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ABSTRACT 

There is a need for the development and trial of an accessible, robust procedure 

that can be followed to solve polymer-penetrant diffusion problems associated with 

marine hardware failures, incorporating some of the complexities abounding in these 

types of systems.  The goals of this guidance are to instruct design engineers in the 

appropriate methods to apply when predicting diffusion phenomena as well as to assist 

them when selecting materials for diffusion-susceptible or -dependent applications, 

especially those related to marine hardware.  A straightforward step-by-step flowchart 

tool is presented to accomplish this instruction to average scientists and engineers not 

deeply versed in the specifics of polymer-penetrant diffusion.  The tool is based on 

fundamentals of mass transport from literature and is broken into 3 large steps: 1, 

forming the problem; 2, identifying the math; 3, applying the solution method.  

Auxiliary relevant resources for quantitative solution of the diffusion problems are 

compiled and presented to help users find tabulated values of coefficients and 

parameters from the resulting solution equations.  The development of the flowchart 

tool and worked-through diffusion problem examples are presented to demonstrate its 

origin, use, and the scope of the effort required in order to develop solutions for mass 

transfer problems.  Polymer barrier properties can be improved through the addition of 

nanoclay platelet fillers; this subject is presented in some detail to illustrate complexities 

of real-world transport problems and connect their origins to the fundamental steps of 

the flowchart tool developed herein. 
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CHAPTER 1: INTRODUCTION 

The problem I am trying to solve: 

Diffusion describes the dispersion of chemical in a system from areas of high 

concentration to lower concentration due to random-walk molecular motions of the 

particles.  This fundamental phenomenon is modeled differently when it occurs in gases, 

liquids, solids, and polymers (1). 

There is a need for the development and trial of an accessible, robust procedure 

that can be followed to solve polymer-penetrant diffusion problems associated with 

marine hardware failures, incorporating some of the complexities abounding in these 

types of systems. 

The goals of this guidance are to instruct design engineers in the appropriate 

methods to apply when confronted with two fundamental questions related to diffusive 

mass transfer in marine hardware coatings and components: 

A. How long until X occurs?  ‘X’ can be the concentration or flux of a chemical 

species at a certain location in the hardware reaching a specific level of interest. 

B. What material should I select for my application to avoid diffusive-mass-

transfer-related issues? 

Question A may be encountered when dealing with an existing system that may 

be experiencing a problem, or to assess risk for a potential problem in an existing 

system.  It may also be an important question to answer when finding a solution to 

question B.  Many performance requirements are made of materials used in marine 

hardware systems besides those related to diffusive mass transfer (e.g. structural 

strength, acoustics, corrosion resistance), and may dominate the material selection 
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decision of a design engineer.  It has been my experience that reliance on materials of 

historical familiarity is sometimes used as a surrogate to understanding complex 

phenomena, even if the modern application is different from the historical one. 

Motivating examples from work experience with marine hardware: 

The origin of this thesis topic comes from my experience working at the Naval 

Undersea Warfare Center (NUWC) in Newport, RI.  Problems within the scope of 

polymer-penetrant diffusion I encountered in over 6 years of employment still remain 

current topics of interest.  During their investigation, I found I had an insufficient 

understanding of the fundamentals of the problem and a lack of guidance from 

insufficient corporate knowledge in the subject.  Future needs of a similar nature are 

anticipated, prompting my choice of subject area for advanced education.  A few 

examples follow of problems I have encountered which illustrate the challenges 

motivating my choice of thesis topic. 

Working in the Devices, Sensors, and Materials Research and Development 

branch of the Sensors and Sonar Systems department has led to my involvement in a 

number of failure analysis investigations of marine hardware systems.  In two such 

cases, the diffusion of water through multiple layers of different materials led to an 

electrical failure of the internal hardware.  In one case a proposed dip-coating fix was 

revealed to be insufficient as the diffusion coefficient of water through the dip-coating 

was too high for it to be an effective barrier.  This was shown by analogy in a brute-

force experiment instead of by predictive modeling due to my insufficient knowledge 

to completely describe the phenomena.  In the other investigation the measurement of 

diffusion coefficient by the gravimetric mass uptake method was confounded by 
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runaway water absorption forming entrained liquid blisters in the samples.  Again, my 

lack of sufficient knowledge led to the inability to address the unexpected behavior and 

hampered diffusion coefficient calculation. 

I believe good engineering design practice for material selection could be used 

to reduce the occurrence of these types of delayed problems.  Through my involvement 

in the design end of marine hardware I found a lack of such reasonable guidance for 

material selection which incorporates diffusion behavior and other deleterious chemical 

interaction.  Non-scientific accelerated water bath testing or vague ‘compatibility’ 

statements are often the only guidance offered to engineers that address these types of 

potential problems.  These methods are presented as a ‘one-size-fits-all’ approach, but 

their results are highly dependent on sample materials, geometries, and temperature 

response of material property.  In addition, the ‘acceptable’ numbers resulting from such 

tests reflect the common materials of the time; it is with great peril that one should apply 

such non-specific evaluation methods to the exotic and novel materials considered for 

the advanced hardware design of the future. 

One application that is dependent upon polymer-penetrant diffusion is the use 

of environmentally acceptable biocides to prevent marine biofouling on flexible 

surfaces not accommodating to the typical painted-on anti-fouling solution.  Marine 

biofouling causes noise and drag to a marine vessel (2), and can interfere with the proper 

operation of sensor arrays.  In this case, the biocide is incorporated into the flexible 

coating material and protects the surface by slowly leaching out over time, discouraging 

marine organisms from landing and attaching.  The success of this mechanism involves 

the diffusion of the biocide (penetrant) through the coating (polymer) until it can no 
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longer support the minimum release of biocide from the surface necessary to prevent 

fouling.  The time to reach this minimum is a critical design parameter and is dependent 

upon the material properties of the biocide and coating, the geometry (thickness) of the 

coating, the degree of loading of biocide in the coating, and the ocean environment the 

surface is exposed to.  A model is needed that considers these parameters and that can 

predict the efficacy of a biocide-laden coating solution. 

To summarize my motivations, I am finding I need to solve polymer-penetrant 

diffusion problems, but they are occurring in different systems which have their own 

unique modeling challenges.  Examples include the aforementioned biocide efficacy 

question, material selection for new design, accelerated life testing prediction, failure 

analysis, and diffusion measurement.  Each system may be unique enough that it has its 

own field of advanced study.  Do I have to be an expert in each field in order to solve 

the diversity of problems I encounter?  No!  That would take many lifetimes.  Instead, I 

want to use the basic functional components of each of them in order to solve the 

majority of problems I encounter.  More advanced problems would then require 

collaboration, the necessary resources for which will have already been conveniently 

compiled in this work.  Diffusion is anticipated to be important for future navy systems 

that incorporate novel and exotic composite materials and additives.  Polymers, 

plasticizers, and leachable components will all be subject to the persistence of random 

molecular motion, much more so than the ceramic and metallic materials of historic 

familiarity. 

At the end of the day, I am most interested in improving the reliability of marine 

hardware systems, accurately predicting and extending their service life, and reducing 
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maintenance costs especially those associated with marine biofouling. I also hope to 

contribute innovative solutions to the incorporation of polymers in new applications and 

to improve quality control and specification to ensure the U.S. Navy is procuring 

appropriate materials in its systems. This would most likely manifest as scientifically 

valid, application-specific test requirements on procurements which rapidly and 

inexpensively check materials and components for problematic behaviors such as fluid 

incompatibility, permeation resistance, and incorrect formulation. 

Difficulty with subject matter, lacking literature: 

I have had difficulty in approaching these types of problems, and this lack of 

sufficient understanding partly motivated the choice of thesis topic.  What seemed 

lacking in the literature was guidance akin to the TurboTax® tax preparation software 

concept, i.e. a user-friendly step-by-step approach which introduces the appropriate 

topics and asks for the right decisions along the way towards the ultimate solution.  

Human memory is naturally spatial (3) and works well with a flowchart since it 

represents a sequence of events as though along a path.  Solving mass transport 

problems requires applying concepts of mass balance, constitutive relationships, 

differential equations, and evaluation of transcendental functions in their proper order.  

Getting the order of operations correct may seem straightforward to an experienced 

practitioner, however I can attest that it is confusing and frustrating for the novice.  One 

particularly vexing trap is to stray too far from the original problem at hand while 

delving into the nuance of applying one of the aforementioned concepts, a sort of 

‘Hansel and Gretel’ bewilderment as the breadcrumbs of our thought process fall prey 

to the complex gingerbread diorama challenge of incorporating new knowledge.  The 
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added concept of mole-based or mass-based units leads to mass transport requiring at 

least twice the generic symbols and equations to handle the permutations of scenarios 

as compared to heat and momentum transport.  Mathematical analogy is made in the 

literature between heat conduction and mass diffusion (4) (5), however mass diffusion 

has unique nuances which don’t appear in heat transfer such as chemical reaction (1) 

and an apparent discontinuous concentration driving force between phases at 

equilibrium (although chemical potential is continuous, but practical transport 

phenomena equations presented in the literature avoid using chemical potential). 

It is clear that much work has been done related to polymer and penetrant 

diffusion in the last 60 years and advancements continue today.  In spite of all this effort, 

the incorporation of these diverse behaviors into the solution of real-world applications 

is not straightforward in the literature.  Beyond the negation of simplifying assumptions, 

the hapless engineer is sent down an unfamiliar path delving deeply into the particular 

science of a unique behavior, with guidance returning the user to the original problem 

at hand noticeably absent.  No user-friendly process seems to exist to pursue (in general) 

the solution of diffusion problems involving penetrants in polymers; no one resource 

has combined all tools necessary to approach the diversity of behaviors potentially 

encountered.  Indeed, how does one navigate the dense jungle of polymer-penetrant 

diffusion knowledge between the polymer-penetrant diffusion problem and its solution?  

This thesis work offers to create that guidance to applying modern advances in the 

polymer-penetrant diffusion field to real-world problems, compiling the state-of-the-art 

and making it accessible to those not deeply involved in the basic research. 
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Complexity of the phenomena: 

Many of the assumptions simplifying mass transport in gases and liquids do not 

apply to diffusion through polymers, as shown in the literature.  In 1968, Fujita (6) notes 

that the sorption and permeation of organic vapors is “exceedingly complex” in 

polymers at temperatures below glass transition (Tg).  Crank (5) highlights that the 

diffusion of vapors in high-polymers, different from most (e.g. dilute) systems, is 

concentration dependent, and a “very marked, characteristic feature” at that.  Crank goes 

on to note a number of numerical solutions exist for these situations, however these 

solutions vary and are not uniformly applicable to all polymer-vapor systems.  Vieth (7) 

concisely displays the potential for complexity when a condensable vapor (as opposed 

to a permanent gas) is diffusing through a rubbery polymer (above Tg); activation energy 

for diffusion (ED), solubility, and diffusion coefficient can all be strong functions of 

penetrant concentration, more so if the temperature is near the polymer’s Tg or if the 

penetrant acts as a plasticizer to the polymer.  Stastna & De Kee (8) propose that 

“[g]enerally, the diffusion behavior of polymers cannot be described by Fick’s law with 

constant boundary conditions.”  Neogi (9) affirms that, although the three assumptions 

of homogeneity, isotropy, and local equilibrium apply to conventional transport 

phenomena used to address fluids, “[n]one of these apply to solid polymers uniformly.”  

Cussler (1) asserts that for low-molecular-weight solutes in a polymer solvent, diffusion 

modeling requires a blend of concepts from diffusion in solids and diffusion in liquids; 

I found it rather telling that this major work on diffusion phenomena purposefully omits 

a detailed discussion on diffusion in solids and restricts its scope to fluid systems.  

Finally, Kwan (10) summarizes many of these historically observed peculiar behaviors, 
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stating that it is “…essential… to understand the nature of the diffusion of low molecular 

weight liquid penetrants into a given polymer matrix,” and admits that after “several 

investigations” and “a variety of studies” there are now “various models” which 

describe the diffusion process. 

One of the reasons for the complexity of these types of systems is the range of 

polymer and penetrant characteristics which can influence the diffusion process.  The 

diffusion coefficient is nearly always temperature dependent, and may be concentration 

dependent (5).  A very marked step-change in diffusion behavior generally occurs 

around the glass transition temperature of the polymer; over a narrow temperature range 

the types of accessible motions available to the polymer chain segments change 

significantly, impacting the mechanism of penetrant diffusion except for very small 

penetrant molecules, such as monatomic or diatomic gases.  The relative time scales of 

polymer and penetrant molecular motion play a primary role in determining the type of 

diffusion which occurs in the system; Neogi (9) summarizes different power-law 

behavior of sorption data versus time in the expression 

 
𝑀𝑡

𝑀∞
= 𝑘𝑛𝑡𝛼  

with α values reflecting the type of diffusion (e.g. pseudo-Fickian, classical/Fickian, 

anomalous, case II, super case II).  Interaction or the lack thereof between polymer and 

penetrant molecules can lead to plasticization or penetrant clustering, respectively (7).  

Chemical reaction can also occur during the diffusion process, removing and generating 

chemical species with different diffusion behaviors (11) (12).  Finally, diffusion through 

non-isotropic systems (e.g. inhomogeneous bulk material, composites, and layers) must 
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accommodate different diffusion behaviors in different phases and the transfer between 

them (1) (5). 

How I am trying to solve the problem: 

Specifically, the goal is to produce a straightforward step-by-step process 

flowchart tool for modeling the concentrations of small molecule penetrants (e.g. water, 

solvents, oils, plasticizers) within glassy and rubbery solid polymers as a function of 

position and time, making adjustments to include phenomena atypical to that found in 

the diffusion of gases and liquids. 

This tool shall: be usable by the average scientist or engineer not deeply versed 

in the specifics of polymer-penetrant diffusion; provide guidance to the user to avoid 

mistakes, sanity check, and assess the expected range of accuracy of the prediction; be 

sufficient to address most types of polymer-penetrant diffusion problems; and be 

validated through experimental data both historical and novel. 

Summary of the sections that follow: 

Summary, Ch.2 Diffusion flowchart tool: 

The key product of this thesis effort consists of a process flowchart tool which 

can be followed step-by-step to develop the equations and solutions of mass transport 

in solids, specifically polymers.  The fundamentals of mass transport are reviewed from 

the literature, and the methods put forth by these authors form the basis of the flowchart 

process.  The resulting flowchart process can be broadly described in three steps: 1, 

forming the problem; 2, identifying the math; 3, applying a solution method.  Each step 

will be expanded upon in the detailed description of the tool.  To facilitate use by the 
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target audience, general guidance and pitfall avoidance is also included to increase these 

users' chance of success. 

Summary, Ch.3 Diffusion Resources: 

This chapter summarizes the resources available for those seeking quantitative 

answers to their diffusion problem.  It is intended as the 'next step' for users of the 

flowchart, enabling them to link values with the parameters developed in their solution 

equation.  These tabulated values can come from various sources with a wide range of 

success, and include print literature, online databases, computer simulation, and 

experimentation. 

Summary, Ch.4 Diffusion Problems: 

This chapter highlights the work that influenced the development of the 

flowchart, and demonstrates its use through the solution of diffusion problem examples.  

Extensive math notes are included to convey the scope of the effort required in order to 

develop solutions for mass diffusion problems. 

Summary, Ch.5 Barrier polymer application: 

This section describes a method for dramatically reducing diffusion through a 

barrier polymer by adding nano-thick micron-sized clay platelets.  Various models have 

been proposed to correlate the characteristics of the additive with the apparent diffusion.  

This section is included to illustrate complexities of real-world transport problems and 

connect their origins to the fundamental steps of the flowchart tool. 

Future work / looking forward: 

Current research in polymer-penetrant diffusion seems to focus in general on the 

need for computational solutions to the problem; good experimental techniques are 
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critical for end-use application, but the predictive power of computational methods is 

necessary given the vast number of experimental permutations of polymer-penetrant 

compound combinations.  Bernardo et al.’s (13) review of polymer membrane 

separation technology emphasized the need for molecular dynamics studies and 

improved understanding of transport on a molecular level to advance the field, building 

on the computer simulation necessary to describe amorphous and semicrystalline 

polymers.  Diffusion can be the determining factor of long-term reliability and 

performance, however purely experimental characterization is impractical; predictive 

models are necessary for optimizing systems and extrapolating short-term experimental 

results (14). 

Since diffusion seems to be a lesser-well-understood property but with 

potentially disastrous consequences, it is my hope that this guidance will be a useful 

addition to the design engineer’s toolbox that will improve material selection in marine 

hardware systems.  
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CHAPTER 2: DIFFUSION FLOWCHART TOOL 

INTRODUCTION 

The entirety of the flowchart process used to solve polymer-penetrant diffusion 

problems in marine hardware can be grouped into three parts (Figure 1): 1, forming the 

problem; 2, identifying the math and choosing a solution method; 3, applying a solution 

method and solving for what you want. 

 

Figure 1 Flowchart process overview 

 

Within each part are a sequence of steps that are to be followed in roughly the 

given order, with some exceptions noted in the detailed summaries.  Table 1 provides 

an outline to this flowchart process. 

This flowchart tool was developed through review of the following relevant 

textbook literature on the subject of diffusion: Stastna & De Kee (8), Vieth (7), Crank 

& Park (5) (15), Cussler (1), Neogi (9), Bird-Stewart-Lightfoot (16), & Geankoplis (17). 

Form
•Picture

•Flux equation

•Mass balance

Math
•Identify: PDE, BCs

•Choose method

Solve
•Apply method

•Final solution
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FORM THE PROBLEM 

Step   1 Clearly define the desired solution (what ‘u’ want). 

2 Draw picture(s). 

3 Define initial and boundary conditions. 

4 Define the constitutive equation for species flux. 

5 Conduct a shell mass balance. 

6 Form the differential equation. 

IDENTIFY THE MATH & SELECT A SOLUTION METHOD 

Step   7 Identify the type of differential equation. 

8 Identify the types of initial & boundary conditions. 

9 Select the appropriate solution method. 

APPLY THE SOLUTION METHOD & SOLVE FOR WHAT YOU WANT 

Step  10 Apply the solution method. 

11 Verify the final solution satisfies the conditions of the problem. 

12 Solve for what you want. 

Table 1 Flowchart process outline 
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FORM THE PROBLEM 

The first section, “Form the problem” is perhaps the most relevant to the 

‘flowchart’ concept.  It is best approached by answering a series of questions, following 

a ‘decision-tree’-like path.   

 

1. Clearly define the desired solution (i.e. what ‘u’ want). 

Start by clearly and absolutely defining the desired solution.  In the words of the 

late, great philosopher Yogi Berra, “You’ve got to be careful if you don’t know where 

you’re going ‘cause you might not get there!” (18).  This is an important first step as 

there will be many subsequent steps involving different physical and mathematical 

concepts, likely prompting one or more reference searches; it is easy to get lost on your 

way to the solution.  Having a clearly defined goal will be like a beacon, always allowing 

you to return to the original problem at hand.  This first step, ‘Clearly define the desired 

solution’, is asking the user what ‘u’ want.  To borrow notation from Farlow (19), the 

notation u, ux, and uxx are used to describe the dependent transport variable ‘u’ (e.g. 

concentration, temperature, velocity) and its first and second derivatives with respect to 

an independent variable ‘x’ (e.g. position, time).  The user is asked the fundamental 

question, “What do you want to know?”  Typically sought answers in mass transfer are 

(for a given material species of interest, e.g. ‘A’) values of concentration (cA[x,t]), flux 

(NA[x,t]), cumulative amount (QA[x,t]), and average concentration 𝑐𝐴[(𝑥0 − 𝑥𝐿), 𝑡] as a 

function of position and time.  In addition, the time (or position) at which any of the 

above achieve a certain value of interest may be the desired solution.  This latter goal 

would then be achieved through either algebraic rearrangement of the solution resulting 
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from this process; or by some ‘solver’ method such as Newton-Raphson, Goal Seek 

(Microsoft Excel), or another root-finding algorithm.  These methods are not covered in 

the scope of this work, but may be necessary in practice especially for any complicated 

or transcendental functions. 

A guide for example questions expected to occur for a marine-hardware-relevant 

diffusion problem can be found in Appendix 1.  It is assumed that users are looking to 

identify how to solve their polymer-penetrant diffusion-related problem in the sense of 

fixing it practically, not just how to describe it. 

Once the desired solution value is identified, it is critical to answer the question, 

“How is your desired solution related to the concentration profile?”  This is important 

to establish because no matter what the final desired solution is, the precursor solution 

necessary to get there (which is developed while following this process) is the 

concentration profile of the system, i.e. cA(x,t).  For momentum and heat transport 

problems the analogous precursor solutions are the velocity and temperature profiles, 

respectively.  If the desired solution is the concentration value at a specific position and 

time, or the time required for the concentration to reach a certain value at a specific 

position, then no additional relationship is needed.  If instead the flux value is desired 

(usually from a boundary surface), then the key relationship will be the constitutive 

relationship between species flux and driving force and will inherently incorporate the 

concentration profile.  An important assumption here is that local equilibrium exists 

between each side of the interface at the boundary.  This is true for a system that is 

‘diffusion limited’, i.e. the diffusion through the bulk phase is the slow process.  If 

instead the system is boundary limited then a mass transfer coefficient and interphase 
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mass transfer solution process is appropriate; this subject is beyond the scope of this 

work, however more information on it can be found in chapter 8 of Cussler’s text on 

diffusion (1).  If the cumulative amount of diffusing species that has moved past a 

specific position after an elapsed time is desired, then the relationship is the integral of 

the flux at that position over the cross-sectional area and the elapsed time.  For steady-

state conditions this will simplify to straightforward multiplication.  Finally, the 

relationship for the average concentration of a region of the system at a particular 

snapshot in time is the integral over that system dimension at that specific time. 

 

2. Draw picture(s). 

An idealized picture of the problem will help to visualize the scenario and link 

the physical problem with the abstract math used to describe it.  A second picture 

illustrating the macro-system schematic which the simplified problem exists in can be 

helpful for knowing your problem’s place in the larger picture (16), but for the purposes 

of solving the problem it can be optional.  Here the user is asked the question, “What 

does your physical system look like?” 

A guide for example geometries expected to occur for marine-hardware-relevant 

diffusion problems can be found in Appendix 2. 

Drawing the simplified picture will establish the space dimension(s) of the 

problem.  The coordinate system (rectangular, polar, spherical) is chosen based on the 

simplest shape of the problem relative to what the user wants to know.  Polar and 

spherical coordinate systems are not covered in the scope of this work; however, 

conversion guidance between coordinate systems can be found in the literature (16).  A 
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useful tip here is to choose the coordinate system direction (i.e. the direction of 

increasing axis values) to coincide with what the user intuitively believes to be the 

direction of decreasing concentration, i.e. the net flow direction of the species of 

interest.  For example, the position z = 0 should correspond with the boundary location 

of greatest concentration.  This will make the flux positive and the concentration 

gradient negative in the positive coordinate (z) direction.  This approach may not be 

universally applicable, as shown later on in chapter 4 in one of the worked-through 

reference solutions from the literature (4). 

A good picture will emphasize both the region of interest of the problem and its 

boundaries.  Boundaries and their characteristics are an important part of the final 

solution; they greatly change its form from one model to the next even if the systems 

share the same fundamental differential equation.  One feature to establish while 

drawing the picture is to decide if the physical space is an open or closed region, i.e. is 

one or more direction considered to be of infinite length, or is there finite length to the 

system?  A leaching problem into the infinite expanse of ocean or absorption into a very 

thick material will likely be semi-infinite and have one space dimension go on to 

infinity.  The behavior of a layer with finite thickness separating two phases will have 

to be considered as finite length. 

These considerations also influence whether a short-time solution or a long-

times solution is necessary for the model to be valid.  These limits of interest with space 

and time factor in to the dimensionless ratio 
𝐷𝐴𝐵𝑡

𝑥2  which influences the convergence of 

the final solution.  If the diffusion coefficient of the system can be determined along 

with the length and time of interest, then the value of this ratio can assist with choosing 
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the appropriate solution method later on.  Guidance for the validity of one or the other 

(e.g. short vs. long times) can be found in (20).  For a plane surface the short-time 

solution is valid for 
𝐷𝐴𝐵𝑡

𝑥2 < 10−2.  The long-time solution is valid for  
𝐷𝐴𝐵𝑡

𝑥2 > 0.5 

 

3. Define initial and boundary conditions. 

Here the user is asked the question, “What is known at the boundaries of the 

system being modeled?”  This is referring to what is or is expected to be known at the 

boundary positions (space and time) of the system in terms of the following possible 

values: 

Known concentration 

The concentration value of the penetrant species of interest is typically specified 

throughout the bulk of the film at time zero as the initial condition; it may be zero, 

uniform, or vary as a function of position.  The concentration value may also be 

specified at the boundaries.  This is usually specified as constant, but can vary as a 

function of time at the boundaries.  The time-varying case is not covered in the scope 

of this work, although further guidance can be found in the literature (4) (5).  Specifying 

concentration is simpler in theory, but in practice it can be difficult to determine.  The 

following values are more likely be known: 

Known exterior phase value & equilibrium relationship 

It is typically easier to know through measurement and to control in practice the 

bulk concentration of the exterior phase to the system of interest.  Translating this to the 

diffusion system requires an assumption of local equilibrium at the phase boundary and 

an equilibrium relationship.  Local equilibrium implies a steady-state mass balance at 
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the phase boundary, i.e. flux out equals transfer in, even if there is a discontinuous 

concentration; that relationship is given by a partition coefficient equation (e.g. Henry’s 

law, 𝑐𝐴
𝐼 = 𝐻𝑐𝐴

𝐼𝐼) and ‘hypothetical’ concentrations.  More information on this can be 

found in chapter 8, section 5: ‘Mass Transfer across Interfaces’ of Cussler’s text (1).  

This boundary condition may also be a constant value or can vary with time. 

Impermeable 

The third boundary condition likely to be encountered is that of the impermeable 

boundary.  This condition implies that no flux of the penetrant species occurs at that 

boundary position.  Mathematically this leads to the relationship that the first derivative 

of concentration with respect to position is zero at that boundary position, 

 
𝑑𝑐𝐴

𝑑𝑥
= 0|

|
|

𝑥=0 or 𝐿
  

A reactive boundary condition may also be specified if a heterogeneous 

chemical reaction with the penetrant species is occurring.  This situation is not explored 

further in the scope of this work, but example problems can be found in (16), §18.3.  In 

the slow reaction case, final solution of the equation requires the knowledge of the 

simplifying Taylor series approximation ln(1-x) ≈ -x. 

A guide for example initial and boundary conditions expected to occur for 

marine-hardware-relevant diffusion problems can be found in Appendix 3. 

The user, in searching for these known values, will inevitably discover a 

multitude of different units to describe the concept called ‘concentration’.  It will be 

generally helpful (although not critical) to establish these units and a mechanism to 

enable their conversion so that the final solution can be obtained from this process.  In 

general, values of concentration are described as an amount of material per unit volume 
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of space, with the ‘amount’ being in terms of moles or mass of penetrant species.  

Respective ‘fractions’ (e.g. mole fraction, mass fraction) may also be encountered, 

defined as mole/mass of penetrant species divided by the total moles/mass of all material 

in a given unit volume of space; as a result, the mole/mass fraction term for 

‘concentration’ is dimensionless.  Due to experimental convenience, ‘partial pressure’ 

values can also be used to describe the ‘concentration’ of a penetrant species.  For 

practical use of this, an equilibrium relationship is required to convert to other 

concentration units; the reader is encouraged to refer to the now familiar chapter 8 from 

Cussler’s text (section 5.3) (1). 

 

4. Define the constitutive equation for species flux. 

This is the point at which the relationship between the species flux and the 

concentration gradient is specified, along with any other mechanisms influencing the 

motion of matter across a fixed plane in space (or appropriate moving reference frame).  

This relationship is defined in accordance with the user’s understanding of what is going 

on in their system of interest.  The curious reader is referred to (16), chapter 24 as a 

brief introduction to fluxes of mass due to gravity, electric, and magnetic influences; 

these mechanisms are not covered in the scope of this work.  Even if the user is just 

interested in the concentration profile as their final solution, this is still an important 

step.  The species flux equation will be the bridge between the concentration gradient 

and the next step, the shell mass balance. 

During the development of the diffusion flowchart tool, this step was originally 

created as ‘determine the math’ and also included the subsequent step; however it was 
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later expanded into the more specific steps shown here, prompting users to separately 

specify the constitutive equation for species flux and the shell mass balance.  This was 

done to give these related but separate concepts the proper space to be more completely 

grasped rather than lumping them together, as well as making it more convenient to 

change to a different constitutive equation should the need arise.  It is anticipated that 

complexities involving non-Fickian diffusion (expected with polymer-penetrant 

scenarios) might be better handled down the road if initially these concepts are treated 

separately. 

A variety of equations to describe this flux and account for these different 

mechanisms can be found in the literature.  At the very least a molecular flux term is 

expected, and if the bulk medium is a gas or liquid then a convective flux term may be 

appropriate.  Equations including these terms for a mass and mole basis as well as for 

fixed coordinates and those relative to the velocity of the fluid can be found in (16), 

table 17.8-2.  The marine-hardware-relevant scenarios of polymer-penetrant diffusion 

occur in solids, so the convective term can be dropped (zero bulk fluid velocity) leaving 

just the molecular flux term.  Barring any other mechanisms of mass transport we arrive 

at the often-quoted Fick’s first law of diffusion, 

 𝑁𝐴 = −𝐷𝐴𝐵
𝑑𝑐𝐴

𝑑𝑥
  

which is analogous to the energy flux equation for conduction of heat in solids. 

This step is rather automatic and seems to be without decisions to make.  The 

one question to the user that is important to ask at this time is, “Is the diffusion 

coefficient concentration-dependent?”  If unfamiliar with the polymer-penetrant system 

of interest, the user will have to look up this sort of interactive behavior in the available 
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literature.  In the likely event that this information cannot be found in sufficient detail 

(to find a mathematical function for DAB = f(cA)), the user will have to conduct an 

experiment to determine the relationship between diffusivity and concentration.  See the 

Experimentation section in chapter 3: Diffusion Resources for additional information 

on this subject. 

As routinely stated in the literature the diffusion of penetrants through polymers 

is markedly concentration-dependent.  Many textbook problems in gases or liquids will 

have as an assumption a diffusion coefficient that is not a function of time, position, 

concentration, or otherwise; however the tendency is for this to not be the case in solids, 

especially polymers (1) (5) (16) (21).  This feature may be glossed over in the typical 

instruction of transport phenomena, where mass transfer is often taught in an analogous 

fashion following heat transfer.  This heat analog approach to teaching mass transfer 

loses the significance of a dependent-variable-varying coefficient, e.g. thermal 

conductivity changing with temperature, mass diffusion coefficient changing with 

concentration.  In the first chapter of Carslaw & Jaeger’s treatise on modeling heat 

conduction (4), the authors point out that this characteristic is much more pronounced 

in mass transport than it is in heat conduction, and subsequently deals no further in the 

text with such nonlinear behavior.  Mathematically, the nonlinear differential equation 

cannot be solved by superposition of elementary solutions as sums or integrals (22).  As 

will be shown through demonstration of the flowchart tool, incorporating the 

concentration-dependent diffusion coefficient requires advanced solution methods, 

usually numerical approaches. 
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This characteristic is important to establish at this point because it will have an 

immediate impact in the following steps of the process. 

 

5. Conduct a shell mass balance. 

Chemists think in molecules, mechanical engineers think in continua; chemical 

engineers think in both.  The equations developed in this process reside in the realm of 

continuum mechanics; the intricacies of the diffusion coefficient must be traced back to 

molecular interaction. 

This step, based on the concept of conservation of matter, builds the relationship 

which accounts for the mass of penetrant material in the bulk of the system of interest 

as a function of position and time.  The balance is performed on a ‘shell’ volume section 

within the bulk, which is then allowed to shrink to differential thickness; this is then 

applicable to the entire region between the boundaries.  The flux of penetrant ‘in to’ and 

‘out of’ the shell volume comes from the constitutive equation for species flux defined 

previously. 

Going back to the picture drawn in step 2, a thin slice is added consisting of two 

parallel plates (or planes) in the middle of the bulk region.  The plates are oriented such 

that the thickness (thin) dimension is in parallel with the anticipated mass diffusion 

direction; in other words, the plates are perpendicular to the principal direction of 

diffusion.  In their text on transport phenomena; Bird, Stewart, and Lightfoot use the 

phrase: “thin in the axis direction of anticipated species flux” (16). 

What follows then is an accounting for all mass (or moles) of a species within 

the representative volume.  The law of the conservation of matter is used here and it 
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results in an equation for net accumulation of a species within the volume.  This equation 

has terms for the amount entering the volume, the amount leaving the volume, as well 

as rates of generation or consumption within the volume in the case of chemical 

reaction.  Each term has units of amount (mass or moles) per time, i.e. a material flow-

rate.  The amounts entering and leaving the volume are tallied by multiplying each area 

of the face across which transport is occurring with the flux of that species at that face, 

then summing the results.  The faces in and out are those of the plates at ‘z’ and ‘z+Δz’, 

respectively. 

(Mass Flow Rate)in,z - (Mass Flow Rate)out,z+Δz 

+ (Product Production Rate)rxn – (Reactant Consumption Rate)rxn 

 = (Mass Accumulation Rate)vol=AΔz  

In order to complete the shell mass balance, the user must answer the following 

two questions:  

Steady vs. Unsteady State 

Based on their system of interest, the user must decide if the concentration of 

penetrant is changing with time over the region of the system.  If not, then the system is 

at steady-state and there will be zero accumulation within the shell.  Otherwise, the 

system is unsteady (i.e. dynamic) and a time derivative must be incorporated in the shell 

balance.  A consequence is that the mass accumulation rate within the volume is not 

zero, i.e. 
𝑑𝑐𝐴

𝑑𝑡
≠ 0. 

Chemical Reaction 

If the penetrant species is reacting in this system, then a reaction rate term (gain 

or loss) must be included in the mass balance.  If the reaction is homogeneous (i.e. 
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occurring throughout the bulk region of the system) then this term is included in the 

balance.  If the reaction is heterogeneous (i.e. occurring at the system boundary/phase 

interface), then the reaction rate is not included here and is instead defined in the 

boundary conditions.  Reactive boundary conditions are not covered in the scope of this 

work. 

As the volume thickness is allowed to approach zero, a derivative relationship 

with respect to position is developed between the fluxes at the opposing faces.  This is 

where the concentration-dependence of the diffusion coefficient will be important, as is 

described in the next step. 

 

6. Form the differential equation. 

Combining the results of the previous two steps will generate the differential 

equation that is to be solved in the rest of the process.  Plug the constitutive equation for 

species flux into the flux term from the shell balance and take the derivative, resulting 

in a differential equation with concentration as the dependent variable.  This equation 

will be analyzed in the next part of the process; re-writing it into standard or general 

form (19) (23)  will facilitate the analysis in the later steps. 

For a constant diffusion coefficient, the usual instruction is to bring it outside of 

the derivative and simplify the overall equation.  However, if the diffusion coefficient 

is expected to vary with concentration then this cannot be done, resulting in a nonlinear 

differential equation.  Table 2 illustrates this difference. 
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Step 4 𝑁𝐴 = −𝐷𝐴𝐵

𝑑𝑐𝐴

𝑑𝑥
 

Step 5 
𝜕𝑐𝐴

𝜕𝑡
= −

𝜕

𝜕𝑥
(𝑁𝐴) 

Step 6 

DAB constant DAB = f(cA) 

𝜕𝑐𝐴

𝜕𝑡
= 𝐷𝐴𝐵

𝜕2𝑐𝐴

𝜕𝑥2
 

𝜕𝑐𝐴

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷𝐴𝐵

𝜕𝑐𝐴

𝜕𝑥
) 

Table 2 Constant versus concentration-dependent diffusion coefficient 
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IDENTIFY THE MATH & SELECT A SOLUTION METHOD 

The differential equation resulting from the previous section will now be 

classified.  This classification combined with the nature of the boundary conditions and 

any initial conditions will determine the solution method most appropriate for solving 

the differential equation.  Here, the 'solution' will consist of an expression for species 

concentration as a function of position and, if applicable, time. 

 

7. Identify the type of differential equation. 

Differential equations are classified by the following characteristics (19): 

a) Order 

b) Number of independent variables 

c) Linearity 

d) Homogeneity 

e) Coefficients 

Certain solution methods will only work for differential equations of a certain 

type.  For example, the method of the integrating factor is only applicable to first-order 

ordinary linear differential equations with continuous coefficient functions (23).  The 

differential equation must have these characteristics or be transformed into one having 

them before the integrating factor method can be applied. 

Arranging the differential equation into general form is helpful for this 

evaluation.  Differential equation characteristics include the order of the differential 

equation, the number of independent variables (1-ordinary, ≥ 2-partial), its linearity and 

homogeneity, and the dependence of coefficients with respect to the independent 
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variables.  The additional linearity characteristic found in (24) of quasilinearity 

describes a PDE with coefficients that are a function of the dependent variable and/or 

any of its derivatives of lower order than that of the differential equation; nonlinear 

PDEs therefore have coefficients that are a function of the derivatives of the dependent 

variable and are the same order as that of the differential equation. 

Linear 2nd-order PDEs can be categorized by basic type: parabolic, hyperbolic, 

and elliptic.  This feature is determined by the resulting value of the following 

calculation involving the coefficients of the general form of the PDE: 

 𝐵2 − 4𝐴𝐶 =?  

…with A, B, and C coefficients from the linear 2nd-order general equation of 

dependent variable ‘u’ (19): 

 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑡 + 𝐶𝑢𝑡𝑡 + 𝐷𝑢𝑥 + 𝐸𝑢𝑡 + 𝐹𝑢 = 𝐺  

The linear unsteady-state diffusion problem (heat and mass) will in general be 

parabolic, i.e. B2-4AC=0 (19) (24).  If 2 space dimensions are considered, then an 

elliptic differential equation will likely result. 

It is prudent at this point to also identify the ranges of the independent variables 

over which this PDE applies, i.e. the bounds of the space and time variables.  This is 

important as it will determine the applicability of some solution methods later on. 

 

8. Identify the types of initial and boundary conditions. 

Prior to this work the author did not fully appreciate how terribly important the 

initial and boundary conditions are to the final solution of the problem.  The addition of 

a separate step focused on boundary condition identification seeks to make that clear for 

future users who have a similar under-appreciation.  The literature suggests three aspects 
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for classifying the types of boundary conditions in the diffusion problem (19) (24); in 

the author’s opinion the latter reference has a more straightforward breakdown. 

First, the overall problem is classified based on the ranges over which the 

independent variables (e.g. position and time) are allowed to vary.  If at least one of the 

independent variables has an open region (i.e. is allowed to vary to positive or negative 

infinity), then the overall problem is classified as an initial-value problem.  The common 

example of this is the time variable, which is usually allowed to increase towards 

positive infinity.  This can also be the case for the space variable in the examples of 

infinite (-∞ < x < ∞) and semi-infinite (-∞ < x ≤ 0] or [0 ≤ x < ∞) media.  If instead the 

independent variables all vary over a closed region, then the overall problem is a 

boundary-value problem (24).  Farlow (19) suggests distinguishing an infinite media 

problem as an initial-value problem and all others with at least one open independent 

variable range as an initial-boundary-value problem.  The second worked-through 

problem discussed in chapter 4 is therefore classified as an initial-boundary-value 

problem because it is physically bounded but occurs at unsteady-state. 

Second, the behavior of the dependent variable (e.g. concentration) at the 

boundaries is classified.  Three different behaviors are considered here, resulting in the 

following named types of boundary conditions of a problem (24).  A boundary condition 

of the ‘first kind’ is called a Dirichlet condition, and specifies the value of the dependent 

variable (e.g. concentration) for a particular value of an independent variable (e.g. 

position).  The dependent variable may be constant, or a function of independent 

variable(s) (e.g. time, position).  This also describes the typical kind of initial condition 

encountered in simplified diffusion problems (i.e. a specified initial concentration 
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profile).  Although simpler to model, experimentally determining this value exactly at 

the boundary region is terribly difficult (1).  It is more practical experimentally to 

specify and control an exterior bulk concentration value instead and use a local 

equilibrium relationship, e.g. Henry’s law, to define the boundary just inside the phase 

of interest for the problem.  The boundary condition of the ‘second kind’ is called a 

Neumann condition, and specifies the value of the derivative of the dependent variable 

(e.g. concentration) with respect to an independent variable (e.g. position) for a 

particular value of an independent variable (e.g. position).  This derivative may be 

constant or a function of independent variable(s) (e.g. time, position) just like the 

Dirichlet condition.  One example is when an impermeable boundary is specified; in 

this case, the species flux at the boundary is set to zero.  Finally, a boundary condition 

of the ‘third kind’ is called a Robin condition, and specifies a relationship between the 

dependent variable (e.g. concentration) and its derivative with respect to an independent 

variable (e.g. position) for a particular value of an independent variable (e.g. position).  

Examples of this include when flux at the boundary is dictated by a mass-transfer 

coefficient and the difference between the concentration at the interior surface and the 

concentration in the exterior bulk, as well as when a concentration-dependent 

heterogeneous reaction is specified at a boundary surface (16).   

Third, linearity and homogeneity are two characteristics used to classify 

boundary conditions, much as they are used to describe differential equations.  The 

applicability of a solution method may depend on these characteristics of the boundary 

conditions.  See Appendix 4 and relevant math textbooks (19), (23), (24) for some 

guidance on applicable solution methods. 
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All of these different types of boundary conditions are expected to be 

encountered when solving diffusion problems. 

 

9. Select the appropriate solution method. 

Having prepared the differential equation from the mass balance and constitutive 

equation for species flux, and determined the boundary conditions from the picture and 

problem description, the next general step for the user is to choose a solution method.  

There are many different methods by which a differential equation may be solved, some 

better than others for a particular scenario; a helpful guide on the variety was found in 

(19).  The challenge presented here to the practicing engineer is to choose a solution 

method that will be successful and will give an accurate answer in a reasonable amount 

of time without being overly complicated.  It was assumed by the author that in order to 

do this, the characteristics of the differential equation and boundary conditions need to 

be analyzed.  At the very least, the initial goal here is to ensure a solution method is 

chosen that will ultimately be successful and not doomed to fail from the start. 

Two options lie before the flowchart user now that they are armed with the 

knowledge of the differential equation, initial and boundary conditions, and their 

classification: search the literature for an already worked-out problem with the same 

equation and condition (or some analog), or determine the appropriate solution process 

for solving the problem directly.  A brief summary of the advantages and disadvantages 

of each approach are presented in Table 3. 
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PRO CON 

Look it up 

Less work. 

Likely validated with links 

to relevant data. 

May not exist. 

Still need to translate notation, mind 

assumptions. 

Solve it 

yourself 

Better understanding. 

Only limited by 

mathematical prowess. 

May take a long time if not familiar 

with solving differential equations. 

Prone to frustration. 

Table 3 Solution method decision: look it up versus solve it directly 

 

The example scenarios used to illustrate the flowchart process tool in action will 

be presented with the latter option chosen, however any reference solution found will 

also be presented along with the appropriate conversions necessary. 

To progress down the path of self-solution, what is desired at this point in the 

flowchart process is a straightforward continuation of steps to follow leading directly to 

the appropriate solution.  Mathematics being logical, this should be the case at least 

conceptually, if not theoretically.  In practice, however, the diversity of solution 

methods and their various rules of applicability add a degree of complexity which is 

outside the current scope of the author’s practical mathematical knowledge.  The 

paraphrase “experience will enlighten” seems to be the go-to panacea to address this 

shortfall; the author finds this frustrating given the aforementioned logical permanence 

of math and the inability to directly program the fuzzy concept of ‘experience’ into a 

computer or translate into a flowchart tool.  An attempt to capture this is available in 

Appendix 4, which seeks to provide a guide for determining the appropriate solution 

method.  Further iterations through the developing flowchart tool will hopefully bring 
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this enlightenment; as a consolation, the various worked-out solutions should prove 

useful down the road. 

When this flowchart process results in a linear ordinary differential equation, a 

helpful reference for analytical solution methods is (23).  Such is the case for steady-

state flux at a point in the bulk phase.  First order linear ODEs can be solved by 

formation of the integrating factor.  Second order linear homogeneous ODEs with 

constant coefficients can be solved by finding the roots of the characteristic equation; 

inhomogeneous equations of this type require the method of undetermined coefficients 

or the method of variation of parameters.  Others before me have developed their own 

flowchart diagrams describing the solution methods for general ODEs (25) and 

specifically for second order linear ODEs with constant coefficients (26). 

When this flowchart process results in a linear partial differential equation, a 

helpful reference for analytical solution methods is (19).  Qualifying examples for this 

situation are unsteady-state (i.e. dynamic) solutions of the concentration profile.  The 

method of separation of variables can be used to solve linear homogeneous partial 

differential equations with variable coefficients; the Laplace transform can be used to 

solve linear inhomogeneous partial differential equations, but requires constant 

coefficients. 

When this process results in a nonlinear ordinary or partial differential equation 

(which may be most of the time), a helpful reference for numerical solution methods is 

(24).  Expect to encounter this when modeling a scenario with a concentration-

dependent diffusion coefficient.  For a nonlinear ODE of the initial-value problem type, 

the Euler, modified Euler, and Runge-Kutta numerical methods may be used, although 



34 

 

care should be taken to check their expected accuracy.  For a nonlinear ODE of the 

boundary-value problem type the shooting, finite difference, or collocation numerical 

methods may be used.  For difficult linear parabolic partial differential equations the 

implicit finite difference, explicit finite difference, or method of lines may be used.  

Finally, for nonlinear partial differential equations the finite difference discretization 

results in sets of nonlinear algebraic equations which may be solved using the Newton-

Raphson method for simultaneous nonlinear equations. 

Farlow (19) describes pros and cons of analytical vs. numerical methods, and 

makes the point that analytical solutions provide the insight to how physical parameters, 

initial and boundary conditions affect the solution.  If parameter identification from data 

analysis (such as calculating the diffusion coefficient from experimental data) is the 

desired goal then the analytical method is the preferred choice; numerical parameter 

identification is possible but requires optimizing iterated numerical solutions over 

ranges of parameters to make the best fit to the data.  However, it is advised that 

practically all nonlinear PDEs are impossible to solve analytically and must be solved 

by numerical methods.  Error propagation and stability must be considered when using 

numerical methods (24).  Software such as Microsoft Excel® can assist with performing 

numerical techniques for simple situations.  For advanced problems the software 

MATLAB® (and its open-source counterpart GNU Octave) may be used.  Other 

software exists which is geared towards solving transport problems and has many 

numerical techniques built-in, such as COMSOL® (and its open-source counterpart 

MOOSE Framework). 
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APPLY THE SOLUTION METHOD & SOLVE FOR WHAT YOU WANT 

 

10. Apply the solution method. 

More of a continuation of the previous step than a separate step altogether, it has 

nevertheless been segregated to emphasize the importance of completely making the 

choice of solution method before starting down the path of one.  This is because the 

selected method may not ultimately lead to a satisfactory solution, and it is presumed 

easier to backtrack & try an alternate method if the separate attempts can be more 

completely isolated.  Separate sheets of paper, refreshed whiteboards, et cetera are 

recommended. 

The user may decide to look up a worked-through solution.  This will likely 

involve translating notation and converting units.  Cussler’s text, §3.5 (1) contains a 

guide for using references in this manner.  Crank’s text (5) contains a guide for using 

references on heat transfer as analogs to mass transfer.  Carslaw & Jaeger’s text (4) 

contains a wealth of worked-through solutions for various heat transfer scenarios.  Key 

points to look out for are the signs of the fluxes (indicating direction) and conditions 

such as equilibrium at the boundaries. 

If the user is solving the differential equation themselves or if no worked-

through solution is found, then consult the respective references in step 9 for the type of 

differential equation developed and the type of initial and boundary conditions chosen.  

Use the dimensionless ratio 
𝐷𝐴𝐵𝑡

𝑥2  to help determine the limits of validity with resulting 

solutions and the time and space step size of a numerical method, if applicable. 
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11. Verify the final solution satisfies the conditions of the problem. 

Take the final solution equation of concentration profile and validate the original 

PDE, BCs, and IC going into section 2 of the flowchart tool (5).  This is accomplished 

by plugging in the final concentration profile solution for concentration (and its 

derivatives) and checking if both sides of the PDE, BC, and IC equation match.  In 

addition, consider extremes including zero position and time as well as infinite time 

(and position, if applicable).  When a looked up (i.e. similarity) solution is used, pay 

particular attention to the limits of applicability such as short versus long times.  The 

dimensionless parameter 
𝐷𝐴𝐵𝑡

𝑥2  can be used to make this distinction. 

 

12. Solve for what you want. 

With a validated concentration profile, the user is finally prepared to calculate 

the value they were originally interested in at the outset of this process.  In addition to 

the concentration value at specific positions and times, the concentration profile can 

also be used to calculate the average concentration in a bounded region, as well as the 

flux of the species through a cross-section at a specific position.  Refer back to the 

equation developed in Step 1 relating the value of interest to the concentration profile. 

There will be parameters in this final equation (e.g. thickness or other 

dimensions, the diffusion coefficient) that will need to be specified or obtained by some 

method.  Refer to Chapter 3: Diffusion Resources for a more detailed description of the 

following sources of this information. 

A database or text reference of diffusion coefficients is a natural first resource, 

however be prepared not to find data for the specific species pair of interest.  Even if 
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there is, the temperature of the data may be different from the application, and the user 

may be hard pressed to find a detailed model of the diffusion coefficient’s temperature 

dependence for their situation.  

Computer simulation of chemical pairs leading to accurate diffusion coefficient 

prediction of penetrants in polymers is still in development; greater confidence exists in 

the ability to predict relative diffusion rates of different penetrants in polymers. 

Experimentation will likely be necessary to obtain an accurate value for the 

diffusion coefficient.  A wide variety of experimental methods have been developed for 

the purpose of measuring diffusion coefficients, some of which can be found in §5.6 of 

(1), organized by utility, accuracy, difficulty of operation, and cost. 

A few final checks before calculating the value of interest is to double-check 

that the units of the obtained parameters will match the units of the final solution 

equation.  If looking for a value requiring a thermodynamic conversion, e.g. going from 

moles or mass of a species to a pressure or volume value, be sure to clearly state the 

model used and its limitations.  Further advice on this matter is outside the scope of this 

work. 

If looking for the time or position at which a specific concentration value is 

achieved, an algebraic rearrangement of the equation developed with this flowchart tool 

may not be possible, especially if transcendental or infinite series functions are involved.  

In this case, equation ‘solver’ methods such as Newton-Raphson, Goal seek (Microsoft 

Excel), or another root-finding algorithm (or graphical solution method) may need to be 

used. 
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Congratulations!  You have calculated your desired value based on a diffusion-

related process! 

 

GENERAL GUIDANCE 

Along the way towards developing the flowchart tool and working through 

problems a few pitfall experiences were gathered.  This section seeks to convey the 

‘lessons learned’ from this to a user intent on solving polymer-penetrant diffusion 

problems. 

General approach pitfalls 

The first pitfall to avoid is having inappropriately set expectations at the outset 

regarding the time required, number of different concepts engaged, and number of steps 

that must be taken to get a functional solution to a polymer-penetrant diffusion problem.  

A user who is used to one-step solutions involving a quick reference look-up will be 

frustrated when their problem’s complexity is one step greater than the solutions found 

in the reference; the permutations of solutions possible for different scenarios of 

boundary conditions and geometry are so large that one shouldn’t expect to find the 

right answer to their specific problem (in a timely fashion) simply by scanning examples 

in the text. 

This process will take some time, multiple pieces of paper, and quite a few 

whiteboard erasure iterations.  Multiple steps and mini conclusions along the way 

preclude keeping the whole problem ‘in one’s head,’ discouraging the use of shortcut 

strategies.  In addition, seemingly small differences in scenarios (e.g. axis direction, 

short vs. long times) lead to different solutions almost incomparable in form that appear 
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dissimilar and unrelated.  As such, the user must attack these types of transport problems 

with a methodical approach; scanning textbooks grasping at straws for a shortcut 

solution will inevitably lead to frustration and failure. 

Differential equation pitfalls 

There are a few pitfalls to be aware of when the user is at the stage of solving 

the differential equation created in the first portion of the process. 

When using a solution method (e.g. separation of variables) ensure the method 

is valid for the scenario.  For example, the method of separation of variables requires 

homogeneous boundary conditions; if the user does not first transform their 

nonhomogeneous boundary condition then they will have to re-do the work.  Chapter 7 

of Farlow’s text (19) illustrates this and briefly covers the applicability of some solution 

methods to different scenarios. 

Solving differential equations may involve developing equations then plugging 

those equations into other differential equations.  The pitfall to avoid here is forgetting 

to conduct the differentiation after substitution.  This situation is likely to surface when 

using the method of the Laplace transform as there are a number of intermediate 

equations and substitutions. 

Crank’s treatise on the mathematics of diffusion (5) includes a chapter (8) on the 

(at the time) rapidly expanding field of numerical methods to solve differential 

equations.  Crank recognizes the absence of numerical technique in traditional 

mathematical instruction; as such the chapter is geared towards non-mathematicians and 

illustrates some of the pitfalls to avoid when implementing this solution technique. 



40 

 

Non-dimensionalizing variables is more good practice than pitfall avoidance.  

Crank advocates the technique in particular for use with numerical methods, primarily 

because sets of different solutions can be obtained by scaling, and “…fundamental 

parameters are often highlighted and analogies with physically different systems 

become clearer…” (5).  Non-dimensionalizing reduces the problem to pure math, so 

solution attack is not clouded by parameters specific to the field of study (19).  In 

addition, non-dimensionalizing variables can assist with analytical solution methods by 

enabling math ‘tricks’ to be used.  For example, non-dimensionalizing physical 

boundaries so that a space region varies from 0 to 1 as opposed to 0 to L enables the use 

of orthogonality to simplify some series summations of orthogonal functions. 

The guidance encourages developing the boundary conditions early, even if 

initially they are done descriptively without numbers or equations.  This emphasis seeks 

to bridge the gap between the physical situation (grasped by most spatially-minded 

humans) and the abstract math which will be solved to describe it (not intuitively 

grasped by most humans, including some nascent chemical engineers).  Also, a loose 

rule of thumb when applying boundary conditions using analytical solution methods is 

to apply the homogeneous boundary condition first. 

Unit pitfalls 

Double-check units along the way.  If the units are not working out to that which 

is expected, then there is likely an error.  It is good practice to check units at each mini-

conclusion in the process (e.g. constitutive equation for species flux, shell mass balance, 

boundary conditions).  At the very least, this must be done at the end when getting back 

to solving for the value of interest for the problem (27). 
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With many different ways to describe just the value of concentration, unit 

conversion will almost certainly need to be implemented prior to the successful 

conclusion of the problem.  A comprehensive table of unit conversions can be found in 

the text by Bird, Stewart, and Lightfoot (16), as well as in texts by other authors on the 

subject. 
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CHAPTER 3: DIFFUSION RESOURCES 

INTRODUCTION 

The parameters required by the equations resulting from the aforementioned 

flowchart tool must be obtained from somewhere.  The goal of this section is to describe 

where the user can find this information.  Database or databank resources are a natural 

first choice, as the dirty work has already been done.  However the user may not find 

their particular polymer and penetrant material pair under their particular set of 

environmental conditions; to find matching polymer molecular weights, degree of 

crystallization, thermal history, and other permutations is even more unlikely.  A closest 

match may have to be used with assumed deviation, or the user can try a predictive 

approach through simulation.  On a limited basis molecular dynamics simulation and 

other methods can be used to roughly predict transport properties and other polymer 

parameters should the user need to screen a large number of different options.  With this 

narrower field of candidates, or perhaps in the case of a constrained system, the user 

will inevitably have to turn to experimental methods to get the final answer.  A host of 

experimental techniques exist which can measure the phenomenon of mass diffusion, 

many of which are inappropriate for the types of polymer-penetrant systems of primary 

interest here.  The two dominant methods of gravimetric sorption and time 

lag/permeation technique will be described herein, with some reference to other possible 

methods.  Of particular interest is the experimental technique which elucidates the 

relationship between diffusion coefficient and concentration for a concentration-

dependent-diffusion-coefficient; obtaining this expression is key to incorporating this 

significant characteristic of diffusion in polymers into a predictive model for a system.  
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Finally, some general resources related to diffusion are briefly reviewed, focused on 

reference material for solving differential equations as well as where to turn to for 

worked-through solutions of the diffusion problem for various scenarios, geometries, 

and boundary conditions. 

DATABASE RESOURCES 

Print resources 

Textbooks on the subject of diffusion in polymers have some experimental 

records throughout them (7) (8) (15), however they are not in general designed to be 

databanks of experimental results.  Larger volumes/compilations designed to tabulate 

such data exist and tend to be a few editions in at this point (28) (29) (30).  The section 

on permeation in the Polymer Handbook tabulates mostly permeability, but 

intermittently includes information on solubility, and diffusivity.  The McKeen text 

tabulates permeability and the less-generic vapor transmission rate, with no data on 

solubility or diffusivity.  Both references contain little to no data on polyurethane 

materials, an important family of polymers to some marine hardware systems. 

The references just mentioned as well as those throughout the literature all use 

a variety of different relatable parameters to report transport phenomena results.  

Examples include the transmission rate, the permeation rate, the permeance, the 

diffusion coefficient, the solubility, and the permeability coefficient.  These parameters 

may be derived from the others using values associated with the experiment that was 

run (e.g. thickness, temperature and the penetrant partial pressure) and by making 

assumptions (e.g. permeability coefficient is independent with thickness).  Figure 2 is a 
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guide to deriving permeation parameters from those available based on their 

interrelationships (31). 
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Figure 2 Roadmap of permeation parameter conversions (31) 
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Each parameter may also be reported using a variety of different units, some of 

which by convention include members of both the English system and the Metric system 

of units (e.g. permeation rate: gram·mil·m-2·day-1).  The permeability coefficient units 

can be particularly confusing:  

 𝑃 [=] 
cm3∙cm

cm2∙s∙Pa
  

with a volume, a length, and an area unit all within one parameter and no unit 

cancellation, and a pressure (but not ambient pressure – it’s the penetrant partial pressure 

driving force across the membrane).  Expect to perform unit conversions and to not be 

able to use literature values directly as they are found. 

Digital resources 

Due to the sheer number of permutations of polymer-penetrant scenarios, print 

records are ultimately physically incapable of conveniently containing the majority of 

tabulated properties of possible polymer-penetrant pairs.  Computerized resources with 

remote, online access are a practical alternative to printed tables, not to mention the 

search and analytical advantages of digital records.  The free website MatWeb (32) can 

be a helpful start.  Other free resources include subsets of MatNavi (33), the NIMS 

materials database from the Japanese National Institute for Material Science.  

Commercial database products available include the Dortmund Data Bank (34), 

AIChE’s Design Institute for Physical Properties (35), Granta Design’s GRANTA MITM 

and library, and the simulation-based database Mol-Instincts (36).  The user is strongly 

encouraged to investigate whether the particular database product is appropriate for their 

application. 
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There is an ongoing White House level directive called the Materials Genome 

Initiative (www.mgi.gov) which has as one of its tenets the goal of facilitating access to 

computerized materials data (see https://www.mgi.gov/strategic-goals/facilitate-access-

materials-data).  A number of digital database systems are involved in this effort which 

compile empirical and simulation-based material property information.  Examples 

include The Materials Project, the Materials Data Curation System (MDCS), Automatic 

Flow for materials discovery (AFLOW), and the Center for Hierarchical Materials 

Design (CHiMaD). 

SIMULATION 

Molecular dynamics simulation is a potential avenue towards predicting 

diffusion behavior.  It has been suggested historically as a promising option (8).  

Keffer’s research has proposed a route to diffusion coefficients through these 

simulations (37).  Molecular dynamics simulation or theoretical predictive models of 

diffusion (38) (39) could also provide a relationship for a diffusion coefficient 

dependent on concentration, incorporating polymer-penetrant interactions (40).  In 

general, using computer simulation to predict polymer-penetrant diffusion coefficients 

that are sufficiently accurate for application is still an active challenge; more confidence 

can usually be made in predicting relative differences of penetrant behavior within a 

polymer type (41). 

EXPERIMENTATION 

Multiple authors (1) (5) (42) (43) have reviewed possible experimental methods 

for measuring diffusion; some have focused on methods more appropriate to polymers 

(15).  The two types of methods primarily used are those based on permeation and those 

http://www.mgi.gov/
https://www.mgi.gov/strategic-goals/facilitate-access-materials-data
https://www.mgi.gov/strategic-goals/facilitate-access-materials-data
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based on gravimetric sorption and/or desorption.  Permeation experiments can provide 

the permeability and the diffusion coefficient (for ideal behavior) (31), while 

sorption/desorption experiments result in the diffusion coefficient and solubility (44).  

The permeability is the product of the diffusion coefficient and the solubility. 

Examples of permeation equipment are instruments produced by MOCON and 

Systech, (45) (46) designed to measure gases and vapors (such as oxygen, carbon 

dioxide, and water) through thin polymer films.  The gravimetric sorption/desorption 

method can be simply conducted via immersion if the penetrant is a liquid, or by 

dynamic vapor sorption for deposition of the penetrant from the gas phase; one example 

of instrumentation for the latter method is produced by Surface Measurement Systems 

(47). 

An important simplifying assumption in the theoretical background of the 

parameters derived from the experimental methods just mentioned is that of constant 

diffusion coefficient.  Corrections must be made or alternate methods employed should 

the diffusivity vary with concentration.  One method of interferometry (requiring 

transparent samples) is promoted by Cussler (1) as being the ‘best’ for measuring 

concentration-dependent diffusion.  Crank (5) references a technique described by Duda 

and Vrentras (48) which enables the determination of the concentration–dependence of 

the diffusion coefficient from a single sorption curve measurement.  Crank and Park 

(15) allude to determining this dependence from sorption rate, and time lag 

measurements.  From sorption measurements, a series of experiments run at 

successively smaller intervals of uniform initial concentration can be used to determine 

the relationship between the diffusion coefficient and the concentration (49).  At the 
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very least, the equations for a constant diffusion coefficient can be used and the resulting 

value will be an average of the diffusion coefficient values for the range of concentration 

tested.  The dependence of the diffusion coefficient on concentration can be determined 

from time lag measurements, however the fundamental relationship between D and C 

must be known a priori (50).  Just as a warning, it has been reported that the dependence 

of D on C will be different depending on the measurement technique chosen (51). 

GENERAL DIFFUSION REFERENCE 

Textbooks guiding users in the solution of partial and ordinary differential 

equations exist focused on analytical methods (19) and numerical methods (24).  The 

treatises on mass diffusion (5) and on heat conduction in solids (4) both contain many 

worked-through simplified problems (although they are by no means simple) for various 

geometries, scenarios, and boundary conditions in transport phenomena. 
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CHAPTER 4: DIFFUSION PROBLEMS 

INTRODUCTION 

Examples of diffusion problems that are likely to be useful to the user are those 

of the membrane geometry with specified or impermeable boundary conditions.  These 

scenarios can be used to describe diffusion through simplified ‘container’ structures 

(cylindrical hoses, layered boxes, etc…) and coatings, respectively.  Descriptions of the 

process to solve these diffusion problems using the flowchart tool are presented in their 

entirety in order to convey to the user the true scope of the effort involved.  Their 

influence on the development of the flowchart tool is described to explain its origins.  

The complexity introduced when considering a concentration-dependent diffusion 

coefficient is demonstrated in part using the flowchart tool, with guidance to the user 

for additional references.  The fundamental theory thus far has considered the bulk 

material to be homogeneous, however the practical applications of the user will 

inevitably require heterogeneous composite materials to be considered.  The promising 

technology of nanoclay platelet filler material will be touched upon here from the 

standpoint of solving the diffusion problem; a more complete description of the topic 

will be delved into in the subsequent chapter.  Finally, two additional marine-hardware-

relevant scenarios of likely interest will be briefly described but not solved.   

 

STEADY-STATE, PLANE SHEET, SPECIFIED BOUNDARY CONCENTRATION 

Introduction 

The first problem to work through was that of steady-state diffusion through a 

plane sheet.  This scenario is found in the experimental determination of the diffusion 
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coefficient through the time-lag method, and it is straightforward to work through with 

examples found directly in the literature (5).  This problem was worked through in two 

ways: by general but not identical textbook guidance (16), and then by comparison to 

the identical problem solution in the literature (5).  The concept of nondimensionalizing 

the problem was also introduced (52). 

In this first effort the generic constitutive equation for species flux was obtained 

from the literature (16) and simplified through assumptions (e.g. no bulk flow, so no 

bulk velocity, so no convective flux term).  Since this will be true for the scope of 

diffusion of penetrants in solid polymers, the guidance developed in this thesis was 

amended to only consider the molecular diffusive flux term when defining the equation 

for flux of penetrant (step 4 of the flowchart tool). 

Application of the flowchart tool 

FORM THE PROBLEM: 

 

1. Clearly define the desired solution. 

 How much (mass) of species A will pass through the membrane after time t? 

2. Draw picture(s). (Figure 3) 

 

Figure 3 Steady-state diffusion problem illustration 
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 Roughly define boundary conditions: 
o B.C.1: at z = 0, concentration of species A in the membrane is fixed in 

equilibrium with the exterior phase. 
o B.C.2: at z = L, concentration of species A in the membrane is fixed in 

equilibrium with the exterior phase. 

3. Define relationship between what you want and the flux. 
o Q ≡ amount (mass) of species A 
o S is the area of the membrane of interest, at position L.  

 Equation relating to flux: 

o 𝑄 = 𝑆 ∫ 𝑗𝐴|𝐿𝑑𝑡
𝑡

0
= 𝑆𝑗𝐴𝑡 

o …Sjat = Q for constant (steady-state) flux. 
o jA|L is the molecular flux of species A at position L. 
o t is the time elapsed over which you want to know the total amount of 

A which has passed through the membrane. 

4. Define the constitutive equation for species flux. 

  From (16) Table 17.8-2 eqn. (C) 
o 𝑛𝐴 = 𝜌𝐴𝐯 − 𝜌𝐷𝐴𝐵𝜵𝜔𝐴 
o nA|L is the combined flux of species A at position L [=] mass/(area*time). 
o ρ is the density of the medium [=] mass/volume 
o ρA is the mass of species A per unit volume in the medium, i.e. the mass 

concentration of A [=] massA/volume 
o v is the mass average velocity of the system [=] length/time 
o DAB is the binary diffusion coefficient (diffusivity) [=] area/time 
o ∇ is the grad operator 

 ∇= (
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
) 

o ωA is the mass fraction of species A [=] (massA / total mass of unit volume) 

[=] dimensionless 

 In this case, convective flux is not anticipated for a solid membrane, so only 

the molecular flux term is needed. 
o 𝑗𝐴 = −𝜌𝐷𝐴𝐵𝜵𝜔𝐴 
o …prompting us to update our original equation relating flux to what we 

want to know. 
o Also, for our 1-dimensional system of interest: 

 𝑗𝐴 = −𝜌𝐷𝐴𝐵
𝑑𝜔𝐴

𝑑𝑧
 

5. Conduct the shell mass balance. 

 For the thin shell volume indicated in the picture: 

 (Rate of mass of species A…)(In - Out + Generation - Consumption) = 

Rate of mass of species A Accumulation [=] massA/time 

 𝑆𝑗𝐴|𝑧 − 𝑆𝑗𝐴|𝑧+∆𝑧 + 0 − 0 = 0 

 No generation or consumption terms because no reaction. 

 No accumulation term because the region inside the membrane is at steady-

state. 

 So: 

 𝑆𝑗𝐴|𝑧 − 𝑆𝑗𝐴|𝑧+∆𝑧 = 0 

 Dividing by SΔz & taking the limit as Δz goes to zero: 
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 −
𝑑𝑗𝑎

𝑑𝑧
= 0 

6. Insert the constitutive equation for flux into the shell mass balance result. 

 Constitutive flux equation: 

o 𝑗𝐴 = −𝜌𝐷𝐴𝐵
𝑑𝜔𝐴

𝑑𝑧
 

 Shell mass balance result: 

o −
𝑑𝑗𝑎

𝑑𝑧
= 0 

 Combined: 

o −
𝑑

𝑑𝑧
(−𝜌𝐷𝐴𝐵

𝑑𝜔𝐴

𝑑𝑧
) = 0 

o Simplifying for constant density and diffusivity within the 

membrane: 

o 
𝑑

𝑑𝑧
(

𝑑𝜔𝐴

𝑑𝑧
) = 0 

 Re-written for differential equation analysis: 

o 
𝑑2𝜔𝐴

𝑑𝑧2 = 0 

7. Re-define boundary conditions based on units in the differential equation. 

 B.C.1: at z=0, ωA = ωA0 

 B.C.2: at z=L, ωA = ωAL 

 

IDENTIFY THE MATH AND SELECT A SOLUTION METHOD: 

 

8. Identify the type of differential equation which resulted from the earlier 

combination of the constitutive equation for species flux and the shell mass 

balance result. 

 
𝑑2𝜔𝐴

𝑑𝑧2 = 0 

o Partiality: Ordinary 
o Order: 2nd 
o Number of independent variables: 1 
o Linearity: linear 
o Homogeneity: homogeneous 
o Coefficients: constant (zero) 
o Basic type:  

 General form: (Farlow1993PDE notation) 
 Auzz = 0 
 B2 - 4AC = (0)2 - 4(1)(0) = 0 

 => Parabolic 

9. Identify the types of boundary and initial conditions. 

 B.C.1: at z=0, ωA = ωA0 
o Dependent variable (ωA) specified at the boundary. 
o => Type 1; First kind; Dirichlet. 

 B.C.2: at z=L, ωA = ωAL 
o Dependent variable (ωA) specified at the boundary. 
o => Type 1; First kind; Dirichlet. 

10. Solution method selection: 
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 Check literature for worked-out solution with same differential equation 

and boundary conditions. 
o (5) §4.2, mole basis 

 For this problem, concentration profile is eqn. 4.3 & flux is 4.4. 

 If boundaries are different, such as Farlow's Type 2 (mass 

transfer coefficient specified at boundary), then the following 

equations apply for concentration profile and flux, respectively: 
 One boundary Type 1, one boundary Type 2: eqn. 4.3a & 

4.4a 
 Both boundaries Type 2: eqn. 4.3b & 4.4b 

o (4) §3.2 

 This reference contains the heat analog to this problem with the 

flux of heat (analogous to concentration) given as equation (1). 
o (1) §3.5 

 References Crank's solution for the unsteady-state startup 

condition and where both boundaries are Type 2. 
o (16) §18.2 

 This reference includes the convective flux term as the bounded 

region is a gas phase. 

 Should you fail to find the problem or do not have access to these 

resources, solve the differential equation with the deduced boundary and 

initial conditions. 
o This is a second-order ordinary linear homogeneous parabolic 

differential equation, which means that its solution should be 

attainable through applying the regular rules of integration twice on 

the system.   
o The boundary conditions are both Type 1, Dirichlet, so 

straightforward substitution and algebraic manipulation should allow 

for the deduction of the two resulting constants of integration. 

 The Crank, 1975 reference should be used in this case. 

 

APPLY THE SOLUTION METHOD AND SOLVE FOR WHAT YOU WANT: 

 

11. Apply the solution method. 

 To use Crank's method, we must convert notation from the mole basis to a 

mass basis.  Table 4 describes the conversions necessary for the differential 

equation, and Table 5 describes the conversions necessary for the 

constitutive equation for species flux. 

 Concentration profile: 
o Crank's equation: 

 
𝐶−𝐶1

𝐶2−𝐶1
=

𝑥

𝑙
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Crank's Notation Our problem 

C = mole concentration of species A 

  [=] molesA/volume 

ρA = ρωA = mass concentration of 

species A 

    [=] massA/volume 

C1 = mole concentration of species A at 

surface x = 0 

    [=] molesA/volume 

ρA0 = ρωA0 = mass concentration of 

species A (just inside membrane) at 

surface z = 0 

      [=] massA/volume 

C2 = mole concentration of species A at 

surface x = l 

    [=] molesA/volume 

ρAL = ρωAL = mass concentration of 

species A (just inside membrane) at 

surface z = L 

      [=] massA/volume 

x = length coordinate dimension 

  [=] length 

z = length coordinate dimension 

  [=] length 

l = thickness of region bounded by 

parallel planes 

 [=] length 

L = thickness of region bounded by 

parallel planes 

  [=] length 

Table 4 Steady-state diffusion problem notation conversion, concentration profile 

o Converting: 

 
𝜔𝐴−𝜔𝐴0

𝜔𝐴𝐿−𝜔𝐴0
=

𝑧

𝐿
 

 Note: ρ cancels out 

 Flux: 
o Crank's equation: 

 𝐹 =
𝐷(𝐶1−𝐶2)

𝑙
 

 

Crank's Notation Our problem 

D = diffusion coefficient 

(diffusivity) 

  [=] area/time 

DAB = diffusion coefficient 

(diffusivity) 

F = molar flux of species A 

  [=] molesA / (area*time) 

jA = mass flux of species A 

   [=] massA / (area*time) 

Table 5 Steady-state diffusion problem notation conversion, flux equation 

o Converting: 

 𝑗𝐴 =
𝐷𝐴𝐵(𝜔𝐴0−𝜔𝐴𝐿)

𝐿
 

 

12. Verify the solved differential equation satisfies the original boundary and initial 

conditions, and common sense. 

 Concentration profile equation: 
o B.C.1: at z=0, ωA = ωA0 
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o B.C.2: at z=L, ωA = ωAL 

 Flux equation: 
o Common sense 

 System is at steady-state, so flux is not time-dependent, nor is it 

spatially dependent (no z variable).  Therefore the flux of 

species A into the membrane should equal the flux of species A 

out of the membrane. 

13. Solve for what you want 

 Return to the original equation developed relating the value of interest and 

the flux of species A 
o 𝑄 = 𝑆𝑗𝐴𝑡 

 Substitute: 

o 𝑄 = 𝑆
𝐷𝐴𝐵(𝜔𝐴0−𝜔𝐴𝐿)

𝐿
𝑡 

 Get parameters you need: 
o S = area of membrane 
o DAB = diffusivity of species A through membrane material B 
o L = thickness of membrane 
o ωA0 = maintained mass fraction of species A at z = 0 

 i.e. the equilibrium value achieved for a constant exterior 

environment.  You may need a Henry's law type equation. 
o ωAL = maintained mass fraction of species A at z = L 

 i.e. the equilibrium value achieved for a constant exterior 

environment.  You may need a Henry's law type equation. 

 Solve 

14. Congratulations! 

 

Influence on the flowchart tool 

Working through the problem with analogous but not identical guidance 

established the initial flowchart steps to solution stated previously.  It also established 

the connection between identifying the parts of the problem (e.g. differential equation, 

composed of mass balance and constitutive equation; boundary conditions) and their 

role in forming the final solution (e.g. differential equation is solved for the dependent 

variable; boundary conditions are used to determine the constants of integration).  

Comparing the problem to an identical problem solution in the literature introduced the 

concept of converting notation (e.g. the initial problem dependent variable was mass 
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fraction; the literature problem dependent variable was molar concentration) and 

emphasized the importance of double-checking units in equations (27). 

 

UNSTEADY PLANE SHEET, IMPERMEABLE BOUNDARY 

Introduction 

The second problem that was worked through was that of unsteady diffusion 

through a plane sheet, with an impermeable boundary condition specified at one surface 

and a constant concentration specified at the other.  This scenario is found in 

applications involving coatings over materials impervious to the penetrant (e.g. metals, 

glass, etc.).  Even though the underlying material is impervious to the penetrant, there 

may be some interaction which is dependent on the penetrant concentration in the 

material presented to the exterior surface (e.g., corrosion, adhesion). 

This was a more complicated problem than the first and prompted significant 

review of math concepts (differential equations), requiring a working through of other 

example problems in other textbooks. 

Influence on the flowchart tool 

Working through this problem revealed unexpectedly (to the author) that two 

valid solutions applicable over different ranges of the independent variables were 

possible, prompting an addition to the flowchart tool to account for and guide similar 

encounters in the future.  This arises from different solution convergence rates 

depending on the value of the dimensionless ratio 
𝐷𝐴𝐵𝑡

𝑥2 . 
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Description of the worked-through problem 

The math notes for the first phase of the flowchart process can be found in 

Appendix 5.  The numbering of the steps do not match because a prior numbering 

scheme was retained to show how the flowchart process was developed.  Time spent 

forming the problem further refined the flowchart process, establishing the specific step 

of clearly defining the initial and boundary conditions of the problem.  This first section 

was completed methodically, with no additional surprises encountered. 

Step 1: Clearly define the desired solution 

The desired value for this scenario is the concentration of species A at the 

impermeable boundary face after an elapsed amount of time, i.e. the unsteady-state 

concentration profile.  It is imagined there is some threshold value of concentration at 

this surface which is crucial for a particular application. 

Step 2: Draw a picture (Figure 4) 

 

Figure 4 Unsteady-state, impermeable boundary diffusion problem picture 
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Initially the length axis was set to be increasing in the direction of anticipated 

net flux of species A.  However, this was eventually flipped for one of the final chosen 

solution methods. 

Step 3: Define the initial and boundary conditions 

I.C.: at t = 0, all z, cA = 0 

B.C.1: for t > 0, z = 0, cA = cA0 

B.C.2: for t > 0, z = L, J*Az = 0 

Initially, the coating everywhere has zero concentration of species A.  After 

immersion, the concentration of A just inside the surface immediately reaches 

equilibrium with the exterior environment and remains at that value the entire time it is 

immersed.  No species A leaves the coating at the coating-metal surface, i.e. the flux of 

A in the positive z direction is zero at z = 0.  Qualitatively, if considering the large time 

solution then at large times the concentration throughout the coating will be uniform 

and equal to the concentration of A in equilibrium with the exterior environment. 

Step 4: Define the constitutive equation for species flux  

𝐽𝐴𝑧
∗ = −𝑐𝐷𝐴𝐵

𝑑𝑥𝐴

𝑑𝑧
 

Molecular diffusive molar flux is the only flux anticipated for this scenario.  

Convective flux is not anticipated because the bulk polymeric coating material is 

stationary.  The diffusion is assumed to be constant and not concentration-dependent, 

for simplicity. 
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Step 5: Conduct a shell mass balance 

−
𝜕𝐽𝐴𝑧

∗

𝜕𝑧
=

𝜕𝑐𝐴

𝜕𝑡
 

There is no chemical reaction specified, so no generation or consumption term 

for species A is required.  An accumulation term is expected since this is an unsteady-

state problem: over the time range of interest the concentration goes from being zero 

everywhere to a uniform value, i.e. accumulation occurs. 

Step 6: Form the differential equation 

𝐷𝐴𝐵

𝜕2𝑐𝐴

𝜕𝑧2
=

𝜕𝑐𝐴

𝜕𝑡
 

The equations from the previous two steps are combined.  The diffusion 

coefficient moves outside the derivative because (in this case) it is assumed constant. 

Step 7: Identify the type of differential equation 

Identification of the characteristics of the formed problem PDE and BCs was 

guided by (19), with additional reference to (24).  The differential equation for this 

problem is a second order homogeneous linear partial differential equation with constant 

coefficients.  The linear unsteady-state diffusion problem (heat and mass) will in general 

be parabolic, i.e. B2-4AC=0 (19) (24), and this is indeed the case for the second worked-

through problem. 

Step 8: Identify the types of initial and boundary conditions 

For the second worked-through problem a homogeneous linear Neumann 

condition (flux specified) is present at the impermeable face of the plane sheet, and a 

nonhomogeneous linear Dirichlet condition (concentration specified) is present at the 

other face. 
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The initial concentration everywhere is zero (homogeneous linear Dirichlet 

condition).  After solving it is possible to confirm that at long times the concentration 

everywhere will be equal to the concentration of species A in equilibrium with the 

exterior environment (if the resulting solution is valid at long times). 

Step 9: Select the appropriate solution method 

Having identified the type of PDE and BCs, the next step is to choose an 

appropriate solution method.  The first recommended approach is to review the literature 

for an identical or analogous problem already worked-through.  In the case of this 

impermeable boundary problem, a number of similar examples were found but none 

looked directly applicable.  The initial search of Crank’s text (5) revealed a sub-section 

on impermeable surfaces in the section on non-steady-state diffusion in the chapter on 

diffusion in a plane sheet geometry (§4.3.8, p.62).  However, a solution was not directly 

given for the boundary conditions of one impermeable face and one face of fixed 

concentration and was instead referenced as a half-symmetry modification of an earlier 

equation, 

𝐶 = 𝐶1 + (𝐶2 − 𝐶1)
𝑥

𝐿
+

2

𝜋
∑ [

𝐶2 cos 𝑛𝜋 − 𝐶1

𝑛
sin

𝑛𝜋𝑥

𝐿
𝑒−𝐷𝑛2𝜋2𝑡 𝐿2⁄ ]

∞

1

+
2

𝐿
∑ [sin

𝑛𝜋𝑥

𝐿
𝑒−𝐷𝑛2𝜋2𝑡 𝐿2⁄ ∫ 𝑓(𝑥′) sin

𝑛𝜋𝑥′

𝐿
d𝑥′

𝐿

0

]

∞

1

 

for 𝐶 = 𝐶1,  𝑥 = 0,  𝑡 ≥ 0; 𝐶 = 𝐶2,  𝑥 = 𝐿,  𝑡 ≥ 0; and 𝐶 = 𝑓(𝑥),  0 < 𝑥 < 𝐿,  𝑡 = 0.  

Clear guidance for making the modification was not readily apparent, and there also 

appeared to be a typo in the equation from the book (second summation, first sin() term, 

was ‘π’ instead of ‘L’ in the denominator). 
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The closest match from the initial literature search was a heat transfer solution 

in (4), 

𝑣 = 𝑉 +
2

𝐿
∑ [𝑒−𝜅(2𝑛+1)2𝜋2𝐿 4𝐿2⁄ cos

(2𝑛 + 1)𝜋𝑥

2𝐿
{

2𝐿(−1)𝑛+1𝑉

(2𝑛 + 1)𝜋

∞

𝑛=0

+ ∫ 𝑓(𝑥′) cos
(2𝑛 + 1)𝜋𝑥′

2𝐿
d𝑥′

𝐿

0

}] 

for the case in which the end x = 0 is insulated and the end x = L is kept at V and the 

initial temperature is f(x).  Note that the direction of flux is reverse to the length axis 

here as compared to the boundary conditions established for this problem.  Note also 

that here the summation starting point is at n = 0, whereas the summations in Crank’s 

equation start at n = 1; perhaps this would be changed when modifying Crank’s equation 

for half-symmetry.   

Unfamiliarity with the method of converting a heat transfer solution to a mass 

transfer solution precluded the immediate adoption of the result found in (4).  Guidance 

for this conversion process can be found in a number of references, e.g. (4) (5) (16), 

however the experience of developing the solution without using a preconceived one 

was deemed valuable.  Therefore, the approach was changed to applying a solution 

method appropriate for the formed initial-boundary-value problem. 

Step 10: Apply the solution method 

A similar problem found in (19) was solved using the method of separation of 

variables.  This was worked through for the text example, and then the same strategy 

was applied to the impermeable boundary problem; see Appendix 6 for the math notes.  

In this case, applying the method of separation of variables directly to the formed 

problem was inappropriate as it cannot be used for a problem where one or more of the 
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boundary conditions are nonhomogeneous (in this case, the Dirichlet condition of a 

nonzero concentration specified at the plane sheet surface). This obstacle is 

surmountable by first transforming the nonhomogeneous boundary condition into a 

homogeneous one, then solving via separation of variables; this method was attempted 

for this problem.  Although a solution was reached, it was uncertain whether it satisfied 

the criteria of the problem (PDE, BCs, IC).  Additionally, unfamiliarity with the 

transformed boundary condition approach caused difficulty when applying the inverse 

transform to return to the original variables of the problem; it was later determined that 

a mathematical error by the author caused much of the difficulty.  More rigorous trial 

of the solution was postponed in favor of attempting a different, potentially more 

powerful solution to the formed problem: the Laplace transform. 

The theory of the Laplace transform has been covered in a number of textbooks 

(4) (5) (19) (23) (53).  In a nutshell, the goal is to transform a hard problem in original 

variables into an easy problem in transformed variables, solve it, then apply an inverse 

transform (via reference tables) to the solution in order to return to the original variables 

(19).  The example problem in the text (19) demonstrating the use of the Laplace 

transform was worked through, however it turned out to be very difficult at the inverse-

transform step to return to the original variables of interest; consulting an alternate 

reference (53) was required in order to finish the problem.  The lesson learned here was 

that not all textbook example problems are good ones.  Continuing on, the Laplace 

transform method was applied to the impermeable boundary problem.  However, the 

inverse-Laplace transform again proved to be a stumbling block, with an even more 

complex result to invert than the textbook example problem; no transform pair could be 
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found in the literature.  One lesson here is that the Laplace transform method is 

powerful, but loses much of its effectiveness when no table of transform pairs contains 

the particular transformed solution of interest.  A later reference was found (22) with 

particular advice on dealing with the types of transformed equations resulting from 

using the Laplace transform on diffusion problems; running this obstacle to ground was 

postponed when further literature searching resulted in discovering an analogous 

worked-through problem. 

A nearly identical worked-through impermeable boundary problem was found 

in (5) after re-review; it was missed during the initial literature search.  Notes from 

working through this problem in the context of the diffusion flowchart tool are in 

Appendix 7.  The major difference between this problem and the formed problem was 

the direction of the x-axis (position); in the text, the impermeable boundary was located 

at x = 0, whereas in the formed problem the impermeable boundary was located at x = 

L (the thickness of the plane sheet).  This key difference made the Laplace transform 

method easier to solve; it is not understood by the author how this can be predicted at 

the outset of choosing a solution method.  This was not the end of the story, however, 

as there exist two viable solutions to the original problem depending on whether an 

expansion in negative exponentials or if a unique partial fraction decomposition is 

applied to the transformed equation prior to inverting.  Each solution is applicable over 

a different range of time: the solution from expansion in negative exponentials is 

applicable over short times (verified by the author), and the solution from partial fraction 

decomposition is applicable over long times, (not verified by the author).  Most of the 

short-times solution was derived by the author with the exception of the component 
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involving the series expansion by binomial theorem which was glossed over in the text.  

This concept of working through a problem and ending up with two viable solutions 

applicable over different ranges of the independent variables was unexpected, and 

prompted an addition to the process flowchart tool to account for similar encounters in 

the future. 

Step 11: Verify the final solution satisfies the conditions of the problem 

The resulting numerical evaluation of the short-time solution is displayed in the 

overlay Figure 5.  The initial condition of zero concentration everywhere is satisfied.  

The final condition of uniform concentration is not considered here since this solution 

is only valid at short times.  The constant concentration Dirichlet condition at the 

penetrant inlet face is satisfied.  The zero slope of the concentration profile as well as 

rise in concentration at the impermeable surface testifies to the homogeneous Neumann 

condition at that face. 

 

Figure 5 Numerical evaluation of the short-time solution to the unsteady-state 

impermeable boundary problem. 
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Step 12: Solve for what you want 

The desired value from the outset of this scenario is the concentration of species 

A at the impermeable boundary face after an elapsed amount of time, i.e. the unsteady-

state concentration profile.  The concentration profile produced through the solution of 

the differential equation is evaluated at the impermeable boundary location; this can be 

deduced graphically from the right hand side of Figure 5. 

 

CONCENTRATION-DEPENDENT DIFFUSION COEFFICIENT 

This problem takes the previous scenario of unsteady-state diffusion in a plane 

sheet with an impermeable boundary and makes the diffusion coefficient concentration-

dependent, e.g. 𝐷𝐴𝐵 = 𝑓(𝑐𝐴), instead of a constant.  This changes the constitutive 

equation for species flux in Step 4 to 𝑁𝐴 = 𝑓(𝑐𝐴)
𝜕𝑐𝐴

𝜕𝑧
.  When this is combined with the 

shell mass balance while forming the differential equation in Step 6, the result is 

𝜕2𝑐𝐴

𝜕𝑧2
+

1

𝑓(𝑐𝐴)

𝜕𝑓(𝑐𝐴)

𝜕𝑐𝐴
(

𝜕𝑐𝐴

𝜕𝑧
)

2

−
1

𝑓(𝑐𝐴)

𝜕𝑐𝐴

𝜕𝑡
= 0 

a second-order quasilinear homogeneous partial differential equation with variable 

coefficients.  Reference searching for a worked through solution did not find any readily 

available; those that were found were for infinite and semi-infinite media (5).  Time did 

not allow for further work on this problem, but numerical methods are the likely path to 

success (24). 

 

HETEROGENEOUS MATERIALS 

One scenario of diffusion in heterogeneous materials is discussed in the 

following chapter and concerns primarily impermeable platelet filler material.  Barrer’s 
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chapter §6 in (15) deals extensively with the subject of diffusion in heterogeneous 

media, including models for layers of laminate sheets, dispersions of various geometries 

of one phase within a bulk phase, and filled rubbers.  Regarding laminates, the author 

here makes the point that the full solution of the diffusion equation in each layer may 

not be practical, but that there exist methods to gain useful insight without the complete 

solution.  A mention of diffusion in a flake-filled film can be found in (1).  Decker et al. 

take advantage of different polymer-polymer diffusion rates when creating a multilayer 

barrier polymer film loaded with oriented nanoclay platelets (54) (see Chapter 5). 

 

OTHER RELEVANT PROBLEMS 

One common diffusion measurement technique is by recording the mass uptake 

of penetrant by a polymer sample disk.  The established equations for interpreting the 

mass change data assume a negligible dimensional change due to entrained penetrant.  

It is especially important that the thickness not change as it factors significantly in the 

diffusion coefficient calculation.  This invariance may not be the case if significant 

penetrant uptake occurs and swells the polymer disk.  Fortunately, there is guidance for 

interpreting data from such an occurrence that can be found in §10.6.5 of (5). 

Another diffusion problem of marine hardware relevance is that of leaching.  

Desorption of volatile or otherwise mobile material components can change material 

properties such as glass transition temperature, stiffness, and sound speed.  In some 

cases it may be desired to lose a penetrant over time, such as an anti-fouling biocide or 

entrained water (e.g. drying out hardware).  The boundary conditions associated with 

leaching phenomena may be different from the scenarios mentioned before.  For 
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example, the penetrant diffusivity in the polymer may be high such that a slow surface 

removal (modeled by an interphase mass transfer equation) controls the rate of penetrant 

loss. 
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CHAPTER 5: BARRIER POLYMER APPLICATION 

This section is included to illustrate some complexities of real-world transport 

applications and connect their origins to the fundamental steps of the flowchart tool. 

Introduction 

The goals of a barrier polymer are to minimize permeation while being 

minimally present.  Permeation should be a non-issue for the effective service life of the 

product it is protecting and should not dictate the thickness of coatings.  At the same 

time, any barrier additive or structural content should be minimized and not adversely 

alter the production process, i.e. be a ‘facile’ process (55).  Nano-composite platelet 

additives offer a solution to this problem, achieving dramatic improvement in 

permeation reduction with minimal loading; it is expected this can be further enhanced 

by ensuring the platelets are properly oriented (56). 

Barrier mechanism 

The primary mechanism by which platelets and polymer crystals retard small 

molecule permeation is tortuosity (56) (57) (58).  The additive itself being near-

impermeable (especially relative to the polymer), the small molecule is forced to diffuse 

around the structure.  This effectively increases the ‘thickness’ of the coating as 

permeating molecules must travel a longer overall path through the polymer.  A high 

aspect ratio enhances this mechanism by maximizing the size of the obstacle the 

molecule must circumnavigate while minimizing thickness, and thereby weight.  A 

cartoon of this mechanism is shown in Figure 6.  
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   (a)       (b) 

    

Figure 6 Tortuosity cartoon illustrating diffusion (a) normal to platelet orientation, and 

(b) parallel to platelet orientation. 

 

Figure 6-a is an idealized cartoon of barrier platelets forcing a permeating 

molecule to travel a twisted, tortuous path through the polymer.  If properly oriented 

like this, the platelets act like shingles on a roof (56).  Care should be taken to ensure 

that diffusion parallel to platelet orientation is not a problem, as illustrated in Figure 6-

b.  This extreme alignment may not be as effective a barrier in the transverse direction.  

A random orientation may not have the optimal barrier property as in Figure 6-a, but it 

is more likely to provide a decent barrier in all directions. 

Permeation Prediction 

Platelet polymer additives and polymer crystals reduce the permeation rate of 

small molecules through the bulk polymer.  Although qualitatively understood, the 

accurate quantitative prediction of this reduction is a challenging problem.  Barrer’s 

chapter in (15) deals extensively with the subject of diffusion in heterogeneous media.  

Mittal (59) reviewed common models for polymer nano-composites and found they 
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lacked an accounting for specific nonidealities, namely the scenarios of incomplete 

exfoliation of platelet particles and mis-aligned sheets.  The Nielsen model 

 
𝑃𝑐

𝑃𝑚
=

1−𝜙𝑓

1+
𝜒

2

  

𝜒 = 𝛼𝜙𝑓 

models a regular array of polymer additive ‘ribbons’ of infinite length (57).  The Cussler 

& Aris et al. model 

 
𝑃𝑐

𝑃𝑚
=

1

1+𝜇𝜒2  

𝜇 =
𝜋2

(8 ln(𝛼
2⁄ ))

2 

models a random array of aligned flakes or lamellae (60).  Pc and Pm refer to the 

permeability coefficients of the composite material and the pure polymer, respectively. 

Mittal argues that using factorial design methods to include these nonideal 

behaviors in the model accounts for experimentally observed behaviors such as the 

reduction in barrier performance when the polymer is saturated with nano-platelets at a 

particular filler fraction (Φf).  Properties such as platelet aspect ratio (α) and percent 

randomness can be calculated from experimental permeation behavior and filler volume 

fraction. 

These models were derived with the underlying assumption of ideal Fickian 

diffusion behavior, such that the permeability coefficient is the product of the diffusion 

coefficient and solubility.  In the scope of the flowchart tool, these models took step 4 

and added terms to the constitutive equation for species flux to account for the increased 

resistance to flow due to the dimensional tortuosity of the added platelet flakes. 
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Platelet Barriers 

Conventional types of platelets include mica and talc (61).  These materials have 

a diameter of 10-1000 μm and are around 1-5 μm thick, which gives them a surface-

area to volume ratio (A/V) of ~6x105 m-1.  By comparison, well-exfoliated phyllosilicate 

sheets e.g. montmorillonite (MMT) or kaolinite (KT) can have diameters of 8-10 μm 

and thickness down to 1 nm, giving an A/V ratio of ~2x109 m-1 (~3000x greater) (56).  

Assuming a platelet is a solid cylinder of diameter d and thickness t, the equation for 

surface-area to volume ratio is: 

 
A

V
=

2(𝜋𝑑2

4⁄ )+𝑡(2𝜋𝑑
2⁄ )

𝑡(𝜋𝑑2
4⁄ )

=
2(𝑑+2𝑡)

𝑡𝑑
  

The larger A/V ratio means more surface area for adhesion of the nano-platelet 

to the polymer is available for less volume of filler added, and that more barrier 

influence can occur with lower loading of additive.  This exfoliation typically requires 

chemical assistance through treatment with organophillic cationic surfactants (e.g. alkyl 

ammonium salts) (56) or sonication (62).  Shear from processing also promotes 

exfoliation of the sheets, and it is worth noting at this time the different regimes that can 

be expected of nano-platelet additives in polymers: segregated, exfoliated, and 

intercalated. 

Segregated implies virtually no dispersion, more like a two-phase system.  

Exfoliated describes platelet sheets that are well removed from one another.  

Intercalated describes separate sheets that are relatively close to each other, less than the 

order of the platelet diameter.  In this case, single polymer chains wind their way 

between sheets in the space referred to as the ‘gallery’ (56). 
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Platelet Orientation & Polymer Processing 

It has been noted (54) that dilute concentrations of nano-clay sheets provide 

some tortuosity and restrict permeation, but semi-dilute concentrations amplify the 

effect through multiple scatterings of the penetrant molecules between the less-disperse 

sheets.  One difficulty in processing is that higher concentrations of additives increase 

the polymer melt viscosity such that the material cannot be extruded.  The conundrum 

is therefore a limit on barrier additive loading level due to processing considerations.  

One clever approach that gets around this problem is the use of multilayer co-extrusion 

with post-processing annealing (54). 

In multilayer co-extrusion, two feed streams are fed through a series of layer 

multiplying elements which split, spread, and recombine the streams.  The result is an 

extruded product with any number of alternating layers of material.  In Decker et al. 

(54) this method was used to prepare alternating layers of low-density polyethylene 

(LDPE) with linear-low-density polyethylene (LLDPE) loaded with MMT nanoclay at 

a low concentration so as not to interfere with the extrusion process. 

During the annealing phase, polymer-polymer interdiffusion of the LDPE and 

LLDPE resulted in a ‘moving-front’ of the phase boundary due to the different 

molecular mobilities of the two polymers.  The result was a compaction of the clay-

loaded layer and an expansion of the other.  The end result is regions of high nano-

platelet additive providing enhanced barrier properties.  The feat worth noting is that 

this was achieved without initially high loading that would make processing the polymer 

by extrusion nigh-impossible. 
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Platelet orientation can also be influenced by other mechanisms, not just 

shearing forces in extrusion-type flow.  Yucel et al. (62) describe a multilayer solution 

casting method which results in platelet orientation as the solvent evaporates.  The 

polymer chains collapse as the solvent leaves, compacting the remaining polymer and 

nano-clay.  Large internal stresses from this behavior resulted in bending of the nano-

clay at high loading. 

Platelets and Polymer Crystals 

In addition to acting as barriers, platelet additives can also serve as nucleation 

sites for polymer crystals.  This behavior was described in Girdthep et al. and was cited 

as the reason for enhanced strength in an unexpected orientation of the final product 

(63). 

After melt blending PLA (poly-lactic acid), PBAT (poly-butylene-adipate-co-

terephthalate), the combatibilizer TBT (tetrabutyl titanate), and kaolinite with silver; the 

result was processed through blown film extrusion.  The researchers found extended 

and oriented polymer chains in the machine direction (MD), but also found crystal 

growth from the clay platelets in the transverse direction (TD).  They reported that 

subsequent tensile testing revealed greater strength in the TD orientation than the MD 

orientation for the nano-composite sample.  However, the data referred to in the article 

did not obviously corroborate the reported results. 

Work done by Chatterjee et al. (64) described the barrier ability and influence 

of processing on polymer crystals without additives.  An interesting result was the 

existence of a critical draw ratio, below which polymer processing and orientation of 

crystals actually increases permeation rate. 
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Forming high-density polyethylene (HDPE) through a blown film process 

followed by machine direction orientation processing resulted in three different polymer 

crystal structures, each with different barrier properties.  The HDPE from the blown 

film contained random, spherulite crystals which lent a degree of tortuosity to the 

polymer.  At low draw ratios, the crystals organized into a lamellar structure in the 

machine direction; this effectively decreased tortuosity and increased measured 

permeation rates.  After a certain point (the ‘critical draw ratio’) the lamellar crystals 

transform to a microfibrillar zig-zag pattern with smaller crystals developing around the 

fibers.  This decreased the amorphous fraction and, along with the increased orientation, 

resulted in significant reduction of permeation rate. 
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CHAPTER 6: SUMMARY AND OUTLOOK 

Through the course of this research a flowchart process tool was developed to 

guide chemical and non-chemical engineers in the solution of polymer-penetrant 

diffusion problems, with a focus on those scenarios expected for marine hardware.  The 

tool incorporates references to databanks and experimental methods that will produce 

values for the parameters in the equations developed through the flowchart process tool, 

assisting users in achieving numerical answers to their practical problems.  The 

development of the flowchart process tool was influenced and demonstrated by applying 

it to solve example diffusion problems which also had marine hardware relevance.  

Literature on the barrier character of nanoclay platelet fillers in polymers was reviewed, 

demonstrating a promising current technology and the complexity of real-world 

applications.  The modeling of resulting increase in permeation time was connected with 

the appropriate step in the flowchart tool.  

The results of this effort are already bearing fruit for the author, as he is using 

the flowchart process tool to tackle the anti-fouling biocide leaching problem mentioned 

earlier in the text.  Further refinement of the flowchart tool is expected as it continues 

to be used in this manner. 

This body of work is anticipated to be a foundation for future guidance 

documentation for marine hardware designers to assist them in material selection 

decisions and avoid diffusion-related problems.  Initial dissemination is expected to be 

to acoustic hardware engineers. 
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APPENDIX 1: 

MARINE-HARDWARE-RELEVANT DIFFUSION PROBLEM 

QUESTIONS 

 How long [time] until [concentration] at [position]? 

o This would be the concentration profile, solved for time.  An example 

situation could be a criteria for failure where an electrical property of the 

bulk material reaches an unacceptable value at a specific value of 

concentration of penetrant. 

 How long [time] until [flux] becomes [value] at [position]? 

o Flux equation (function of concentration, therefore position and time), 

solved for [time].  

 How long [time] until [amount] moves through a coating? 

o Integrate flux equation, at coating surface [position], solve for [time]. 

 What material do I need [diffusion coefficient] so it lasts [criteria, e.g. specified 

concentration(x,t)] [time]? 

o Specify length (thickness) 

o [criteria] = concentration, Concentration profile, solve for [diffusion 

coefficient]. 

o [criteria] = flux, Flux equation, solve for [diffusion coefficient]. 

 What alternate material should I use with lower DAB? 

o Acceptable ranges based on factors, e.g. thickness, solubility… 

 What alternate thickness do I need, or what thickness do I need based on anticipated 

DAB of my material? 

 Can I put another layer of material with lower DAB on top to fix the problem?  How 

thick does it need to be? 

 How long will it last (what is the maximum contact time)? 

 How long will it take to dry out? 

 How to handle exotic diffusion mechanisms, e.g. nanoclay tortuosity? 

 How long will it last (losing & reacting anti-oxidant, losing biocide)? 

 What initial loading should I use to get my desired service life? (solubility upper 

limit, leaching biocide).  
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APPENDIX 2: 

MARINE-HARDWARE-RELEVANT DIFFUSION PROBLEM 

GEOMETRIES 

 Plane sheet 

o Example: a transducer’s acoustic window. 

 Impermeable boundary 

o Example: a polymer encapsulant coating on a metal component. 

 Plane sheets in series (layers) 

o Example: composite laminates (e.g. fiberglass).  

 Cylindrical 

o Example: the hose of a towed array. 
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APPENDIX 3: 

MARINE-HARDWARE-RELEVANT DIFFUSION PROBLEM 

INITIAL & BOUNDARY CONDITIONS 

 Anticipated Marine-Hardware-Relevant Boundary Conditions: 

o Concentration is zero at ocean surface  

 (infinite sink, no diffusive resistance layer) 

o Impermeable boundary at interior  

 (metal or component underneath coating) 

o Concentration is a function of time  

 (unsteady-state interface between layers) 

 Concentration is a function of time and is in equilibrium with 

exterior/interior phase  

 (unsteady-state interface between layers) 

o Concentration is at solubility limit at ocean surface  

 (water permeation) 

o Concentration is in equilibrium with exterior concentration at outer surface  

 (drying out in a low-humidity environment; absorption of component 

dissolved in exterior phase, e.g. oxygen) 

 

 Anticipated Marine-Hardware-Relevant Initial Conditions: 

o Initial concentration is zero everywhere  

 (starting free of species A) 

o Initial concentration is constant everywhere  

 (starting from saturation or initial loading of species A) 

o Initial concentration is a function of position  

 (starting from a system already in progress, e.g. drying, biocide 

leaching)
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APPENDIX 4: 

DIFFERENTIAL EQUATION SOLUTION METHOD APPLICABILITY CHART 

Method name Source PDE 
nth 

order 
Nonlinear 

Non-

homogeneous 

Coefficients 

variable 

integrating factor (23) N N N Y Y 

characteristic equation (23) N Y N N N 

undetermined 

coefficients 
(23) N Y N Y N 

variation of parameters (23) N Y N Y N 

Separation of variables (19) Y Y N N Y 

Laplace transform [0,∞) (19) Y Y N Y N 

Euler, Runge-Kutta (24) N Y Y Y Y 

Shooting, collocation (24) N Y Y Y Y 

Finite difference (24) Y Y Y Y Y 

 

Table 6 Solution method applicability, differential equation characteristics 
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Method name Source 
BC 

Nonlinear 

BC 

Non-

homo-

geneous 

Initial 

condition 

dis-

continuous? 

Initial or 

Boundary 

Value 

Problem? 

Independent 

variable 

region 

restriction? 

integrating factor (23)      

characteristic equation (23)      

undetermined coefficients (23)      

variation of parameters (23)      

Separation of variables (19) N N    

Laplace transform [0, ∞) (19) Y Y   Y 

Euler, Runge-Kutta (24) Y Y  Initial  

Shooting, collocation (24) Y Y  Boundary  

Finite difference (24) Y Y    

 

Table 7 Solution method applicability, boundary condition characteristics 
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APPENDIX 5: 

UNSTEADY-STATE DIFFUSION PROBLEM WORK, 

UP TO CHOOSING A SOLUTION METHOD. 

*Note: the step numbers here predate the final numbered steps presented in the 

chapter 2 flowchart description.  Expect some discrepancy. 

FORM THE PROBLEM: 

1. Clearly define the desired solution 
o What will the molar concentration of species A be in the coating at the wall after 

time t has elapsed if the material is initially devoid of A? 
 Looking for concentration (cA) at a particular position as a function of time, 

unsteady concentration profile. 
2. Draw picture(s) 

 
o The z axis goes from left to right as that is the anticipated direction of flow (high 

to low concentration). 
3. Roughly define boundary conditions. 

o Initially the coating has zero concentration of species A. 
o After immersion, the concentration of A just inside the surface immediately 

reaches equilibrium with the exterior environment and remains at that value the 
entire time it is immersed. 

o No species A leaves the coating at the coating-metal surface, i.e. the flux of A in 
the positive z direction is zero at z = 0 

o At large times, the concentration throughout the coating will be uniform and 
equal to the concentration of A in equilibrium with the exterior environment. 

4. Put what you want to know in terms of the flux or other transport property. 
o 𝑐𝐴|𝑧=𝐿 = 𝑓(𝑧, 𝑡) 
o Since the question is concerned with finding the time required to achieve a 

specific concentration at a specific position, what you want to know is simply an 
algebraic re-arrangement or simple iterative solution (Newton's method, 
Goalseek in Excel) of the concentration profile.  Since this is developed by 
'solving' the differential equations formed in this process, no additional 
equations are necessary. 
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5. Define the constitutive equation for species flux. 
 From BSL2007Trans Table 17.8-2 eqn. B 

 𝐽𝐴𝑧
∗ = −𝑐𝐷𝐴𝐵

𝑑𝑥𝐴

𝑑𝑧
 

 J*Az is the molar flux of species A in the positive z direction. 
 c is the molar density, i.e. total moles per unit volume [=] total moles 

/ volume 
 DAB is the diffusivity of species A through coating B [=] area/time 
 xA is the mole fraction of species A [=] molesA / total moles 
 z is the length axis [=] length 

o The bulk coating material B is stationary so there is no convective term expected. 
 Conduct a shell mass balance. 

o For the thin shell volume indicated in the drawn picture: 
 (Rate of moles of species A…)(In - Out + Generation - Consumption) = Rate 

of accumulation or loss of moles of A in the volume. 

 𝑆𝐽𝐴𝑧
∗ |𝑧 − 𝑆𝐽𝐴𝑧

∗ |𝑧+∆𝑧 + 0 − 0 = 𝑆∆𝑧
𝑑𝑐𝐴

𝑑𝑡
 

 S is the surface area of the z-normal face of the unit volume [=] area. 
 cA is the molar concentration of species A [=] molesA / volume. 
 No generation or consumption term as there is no chemical reaction within 

the bounded region. 
 We expect an accumulation term since the coating is initially free 

everywhere of species A, so a change in concentration with time term 
makes sense; the system is not at steady-state. 

 So: 

 𝑆𝐽𝐴𝑧
∗ |𝑧 − 𝑆𝐽𝐴𝑧

∗ |𝑧+∆𝑧 = 𝑆∆𝑧
𝑑𝑐𝐴

𝑑𝑡
 

 Dividing by SΔz and taking the limit as Δz goes to zero: 

 −
𝜕𝐽𝐴𝑧

∗

𝜕𝑧
=

𝜕𝑐𝐴

𝜕𝑡
 

 Insert the constitutive equation for flux into the shell mass balance result. 
o Constitutive flux equation: 

 𝐽𝐴𝑧
∗ = −𝑐𝐷𝐴𝐵

𝑑𝑥𝐴

𝑑𝑧
 

o Shell mass balance result: 

 −
𝜕𝐽𝐴𝑧

∗

𝜕𝑧
=

𝜕𝑐𝐴

𝜕𝑡
 

o Combined: 

 −
𝜕

𝜕𝑧
(−𝑐𝐷𝐴𝐵

𝜕𝑥𝐴

𝜕𝑧
) =

𝜕𝑐𝐴

𝜕𝑡
 

 Simplifying for constant diffusivity within the coating and re-arranging to 
match units: 

 𝐷𝐴𝐵
𝜕

𝜕𝑧
(

𝜕𝑐𝐴

𝜕𝑧
) =

𝜕𝑐𝐴

𝜕𝑡
 

o Re-written for differential equation analysis: 

 𝐷𝐴𝐵
𝜕2𝑐𝐴

𝜕𝑧2 =
𝜕𝑐𝐴

𝜕𝑡
 

  Re-define boundary conditions based on the parameters in the differential equation. 
o I.C.1: at t = 0, all z, cA = 0 
o B.C.1: for t > 0, z = 0, cA = cA0 
o B.C.2: for t > 0, z = L, J*Az = 0 
o F.C.1(final condition): for t >> 0, all z, cA = cA0 
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IDENTIFY THE MATH AND SELECT A SOLUTION METHOD: 
 
9. Identify the type of differential equation produced by combining the shell mass balance 

and constitutive equation for species flux developed earlier. 

o 
𝜕𝑐𝐴

𝜕𝑡
= 𝐷𝐴𝐵

𝜕2𝑐𝐴

𝜕𝑧2
 

o Order: 2nd 
o Number of independent variables: 2, partial differential equation 
o Linearity: linear 
o Homogeneity: homogeneous 
o Coefficients: constant 
o Basic type: 

 General form (Farlow1993PDE§41p.331 notation) 
 Auzz - Eut = 0 
 B2 - 4AC = (0)2 - 4(1)(0) = 0 

 => Parabolic 
o Bounds of the independent variables: 

 0 ≤ z ≤ L 
 0 ≤ t < ∞ 

10. Identify the types of boundary and initial conditions. 
o I.C.1: at t = 0, all z, cA = 0 
o B.C.1: for t > 0, z = 0, cA = cA0 

 Dependent variable (cA0) specified at the boundary. 
 => Type 1 (Farlow) 
 Nonhomogeneous linear. 

o B.C.2: for t > 0, z = L, J*Az = 0 (i.e. ∂cA/∂x = 0) 
 Flux is specified at the boundary, impermeable surface. 
 => Type 3 (Farlow1993PDE§3p.23) 
 Homogeneous linear. 

o F.C.1(final condition?): for t >> 0, all z, cA = cA0 

  

onenote:https://d.docs.live.net/f46910f8e87ea848/Documents/Thesis%20Research/Textbooks/Farlow%20-%20PDEs.one#Boundary/Initial%20conditions&section-id={8B5C0D47-29C2-4E45-8F9C-063F9072DBB0}&page-id={7CF38791-FD65-492F-A9D5-709E8AC353A0}&object-id={699952BD-3E35-4126-AA87-890C5C5E9021}&1B
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APPENDIX 6: 

UNSTEADY-STATE DIFFUSION PROBLEM WORK, 

SEPARATION OF VARIABLES METHOD 

APPLY THE SOLUTION METHOD AND SOLVE FOR WHAT YOU WANT: 
 
12. Apply the solution method: separation of variables 

a. Transform nonhomogeneous boundary conditions into homogeneous ones 
(Farlow1993PDE§6p.44) 
 PITFALL AVOIDANCE: non-dimensionalize early so math tricks like orthogonality 

can be used.  Example: non-dimensionalize physical boundaries so space region 
varies between 0 and 1 as opposed to 0 to L. 

 Think about the steady-state solution 
 As t -> ∞, what will the concentration profile look like? 
 Answer: uniform everywhere at cA0 

 Form the final equation as the linear combination of two terms: a steady-state part 
and a transient part (which will go to zero as t -> ∞). 
 Using Farlow’s notation, with u = cA; x = z: 
 u(x,t) = steady + transient 
 u(x,t) = cA0 + U(x,t) 

 Substitute this new relationship into what has been defined for PDE, BCs, & IC & 
solve for the transient part [U(x,t)] 
 PDE (for 0 ≤ x ≤ L ; 0 < t < ∞) 

 𝑢𝑡 = 𝐷𝐴𝐵𝑢𝑥𝑥 

 
𝜕

𝜕𝑡
[𝑐𝐴0 + 𝑈(𝑥, 𝑡)] = 𝐷𝐴𝐵

𝜕2

𝜕𝑥2
[𝑐𝐴0 + 𝑈(𝑥, 𝑡)] 

 𝑈𝑡 = 𝐷𝐴𝐵𝑈𝑥𝑥 
 BCs (for 0 < t < ∞) 

 u(0,t) = cA0 
 𝑐𝐴0 + 𝑈(0, 𝑡) = 𝑐𝐴0 
 𝑈(0, 𝑡) = 0 

 ux(L,t) = 0 

 
𝑑

𝑑𝑥
[𝑐𝐴0 + 𝑈(𝐿, 𝑡)] = 0 

 𝑈𝑥(𝐿, 𝑡) = 0 
 IC (for 0 ≤ x ≤ L) 

 u(x,0) = 0 
 𝑐𝐴0 + 𝑈(𝑥, 0) = 0 
 𝑈(𝑥, 0) = −𝑐𝐴0 

 Now, the transformed problem has become: 
 PDE (for 0 ≤ x ≤ L ; 0 < t < ∞) 

 𝑈𝑡 = 𝐷𝐴𝐵𝑈𝑥𝑥 
 BCs (for 0 < t < ∞) 

 𝑈(0, 𝑡) = 0 
 𝑈𝑥(𝐿, 𝑡) = 0 

 IC (for 0 ≤ x ≤ L) 
 𝑈(𝑥, 0) = −𝑐𝐴0 
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 … which is solvable by separation of variables.  The result U(x,t) is then re-
introduced to the original problem, u(x,t) = cA0 + U(x,t). 

 Changing notation to match our problem: 
 u(x,t) = cA0 + U(x,t) 
 … becomes 
 cA(z,t) = cA0 + γ(z,t) 

 Also, non-dimensionalize the space variable z so the range of the problem 
goes from 0 to 1: 

 ζ =
𝑧

𝐿
 

 For 0 ≤ z ≤ L, 0 ≤ ζ ≤ 1 
 The final problem ready for solution by separation of variables is therefore: 
 PDE (for 0 ≤ ζ ≤ 1 ; 0 < t < ∞) 

 𝛾𝑡 = 𝐷𝐴𝐵𝛾𝜁𝜁  
 Note: DAB = DAB/L2 from this point forward in the derivation. 

 BCs (for 0 < t < ∞) 
 𝛾(0, 𝑡) = 0 
 𝛾𝜁(1, 𝑡) = 0 

 IC (for 0 ≤ ζ ≤ 1) 
 𝛾(𝜁, 0) = −𝑐𝐴0 

  
b. Separation of variables: 

i. Step 1: form the elementary solutions which satisfy the PDE. 
 Done previously in (Farlow1993PDE§5) 

 𝛾(𝜁, 𝑡) = 𝑒−𝜆2𝐷𝐴𝐵𝑡[𝐴 sin(𝜆𝜁) + 𝐵 cos(𝜆𝜁)] 
 … perhaps verify that this indeed describes the PDE… 

ii. Step 2: form the fundamental solutions which satisfy the PDE and BCs. 
 Apply the boundary conditions to solve for constants of integration. 
 B.C.1: 𝛾(0, 𝑡) = 0 => B = 0 
 B.C.2: 𝛾ζ(1, 𝑡) = 0 

 
𝑑

𝑑ζ
[𝐴𝑒−𝜆2𝐷𝐴𝐵𝑡 sin(𝜆1)] = 0 

 𝐴𝜆𝑒−𝜆2𝐷𝐴𝐵𝑡 cos(𝜆) = 0 

 … λ cannot be 0 (trivial solution), neither can the exponential 
become zero.  Therefore: 

 cos(𝜆) = 0 

 𝜆𝑛 = ±
(2𝑛−1)𝜋

2
 

 … where n = 1,2,3,… 
 Finally, 

 𝛾𝑛(𝜁, 𝑡) = 𝑒−𝜆𝑛
2𝐷𝐴𝐵𝑡 sin(𝜆𝑛𝜁) 

 𝛾𝑛(𝜁, 𝑡) = 𝑒
−(

(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵𝑡

sin (
(2𝑛−1)𝜋

2
𝜁) 

 … perhaps verify that this indeed describes the PDE and both BCs… 
iii. Step 3: form the final solution which satisfies the PDE, BCs, and IC. 

 Linear combination of solutions: 

 𝛾(𝜁, 𝑡) = ∑ [𝐴𝑛𝑒−𝜆𝑛
2𝐷𝐴𝐵𝑡 sin(𝜆𝑛𝜁)]∞

𝑛=1  

 Apply the initial condition (IC). 
 IC 

onenote:https://d.docs.live.net/f46910f8e87ea848/Documents/Thesis%20Research/Textbooks/Farlow%20-%20PDEs.one#§5%20Separation%20of%20Variables&section-id={8B5C0D47-29C2-4E45-8F9C-063F9072DBB0}&page-id={96F9E5F9-EFE5-4764-B62B-E4AE7DF7E6C9}&object-id={7403E0D9-96CB-47DC-862A-5AA276A2C4B2}&19
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 𝛾(𝜁, 0) = −𝑐𝐴0 

 −𝑐𝐴0 = ∑ [𝐴𝑛𝑒−𝜆𝑛
2𝐷𝐴𝐵(0) sin(𝜆𝑛𝜁)]∞

𝑛=1  

 −𝑐𝐴0 = ∑ [𝐴𝑛 sin(𝜆𝑛𝜁)]∞
𝑛=1  

 Solve for the coefficients An 
 Orthogonality to reduce terms: multiply both sides by sin(λmζ) and 

integrate from 0 to 1. 
 −𝑐𝐴0 sin(𝜆𝑚𝜁) = sin(𝜆𝑚𝜁) ∑ [𝐴𝑛 sin(𝜆𝑛𝜁)]∞

𝑛=1  

 −𝑐𝐴0 ∫ sin(𝜆𝑚𝜁)𝑑𝜁
1

0
= ∫ 𝐴1 sin(𝜆1𝜁) sin(𝜆𝑚𝜁) 𝑑𝜁

1

0
+

∫ 𝐴2 sin(𝜆2𝜁) sin(𝜆𝑚𝜁) 𝑑𝜁
1

0
+ ⋯ + ∫ 𝐴𝑚 sin(𝜆𝑚𝜁) sin(𝜆𝑚𝜁) 𝑑𝜁

1

0
+

⋯ 
 … all terms where n ≠ m become zero due to orthogonality. 

 −𝑐𝐴0 ∫ sin(𝜆𝑚𝜁)𝑑𝜁
1

0
= 𝐴𝑚 ∫ sin2(𝜆𝑚𝜁) 𝑑𝜁

1

0
 

 −𝑐𝐴0
−1

𝜆𝑚
[cos 𝜆𝑚 − 1] = 𝐴𝑚

1

𝜆𝑚
[

1

2
−

sin(2𝜆𝑚)

4
] 

 𝑐𝐴0[cos 𝜆𝑚 − 1] = 𝐴𝑚 [
1

2
−

2 sin(𝜆𝑚) cos(𝜆𝑚)

4
] 

 𝑐𝐴0[cos 𝜆𝑚 − 1] = 𝐴𝑚
1−sin(𝜆𝑚) cos(𝜆𝑚)

2
 

 𝐴𝑚 =
2𝑐𝐴0[cos 𝜆𝑚−1]

1−sin 𝜆𝑚 cos 𝜆𝑚
 

 … since n = m: 

 𝐴𝑛 =
2𝑐𝐴0[cos 𝜆𝑛−1]

1−sin 𝜆𝑛 cos 𝜆𝑛
 

 Recall the definition of λn: 

 𝜆𝑛 = ±
(2𝑛−1)𝜋

2
 

 This makes all cos(λn) terms equal to zero for all n = 1, 2, 3, … 
 … as well as all sin(λn) terms equal to 1. 

 𝐴𝑛 =
2𝑐𝐴0[(0)−1]

1−(1)(0)
 

 𝐴𝑛 = −2𝑐𝐴0 
 Plug back into the linear combination of fundamental solutions: 

 𝛾(𝜁, 𝑡) = ∑ [𝐴𝑛𝑒−𝜆𝑛
2𝐷𝐴𝐵𝑡 sin(𝜆𝑛𝜁)]∞

𝑛=1  

 𝐴𝑛 = −2𝑐𝐴0 
 Therefore: 

 𝛾(𝜁, 𝑡) = ∑ [−2𝑐𝐴0𝑒−𝜆𝑛
2𝐷𝐴𝐵𝑡 sin(𝜆𝑛𝜁)]∞

𝑛=1  

 𝛾(𝜁, 𝑡) = −2𝑐𝐴0 ∑ [𝑒−𝜆𝑛
2𝐷𝐴𝐵𝑡 sin(𝜆𝑛𝜁)]∞

𝑛=1  

iv. This is the end result of the method of separation of variables for finding the 
solution to the transient component of the final solution: 

 𝛾(𝜁, 𝑡) = −2𝑐𝐴0 ∑ [𝑒−𝜆𝑛
2𝐷𝐴𝐵𝑡 sin(𝜆𝑛𝜁)]∞

𝑛=1  

 𝜆𝑛 = ±
(2𝑛−1)𝜋

2
 

  
c. Reconcile transformations to return to the variables of the original problem. 

i. Recall the final solution, composed of steady-state and transient components: 
 𝑐𝐴(𝜁, 𝑡) = 𝑐𝐴0 + 𝛾(𝜁, 𝑡) 

ii. Insert the solution for the transient component: 

 𝑐𝐴(𝜁, 𝑡) = 𝑐𝐴0 + −2𝑐𝐴0 ∑ [𝑒−𝜆𝑛
2𝐷𝐴𝐵𝑡 sin(𝜆𝑛𝜁)]∞

𝑛=1  
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 𝑐𝐴(𝜁, 𝑡) = 𝑐𝐴0 (1 − 2 ∑ [𝑒−𝜆𝑛
2𝐷𝐴𝐵𝑡 sin(𝜆𝑛𝜁)]∞

𝑛=1 ) 

 𝜆𝑛 = ±
(2𝑛−1)𝜋

2
 

 ζ =
𝑧

𝐿
 

 𝑐𝐴 (
𝑧

𝐿
, 𝑡) = 𝑐𝐴0 (1 − 2 ∑ [𝑒−𝜆𝑛

2𝐷𝐴𝐵𝑡 sin (𝜆𝑛
𝑧

𝐿
)]∞

𝑛=1 ) 

 𝑐𝐴 (
𝑧

𝐿
, 𝑡) = 𝑐𝐴0 (1 − 2 ∑ [𝑒

−(
(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵𝑡

sin (
(2𝑛−1)𝜋

2

𝑧

𝐿
)]∞

𝑛=1 ) 

 
13. Verify the final solution satisfies the PDE, BCs, IC, and steady-state. 

a. Separation of Variables 
i. PDE 

 
𝜕𝑐𝐴

𝜕𝑡
= 𝐷𝐴𝐵

𝜕2𝑐𝐴

𝜕𝑧2
 

 UPDATE: when doing derivatives, it is convenient keep z transformed as ζ = 
z/L, because the diffusion coefficient then includes the L-2 feature.  

 
𝜕𝑐𝐴

𝜕𝑡
= 𝐷𝐴𝐵

𝜕2𝑐𝐴

𝜕𝜁2  

 
𝜕

𝜕𝑡
(𝑐𝐴) = 2𝑐𝐴0𝐷𝐴𝐵 ∑ [(

(2𝑛−1)𝜋

2
)

2
𝑒

−(
(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵𝑡

sin (
(2𝑛−1)𝜋

2
𝜁)]∞

𝑛=1  

 𝐷𝐴𝐵
𝜕2𝑐𝐴

𝜕𝜁2 =

𝐷𝐴𝐵
𝜕

𝜕𝜁
(−2𝑐𝐴0 ∑ [(

(2𝑛−1)𝜋

2
) 𝑒

−(
(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵𝑡

cos (
(2𝑛−1)𝜋

2
𝜁)]∞

𝑛=1 ) 

 𝐷𝐴𝐵
𝜕2𝑐𝐴

𝜕𝜁2 =

2𝑐𝐴0𝐷𝐴𝐵 ∑ [(
(2𝑛−1)𝜋

2
)

2
𝑒

−(
(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵𝑡

sin (
(2𝑛−1)𝜋

2
𝜁)]∞

𝑛=1  

ii. BCs 
 B.C.1: for t > 0, ζ = 0, cA = cA0 

 𝑐𝐴(0, 𝑡) = 𝑐𝐴0 (1 − 2 ∑ [𝑒
−(

(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵𝑡

sin (
(2𝑛−1)𝜋

2
(0))]∞

𝑛=1 ) 

 𝑐𝐴(0, 𝑡) = 𝑐𝐴0(1 − (0)) 

 𝑐𝐴(0, 𝑡) = 𝑐𝐴0 
 B.C.2: for t > 0, ζ = 1, J*Az = 0 (i.e. ∂cA/∂ζ = 0) 

 
𝜕

𝜕𝜁
(𝑐𝐴(1, 𝑡)) =

−2𝑐𝐴0 ∑ [(
(2𝑛−1)𝜋

2
) 𝑒

−(
(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵𝑡

cos (
(2𝑛−1)𝜋

2
(1))]∞

𝑛=1  

 
𝜕

𝜕𝜁
(𝑐𝐴(1, 𝑡)) = −2𝑐𝐴0 ∑ [0]∞

𝑛=1  

 
𝜕

𝜕𝜁
(𝑐𝐴(1, 𝑡)) = 0 

iii. IC 
 at t = 0, all ζ, cA = 0 

 𝑐𝐴(𝜁, 0) = 𝑐𝐴0 (1 − 2 ∑ [𝑒
−(

(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵(0)

sin (
(2𝑛−1)𝜋

2
𝜁)]∞

𝑛=1 ) 

 𝑐𝐴(𝜁, 0) = 𝑐𝐴0 (1 − 2 ∑ [sin (
(2𝑛−1)𝜋

2
𝜁)]∞

𝑛=1 ) 

 For ζ = 0, all terms 0 
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 𝑐𝐴(0,0) = 𝑐𝐴0  (satisfies B.C.1) 
 For ζ = 1, infinite sum averages to ½. 

 𝑐𝐴(1,0) = 0 
iv. Steady-state 

 for t -> ∞, all z, cA = cA0 

 𝑐𝐴(𝜁, ∞) = 𝑐𝐴0 (1 − 2 ∑ [𝑒
−(

(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵(∞)

sin (
(2𝑛−1)𝜋

2
𝜁)]∞

𝑛=1 ) 

 𝑐𝐴(𝜁, ∞) = 𝑐𝐴0(1 − 2 ∑ [0]∞
𝑛=1 ) 

 𝑐𝐴(𝜁, ∞) = 𝑐𝐴0 
  
14. Solve for what you want 

a. Separation of Variables 
i. What will the molar concentration of species A be in the coating at the wall after 

time t has elapsed if the material is initially devoid of A? 

 i.e.  𝑐𝐴(𝜁, 𝑡),   𝜁 = 1 (𝑧 = 𝐿) , solve for various specified t. 

 𝑐𝐴 (
(𝐿)

𝐿
, 𝑡) = 𝑐𝐴0 (1 − 2 ∑ [𝑒

−(
(2𝑛−1)𝜋

2
)

2
𝐷𝐴𝐵𝑡

sin (
(2𝑛−1)𝜋

2

(𝐿)

𝐿
)]∞

𝑛=1 ) 
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APPENDIX 7: 

CRANK TEXT PROBLEM, LAPLACE TRANSFORM 

Original problem from (5), §2.4.3 

FORM THE PROBLEM 
 

1. Define the desired solution. 
a. Get the concentration profile cA(x,t) for the system described by 

(Crank1975Math§2.4.3p.21) using the Laplace transform. 
2. Draw a picture. 

a. Crank starts with a plane sheet of thickness 2L with surfaces maintained at a 
constant concentration cA0 and with zero initial concentration of species A 
throughout the sheet. 

3. Bound the problem. 
a. The sheet occupies the region -L ≤ x ≤ L; resulting in symmetry around x = 0.  

This leads to boundary conditions: 
i. cA(L,t) = cA0 ; 0 ≤ t  (constant concentration at x = L, sheet surface) 

ii. (cA)x(0,t) = 0 ; 0 ≤ t  (impermeable boundary at x = 0, sheet middle) 
b. This (steps 2 & 3) results in the concentration decreasing in the negative x-

direction, implying net flux will be negative in the positive x-direction (a.k.a. net 
flux will be positive in the negative x-direction).   
 [We have previously tried to craft the problem so the net flux is positive in 

the positive x-direction.] 
 Relationship between desired solution and concentration profile. 

 The desired solution is the concentration profile, so no further relationship is 
necessary. 

 Define the constitutive equation for species flux. 
 Fickian diffusion is assumed here, with no bulk flow or convective flux term. 

 𝑁𝐴𝑥 = −𝐷𝐴𝐵
𝜕𝑐𝐴

𝜕𝑥
 

 Conduct the shell mass balance. 
 Unsteady-state, no reaction 

 −
𝜕𝑁𝐴𝑥

𝜕𝑥
=

𝜕𝑐𝐴

𝜕𝑡
 

 Combine equations. 

 𝐷𝐴𝐵
𝜕2𝑐𝐴

𝜕𝑥2 =
𝜕𝑐𝐴

𝜕𝑡
 

 Boundary & Initial conditions. 
 Boundary conditions 

i. 𝑐𝐴(𝐿, 𝑡) = 𝑐𝐴0 ; 𝑡 ≥ 0 

ii. 
𝜕

𝜕𝑥
𝑐𝐴(0, 𝑡) = 0 ; 𝑡 ≥ 0 

b. Initial condition 

i. 𝑐𝐴(𝑥, 0) = 0 ; 0 ≤ 𝑥 < 𝐿 
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IDENTIFY THE MATH AND SELECT A SOLUTION METHOD: 

 
9. Differential equation. 

a. From step 7, 

i. 𝐷𝐴𝐵
𝜕2𝑐𝐴

𝜕𝑥2 =
𝜕𝑐𝐴

𝜕𝑡
 

b. 2nd order homogeneous linear partial differential equation with constant 
coefficients. 

c. Type: (B2 - 4AC = ?) 
i. Auxx + Buxt + Cutt + Dux + Eut + Fu = G 

1. A = DAB 
2. B = 0 
3. C = 0 

ii. B2 - 4AC = 0 ==> Parabolic 
10. Boundary conditions. 

a. From step 8, 

i. 𝑐𝐴(𝐿, 𝑡) = 𝑐𝐴0 ; 𝑡 ≥ 0 
 Nonhomogeneous linear. 

 
𝜕

𝜕𝑥
𝑐𝐴(0, 𝑡) = 0 ; 𝑡 ≥ 0 

 Homogeneous linear. 
 Overall: 

 Homogeneous linear: 1 
 Nonhomogeneous linear: 1 

 Solution method. 
 The text uses the Laplace transform. 

  

APPLY THE SOLUTION METHOD AND SOLVE FOR WHAT YOU WANT: 
 
12. Apply the solution method (Laplace transform). (Crank1975Math§2.4.3p.21) 

a. Laplace transform the PDE & BCs 
i. PDE 

 𝐷𝐴𝐵
𝜕2𝑐𝐴

𝜕𝑥2 =
𝜕𝑐𝐴

𝜕𝑡
 

 ℒ [𝐷𝐴𝐵
𝜕2𝑐𝐴

𝜕𝑥2 ] = ℒ [
𝜕𝑐𝐴

𝜕𝑡
] 

 ℒ [𝐷𝐴𝐵
𝜕2𝑐𝐴

𝜕𝑥2 ] 

 𝐷𝐴𝐵ℒ [
𝜕2𝑐𝐴

𝜕𝑥2 ] 

 𝐷𝐴𝐵
𝜕2𝐶�̅�(𝑥,𝑝)

𝜕𝑥2
 

 … (Farlow1993PDE§13p.100) 

 ℒ [
𝜕𝑐𝐴

𝜕𝑡
] 

 𝑝𝐶�̅�(𝑥, 𝑝) − 𝑐𝐴(𝑥, 0) 
 … (Farlow1993PDE§13p.100) 
 …initial condition cA(x,0) = 0… 
 𝑝𝐶�̅�(𝑥, 𝑝) 

 Combined: 
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 𝐷𝐴𝐵
𝜕2𝐶�̅�(𝑥,𝑝)

𝜕𝑥2 = 𝑝𝐶�̅�(𝑥, 𝑝) 

 
𝜕2𝐶�̅�(𝑥,𝑝)

𝜕𝑥2 =
𝑝

𝐷𝐴𝐵
𝐶�̅�(𝑥, 𝑝) 

 
𝜕2𝐶�̅�(𝑥,𝑝)

𝜕𝑥2 −
𝑝

𝐷𝐴𝐵
𝐶�̅�(𝑥, 𝑝) = 0 

 … setting q2 = p/DAB (Crank1975Math§2.4.3p.22)… 

 
𝜕2𝐶�̅�(𝑥,𝑝)

𝜕𝑥2 − 𝑞2𝐶�̅�(𝑥, 𝑝) = 0 

ii. BCs 
 𝑐𝐴(𝐿, 𝑡) = 𝑐𝐴0 ; 𝑡 ≥ 0 

 ℒ[𝑐𝐴(𝐿, 𝑡)] = ℒ[𝑐𝐴0] 

 𝐶�̅�(𝐿, 𝑝) =
𝑐𝐴0

𝑝
 

 
𝜕

𝜕𝑥
𝑐𝐴(0, 𝑡) = 0 ; 𝑡 ≥ 0 

 ℒ [
𝜕𝑐𝐴(0,𝑡)

𝜕𝑥
] = 0 

 
𝜕𝐶�̅�(0,𝑝)

𝜕𝑥
= 0 

b. Result: 
i. PDE 

 
𝜕2𝐶�̅�(𝑥,𝑝)

𝜕𝑥2 − 𝑞2𝐶�̅�(𝑥, 𝑝) = 0 

 𝑞2 =
𝑝

𝐷𝐴𝐵
 

 BCs 

 𝐶�̅�(𝐿, 𝑝) =
𝑐𝐴0

𝑝  

 
𝜕𝐶�̅�(0,𝑝)

𝜕𝑥
= 0 

c. Solve the resulting 2nd order homogeneous linear ordinary differential equation 
with constant coefficients (the transform variable 'p' is not considered to be 
variable in this case as it is not involved in the derivatives). 
i. Form the characteristic equation, determine the form of its roots, and plug 

back in as appropriate. (E&P2005DiffEq§5.3) 

 
𝜕2𝐶�̅�(𝑥,𝑝)

𝜕𝑥2 − 𝑞2𝐶�̅�(𝑥, 𝑝) = 0 

 Characteristic equation: Ay''+By'+Cy=0 
 A = 1 
 B = 0 
 C = -q2 

 Set 𝐶�̅� = y = erx 
 𝑟2𝑒𝑟𝑥 − 𝑞2𝑒𝑟𝑥 = 0 
 𝑒𝑟𝑥(𝑟2 − 𝑞2) = 0 
 … since erx cannot be zero, 
 𝑟2 − 𝑞2 = 0 
 𝑟2 = 𝑞2 

 𝑟 = ±𝑞 = ±√
𝑝

𝐷𝐴𝐵
 

 Linear combination, plug in roots for 𝐶�̅� = erx 
 𝐶�̅�(𝑥, 𝑝) = 𝑐1𝑒𝑞𝑥 + 𝑐2𝑒−𝑞𝑥 

 Solve for coefficients c1 and c2 using boundary conditions. 
 … using boundary condition with the most zeros first… 

onenote:Edwards_Penney%20-%20Diff%20Eq%20Lin%20Alg.one#Second-order%20ordinary%20linear%20homogeneous&section-id={6BFD7F26-A2DB-460A-9F8C-16477F0BD6F9}&page-id={0CB1DF24-E0F4-4236-B6CC-81F9E4E1CF58}&end&base-path=https://d.docs.live.net/f46910f8e87ea848/Documents/Thesis%20Research/Textbooks
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𝜕𝐶�̅�(0,𝑝)

𝜕𝑥
= 0 

 PITFALL AVOIDANCE: don't forget to take the 
derivative when plugging-in! 

 
𝜕𝐶�̅�(0,𝑝)

𝜕𝑥
= 𝑐1𝑞𝑒𝑞(0) − 𝑐2𝑞𝑒−𝑞(0) = 0 

 𝑐1𝑞 = 𝑐2𝑞 
 𝑐1 = 𝑐2 
 … changing the general solution to… 

 𝐶�̅�(𝑥, 𝑝) = 𝑐1(𝑒𝑞𝑥 + 𝑒−𝑞𝑥) 
 Second boundary condition… 

 𝐶�̅�(𝐿, 𝑝) =
𝑐𝐴0

𝑝
 

 𝐶�̅�(𝐿, 𝑝) = 𝑐1(𝑒𝑞(𝐿) + 𝑒−𝑞(𝐿)) =
𝑐𝐴0

𝑝
 

 𝑐1 =
𝑐𝐴0

𝑝(𝑒𝑞𝐿+𝑒−𝑞𝐿) 

 Final form: 

 𝐶�̅�(𝑥, 𝑝) =
𝑐𝐴0

𝑝(𝑒𝑞𝐿+𝑒−𝑞𝐿)
(𝑒𝑞𝑥 + 𝑒−𝑞𝑥) 

 … using the relation cosh(𝑎𝑥) = 1

2
(𝑒𝑎𝑥 + 𝑒−𝑎𝑥) 

 www.wolframalpha.com 4/7/2015  

 𝐶�̅�(𝑥, 𝑝) =
𝑐𝐴0 cosh(𝑞𝑥)

𝑝 cosh(𝑞𝐿)
 

d. Get back to the original variables (inverse transform).  Crank offers two different 
solutions & approaches, each ultimately applicable to a different span of time for 
the system. 
i. Short times (small  to moderate values of Dt/L2) 

 Expansion in negative exponentials… 

 𝐶�̅�(𝑥, 𝑝) =
𝑐𝐴0 cosh(𝑞𝑥)

𝑝 cosh(𝑞𝐿)
=

𝑐𝐴0(𝑒𝑞𝑥+𝑒−𝑞𝑥)

𝑝(𝑒𝑞𝐿+𝑒−𝑞𝐿)
 

 𝐶�̅�(𝑥, 𝑝) =
𝑐𝐴0(𝑒𝑞𝑥+𝑒−𝑞𝑥)

𝑝𝑒𝑞𝐿(1+𝑒−2𝑞𝐿)
 

 … binomial theorem mathemagic… 

 𝐶�̅�(𝑥, 𝑝) =
𝑐𝐴0

𝑝
{𝑒−𝑞(𝐿−𝑥) + 𝑒−𝑞(𝐿+𝑥)} ∑ (−1)𝑛𝑒−2𝑛𝑞𝐿∞

𝑛=0  

 𝐶�̅�(𝑥, 𝑝) =
𝑐𝐴0

𝑝
𝑒−𝑞(𝐿−𝑥) ∑ (−1)𝑛𝑒−2𝑛𝑞𝐿∞

𝑛=0 +
𝑐𝐴0

𝑝
𝑒−𝑞(𝐿+𝑥) ∑ (−1)𝑛𝑒−2𝑛𝑞𝐿∞

𝑛=0  

 𝐶�̅�(𝑥, 𝑝) =
𝑐𝐴0

𝑝
∑ (−1)𝑛𝑒−𝑞{(2𝑛+1)𝐿−𝑥}∞

𝑛=0 +
𝑐𝐴0

𝑝
∑ (−1)𝑛𝑒−𝑞{(2𝑛+1)𝐿+𝑥}∞

𝑛=0  

 Inverse Laplace transform… 
 … inverse Laplace table 

 ℒ−1 [
𝑒−𝑞𝑥

𝑝
] = erfc

𝑥

2√𝐷𝐴𝐵𝑡
 

 … so finally: 

 𝑐𝐴(𝑥, 𝑡) = 𝑐𝐴0 ∑ [(−1)𝑛erfc
(2𝑛+1)𝐿−𝑥

2√𝐷𝐴𝐵𝑡
]∞

𝑛=0 +

𝑐𝐴0 ∑ [(−1)𝑛erfc
(2𝑛+1)𝐿+𝑥

2√𝐷𝐴𝐵𝑡
]∞

𝑛=0  

 … is the concentration profile in the half-sheet.  This converges 
for small to moderate values of Dt/L2 (i.e. 'short' times). 

http://www.wolframalpha.com/input/?i=cosh%28x%29
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ii. Long times (large values of Dt/L2) 

 Expression in partial fractions… 
 … long derivation in text…eventually arriving at: 

 𝑐𝐴(𝑥, 𝑡) = 𝑐𝐴0 −
4𝑐𝐴0

𝜋
∑ [

(−1)𝑛

2𝑛+1
𝑒

−
𝐷𝐴𝐵(2𝑛+1)2𝜋2𝑡

4𝐿2 cos (
(2𝑛+1)𝜋𝑥

2𝐿
)]∞

𝑛=0  

 … is the concentration profile in the half-sheet.  This converges 
for moderate to large values of Dt/L2 (i.e. 'long' times). 
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