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ABSTRACT 

 
Living in the age of space exploration and nanotechnology, the significant portion of 

human population still have threatened by diarrheal diseases throughout the globe. Being 

a major contributor of the global mortality, the diarrheal diseases account for an estimated 

3.1% of the total burden of disease in terms of Disability-Adjusted Life Year (DALY) 

where cholera and rotavirus diarrhea comprise more than two-thirds of the diarrheal 

morbidity in developing countries of South Asia. 

 

Alongside with many more challenges like climate change or civil war, the capability to 

resolve the diarrheal disease burden in developing countries remains questionable. As the 

primary reasons for the disease transmission in epidemic scale are due to the exposure of 

contaminating pathogens via unsafe drinking water sources, lack of sanitation, deficient 

hygiene, insufficient drainage infrastructures and poor access to health care, ensuring clean 

water sources and improved sanitation may seem to untangle the problem. However, it will 

take a longer time to  achieve such improvement  by the developing countries as many of 

them are  already missed the Millennium Development Goals (WHO/UNICEF 2015). 

Moreover, ongoing global climatic change also leads the disease vulnerability in much 

degrading state (Woodward et al. 2014). In this context, the Bengal delta of South Asia, 

exhibits the highest population density of globe and is one of the most vulnerable region 

of the world in terms of both climate change and diarrheal diseases (Bowen and Friel 2012).  

Therefore, the challenges to tackle the vulnerability of diarrheal disease under ongoing 

global warming is paramount in this region. 

 



  

Previous studies found that the diarrhoeal diseases like cholera and rotavirus are 

significantly influenced by environmental factors in the developing counties of Asia and 

Sub Saharan Africa. The outbreaks of the diseases can occur in the wake of climatic 

extremes like heavy rainfall, flooding, cyclone, drought, extreme temperature and El-Nino 

(Bradley et al. 1996; Corwin et al. 1996; Patz et al. 2000; Vanasco et al. 2001; Chhotray et 

al. 2002; Kalashnikov et al. 2002; Qadri et al. 2005; Yang et al. 2005; Harmeling 2012). 

However, most studies have explored the influence on disease transmission for particular 

climatic extremes or related natural disasters, but the integration of multiple variables along 

with disease cases is infrequently done. Moreover, a deterministic quantification of the 

diseases epidemic based on the hydro-climatic factors is absent in existing literatures.  

 

In terms of diarrheal disease epidemic as well as climate vulnerability, the Bengal delta is 

frequently considered as one of the high-risk region of the globe (IPCC, 2014). The policy 

makers of the region not only need to tackle the burden of diarrheal disease but also need 

to understand the future impact of these diseases under ongoing climate change.  However, 

not only the future assessment of the disease is challenging but also, the meaningfully 

quantification of climatic extremes under future climate change scenarios require robust 

assessment due to the absence of such kind of studies.        

 

Therefore, the objective is this dissertation is to develop the deterministic models that can 

project the future risk of diarrheal diseases, primarily rotavirus and cholera, driven by 

hydro-climatic extremes over the climate vulnerable region of Bengal delta.  In order to 



  

achieve this objective, I developed a bias-correction method for the high-resolution 

regional climate models, generated an observed data set over the Bengal delta, formulated 

a deterministic epidemic model for rotavirus that accounts intra-annual variability, 

proposed a spatial risk model of rotavirus and cholera and projected the future of the 

diarrheal disease for 21st century. The work has been described in the following three 

manuscripts, as per the Graduate School Manual guidelines:  

 

Chapter 1. MANUSCRIPT І (published in Climate Dynamics, 2017). 

The objective of this work was to explore the climate and its extremes over a monsoon 

dominated country like Bangladesh by following the latest RCP (Representative 

Concentration Pathways) emission scenarios, considering fine scale regional physics, 

incorporating the uncertainties range, and also by conducting advance bias correction 

methods to accomplish most reliable future projections.  In this relation, the article aimed 

to investigate (1) the future probabilistic climate of Bengal delta, using five regional 

climate model projections driven by GCM results, (2) to develop a new spatial gridded 

observed data that represents historical climate extremes set and (3) to implement the latest 

QM (Quantile Mapping) bias correction methods over multi-model RCM outputs.    

 

Chapter 2. MANUSCRIPT ІI (published in Geo Health, 2018). 

In this manuscript, we investigated the role of climatic extremes on one of the prevalent 

diarrheal disease, rotavirus. The study aimed (1) to determine the effect of climatic 

extremes on the rotavirus epidemic over Bangladesh, both in spatially and temporal scale, 



  

(2) to evaluate the rotavirus patterns over the cities of South Asia to understand the relation 

of the virus to regional hydro climatic processes and (3) to implemented a deterministic 

multivariate modeling for risk assessment and integrating near real-time satellite products 

(with GPM for rainfall and MODIS for temperature). 

 

Chapter 3. MANUSCRIPT ІII (prepared for International Journal of Biometeorology). 

The objective of this manuscript was to project the future the diarrheal disease risk based 

on the epidemic models driven by the bias-corrected regional climate models. To 

implement the long-term development medical initiatives under ongoing climate change, 

the policy makers requires comprehensive and meaningfully estimate of the future 

vulnerability of the diseases. Thus, the manuscript aimed (1) to develop some spatial 

multivariate models of the rotavirus and cholera epidemic over Bengal delta, (2) to assess 

the effect of relative humidity on rotavirus cycle, and (3) to project the probable future risk 

during the rising phase for both the diseases in the early, mid and late 21st Century.  

 

In conclusion, the diarrheal diseases are a recurrent burden in the developing world. 

Though there are many factors such as population dynamic, poor water sanitation and 

hygiene can be responsible for diarrhreal outbreak in the region, the climate drivers still 

can plays a significant role in the diseases epidemic thus essential to pre-epidemic 

management. As this study proposed a risk based methodology rather than prevalence or 

incidence based method, the method can overlook the influence of the population 

infectivity the disease and can be utilize to detect the influence of climatic change.  This 



  

will allow the relevant stakeholders to improve the decision-making process. The novel 

approach and result of this dissertation can be utilized as a guideline for long-term diseases 

preparedness or vaccination strategy for Bangladesh. High-resolution regional model 

results will also provide valuable insight to the disease burden estimation which can be 

implemented in sub-district level with appropriate stakeholder. The findings of this study 

will be shared with ICDDRB (International Centre for Diarrhoeal Disease Research, 

Bangladesh) and Bill & Melinda Gates Foundation for further improvement of the 

vaccination and surveillance strategy over the region.  
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PREFACE 

 
This dissertation is a final work as a partial fulfillment for the degree of Ph.D. of 

Environmental Engineering. Rhode Island University of United States of America titled 

“Understanding the connection between the hydro-climatic extremes and diarrheal diseases 

over Bengal delta: the vulnerability assessment of past, present and future.” The format of 

this dissertation formatted as Manuscript format, publication style. The idea is to combine 

all three papers as a plan to achieve my objectives in this dissertation. 

CHAPTER 1: MANUSCRIPT І: Climate Projections and Extremes in dynamically 

downscaled CMIP5 model outputs over the Bengal Delta: A quartile based bias-

correction approach with new gridded data. 

This manuscript was published in “Climate Dynamics, 2017”. 

 
CHAPTER 2: MANUSCRIPT II: Quantification of rotavirus diarrheal risk due to 

hydroclimatic extremes over South Asia: Prospects of satellite-based observations in 

detecting outbreaks. 

This manuscript was published in “Geo Health, 2018”. 

 

CHAPTER 3: MANUSCRIPT III. The future risk of diarrheal disease over Bengal 

delta based on climatic driven epidemic models: a case study with bias-corrected 

regional climate model results.  

This manuscript is in process. (being prepared for “International Journal of 

Biometeorology”) 
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Abstract 

 

In the era of global warning, the insight of future climate and their changing extremes is 

critical for climate-vulnerable regions of the world. In this study, we have conducted a 

robust assessment of Regional Climate Model (RCM) results in a monsoon-dominated 

region within the new Coupled Model Intercomparison Project Phase 5 (CMIP5) and the 

latest Representative Concentration Pathways (RCP) scenarios. We have applied an 

advanced bias correction approach to five RCM simulations in order to project future 

climate and associated extremes over Bangladesh, a critically climate-vulnerable country 

with a complex monsoon system. We have also generated a new gridded product that 

performed better in capturing observed climatic extremes than existing products. The bias-

correction approach provided a notable improvement in capturing the precipitation 

extremes as well as mean climate. The majority of projected multi-model RCMs indicate 

an increase of rainfall, where one model shows contrary results during the 2080s (2071-

2100) era. The multi-model mean shows that nighttime temperatures will increase much 

faster than daytime temperatures and the average annual temperatures are projected to be 

as hot as present-day summer temperatures. The expected increase of precipitation and 

temperature over the hilly areas are higher compared to other parts of the country. Overall, 

the projected extremities of future rainfall are more variable than temperature. According 

to the majority of the models, the number of the heavy rainy days will increase in future 

years. The severity of summer-day temperatures will be alarming, especially over hilly 

regions, where winters are relatively warm. The projected rise of both precipitation and 

temperature extremes over the intense rainfall-prone northeastern region of the country 

creates a possibility of devastating flash floods with harmful impacts on agriculture. 
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Moreover, the effect of bias-correction, as presented in probable changes of both bias-

corrected and uncorrected extremes, can be considered in future policy making.
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1. Introduction 

 

Observations show that the global land and ocean temperature has risen by 0.85 °C over 

the period of 1880 to 2012, and the warming trend has accelerated in the last 60 years 

(IPCC, 2013). Rising global temperatures have been accompanied by changes in the mean 

state of the climate as well as their associated extreme events. As climate extremes and 

weather events have significant impacts on the socio-economic stability and sustainability 

of any region, the information about their probabilistic future as well as existing 

understanding has received wide attention in the scientific community (Hartmann et al., 

2013; IPCC 2007; IPCC 2013). The 4th Assessment report (AR4) of the Intergovernmental 

Panel on Climate Change (IPCC) has extensively used the climate models that adopted a 

set of future emission pathways based on socio-economic condition and also participated 

in Phase 3 of the Coupled Model Intercomparison Project (CMIP3). In the recent IPCC 5th 

Assessment report (AR5), next generation climate models from the Phase 5 of Coupled 

Model Intercomparison Project (CMIP5) have utilized a new suite of gas emission 

scenarios termed as Representative Concentration Pathways (RCPs) (van Vuuren et al. 

2011). Combined with RCP scenarios, the models from CMIP5 have provided more 

accurate representations of climate processes than CMIP3 models by incorporating key 

assumptions of climate, which were previously ignored by the model developers (Knutti 

and Sedláček 2012; Taylor et al. 2012). Therefore, the latest CMIP5 projections have 

become imperative tools for understanding probabilistic changes of climatic extremes in 

recent years.  

 

Due to devastating societal impacts of climatic extremes, their projected changes are of 
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particular relevance to policy makers and planners across the world. A disaster prone 

geography coupled with high population density has rendered South Asia as one of the 

most vulnerable regions under the impact of extreme events. Previously, some studies 

explored South Asian climatic extremes over the northern high mountain areas or Indian 

parts of the Ganges, Brahmaputra and Meghna (GBM) basin, but climatic conditions of the 

downstream confluence of the GBM were often left unattended (Revadekar et al. 2011; 

Rao et al. 2014; Freychet et al. 2015). To have a better understanding of socio-economic 

and hydrologic impacts, the perception of climate and its associated extremes over both 

upstream and downstream of the basin are important. Bangladesh, situated at the 

downstream of the basin, is at the front line of climate change, at-risk due to its flood-prone 

flat topography, overcrowded population and challenging socio-economic condition 

(Mirza et al. 2003; Rajib et al. 2011; Schiermeier 2011; Dastagir 2015). In this study, the 

country has been selected as a case study area of the downstream parts of the GBM basin 

to analyze the changes of the imminent climate and its associated extremes.  

 

Located on the low-lying deltaic floodplains of the GBM basin, Bangladesh is already 

experiencing adverse impacts of global warming, disasters related to potential climatic 

changes and associated mean sea level rise (Mirza et al. 2003; Rajib et al. 2011; 

Schiermeier 2011; Dastagir 2015). As a consequence of observed increasing trends in the 

number of wet days, the region is likely to experience more seasonal flooding (Shahid 

2010). Researchers have taken a great deal of effort to study the probable climate of the 

country using climate model simulations. For example, Rahman. et al., (2012b)  projected 

50% reduction of annual rainfall and 0.9°C to 3.5°C increase of temperature in 2060 using 
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Regional Climate Model of version 3 (RegCM3) driven by A2 AR4 scenario. Based on the 

multi-ensemble mean (MME) of 17 model simulations, Nowreen et al. (2014) showed that 

the annual mean precipitation is expected to increase on average by 20% over northwestern 

Bangladesh with a 2°C increase in global temperature. Increase of monsoon rainfall, 

decrease of post-monsoon rainfall and projected rise of winter temperature are suggested 

in a number of studies (Rahman et al. 2012a; Hasan et al. 2013). However, these analyses 

are all based on previous IPCC AR4 scenarios, and an update of the literature and studies 

considering RCP scenarios is in demand.  

 

Monsoon-dominated micro scale climate processes play a strong role in precipitation and 

related extremes over Bangladesh, understanding which are essential to evaluate and 

explain the condition of future extremes. Therefore, the assessment of the climatic 

processes at a regional scale is required to derive consistent and reliable projections of 

probable future climate. In this context, high-resolution (0.25°×0.25° or 0.5°×0.5° 

resolution) projections are imperative for climate evaluation at a regional level, where 

results from Global Climate Models (GCMs) are sparsely gridded (typically more than 

1°×1° resolution) (Dankers et al. 2007; Bhaskaran et al. 2012). The GCMs downscaling 

are a widely used method for regional climate studies. Although statistical downscaling is 

a computationally inexpensive tool for simulating climate projections, dynamic 

downscaling is proven to be more representative of fine scale physical processes (Paul et 

al. 2008; Hong and Kanamitsu 2014; Kang et al. 2014; Lee et al. 2014; Lee and Hong 

2014). Dynamically downscaled data generated by regional climate models (RCMs) such 

as PRECIS and RegCM have been used to project the future climates of Bangladesh (Rajib 
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et al. 2011; Rajib and Rahman 2012; Hasan et al. 2013; Hussain et al. 2013; Murshed et al. 

2013; Nowreen et al. 2014). However, all these studies are based on the scenarios from 

AR4. Furthermore, single GCM or RCM projections ignore the uncertainties of the future 

climate, where such uncertainties can be captured using multi-model RCMs derived from 

various GCMs (Nowreen et al. 2014). Thus, in this study, projections from multi-model 

RCMs, driven by the CMIP5 GCMs have been used to meet the requisite of the relevant 

research community. 

 

Though RCMs are common tools for regionalization of GCMs in a more accurate manner, 

its historical climatology still deviates from observed climatology in a consistent pattern 

due to improper model parameterizations, unknown complexity in differential equations, 

coarse spatial resolution, or inadequacy of data. These differences or ‘biases’ are 

systematic deviation of RCMs, which can be corrected with various methods (Déqué 2007; 

Themeßl et al. 2011). The choices of bias-correction are often arguable, when it is applied 

to RCM climate projections (Ehret et al. 2012). However, the projected extremes from bias-

correction compares future changes from closer observed values, where uncorrected results 

confers it from hindcast results of a particular model (Ho et al. 2012). This can create 

confusion for future decision makers with a limited number of RCM projections, where the 

future development initiatives require realistic interferences. Although some studies 

preferred to project climate extremes using uncorrected GCM projections (Christidis and 

Stott 2016; Alexander and Arblaster 2017), others have also emphasized the utilization of 

bias-corrected RCM results in the impact studies (Bennett et al. 2014; Macadam et al. 2016; 

Kis et al. 2017). As climatic extremes are secondary products of the main variables of the 
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RCM outputs, the future extremes from bias-corrected results could be useful for policy 

makers. Therefore, in addition to projecting extremes without bias-correction from RCMs, 

we have explored the projected extremes from bias-corrected climate, where the derived 

extremes were considered as an impact model itself.  To avoid conflicting argument, we 

also presented underlying biases and their effects over the study region. 

Among commonly used bias correction methods, the quartile mapping (QM) methods are 

considered to be the most up-to-date and accurate methods for climatic studies (Li et al. 

2010; Wilcke et al. 2013; Wilcke 2014).  Over the South Asian domain, researchers have 

used delta-based bias correction in annual scales for various climate studies, but none has 

used QM in daily scales to examine the extremity of present and future climate yet 

(Raneesh and Thampi 2013; Shashikanth et al. 2014; Apurv et al. 2015). Climate projection 

using QM based bias correction in RCM results will thus be an advancement to evaluate 

the South Asian monsoon climate and its extremes in forthcoming years. Therefore, this 

study has conducted a quantile based bias correction approach to evaluate future climate 

and its extremities in available CMIP5 level RCM Projections over a monsoonal South 

Asian country; in this case, Bangladesh.  

 

The aim of this study is thus to explore the climate and its extremes over a monsoon 

dominated country like Bangladesh by following the latest RCP emission scenarios, 

considering fine scale regional physics, incorporating the uncertainties range, and also by 

conducting advance bias correction methods to accomplish most reliable future 

projections.  In this relation, the article has attempted to analyze the future probabilistic 

climate of the country, by using five regional climate model projections driven by four 
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GCM results; i.e., EC-EARTH, CNRM-CM5, CCSM4, MPI-ESM-LR. All of the 

projections utilized three different RCP scenarios: historical, RCP 4.5 and RCP 8.5, to 

capture the whole range of future uncertainties. To remove the systematic biases from 

multi-model RCM outputs, latest QM bias correction methods are applied to a newly 

generated observed gridded data product. Developed by comparing six available observed 

datasets, the data product presents extreme events in a spatial gridded form.   

 

The remainder of the study is organized as follows: in Section 2, a description of the 

observed and model data is presented. Method of bias-correction and description of 

selected extremes are also provided in the same section. The starting part of Section 3 

explains the performance of past climate extremes considering different sets of observed 

data as well as the performance of the six RCM projections. The results are analyzed and 

a detailed discussion of the study and the potential implications are concluded in later part 

of Section 3.  

 

2. Data and Methods 

2.1. Observed data 

The assessment of climate and associated extremes by incorporating climate models, 

requires evenly spaced data network with long term, reliable time series.  Land-based 

station data has more reliable extreme information, especially in the monsoon dominated 

regions due to erratic occurrences of rainfall (Singh 2015). However, such datasets have 

lack of spatial coverage. On the other hand, gridded data products tend to provide spatially 

rich climate information although it loses some accuracy in terms of magnitudes of daily 
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extremes (Yatagai et al. 2007). Therefore, conjugating the land-based observed data with 

the best performed gridded product has the potential to provide most accurate information 

of climatic extremes (Khandu et al. 2015; Song et al. 2015). For our study region, 

Prasannaa et al., (2007) conducted a similar approach over the entire GBM basin, but the 

dataset was limited to only ten years from 1997 to 2007, which was inadequate for the 

climate change study. In this study, we combined two types of suitable data products to 

develop a long term climate data series for the proposed study. As a daily land-based 

observation, data from 35 climate stations available from Bangladesh Meteorological 

Department (BMD) were used.  The time period spans over 40 years, ranging from 1948-

2010. After quality control and homogeneity test, 32 stations were selected for further 

analysis. Three meteorological variables; precipitation (PR), maximum temperature 

(TMAX), and minimum temperature (TMIN) were considered in this study. However, as 

the extremities of monsoon climate are more dependent on precipitation frequency and 

magnitude, we focused our comparison of observed data sets only on PR (Singh 2015).  

The gridded precipitation data products available over Bangladesh are, APHRODITE [the 

Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation 

of Water Resources] (Yatagai et al. 2012), CRU [Climatic Research Unit] (Harris et al. 

2014), TRMM [Tropical Rainfall Measuring Mission] (Simpson et al. 1988), GPCP 

[Global Precipitation Climatology Project] (Huffman et al. 1997) and the ERA-Interim 

reanalysis (Dee et al. 2011) dataset. Among these datasets, CRU and GPCP data are only 

available at monthly scales and the focus of this study is on daily bias-correction, thus we 

did not considered the data sets. Also, TRMM data is not sufficient for climate data 

analyses as it has a limited range from 1998 to 2015. For the ERA-Interim reanalysis 

product, a number of atmospheric datasets are available over Bangladesh from 1979 to 
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until now. APHRODITE’s highly resolved reanalysis rainfall and temperature records also 

cover a climatologic period of 1980-2007. Therefore, a comparative extreme analysis 

between ERA-Intrim, APHRODITE and BMD was done where selected land-based BMD 

data were considered as the true value of observed precipitation.  Yearly, monthly and daily 

investigations of decadal rainfall were conducted in two decadal segments: 1981-1990 and 

1991-2000.  Values of 32 stations were compared with the same locations of the gridded 

products, and the decadal mean of all the stations were interpreted. This assessment has 

revealed that the APHRODITE dataset preforms better than ERA-Interim; thus the dataset 

was combined with BMD gage data to formulate a new gridded product. The detail of the 

results can be found in section 3.1.1.  

 

To construct the gridded product, each time step of rain gauge observations of BMD was 

interpolated applying the ordinary co-kriging method with the best-fitted variogram and 

the entire interpolated surface were later converted to a 25×25 km grid. Geo-spatial kriging 

techniques are found to be most widely used method in interpolating gauge rainfall data 

sets (Goovaerts 2000). Best fitted interpolated surface values were extracted considering a 

75 km distance threshold based on the assumption that a rainfall event could have 

influenced up to a 75 km distance of its surrounding. According to Wood and Field (2011), 

the 50th percentile of the size of clouds over the tropical region during dry spells is less 

than 100km. Thus, for the selected 25 km by 25 km grid resolution, the cloud length of less 

than 100km would be a representative of three grid cells or 75km spacing of the proposed 

grid. Thus, the values of the interpolated surface would be appropriate to explain the 

surrounding 75km distance of each station. Similarly, in the outside areas of these three 

grid buffer zones, the satellite derived gridded rainfall would be more relevant. Thus, the 
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missing values beyond 75 km buffers were filled with the APHRODITE dataset for each 

time step. In this way, we have implemented the 75 km buffer method to combine the 

interpolated rainfall values and APHRODITE data from 1981 to 2007 for generating the 

new gridded product. The performance assessment of the gridded product is also presented 

in section 3.1.2. A similar gridding approach was also applied to the temperature variables. 

For both minimum and maximum temperature, the only exception from the grid generation 

process of precipitation was the absence of a distance threshold after ordinary kriging. In 

that case, only BMD land-based data was used for temperature gridding. The refined 

gridded products were used as a basis for further climate analysis and referred as the 

observed data throughout the rest of the article.   

 

2.2. Model data 

Climate data derived from the five available RCM outputs have been selected for this study. 

The datasets were made available through COordinated Regional Climate Downscaling 

Experiment (CORDEX), a program that brought forth a collective effort to regional climate 

projections globally (Giorgi et al. 2009). The CORDEX aims to advance and coordinate 

the science and application of regional climate downscaling through global partnerships. 

The project defined some specific domains around the globe and invited communities to 

conduct regional downscaling in those designated domain. Through the project’s data 

portal, several RCM results became available over South Asia (CORDEX, 2015). As 

domain selection could be sensitive in a regional modeling study (Bhaskaran et al. 2012),  

Giorgi et al. (2009) provided a detailed rationale behind domain selection and spatial 

resolution over CORDEX domains.    
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In this study, the choice of GCMs was limited due to the number of freely available RCM 

results. The selection of GCMs to conduct downscaling was the decision of the 

corresponding home institutions that simulated the RCMs for RCP scenarios. Therefore, 

we utilized RCM results that are publicly available over the domain in our selected time 

slices and scenarios. Several studies explained the performance of the selected RCMs 

(Jacob and Podzun 1997; Samuelsson et al. 2011; Mcgregor et al. 2013; Teichmann et al. 

2013; Zhang et al. 2013; Iqbal et al. 2017). The RCM results selected in our study have 

reproduced satisfactory monthly rainfalls over the Himalayan region showed by Ghimire 

et al. (2015). The study conducted over the South Asian CORDEX domain and the selected 

region follows monsoon climate that is similar to the Bengal Delta (Bhatt and Nakamura 

2005).  Although the set of selected RCMs that performed satisfactory over the Himalayas 

do not guarantee to produce better results over the Bengal Delta region, due to similar 

monsoon climate, we expect that they give us a good direction in RCM selection over the 

region.  

 

Some uncertainty could arise from the choice of RCM and their internal model physics 

(Giorgi and Mearns 2002). However, to address the various types of uncertainties, Giorgi 

and Gutowski Jr. (2015) explained the internal variability and the added value of RCMs in 

the framework of the CORDEX project. A detailed statistics of the driven GCMs and 

RCMs are provided in Table 1.  

 

Representative Concentration Pathways (RCPs) are the four global greenhouse gas and 

aerosol  concentration (not emissions) trajectories of futures, which are different than the 
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previous socio-economic scenarios that give rise to alternative greenhouse gas emissions 

(van Vuuren et al. 2011). In this study, three RCPs scenarios (historical, RCP 4.5 and RCP 

8.5) for three meteorological variables from the five RCMs were utilized for the period of 

1981-2010.  

 

The performance of daily extremes, especially precipitation extremes also needs to be 

examined for the model evaluation. The evaluation of extremes was conducted based on 

five indices adopt from the CCL/CLIVAR/JCOMM Expert Team on Climate Change 

Detection and Indices (ETCCDI) (ETCCDI 2016). The selected indices are: 

 

(a) Number of heavy precipitation events (Rx10): Number of days per year when rainfall 

amount was greater than 10 mm  

(b) Number of extremely heavy precipitation events (Rx50): Number of days per year when 

rainfall amount was greater than 50 mm  

 (c) Number of rainy days (Rx1): ): Number of days per year when rainfall amount was 

greater than 1 mm 

(d) Minimum values of minimum temperature (TNn): Annual minimum temperature in °C. 

(e) Maximum values of maximum temperature (TXx): Annual maximum temperature in 

°C. 

The selected indices from ETCCDI, were originally developed at the monthly scale. In this 

study, we have converted them as yearly indices, to make the study concise and more 

representative of the scope.  All the monthly values of Rx1, Rx10 and Rx50 were thus 

summarized to yearly values. In case of TXx and TNn, the individual year values were 
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evaluated from the maximum and minimum monthly values, respectively. Due to the 

comparative large uncertainties, the precipitation extremes were only emphasized during 

the model evaluation analysis.  

 

To replicate the distribution of mean climate as well as annual extremes derived from the 

model results, bias-correction methods are considered to be the effective tools in climate 

change study (Bürger et al. 2011; Cannon et al. 2015). Bias-correction methods can vary 

depending on the application and use of data. Annual or decadal scale corrections can be 

performed with conventional ‘delta bias correction' method (Amengual et al. 2012). 

However, these methods are not suitable for preserving the daily extremes, which are 

crucial for hydrologic modelling, extremity analysis and risk assessment. A quartile-based 

method proposed by Wilcke et al. (2014) has demonstrated a successful application on 

regional climate model projections for several variables, including temperature and 

precipitation. We used an adaptation of this method in this study to retain the number of 

daily extremes over the 25 years’ time period over Bangladesh. Another study, Ehret et al., 

(2012) presented limitations of bias-correction methods over climate projections. 

However, as solution to those limitations, they proposed detail representation of bias and 

unbiased products as ‘short’ term and multi-model projections as ‘mid-term’ solutions. In 

this study, we have adopted both of these solutions to cover the limitations of the bias-

correction method.  

 

2.3. Bias correction 

In this study, we have conducted bias correction on high-resolution RCM results to 
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evaluate better climate projection. Previously published literature has shown that GCMs 

have limitations in the representation of the mean monsoon climate; thus their results need 

further refinement for regional studies (Dankers et al. 2007; Bhaskaran et al. 2012). In case 

of the bias-correction of GCMs, the coarsely simulated model results may impose a 

common projected trend over the finer-scale regional projections. If there are several 

observation stations located within the same GCM grid cell, after bias-correction, the 

projected climate of those stations will follow the same projected trend of that particular 

grid cell. However, in the regional scale, the observed trends may vary within the stations 

due to local geophysical characteristics such as orographic effects and land use/cover 

patterns (Wood et al. 2004; Jang and Kavvas 2014; Bieniek et al. 2016). On the other hand, 

dynamical resolved RCM projections retain these characteristics and provide more regional 

information of the projected climate within the same GCM cell. As a result, the bias-

correction of RCM results provide better regionally representative projections compared 

to the bias-corrected GCMs (Dankers et al. 2007; Bhaskaran et al. 2012). 

 

The statistical downscaling method applies downscaling by adopting the same bias-

correction scheme of the GCMs. The method develops empirical relations based on 

historical observations that are assumed to be stationary over time. This is usually termed 

as assumption of stationarity. To evaluate this assumption, Salvi et al. (2016) implemented 

a design-of-experiments strategy set of experiments and showed a methodology to test the 

assumption in the climate projections. The study showed that the assumption of stationarity 

is getting violated over the India region. The findings of the study also confer the inability 

of the downscaling method to capture the changes of mean rainfall under a changed 
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greenhouse emission scenario. However, as dynamical downscaling incorporates regional 

physics into the modeling, it is an approach expected to better preserve the non-stationarity 

nature of the data (Giorgi and Gutowski Jr. 2015). The advantages of dynamical 

downscaling over statistical downscaling have been documented in various literature (Paul 

et al. 2008; Hong and Kanamitsu 2014; Kang et al. 2014; Lee et al. 2014; Lee and Hong 

2014). As dynamically downscaled RCM provided better regional information than GCMs 

over South Asia (Dankers et al. 2007; Bhaskaran et al. 2012), the application of bias-

correction in RCM projections were emphasized in recent studies (Wood et al. 2004; 

Bennett et al. 2014; Macadam et al. 2016; Kis et al. 2017).   

  

Data ranging from 1981 to 2005, a 25-year time slice was used as ‘observed climatology’ 

for bias correction of the models, as observed data are more reliable after 1980 with lower 

number of missing values. Bias corrections were performed on each model projection using 

observed gridded data. Initially, model daily cumulative empirical distributions (ECDFs) 

were constructed for each individual day of a year with a 30 days’ window. Observed 

cumulative empirical distribution was also generated using no-parametric kernel approach. 

Comparing two ECDF, a relation of respective biases was established for each grid cell. 

Using the relation, RCM data from all models were bias corrected from 1981 to 2100. The 

process was adopted from Wilcke et al. (2013a), where they demonstrated the retainment 

of the RCM’s temporal structure and inter-variable dependencies. The method retains the 

quality of the temporal structure of multiple variables and improves RCM output at a daily 

time scale. It is true that the method might retain partial biases in the far future when non-

stationarity of the model’s error characteristics occurs. However, even in non-stationarity, 
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the method is expected to improve the biases of raw RCMs (Wilcke et al. 2013). 

 

The projections of bias corrected CMIP5 results over Bangladesh were further analyzed 

both spatially and temporally under moderate RCP 4.5 and the strongest RCP 8.5 scenarios 

with respect to baseline climate. Future states of precipitation, maximum and minimum 

temperature and four selected extremes (TXx, TNn, Rx10 & Rx50) are described in section 

3.2.1. As our study focused on providing a comprehensive message of future extremes over 

the region, we presented both bias-corrected and uncorrected future results of selected 

extremes in the spatial analysis. It should be noted that, data from CISRO-CCSM4 

simulation shows unrealistic deviation during 2006-2040 for all three climate variables. 

Therefore, we excluded the results of CISRO-CCSM4 model in our subsequent analysis.  

 

3. Results and Discussion 

3.1. Observed climate and Bias correction 

3.1.1 Performance of observed gridded product   

Prior to the generation of observed grid, we compared suitable existing gridded data, ERA-

Interim and APHRODITE, with gaged values. The assessment was presented in Table 2.  

Annual values of the precipitation from both gridded products deviate from observed 

values, where for ERA-Interim, they exceed 400mm in both decades. At monthly scales 

however, during monsoon season, significant disagreement has been observed in ERA-

Interim data. This finding agrees with those of Rahman et al., (2012b), which showed that 

ERA-40, a previous version of  the ERA-Interim product poorly captured the monsoon 

rainfall, especially in the Sylhet region (North-eastern part of Bangladesh). Such dry biases 
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of ERA-Interim were also observed over north-eastern Bangladesh by Ménégoz et al., 

(2013). In case of APHRODITE data, its shows considerable difference in compare to 

BMD data in some of the daily climatic extremes like 50mm rainy days, 90th percentile of 

rainfall and wet days (Table 2). However, from the overall gridded product assessment, 

APHRODITE data has proven to be better than the ERA-Interim data product. Therefore, 

for further improvement of daily extremes, APHRODITE data were combined with BMD 

gauged data to formulate a new gridded data product.   

 

The performance of precipitation and its extremes for the newly generated dataset also are 

also showed in Table 2. The gridded dataset not only increase the accuracy of the mean at 

yearly and monthly temporal scale but also provides improved values of the daily rainfall 

extremes over Bangladesh. Notable improvement of monthly rainfall is also observed in 

the new dataset during the monsoon season, which is ranging from month of July to 

September. 

 

3.1.2. Performance of the models before bias-correction    

Model requires comparative analogy in respect to the gridded product. The performance 

assessment of each model with the observed data is shown in Figs. 1a, b, c, at a monthly 

temporal scale.  

 

The annual rainfall cycle in South Asia is dominated by the monsoon season during the 

months of June, July, August and September, when almost 70% of the rainfall occurs. 

Among the five regional models, only the RCA4-EC-EARTH model overestimates the 
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monsoon rainfall over the region. The simulations obtained by the CISRO RCMs show 

very similar temporal biases of precipitation, which makes it evident that the boundary data 

from GCMs plays a dominant role in those RCMs for simulating regional precipitation 

over the region. This argument is also supported by Ghimire et al., (2015), where similar 

annual patterns are also found in the far north of the country over the Himalayan area. The 

study revealed overestimation of rainfall over the Himalayan region, whereas, in our case 

monsoon rainfall is underestimated. This discrepancy might be due to the inaccuracy of the 

orographic rainfall at the high altitudes produce by the regional model. For REMO-MPI, 

there is a large dry bias during monsoon season. Similar findings have also been reported 

by Jacob et al., (2012). . In general, the temperatures derive from the models show better 

performance than precipitation in terms of monthly climatic biases.  Minimum temperature 

produced by RCA4-EC-EARTH model, has cold biases during winter and post monsoon 

seasons. During the months of March and April, all of the RCMs show some biases in 

maximum temperature, but the rest of the annual cycle are consistent with observation.   

 

The choice of convective schemes across the regional climate models could play a crucial 

role in reproducing monsoon rainfall, which eventually affect the dynamic downscaling 

process (Prein et al. 2015). In this study, we have utilized the results of three regional 

models (Table 2) that have their own convective schemes. The cloud formation scheme of 

REMO was adopted from the MPI global model and it is based on the approach from 

Sundqvist (1978). In case of CCAM from CSIRO, the atmospheric climate model utilizes 

a conformal cubic grid. It includes CSIRO’s mass cumulus convection scheme that 

incorporates downdrafts and the evaporation of rainfall (McGregor 2005). For the RCA of 
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SMHI, the regional model resolves convective processes with an entraining and detraining 

plume model using the Kain–Fritsch (KF) scheme (Kain and Fritsch 1993; Kain 2004). In 

this context, using the Weather Research and Forecasting (WRF) model, Devanand et al. 

(2017) showed that the among various convective schemes, the Kain–Fritsch (KF) scheme 

performed better in simulating Indian summer monsoon. Our analysis also found 

agreement, as RCA4-EC-EARTH produced comparable rainfall compared to other RCMs 

over the Bengal delta region.   

 

It should be noted that the domain setup (i.e. a nested domain) is also important in regional 

climate downscaling (Devanand et al. 2017). Currently, the CORDEX domain of South 

Asia is defined as a single nest domain with a large spatial coverage. Due to the high 

resolution (0.44 degree by 0.44 degree), the domain is already computationally expensive 

for multiple scenarios with multiple ensembles. However, with the advancement of 

computational power, the CORDEX domain can be redefined in the future to incorporate 

nesting operations for better performance of the models.   

 

After the assessment of mean climate, we also explored the efficiency of the models in 

generating selected extremes. Spatial and temporal evaluations of the precipitation indices 

have been shown in Fig. 2, 3, 4. The spatial analysis reveals dry biases in Rx50 for the 

REMO-MPI model results, especially in the northwestern region. All three CSIRO models 

have been able to capture Rx50 quite well and show little spatial variability among them. 

RCA4-EC-EARTH simulation data shows number of Rx50 lesser in the Sylhet region 

(north-eastern part), whereas in the east-central part Rx50 is much higher than observed 
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climate. In context of lower end of rainfall distribution, Rx1 are well captured by all three 

CSIRO simulations (Fig. 3). However, the CSIRO models estimate higher number Rx1 

over the northwestern parts, while REMO-MPI and RCA4-EC-EARTH show lower Rx1 

over the north and the northeastern areas compare to observed precipitation. In terms of 

heavy rainfall (Rx10), except RCA4-EC-EARTH simulation, all other RCM simulations 

suggest lower values compare to observation, but they preserved the existing spatial pattern 

during the baseline period (not shown in the figures).  Spatial average of Rx10 and Rx50 

from the models present some dry temporal biases than respective observed extremes (Fig. 

4). As these model biases rapidly change between individual years for a particular model, 

average of all model results can give us a better picture of model performance over the 

country. After observing a constant dry biases in both indicators, correction of these biases 

become essential for further extreme analysis. 

 

3.1.3. Performance of the models after bias-correction 

Bias corrected data results along with raw model data are shown in the Taylor diagram 

(Figs. 1d, e). The daily bias correction has improved the correlation factor and standard 

deviations of the model results.  The improvement is founded to be higher in the model 

temperature (correlation about 0.95) than precipitation (correlation about 0.85).   

Spatial and temporal agreement in the climatic extremes is achieved from the bias 

correction of the RCM results. Rx50 and Rx10 values from all the models show similar 

spatial patterns during the base period. However, in terms of magnitude, exception has 

been observed in the corrected RCA4-EC-EARTH model result, where increased Rx10 

values are found over the northeastern region (Fig. 3). The temporal analysis reveals that 
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bias-correction of precipitation actually made the model results much wetter than before. 

Similar comments about these wet biases from the quartile mapping were also found in 

previous studies (Wilcke et al. 2013).   As stating tail of kernel distribution unable to 

capture accurate amount of dry days, such error might occurs  (Wilcke et al. 2013). 

However, as Bangladesh is a monsoon dominated region, the pattern of normal to extreme 

precipitation have significant impacts on its agro-based economy and socio-economic 

outcomes (Ahmed 2003; Islam et al. 2005; Ahmed 2006). Deriving accurate information 

of precipitation variability from the climate models are essential for studying the climatic 

impacts for future decision making of the country (Shahid 2011). In this context, the daily 

bias corrections of RCM rainfall allowed significant improvement by providing a more 

realistic capture of high intensive rainfall events. Moreover, the corrected model results 

also exhibit improved accuracy of the mean climate over the region. For temperature, the 

daily bias correction method reduces the disagreement of models results drastically, where 

corrected model datasets are highly correlated (temporal correlations > 0.9) with observed 

data (Fig. 1). Therefore, spatial analyses of these datasets have not been shown in this 

study. 

 

3.2. Future changes  

3.2.1 Projected temporal state of PR, TMAX and TMIN 

The mean annual PR over Bangladesh under RCP 4.5 and RCP 8.5 are shown in Fig. 5a, 

b, c, d.  In general, projected annual average of PR show disagreements between the models 

under both scenarios, where most of them, suggest an increase in future years. An exception 

is noted in MPI projections, as it shows decrease of PR after 2050s under RCP 8.5. At the 
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end of 21st century, mean annual PR is estimated to be in range of 2400 to 3000 mm/year 

and 1900 to 3000 mm/year under RCP 4.5 and RCP 8.5 respectively. The model variability 

of RCP 4.5 is lesser during 2090s (2081-2090) compared to RCP 8.5, providing more 

confidence in RCP 4.5 scenarios. The RCP 4.5 scenario is developed considering the rising 

radiative forcing pathway leading to 4.5 W/m2 at stabilization after 2100 where in the RCP 

8.5 scenario energy continues to accumulate (van Vuuren et al. 2011). Therefore, fixed 

energy change of RCP 4.5 after 2100 could constrain the variability of model results. RCA4 

and REMO models are much more variable in PR changes throughout the model 

projections, while CSIRO RCM shows much more consistent growth. Some insight of PR 

change over Bangladesh supports our results as well. Previous CMIP3 based reports 

suggested change of PR from -5% to over 30% in future years in comparison to the baseline 

period (Hasan and Islam, 2013; Hasan et al., 2013; Nowreen et al., 2014; Kumar et al., 

2014, 2013). Change of yearly PR also found in the study conducted by Caesar et al. (2015), 

where they referred -0.5mm/day to 2mm/day (-180mm/year to 750mm/year) change in 

future rainfall. Some South Asia-based RCP projections also reported similar finding 

(Chaturvedi et al. 2012; Jayasankar et al. 2015; Sharmila et al. 2015).  As we explained in 

previous sections that the advance bias correction can provide confident by removing 

model disagreement with observed, thus our results can be a more reliable as the similar 

correction mechanism applied for projecting the future climate of the country.   

 

The annual TMAX from CMIP5 projections over Bangladesh are illustrated in Fig. 5c, d. 

The variable exhibits significant increase in both RCP projections. Mean annual TMAX, 

predicted to rise to 31.5°C-32°C under RCP 4.5 and to 32.5°C-34°C under RCP 8.5 in the 
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country. Increased absolute values of TMAX under RCP 8.5 indicates that mean annual 

TMAX of the 2080s will be as warm as the mean summer temperature (33.5°C) of present 

day, which hints alarming consequences for the country. These results are corroborated by 

similar findings in previous studies (Chaturvedi et al. 2012; Hasan and Islam 2013; Mittal 

et al. 2014).  

 

The projected annual TMIN over Bangladesh also presented in Fig. 5e, f.  From 21°C 

during 1990s, TMIN projected to increase up to 23±0.5°C at the end of century under RCP 

4.5. Under RCP 8.5, CMIP5 models suggest that TMIN will increase to a range of 24.5 to 

26.5 °C during 2080s. Such rapid increase in the strongest RCP scenario give us an 

indication of an appalling future, where the number of winter days will be much lower than 

the current state. It is also noteworthy that TMIN shows a much faster increase than TMAX 

(about 1°C higher by the end of the 21stcentury) under both scenarios. Thus, it signals a 

reduced variation between day temperature-TMAX and night temperature-TMIN over the 

region.        

 

3.2.2. Projected spatial changes of PR and average temperature  

Spatial changes of PR over Bangladesh are assessed based on bias corrected CMIP5 

climate projections (Fig. 6). RCA4-EC-EARTH and all three CSIRO projections show an 

increase of rainfall in future years. The projected increase is not gradual in the earlier 

decades (2050s), but by the 2080s, most of the projections show steady increase of 

precipitation over the northwestern parts of the country. The RCA4 projection shows much 

higher changes of PR over the Teesta river basin area (northwestern part). CISRO-CCSM4 
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and CSIRO-CCNRM projections predicted an increase of PR over the Sylhet region 

(northeastern part) under the RCP 8.5 scenario, where CSIRO-MPI-ESM shows such 

increase in the Chittagong Hill Tracts region (southeastern part) of the country. Contrary 

to other model projections, the model results from REMO-MPI show projected decrease 

of rainfall under both RCP 4.5 and RCP 8.5 scenarios. In this projection, a faster decrease 

of rainfall is observed in the northern parts than southern parts for both pathways. It is 

notable that, under RCP 8.5, estimated decrease of 900mm annual rainfall is observed in 

Sylhet region by the end of the century.  

 

As TMAX and TMIN changes are very similar to each other, spatial changes of average 

temperature by averaging TMAX and TMIN are presented in the study (Fig. 7). The Fig. 

shows the spatial distribution of mean annual changes in average temperature in the 2050s 

(2041-2070) and 2080s (2071-2100) under RCP 4.5 and RCP 8.5 scenarios, relative to 

baseline. The southwestern coastal zone of the country projected to be the most affected 

with definite increase in temperature. Interestingly, all projections strongly agreed with 

such observations, strengthening the CMIP3 climate model results and the argument that 

the southwestern part of Bangladesh is the most vulnerable due to its socio-economic 

condition and population density (Ali and Islam 2014; Dastagir 2015). Vulnerability due 

to such increase of overall temperature ranges will result in disastrous outcomes for this 

region by the end of the 21st century. During 2050s, projected temperature estimated to 

increase by 0.75°C-1.75°C under RCP 4.5 and by 1°C-2.5°C under RCP 8.5 in the southern 

parts of the country. Although RCP 4.5 scenarios are known to be less ambitious and CO2 

controlled emission scenarios, most of the climate models still suggest at least a 2°C 
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increase of temperature during 2080s over most part of the country. On the other hand, the 

RCP 8.5 scenarios provided an alarming projection of up to 4.5°C within 2100 over the 

whole country. It should be noted that CCSM4 model result shows much lesser increments 

of temperature among CSIRO RCMs. 

 

In general, north-western part of Bangladesh experiences lower rainfall compared to the 

hilly regions located in the eastern parts of the country. Analyzing model projections and 

their bias correction, it is observed that RCA4 and REMO show an increase of temperature 

over low rainfall zones. Contrary to that, CSIRO models conclude higher increase of 

temperature in the wet hilly regions. The contrasting characteristics of the projected results 

reaffirm that the relationship of rainfall depends on complex interaction of ocean, land and 

atmosphere, and not just temperature characteristics. Thus, it again emphasized the 

importance of dynamic over statistical downscaling considering regional scales (5km to 

50km) for a clear understanding of the future climate.  

 

3.2.3. Projected changes of climatic extremes 

In this study, we have tried to portrait the effect of bias-correction on future extremes. 

Therefore, we demonstrated the difference between bias-corrected and uncorrected climate 

in a spatial analysis of the extreme indices.  The spatial changes of two precipitation (Rx10 

and Rx50) and two temperature (TXx, TNn) indices, both bias-corrected and uncorrected 

versions, are presented in Fig. 8, 9. The uncorrected changes of Rx10 and Rx50 differs 

from bias-corrected values of same variables, both in terms of pattern and magnitude. The 

pattern of uncorrected Rx10 deviates drastically from 2050s to 2080s in both scenarios, 
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where changes in the pattern between the time-slices were gradual in the bias-corrected 

results. In terms of magnitude, uncorrected Rx10 shows smaller changes under RCP 4.5, 

but more increase on the southern parts of country during 2080s of RCP 8.5 in compare to 

bias-correction.  

 

The changing variability is also much higher in the uncorrected than the bias-corrected 

projections, under both scenarios. For example, northern parts of the country experience 

about 7±5 (which means changes are observed from 2 days to 12 days) increase of Rx10 

under bias-corrected projection during 2050s of RCP 4.5 where, in case of uncorrected 

values, the increment is 3±6 for the same period and scenario. In case of RX50, uncorrected 

projections change the signal from positive to negative under RCP4.5 scenarios, especially 

in the north-central region of the country. The uncorrected values of Rx50 also shows a 

higher uncertainty range in respect to the bias-corrected range, with accordance to Rx10. 

In cases of the temperature extremes, the uncorrected and bias-corrected pattern is more 

agreeable than the precipitation extremes, as expected, due to fact that the models in 

hindcast simulation better captured temperatures. However, the variability between 

uncorrected and bias-corrected changes are still persistent, where uncorrected extremes 

shows hotter climate with a higher uncertainty range. Both figures for extremes suggest 

that the uncorrected changes give much wider uncertainties and exhibit erratic pattern of 

changes in future projections.  

 

In addition, for uncorrected projections, the policy makers need to keep in mind that the 

changes that are represented in the Figures are not changes from past climate, rather the 
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changes are from the individual model results of the baseline run. This can cause a great 

ambiguity in conferring the results in the prospective decision-making process. In this 

context, the uncorrected climate projections can give idea of the wider range of 

uncertainties, where bias-corrected model results can provide a higher level of confidence. 

Utilizing the projected changes in extremes by the bias-correction techniques, the decision 

maker might have a smaller uncertainty range but they will have a realization of changes 

from the actual observed climate. As the focus of this study is to covey assertive 

information of extremes for decision makers, the bias corrected results should be more 

relevant in this context. Therefore, we have described the bias-corrected results as the 

projected result in the following sections.   

  

Projected mean of precipitation extremes (Rx10 and Rx50) suggest an increase of rainfall 

all over the country, where northeastern part indicate higher increment rate than the rest of 

the country under both RCP scenarios. The region is mostly hilly and important for 

industrial tea plantation (Islam and Miah 2003). As almost all models conclude the increase 

of extreme rainfall at end of the 21st century, such changes may have significant impact on 

the tea plantations of the area. These areas are also prone to high amount of intense rainfall 

events and flash flooding. Thus, increase of heavy rainfall events will eventually extend 

the risk of flash flooding to an alarming level. In addition, heavy rainfall events (Rx10) 

will increase in much faster rate than extremely heavy rainfall events (Rx50) all over the 

country. The projected Rx10 of model mean refers an increase of at least 80 or more of the 

heavy rainfall days within a decade (8 days per year) from current climate.  Majority of 

model result also suggest that the country will experience at least four more days of 
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extremely heavy rainfall annually from present time to the end of the century. By looking 

at variance of Rx50 between model projections, it can be said that all five models show 

more confidence in projecting extremes over the western parts than other parts of the 

country.   

 

Figure 9 shows the changes of TXx and TNn during 2050s and 2080s under both RCP 4.5 

and RCP 8.5 scenarios. All the model under both scenarios refers a faster rise of TNn then 

TXx. Minimum temperature (TNn) increase might be favorable for cold-vulnerable crops 

or destructive for cold-loving crops (Parmesan 2006). Eastern parts in general shows much 

higher rise of TXx other areas of the country, with more confidence due to the low values 

of variability.  

 

In conjunction with precipitation and temperature increases, it is found that the eastern part 

of the country will experience more changes in terms of both mean climate and extremes 

than western parts of the country. Heavy and extremely heavy rainfalls in majority models 

show a significant increase over the hilly regions (northeastern and southeastern part) of 

the county in both time slices. Interestingly, temperature extremities will also increase over 

the same regions.  

 

Probability distribution (PD) of the two precipitation extremes (Rx10, Rx50) and two 

temperature extremes (TXx & TNn) are presented in Fig. 10a, b, c, d, e, f (are bias-

corrected). To examine the extremity of precipitation, knowledge of future changes in 

number of heavy rainy days and extreme rainy days are required which are presented as 
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Rx10 and Rx50 respectively. Most of the PD of Rx10 formulated from bias corrected 

projections shows increase of heavy rainfall under both scenarios, where only REMO-MPI 

shows the opposite. According to REMO-MPI model results, under the RCP 4.5 scenario, 

decreasing trends of RX10 will stop at 2050s, where under RCP 8.5 it will continue to 

decrease till the end of the 21st century. Other models suggest that under both scenarios 

the PD will be shifted toward higher number. Such shift will likely cause at least 10 more 

days of heavy rainfall per year. A significant shift of probability in extreme precipitation 

is only observed in RCA4-EC-EARTH model result under RCP 8.5 scenarios. All other 

models show higher probability that Rx50 will decrease at 2050s under the same scenario 

but projected changes are not significant.  

 

Changes in the highest daytime temperature (TXx) in a year are presented in Fig. 10e, f. 

Under RCP 4.5, shift in the PD of TXx is uncertain in all models. However, the flatter 

distribution from the baseline in EC-EARTH and REMO model suggest that the variation 

of TXx will be high between the years during 2080s. Under RCP 8.5, the significant shift 

of the lower tail of the TXx distribution indicates a definite increase in summer days. Based 

on the EC-Earth and REMO model results, such increase can reach up to 5°C at the end of 

current century over the country.    

 

Projected probability of minimum temperatures during winter season is also illustrated in 

Fig. 10g, h. Gradual shift toward a higher TNn have been noticed in all model projections 

under RCP 4.5 at 2050s, but such a shift will not continue up to 2080s under the same 

scenario. RCP 8.5 scenario suggests a significant increase in probability of TNn based on 
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all model results. In contrary to much colder temperatures from other hypotheses, TNn 

shows a reduction of its extremity in future years. However, such results can be uncertain 

due to the inability of GCMs to produce such extremes (Barros et al. 2014). It is evident 

that, increase of TNn during 2080s is much higher than increase of TXx during the same 

period. Such incremental shift in PD can lead to a less variable diurnal temperature range 

over Bangladesh.  

 

In this study, we have utilized five combinations of RCMs and GCMs that gave the 

projections of future probable climate and its extremes over Bangladesh. A larger set of 

RCMs and GCMs can cover a wider uncertainty range, and provides us more information 

of the projected future. However, we have a limited choice of GCMs and RCMs available 

for this study due to unavailability of projections and computational constrains over the 

CORDEX domain (explained in the Methods section). This limitation could potentially 

improve in the future as additional CMIP5 RCM projections become available.     

  

The replication of non-stationarity by climate models is important for climate projections. 

To explore the confidence of the projections, Salvi et al. (2016) demonstrated a strategy to 

check the assumption of stationarity for statistical downscaling methods and also 

recommended to test the framework on dynamical downscaling as well as on GCM results. 

This framework could potentially be very useful for the bias-corrected and uncorrected 

RCM results over Bangladesh. However, it was not covered in this study, and thus provides 

an opportunity for future improvement.      
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4. Conclusion 

To examine future changes in climate and climatic extremes in a monsoon-dominated 

region, we have analyzed the results from the five available regional climate models from 

IPCC AR5 over Bangladesh for the present (1961-1990) and future (2005-2100). For a 

climatic extremes analysis, we have generated a new gridded rainfall data product over the 

country to address information gap on extremes, insufficient observed grid-data at a daily 

scale, and uncorrected high bias values of future projections over the region. Moreover, the 

most recent CMIP5 Regional Climate Models with higher accuracy under emission 

trajectories have been evaluated. The summarized findings can be presented as follows: 

 

After bias correction with newly generated observed data product, the patterns of extreme 

climate events are preserved between the model and observations over Bangladesh. The 

comparison of Taylor diagram also validated the performance of bias correction between 

observed and model data. Under the RCP 4.5 and RCP 8.5 scenarios, rainfall increase has 

been observed significantly and with high confidence over the eastern hilly regions, 

especially in the northern parts. A possible reduction of rainfall will be more prominent in 

the northern zones than southern zones of the country. Maximum and minimum 

temperature changes are more incremental in the southwestern parts compare to other parts. 

The model result under RCP 4.5 scenario shows large uncertainly in rainfall and much 

steady rise of temperature in the middle of the 21st century. Under RCP 8.5, the projected 

increase in rainfall events is observed over the areas where temperature will increase faster 

and vice-versa. Due to the energy difference between RCP 4.5 and RCP 8.5, the rainfall 
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projections of RCP 8.5 shows more uncertainty than RCP 4.5 at 2100. The projected model 

results have also indicated the changes in the frequency of extreme precipitation and 

temperature events. The extremities of rainfall tend to be more variable than temperature 

extremes and the number of heavy rainfall days will be much higher in future years. The 

results imply that there would be much higher heavy rainfall events over the northeastern 

hilly regions than other parts of the country. Alarmingly, the temperature extremity also 

tends to have a drastic increase over the same regions.   

 

Although bias correction of RCM provides a useful basis for the impact studies, 

considerable uncertainties remain in GCM, RCM and the bias correction method itself. 

Despite these uncertainties, bias-corrected projections at the appropriate spatial-temporal 

scales are the most reliable tools for understanding hydro-climatic impacts. In this study, 

an initial investigation of the hydroclimatic extremes has been performed with an 

appropriate daily scale bias correction method with a new gridded climate dataset over a 

monsoon region, the Bengal Delta region of South Asia. Further analyses of monthly or 

seasonal extremities in precipitation and temperature should be pursued in future years. 
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Figure Captions: 

Fig. 1 Monthly climatology of rainfall (a), maximum temperature(b) and minimum 

temperature (c) that found from the five CMIP5 regional models and the observed gridded 

data over Bangladesh. (d-e) Taylor diagram (after Taylor, 2001) for annual mean rainfall 

and mean temperature over the period 1981–2000 over Bangladesh in reference to 

observed BMD data, showing  raw RCM results and bias-corrected RCM results generated 

from CMIP5 models.  

 

Fig. 2 The temporal mean (1981–2005) of Rx50 (i.e. Number of days greater than 50mm 

rainfall per year) over Bangladesh derived from observed (a) BMD Grid, from the raw 

RCM of (b) RCA4-EC-EARTH, (c) REMO-MPI, (d) CSIRO-CCSM4, (e) CSIRO-

CCSM4, (f) CSIRO-CCSM4 and from the respective error-corrected RCMs (g-k). 

 

Fig. 3 The temporal mean (1981–2005) of Rx1 (i.e. Number of days greater than 1mm 

rainfall per year) over Bangladesh derived from observed (a) BMD Grid, from the raw 

RCM of (b) RCA4-EC-EARTH, (c) REMO-MPI, (d) CSIRO-CCSM4, (e) CSIRO-

CCSM4, (f) CSIRO-CCSM4 and from the respective error-corrected RCMs (g-k). 

 

Fig. 4 Rx10 and Rx50 values from multi-models and observed data over Bangladesh from 

1981 to 2005 are presented with shaded time series plot. Blue and yellow region represent 

the range of model before correction and after correction respectively. 
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Fig. 5 Projected annual precipitation, maximum temperature and minimum temperature 

over Bangladesh in RCP 4.5 (top) and RCP 8.5 (bottom) scenarios.  

 

Fig. 6 Changes of annual precipitation from baseline (1981-2005) to 2050s (2041-2070) 

and 2080s (2071-2100) observed in RCA4-EC-EARTH, REMO-MPI, CSIRO-CCSM4, 

CSIRO-CCNRM and CSIRO-CNRM-CM5 RCMs in RCP 4.5 scenario. Similar results, 

but in RCP 8.5 are also shown in (k-t).    

 

Fig. 7 Changes of average temperature from baseline to 2050s (2041-2070) and 2080s 

(2071-2100) derived from RCA4-EC-EARTH, REMO-MPI, CSIRO-CCSM4, CSIRO-

CCNRM and CSIRO-CNRM-CM5 RCMs in RCP 4.5 scenario. Similar result but in RCP 

8.5 are also shown in (k-t).     

 

Fig. 8 Projected mean changes of heavy precipitation (Rx10) and extreme precipitation 

(Rx90) from five RCMs for 2050s and 2080s relative to 1981–2005. Changes are showed 

in decadal scale and contour line represents the variability of the five models from its mean 

values. Bias corrected (top) and bias uncorrected (bottom) regional climate projections 

have been compared. 

 

Fig. 9 Projected mean changes of highest summer temperature (TXx) and lowest winter 

temperature (TNn) from five RCMs for 2050s and 2080s relative to 1981–2005. Changes 

are showed in annual scale and contour line represents the variability of the five models 

from its mean values. Bias corrected (top) and bias uncorrected (bottom) regional climate 
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projections have been compared.   

 

Fig. 10 Annual probability distribution functions for Rx1, Rx50, TXx and TNn indices for 

five regional climate model in three time periods of 21st Century. The solid line represents 

the observed period and dashed line represent mean of the five models in future time slices. 



54  

Fig 1. Monthly climatology of rainfall (a), maximum temperature(b) and minimum temperature (c) 

that found from the five CMIP5 regional models and the observed gridded data over Bangladesh. (d-

e) Taylor diagram (after Taylor, 2001) for annual mean rainfall and mean temperature over the period 

1981–2000 over Bangladesh in reference to observed BMD data, showing  raw RCM results and bias-

corrected RCM results generated from CMIP5 models. 
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Fig 2. The temporal mean (1981–2005) of Rx50 (i.e. Number of days greater than 50mm rainfall per 

year) over Bangladesh derived from observed (a) BMD Grid, from the raw RCM of (b) RCA4-EC-

EARTH, (c) REMO-MPI, (d) CSIRO-CCSM4, (e) CSIRO-CCSM4, (f) CSIRO-CCSM4 and from 

the respective error-corrected RCMs (g-k). 
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Fig. 3 The temporal mean (1981–2005) of Rx1 (i.e. Number of days greater than 1mm rainfall per 

year) over Bangladesh derived from observed (a) BMD Grid, from the raw RCM of (b) RCA4-EC-

EARTH, (c) REMO-MPI, (d) CSIRO-CCSM4, (e) CSIRO-CCSM4, (f) CSIRO-CCSM4 and from 

the respective error-corrected RCMs (g-k). 
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Fig. 4 Rx10 and Rx50 values from multi-models and observed data over Bangladesh from 1981 to 

2005 are presented with shaded time series plot. Blue and yellow region represent the range of model 

before correction and after correction respectively. 
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Fig. 5 Projected annual precipitation, maximum temperature and minimum temperature over 

Bangladesh in RCP 4.5 (top) and RCP 8.5 (bottom) scenarios.  
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Fig. 6 Changes of annual precipitation from baseline (1981-2005) to 2050s (2041-2070) and 2080s 

(2071-2100) observed in RCA4-EC-EARTH, REMO-MPI, CSIRO-CCSM4, CSIRO-CCNRM and 

CSIRO-CNRM-CM5 RCMs in RCP 4.5 scenario. Similar results, but in RCP 8.5 are also shown in 

(k-t).    

 

 

  



60  

Fig. 7 Changes of average temperature from baseline to 2050s (2041-2070) and 2080s (2071-2100) 

derived from RCA4-EC-EARTH, REMO-MPI, CSIRO-CCSM4, CSIRO-CCNRM and CSIRO-

CNRM-CM5 RCMs in RCP 4.5 scenario. Similar result but in RCP 8.5 are also shown in (k-t).     
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Fig. 8 Projected mean changes of heavy precipitation (Rx10) and extreme precipitation (Rx90) from 

five RCMs for 2050s and 2080s relative to 1981–2005. Changes are showed in decadal scale and 

contour line represents the variability of the five models from its mean values. Bias corrected (top) 

and bias uncorrected (bottom) regional climate projections have been compared. 
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Fig. 9 Projected mean changes of highest summer temperature (TXx) and lowest winter temperature 

(TNn) from five RCMs for 2050s and 2080s relative to 1981–2005. Changes are showed in annual 

scale and contour line represents the variability of the five models from its mean values. Bias 

corrected (top) and bias uncorrected (bottom) regional climate projections have been compared.   
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Fig. 10 Annual probability distribution functions for Rx1, Rx50, TXx and TNn indices for five 

regional climate model in three time periods of 21st Century. The solid line represents the observed 

period and dashed line represent mean of the five models in future time slices. 
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Table 1: Yearly, monthly and daily statistics of BMD stations, Aphrodite, Era-interim and newly 

developed BMD gridded datasets over Bangladesh from 1981 to 2000. Bracket values represent the 

difference between BMD station data and respective gridded data value.  

 

 

Rainfall Statistics 
(1) BMD Stations (2) Aphrodite (3) Era-INTERIM (4) BMD Grid 

1990s 2000s 1990s 2000s 1990s 2000s 1990s 2000s 

Annual 

rainfall(mm) 
2588 2441 

2258 

(329) 

2220 

(368) 

1948 

(640) 

2041 

(400) 

2477 

(111) 2370 (71) 

M
o

n
th

ly
 r

a
in

fa
ll

 (
m

m
) 

Jan 6 12 7 (1) 12 (6) 5 (1) 13 (2) 9 (3) 13 (1) 

Feb 22 31 18 (4) 26 (4) 20 (1) 24 (8) 22 (1) 30 (1) 

Mar 59 62 51 (8) 58 (1) 42 (11) 54 (5) 59 (6) 60 (2) 

Apr 165 110 147 (18) 100 (64) 107 (54) 103 (5) 166 (5) 113 (6) 

May 290 298 269 (20) 274 (16) 224 (52) 245 (47) 307 (31) 296 (5) 

Jun 455 436 399 (55) 419 (35) 361 (121) 388 (68) 435 (47) 422 (33) 

Jul 561 494 502 (60) 457 (105) 407 (178) 397 (123) 543 (43) 473 (48) 

Aug 417 433 370 (47) 388 (29) 336 (95) 350 (99) 413 (18) 412 (37) 

Sep 329 328 312 (17) 304 (25) 292 (47) 292 (45) 338 (2) 344 (7) 

Oct 166 175 136 (30) 145 (21) 111 (58) 141 (41) 159 (10) 163 (19) 

Nov 48 36 36 (12) 28 (21) 28 (23) 27 (11) 40 (11) 33 (5) 

Dec 12 11 11 (1) 9 (3) 12 (0) 8 (3) 13 (1) 10 (0) 

Wet days 118 120 154 (36) 159 (40) 181 (63) 191 (71) 147 (29) 143 (23) 

Dry days 247 245 211 (36) 207 (40) 184 (63) 175 (71) 218 (29) 222 (23) 

90th p*/year 22 22 19 (3) 19 (3) 15 (7) 16 (6) 21 (1) 20 (2) 

50mm days/year 14 13 8 (6) 7 (7) 1 (13) 1 (12) 10 (4) 9 (3) 

10mm days/year 64 62 65 (1) 65 (3) 85 (21) 89 (27) 70 (5) 66 (5) 

 

* Number of days when rainfall was greater or equal to 90th Percentile of decade in a year.  
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Table 2. Description of selected regional climate models over Bangladesh 

 

 

 

Simulation 

names 

Regional Climate 

Model 
Driving GCM Institute Scenarios Resolution 

RCA4-EC-

EARTH 

Rossby Centre 

regional atmospheric 

model version 4 

(RCA4) 

(Samuelsson et al. 

2011) 

European 

Consortium ESM 

(EC-EARTH) 

Rosssy Centre, 

Swedish 

Meteorological and 

Hydrological 

Institute (RCA4), 

Sweden 

Historical 

RCP 4.5 

RCP 8.5 

25km 

CSIRO-

CNRM-CM5 

Commonwealth 

Scientific and 

Industrial Research 

Organisation 

(CSIRO), 

Conformal-Cubic 

Atmospheric Model 

(CCAM) (Jacob and 

Podzun 1997) 

Centre National de 

RecherchesMétéoro

logiques Climate 

Model, version 5  

(CNRM-CM5) 

CSIRO Marine and  

Atmospheric 

Research, 

Melbourne, 

Australia 

Historical 

RCP 4.5 

RCP 8.5 

50km 

CSIRO-

CCSM4 

Commonwealth 

Scientific and 

Industrial Research 

Organisation 

(CSIRO), 

Conformal-Cubic 

Atmospheric Model 

(CCAM) (Jacob and 

Podzun 1997) 

The Community 

Climate System 

Model, version 4  

(CCSM4) 

CSIRO Marine and  

Atmospheric 

Research, 

Melbourne, 

Australia 

Historical 

RCP 4.5 

RCP 8.5 

50km 

CSIRO-MPI-

ESM-LR 

Commonwealth 

Scientific and 

Industrial Research 

Organisation 

(CSIRO), 

Conformal-Cubic 

Atmospheric Model 

(CCAM) (Jacob and 

Podzun 1997) 

Earth system model 

of Max Planck 

Institute for 

Meteorology 

(MPI-ESM-LR) 

CSIRO Marine and  

Atmospheric 

Research, 

Melbourne, 

Australia 

Historical 

RCP 4.5 

RCP 8.5 

50km 

REMO-MPI 

The Regional Model 

of Max Planck 

Institute for 

Meteorology  

(REMO) 

(Teichmann et al. 

2013) 

 

Earth system model 

of Max Planck 

Institute for 

Meteorology 

(MPI-ESM-LR) 

Climate Service 

Center, Hamburg, 

Germany 

Historical 

RCP 4.5 

RCP 8.5 

50km 
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Key Points: 

 Rotavirus shows strong mortality and morbidity, as well as strong spatial and 

temporal variability in South Asia. 

 Strong winter and weak monsoon transmission cycles dominate South Asia, 

modulated by regional climatic extremes. 

 Satellite-derived hydroclimatic information has potential to help forecasting of 

rotavirus risk over Bengal Delta. 
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Abstract 

 

Rotavirus is the most common cause of diarrheal disease among children under five. 

Especially in South Asia, rotavirus remains the leading cause of mortality in children due 

to diarrhea. As climatic extremes and safe water availability significantly influence 

diarrheal disease impacts in human populations, hydroclimatic information can be a 

potential tool for disease preparedness. In this study, we conducted a multivariate temporal 

and spatial assessment of thirty-four (34) climate indices calculated from ground and 

satellite earth observations to examine the role of temperature and rainfall extremes on the 

seasonality of rotavirus transmission in Bangladesh. We extracted rainfall data from the 

Global Precipitation Measurement (GPM) and temperature data from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensors to validate the analyses and 

explore the potential of a satellite-based seasonal forecasting model. Our analyses found 

that the number of rainy days and nighttime temperature range from 16°C to 21°C are 

particularly influential on the winter transmission cycle of rotavirus. The lower number of 

wet days with suitable cold temperatures for an extended time accelerates the onset and 

intensity of the outbreaks. Temporal analysis over Dhaka also suggested that water logging 

during monsoon precipitation influences rotavirus outbreaks during a summer transmission 

cycle. The proposed model shows lag components, which allowed us to forecast the disease 

outbreaks one to two-months in advance. The satellite data-driven forecasts also effectively 

captured the increased vulnerability of dry-cold regions of the country, compared to the 

wet-warm regions.   
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1. Introduction 

Living in the age of satellites and nanotechnology, a significant fraction of the global 

human population is still threatened by diarrheal diseases. A major contributor to global 

mortality and morbidity, diarrheal diseases account for an estimated 3.1% of the total 

burden of diseases in terms of Disability-Adjusted Life Year (DALY) and 1.3 million 

deaths annually, including a majority of children under five years (Troeger et al., 2017; 

WHO, 2014). Two of the most infectious and fatal diarrheal diseases, Rotavirus and 

Cholera, comprise more than one-third of the diarrheal burden in the developing countries 

of South Asia (Siddique et al., 2011). Yet, there is much room for improvement in 

understanding the underlying processes and the assessment of diarrheal disease risk over 

vulnerable regions (Akanda et al., 2014).    

 

The transmissions of these diseases both at endemic and epidemic scales are primarily due 

to insufficient safe water access, inadequate sanitation and drainage infrastructures, and 

poor access to health care compounded by natural disasters or social upheavals. However, 

the development of water, sanitation and health infrastructures as a solution to intervene in 

the disease pathway requires a long timeframe and continuous financial commitment 

(Hutton and Bartram, 2008). Many developing countries failed to meet the 2015 

Millennium Development Goals set by the United Nations in 2000, predominantly in the 

sanitation sectors. As the global community transitions from the Millennium Development 

Goals (MDGs) to the Agenda 2030 Sustainable Development Goals (SDGs), the need to 

monitor and track the impact and progress of the global prevention efforts has become vital 

(H. Wang et al., 2016).  
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Recent studies indicate that hydrologic processes and climatic variability strongly 

influence the outbreak of these diseases (Gurarie and Seto 2009; Remais, Liang, and Spear 

2008; Bandyopadhyay, Kanji, and Wang 2012; Jutla et al. 2015; Akanda et al., 2013). 

Moreover, the risk posed of the diarrheal diseases and uncertainty of the impacts are 

increasing under ongoing climate change (Maantay & Becker, 2012). Thus, innovative 

ways of advancing surveillance efforts to assess baseline conditions and strengthening 

health efforts through identifying disease hotspots in vulnerable regions is a critical need 

(Akanda, Jutla, and Colwell 2014). Here, we focus on rotavirus diarrhea as it has one of 

the highest number of diarrhea-related mortalities in children younger than five years of 

age, globally (WHO, 2011). 

 

Most studies have explored the influence on rotavirus transmission for particular climatic 

extreme or related natural disasters, but the integration of multiple variables with disease 

cases has been limited. Martinez et al. (2016) explored the effect of flood and rainfall on 

rotavirus transmission of Dhaka, where the importance of multiple extremes was pointed 

out. Moors et al. (2013) integrated several climatic effects to explain the pattern of diarrheal 

disease outbreaks over India; however, a deterministic quantification of the diseases based 

on the climatic effects was absent. Jagai et al. (2012) has conducted a meta-analysis of 

rotavirus over South Asia, but did not consider the climate extremes. Accurate 

identification of climatic events is also important for disease modeling. For example, 

waterlogging causes diarrheal outbreaks in many parts of the world after consecutive 

rainfall for several days. Due to the combined effect of heavy intensive rainfall-runoff and 

inefficient drainage systems, flood waters flow into low lying areas, causing water logging 
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(Tawhid 2004). These areas help to connect the fecal-oral route of the disease transmission 

cycle through continued use of these interconnected and infected water bodies. As a result, 

diarrheal outbreaks spread from one locality to another (Bhavnani et al., 2014). Thus, 

evaluating the disease outbreak with extreme rainfall intensity but without considering the 

cumulative impact of consecutive rainy days left gaps in the understanding. Moreover, 

specific temperature conditions during daytime or nighttime could also influence pathogen 

survivability (Lambrechts et al., 2011). Therefore, the relationships of specific climate 

phenomena with rotavirus need to be explored in more detail.    

 

The development of satellite technologies and proliferation of earth observation datasets in 

recent years has enabled collection and analyses of hydro-climatic information from all 

over the globe in unprecedented time (Emamifar, Rahimikhoob, and Noroozi 2013; Hou et 

al. 2014; Brown et al., 2011). The satellites not only provide advanced knowledge of 

environmental variables, but also high-resolution spatial and temporal information. Most 

of these data products are available freely within six hours to one-week intervals after their 

acquisition. For example, the Global Precipitation Measuring (GPM) mission can provide 

rainfall information every 30 minutes with a 0.1° spatial resolution, globally (Huffman et 

al., 2015). The Tropical Rainfall Measuring Mission (TRMM) data is another widely 

evaluated satellite data and has shown strong performance in detecting rainfall in various 

applications (Kummerow et al., 1998). Similarly, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) land surface data product can provide daily temperature data 

at 1-km spatial resolution (Pagano & Durham, 1993). These datasets, not only improve 
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data acquisition intervals compared to station data, but also provide more spatial 

information in a near-real-time basis.  

 

With establishment of the links between diarrheal diseases and new generation earth data, 

including satellite observations, there is a great potential to develop models for disease 

prediction at higher spatial and temporal resolutions. Such systems are especially crucial 

in developing countries, where the population faces a massive burden of rotavirus related 

mortality and morbidity each year. Bangladesh, a South Asian country with an emerging 

economy, still suffers a heavy toll every year due to rotavirus. In this study, we have 

explored the effect of climatic extremes on the rotavirus infection cycle in Bangladesh both 

spatially and temporally. We have evaluated rotavirus patterns over several cities inside 

the country and across South Asia to understand the larger context in relation to regional 

hydroclimatic processes. We also implemented a deterministic multivariate modeling for 

risk assessment and integrating near real-time satellite products (with GPM for rainfall and 

MODIS for temperature). 

 

2. Methodology  

2.1 Study Area:  

A robust epidemiologic assessment of rotavirus diarrheal outbreak with climate requires a 

sufficiently long time series and good spatial coverage of disease data. Unfortunately, only 

few places in South Asia have such information. Located in the fast growing megacity of 

Dhaka, the International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B) 

has published rotavirus surveillance data since 2003, thus providing an opportunity to 
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explore the relationship between the disease and regional climate. As ICDDR,B conducts 

surveillance over the metropolitan city of Dhaka, we have selected the city as our primary 

study area. Dhaka is the capital city of Bangladesh with a population of nearly 14 million, 

and immensely vulnerable to rotavirus diarrhea. Situated in the tropical zone, the city has 

a warm climate dominated by monsoon dynamics. The average temperature of city is 

usually high (~28°C-30°C) during April through October and relatively low (~20°C-22°C) 

from November through February. We have also incorporated data from five other cities 

of Bangladesh namely; Rajshahi, Kishoreganj, Sylhet, Barisal and Chittagong for this 

study. In addition, we have included data from four more cities of South Asia: Delhi, 

Kathmandu, Thimpu and Karachi for a wider spatial assessment. The cities are all located 

in the tropical monsoon region and rotavirus is endemic in all of those (Mullick et al., 2014; 

Sherchand et al., 2009; Shetty et al., 2016; Wangchuk et al., 2015)    

 

2.2 Disease Data:  

The cases of rotavirus incidences over Dhaka were obtained from the hospital-based 

surveillance system of ICDDR,B over a period from January 2003 to May 2015. The 

ICDDR,B Centre for Health and Population Research runs an urban hospital situated in 

Kamalapur, Dhaka, where more than 100,000 patients are treated for diarrhea each year. 

At the hospital, cholera as well as rotavirus surveillance are conducted regularly; stool 

samples are collected to determine the presence of enteric pathogens in every 50th (2%) 

patient attending the hospital for treatment of diarrhea. From the hospital surveillance 

reports, information on monthly rotavirus isolates were summarized and a time series was 

formulated. 
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The rotavirus data from other cities within Bangladesh were collected from the national 

surveillance campaign of the Institute of Epidemiology, Disease Control and Research 

(IEDCR). The cities within Bangladesh resemble similar demographic and climatic 

patterns. Bangladesh, this is the only available spatial data set with the same temporal 

length, to the best of our knowledge. Therefore, we have selected the surveillance data 

(January 2013 to December 2015) of these cities in the analysis. The rotavirus information 

for Delhi, Kathmandu and Thimpu were gathered from secondary literature, where the 

datasets range from 2005 to 2013 (Mullick et al., 2014; Sherchand et al., 2009; Shetty et 

al., 2016; Wangchuk et al., 2015). However, each city has only about two years of reliable 

data and distributed over different time periods. Thus, the disease outbreak information of 

these cities was avoided in the main analysis and was only utilized to validate the larger 

spatio-temporal rotavirus pattern in South Asia. 

 

2.3 Weather Data:  

We obtained daily maximum (TMax) and minimum temperatures (TMin), and 

precipitation (PR) data for Dhaka from the Bangladesh Meteorological Department (BMD) 

for the period 2000 to 2014. We collected climatologic records for other cities from The 

Global Historical Climatology Network - Daily (GHCN-Daily), version 3 from January, 

2013 to December, 2016 (Menne et al., 2012) . Homogeneity and quality control tests were 

conducted to ensure the removal of outliers. The tests were carried out using the RHtestsV4 

software package which was developed by the joint CCl/CLIVAR/JCOMM Expert Team 

(ET) on Climate Change Detection and Indices (ETCCDI) (X. L. Wang & Feng, 2013).  



75  

For detecting spatial variability, we utilized two types of satellites data products in this 

study. The Global Precipitation Measurement (GPM) data were used as the source of the 

satellite precipitation, collected from March 2015 to December 2015. The GPM mission is 

an international network of satellites that provides the next-generation global observations 

of rain and snow (Hou et al., 2014). We also utilized an additional satellite-derived rainfall 

dataset from the Tropical Rainfall Measuring Mission (TRMM) for validation purposes. 

Among the various products that are available, we used the TRMM3b42v7 version with a 

spatial resolution of 0.25 degree x 0.25 degree and a temporal resolution of 3-hour. A global 

Land Surface Temperature (LST) data product was acquired from the Moderate Resolution 

Imaging Spectroradiometer (MODIS)-Aqua satellite (MYD11A1.005 version) for both 

day and night temperatures at a 1-km spatial resolution.  

 

2.4 Method  

Our study approach can be separated into three sections: temporal assessment, spatial 

analysis, and multi-variate modeling and validation with satellite data. 

A robust analysis of the hydro-climatic influence on the transmission cycle of a disease 

requires specific climate realizations. For example, the mean or maximum state of a 

monthly temperature may not directly influence a disease outbreak, but a specific 

temperature range or consecutive rainfall events can trigger an epidemic. Therefore, for a 

comprehensive examination of environmental drivers on rotavirus diarrhea, we selected 36 

climate indices based on various properties of weather events (Table 1). We either applied 

or adopted the climate indices from the Expert Team on Climate Change Detection and 

Indices (ETCCDI)(WMO, 2007). These indices were used in various climate studies to 
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analyze the extremity of the climatic phenomenon (Alexander, 2015; Hasan, Islam, and 

Akanda 2017; Keggenhoff et al., 2015). The selections of the indices in those studies were 

conducted based on particular objectives of individual studies. In this case, we selected the 

indices that are most relevant to rotavirus transmission dynamics.  

 

In Table 1, we have defined the indices based on extremity, intensity, duration and 

magnitude of climate variables to capture the whole spectrum of short scale weather 

phenomenon. The average day or night temperatures and their variations in a month were 

defined by TMax, Tmin and DTR indices. For TxijGE and TnijGE, we categorized the 

mean monthly range of TMax and Tmin into 3°C intervals to understand the seasonal 

effects of various temperature range on rotavirus infections. During an annual cycle, the 

mean (monthly) TMax and TMin varies about 9°C over the region (Islam & Hasan, 2012). 

Therefore, we selected 3°C as threshold interval to classify 9°C temperature range for 

developing TxijGE and TnijGE indices. As the minimum monthly DTR of Bangladesh is 

6°C, we selected half of that (which is 3°C) to capture the temperature effect in both day 

and night (Islam & Hasan, 2012). Any threshold interval lower than 3°C will result in 

redundant indices. On the other hand, any threshold interval higher than 3°C will plausibly 

miss the variation of temperature that can influence rotavirus. The duration of hot or cold 

days based on a particular threshold were described by the rest of temperature indices (i.e. 

Tn10, Tx90, etc.).  

 

In case of rainfall, intensity and amount were characterized with SDII and PRECIPTOT. 

The magnitude of rainfall was described with Rx1and Rx5 indices. The durations of 
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various kinds of storms were classified using the rest of the precipitation indices. However, 

among all the indices, many are season specific and have interdependency among them. 

On this ground, we categorized the indices into two seasons; October to April as the dry 

winter season and July to September as the wet monsoon season. The indices that have 

60% or more zero values were dropped and eventually we concluded with 22 and 28 indices 

among 36 indices for winter and monsoon seasons, respectively. For example, we did not 

select Tn1618GE for the monsoon season. As days with minimum temperature range of 16 

to 18 degree will be zero for monsoon months, any correlation value between rotavirus and 

Tn1618 will result in misleading information. Therefore, some indices were dropped from 

the pool of 36 indices, when we conducted the season specific analysis. All the indices for 

temporal and spatial analysis are generated from BMD observed data, where the validation 

analysis of the indices is generated with daily satellite data.   

 

Evaluating spatial risk of a disease can be modeled with existing stochastic methods like 

the Bayesian approach (Cheng & Berry, 2013), Monte Carlo simulations (Prosser et al., 

2016) or Susceptible-Infectious-Recovered (SIR) (Grassly & Fraser, 2008) models. While 

the stochastic methods are useful to capture probable spatial patterns of diseases 

transmission, the complexity of the methods sometimes miss the deterministic influence of 

a particular driver. As the goal of our paper is to evaluate the influences of climate indices 

on rotavirus diarrhea, we utilized a deterministic model to formulate the risk of the disease 

and avoided the population effect. In the process to eliminate the influence of population, 

we standardized and scaled the disease cases for each of the selected cities and combined 

the disease cases into a single series of the same time frame (January 2013 to June 2015) 
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to conduct spatial analysis. The standardization method was adopted from Jagai et al. 

(2012), where we considered our scaled values as z-scores of rotavirus risk. As a result of 

removing the effect of population, the analysis thus represents the severity of disease cycle 

rather than actual cases of diseases. Any value that exceeds one (1) is considered as an 

outbreak.  

 

From selected climate indices, we conducted a univariate correlation analysis considering 

three levels of relationships in each season. In the first level, we considered lag 

relationships of indices with rotavirus cases. In the next level, we considered one and two-

months moving average of rotavirus infections, and in the final level, we considered a 

cross-correlation of moving average and lags. In all three levels, we examined the two 

seasonal periods both temporally and spatially. As rotavirus outbreaks are more prevalent 

during winter seasons (supportive analyses related to the phenomenon are provided in the 

results section), we have examined the winter cycle in more detail. For the winter season, 

the evaluation of the transmission cycle was conducted into three phases; the rising, the 

peak and the falling phase. A descriptive definition of the phases is presented in the results 

section. From the spatial and temporal correlations, the most influential climate 

relationships were identified and utilized in multivariate regression modeling. 

 

From the correlation assessment, we generated a deterministic model that can project the 

risk of rotavirus based on climate indices. The model was comprised of the selected three-

phase winter cycle that can quantify the rotavirus outbreak from the influence of climatic 

factors. Finally, the model was utilized to forecast disease outbreaks using precipitation 
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data from GPM and temperature data from MODIS sensors. As the data of GPM satellite 

are available from 2015, we performed validation of the model for October 2015 and 

November 2015, during the dominant winter transmission cycle. As our results showed 

that the climate indices influence only the winter cycle significantly in all selected cities of 

Bangladesh, we selected the winter cycle for validation purposes. On the other hand, as the 

disease data for all cities are available up to December 2015 (during the time of this study), 

we were only able to validate the rising phase of the winter transmission cycle using 

satellite data. As rotavirus data from several regions were available for 2 years only, we 

were unable to utilize data before 2013 or beyond 2015 for spatial validation. However, to 

demonstrate the spatial capability of our model, we utilized TRMM data in conjunction 

with MODIS for formulating spatial risk maps of rotavirus for the 2014 winter season.  

  

 

3. Results 

3.1 Seasonal characteristics of Rotavirus in South Asia:   

In this section, we discuss the general spatio-temporal pattern of rotavirus outbreaks seen 

in South Asian cities. Annual rotavirus cycles over South Asia are presented in Figure 2(a). 

December and January are the peak months of the outbreak for the Bangladeshi cities, with 

the exception of Sylhet. Thimpu of Bhutan experiences the peak in a post-winter month 

(March) where Delhi experiences the peak earlier than Bangladeshi cities. Similar to 

Dhaka, Kathmandu also experiences the annual peak during the month of December. 

Among the cities of South Asia, a monsoon outbreak is observed (smaller relative to the 

winter outbreak) in Delhi (population ~19 million) and Dhaka (population ~ 14 million), 
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where both cities have a much higher population compared to other selected cities (World 

Population Review, 2017).  

 

The rotavirus endemic cycle exhibits significant seasonal variability over South Asia 

(Figure 2(a)). The dominant cycle starts in October, reaches its peak in January and is 

followed by a recession phase in February and March. The autocorrelation analysis over 

Dhaka for the original monthly time series validates the presence of the dominant winter 

cycle. In Figure 2(c), the monthly autocorrelation function shows the presence of the strong 

annual winter peak. The auto-correlation figure also suggests a weaker outbreak during the 

monsoon season, typically during July, August and September. The z-score of the rotavirus 

over Dhaka also supports similar findings, where, as in 2004, the monsoon magnitude of 

rotavirus was higher than that of the winter (Figure 2(b)).  

 

Characteristics of rotavirus incidences over Dhaka were analyzed following a 13-year time 

series data set (2003-2015) (Figure 2(b)). Rotavirus outbreaks during the winter of 2008, 

2011 and 2012 were the most intense in recent history. Typically, rotavirus incidence 

becomes the highest during January, but some exceptions were observed during March 

2009 and July 2004. In most years, the lowest incident rate of rotavirus diarrhea was 

observed during May. However, in 2012 and 2014, the lowest incidences were observed in 

August.   

 

In this analysis, we calculated temporal correlation only over Dhaka and not the other cities 

due to lack of data availability (the disease data of other cities starts from 2012). Among 
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the precipitation indicators over the city, RR1 was found to be one of the influential 

indicators on rotavirus. The correlation analysis suggests (Figure 3(a)) that a decrease in 

RR1 in September affects the winter rotavirus cycle especially for the month of November. 

The secondary outbreak during the July, August and September is affected by the number 

of days with rainfall events of 70mm or more (RR70) (Figure 3(b)). However, both the 

rotavirus cases and RR70 were higher during the 2007 floods over the city.  

 

3.2 Univariate correlation between climate indices and rotavirus  

To assess the effect of individual climate variables and indices on rotavirus transmission, 

we conducted univariate analysis considering moving average and lag of related variables. 

The correlations for the winter and monsoon seasons are presented in Figure 4.     

 

During the winter season, rotavirus outbreak in Dhaka shows a strong negative lag relation 

(1-month) with the selected rainfall-related indices (Figure 4(a)). In case of other cities 

(Figure 4(b)), the same indices show significant but lower correlation values. Unlike 

Dhaka, the correlations of indices in other cities do not exhibit any substantial lag effect. 

Thus, we can say that the low duration of rainfall events seems to be an influential driver 

for the season, where the effects come with a delay (1-month) over Dhaka compared to 

other places. The temperature indices related to the colder spells strongly impact the winter 

epidemics in both spatial and temporal analysis. However, the spatial correlations are 

weaker than the temporal values in both types of indices, probable due to the varying 

rainfall patterns between the six locations.  The temperature indices that display the 

strongest correlation (0.5 or more) are Tmax, Tmin, Tn1621GE (number of nights with 
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temperature between 16°C to 21°C) and Tn1921GE (number of nights with temperature 

between 19°C to 21°C). All these indicators confirm the effect of colder temperatures on 

the rotavirus cycle similar to Atchison et al. (2010). 

 

During the monsoon season, the temporal investigation of rotavirus indicates significant 

correlation with all rainfall indices where such relationships are absent in the spatial 

assessment (Figure 4(c-d)). The outcome is expected, as the secondary monsoon outbreak 

and its impacts are most profound in Dhaka among the six selected cities of Bangladesh 

(Figure 4(a)). Tn2225GE significantly correlates with 2-month lag rotavirus outbreak, 

which is the strongest relationship among the indices. The relationship suggests that a night 

temperature range of 22°C to 25°C has a potent role in the monsoon cycle of rotavirus over 

Dhaka.     

 

From Figure 2 and 4, it is evident that the winter cycle of rotavirus is more prominent than 

the monsoon cycle over the study region and is strongly influenced by climatic factors. 

Thus, we focused the investigation on the winter epidemic for the rest of the study. For a 

detailed understanding of the winter cycle, we characterized it into three phases; rising, 

peak and falling phases. The rotavirus outbreak starts to appear during the months of 

October and November, thus can be classified as the ‘rising’ phase. As the cycle, typically 

reaches its ‘peak’ during the months of December, January and February, we considered it 

as the ‘peak’ phase. From February to April, the cycle enters in its recession phase, 

therefore, this phase was defined as the ‘falling’ phase. Based on the three phases, we 

conducted two levels of correlation analysis as described previously between rotavirus 
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cases and climate indices. As temperature and precipitation indices have dependency 

among them, many indices show similar correlation in particular phases. Therefore, to 

make a concise judgment, we presented only the most significant correlation for each phase 

of the epidemic cycle in Table 2.     

 

The rising phase of rotavirus cycle has significant influence by the night temperature as 

Tn1621GE shows spatial and temporal correlation of 0.61 and 0.51 respectively. The lower 

number of 25 degree days (SU) were found to be influential on the spatial scale, where 

Tx2932GE also represented a similar message in the temporal scale. Number of rainy days 

(RR1) is strongly correlated (negatively) with rotavirus cases in both tests, more so for the 

onset of the epidemics in Dhaka. The rising phase of Dhaka is influenced by 2-month prior 

RR1, where the same index in other cities exhibits a no-lag relation. This analysis suggests 

that the dry and cold days in fall are potential drivers for the start of outbreak, where the 

timing of rainfall deviates the timing of outbreak from place to place. During the peak 

phase, both the number of hot days (SU) and Tmax shows negative correlation spatially. 

Therefore, the relationship suggests that the upper temperature threshold of cold days or 

nights affects the rotavirus magnitude in the peek phase. The values of the rainfall indices 

(except PRECIPTOT) during the peak are close to zero, thus any significant correlation of 

these indices will be misleading. Hence, we avoided such values in conferring our results. 

During the falling phase as well, RR1 plays an influential negative role on the rotavirus 

cycle. Both temporal and spatial time series exhibits correlation of -0.61 and -0.69, 

respectively. However, the temporal correlations show no lag compared to the spatial 

correlations of the six cities during the phase. Tx10 and DTR demonstrated the strongest 
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association with rotavirus in the temporal and spatial scales, respectively. Similar to the 

rising phase, the falling phase shows strong connections with dryness and demonstrates 

variability in the timing of the infections depending on the location.   

 

The synthesis of the analyses revealed that Tn1621GE and RR1 are commonly correlated 

during the rising and falling phases, both temporally and spatially (Table 2). The longest 

time series for Dhaka cases also disclose the significant relationship of Tn1621GE at the 

winter peak. On that account, we can say that a specified night temperature range with dry 

weather is a prominent force to the spread of the disease during the winter.    

 

The assessment between three selected phases of the rotavirus winter cycle confers the 

effect of climate more strongly in the rising and falling phases rather than peak phase. 

Therefore, to achieve more clarity, we conducted a moving average analysis of one, two 

and three months between indices and rotavirus. The month-wise temporal analysis 

indicates a strong correlation of -0.81 between Tn1621GE and rotavirus cases during the 

peak month (December). Tmin also showed a robust correlation (-0.84) with same month’s 

epidemic cycle (Figure 3). The consistent pattern of the two indices with rotavirus cycle 

from 2003-2014 confirms the relationship in Figure 3. It should be noted here that, the 

values of Tmin during this period varied between 14.5°C and 16.5°C (only 2°C). Such 

small changes in temperature variation can be misleading regarding the effect of a 

minimum temperature.    
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The month-wise correlation analysis for the individual cities would be statistically 

insignificant, as a common data period between the six cities are only available for 

approximately 3 years (for a seasonal analysis, it will generate 3 points in three years). In 

this case, we considered two of the most influential variables of the winter cycle; 

Tn1621GE and RR1, and compared them with rotavirus proportions of these cities in 

Figure 5. Both of the indices reflect an ensuing pattern with rotavirus cases in six selected 

cities of South Asia. Between the observed dual cycles of Tn1621GE, the first cycle tends 

to trigger the rotavirus peak in same month in the Sylhet area. Similarly, the same cycle of 

Tn1621GE of Mymensingh have influence on the next month’s rotavirus cases. In case of 

Rajshahi, the same cycle shows a two-month lag relation instead of one. Moreover, the 

rotavirus peak also follows distinct patterns with RR1 or rainy days. In case of Barisal and 

Sylhet, the peak of rotavirus occurs during the driest month (or lowest RR1) without 

showing any lag. Over Rajshahi, this relationship extends for a two-months lag. This 

variation in lag for both indices explains why there is no significant relationship found 

during the peak phase (Table 2) in the spatial analysis.  

 

3.3 Multivariate assessment  

From the univariate analysis, we identified the RR1 and Tn1621GE as the most influencing 

variables on the winter rotavirus cycle. Using these climatic indices, we developed a 

multivariate regression model for evaluating the winter cycle. As the indices poses different 

correlation values in explaining the transmission process in different phases, we conducted 

three separate multivariate models for the three phases of the cycle and combined them 

into a single model. As we explored the spearman rank correlation values, we also 
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incorporated non-linear relationship between the indices and rotavirus cases. For checking 

the distribution of the response (response here is z-score of rotavirus) variable of the model, 

we conducted Shapiro-Wilk (Shapiro & Wilk, 1972) and Kolmogrorov-Sminov (Massey, 

1951) tests. The tests confirm that the response variable follow a gamma distribution and 

rejects the null hypothesis of normality. Considering the gamma distribution, we generated 

optimized models with the most dominant climate indices by utilizing both linear and non-

linear regression. We selected the best model for each phase of the cycle by evaluating the 

Akaike information criterion (AIC). The combined model from the three individual phases 

is presented in Eq. 1.  

 

𝑋𝑡 = −0.1 ∗ 𝑅𝑅1𝑚−1 + 0.04 ∗ 𝑇𝑛1621𝐺𝐸𝑚−0.07 ∗ 𝑅𝑅1𝑛−1 + 0.07 ∗

𝑇𝑛1621𝐺𝐸𝑛−1 −0.03 ∗           𝑅𝑅1𝑜−1 + 0.02 ∗ (𝑇𝑛1621𝐺𝐸𝑜−1 + 𝑇𝑛1621𝐺𝐸𝑜) +

 7.47                        (1) 

 

The subscript of RR1 and Tn1621GE refers their respective month’s value in the equation. 

‘m’, ‘n’ and ‘o’ represent the values for month of October-November-December and 

January-February-March, respectively. X is the scaled z-score of rotavirus for any selected 

month of the winter cycle. The R value of the equation is 0.67, referring to one-third of the 

explained variance for the whole transmission cycle. The result is higher than the 

previously reported climatic influence on rotavirus over South Asia (Jagai et al., 2012).     

 

Using the formulated model, we can forecast rotavirus prevalence all over Bangladesh with 

localized climatic indices. In this context, based on the reported results of this study, 
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reliable real time information of RR1 and Tn1621GE can give advance information one-

to-two months prior to the occurrence of an impending outbreak. To calculate near real-

time RR1 and Tn1621GE, we utilized GPM daily precipitation data and MODIS 

temperature data. Magnitude of GPM rainfall products poses a magnitude bias with 

observed daily rainfall. However, for 1mm rainy days in a month (RR1), the GPM data 

provide same value as in-situ observed (BMD) data from June 2015 to December 2015. In 

case of MODIS land surface temperature data; we replaced the missing values in night 

temperature with GHCN data to formulate a complete Tn1621GE time series over the 

selected cities.  

 

The calculated indices from GPM and MODIS are inserted in Eq. 1 to validate the model 

results for October and November 2015. Figure 6 shows the spatial prevalence of observed 

and model estimated rotavirus over Bangladesh. For October, the eastern parts of the 

country largely agree with the observed disease incidences, where magnitude slightly 

deviates. In case of November, the observed patterns are well captured by the model; 

however, magnitude deviates over the Barisal and Rajshahi regions. We also presented the 

potential of using TRMM satellite with MODIS datasets (Figure 7) to predict disease risk 

over the focus region. Figure 7 shows the October and November outbreaks from model 

and observed data during 2014. The TRMM derived disease map is able to capture the 

pattern better than GPM derived product. However, it should be noted that 2014 winter 

data are also utilized in model formulation, thus it cannot be considered as a validation 

result.  
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4. Discussion 

 

Our initial assessment infers that the rotavirus cycle is strongly influenced by the dry and 

cold winter season climate in Dhaka. In Great Britain, Atchison et al. (2010) explored the 

temperature dependence of rotavirus and conferred that above the 5°C threshold, an 

increase of the average temperature decreased the infection rate of the disease. A similar 

understanding was also found in Australia (D’Souza et al., 2008), where rotavirus diarrhea 

admissions are associated with lower temperatures and lower humidity. Although these 

two studies were conducted in different climatic zones altogether, we believe that the 

dearth of overall number of studies linking rotavirus with climatic indices, these findings 

are still important evidences towards the influence of temperature on rotavirus incidence. 

In South Asia, Jagai et al. (2012) also showed that the reduction in annual temperature and 

precipitation increases the level of infections of rotavirus, supporting our findings.  

As our assessment separated the timeframe into two seasonal cycles, the correlation from 

winter cycle over all six selected cities strengthens the findings of previous studies. 

However, we also found significant positive association of rotavirus infections during 

monsoon over Dhaka. Dhaka is a densely populated city with a high number of informal 

settlements, or slums, with poor water and sanitation conditions (Akanda & Hossain, 

2012). As rotavirus pathogens can be transmitted through the fecal oral route, high 

precipitation events can create waterlogging and eventually connects to the pathogen 

transmission pathways (Dennehy, 2000). Thus, Dhaka experienced an additional monsoon 

outbreak compared to other cities and the outbreak may be influenced by heavy rainfall 

events. Such phenomena also clarify why the monsoon indicators showed insignificant 
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relationships with rotavirus in other cities. Dhaka typically observes the annual highest 

rotavirus incidence during January, but some exceptions were observed during March 2009 

and July 2004 (Figure 2(b)). The 2004 flood event was one of the most devastating floods 

in the last decade in Bangladesh (Schwartz et al., 2006). Floods connect the fecal oral 

transmission route of the disease thus results unusual outbreak (Levy et al., 2009). In many 

years, the lowest incident rate of rotavirus diarrhea was observed during May. However, 

in 2012 and 2014, the cycle reached its lowest crest during August. In 2012 and 2014, 

medium flooding happened in outskirts of Dhaka, which might act as the hindering 

phenomenon of rotavirus outbreaks (FFWC, 2012, 2014). Dhaka experienced one of the 

highest rotavirus outbreaks during the flood of 2007 (Figure 2(b)). Our analysis showed 

that the outbreak was correlated to extreme rainfall events (RR70), a potential indicator of 

floods. During the floods of 2007, there was a massive outbreak of diarrheal diseases in 

Dhaka including cholera, rotavirus, and dysentery (Harris et al., 2008, Cash et al., 2014)).    

 

Our study also provides some detailed assessment of the winter rotavirus cycle. We found 

that the rising phase of rotavirus is negatively correlated with SU or Tx2532GE, which 

represents the amount of warm days in month. As the virus prefers low temperature 

environments, the lower number of warm days eventually helps to initiate the spread of the 

disease. Previous studies indicated that the virus can be active in the environment for up to 

4 weeks or one month without a host body (Levy et al., 2009). Therefore, reduction of 

warm days may increase the rotavirus sensitivity and the effect can be delayed up to one 

month. Our findings also suggest that the beginning of the winter cycle (October-

November) is highly correlated with RR1 and Tn1621GE, both spatially and temporally. 
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Average night temperature during September-October are 25°C. As Tn1621GE represents 

the night temperature of 16°C to 21°C, some nights in September start to experience 

temperatures below 21°C. Therefore, the index can be reflected as colder nights of that 

month. In a laboratory test, rotavirus was found to be active for several days in 4°C and 

20°C temperatures without human contact (Moe & Shirley, 1987). In aerosol, the virus is 

also infectious in low temperatures (Moe & Harper, 1983). Therefore, higher values of 

Tn1621GE, which act as cold nights during September-October, may promote the 

infectivity of rotavirus up to a 4-week delay.  

 

On the other hand, the RR1 index represents the number of wet days in a month rather than 

magnitude or intensity of rainfall events. As rotavirus transmission can be driven with air, 

reduction of rainfall may raise the propensity of aerial transport (Ansari et al., 1991) of 

contaminated fecal matter. Therefore, RR1 can be considered a barrier to air-borne 

transport of rotavirus. Consequentially, the joint effect of RR1 and Tn1621GE triggers the 

one month delayed outbreak during the rising phase of the winter cycle. During the peak 

month of rotavirus in December, RR1 becomes nearly zero over Dhaka, thus allowing 

aerial transport of the virus to its highest potential. In this phase, the correlation with 

Tn1621GE shifts from positive to negative. During the month of December, the average 

nighttime temperature also drops below 21°C. Such a drop of night temperature, transforms 

the Tn1621GE index to a representative of a warm night, as temperatures can be higher 

than 21°C during this month. As Atchison et al. (2010) and Cunliffe et al. (1998) both 

referred, lower temperatures can increase the infection rate of rotavirus; higher number of 

Tn1621GE inversely affects the rotavirus incidence during December. Similarly, this 
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understanding is also supported by Tmin values over Dhaka. Therefore, as the number of 

warm nights increase, the magnitude of rotavirus cases decrease in the peak month. During 

the falling phase, when it starts to rain again from February, the air-borne transport of the 

virus starts to be limited again and alongside the temperature remains under 21°C, until 

March. Thus, Tn1621GE serves as an indicator of warm nights during winter and lower 

rotavirus infection.  

 

In other cities of Bangladesh, the timing of the cycles did not match in the same way, thus 

correlation values decreased. In spatial cases, the rising and falling phase still showed a 

significant correlation with RR1 and Tn1621GE, but values of the correlation coefficient 

are lower than the values of the temporal analysis. During September, Tn1621GE acts as 

an indicator of cold night. In Sylhet and Barisal, as the increase of cold and dry nights 

coincide, rotavirus infection experiences a sharp rise, thus no lag relationship is observed. 

However, in places like Dhaka and Mymensingh, where dryness comes early but 

temperature suitability comes in a delayed manner, the places experience a one-month 

delay in an outbreak. If these two phenomena have a much wider gap, it can result in up to 

a two-month delay, which was observed in Rajshahi. Therefore, our findings suggest that 

the timing of coldness and dryness can locally affect the spread of a rotavirus epidemic. 

This finding increases the potential of using a high-resolution satellite data product in 

forecasting the local onset of the outbreaks. It is difficult to draw a generality from only 

three or four years of rotavirus observations; upon availability of more surveillance data, 

such analysis can be explored in more detail in future.      
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From the multivariate analysis, we are also able to confirm our hypothesis through the 

model selection process. All components of Equation 1 significantly influence 

corresponding prevalence values of the rotavirus cycle and confirm the role of 

environmental factors on the whole rotavirus transmission cycle. The forecasted prevalence 

matched some spatial areas of observed values during November but not in October. As 

we conducted a detailed analysis of the climate extremes that are able to explain about 44% 

variance, such discrepancy was expected in spatial mapping. Due to the lack of sufficient 

spatial disease and climate data, the spatial signature was not captured properly, thus the 

accuracy of the model suffers. Moreover, factors like population dynamics and social 

behavior, or environmental factors such as flood and soil moisture can be important in 

improving modeling accuracy. In addition to that, the accuracy of satellite datasets can also 

be a plausible reason for the less than satisfactory performance of the spatial mapping. 

However, the satellite products such as GPM, TRMM and MODIS not only give near real-

time information, but also great spatial coverage, and have great potential to improve the 

resolution of the risk maps for such infectious diseases.  

 

Understanding the role of climatic extremes can contribute to several pre- outbreak and 

post-outbreak solutions. As the developed disease model suggests, with the knowledge of 

an imminent outbreak one month ahead, the health management organizations can 

implement extra vaccination efforts as well as awareness in the most vulnerable 

communities. In the developing world, where preventive resources are limited, prioritizing 

vaccination efforts and locations by public health authorities could save significant 

morbidity and mortality. During the epidemic, further outbreaks can be prevented by 
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implementing disinfectant byproducts in water sources, improving drainage in the most 

vulnerable areas, and ensuring potable water in the infected communities. The post-

outbreak measures can be improvement of sanitation situations by developing sewage 

structures, or educating the high-risk communities about the transmission pathways of 

rotavirus. Structural solutions such as dikes, canals or sewage networks can also be 

constructed to reduce water logging and improve sanitary and drainage conditions.  

 

Immunization efforts targeting vulnerable communities would be another preventive 

measure to reduce the spread of rotavirus diarrhea. The efficacy of the vaccination is found 

to be 51% effective in reducing morbidity and mortality in recent trials in developing 

countries (Jiang et al., 2010). Two primary rotavirus vaccines have been certified 

(RotaTeq, Merck & Co and Rotarix, GSK Biologicals) in major countries of the world and 

are slated to be incorporated across the developing world (Ruiz-Palacios et al., 2006; 

Vesikari et al., 2006). The vaccination is usually administered to children under one year 

of age and typically costs from $1 to $7 per dose (Atherly et al., 2009).  

 

5. Conclusions 

In this study, we have analyzed the relationship of various climate variables and indices 

with rotavirus outbreaks in South Asia, formulated outbreak models and proposed a 

forecast mechanism. In the validation process, we have utilized satellite-derived climate 

products, which have the capacity to provide climatic information within a 24-hour latency 

period after the acquisition of data. To quantify the disease outbreaks, we used a spatial 

risk indicator to show the spatial pattern of rotavirus outbreaks throughout Bangladesh and 
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South Asia, and validated forecasted values with observed number of cases for October 

2015 and November 2015.  

 

The study strongly distinguished the effect of night and day time temperatures on the 

epidemiology of rotavirus. While previous studies pointed out that the cold and dry climate 

is favorable for rotavirus spread, the role of day and night temperature remained 

unexplored. Our analyses found that the number of colder nights one month before an 

epidemic dictates the magnitude of the rotavirus outbreak in subsequent months. This effect 

also matches with the number of 1 mm rainy days, as fewer numbers of rainy days or drier 

winters facilitate the transmission of the disease. Higher number of cold nights with less 

amount of rainfall during September and October may trigger the outbreak and the 

relationship was significant in all six cities of Bangladesh. Metropolitan areas of Dhaka 

and Chittagong experience similar, but smaller outbreaks during the monsoon season due 

to the number of heavy rainfall events. As the cities have poor water supply, sanitation and 

drainage systems, heavy rainfall events eventually connect the fecal-oral route of rotavirus 

transmission pathway. Our analysis also showed that the rainfall and temperature products 

from GPM and MODIS, respectively, could be utilized to predict the occurrences and 

magnitudes of rotavirus outbreaks. The forecasted spatial patterns derived from these 

products matched with observed progression of rotavirus over Bangladesh.  

 

The proposed disease forecasting mechanism provides great potential to improve the 

existing disease preparedness and vaccination strategies. The detection of risky hotspots 

can facilitate vaccination programs in similar climatic regions. As our model 
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deterministically explained the environmental variability of the disease, future 

investigations can incorporate population-based disease models to improve the 

performance of the forecasts. As shown in our study, satellite-based forecasting has great 

potential to improve the health and well-being, and contribute towards sustainable 

development of the growing population of the planet.   
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Figure Captions: 

Figure 1. The location of the rotavirus prevalent cities in South Asia.  

The cities with green dots were selected for the spatial analysis. 

 

Figure 2. (a) Annual monthly rotavirus outbreaks over South Asian cities. (b) Z-score of 

rotavirus over Dhaka from 2003 to 2015 (c) Auto-correlation function of rotavirus in the 

city of Dhaka from 2003 to 2015. 

 

Figure 3. (a) Rotavirus incidence for the month of November with RR1 of September (the 

y-axis is plotted in reverse order); (b) rotavirus of June-July-August with RR70 of June-

July-August; (c) Rotavirus incidence for the month of December with Tmin (left); and (d) 

Tn1621GE (right) of same month (the y-axis of the indices are plotted in reverse order).  

 

Figure 4. (a) Temporal correlation of rotavirus in winter months over Dhaka from January 

2003 to May 2015 and (b) Spatial correlation of rotavirus in winter months over six cites 

of Bangladesh from July 2012 to May 2015. (c) Temporal correlation of rotavirus in 

monsoon months over Dhaka from January 2003 to May 2015 and (d) Spatial correlation 

of rotavirus in monsoon months over six cites of Bangladesh from July 2012 to May 2015. 

 

Figure 5. The rotavirus cycle in the six selected cities with compared to RR1 and 

Tn1621GE from June 2012 to May 2015. 
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Figure 6. Spatial distribution of the observed (left) and model-estimated (right, GPM + 

MODIS) z-score of rotavirus incidence for (a-b) October and (c-d) November, 2015.  

 

Figure 7. Spatial distribution of the observed (left) and model-estimated (right, TRMM + 

MODIS) z-score of rotavirus incidence for (a-b) October and (c-d) November, 2014.  
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Tables Captions:  

 

Table 1. Description of climate indices parameters. 

 

Table 2. The spatial and temporal correlations between climatic indices and the three 

phases of the winter rotavirus epidemic.  
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Table 1. Description of climate indices parameters. 

 

Name  

(Number of 

indices that 

represented) 

Description  
Types of 

indices  

Tmin (1) Average daily minimum temperature of a month. Temperature  

Tmax (1) Average daily maximum temperature of a month. Temperature  

Tx10 / Tx90 (2) 
Number of days in a month when TMax < 10th 

percentile* / when Tmax > 90th percentile*. 
Temperature  

Tn10 / Tn90 (2) 
Number of days in a month when TMin < 10th 

percentile* / when TMin > 90th percentile*. 
Temperature 

SU (1) Number of days in a month when TMax > 25°C. Temperature  

TR (1) Number of days in a month when TMin > 20°C. Temperature  

DTR (1) Monthly mean difference between TX and TN. Temperature 

TxijGE (4) 

Number of days in a month when TMax is in 

between i °C and j °C., where, i = {26,29,33,26} 

and j = {28,32,35,32}i 

Temperature 

TnijGE (4) 

Number of days in a month when TMin is in 

between i and j  °C., where, i = {16,19,22,16} and 

j = {18,21,25,21}ii 

Temperature 

SDII (1) Intensity of rainfall in a month (in mm/day) Precipitation 

CRm  (4) 
Highest number of consecutive m mm rainfall 

events in a month, where, m = 1, 5, 10, 20 iii  
Precipitation 

CRnS3 (2) 
Number of 3-days or more storm with rainfall > n 

mm  where, n=1,5 iv  
Precipitation 

CRnDf (4) 
Number of rainfall events in a month with rainfall 

> n mm  for f days  where, n=1,5 and f=4,5 v  
Precipitation 

PRECIPTOT (1) Total amount of rainfall in a month. ( in mm) Precipitation 

RRj (5) 
Number of rainy days with j mm or more rainfall, 

where,  j = 1, 5, 10, 20,70. vi  
Precipitation 

Rx1 / Rx5 (2) 
Maximum amount of 1-day / 5- day rainfall in a 

month 
Precipitation 

* Percentile are calculated based on 10-year baseline period of 2003 to 2013.   
i For example, when i=26 and j=28, name of index would be Tx2628GE: The Number of days in a month when Tmax is between 26 °C 
to 28 °C.  
ii For example, when i=16 and j=18, name of index would be Tn1618GE: The Number of days in a month when Tmin is between 16 °C 

to 18 °C. 
iii For example, when m=1 and j=28, name of index would be CR1: Highest number of 1 mm rainfall events in a month.  
iv For example, when n=1, name of index would be CR1S3: Number of 3-days or more storm with rainfall greater than 1 mm.  
v For example, when n=1 and f=4, name of index would be CR1D4: Number of rainfall in a month that greater than 1 mm  for 4 days.  

vi For example, when j=1, name of index would be RR1: Number of rainy days with 1 mm or more rainfall. 
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Table 2. The spatial and temporal correlations between climatic indices and the three 

phases of the winter rotavirus epidemic.  
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SU -

0.58 

2 1 SU -

0.64 

0 2 Tn1621GE -0.45 1 2 

RR1 -

0.48 

1 2 Tmax -

0.57 

0 2 Tx10 0.62 0 1 

Tn1621

GE 

0.61 1 1 Tx10 -

0.52 

2 2 RR1 -0.61 1 2 

Tn1921G

E 

0.68 1 1 Rx1 -

0.47 

0 2 Tmin -0.62 0 1 

T
em

p
o
ra

l 

Tn1621

GE 

0.51 1 1 Tn1621

GE 

-

0.44 

0 2 RR5 -0.7 0 2 

RR1 -

0.69 

2 2 Tn1621

GE 

 -

0.43 

0 1 RR1 -0.69 0 2 

RR5 -

0.69 

2 2 
    

PRECIPT

OT 

-0.66 0 2 

Tx2932G

E 

-

0.61 

2 1 
    

DTR 0.73 0 2 

*The bold indices are common in all three phases. 
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Abstract 

 

Despite the human advancement in medical science and human wellbeing, diarrheal 

diseases are a major threat to human health and still represent a leading cause of morbidity 

and mortality worldwide. Being a major contributor of global mortality, diarrheal diseases 

account for an estimated 3.1% of the total burden of disease in terms of Disability-Adjusted 

Life Year (DALY) where cholera and rotavirus diarrhea comprise more than two-thirds of 

the diarrheal morbidity in developing countries of South Asia. Research studies show  that 

hydrologic processes and climatic variabilities influence the outbreak of these diseases. 

Therefore, in this study, we explored the pre-existing role of the hydro-climate drivers of 

the diarrheal diseases during previous climate and projected the probable risks of the 

diseases using the results from dynamic downscaled climate models. Using prolonged 

surveillance data time-series of cholera and rotavirus from Bangladesh , we used the five 

bias-corrected Regional Climate Model (RCM) results under the RCP 4.5 scenario to 

integrate with the developed seasonal models and project the probabilistic risks of the 

diseases. As the cholera considered to be influenced by the extreme rainfalls, the mean of 

the projected results showed a significant increase of the cholera risk in the 20th century. 

The probabilistic projections also showed that the future risk of climate driven rotavirus 

would decrease about 5%. Most of the RCM results suggest a warmer winter in the future 

years, which eventually may translate to reduced risk of rotavirus outbreaks. Such 

understanding of the probabilistic risk of diarrheal diseases with respect to hydroclimatic 

variability will not only improve the local policymaking processes, but also facilitate the 

identification of climate-diarrheal hotspots around the globe. 
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Introduction: 

 
Despite tremendous technological advancement in medical sciences and global healthcare 

delivery, diarrheal diseases remain the leading cause of child malnutrition and responsible 

for nearly half a million child-death each year (WHO/UNICEF 2015). Studies showed that 

the diarrheal diseases like cholera and rotavirus epidemics occur seasonally and are 

significantly influenced by climatic and environmental factors (Akanda et al. 2009; Akanda 

and Jutla 2013; Ali et al. 2016).  The accelerated global warming from the previous century 

is projected to continue in the upcoming years; thus, the climate factors will affect the 

epidemiological dynamics of the diarrheal propagation (Stocker et al. 2010). Therefore, a 

robust understanding of the future epidemics of diarrheal diseases is essential, over 

developing regions of the world. 

 

Diarrheal diseases are considered to be some of the most preventable among those causing 

human mortality (WHO, 2016). Due to the strong association between the unsafe water-

sanitation and diarrhea, the disease is considered treatable with conventional intervention 

such as the provision of reliable safe water provisions and improvement of water sanitation 

infrastructures (WHO/UNICEF 2015). However, in the developing regions like South Asia 

and Sub-Saharan Africa, such development of infrastructures are both time consuming and 

resource intensive. Especially, in the region of Bengal delta, where the vulnerability of the 

global warming is surmounting and population density is exploding, such improvement 

will take a long time to complete. Global initiatives like Millennium Development Goals 

(MDG) and Sustainable Development Goals (SDG) to combat infectious disease have been 

continuing, however, due to limited resources and lack of institutional capacities, the 
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complete removal of these diseases are not likely to happen in the near future (Hutton and 

Bartram 2008; Chowdary et al. 2009). In this context, understanding the current and future 

influence of environment to the disease epidemic is essential for operational initiatives and 

policymakers.  

 

The seasonal occurrence of diarrheal diseases like rotavirus and cholera confirms the 

influence of climate and environment in their transmission cycles over the South Asia 

(Leckebusch and Abdussalam 2015; Prasetyo et al. 2015; Ali et al. 2016). The rotavirus 

diarrhea is generally prominent during the winter and cholera during the post-monsoon 

season (Hasan et al., 2018; Akanda et al., 2009). Though the spread of the diseases can be 

associated with the lack of safe drinking water, inadequate sanitation, and poor hygiene, 

the hydroclimatic and related environmental factors are found to be strongly co-related in 

the events of the diarrheal outbreak. However, such outbreaks not only depend on the mean 

climatic state of a season but it can also be triggered by extreme climatic events like heavy 

rainfall, drought, and floods (Gurarie and Seto 2009; Remais, Liang, and Spear 2008; 

Bandyopadhyay, Kanji, and Wang 2012; Jutla et al. 2015; Akanda et al., 2013). Recent 

studies attempted to evaluate the relationship between the mean state of climate with the 

disease epidemics, but very few studies considered climatic extremes to investigate the 

diseases (Hasan et. al, 2018). Thus, a robust assessment of the relationship between the 

diarrheal disease and climatic extremes warrants much attention not only to reduce the 

present-day’s outbreak but also to initiate future prevention strategies to face the effects of 

ongoing climate change.   
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The climate models are widely accepted tools for projecting probable future climate around 

the globe (Wright et al. 2015). Global Circulation Models (GCM) are used to project large-

scale global phenomenon under different climate scenarios, such as RCP scenarios (Wang 

et al. 2014). The GCMs usually produce coarse spatial resolution products, thus regional 

climate models (RCM) were introduced to generate high-resolution climate projections 

through downscaling techniques (Bhaskaran et al. 1996). Though the RCMs were proven 

to be more accurate and considered a wider range of physical parameters than GCMs, they 

still comprise some biases, especially in the small study areas. For the purpose of impact 

assessment, the bias-correction methods were later, introduced to further improve the RCM 

results in the regional studies (Bennett et al. 2014; Murakami et al. 2014; Macadam et al. 

2016). However, adjustment of projected mean climate can be done using various methods, 

but the meaningful projections of climatic extremes were still challenging and handful 

methods to use it in the impact studies were introduced recently (Tian et al. 2007; 

Srivastava et al. 2015; Macadam et al. 2016). In this context, the impact study like the risk 

assessment of infectious diarrheal disease by climatic extremes not only needs some 

reliable inter-annual epidemic models, but also requires some meaningful climate extremes 

to drive the models. In existing literature, the impact studies that incorporated the disease 

risk with climatic extremes with climate extremes are rare (Teutschbein and Seibert 2012).  

 

To project climate extremes for the impact study, there are sets of climate scenarios 

proposed by IPCC assessment reports (Stocker et al. 2010; Hartmann et al. 2013). The 

latest scenarios, that were published in IPCC 5th assessment reports, known as the RCP 

scenarios are considered to be the most up-to-date scenarios for climate change studies 
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(Kim et al. 2013). The projection of disease risk under these RCP scenarios can potentially 

be very useful for various stakeholders and policymaker of the developing world.  

Therefore, in this study, we have projected the risk of the diarrheal disease using bias-

corrected climate extremes derived from high-resolution RCMs. In order to capture the 

uncertainty range, we have utilized five RCM projections driven by five different GCMs 

under latest RCP scenarios.  

 

Firstly, we evaluated existing literature to confirm our understanding of the connections 

between hydro-metrological extremes with both rotavirus and cholera (Franco et al. 1997; 

Tanaka et al. 2007; Kang et al. 2009; Colombara et al. 2013; Prasetyo et al. 2015; Pang et 

al. 2016). Hasan et al, (2018) evaluated and confirmed the relationship between 

precipitation and temperature extremes with the rotavirus epidemics. However, indices 

related to relative humidity can be an influential factor for the winter season, when there is 

a very little amount of rainfall.  Therefore, we have incorporated the relative humidity 

index to update the findings from Hasan et al (2018) to better quantify the relationships of 

rotavirus epidemic with climatic extremes. On the other hand, though cholera were 

assessed with various indicators, climatic extremes of precipitation and temperature were 

not examined in previous studies. Therefore, we have evaluated the risk of cholera 

epidemics with temperature and precipitation extremes and future projections. 

 

The manuscript was arranged in the following order:  

The description of obtained data and method were described in the methodology section.  

The details of the climatic extremes and disease risk were explained in the method section. 
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The results section described the model validation of two diseases in their rising or 

outbreak triggering phases. The integration of climate data and disease risk were explained 

in the same section. The future directions were explained and discussed in the conclusion 

section. 

 

Date and Methodology:  

2.1. Study Area: 

The Bengal Delta region of South Asia is considered to be the ancient place of origin, or 

native homeland, of cholera, the deadliest among the diarrheal diseases (Hu et al. 2016). 

The region still experiences cholera outbreak each year during summer and post-monsoon 

seasons (Akanda et al. 2009; Akanda and Jutla 2013). On the other hand, rotavirus diarrhea, 

the most common type of diarrhea also occurs every year in the same region. The region 

mostly comprises the area of Bangladesh, a country with 160 million population and the 

most densely populated country in the world. The country has a tropical monsoon climate 

and most threatened by ongoing global warming, perhaps more than any other place of the 

world. In one end, the country experiences two major diarrheal disease outbreaks and on 

the other hand, it also has one of the highest vulnerable people on the earth due to the 

intersections of high population density, poverty, and effects of climate change. Therefore, 

an understanding of diarrheal epidemic for the future years would be one of the vital issues 

for the stakeholders and policymakers of the region. We have thus selected Bangladesh as 

our case study region to assess the impact of the diarrheal diseases under climate change 

scenarios. 
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2.2.  Data 

2.2.1. Disease Data 

We have collected the incidence rate for the rotavirus and cholera-related diarrhea for our 

analysis from 10 hospitals. The cases of rotavirus incidences over Dhaka ( capital of 

Bangladesh) were obtained from the hospital-based surveillance system of ICDDR, B over 

a period from January 2003 to May 2015. The ICDDR, B Centre for Health and Population 

Research runs an urban hospital situated in Kamalapur, Dhaka, where more than 100,000 

patients are treated for diarrhea each year. At the hospital, cholera, as well as rotavirus 

surveillance, are regularly conducted; stool samples are collected to determine the presence 

of enteric pathogens in every 50th (2%) patient attending the hospital for treatment of 

diarrhea. From the hospital surveillance reports, information on monthly rotavirus isolates 

was summarized and a time series was formulated. 

 

The rotavirus data from other cities within Bangladesh were collected from the national 

surveillance campaign of the Institute of Epidemiology, Disease Control and Research 

(IEDCR). The cities within Bangladesh resemble similar demographic and climatic 

patterns. In Bangladesh, this is the only available spatial dataset with the same temporal 

length, to the best of our knowledge. Therefore, we have selected the surveillance data 

(from January 2013 to December 2016) of these cities in the analysis.   

 

The cholera data were also collected from the hospital-based surveillance system of 

ICDDR, B. The data were collected from three different surveillance system of the Institute 

where they started during three different timeframes. The prevalence data of cholera for 
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the five hospitals in Dhaka, Matlab, Chatok, Matbaria, and Pirojpur were collected for 1998 

to 2003. From the Health Bulletin, surveillance data for Dhaka were collected from 2003 

to 2016.  Under the funding of Bill and Melinda gate foundation, new surveillance of the 

cholera was introduced by ICDDR, B and IEDCR from 2015 which were also combined 

in this study. For the consistency of the data, we converted and combined all three sources 

of data to z-score. The detail advantages of z-score in epidemic modeling were discussed 

in the later parts of the methodology section.     

 

2.2.2.  Weather Data:  

We have utilized two types of weather data, one for validation and other for future 

projections.  

 

For the validation of the spatial diseases models, we used the long-term observed time 

series from existing ground stations of Bangladesh. We obtained daily maximum (TMax) 

and minimum temperatures (TMin), and precipitation (PR) data for Dhaka from the 

Bangladesh Meteorological Department (BMD) for the period 2000 to 2014. We collected 

climatologic records from other cities from The Global Historical Climatology Network - 

Daily (GHCN-Daily), version 3 from January 2013 to December 2016 (Menne et al., 2012). 

Homogeneity and quality control tests were conducted to ensure the removal of outliers. 

The tests were carried out using the RHtestsV4 software package which was developed by 

the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and 

Indices (ETCCDI) (X. L. Wang & Feng, 2013).  
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For projecting the disease risk, we gathered RCM model-simulated data for the latest 

climate change scenarios. Climate data derived from the five available RCM outputs is 

selected for this study. The datasets were made available through COordinated Regional 

Climate Downscaling Experiment (CORDEX), a program that brought forth a collective 

effort to regional climate projections globally (Giorgi et al. 2009). The CORDEX aims to 

advance and coordinate the science and application of regional climate downscaling 

through global partnerships. The project defined some specific domains around the globe 

and invited communities to conduct regional downscaling in those designated domains. 

Through the project’s data portal, several RCM results became available over South Asia 

(CORDEX, 2015). As domain selection could be sensitive in a regional modeling study 

(Bhaskaran et al. 2012), Giorgi et al. (2009) provided a detailed rationale behind domain 

selection and spatial resolution over CORDEX domains.    

 

In this study, the choice of GCMs was limited due to the number of freely available RCM 

results. The selection of GCMs to conduct downscaling was the decision of the 

corresponding home institutions that simulated the RCMs for RCP scenarios (Table 1). 

Therefore, we utilized RCM results that are publicly available over the domain in our 

selected time slices and scenarios. A detailed statistics of the driven GCMs and RCMs are 

provided in Table 1.  

 

Representative Concentration Pathways (RCPs) are the four global greenhouse gas and 

aerosol concentration (not emissions) trajectories of futures, which are different from the 

previous socio-economic scenarios that give rise to alternative greenhouse gas emissions 
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(van Vuuren et al. 2011). In this study, three RCP scenarios (historical, RCP 4.5 and RCP 

8.5) for three meteorological variables from the five RCMs were utilized from 1981 

through 2100.  

 

The analysis of the extremes was conducted based on the extreme indices adopt from the 

CCL/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices 

(ETCCDI) (ETCCDI 2016). The detail list of indices can be found in Hasan et, al. (2017). 

 

2.3 Z- score: 

To represent the diarrheal disease outbreak, we have incorporated the z-score metric 

instead of prevalence or incidence rate of a disease (Jagai et al. 2009). Both prevalence 

number of incidence rate is population dependent. From all the disease cases, we first 

converted them to z-score to avoid population effects. To remove population effect, 

normalization of data could be another option (Kao, 2009).In the normalization process, 

the data are kept to a fixed range, typically (0-1). However, in disease outbreak analysis, 

outbreak can vary in magnitude and do not follow the normal distribution. Thus, we utilized 

z-score to represent the disease risk in this study. The negative scores were scaled up to 

positive values for meaningful outbreak representation and to implicate log transformation 

for multivariate modeling. However, the relative magnitude can be biased for larger 

skewed values; thus we assumed the -3.5 as the minimum global state of the outbreak. 

Hence, z-score was transformed to modified z-score by adding 3.5. Equation 1 shows the 

calculation of z-score for this analysis.  As a mean state of the outbreak can be expressed 

as 0 in dual sign series, after transformation of the minimum value, we can assume that one 
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can be the epidemic threshold. In this study, we have attempted to quantify only the effect 

of climate on the diseases by any other influencing factors. Therefore, any element of the 

population will not represent the actual impact of the disease, and adjusted z-score would 

be a great way to overcome such problem. Similarly, as RCP scenarios are population 

independent, we have considered them in this study.   

𝑍 =  
𝑋 − mean (𝑋)

𝑆𝑡𝑑(𝑋)
+ 3.5                                   (1) 

Where, X is disease cases or prevalence per month.   

 

2.4 Seasons of the outbreaks 

Earlier research showed that the annual epidemics of rotavirus and cholera over the Bengal 

delta occur during the winter and post-monsoon season respectively (Hasan et.al 2018, 

Akanda et. al, 2008). As the trigger of the outbreak correlated with climatic drivers, the 

rising phase of both diseases were analyzed in this study.  The rising phase of rotavirus and 

cholera epidemics are the November-December and August-September months, 

respectively. It should be notated that in case of Cholera, the data we used are mostly from 

1998 to 2003 period. During the period, the dominant cycle of the cholera outbreak was at 

post-monsoon season. Thus, we have considered the post-monsoon cycle as primary 

outbreak cycle.  

 

2.5 Model development 

By integrating the climate extremes and z-score value of the rotavirus diarrhea and cholera, 

we developed two spatial models for the rising phase of the disease outbreak. We have 

conducted multivariate analysis with 46 temperature and precipitation extremes taken from 
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Hasan et al., (2018)  for both diseases. Additionally, as rotavirus outbreak occurs during 

winter where rainfall is low compared to other times of the year, we also incorporated 

relative humidity indices to develop the additional model for the rising phase of rotavirus. 

However, relative humidity is unavailable in the RCMs results; hence, we avoided the 

improved RH model to conduct the future projections of the analysis.  

 

We have selected multivariate analysis as our primary method to formulate the spatial 

models. However, the correlation values of multivariate analysis for top selected models 

are close for the different combination of the indices. Thus, we need to extend our analysis 

to temporal and spatial correlation analysis for individual variables to understand the 

influential role of each variable. Finally, we have combined the values of the temporal and 

spatial correlation by equation 2, to obtain a model score.  

𝑀𝑜𝑑𝑒𝑙 𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑜𝑟𝑡𝑝𝑟 ∗ 1 +  𝐶𝑜𝑟𝑠𝑝 ∗ 1                            (2) 

𝐶𝑜𝑟𝑡𝑝𝑟 =  𝐶𝑜𝑟𝑝𝑟 ∗ 0.5 + 𝐶𝑜𝑟𝑡𝑚𝑝 ∗ 0.5                                   (3)  

Where, Corpr , Cortmp , Cortpr and Corsp is the correlation of precipitation index, temperature 

index, temporal analysis and spatial analysis, respectively. We adopted the model score 

from unified score proposed by Sikder et al, (2016) where they utilized several other 

performance matrix. In our model score, we provided equal weightage to the correlation of 

temporal variables. For example, for two variables, precipitation and temperature, we 

provided 0.5 weight to each correlation factor. For spatial analysis, we add an equal weight 

as temporal analysis thus provided a weightage of one. Therefore, the range of our model 

score would be 0  to 2, where 0 means the worse model and 2 means the best model. Based 

on the model score, we selected our final model from the pool of ten models for each 
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disease. 

 

2.6 Bias-corrected extremes: 

In this study, we have conducted bias correction on high-resolution RCM results to 

evaluate robust climate projections (Bennett et al. 2014). Detail of the bias-correction 

method was available in Hasan et al., (2017). The projections of bias-corrected extremes 

were further analyzed in the developed disease models under moderate RCP 4.5 and the 

strongest RCP 8.5 scenarios with respect to baseline climate. The changes of the z-score 

values from the baseline climates were presented as the future state of the diseases. 

 

Result and Discussion: 

Hasan et al., 2018 showed that the rainfall and temperature extremes could influence the 

rotavirus outbreak during winter. The study utilized z-scores to establish the relationship 

between rainfall and temperature extremes. However, the study was conducted with 1-

month moving average values where the crucial indicators from the relative humidity 

values were absent in the study. Moreover, studies found that the relative humidity could 

be a potential indicator of the rotavirus outbreak. Therefore, the role of relative humidity 

on rotavirus needed to be explored to understand the disease epidemics more clearly. On 

the other hand, the relationship between climatic extremes and z-score of cholera was never 

done in previous studies.  

 

Using z-score and observed meteorological information, we conducted multivariate 

analysis for the rising phase of both diseases. For rotavirus, we have conducted two types 
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of multivariate analysis, with or without RH. The R2 values from the multivariate analysis 

were presented in Table 2, Table 3 and Table 4.  

 

The top-ten best models for the rotavirus diarrhea that exclude the relative humidity indices 

show a short range of R2 values (the range is 0.03) in the multivariate analysis. The 

temperature variable, Tn16gTx30l (concurrent climate with two months moving average) 

is standard in all the top models, confirms its significant role in the rotavirus propagation. 

The variable is also supported with Hasan et al., 2018, but Tn16gTx30l was not found due 

to the single moving average values. However, for precipitation indices, eight different 

rainfall indices namely SDII, Rx1, RR1, CR5, RR5, RR10, CR1S3, and CR1D3 show 

significant influence within ten models. As the difference of R2 values between the models 

is low, we need additional information to further select a model from the top 10. Therefore, 

we also conducted temporal and spatial correlation of individual variables of the selected 

model and values were presented in Table 2. The temporal analysis of  Tn16gTx30l shows 

a strong correlation of 0.6 where RR1 and CR5 have a high correlation coefficient of 0.47 

and 0.51 respectively. However, regarding the spatial correlation for the years of 2015-

2018, the CR5 shows poor relationship compare to RR1. Such strength also reflected in the 

combined-scores of the RR1-Tn16gTx30l model. In addition to that, Hasan et al. 2018 also 

found the same influence of RR1 during the same phase of the diseases.  Therefore, the 

model can be considered as the best model for two-variable multi-variate analysis.  

 

We also developed rotavirus diarrhea models by considering relative humidity indices as 

another influential factor and the R2 values were shown in Table 3. Within top 10 models, 
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four types of temperature indices showed stronger relationship but all of them associated 

with the daytime temperature of the previous months. It should be noted that the models 

without RH show day and night time temperature range as the primary driver in the model, 

but that relationship is for no-lag 2-month moving average, where with RH, it is a 1-month 

lag with 1-month realization. For the rainfall indices, the variation between variables are 

quite high, but all represent small sudden rainfall amount. For the humidity indicator, the 

tops models are found mostly correlated with RH minimum values. Now from the 

combined score, we found that the CR5-Tx2932GE-RHmin performed best in the 

multivariate analysis. The correlation of CR5 and RHmin also confirm the significant 

relationship with the rotavirus outbreak phase. From an accuracy point of view, (R2 values) 

the model with RH performs better than the models without RH. However, the relative 

humidity variable is unavailable in the selected climate projections. Therefore, we selected 

the model without RH as our primary model for the future risk analysis. 

The top-10 models of the cholera epidemic present R2 values less than 0.5, where the 

difference between the top and bottom model is around (0.01) (Table 4). With such short 

difference, any model among the tens can be considered as the best model. Regarding 

temperature indices, the 2-month moving average of Tx2632GE with two-month lag shows 

significant influence in all top-ten models. It represents that day temperature between 26 

degrees to 32 degrees is a potential trigger for the post-monsoon cholera outbreak. Akanda 

et al (2009) found that the increased temperature in water can accelerate the growth of the 

bacterial host of cholera within the water; thus Tx2632GE supports such phenomenon. On 

the other hand, an index like RR70 represents the high amount of rainfall, which leads to 

water overflow resulting in a connected fecal-oral route for the bacterial cycle. Moreover, 
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such water networks take times to influence the outbreak and could come to the effect after 

two months of such situation. Therefore, two month lag of RR70 can be considered as an 

appropriate indicator that can trigger post-monsoon cholera outbreak(Ryan et al. 1996). 

From the combined score, (Table 4), it is evident that model no 9 is the best model among 

the top ten and it consists RR70 and Tx2632GE index as the driving variables. 

 

Figure 1 and Figure 2 represents the spatial distribution of model and observed rotavirus 

over Bangladesh. The spatial pattern of the model showed agreement with observed data 

over the central and southwestern part of the country. However, even with relative humidity 

indicator, the model result in the western part of the country deviates from observe. This 

bias can occur not only from unknown uncertainties but also from poor coverage of 

observed dataset. We used six available disease station data to generate the spatial maps 

where the coverage in the western part is scarce compare to eastern part of the country. 

Thus, observed map might missing information which reflected in the developed models 

result.  

 

The bias-corrected climate extremes were driven to the best cholera model for the three-

time frames were presented in Figure 4. The change of risk of cholera was presented 

spatially over the Bengal delta.  Under the RCP4.5 scenario, the change of cholera outbreak 

was minimum at early 21st century. However, with the progression of time, the outbreak 

increased toward the end of the 21st century. From the results, it is also found that the 

southern parts of the country will experience a higher rate of cholera than other parts of the 

country. With the deteriorating salinity problem, such change will create danger zone on 
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the southern locality.  

 

In case of rotavirus, the spatial analysis suggests that rotavirus will decrease gradually 

toward the end of the century (Figure 5). Due to the decrease in RR1 and increase in winter 

temperature, the rotavirus will have less wetness in the soil and lower amount of cold in 

the winter. This will create a hindrance in the disease propagation, thus the rate of the 

disease will decrease in the future years.  

 

The time series for both of the diarrheal diseases over Bangladesh were presented in Figure 

6.  The mean change of risks for both selected scenarios were plotted in the Figure. Similar 

to spatial analysis, the Cholera risk showed a gradual increase in future years during post-

monsoon season. The heighted risk are more certain in RCP8.5 scenarios than 4.5 

scenarios. On the other hand, the risk of rotavirus overall decrease in 21st century. The 

RCP8.5 shows much safer future than RCP4.5 for the disease.   

 

Conclusion: 

In summary, in this study, we conducted multivariate, temporal and spatial analyses to 

quantify the risk of diarrheal disease outbreaks in Bengal Delta using climatic extremes. 

We have utilized five bias-corrected RCM results to project the disease risk for the 21st 

Century. From the study, the following conclusion can be made: 

 

For rotavirus, the multi-model analysis shows satisfactory performance using RR1 and 

Tn16gTx30l as driving variables. The 1-day monthly rainfall with 16°C to 30°C 
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temperature range, plays a critical role in triggering the outbreak. The observed spatial 

pattern suggests that the central region, Dhaka is the most vulnerable region among the 

country. The model able to capture the Dhaka outbreak, but it also over-estimated other 

regions of the country. The inclusion of relative humidity indices into the model, increase 

the performance of rotavirus outbreak prediction significantly, especially in the 

northeastern part of the region. However, as we do not have projected humidity data from 

RCM, we utilized the rainfall and temperature-driven model to project the disease risk. For 

the case of Cholera, the best model is driven by RR70 and Tx2632GE, which indicated the 

wet warming post-monsoon. In case of cholera, the projected disease risk map suggests 

that the southern part of the country will experience more risk of the disease in the future 

years. On the other hand, rotavirus outbreak is expected to decrease according to five 

selected RCM projections.  

 

The projected disease risk can be utilized to conduct epidemic management and to improve 

vaccination strategy. A high-risk area can be given higher importance for the introduction 

of rotavirus vaccination. The decision maker and stakeholder can introduce new 

intervention strategy to improve the disease preparedness. In this study, we have introduced 

two types of climate variables to project the disease. Future studies should investigate the 

other influencing factors such as population dynamics, urbanization, change of social 

demography etc.   Similar studies could be done for the other types of infectious diseases 

not only for the betterment of current population but also for the well being of the future 

generation.   
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Figures: 

Figure 1: Spatial distribution of (a) Observed and (b) Model z-score* (without relative 

humidity) of rotavirus outbreak at rising phase of epidemic (November-December) 

during the respective validation period.   

    
(a)       (b)  
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Figure 2: Spatial distribution of (a) Observed and (b) Model z-score* (including relative 

humidity) of rotavirus outbreak at rising phase of epidemic (November-December) 

during the respective validation period.  

 
(a)       (b)  
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Figure 3: Spatial distribution of (a) Observed and (b) Model z-score* (including relative 

humidity) of cholera outbreak at rising phase of epidemic (August-September) during the 

respective validation period.  

 

 
(a)       (b)  
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Figure 4: The changes of risk (in percentage) of cholera epidemic from baseline (1981-

2005) to 2020s (2006-2040), 2040s (2041-2070) and 2080s (2071-2099) over 

Bangladesh. 
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Figure 5: The changes of risk (in percentage) of rotavirus diarrhea epidemic from 

baseline (1981-2005) to 2020s (2006-2040), 2040s (2041-2070) and 2080s (2071-2099) 

over Bangladesh. 
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Figure 6: The changes of risk (in percentage) of diarrhea over Bangladesh from 2006 to 

2100.  The time series represent 10-year moving average changes. 
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Tables: 

Table 1. Description of selected regional climate models over Bangladesh 

Simulation 

names 

Regional Climate 

Model 
Driving GCM Institute Scenarios Resolution 

RCA4-EC-

EARTH 

Rossby Centre 

regional 

atmospheric 

model version 4 

(RCA4) 

(Samuelsson et al. 

2011) 

European 

Consortium ESM 

(EC-EARTH) 

Rosssy Centre, 

Swedish 

Meteorological 

and Hydrological 

Institute (RCA4), 

Sweden 

Historical 

RCP 4.5 

RCP 8.5 

25km 

CSIRO-

CNRM-CM5 

Commonwealth 

Scientific and 

Industrial 

Research 

Organisation 

(CSIRO), 

Conformal-Cubic 

Atmospheric 

Model (CCAM) 

(Jacob and Podzun 

1997) 

Centre National 

de 

RecherchesMété

orologiques 

Climate Model, 

version 5  

(CNRM-CM5) 

CSIRO Marine 

and  

Atmospheric 

Research, 

Melbourne, 

Australia 

Historical 

RCP 4.5 

RCP 8.5 

50km 

CSIRO-

CCSM4 

Commonwealth 

Scientific and 

Industrial 

Research 

Organisation 

(CSIRO), 

Conformal-Cubic 

Atmospheric 

Model (CCAM) 

(Jacob and Podzun 

1997) 

The Community 

Climate System 

Model, version 4  

(CCSM4) 

CSIRO Marine 

and  

Atmospheric 

Research, 

Melbourne, 

Australia 

Historical 

RCP 4.5 

RCP 8.5 

50km 

CSIRO-MPI-

ESM-LR 

Commonwealth 

Scientific and 

Industrial 

Research 

Organisation 

(CSIRO), 

Conformal-Cubic 

Atmospheric 

Model (CCAM) 

(Jacob and Podzun 

1997) 

Earth system 

model of Max 

Planck Institute 

for Meteorology 

(MPI-ESM-LR) 

CSIRO Marine 

and  

Atmospheric 

Research, 

Melbourne, 

Australia 

Historical 

RCP 4.5 

RCP 8.5 

50km 

REMO-MPI 

The Regional 

Model of Max 

Planck Institute 

for Meteorology  

(REMO) 

(Teichmann et al. 

2013) 

 

Earth system 

model of Max 

Planck Institute 

for Meteorology 

(MPI-ESM-LR) 

Climate Service 

Center, 

Hamburg, 

Germany 

Historical 

RCP 4.5 

RCP 8.5 

50km 
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Table 2: The results from the multivariate analysis, temporal analysis and spatial analysis for 

Rising phase of rotavirus (without considering relative humidity). 
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1 
0.50

0 
SDII Tn16gTx30l (2 m. av.) 1 0 -0.17 -0.62 0.21 

2 
0.49

5 
Rx1 Tn16gTx30l (2 m. av.) 1 0 -0.05 -0.61 0.13 

3 
0.49

4 
RR1 

Tn16gTx30l (2 m. 

av.) 
1 0 -0.47 -0.62 0.30 

4 
0.49

3 
CR1 Tn16gTx30l (2 m. av.) 1 0 -0.28 -0.62 0.07 

5 
0.49

1 

CR1D

3 
Tn16gTx30l (2 m. av.) 1 0 -0.37 -0.62 0.11 

6 
0.48

8 
RR5 Tn16gTx30l (2 m. av.) 1 0 -0.47 -0.62 0.16 

7 
0.48

7 
Rx1 Tn16gTx30l (2 m. av.) 1 0 -0.07 -0.62 0.27 

8 
0.47

9 
RR10 Tn16gTx30l (2 m. av.) 1 0 -0.44 -0.62 0.17 

9 
0.47

9 
CR1S3 Tn16gTx30l (2 m. av.) 1 0 -0.36 -0.62 0.16 

1

0 

0.47

8 
CR5 Tn16gTx30l (2 m. av.) 1 0 -0.51 -0.63 

-

0.05 
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Table 3: The results from the multivariate analysis, temporal analysis and spatial analysis for 

Rising phase of rotavirus. 
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E 
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0.5
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3 Tx90 RHmin 1 2 0 -0.32 0.37 0.45 0.35 
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0.5
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7 

0.5

2 CR5 Tx2632GE 

RH607
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Table 4: The results from the multivariate analysis, temporal analysis and spatial analysis for the 

rising phase of fall cholera. 
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0.9
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Table 5: The combined score of the top ten models for the rotavirus and cholera diarrheal 

epidemic (during the rising phase). 

N
a
m
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o
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th
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d
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se

 

V
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a
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le
 

co
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Combined score for the top ten models 

1 2 3 4 5 6 7 8 9 10 

Rota  Pr. + Tm. + Rh. 0.61 0.46 0.85 0.52 0.61 0.71 0.62 0.70 0.65 0.52 

Rota Pr. + Tm.  0.76 0.78 1.01 0.73 0.76 0.81 0.58 0.68 0.78 0.14 

Cholera  Pr. + Tm.  0.76 0.75 0.74 0.78 0.72 0.72 1.12 0.98 1.14 0.75 
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A Global Climate Model (GCM) can provide reliable prediction information on scales of 

around 1000 by 1000km covering what could be a vastly differing landscape (from very 

mountainous to flat coastal plains for example) with greatly varying potential for floods, 

droughts or other extreme events. Regional Climate Models (RCM) and Empirical 

Statistical Downscaling (ESD), applied over a limited area and driven by GCMs can 

provide information on much smaller scales supporting more detailed impact and 

adaptation assessment and planning, which is vital in many vulnerable regions of the world. 

 

Global Climate Models (GCM) can provide us with projections of how the climate of the 

earth may change in the future. These results are the main motivation for the international 

community to take decisions on climate change mitigation. However, the impacts of a 

changing climate, and the adaptation strategies required to deal with them, will occur on 

more regional and national scales. This is where Regional Climate Downscaling (RCD) 

has an important role to play by providing projections with much greater detail and more 

accurate representation of localised extreme events. 

 

Regional climate downscaling (RCD) techniques, including both dynamical and statistical 

approaches, are being increasingly used to provide higher-resolution climate information 

than is available directly from contemporary global climate models. The techniques 

available, their applications, and the community using them are broad and varied, and it is 

a growing area. It is important however that these techniques, and the results they produce, 

be applied appropriately and that their strengths and weaknesses are understood. This 
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requires a better evaluation and quantification of the performance of the different 

techniques for application to specific problems. Building on experience gained in the global 

modelling community, a coordinated, international effort to objectively assess and 

intercompare various RCD techniques will provide a means to evaluate their performance, 

to illustrate benefits and shortcomings of different approaches, and to provide a more solid 

scientific basis for impact assessments and other uses of downscaled climate information. 

The WCRP views regional downscaling as both an important research topic and an 

opportunity to engage a broader community of climate scientists in its activities. The 

Coordinated Regional Climate Downscaling Experiment (CORDEX) has served as a 

catalyst to achieve this goal. 

As demonstrated at the second International Conference on Regional Climate – 

CORDEX 2013 held on 4-7 November in Brussels, Belgium, and co-sponsored 

by WCRP, the European Commission and IPCC, the CORDEX concept had gained 

maturity and was showing strong buy-in from the science community and VIA 

practitioners. To meet stakeholders’ expectations the conference outcomes were 

followed-up  to improve the experimental framework so as to improve the CORDEX 

framework. 

At the third International Conference on Regional Climate – CORDEX 2016 held on 

17-20 May in Stockholm, Sweden, and co-sponsored by WCRP, SMHI, Bolin 

Centre, FORMAS, ECRA, ESA, EUMETSAT, and APN, it was shown that CORDEX 

has contributed vastly to the development and production of regional climate data and 

information. 

 

http://www.wcrp-climate.org/
http://www.smhi.se/
https://bolin.su.se/
https://bolin.su.se/
http://formas.se/
http://www.ecra-climate.eu/
http://www.esa.int/ESA/
https://www.eumetsat.int/website/home/index.html
http://www.apn-gcr.org/
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CORDEX Goals 

1. To better understand relevant regional/local climate phenomena, their variability 

and changes, through downscaling. 

2. To evaluate and improve regional climate downscaling models and techniques 

3. To produce coordinated sets of regional downscaled projections worldwide 

4. To foster communication and knowledge exchange with users of regional climate 

information 
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