to draw from this analysis is 

that direct control air conditioning programs will be more effective in some locations 

than in others. For example, this type of program might not be particularly effective in 

extremely hot places like Phoenix, AZ (or regions forecasted to get extremely hot), but 

perhaps might be more effective in moderate climates, such as northern California. 
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Tables 6-17 and 6-18 show a similar pattern. Table 6-17 shows the results of the analysis 

of the second scenario considered. In this scenario, central air conditioning saturation 

increases by 1 % annually through 2050, but this scenario also assumes that 50% of 

households in San Joaquin county with central AC will have smart thermostats and 

participate in the re-set program. In this case, peak demand reductions between 13% and 

19% are expected in scenarios based on the GFDL model and peak demand reductions 

between 25% and 35% are expected in scenarios based on the PCM model. Table 6-18 

shows the results of the analysis of the third. In the third scenario, 100% of households 

with central air conditioning are assumed to have smart thermostats, although this is a 

highly unlikely case. In the case of 100% smart thermostat deployment, peak demand 

reductions between 26% and 39% are forecasted under the GFDL model and between 

52% and 71 % under the PCM model. 
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Table 6-16. 15% Smart Thermostat Deployment 

2010 265,740 116,926 17,539 
2015 269,222 169,497 25,425 
2025 345,911 233,264 34,990 
2030 431,970 312,441 46,866 
2040 529,560 441,198 66,180 
2050 639,416 505,140 75,771 

GFDL High 2010 321 308 12 4% 
2015 465 447 18 4% 
2025 541 516 25 5% 
2030 724 691 33 5% 
2040 1,023 976 47 5% 
2050 1,242 1,189 53 4% 

GFDL Low 2010 221 210 11 5% 
2015 345 327 18 5% 
2025 508 483 25 5% 
2030 548 516 32 6% 
2040 1,210 . 1163 47 4% 
2050 1,313 1260 53 4% 

PCM High 2010 205 186 19 9% 
2015 274 250 24 9% 
2025 409 371 38 9% 
2030 723 646 77 11% 
2040 1022 915 107 10% 
2050 957 866 91 10% 

PCM Low 2010 141 130 11 7% 
2015 227 209 18 8% 
2025 281 239 42 15% 
2030 590 534 56 10% 
2040 712 650 63 9% 
2050 957 866 91 10% 
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Table 6-17. 50% Smart Thermostat De lo ment 
----------------------------------------------r 

2010 265,740.86 116,926 58,463 
2015 269,222.07 169,497 84,748 
2025 345,911.83 233,264 116,632 
2030 431,970.61 312,441 156,2220 
2040 529,560.22 441,198 220,599 
2050 639,416.85 505,140 252,599 

GFDL High 2010 321 279 41 13% 
2015 465 405 60 13% 
2025 541 459 82 15% 
2030 724 614 110 15% 
2040 1023 868 155 15% 
2050 1242 1064 178 14% 

GFDL Low 2010 221 184 37 17% 
2015 345 286 59 17% 
2025 508 426 82 16% 
2030 548 442 106 19% 
2040 1210 1054 156 13% 
2050 1313 1135 178 14% 

PCM High 2010 205 142 63 31% 
2015 274 194 80 29% 
2025 209 283 125 31% 
2030 723 467 256 35% 
2040 1022 666 356 35% 
2050 957 652 305 32% 

PCM Low 2010 141 106 35 25% 
2015 227 168 60 26% 
2030 590 402 188 32% 
2040 712 504 209 39% 
2050 957 652 305 32% 
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Table 6-18. 100% Smart Thermostat De lo ment 
~~~~~~~~~~~--r 

2010 265,740.86 116,926 58,463 
2015 269,222.07 169,497 84,748 
2025 345,911.83 233,264 116,632 
2030 431,970.61 312,441 156,2220 
2040 529,560.22 441,198 220,599 
2050 639,416.85 505,140 252,599 

GFDL High 2010 321 238 83 26% 
2015 465 345 120 26% 
2025 541 377 164 30% 
2030 7724 504 220 305 
2040 1023 712 310 30% 
2050 1242 886 356 29% 

GFDL Low 2010 221 147 74 34% 
2015 345 227 117 34% 
2025 508 344 163 32% 
2030 548 336 212 39% 
2040 1210 898 312 26% 
2050 1313 957 357 27% 

PCM High 2010 205 79 126 61% 
2015 274 113 160 59% 
2025 409 158 251 61% 
2030 723 211 513 71% 
2040 1022 310 712 70% 
2050 957 348 609 64% 

PCM Low 2010 141 71 70 50% 
2015 227 108 119 52% 
2030 590 214 376 64% 
2040 712 295 417 59% 
2050 957 348 609 64% 
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6.8.4. Generation Capacity Savings from Peak Demand Reductions 

The cost of new generation capacity has increased dramatically in recent years, with 

natural gas capacity costs having increased by 86% between 2000 and 2007. The capital 

cost of a simple cycle gas turbine is used as the basis of the cost for peaking capacity. 

Spees (2008) estimates that with the recent increases of capacity cost the price of a simple 

cycle turbine is $728/kW overnight or $81/kW y annually (Spees, 2008). The capacity 

needed to reliably serve the system is greater than the end-use load delivered because of 

system losses and the necessary reserve margin. The analysis here adopts the 8% 

transmission losses that ISO-NE assumes in its forecasting processes. This assumption 

for line losses is typical throughout the U.S. A required reserve margin of 15%, which was 

the requirement for the ISO-NE 2008/2009 capacity market auction, will also be used. 

Based on these values of T&D losses and required reserve margin, $81/kW yin peak 

capacity cost translates into a value of $89 /kW y for peak load reductions if T&D losses 

are considered but the margin for reliability is not. If both reliability and T&D losses are 

considered, then the cost is $94/kW (Spees, 2008) . Highlighting the distinctions among 

the three numbers emphasizes that a kW of reduction in peak load is worth significantly 

more than a kW of additional new capacity. 

Since even 15% smart thermostat deployment is an ambitious goal for the near term, this 

cost savings analysis focuses on the first scenario. Table 6-19 shows the potential 

generation capacity cost savings calculated for the forecasted peak demand reductions. 

Cost savings were calculated as the total capacity savings (including both reliability and 

T&D losses) multiplied by $94/ kW. Table 6-19 shows that the total peak demand 

reduction ranges from 13 to 130 MW, depending on the climatic scenario considered. 
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The table also shows that generation capacity cost savings range from $1.4 million to $9.5 

million dollars from deploying smart thermostats in 15% of households with central air 

conditioning in San Joaquin County. 

GFDL High 2010 12.38 15.23 $1,431,863 
2015 17.98 22.12 $1,628,851 
2025 24.60 30.26 $2,228,972 
2030 32.95 40.54 $2,985,547 
2040 46.53 57.24 $4,215,895 
2050 53.47 65.77 $4,844,057 

GFDL Low 2010 11.13 13.70 $1,287,683 
2015 17.61 21.67 $1,596,145 
2025 24.51 30.15 $2,220,730 
2030 31.78 39.10 $2,879,830 
2040 46.72 57.48 $4,233,281 
2050 53.49 65.80 $4,846,116 

PCM High 2010 18.87 23.21 $2,181,761 
2015 24.04 29.58 $2,178,405 
2025 37.64 46.30 $3,410,339 
2030 76.88 94.57 $6,965,145 
2040 106.86 131.44 $9,680,610 
2050 91.37 112.39 $8,277,524 

PCM Low 2010 10.52 12.95 $1,217,114 
2015 17.89 22.02 $1,621,481 
2030 56.46 69.45 $5,115,170 
2040 62.59 76.99 $5,670,354 
2050 91.37 112.39 $8,277,534 

Greenhouse gas savings can also be calculated. On average, California's non-baseload 

power plants emit 1,279 lb/MWh of carbon dioxide, 0.322 lb/MWh of sulfur dioxide, 

and 0.534 lb/MWh of nitrogen oxides (United States Environmental Protection Agency, 
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2007b) . Therefore, a 13MW reduction in peak demand avoids 8.3 tons of carbon dioxide, 

4.2 pounds of sulfur dioxide, and 6.9 pounds of nitrogen oxides. A 131 MW reduction in 

peak demand avoids 83. 7 tons of carbon dioxide, 42.2 pounds of sulfur dioxide, and 70 

pounds of nitrogen oxides. 

To put this estimate into perspective, if similar savings could be obtained throughout 

California, the forecasted 2013 peak demand from the residential sector of 27,000 MW 

could be reduced by 1,080 to 2,430 MW (California Energy Commission, 2007). This 

would result in generation capacity savings of approximately $87 million to $196 million 

(not including reliability or T&D losses), and avoid 690 to 1,553 tons of carbon dioxide, 

347 to 782 pounds of sulfur dioxide, and 565 to 1,273 pounds of nitrogen oxides from 

the residential sector. This would also save California between 1 % and 2% of its annual 

expenditure on electricity for residential end-uses. This reduction is roughly equivalent to 

the amount of power produced by 2 to 4 500-MW natural gas-fired power plants, such as 

the Cosumnes plant in Sacramento or the Manchester Street plant in Providence, RI. 

The California Energy Commission forecasts that statewide coincident residential peak 

demand in 2018 will be 31,000 MW (California Energy Commission, 2007). If a 4% to 

15% peak demand reduction could be achieved statewide, the peak could be shaved by 

1,240 to 4,650 MW. A reduction of this magnitude could save $100 million to $376 

million in generation capacity (capital) costs and avoid between 792 and 2,973 tons of 

carbon dioxide, 399 to 1,497 pounds of sulfur dioxide, and 649 to 2,436 pounds of 

nitrogen oxides. A reduction of this magnitude could reduce California's expenditure on 

electricity for residential end-uses by 1 % to 2%. Also, a reduction of this size is roughly 

equivalent to the amount of peaking power produced by 2 to 6 500-MW power plants. 
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6.8.5 Costs of Demand Reductions 

The EIA-861 database contains historic data on utility demand-side management 

programs (Spees, 2008) . Several hundred utilities reported costs related to demand-

management and energy efficiency as well as total coincident peak load saved for 

residential, commercial, and industrial customers in 2006. Table 6-20 shows summary 

numbers for the residential sector. 

Table 6-20. Utilities' Reported Costs of Coincident Peak Demand Reductions 
from Load Management 

Clearly, achieving peak demand reductions could potentially be a much cheaper means of 

satisfying peak demand than are supplying more capacity and more electric energy, until 

scaled up to some percent of load_ where the marginal costs of achieving more reductions 

are higher and the marginal benefits much lower. Peak demand reductions are currently 

being achieved at $26/kW-y, or just over one fourth of the $94/kW-y it costs to build 

new capacity. 

Table 6-21 shows the net savings that could be achieved if 15% of eligible households 

participated in a thermostat re-set program in San Joaquin County. 
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Table 6-21. Net Savings from Peak Demand Reductions 

GFDL High 2010 $1,037,644 PCM High 2010 $1,581,080 
2015 $1,056,498 2015 $1,412,946 
2025 $1,445,745 2025 $2,211,998 
2030 $1,936,471 2030 $4,517,699 
2040 $2,734,494 2040 $6,278,991 
2050 $3,141,929 2050 $5,368,928 

GFDL Low 2010 $933,159 PCM Low 2010 $882,019 
2015 $1,035,284 2015 $1,051,717 
2025 $1,440,400 2030 $3,317,777 
2030 $1,867,902 2040 $3,677,878 
2040 $2,745,771 2050 $5,368,928 
2050 $3,143,265 

It is worthwhile to note that while reducing load is cheaper than building new capacity 

and providing more power right now, this might not be the case forever. The reported 

costs of reducing residential peak load quoted in Table 6-21 do not consider the fact that 

as successively more investments are made in peak demand and average load reductions, 

the low-cost opportunities will have been achieved and the marginal cost of achieving the 

next kW or MWh reduction will increase. When the marginal cost of peak reductions 

equals the marginal cost of providing more capacity and energy, then the market will have 

reached an efficient state. This possible end state will not exist without market structures 

and state regulations that create appropriate incentives for generators, utilities, and 

customers. 
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Also noteworthy, is that in most cases peak demand reductions are being achieved at a 

lower cost with larger customers, as expected. Peak reductions are being achieved most 

inexpensively with industrial customers, followed by commercial and finally residential 

customers. With large industrial customers, the administrators of a demand-management 

program can examine a large quantity of energy use all under one roof, rather than 

incurring the costs of interacting with many small residential customers in order to have 

affected the same total load. 

6. 9 Conclusions 

This chapter analyzed the direct load control SmartAC program to determine its past and 

future impact on reducing peak demand. The conclusion of the analysis is that direct load 

control programs that limit consumers' demand for electricity for air conditioning during 

critical hours are effective in reducing peak demand. This chapter also concludes that this 

type of direct control program has a smaller impact on peak demand at extremely hot 

daily average temperatures. This means that this type of direct control program will 

reduce peak demand more effectively if the impact of climate change on daily average 

temperatures is moderate. Likewise, this chapter condudes that this fype of program may 

reduce peak demand more effectively in regions of the country with moderate 

temperatures and low humidity, such as northern California and the Pacific Northwest. 

The results of the forecasting analysis show that if 15% of households with central air 

conditioning in San Joaquin County participate in a direct control air conditioning 

program, a 5°F thermostat re-set at the time of peak demand could reduce peak demand 

by 13 to 131 MW, depending on the climatic scenario considered. This translates into 
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savings of approximately $1.3 million to $9.6 million in generation capacity costs. This 

would avoid between 8.3 and 83 tons of carbon dioxide emissions, between 4.2 and 42 

pounds of sulfur dioxide emissions, and between 6.9 and 70 pounds of nitrogen oxide 

emissions. To put this estimate in perspective, if similar savings could be achieved 

throughout the state of California it could reduce its expenditures on electricity for 

residential end-uses by between 1 and 2% and eliminate the need for between 2 and 6 

peaking power plants by 2018. After considering the cost of installing the necessary 

advanced metering infrastructure, achievable net savings are between approximately 

$800,000 and $3.3 million per year. 
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Chapter 7 Recommendations and Conclusion 

7 .1 Peak Demand Policy Recommendations 

Direct control programs such as SmartAC are generally unpopular among economists, 

who have at least a vague preference for reduce peak demand through real-time or peak 

load pricing to shift demand to off-peak periods (Baumol & Oates, 1988) . However, 

there is room in a well-designed policy for direct controls. The reason is that peak 

demand problems do not develop smoothly and gradually. Instead, peak demand 

problems are characterized by infrequent but serious crises whose timing is largely 

unpredictable. Such contingencies may require rapid temporary changes in the rules of 

the control mechanism, and it is here that pricing measures appear to subject some severe 

practical limitations (Baumol & Oates, 1988) . I recommend that the ideal peak demand 

policy package contains a mixture of tools, with real-time pricing, direct controls, and 

even moral suasion each used under certain conditions to reduce peak demand and 

maintain system reliability. 

This section will first lay out the advantages of real-time pricing and show why real-time 

pricing is an important piece of any peak demand policy. Then, I will explain why the 

peak demand problem is unlike many other natural resource problerns and why direct 

controls are a necessary complement to real-time pricing for maintaining system 

reliability. 
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Advantages of Real-time Pricing 

Regulators at state public utility commissions should consider real-time pricing tariffs as 

an essential component of peak demand management programs, and should be driven by 

concerns about meeting peak demand at the lowest cost, enhancing system reliability, and 

creating equity among users. 

Maximizing Consumer Surplus 

Quantity-based programs, such as the SmartAC program analyzed here, do not provide 

customers with the ability to take into consideration the value that they place on 

particular end-uses when limiting their consumption. For example, the SmartAC program 

targets only one end-use for the reason that it is easy to control, not because of its low 

value to the customer. A customer might prefer, for example, to postpone using the 

clothes dryer or dishwasher during peak hours instead of reducing his air conditioning 

load. Real-time pricing allow customers to create their own "loading order" of end-uses 

with which to respond. 

Creating Equity Among Users 

Real-time prices reflect the long run cost of avoided generation, transmission and 

distribution capacity, and the short run cost of energy. Under current conditions, 

customers with a flat or counter-cyclical load profile subsidize high coincident peak loads 

of others. When faced with real-time prices, customers will either choose to shift 

electricity demand to low-cost hours or pay the full price of their load profile, rather than 

having it subsidized the rest of the system. Further, for the customers that place a high 

value on stability in price, retailers could provide any combination of hedges or flat rates; 
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these rates should charge a premium above the RTP rate reflecting the higher cost of 

service. 

Avoiding Issues with Estimated Customer Baselines 

Real-time pricing also circumvents the challenges facing the use of estimated customer 

baselines for compensating customers for demand reductions in quantity-based 

programs. Instead of compensating customers for energy not used, customers simply pay 

for the amount of energy they consume at prices adjusted to reflect the real-time marginal 

supply costs. This avoids gaming, moral hazard, and adverse selection issues from 

customers who try to benefit from artificially inflating their baselines. Real-time pricing 

also avoids the double-payment problem that results in paying excessive demand 

reduction incentives to customers and causes customers to forego consumption whose 

value exceeds the cost of producing energy. 

Advantages of Direct Controls 

Those who advocate for the sole use of real-time pricing for reducing peak demand omit 

an important consideration. Peak electricity demand falls into an important class of 

serious resource problems: the occasional crises that call for the imposition of emergency 

measures. Typically, these crises cannot be predicted much in advance or with any degree 

of certainty; we can, however, be certain that at some unforeseen time they will recur. An 

energy policy incapable of dealing with such contingencies is very limited. 
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Consider the following analogy: the polluting effects of a given discharge of effluent into 

a river will depend upon the condition of the waterway at that time- whether it has been 

replenished by a rainfall or depleted by a drought. The amount of water and speed of its 

flow are critical determinants of the river's assimilative capacity. Similarly, problems 

within one utility service territory during peak hours quickly cascaded and escalated to 

affect millions of customers across the Northeast in Canada causing the widespread 

blackout in August 2003. 

The point of this analogy is that electricity demand levels that are acceptable and rather 

harmless under usual conditions can, under other circumstances, become catastrophic. 

Moreover, these conditions depend on factors that are largely outside the control of 

system planners and often are not predictable in advance. Temperature, the largest driver 

of peak demand, for example, is only imperfectly foreseeable. 

Despite its virtues, real-time pricing suffers from one serious drawback as a means for 

regulating peak demand: it cannot guarantee a sufficient demand reduction to avoid 

system failure. This is because the price elasticity for electricity demand is largely 

unknown, particularly at extreme temperatures. A one-time high hourly price may not be 

able to produce the necessary reduction in demand quickly (or predictably) enough to 

avoid system failure. This suggests one major attraction of direct controls: if .the control is 

effective and can be deployed quickly enough, regulators can be assured of maintaining 

system integrity. 
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This is why a combination of real-time pricing and direct controls is the ideal peak 

demand policy: under normal conditions, real-time pricing improves the economic 

efficiency of the grid and maximizes consumer surplus, but during periods of severe 

stress direct controls give regulators the flexibility to achieve the necessary demand 

reduction and avoid catastrophic system failure. While the exact contribution of direct 

control to alleviate crisis conditions will vary from case to case, clearly peak demand 

reductions during such times can play significant roles in avoiding system failure. A 

strong lesson from California's experience, in fact, is that a variety of policies aimed at 

getting all types of customers to reduce their electricity demand can have a significant 

impact on maintaining system reliability. During the California energy crisis of 2001, the 

state averaged a 10% reduction in peak demand during the summer months (with a 

record reduction of 14% in June). No rolling blackouts occurred in 2001, despite rather 

dire forecasts that had been made prior to the onset of the spring and summer peak 

demand season. 

Recommendation 

Based on this research, my principal recommendation for policymakers, regulators, and 

utilities interested in furthering effective demand management policies is that it would be 

beneficial to thoroughly test policy and program design concepts that incorporate both 

direct peak demand control and real-time pricing objectives as an alternative to only 

offering distinct direct control or pricing programs. Such a policy might have three levels, 

as illustrated by Figure 7-1. For example, a direct control air conditioning program 

designed to reduce cooling demand during peak periods might also promote real-time 

pricing through the use of enabling smart meters. Additionally, having more information 
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on energy prices and consumption might lead consumers to upgrade to more efficiency 

appliances. 

Important considerations would be: 1) should real-time pricing and direct control 

programs be offered to all customers classes; 2) what level of participation is needed to 

meet peak demand reduction targets; and 3) how quickly should advanced metering 

infrastructure be phased in and who should pay for it? While questions (1) and (3) are 

largely outside the scope of this research, this research does provide some direction with 

regard to question (2). This research suggests that enrolling 15% of all households with 

central air conditioning in a direct control program will achieve 4% to 7% reductions in 

peak demand in the near term and 6% to 15% reductions in peak demand by the middle 

of the century. If concentrations of greenhouse gases are high and temperatures rise 

rapidly, air conditioner control programs are likely to become less effective in reducing 

peak demand. This research also shows that direct control programs are likely to be more 

effective in areas that are moderately hot and less effective in regions that are extremely 

hot (e.g. a direct control air conditioning program will most likely be more effective in 

northern California than in Phoenix, AZ). 
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Figure 7-1. Integrated Peak Demand Policy 

7 .2 Recommendations for Areas of Further Research 

One important area for future research is the relationship between direct control, pricing, 

and energy efficiency. All three of these measures affect customer demand for energy, but 

how exactly these primary objectives relate to each other is an unanswered question. 

There is almost no published research on the issue of how direct control and pricing 

programs affect energy use during off-peak hours and overall building energy use and 

energy efficiency. There is some mostly anecdotal evidence that suggests certain types 

technologies that enable direct control and RTP during peak demand periods can also 
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understanding of the relationship among direct control, RTP, and efficiency investments. 

Yet understanding this relationship is vitally important because there are many potential 

synergies, as well as potential conflicts, between these types of programs. Potential 

synergies include: 

• Energy efficiency can reduce demand permanently, at peak as well as off-peak 

times; 

• Focusing on peak-demand reductions can help identify inefficient energy uses 

that could be improved at other times, resulting in broader energy and demand 
savmgs; 

• Technologies that enable peak demand reductions can also be used to enable 
RTP; 

• Customers who participate in demand reduction programs may be good 
candidates for participating in RTP and efficiency programs (or vice versa). 

Perhaps the most important potential synergy is simply the fact that participating in a 

demand reduction program, particularly one that features advanced metering equipment, 

helps a customer better understand their energy use and associated costs. 

Some proponents of combining peak demand reduction, RTP, and efficiency efforts into 

integrated policies cite improved energy efficiency as one of the benefits of peak demand 

reductions: 

" [demand reduction programs] can also serve as a stimulus and platform for participating 

customers to undertake expanded and enhanced energy efficiency programs. By gaining 

access to information about their usage that was previously unavailable to them, and by 

gaining the means to act upon it, users can undertake energy management and efficiency 

practices that can provide embedded, more permanent benefits to the system as a whole. 

(York & Kushler, 2005)" 
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On the other hand, conflicts may arise between direct control programs and energy 

efficiency programs in terms of their funding. There also may be difficulties in trying to 

blend funds from different sources together for the sake of seeking combined energy 

efficiency and peak demand reduction objectives. 

Answering some of the following questions is the key to understanding the relationship 

between direct control, RTP, and efficiency programs. In turn, such understanding is 

important in guiding policy and funding decisions. 

• What effects, if any, do peak demand reduction program have on overall 

customer energy use and energy efficiency? 

• Are direct control and energy efficiency objectives necessarily complementary? Of 

can these programs have conflicting elements? 

• Are there programs that have deliberately targeted both peak demand and energy 

efficiency? What has their experience shown? 

• Does direct control program participation lead to broader energy savings? If yes, 

does it lead to actual energy efficiency measures or just energy savings from the 

use of the controls to shift demand in off-peak hours? 

• If high peak prices encourage peak demand reductions, do the corresponding low 

off-peak prices result in less motivation to save energy during off-peak periods? 

• Does providing greater information to customers on their energy use and market 

conditions result in more energy efficient behavior? 

• Can direct control and energy efficiency programs sometimes work in opposition 

to their respective objectives? For example, does providing an incentive based on 

the amount of peak load reduction delivered from a facility's energy demand 

baseline create an indirect incentive to not take energy efficiency actions that 

would reduce that baseline and thereby reduce the amount of compensation for 

demand reductions that could be earned? 
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7 .3 Conclusion 

This research has focused on the relative advantages and disadvantages of using price­

based and quantity-based controls for electricity markets. It also presents a detailed 

analysis of one specific approach to quantity-based controls: the SmartAC program 

implemented in Stockton, California. Finally, the research forecasts electricity demand 

under various climate scenarios, and estimates potential cost savings that could result 

from the SmartAC program over the next 50 years in each scenario. 

Perhaps the most crucial feature that distinguishes electricity from other commodities is 

the need to balance supply and demand on virtually a minute-to-minute basis. Because 

electricity cannot be cost-effectively stored, supply must be kept constantly equal to 

demand. If more electricity is demanded than generated, brownouts or blackouts follow. 

If more electricity is supplied than used, the heat from the extra energy can damage 

transmission and distribution lines. 

A second critical feature of electricity markets is the large variability in electricity 

consumption over time, known as the peak load demand problem. In most areas of the 

country, electricity demand is greatest during summer heat waves, when electricity 

consumption can be almost double consumption during base load periods. 

The traditional approach to dealing with these two issues is to invest in a large stock of 

excess capital that is rarely used, thereby greatly increasing production costs. Because this 

approach has proved so expensive, there has been a focus on identifying alternative 

approaches for dealing with these two key peak load demand problems. 

The two primary approaches to dealing with peak load demand are price based 

approaches, such as real time pricing, and quantity based approaches, whereby the utility 
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directly controls at least some elements of electricity used by consumers. Well-designed 

policies for reducing peak demand might include both price and quantity controls. 

In theory, sufficiently high peak prices occurring during periods of peak demand and/ or 

low supply can cause the quantity of electricity demanded to decline until demand is in 

balance with system capacity, potentially reducing the total amount of generation capacity 

needed to meet demand and helping meet electricity demand at the lowest cost. However, 

consumers need to be well informed about real-time prices for the pricing strategy to 

work as well as theory suggests. While this might be an appropriate assumption for large 

industrial and commercial users who have potentially large economic incentives, there is 

not yet enough research on whether households will fully understand and respond to real­

time prices. 

Thus, while real-time pricing can be an effective tool for addressing the peak load 

problems, pricing approaches are not well suited to ensure system reliability. Direct 

quantity controls are better suited for avoiding catastrophic failure that results when 

demand exceeds supply capacity. 

There are additional advantages to real-time pricing. Unlike direct quantity controls, real­

time pricing gives consumers the ability to create their own "loading order" based on the 

value that they place on different end-uses for electricity. For example, when prices are 

high a given customer might choose to unplug his computer and turn off the dishwasher 

before turning up the temperature setting on his air conditioning system. Real-time prices 

also create equity among users. Under fixed retail rates, customers with a flat or counter­

cyclical load profile subsidize customers with high coincident peak loads. When faced 

with real-time prices, customers must either shift electricity consumption to low-cost 
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hours or pay the full price of their load profile, rather than having it subsidized by the rest 

of the system. Thus, pricing approaches have the advantage of allowing electricity 

consumers to choose how to reduce electricity demand, thereby potentially maximizing 

consumer surplus. 

But, consumer response to real-time prices is not reliable enough to protect against 

catastrophic system failure. The reason is the distinction between higher (but well­

behaved) increases in marginal supply costs versus system failure. Peak demand problems 

do not develop smoothly and gradually. Instead, peak demand problems are characterized 

by infrequent but serious crises whose timing is largely unpredictable. It is the potential 

for system failure that requires rapid temporary changes, and it is here that pricing 

measures appear to subject some severe practical limitations. Real-time pricing cannot 

guarantee a sufficient demand reduction to avoid system failure. The price elasticity for 

electricity demand is largely unknown, particularly at extreme temperatures. A one-time 

high hourly price may not be able to produce the necessary reduction in demand quickly 

or predictably enough to avoid catastrophe. This suggests one major advantage of direct 

quantity controls: if the control is effective and can be deployed quickly, regulators can be 

assured of avoiding system catastrophe. For these reasons, the ideal peak demand policy 

might contain a mixture of tools, with real-time pricing and direct load controls to reduce 

peak demand and maintain system reliability under different climate change scenarios. 

There are important drawbacks to the use of direct quantity controls, however, including 

gamesmanship and estimating customer baselines. In cases where incentive payments are 
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paid according to the magnitude of the demand reduction, the program is subject to 

gaming, moral hazard, and adverse selection issues from customers who try to benefit 

from artificially inflating their baselines. Real-time pricing circumvents these challenges 

because customers simply pay for the amount of energy they consume at prices adjusted 

to reflect the real-time marginal supply costs. Real-time pricing also avoids the double­

payment problem that results in paying excessive demand reduction incentives to 

customers and causes customers to forego consumption whose value exceeds the cost of 

producing energy. 

This research analyzed the direct load control SmartAC program to determine its past and 

future impact on reducing peak demand. The conclusion of the analysis is that direct load 

control programs that limit consumers' demand for electricity for air conditioning during 

critical hours are effective in reducing peak demand. This research also concludes that 

this type of direct control program has a smaller impact on peak demand at extremely hot 

daily average temperatures. This means that this type of direct control program will 

reduce peak demand more effectively if the impact qf climate change on daily average 

temperatures is moderate. Likewise, this research concludes that this type of program may 

reduce peak demand more effectively in regions of the country with moderate 

temperatures and low humidity, such as northern California and the Pacific Northwest. 

The results of the forecasting analysis show that if 15% of households with central air 

conditioning in San Joaquin County participate in a direct control air conditioning 

program, a 5°F thermostat re-set at the time of peak demand could reduce peak demand 

by 13 to 131 MW, depending on the climatic scenario considered. This translates into 
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savings of approximately $1.3 million to $9.6 million in generation capacity costs. This 

would avoid between 8.3 and 83 tons of carbon dioxide emissions, between 4.2 and 42 

pounds of sulfur dioxide emissions, and between 6.9 and 70 pounds of nitrogen oxide 

emissions. To put this estimate in perspective, if similar savings could be achieved 

throughout the state of California it could reduce its expenditures on electricity for 

residential end-uses by between 1 and 2% and eliminate the need for between 2 and 6 

peaking power plants by 2018. After considering the cost of installing the necessary 

advanced metering infrastructure, achievable net savings are between approximately 

$800,000 and $3.3 million per year. 
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