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ABSTRACT 

Urbanization dramatically alters the abiotic and biotic environment of cities, 

favoring species that are pre-adapted or are able to adapt (e.g. through phenotypic 

plasticity or evolutionary mechanisms) to these novel conditions. While urbanization 

is widely considered one of the greatest threats to biodiversity worldwide, we still lack 

a general understanding of the mechanisms underlying organismal responses to 

human-induced rapid environmental change. The focus of this thesis was to examine 

how urbanization-induced changes in the abiotic and biotic environment influence the 

foraging behavior and body size of the brown anole, Anolis sagrei. In Chapter 1, we 

presented anoles from habitats differing in their levels of urbanization with an 

experimental feeding opportunity to assess differences in foraging decisions. We also 

manipulated perch availability and the presence of predators to determine whether and 

how these factors influence foraging decisions. While our manipulations had little 

effect, we found that anoles from natural forest habitats responded faster and more 

often to the experimental feeding opportunity compared to conspecifics from urban 

and suburban populations. In Chapter 2, we utilized gut-content and stable isotope 

analysis in the same populations as in Chapter 1 (i.e. natural forest, suburban and 

urban) to identify whether and how changes in the composition of prey and primary 

producers influence the trophic structure of urban food webs. We found that the 

differential consumption of prey by anoles among habitat types was only partially 

consistent with the differences observed among their isotopic niches. Specifically, 

greater proportional consumption of carnivorous arthropods in natural forest anoles 

compared to urban and suburban conspecifics was consistent with variation along the 



 

 

N15 axis of their isotopic niche. However, isotopic niches were primarily differentiated 

along the C13 axis, which was not consistent with differences in the proportional 

consumption of other taxa among habitat types. Furthermore, urban and suburban 

anoles incorporated substantial amounts of grass-based carbon into their tissues, 

suggesting that changes in trophic structure were primarily driven by the presence of 

C4 grasses in urban areas. In Chapter 3, we assessed the role of abiotic and biotic 

factors in determining the body size of brown anoles across an urbanized landscape. 

Given our finding of a positive relationship between anole body size and predator 

abundance, we then performed a manipulative field experiment and laboratory study 

to identify the mechanisms behind this pattern. In the field, we presented tethered male 

brown anoles that varied in body size to predatory curly-tailed lizards (Leiocephalis 

carinatus). Curly-tailed lizards attacked smaller anoles more frequently and at shorter 

latencies compared to larger anoles. Finally, we conducted a common garden 

experiment to determine whether body size differences between habitats with and 

without predators are genetically determined. Male brown anoles from habitats with 

predators had faster growth rates compared to males from non-predator habitats. 

However, we found no differences in female growth rate between habitats. 

Urban habitats are currently considered hotspots of rapid environmental change 

and consequently, rapid adaptation of urban taxa. This dissertation demonstrates 

potential mechanisms through which urbanization can cause organismal change and 

identifies specific traits that may favor the persistence of taxa in these novel habitats. 

Yet, our results also emphasize that conditions both within and among urban areas are 

quite variable over relatively small spatial scales. Urban populations separated by even 



 

 

short distances are thus likely to experience markedly different selective pressures. 

This may be why organismal responses to urbanization-induced environmental change 

have been found to be mostly species and location specific. Indeed, the field of urban 

ecology has yet to produce conclusions that can be generalized beyond a few taxa, but 

this should not discourage future work on urban systems. In fact, our ability to predict 

and mitigate the negative impacts of urbanization is completely dependent on our 

knowledge of these specific effects. Therefore, we hope this work will encourage 

others to examine how urbanization influences other taxa and most importantly to 

determine the specific mechanisms underlying organismal change.  
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PREFACE 

This thesis is prepared in the manuscript format and each chapter is preceded by the 

publication status of each article or the journal intended for submission. 
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CHAPTER 1 

 

 AN EXPERIMENTAL EVALUATION OF FORAGING DECISIONS IN URBAN 

AND NATURAL FOREST POPULATIONS OF ANOLIS LIZARDS. 

 

Published as: 

Chejanovski, Z. A., Avilés-Rodríguez, K. J., Lapiedra, O., Preisser, E. L., & Kolbe, J. 

J. (2017). An experimental evaluation of foraging decisions in urban and natural 

forest populations of Anolis lizards. Urban Ecosystems, 20(5), 1011-1018. 
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Abstract 

Foraging decisions reflect a trade-off between the benefits of acquiring food 

and the costs of movement. Changes in the biotic and abiotic environment associated 

with urbanization can alter this trade-off and modify foraging decisions. We 

experimentally manipulated foraging opportunities for two Anolis lizard species – the 

brown anole (A. sagrei) in Florida and the crested anole (A. cristatellus) in Puerto 

Rico – to assess whether foraging behavior differs between habitats varying in their 

degree of urbanization. In both urban and natural forest habitats, we measured the 

latency of perched anoles to feed from an experimental feeding tray. We manipulated 

perch availability and predator presence, while also taking into account population 

(e.g., conspecific density) and individual-level factors (e.g., body temperature) to 

evaluate whether and how these contribute to between-habitat differences in foraging 

behavior. In both species, urban anoles had longer latencies to feed and lower overall 

response rates compared to lizards from forests. Urban anoles were also larger (i.e., 

snout-vent length and mass) in both species and urban A. sagrei were in better body 

condition than the natural forest population. We postulate that the observed patterns in 

foraging behavior are driven by differences in perceived predation risk, foraging 

motivation, or neophobia. Although we are unable to identify the mechanism(s) 

driving these differences, the substantial differences in urban versus forest anole 

foraging behavior emphasizes the importance of understanding how urbanization 

influences animal populations and their persistence in anthropogenically-modified 

environments. 
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Introduction 

Animals must feed to survive, and theory states that organisms maximize 

fitness by matching their foraging decisions to environmental conditions (Stephens 

and Krebs 1986; Dall et al. 2005). These decisions reflect a trade-off between the 

caloric benefits and potential costs of foraging, such as missed mating opportunities or 

greater predation risk (Lima and Bednekoff 1999; Verdolin 2006). Environmental 

change can, by altering this cost:benefit ratio, modify foraging behavior. Urbanization, 

for instance, produces rapid environmental change that dramatically transforms the 

biotic and abiotic characteristics of populated areas worldwide (Shochat et al. 2006). 

While these changes are associated with many novel stressors (e.g., habitat 

fragmentation, human activity, and predators) that may alter foraging decisions in 

urban habitats, the precise nature of these anthropogenically-driven changes in 

foraging behavior is still unclear. Furthermore, the ability to modify foraging behavior 

can determine whether or not animal populations persist in human-modified habitats. 

One of the most striking differences between urban and natural areas is their 

structural habitat. Urban habitats contain fewer trees, lower vegetation (e.g., shrubs 

and lawns) and more impervious surfaces than natural areas (Blair 1996; Forman 

2014). This decrease in structural complexity may heighten perceived predation risk 

via greater exposure to potential predators and fewer refuges for prey (Whittingham 

and Evans 2004). Vegetative cover influenced escape behavior in the lizard 

Psammodromus algirus, for example, with individuals fleeing from an approaching 

predator at greater distances in more open areas (Martin and López 1995). Animals 

may be less willing to forage in urban areas, or may restrict foraging activity to 
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residual vegetated fragments (i.e., green spaces) they perceive as safer (Hodgson et al. 

2006). Similarly, small mammals abandoned artificial food patches more quickly in 

open areas than when the patches were placed nearer to and within vegetation (Bowers 

et al. 1993; Baker et al. 2015). These studies suggest that habitat structure can mediate 

the relationship between foraging activity and perceived predation risk. While this 

research is useful, many studies addressing the topic do not separate out the potentially 

confounding effects of predation and structural habitat (but see Bouskila 1995). 

Experiments that do manipulate both factors in urban and natural sites, however, 

permit assessments of how habitat structure per se influences foraging behavior. 

Urban habitats containing abundant or novel predators could have higher 

predation risk than natural areas (reviewed by Fischer et al. 2012). Both feral and 

domestic cats have been linked to the decline of various urban taxa (e.g., birds: 

Lepczyk 2003; Baker et al. 2005; lizards: Ditchkoff et al. 2006; small mammals: Sims 

et al. 2008), and some urban habitats have higher densities of generalist avian 

predators (Jokimäki and Huhta 2000; Sorace and Gustin 2009). Although increases in 

perceived predation risk may reduce foraging by some urban species, anthropogenic 

subsidies characteristic of urban areas may decouple the relationship between predator 

abundance and actual predation risk (Rodewald et al. 2011). Urban mesopredators 

such as raccoons, for example, readily utilize artificial resources (Prange et al. 2004) 

that increase their abundance but decrease their need to prey on other species. The fact 

that studies comparing anti-predator behavior in prey from urban versus natural 

habitats produce inconsistent results may reflect this decoupling of predator 

abundance and predation risk. House finches from urban areas escaped at greater 
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distances, suggesting that perceived predation risk is higher in urban versus natural 

habitats (Valcarcel and Fernández-Juricic 2009). A study of 44 European bird species, 

however, found shorter escape distances in urban habitats (Møller 2008). The question 

of whether prey respond appropriately to predation risk in urban environments, and 

how this response influences foraging behavior, remains unanswered.  

Anolis lizards (or anoles) are ideal for research evaluating how structural 

habitat and predation risk influence foraging in urban and natural environments. 

Anoles are small, diurnal, mostly insectivorous lizards for whom structural habitat – 

perch height, diameter and substrate type – is a key niche axis (Losos 2009). Perch 

attributes such as diameter, inclination and roughness, along with anole morphology, 

influence locomotor performance (Losos and Sinervo 1989; Irschick and Losos 1999; 

Kolbe et al. 2015) and thus the ability of anoles to capture prey and evade predators. 

Anoles utilize elevated perches to survey their territory for potential prey, mating 

opportunities, and conspecific competitors (Stamps 1977). The fact that perceived risk 

is inversely related to perch height in anoles (Cooper 2006; Cooper 2010) suggests 

that elevated perches are perceived as safer than ground perches. For instance, anoles 

traveling farther on the ground to feed in an experimental setting used more 

intermediate perches compared to when feeding closer to their original perch 

(Drakeley et al. 2015). Other studies have also shown that although anoles are 

primarily ground foragers (Losos 1990; Lapiedra et al. 2016), they become more 

arboreal in the presence of ground-dwelling predators (Schoener et al. 2002; Losos et 

al. 2004). 
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In this study, we experimentally manipulated foraging opportunities for two 

Anolis species – the brown anole (A. sagrei) in Florida and the crested anole (A. 

cristatellus) in Puerto Rico – to assess whether foraging decisions differ between 

habitats varying in their degree of urbanization. During these experiments, we 

manipulated perch availability and predator presence in each habitat type to determine 

their effects on perceived predation risk and foraging decisions. We also considered 

how factors such as perch availability, body temperature, conspecific density and body 

size, might also contribute to differences in foraging behavior. Our research sought to 

assess the willingness of lizards to forage in urban and natural forest habitats, and to 

explore how structural habitat and predator presence influenced foraging decisions.  

 

Methods 

Site Selection 

We examined Anolis foraging behavior in populations occupying both urban 

and natural habitats. All experiments were conducted during warm days (>25°C 

during trials) between the hours of 0900 and 1900 when lizards were active. Foraging 

trials with A. cristatellus were conducted in July 2014 in urban and natural forest sites 

within the San Juan metropolitan area of Puerto Rico. Trials with A. sagrei were 

conducted during April-May 2015 in urban, suburban, and natural forest sites (each 

replicated twice) in southeast Florida (Broward County). Natural forest habitats were 

secondary forests characterized by relatively closed canopies, dense vegetation, and 

little human disturbance. No humans or domestic animals were observed in any of our 

natural sites throughout the course of these experiments. Urban habitats consisted of 
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sparse vegetation, more open space (typically covered by mown lawn or impervious 

surfaces), and increased pedestrian traffic compared to natural habitats. Suburban 

habitats (A. sagrei experiments only) were roadside areas intermediate between urban 

and natural sites in terms of vegetation density, open space, and pedestrian 

disturbance.  

 

Experimental Procedure 

We first located male lizards perched in survey posture on a vertical substrate 

(e.g., tree or wall). Survey posture – head downward, hind limbs extended up the 

vertical surface, and upper body pushed away from the substrate – indicates an anole 

receptive to foraging (Stamps 1977); anoles seem to abandon this posture when fed to 

satiation (Drakeley et al. 2015). After locating an anole, we placed a foraging tray with 

two mealworms directly in front of this focal lizard at a distance of 1 m from the base 

of the perch for A. cristatellus and five mealworms at a 2-m distance for A. sagrei. 

Mealworms were larvae of the darkling beetle, Tenebrio molitor, which have been 

used successfully as a food resource in previous studies (Drakeley et al. 2015; 

Lapiedra et al. 2016). These quantities of mealworms elicited the fastest responses for 

each species in pilot trials conducted near our study sites. Foraging trays were initially 

covered with an opaque material to prevent lizards from seeing the mealworms before 

the researcher was able to move to a distance > 3 m from the tray (see Drakeley et al. 

2015; Lapiedra et al. 2016). Lizards were allowed to habituate for two minutes, after 

which time the cover was removed by pulling an attached string, signaling the start of 

the trial. All trials were recorded using a digital video camera placed on a tripod ~1 m 
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from the foraging tray. Latency to feed (in seconds) was measured from these videos 

as the time from when the cover was removed from the foraging tray to when the first 

mealworm was captured. Experimental time was limited to 20 minutes and non-

responses were assigned this maximum time.  

Half of the foraging trials in each habitat type for each species were 

experimentally manipulated to test whether perch availability (for A. sagrei) and 

perceived predation risk (for A. cristatellus) influenced foraging decisions. For A. 

sagrei, we placed two perches directly between the focal lizard and the feeding tray to 

increase perch availability in these trials. Perches were ~3 cm in diameter and 1-m tall 

and constructed using wood collected from the study sites. Lizards readily used these 

perches in pilot trials. For A. cristatellus, we placed a static model of a bird predator 

~30 cm behind the foraging tray to increase perceived predation risk. We used a 

taxidermy specimen of a pearly-eyed thrasher (Margarops fuscatus), a bird commonly 

found in both urban and natural areas of San Juan that has been previously reported to 

prey upon anoles (Adolph and Roughgarden 1983). 

In addition to these experimental manipulations, we also measured a number of 

variables that could potentially influence latency to feed. Because lizard-accessible 

perches may serve as refuges or increase the possibility of detecting predators, we 

measured the number of perches within a 1 m radius of the focal lizard for A. 

cristatellus and within 0.5 m of the line between the feeding tray and focal lizard for 

A. sagrei, not including experimentally-added perches. We standardized these 

measures by calculating perch density (i.e., number of perches per unit area). Perches 

were considered as any substrate elevated above 20 cm and > 0.5 cm in diameter. We 
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also measured the perch height of the focal lizard at the start of the trial because 

lizards perched higher may be satiated from previous foraging opportunities (Stamps 

1977). Higher perches may also enable lizards to survey a larger area and thus receive 

more information regarding predation risk (Scott et al. 1976) prior to foraging.  

Foraging decisions can also be influenced by temperature. As ectotherms, body 

temperature greatly affects lizard locomotor performance (Angilletta 2009) and 

digestive efficiency (Harwood 1979). Because urban areas often act as heat islands 

(Oke 1973), their higher ambient temperatures relative to nearby natural areas could 

increase the body temperatures of urban lizards. To estimate body temperature, we 

placed a copper lizard model at the original position of the focal lizard and allowed 

temperature readings to stabilize before recording its internal temperature (Hertz 1992; 

Gunderson and Leal 2015).  

While conspecific presence can dilute predation risk (as reviewed by Roberts 

1996) or provide cues regarding the quality of a resource patch (Stamps 1987), higher 

conspecific densities also increase intraspecific competition and the chance of missing 

foraging opportunities (Drakeley et al. 2015). We measured the number of 

conspecifics within a 5 m radius of the focal lizard for A. cristatellus and within a 3 m 

radius of the focal lizard for A. sagrei. Again, we standardized these measures by 

calculating conspecific density (i.e., number of conspecifics per unit area). We also 

recorded whether one or more conspecifics approached the foraging tray during the 

trial. In laboratory-based staged encounters, larger individuals successfully defended 

preferred perches from smaller anoles (Tokarz 1985). Because similar outcomes could 

result during competition for foraging opportunities, we measured body size as snout-
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vent length (SVL) and mass from a representative sample of each lizard population. 

We also used these measurements to calculate body condition (i.e., scaled mass index 

following the methods of Peig and Green 2009) as a proxy for motivation, given that 

whether a lizard is hungry or satiated (i.e., motivational state) can influence the trade-

off between costs and benefits when making a foraging decision. For example, a lizard 

may be willing to accept greater risk in order to acquire food if it has not fed for an 

extended period of time or if prey items are rarely encountered. We also calculated 

body condition for a subset of A. sagrei individuals that we were able to capture 

following their foraging trial (this was not done for A. cristatellus). To estimate the 

original body mass of these individuals, we measured the average weight of each 

mealworm and subtracted the mass of any mealworms consumed from the mass of 

each lizard. 

 

Statistical Analysis 

We tested for statistical differences in latency to feed by performing survival 

analysis. We used a Cox proportional hazards model available in the R-package 

'survival' (Therneau and Lumley 2015). This semi-parametric model is capable of 

dealing with right-censored data such as those obtained by limiting our foraging trials 

to a maximum of 20 minutes. Model selection was based on AICc scores (Burnham 

and Anderson 2004) and only significant (or marginally non-significant) factors were 

retained in the best models. Following Burnham and Anderson (2004), the model with 

the fewest factors was favored when models differed by less than two units from the 

best model. Differences in mean SVL, mass, body condition, estimated body 
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temperature, conspecific density and perch availability among habitat types were 

tested using t-tests or analysis of variance (ANOVA) and Tukey’s Honest Significant 

Difference (HSD) post hoc tests when data were normally distributed (as determined 

from Shapiro-Wilks test of normality). When data could not be normalized, 

differences were tested using Kruskal-Wallis rank sum tests (pairwise) or Dunn’s test 

(multiple comparisons; R-package 'dunn.test'; Dinno 2016) using rank sums with 

Bonferroni correction. For the subset of A. sagrei individuals we were able to measure 

following their foraging trial, we tested the relationship between body condition and 

latency to feed using Pearson’s product-moment correlation. All analyses were 

performed using R statistical software (R Development Core Team 2015).  

 

Results 

For A. cristatellus, lizards from forest habitats fed faster than those from urban 

habitats (coeff.= -0.82, z=-2.12, p=0.034, Fig. 1) and had an overall greater response 

rate (63% in forest vs. 26% in urban). Similarly, A. sagrei from forests fed faster than 

those in either suburban (coeff.= -1.50, z=-2.95, p=0.003) or urban habitats (coeff.= -

1.67, z=-3.01, p=0.003). Forest A. sagrei also had a greater response rate (38%) than 

those from urban (10%) or suburban (11%) habitats. However, latency to feed did not 

differ between urban and suburban habitats for A. sagrei (coeff.=-0.17, z=-0.25, 

p=0.799, Fig. 2). Habitat type was the only factor in the best model for A. sagrei, 

whereas habitat type, perch height, and conspecifics present at the foraging tray were 

significant factors for A. cristatellus (Table 1). Specifically, higher-perching A. 

cristatellus individuals took longer to feed than those perched nearer to the ground 
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(coeff.= -0.01, z=-3.48, p<0.001), and focal lizards tended to have shorter latencies 

when a conspecific attempted to feed from the tray (coeff.= 0.74, z=1.87, p=0.06).  

At the habitat level, there were more perches available in natural forests 

compared to urban habitats for A. cristatellus (Kruskal-Wallis rank sum test; X2= 

20.42, df=1, p<0.001; Table 2). The number of available perches for A. sagrei was 

also higher in natural habitats compared to both urban (Dunn’s test using rank sums; 

z=-4.12, df=2, p<0.001) and suburban (Dunn’s test using rank sums; z=-4.87, df=2, 

p<0.001) habitats, but urban and suburban habitats did not differ (Dunn’s test using 

rank sums; z= 0.71, df=2, p=0.720). Forest A. sagrei were smaller (SVL) and weighed 

less than suburban and urban populations (Table 2), but urban and suburban lizards 

did not differ. Urban A. sagrei had better body condition compared to forest lizards 

(Table 2), but suburban lizards did not differ from either urban (Dunn’s test using rank 

sums; z=1.17, df=2, p=0.122) or forest populations (Dunn’s test using rank sums; 

z=1.00, df=2, p=0.160). The relationship between latency to feed and body condition 

for A. sagrei captured following a foraging trial was not significant for either the 

urban/suburban (Pearson’s product-moment correlation; t=-0.31, df=56, p=0.758) or 

natural forest habitat (Pearson’s product-moment correlation; t=-0.39, df=29, 

p=0.708). Forest A. cristatellus were also smaller (SVL) and weighed less compared 

to urban lizards, but body condition did not differ between these populations (Table 2). 

 

Discussion 

Anoles in urban habitats took longer to feed than those in forest habitats, a 

result consistent across two species in two geographically distinct locations. 
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Moreover, a large proportion of urban lizards (80-90%) never responded to foraging 

opportunities in our experimental trials. This is contrary to research on birds and 

mammals in which greater foraging activity was observed in experimental food 

patches placed in urban habitats compared to natural ones (Bowers and Breland 1996; 

Shochat et al. 2004). While such studies are rare in lizards, a recent study on delicate 

skinks (Lampropholis delicata) found no differences in foraging-related behaviors 

between urban and forest populations (Moulé et al. 2015).  Although our experimental 

manipulations of perch availability and predator presence did not affect anole 

foraging, A. cristatellus had shorter latencies to feed when perched lower and when 

conspecifics attempted to forage. The difference in anole foraging between urban and 

natural habitats could result from variation in at least three factors: perceived 

predation risk, motivation of lizards to forage, or neophobia. 

If anoles perceive greater predation risk in urban versus forest habitats, this 

could explain why most urban anoles were unwilling to forage. Perceived risk could 

be increased by reduced perch availability in urban areas, thereby increasing exposure 

to potential predators. Perch density in each of our urban foraging trials was at least 

50% lower than in forest trials (Table 3).  Previous work has linked decreased 

vegetative cover to an increase in predation pressure using mesocosms (Finke and 

Denno 2002) and clay models (Shepard 2007). However, perch availability was not a 

significant factor influencing latency to feed, even when experimentally increased in 

A. sagrei foraging trials.  

An increase in perceived predation risk could also reflect higher predator 

abundance in urban habitats (Sorace 2002). The extirpation of top predators from 
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urban areas can increase mesopredator abundance (Soulé et al. 1988; Rogers and Caro 

1998; Crooks and Soulé 1999). Many potential predators of anoles have successfully 

colonized urban areas, including birds (Clergeau et al. 1998; Croci et al. 2008), 

mammals (Ordeñana et al. 2010) and other lizards (Smith et al. 2004). Although this 

study did not assess predator abundance, we saw multiple bird species, including great 

egrets (Ardea alba) and yellow crowned night-herons (Nyctanassa violacea), 

searching for and consuming anoles in urban habitats (Z. Chejanovski, pers. obs.). 

Anoles likely detect such predators via movement; movement of a model snake, for 

instance, elicited a deterrent response from anoles in Puerto Rico (Leal 1999). The 

lack of any response by A. cristatellus to our model predator likely reflects the absence 

of any movement; during one trial, a lizard actually perched on the model's head. This 

lack of response emphasizes the importance of coupling life-like models with 

movement to simulate the presence and hunting strategy of a particular predator. 

The urban-forest difference in foraging behavior may also reflect habitat-

linked variation in the motivational state of each lizard population. Although we 

attempted to control for among-individual differences in motivation by only selecting 

anoles found in survey posture (see Methods; Drakeley et al. 2015), perch height may 

also indicate anole foraging motivation. Perch height negatively influenced 

willingness to feed for A. cristatellus (Table 1), and Stamps (1977) observed that 

female anoles perched higher after being fed to satiation. If higher-perching A. 

cristatellus are more likely to be satiated, lower-perching lizards may be more 

receptive to ground-dwelling prey. Consistent with the 'motivational state' hypothesis, 

we found that urban lizards in both species were larger (SVL and mass) and, for A. 
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sagrei, in better body condition than their forest-dwelling conspecifics (Table 3). Body 

condition may represent a measure of the energy stores available to an organism, 

acquired from previous foraging opportunities (Jakob et al. 1996). In ground squirrels 

(Spermophilus beldingi), for instance, individuals with lower body condition spent 

more time foraging under risky conditions (Bachman 1993). Additionally, Allenby’s 

gerbils (Gerbillus andersoni allenbyi) supplemented with food (thus increasing 

condition of these individuals) allocated more time surveying for predators and less 

time foraging under predation risk (Kotler et al. 2004). If forest anoles are more food-

limited, they may choose to feed on the ground despite the risk. Such 'risky' behavior 

occurs when the costs of a missed opportunity exceeds those caused by predation 

(Lima and Dill 1990), which is often the case when food is scarce. Lizards alter their 

behavior in relation to food availability, and may take more risks when resources are 

scarce; anoles, for instance, responded faster to feeding trays containing less food than 

to trays with more food (Drakeley et al. 2015). Podarcis lizards decreased flight-

initiation distance in response to increasing food abundance (Cooper et al. 2006), 

highlighting their ability to weigh the costs of predation risk against the benefits of 

resource acquisition. Nonetheless, in our study, the relationship between latency to 

feed and body condition was not significant in either urban/suburban or natural forest 

populations of A. sagrei. 

Neophobia, the tendency of an animal to avoid novel food resources or objects, 

could also explain the response of urban anoles to our foraging trays. While neophobic 

behaviors protect animals from the dangers associated with unfamiliar stimuli 

(Greenberg 1990; Greenberg and Mettke-Hofmann 2001), they can also hinder the 
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ability of animals to exploit novel food resources, a trait central to the success of some 

urban species (Sol et al. 2011). The fact that the mealworms used in this study are not 

a common food resource in urban areas may have deterred the anoles. In a previous 

study, however, a majority of anoles from similar urban habitats responded when 

mealworms were presented without a feeding tray (Lapiedra et al. 2016); this suggests 

that the feeding tray itself may elicit neophobia in urban anoles. However, other 

herpetological studies comparing urban and natural conspecifics found no differences 

in neophobia (Candler and Bernal 2015; Moule et al. 2015).   

Our results demonstrate clear differences in foraging behavior between anoles 

from urban and forest habitats. These patterns could result from differences in 

perceived predation risk, motivation to forage, neophobia, or a combination of these 

factors. Although selection pressures in urban and natural habitats likely favor 

different behavioral strategies (Hendry et al. 2008; Audet et al. 2016; Lapiedra et al. 

2016; reviewed in Sol et al. 2013), we are far from understanding how urbanization 

alters animal behavior (Shochat et al. 2006). Furthermore, it is pivotal that future 

research address whether changes in foraging and other behaviors can allow animal 

populations to persist in urban environments, which is critical to predict and mitigate 

potential changes in biodiversity.
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1 

 

Table 1 Results of the best Cox proportional hazards model for each species 

summarizing the effects of each factor on latency to feed relative to natural habitats. 

Latency to feed did not differ between urban and suburban habitats for A. sagrei (z=-

0.254, p=0.799). 

A. sagrei Variable Coeff. Exp(coef) SE(coef) Z P-value 

 Suburban -1.50 0.22 0.51 -2.95 0.003 

 Urban -1.67 0.19 0.56 -3.01 0.003 

A. cristatellus Urban -0.82 0.44 0.39 -2.12 0.034 

 Conspecifics Present 0.74 2.10 0.40 1.88 0.061 

 Perch Height -0.01 0.99 0.01 -3.48 < 0.001 
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Table 2 Summary of statistical tests comparing mean differences between urban and 

natural forest habitats. Because most values for suburban A. sagrei were statistically 

indistinguishable from those in urban habitats, comparisons between suburban and 

forest habitats are not shown. 

 A. cristatellus A. sagrei 

Variable Statistic df P Statistic df P 

Perch Height  t=-2.53 75.67 0.013 z=-3.17 2 <0.001 

Conspecific Density X2=0.18 1 0.668 z=2.89 2 0.002 

Body Temperature t=-11.21 79.69 <0.001 q=42.41 2 0.999 

Perch Availability X2=20.42 1 <0.001 z=-4.12 2 <0.001 

SVL t=3.89 33.54 <0.001 z=4.43 2 <0.001 

Body Mass t=3.43 37.96 <0.001 z=5.03 2 <0.001 

Body Condition X2=19 19 0.457 z=2.27 2 0.012 
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Table 3 Summary of variables (mean ± SE) hypothesized to influence latency to feed 

for each species in each habitat type.  

 A. cristatellus A. sagrei 

Habitat Type Natural Urban Natural Suburban Urban 

N 38 45 42 44 42 

Perch Height 137.33±9.12  167.39±1.13 116.48±8.03 89.61±7.29 83.79±6.84 

Conspecific Density 0.04±0.0006 0.04±0.0004 0.02±0.005 0.05±0.008 0.05±0.006 

Body Temperature 30.58±0.02 32.66±0.02 30.87±0.33 30.77±0.44 30.85±0.40 

Perch Availability 3.73±0.28 1.82±0.24 3.15±0.32 1.23±0.30 1.36±0.24 

      

N 20 20 31 26 32 

SVL 65.4±0.45 68.5±0.66 52.58±0.91 58.23±0.88 58.09±0.65 

Body Mass 8.63±0.30 10.12±0.31 3.60±0.20 5.24±0.25 5.37±0.18 

Body Condition 9.30±0.41 9.08±0.37 4.98±0.08 5.07±0.11 5.30±0.11 
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Fig. 1 Survival analysis comparing latency to feed of A. sagrei populations from 

natural forest (n=42), suburban (n=44) and urban habitats (n=42) 
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Fig. 2 Survival analysis comparing latency to feed of A. cristatellus populations from 

natural forest (n=38) and urban habitats (n=45) 
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CHAPTER 2 

 

IMPACTS OF URBANIZATION ON TROPHIC STRUCTURE AND TROPHIC 

NICHE OF A COMMON LIZARD, ANOLIS SAGREI. 
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Abstract 

Urbanization is one of the most dramatic forms of environmental change and 

can thus alter the trophic relationships among organisms that inhabit urban areas. 

However, there are multiple mechanisms through which urbanization can influence 

food web structure such as mesopredator release, anthropogenic subsidies, and 

alteration of basal resources. In this study, we compared brown anole (Anolis sagrei) 

populations from natural forest, suburban, and urban habitats to determine whether 

and how trophic structure is affected by urbanization. We combined gut-content and 

stable isotope analysis (C and N) of anole diets with field sampling of arthropods to 

assess the roles of prey consumption, prey availability, and primary producer 

composition in driving trophic niche variation of populations from different habitats. 

Brown anoles consumed proportionately more Coleopterans than were available in all 

sites, but hymenopterans were consumed more than their availability only in natural 

forest habitats. Anole isotopic niches among habitat types were primarily 

differentiated along the δ13C axis. However, differences in prey consumption were 

generally inconsistent with observed patterns in their isotopic niches. IsoError mixing 

models revealed that nearly half of the carbon in urban and suburban anole tissues was 

derived from C4 vegetation. Our results suggest that urbanization-induced variation in 

the trophic niche of brown anoles is primarily driven by differences in the composition 

of primary producers and specifically by the presence of grasses in both urban and 

suburban habitats. It is therefore imperative that future work considers the 

consequences of such alterations in basal resources for urban taxa and the food webs 

they comprise. 
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Introduction 

Urbanization, one of the most dramatic forms of environmental disturbance, 

can alter the trophic relationships among organisms that inhabit urban areas (Faeth et 

al., 2005). Given that urbanization results in a number of environmental changes, there 

are multiple routes through which urbanization can influence food web structure. For 

example, habitat fragmentation has resulted in the disappearance of many apex 

predators from urban habitats (Estes et al., 2011). Without these predators, the 

abundance of smaller carnivores increases (i.e. mesopredator release), thereby 

strengthening their consumptive effects on lower trophic levels (Crooks & Soulé, 

2011). However, urban predators may also utilize anthropogenic food subsidies, which 

can also increase their abundance but lower their need to prey on other taxa 

(Rodewald et al., 2011; Fischer et al., 2012). Variation in the type and intensity of 

urban land use can also lead to important changes in basal resources. Though the 

abundance and composition of both plant and arthropod assemblages have been shown 

to vary along urbanization gradients (McIntyre, 2000; McKinney, 2008; Williams et 

al., 2015), whether and how these changes influence urban food web structure remains 

poorly understood (but see Narango et al., 2017).  

 The composition of plant communities in native habitats, such as forests, 

differs markedly from the intensively managed assemblages characteristic of urban 

areas. Much of these differences can be attributed to the cultivation of non-native 

species in urban habitats (Turner & Freedman, 2005). In fact, the number of non-

native species found in urban habitats can be up to a quarter of the total species 
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richness (e.g. Aronson et al., 2014). Gardening and other urban landscaping practices 

often ameliorate environmental stressors that would potentially limit non-native 

species from becoming established (Niinemets & Peñuelas, 2008). Furthermore, this 

may explain why areas of moderate development, such as residential gardens, have 

higher species richness compared to areas that are either more or less urbanized 

(McKinney, 2008). While the diversity of urban vegetation may be augmented through 

horticultural practices, these same ideals have led to the widespread proliferation of 

grass monocultures (Jenkins, 1994). Though lacking in diversity, lawns can influence 

the trophic structure of urban habitats simply by their abundance. Lawn grass produces 

significantly more biomass compared to similar vegetation in local prairies and 

agricultural fields (Golubiewski, 2006). Urbanization can thus lead to very different 

signals of primary production, such as that from C4 grasses used in lawns. 

Nonetheless, whether the spatial scale of primary producer variation matches that of 

primary and secondary consumers will likely determine if these changes transcend into 

higher trophic levels. 

Given that many arthropods rely on vegetation for food, shelter and 

reproduction, it stands to reason that urbanization and its associated increases (e.g. 

introduction of non-natives) and decreases (e.g. proliferation of lawns) in plant 

diversity can cause arthropod richness to increase and decrease, respectively (as 

reviewed by McKinney, 2008). In addition to differences in species richness, studies 

have also demonstrated variation in the trophic structure of urban arthropod 

communities. For example, edge habitats produced by urban development promote 

higher herbivore abundance compared to taxa belonging to other feeding guilds (e.g. 
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predators and parasitoids), which is consistent with observations of higher rates of 

herbivory in these habitats (Christie et al., 2010). Urban mesopredators may then 

consume more arthropods that occupy lower trophic levels (i.e. herbivores) when 

compared to conspecifics in natural habitats. Moreover, the trophic level of 

mesopredators themselves should then be lower in urban habitats compared to natural 

ones. Even so, this is entirely dependent on the dietary habits and preferences of these 

mesopredators, and whether they might change in response to urbanization. 

In addition to food web structure as a whole, urbanization-induced alterations 

of basal resources can have important consequences for the trophic niche of species 

inhabiting urban areas. First, lower prey diversity resulting from habitat fragmentation 

has been shown to cause contraction of predator trophic niches (e.g. Layman et al., 

2007). Therefore, if arthropod diversity is lower in urban habitats relative to natural 

ones, we might expect narrower trophic niches in urban mesopredators compared to 

those that forage in natural habitats. However, consumers can exhibit selectivity for 

certain prey taxa (e.g. Backwell et al., 1998; Cupples et al., 2011; Klecka & Boukal, 

2012), which may decouple the relationship between diversity of available prey and 

trophic niche breadth. Second, in addition to the differences in plant assemblages 

between urban and natural habitats, the composition of primary producers may also be 

highly variable both within and among urban habitats (Hope et al., 2003; Kinzig et al., 

2005). Such variation within urban habitats can lead to expanded trophic niches, while 

variation among urban habitats could result in non-overlapping trophic niches among 

urban consumer populations. 
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Studies that utilize urban to rural gradients are often constrained by the limited 

number of species that occur across the entire gradient (McKinney & Lockwood, 

1999). Even the use of closely related species along such gradients is likely to 

introduce variation that obscures habitat-specific patterns. However, when a single 

species can be found in both urbanized and natural habitats, this enables a more 

accurate assessment of how the trophic niche of that species, and food web structure in 

general, varies in response to urbanization. In this study, we compare populations of 

the brown anole (Anolis sagrei) inhabiting natural forest, suburban, and urban habitats 

(see methods for habitat descriptions) to determine whether and how trophic structure 

changes due to urbanization. We utilize gut content analysis coupled with arthropod 

sampling in the field to assess potential differences in prey use and availability among 

habitat types. We also perform stable isotope analysis to quantify and compare the 

isotopic niche of brown anoles across habitats. Lastly, we combine these two 

approaches to examine whether variation in the isotopic niche among brown anole 

populations is explained by differences in prey consumption, primary producer 

composition, or both.  

 

Materials and methods 

Study system 

The brown anole is a small, semi-arboreal lizard found in both urbanized and 

natural habitats across its non-native range in Florida (Lapiedra et al., 2017). This 

species utilizes a sit-and-wait foraging strategy where individuals typically scan for 

potential prey while perched on the lower portion of tree trunks (typically no more 
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than ~2 meters high) and often descend to the ground during prey capture 

(Chejanovski et al., 2017). Brown anoles are considered dietary generalists and 

primarily consume insects and other arthropods (Losos, 2009). Indeed, multiple 

studies have described the dietary habitats of A .sagrei, though this work has primarily 

focused on insular populations in the Bahamas (Kartzinel & Pringle, 2015 and 

references therein). However, studies investigating the trophic dynamics of mainland 

A. sagrei are rare (but see Giery et al., 2013). 

We compared food webs of brown anole populations inhabiting urban, 

suburban, and natural forest habitats (each replicated twice) in southeast Florida 

(Broward County). Urban habitats were characterized by high human traffic, high 

impervious surface cover, and little canopy cover compared to natural forest habitats 

that consisted of large fragments of secondary forest, little to no human traffic, and 

relatively closed canopies. Suburban habitats were long stretches of continuous 

vegetation found along roadsides chosen to represent an intermediate between natural 

forests and urban habitats in terms of human traffic, impervious surface cover and 

canopy cover (GPS coordinates for each site in Supplementary Materials). 

 

Diet and Arthropod Availability 

Twenty male brown anoles from each of our six sites were captured, measured 

(i.e., snout-vent length and mass), and collected. Males were used for this study due to 

their conspicuousness and ease of capture in the field. In the lab at the University of 

Rhode Island, we dissected each lizard, removing the entirety of the digestive tract 

(i.e., stomach and intestine) for gut-content analysis. Arthropod prey fragments were 
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identified to Order and counted for each lizard. In addition to prey abundance, we also 

calculated the proportion of each prey category within the stomach of each lizard. 

Diversity of prey taxa was calculated using Simpson’s Index of Diversity for both prey 

found within the stomach of each lizard and prey taxa pooled for each site.  

To estimate food availability from ground arthropod abundance, we deployed 

four pitfall traps in each site at random intervals between 10-20 meters along an 

established transect (transect length was no more than 100 meters). Each pitfall trap 

was filled with a solution of soap and water to prevent arthropods from escaping. We 

collected pitfall traps after 24 hours and arthropods were preserved in isopropyl 

alcohol and transported to the lab for identification. We identified arthropods to Order 

and our classifications of potential prey generally matched the taxa considered in 

previous studies on brown anole diets (e.g., Schoener, 1968; Lister, 1976; Spiller & 

Schoener, 1990; Giery et al., 2013; Kartzinel & Pringle, 2015; Stroud et al., 2017). We 

included absolute and proportional abundance, as well as taxonomic diversity as 

measurements of food availability, which were averaged for each site (for 

comparisons to prey consumption) and across habitat types (for comparisons among 

habitat types). 

 

Stable Isotope Analysis  

Stable isotopes, particularly those of carbon and nitrogen, have been used 

extensively in studies of trophic ecology and the factors influencing trophic structure 

(Layman et al., 2007; Boecklen et al., 2011). Nitrogen is used to assess trophic level 

such that higher ratios of N15/N14 (δ15N) are indicative of species that feed at higher 
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trophic positions (e.g. predators; Post, 2002). Carbon is used to provide information 

regarding basal resources. For example, grasses using the C4 metabolic pathway and 

organisms that consume these grasses contain elevated ratios of C13/C12 (δ13C) 

compared to the relatively depleted signatures of C3 plants and their consumers 

(Layman et al., 2012). Together, these isotopic ratios can represent a time-integrated 

measure of the trophic niche compared to other methods, such as gut-content analysis 

that instead provide a brief snapshot of ongoing trophic dynamics (Tieszen et 

al., 1983; Dalerum & Angerbjörn, 2005). However, studies that make use of both gut-

content and stable isotope analysis can provide insight into which trophic levels (i.e., 

primary producers versus consumers) are responsible for changes in trophic structure. 

Therefore, we collected tail-tips from each lizard for analysis of isotopic composition 

of carbon and nitrogen. Additionally, we collected 3-5 leaves from each of the 

dominant primary producers at each site for stable isotope analysis (see below).  

 

Statistical Analysis 

We tested for differences in the proportional availability and consumption of 

arthropods within each site using Welch’s two-sample t-tests. We also compared the 

proportional availability, diversity and consumption of arthropods among habitat types 

using Kruskal-Wallis Rank Sum Tests and Dunn’s test for multiple comparisons with 

Bonferroni correction post hoc given that these data were not normally distributed. 

Hymenoptera and Coleoptera represented the majority of gut contents (>50% across 

sites; >80% across habitats) in most individual anoles and were well sampled by our 

pitfall traps. Therefore, we restricted most of our analyses to these two groups. We 
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suspect that Dipterans may have been attracted to the liquid in our pitfall traps and 

were likely oversampled. Also, our pitfall traps may have poorly sampled spiders 

given that many of these taxa are arboreal. Therefore, we did not compare Dipteran 

and spider availability to consumption, but rather only compared availability (except 

spiders) and consumption of these taxa among habitat types. However, all taxa were 

included in calculations of diversity.  

Isotopic niches were generated using bi-plots of δ13C and δ15N using the 

SIBER package (Jackson et al., 2011) available in R. We used the “standard.ellipse” 

function that employs maximum-likelihood estimators to produce ellipses that 

encompass approximately 40 percent of the bi-plot data within each site, thereby 

reducing the impact of outliers. This function also provides calculations of the area of 

each ellipse (corrected for small sample size) as a measure of isotopic niche width, 

which we compared among sites and habitat types. To test for specific differences 

along each axis of the isotopic niche (i.e., carbon and nitrogen), we compared δ13C and 

δ15N values among habitat types using Kruskal-Wallis Rank Sum Tests and Dunn’s 

test for multiple comparisons with Bonferroni correction post hoc. Prior to this 

analysis, we standardized δ15N values by subtracting the mean δ15N value of primary 

producers in a given site from the δ15N of each brown anole from that site. Variable 

lipid content has been shown to influence δ13C values of consumers (Post et al., 2007). 

However, we have no reason to expect lipid content to vary among anoles from 

different habitat types and thus we do not account for this in our analyses. Similarly, 

discrimination factors are also likely to be similar in anoles from different habitat 

types and thus we do not use any discrimination factors in our analyses. We also used 
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the δ13C values of our urban and suburban primary producers to calculate the 

proportion of C3 and C4 based carbon contributing to the diet of brown anoles in each 

site through IsoError mixing models (Phillips & Greg, 2001; Giery et al., 2013).  

 

Results 

Coleopterans were consumed by brown anoles in greater proportions than were 

available in all sites (Table 1; p<0.001 for all comparisons using Welches two-sample 

t-test). Hymenopterans were consumed in greater proportions than were available only 

in natural forest sites (Fern Forest: t=4.107, df=8.125, p=0.003; Markham: t=4.528, 

df=20.894, p=0.0002), but urban and suburban anoles consumed them in proportion to 

their availability. Urban anoles consumed proportionately more coleopterans when 

compared to natural and suburban anoles (Dunn’s test for multiple comparisons; 

X2=10.901, df=2, p<0.01), which did not differ from each other (Fig. 1A). Urban 

anoles also consumed proportionately less hymenopterans compared to anoles from 

natural forest habitats (X2=6.624, df=2, p=0.018; Fig. 1B). Dipterans were consumed 

in similar proportions across habitat types (X2=3.179, df=2, p=0.204). Spiders were 

consumed in larger proportions by natural forest anoles (MEAN=0.079, SD=0.175) 

compared to those from urban habitats (MEAN= 0.012, SD= 0.031; X2=5.069, df=2, 

p=0.046), but suburban anoles (MEAN=0.047, SD=0.111) were similar to those from 

both urban and natural forest habitats. The proportional availability of Coleopteran, 

Hymenopteran and Dipteran taxa did not differ among habitat types (X2=2.403, df=2, 

p=0.3006; X2=3.012, df=2, p=0.2218; X2=4.051, df=2, p=0.132, respectively; Fig. 1D-

E, Dipteran data not shown due to low proportional values). We found no differences 
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in the mean gut-content diversity of individuals among habitat types (X2=4.237, df=2, 

p=0.1202; Fig, 1C), as well as no difference in diversity when consumed taxa were 

pooled by site (X2=0.286, df=2, p=0.870). However, urban habitats had higher 

arthropod diversity compared to natural and suburban habitats (X2=8.322, df=2, 

p=0.020), but natural and suburban habitats did not differ in diversity (Fig. 1F).  

We observed significant differences in the mean values for all pairwise 

comparisons among the three habitat types for both δ13C and δ15N of anoles (p<0.05 

for all comparisons using Dunn’s test). δ13C values among habitat types indicated that 

suburban anoles incorporated the most grass-based carbon into their tissues, followed 

by urban anoles, and lastly natural forest anoles where no grasses were observed. δ15N 

values among habitat types indicated that natural forest anoles occupy the highest 

trophic levels, followed by urban, and then suburban anoles (Fig. 2).  

On average, isotopic niche widths were widest in urban habitats (mean = 2.92) 

and suburban and natural habitats were similar (1.72 and 2.03 respectively; Fig. 3). 

Moreover, the two urban sites had non-overlapping ellipses indicating greater among 

site variation as compared to the natural forest and suburban sites. Primary producers 

from both urban and suburban habitats had distinct carbon signatures: C4 grasses (i.e. 

St. Augustine Grass, Stenotaphrum secundatum) had δ13C values that were relatively 

enriched (mean=-13.438, SD=0.527) compared to C3 vegetation (mean=-28.804, 

SD=1.334). Also, the mean δ15N values for our primary producers were significantly 

different among all habitat types (X2=49.245, df=2, p<0.01; results not shown). Lastly, 

IsoError mixing models showed a substantial contribution of grass-based carbon to the 

diet of both suburban and urban anoles (56% and 43%, respectively). 
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Discussion 

We compared the prey use and isotopic niches of six brown anole populations 

in habitats differing in their level of urbanization to determine whether and how 

urbanization influences trophic structure. While there were no differences in the 

availability of arthropod prey (i.e. Coleoptera, Hymenoptera, and Diptera) across 

habitats (Fig. 1D,E), brown anoles consistently selected Coleopterans (i.e. beetles), 

consuming them in greater proportions than were available in all sites. Additionally, 

anoles from natural habitats showed selectivity for Hymenopterans (i.e. ants and bees) 

as well. The greater proportional consumption of spiders by natural forest anoles 

compared to those from other habitats was consistent with variation in δ15N among 

habitat types. However, isotopic niches were primarily differentiated along the δ13C 

axis (Fig. 3) and almost half of the carbon in urban and suburban lizard tissues was 

derived from C4 grasses, as indicated by the IsoError mixing models. While this is 

consistent with differences in primary producer composition between natural forest 

and urban/suburban habitats, these isotopic patterns did not match those regarding the 

differential consumption of prey taxa (Fig. 1A,B). Our results suggest that 

urbanization-induced variation in the trophic niche of brown anoles is primarily driven 

by differences in the composition of primary producers and specifically by the 

presence of grasses in urban habitats. 

 Many lizards, including anoles, are considered opportunistic generalists and as 

such, the composition of their diets is expected to fluctuate along with prey 

availability (Pianka, 1973). For example, Kartzinel & Pringle (2015) found that the 
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composition of brown anoles diets in the Bahamas varied among seasons, which they 

suggest may be due to different availabilities of prey species in wet and dry periods. 

Such seasonal variation in diet composition has also been shown in other anoles (e.g., 

Lister 1981; Bullock et al., 1993). However, there is increasing evidence suggesting 

that lizards, in general, may be more selective of their prey than previously recognized 

(Carretero, 2004). Brown anoles in Taiwan, for example, had similar prey items in 

their stomachs from month to month (Norval et al., 2010). In our study, differences in 

the proportional consumption of prey among habitat types were not explained by 

differences in availability. Coleopterans were similarly available among habitat types, 

while urban anoles consumed proportionately more of them compared to suburban and 

natural forest anoles (Fig. 1). Coleopterans were also consumed in greater proportions 

than were available in all sites, further supporting that brown anoles may be exhibiting 

prey selection. Coleopterans have been reported in previous studies to comprise a 

significant proportion of brown anole diets (e.g., Schoener, 1968; Lister, 1976; Spiller 

& Schoener, 1990). Therefore, while brown anoles may not necessarily specialize on 

beetles, characterizing them as dietary generalists may not be entirely accurate. 

Many factors can contribute to variation in the isotopic niche among 

populations including competitive interactions (e.g. Comas et al., 2014), behavioral 

differences (e.g. Cherel et al., 2007), and prey consumption, prey availability and 

primary producer composition as considered in this study. Proportional prey 

consumption was similar between suburban and natural forest anoles, but differed for 

urban lizards. In contrast, the isotopic niches of these anoles were significantly 

different among all habitat types and were primarily differentiated along the δ13C axis. 
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C4 grasses in our urban and suburban sites exhibited enriched δ13C signatures 

compared to that of C3 vegetation (see Results). Since grasses were not found in our 

natural forest habitats, it is unsurprising that the lizards from these habitats had the 

lowest δ13C values of around -26.1%, demonstrating dependence on prey that consume 

C3 vegetation. Urban and suburban anoles, however, exhibited enriched δ13C 

signatures of approximately -22.1% and -21.0%, respectively, indicating greater 

reliance on grass-based carbon compared to natural habitats. Indeed, IsoError mixing 

models showed that a substantial proportion of the carbon in urban and suburban anole 

tissues is derived from C4 vegetation. These results are in agreement with previous 

studies showing incorporation of grass-based carbon, when available, by anoles and 

other lizards (Magnusson et al., 2001; Giery et al., 2013). Furthermore, Magnusson et 

al. (2001) found that the proportion of C3 based carbon in lizards’ tissues was 

positively related to the proportional cover of these types of plants. Though we did not 

measure the percent cover of grasses relative to other C3 plants in our study sites, 

suburban habitats generally had more grass compared to urban habitats, whereas 

grasses were not observed in forested sites. Therefore, we suspect that the relationship 

between anole δ13C values (Fig. 2), the proportion of grass-based carbon in 

urban/suburban anole tissues, and increasing levels of urbanization reflects similar 

patterns in the abundance of C4 grasses in these habitats. Increases in material and 

energy flux across habitat boundaries can aid in the stabilization of food webs (Huxel 

& McCann, 1998). In our urban and suburban habitats, anoles couple understory (i.e. 

grass) and canopy food webs by consuming arthropods from these two habitats. 

Previous work has shown that such coupling results from the movement of prey, rather 
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than the movement of predators, among these habitats (Giery et al., 2013). Urban food 

webs may thus benefit from the stabilizing effects of such allochthonous inputs 

compared to those of natural forest habitats, in which such energy flows are absent.  

 In addition to the presence of C4 grasses, the spatial heterogeneity of urban 

habitats can also be an important driver of trophic structure. Urban brown anoles had 

wider isotopic niches compared to those inhabiting natural forest or suburban habitats 

(see results; Fig. 3), which were driven by a greater dispersion of individuals in 

isotopic niche space (i.e., the space within the bi-plot of δ13C and δ15N) within each 

urban site. There was no overlap in isotopic niches between the two urban sites 

compared to the partial overlap observed among the pairs of suburban and forest sites, 

which suggests that urban habitats may be more variable in primary producer 

composition across sites. Indeed, the species richness of urban plant assemblages has 

been shown to be highly variable and linked to factors such as differential land use and 

socioeconomic status (Hope et al., 2003; Kinzig et al., 2005). Given that male brown 

anoles maintain small territories and exhibit high site fidelity (Calsbeek, 2009), their 

isotopic niches could accurately represent this fine-scale spatial variation in primary 

producer composition, as well as variation in prey composition within each site. If we 

had instead used a study organism that forages more broadly, this may have masked 

the patterns observed in isotopic niches among habitats. We therefore suggest that 

future research on the trophic structure of urban communities consider whether the 

scale at which resources are used by an organism matches the scale at which they vary 

in the environment. 
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 While the isotopic niches of brown anoles among habitat types primarily 

varied along the δ13C axis, we also detected significant variation in δ15N. Specifically, 

δ15N was enriched in natural forest lizards compared to urban and suburban 

conspecifics and this variation could result from a number of factors. First, if primary 

producers in urbanized habitats contain elevated δ15N values, this could lead to the 

elevation of δ15N values for all subsequent trophic levels. δ15N values were 

significantly different among habitats both before and after correcting for differences 

in primary producer δ15N values. Thus, differences in δ15N values of primary 

producers among habitat types may only partially explain the differences in anole δ15N 

values. Furthermore, the potential causes of increased δ15N in primary producers are 

numerous and often complex. For example, in a global study, foliar δ15N values were 

significantly related to climatic factors (i.e. mean annual temperature and 

precipitation), nitrogen availability, and associations with mycorrhizal fungi (Craine et 

al., 2009). Second, anoles may occupy higher trophic levels in natural forest habitats 

by consuming carnivorous arthropods rather than those that feed on plant matter. 

Spiders represent the only strictly carnivorous prey taxa considered in this study. 

Anoles from natural forest habitats consumed proportionately more spiders compared 

to urban and suburban anoles, although the latter comparison was not significant. 

These results support a role for spider consumption in the elevated trophic position of 

natural forest anoles. Had we accurately measured the availability of spiders among 

habitats, this may have lent support to the hypothesis of greater abundance and 

consumption of herbivorous arthropods in edge (i.e. urban and suburban) habitats 

compared to natural ones (Christie et al., 2010). Therefore, habitat type may influence 
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anole trophic level and food chain length through alterations in the composition of 

arthropod feeding guilds. However, more research is needed to confirm these 

observations, and we suggest using sampling strategies that specifically target 

arthropods from these various feeding guilds.  

 We demonstrate that urbanization can have dramatic effects on trophic 

structure through alterations to the composition of primary producer communities. Our 

results suggest that the incorporation of grass-based carbon into the diet of urban and 

suburban brown anoles is primarily responsible for the differentiation of their isotopic 

niches. Grasses are a fundamental part of most urbanized habitats in North America 

(Melesi et al., 2005), and thus our results likely apply to a number of insectivorous and 

herbivorous taxa inhabiting or foraging in urban areas. Furthermore, the area of urban 

land cover is projected to triple by 2030 (Seto et al., 2012), and so we can expect 

similar increases in the cover of these grasses. It is therefore imperative that future 

work considers the consequences of such alterations in basal resources for urban taxa 

and the food webs they comprise.
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Table 2 Mean (SD) proportion and abundance of available and consumed arthropod 

prey identified from pitfall traps and brown anole gut-contents respectively. 

    Coleoptera Hymenoptera Diptera 
   Habitat Proportion Abundance Proportion Abundance Proportion Abundance 

 Available  Natural 0.005 
(0.011) 

0.333 
(0.516) 

0.010 
(0.091) 

3.000 
(2.828) 

0.839 
(0.125) 

57.500 
(72.644) 

   Suburban 0.026 
(0.035) 

5.375 
(8.651) 

0.323 
(0.221) 

60.625 
(50.014) 

0.631 
(0.242) 

118.875 
(67.030) 

   Urban 0.064 
(0.095) 

0.875 
(1.126) 

0.308 
(0.259) 

5.500 
(5.555) 

0.532 
(0.333) 

16.125 
(23.811) 

 Consumed  Natural 0.405 
(0.287) 

5.875 
(6.153) 

0.440 
(0.297) 

6.225 
(9.883) 

0.008 
(0.034) 

0.100 
(0.304) 

   Suburban 0.411 
(0.253) 

2.750 
(1.446) 

0.390 
(0.279) 

4.450 
(6.590) 

0.015 
(0.041) 

0.150 
(0.427) 

   Urban 0.590 
(0.280) 

6.500 
(5.875) 

0.278 
(0.261) 

5.875 
(9.274) 

0.045 
(0.111) 

0.375 
(0.868) 
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Figure 1 Proportional consumption (A-B) and availability (D-E) of arthropod prey 
among natural, suburban, and urban habitats. Also shown are the Simpson’s Index of 
Diversity calculated from brown anole gut-contents (C) and pitfall traps (F). Letters 
denote significant differences among habitat types as indicated from Dunn’s test for 
multiple comparisons with Bonferroni correction. Note that lower values of Simpson’s 
Index of Diversity indicate higher species richness. 
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Figure 2 Differences in δC13 and δN15 for brown anoles inhabiting natural forest, 
suburban and urban habitats. Anole δN15 values were standardized by subtracting the 
mean δN15 values of primary producers from that of anoles in each site. All habitats 
were significantly different from each other for both δC13 and δN15. 
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Figure 3 Bi-plot of δC13 and δN15 of brown anoles inhabiting natural forest, suburban 
and urban habitats each replicated twice. We used the “standard.ellipse” function in 
the R package SIBER that employs maximum-likelihood estimators to produce 
ellipses that encompass approximately 40 percent of the bi-plot data within each site. 
Point colors represent different sites, whereas ellipse colors represent habitat types. 
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Abstract 

1. Body size is a key trait linked to many aspects of an organism’s life history, 

physiology, and behavior. Variation in body size can thus have important 

fitness consequences across a broad range of ecological contexts. 

2. We examined the relationship between body size in brown anoles (Anolis 

sagrei) and multiple abiotic and biotic factors across 38 randomly selected 

urban sites in southern Florida (Broward County). We simultaneously assessed 

a suite of factors that represent major hypotheses regarding body size variation 

in ectotherms and other animal groups: temperature, food availability, 

conspecific abundance and predator abundance. Given our findings of a 

positive relationship between brown anole body size and predator abundance 

and no support for the other hypotheses, we performed a tethered intruder 

experiment to determine whether predator attack behavior depends on prey 

body size. Lastly, we conducted a common garden experiment to examine 

whether body size differences between predator and non-predator habitats are 

genetically determined. 

3. Predator abundance was the primary predictor of brown anole body size for 

both males and females. Body size increased with increasing predator 

abundance, while body size variation decreased. Additionally, predators 

attacked larger lizards less often and at longer latencies compared to smaller 

lizards. Finally, male brown anoles from habitats with predators had faster 

growth rates in the lab compared to those from habitats without predators. 
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4.  Brown anole body size variation among populations may result in higher 

survival of larger lizards during predatory confrontations, and this trait is at 

least partially heritable in males. Therefore, our results suggest that predators 

may be important agents of natural selection in urban habitats. Future research 

should focus on predation and species interactions in general given the lack of 

information regarding their importance in urban habitats. 

 

Introduction 

Body size is a key trait linked to many aspects of an organism’s life history, 

physiology, and behavior. A number of important body size relationships generalize to 

a diverse array of taxa. For example, nearly every measure of fecundity is highly 

correlated with body size in most vertebrate and invertebrate groups (Blueweiss et al., 

1978; Honěk, 1993). Body size is also tightly linked to the daily energy requirements 

of many animals. In a study of hundreds of vertebrate species, body size explained 

over 70 percent of the variation in field metabolic rate (Nagy, 2005). As such, larger 

individuals have higher food requirements. Body size also appears to play a role in 

determining consumer diets in that the majority of feeding interactions within a food 

web involve a larger predator consuming smaller prey (Cohen et al., 1993). Even in 

non-predator-prey systems, body size can determine the result of both intra- and 

interspecific interactions. Larger organisms often dominate and displace smaller ones, 

enabling better access to food, mates, and preferred habitat (Morse, 1974; French & 

Smith, 2005). Variation in body size can thus have important fitness consequences 

across a broad range of ecological contexts. This has resulted in a large research effort 
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aimed at identifying the factors that may contribute to body size variation both within 

and between species (Peters, 1986; Dmitriew, 2011). 

Both abiotic and biotic factors have been posited to drive patterns of body size 

variation at various geographic scales. Globally, studies have related latitudinal trends 

in body size with climatic factors, such as temperature and precipitation. Body size in 

temperate organisms is often larger compared to those inhabiting more tropical areas, 

perhaps owing to an increased ability of larger organisms to retain heat and thus 

persist in colder climates (e.g. Bergmann’s Rule; Meiri & Dayan, 2003). At the local 

scale, colder temperatures experienced by ectotherms during development can slow 

growth rates and increase size at maturity (Angiletta et al., 2004).  Additionally, 

precipitation and temperature together may correlate with primary productivity, which 

may serve as a proxy for food availability (Yom-Tov & Geffen, 2006). The 

dependence of growth on food availability is straightforward from an energy-

acquisition perspective. However, when food is limited, organisms may face a trade-

off between the energy allocated to somatic growth versus that devoted to other traits 

such as immune function or reproduction (Van Noordwijk & Jong, 1986, van der Most 

et al., 2011). With regard to biotic factors, both competition and predation have been 

hypothesized to influence body size. For example, body size has often been considered 

in studies of ecological character displacement across taxa (Dayan & Simberloff, 

2005). Changes in body size can thus be the result of divergent natural selection 

generated by inter- or intraspecific competition between similarly sized individuals. 

Additionally, when competition is high and food resources are limited, this may favor 

smaller individuals with lower energy requirements (Peters, 1986). Predators can also 
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mediate competition for limited resources by depressing population densities through 

prey consumption and thus indirectly influence competition-driven selection on body 

size (Wootton, 1994). Predators can also directly cause shifts in body size distributions 

if they are limited to or prefer prey of certain size classes (Persson et al., 1996; Urban, 

2008). Whether biotic or abiotic factors are considered, they are most often evaluated 

in isolation, which makes determining their relative or habitat-specific effects on body 

size difficult (but see Peckarsky et al., 2001). Given that several abiotic and biotic 

factors likely influence body size, we need a study system that captures landscape-

scale variation in multiple factors to determine their relative effects. 

Urbanization produces considerable variation in many of the abiotic and biotic 

factors hypothesized to influence body size variation (Foreman, 2014). Temperatures 

are often higher in cities compared to less developed areas due to both increased 

canopy openness and impervious surface cover (i.e., the urban heat island effect; Yuan 

& Bauer, 2007). Moreover, surface temperature variation within urban areas can be 

substantial and urban surface temperatures are driven primarily by heterogeneity in 

vegetative cover (Weng et al., 2004; Chen et al., 2006; Buyantuyev & Wu, 2010). 

Arthropods that rely on such vegetation vary in their abundance and community 

structure among different urban land use types (McIntyre et al., 2001). Since 

arthropods form the basal food resource for many taxa, urban areas may contain fine-

scale variation in food availability. Invasive species are also prevalent in urban 

habitats and the non-continuous nature of their spread often results in patchy 

distributions (With, 2002). These discontinuous distributions can generate variation in 

both competition and predation regimes within a city (Shochat et al., 2010; Fischer et 
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al., 2012). Such high variability across relatively small spatial scales makes urban 

areas ideal for testing whether and how these factors interact to influence body size. 

Lizards of the genus Anolis (or anoles) are an appropriate system to test how 

urbanization-induced alterations of the environment may contribute to body size 

differences among populations. Several Anolis species, including the brown anole 

(Anolis sagrei) used in this study, are widespread in urban habitats and often occupy a 

gradient from natural forests to highly disturbed urban cores (Battles et al., 2013; 

Kolbe et al., 2016; Winchell et al., 2018). Moreover, urbanization has been shown to 

modify both anole morphology and behavior. Urban anoles have longer hind limbs, 

more lamellae and faster growth compared to forest conspecifics (Winchell et al., 

2016; Hall & Warner, 2017). Other studies have demonstrated differences in foraging 

behavior, risk-taking behavior, and body size between urban and forest anoles 

(Chejanovski et al., 2016; Lapiedra et al. 2017). Yet, while these and many other 

studies compare populations that occupy opposing ends of the urbanization gradient, 

they do not address trait variation among localities within an urban habitat. There may 

be substantial variation in both biotic and abiotic conditions among urban localities, 

which may produce selective pressures on body size that differ in magnitude and 

direction. Furthermore, changes in anole morphology, including body size, have been 

shown to result from both plastic responses to differing environmental conditions and 

genetic differences between populations (e.g., Bonneaud et al., 2016; Hall & Warner, 

2017). Therefore, by using anoles to study body size variation we can also test 

whether plasticity or genetic differences are responsible for body size differences 

among populations. 
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In this study, we simultaneously assess a suite of factors that are likely to 

exhibit high variation across an urbanized landscape and represent major hypotheses 

regarding body size variation in ectotherms and other animal groups: (1) temperature, 

(2) food availability, (3) conspecific abundance and (4) predator abundance. First, the 

metabolic rate of ectotherms is highly sensitive to even minor temperature variation 

(Gillooly et al., 2001; Angilletta book). Increased temperatures in cities may then lead 

to elevated metabolic rates and enable faster growth assuming food is readily available 

(Dillon et al., 2010). When food is limited, such temperature-induced increases in 

metabolism may cause declines in physiological condition and result in the need for 

higher rates of food acquisition to meet higher energetic demands (e.g., Lienart et al., 

2014). Second, while increased temperatures may exacerbate the negative 

consequences of food limitation, reductions in food availability generally inhibit 

growth in most animals, though this may vary depending on when food shortage 

occurs during ontogeny (Sebens, 1987). Third, even if food is initially available, 

increases in population density can increase competition and result in resource 

limitation. Additionally, male-male competition can produce selection for larger sizes 

(Hunt et al., 2009), suggesting intraspecific competition as a mechanism of body size 

evolution independent of food availability. Lastly, predators have been shown to alter 

the body size of their prey. Shifts toward larger prey size occur when predators can 

only consume smaller prey (i.e., gape-limited predators) or when larger prey size 

confers greater ability to escape from predatory attacks (e.g. Janzen, 1993; Mattingly 

& Butler, 1994; Blomberg & Shine, 2000; Allen, 2008). Conversely, shifts toward 

smaller individuals can occur when larger prey are more conspicuous and thus suffer 
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higher mortality through increased detectability by predators (Cote et al., 2008; 

Mascaro et al., 2003). 

To evaluate these hypotheses, we compare populations of brown anoles 

occurring across an urbanized landscape in south Florida (i.e., southwest Broward 

County) to determine the relative effects of the thermal environment, food availability, 

conspecific abundance, and predator abundance on body size variation. Overall, we 

predict that male and female anole body size will increase with increases in each of 

these factors -- temperature, food, competitors and predators. To further investigate 

the effect of predator abundance on brown anole body size, we also examine the 

relationship between anole body size and the attack behavior of predatory curly-tailed 

lizards (Leiocephalus carinatus) using a tethered-intruder experimental design. These 

predators are known to be gape-limited (Schoener et al., 1982) and thus we expect 

larger brown anole lizards to experience lower attack rates. Finally, we conduct a 

common garden laboratory experiment to test whether brown anole body size 

differences among sites are genetically based. 

   

Materials and methods 

Body Size Variation Across an Urbanized Landscape 

Site Selection 

Our body size variation study was conducted from June-August 2016 across 38 

sites located within the urban matrix of Broward County, Florida. We first generated 

random GPS points within cities in southwest Broward County using qGIS (QGIS 

Development Team, 2017). Any point < 1 km from a previously established site or 
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deemed inaccessible (e.g. private property or water bodies) was excluded. We then 

surveyed the area within a 300-m radius of each point to delimit relatively continuous 

habitat and determine whether brown anoles were present. Sites mostly included urban 

parks and roadsides (see Supplementary Materials for GPS coordinates and 

descriptions for each site). 

 

Land-Cover Measurements 

Line transects were used to measure percent cover of grass, bushes, bare 

ground, and impervious surfaces at each site. Five parallel transects were placed along 

the site at random intervals between 10 and 20 m. Transect length varied depending on 

the site (e.g. roadside habitat transects ended at the road), but each was no more than 

10 m (mean: 9.3 m; range: 3.5-10 m). Percent cover for each site was then calculated 

as the sum of the distance covered by each land-cover type among the five line 

transects, divided by the total distance of these transects multiplied by 100.  

  

Arthropod Food Availability 

To estimate arthropod availability, we used a sweep net to collect arthropods 

from vegetation at each site. We only collected arthropods from vegetation found < 50 

m from where lizards were sampled (see Lizard Measurements below). Vegetation 

was swept during three time-periods to account for any potential daily variation in 

arthropod abundance: 0900-1000 (morning), 1300-1400 (afternoon), and 1800-1900 

(evening). Grasses (most commonly Stenotaphrum secundatum) and bushes were 

swept separately, with approximately 50 sweeps for each vegetation type during each 
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time period. After collection, arthropods were immediately placed in a kill jar charged 

with acetone and then frozen until returned to the lab for sorting. In the lab, small 

pieces of vegetation were removed using a dissecting microscope. Arthropods were 

then placed on a paper towel to remove any excess moisture and weighed (i.e., wet 

mass) to the nearest 0.0001g using a digital balance. Biomass was measured as grams 

per sweep for each vegetation type within each time period. We found no differences 

in biomass between time periods among each vegetation type as well as no differences 

between vegetation types (p-values > 0.05 using Dunn’s test of multiple comparisons 

and Wilcoxon rank sum test respectively) and thus we calculated total biomass per site 

as the sum of all individual samples collected during the three time periods from both 

vegetation types. 

 

Conspecific and Predator Abundance 

Visual encounter surveys (VES) were conducted at each site to estimate 

relative abundance of brown anoles and curly-tailed lizards, which are well-

documented predators of anoles (Schoener et al., 2002; Losos et al., 2004, 2006). 

Surveys consisted of walking the site at a constant pace and recording every individual 

lizard observed. We also measured the perch height of each brown anole observed 

using a laser distance meter that was placed at the lizards’ original position and aimed 

at the ground. We performed these VES along the same route within each site during 

three time periods: 0800-0900 (morning), 1400-1500 (afternoon), and 1800-1900 

(evening) given previous work showing marked differences in daily activity times 

between brown anoles and curly-tailed lizards in similar habitats to this study 
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(Lapiedra et al., 2017; also see Kolbe et al. 2008). These routes were left undisturbed 

for at least 30 minutes prior to each survey. Each survey was limited to a maximum of 

10 minutes (discounting time taken to record observations), though some were shorter 

depending on the amount of habitat available and number of lizards observed. To 

standardize these measures, we calculated the number of lizards observed per minute 

for each survey. For brown anoles, males and females are easily distinguished in the 

field and were thus counted separately. Relative abundance for both brown anoles and 

curly-tailed lizards in each site was measured as the maximum number of individuals 

observed per minute among the three time periods. 

 

Lizard Morphology and Habitat Measurements 

In between VES, we captured 14-20 brown anoles of each sex as encountered 

at each site using a noose affixed to a telescopic fishing pole. We measured the 

internal body temperature of each lizard immediately upon capture using a 

thermocouple placed into the lizard’s cloaca. Any lizard that moved from sun to shade 

or vice versa during capture was not used. Additionally, lizards were only captured 

between the hours of 0930-1800, the time of day when brown anoles are active and 

attain relatively stable body temperatures (Battles et al., In Review). We then 

measured body size of each lizard as snout-vent length (SVL) to the nearest mm and 

mass to the nearest 0.01 g using a digital balance. We included only sexually mature 

adult lizards for this study, corresponding to a minimum size of 42 mm SVL for males 

and 36 mm SVL for females (Lee et al., 1989). Lastly, we measured canopy openness 

of each site to assess potential differences in microclimatic among sites. 
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Hemispherical photographs were taken of the canopy from each lizard’s original 

position (i.e., before capture) using a digital camera with a 360° fish-eye lens. From 

these photos, canopy openness was calculated for each image using Gap Light 

Analyzer (GLA) Version 2.0 (Frazer et al., 1999) and then averaged for each site.  

 

Statistical Analyses 

We used linear mixed-effect models with site as a random effect to determine 

the abiotic and biotic factors that contribute to body size variation among sites. 

Specifically, we included body temperature (with time of day as a covariate), 

impervious surface cover and canopy openness as measures of the thermal 

environment, as well as food availability, conspecific abundance and predator 

abundance as fixed effects in the model. We used the total abundance of both male 

and female brown anoles as our measure of conspecific abundance in our analysis 

given that the abundances of males and females were highly correlated (corr: 0.53, 

p<0.001). Because brown anoles are sexually dimorphic with regard to body size, we 

modeled the body size of each sex separately. Additionally, SVL measurements were 

squared to improve the normality of model residuals. Previous studies have shown that 

brown anoles increase their perch heights in response to the experimental introduction 

of curly-tailed lizards (Schoener et al., 2002; Losos et al., 2004, 2006). Therefore, we 

also tested for a positive correlation (Pearson’s product-moment correlation) between 

curly-tailed lizard abundance and brown anole perch heights. We used only brown 

anole perch heights obtained from the afternoon VES as this is when curly-tailed 

lizards are most active and thus when brown anoles are most likely to shift their perch 
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heights in response to curly-tailed lizards. Furthermore, perch height has been 

observed to differ between the sexes of A. sagrei and other anoles (Butler & Losos, 

2002), and therefore we analyzed males and females separately.  We calculated 

correlations for all sites (n=38) and a reduced set of sites including only those with 

predators present (n=19).  All analyses in this and the following studies were 

performed using R statistical software (R Core Team, 2017). 

 

Tethered-Intruder Experiment 

Experimental Design 

We performed a field experiment in May 2017 to test whether larger brown 

anole body size results in lower attack rates by predatory curly-tailed lizards. We 

utilized a tethered-intruder experimental design (Reedy et al., 2017; Wu et al., 2018) 

in which we presented male brown anoles of varying size to free ranging curly-tailed 

lizards and measured the latency (in seconds) of curly-tailed lizards to attack. Trials 

were performed in areas of high curly-tailed lizard abundance located within the same 

general area as the body size variation study described above (i.e., southwest Broward 

County).   

Only male brown anoles were used in this experiment to avoid any potential 

differences in anti-predator behavior between the sexes and also to better represent the 

full size range attained by brown anoles (i.e., female brown anoles are smaller than 

males). Male brown anoles were tethered to a telescopic fishing pole via a 10-cm long 

piece of dental floss and held in a 5-gallon bucket prior to being presented to curly-
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tailed lizards. Each anole was used on the same day of capture and for only a single 

trial.  

We identified focal adult curly-tailed lizards from a distance of at least 3 m. 

Once a focal curly-tailed lizard was observed, we expanded the telescopic fishing pole 

with tethered anole so that the distance between the observer and the anole was 3 m. 

The anole was then placed ~1 m from the curly-tailed lizard and the pole was laid flat 

on the ground. Trials began when the anole reached the ground and were terminated 

when either the curly-tailed lizard approached to within 20 cm of the anole or 3 

minutes had elapsed. Trials were only conducted between the hours of 1000-1600 

when curly-tailed lizards are most active (Lapiedra et al. 2017). Following each trial, 

focal curly-tailed lizards were captured, measured (mass and SVL), and temporarily 

marked to prevent repeated trials with the same individual. 

 

Statistical Analysis 

We performed a survival analysis to test for differences in the latency of curly-

tailed lizards to attack differently sized brown anoles. We used the semi-parametric 

Cox proportional hazards model available in the R package “survival” (Therneau & 

Lumley, 2015), which is ideal for handling right-censored data such as these. We 

included the body size of brown anoles and curly-tailed lizards as well as their 

interaction as factors in the model. The interaction term was not significant and was 

removed from the model. The remaining models were compared using chi-square 

difference tests and when not significantly different, we chose the model with the least 

number of parameters as the best model.  
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Common Garden Experiment 

Experimental Design and Husbandry 

We utilized a common garden experimental design to determine whether body 

size differences among urban sites with and without curly-tailed lizards are genetically 

based. A total of 60 females were collected from habitats containing high curly-tailed 

lizard abundance and habitats containing no curly-tailed lizards (abundances 

determined from previous VES and confirmed on day of capture), each replicated 

three times (i.e., three sites per habitat with10 females per site). The body size 

distributions of females in the common garden experiment matched the site-specific 

size distributions determined from the body size variation study described previously. 

We measured mass and SVL of each female before transporting them to the University 

of Rhode Island. Each female was housed individually in a 13 x 7.5 x 8 in (length x 

width x height) terrarium provided with a single perch, artificial plants, and a plastic 

container filled with moist, ground coconut husk for egg laying. Full spectrum lighting 

was set on a 14:10 hr light:dark cycle, and each cage was misted daily to provide 

drinking water. Temperatures in the room ranged from 88°F during the day to 75°F at 

night. Females were fed five appropriately sized crickets every third day and we 

searched containers for eggs just prior to feeding. We collected eggs continuously 

from June 3, 2017 until August 14, 2017.  

 We measured the mass (0.0001g), length and width (0.1 mm) of each egg 

before half-burying them in glass containers filled with moistened vermiculate (1:1 

water:vermiculite by weight), which we then sealed with plastic wrap to prevent 
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evaporation. Eggs were incubated at 28°C until hatching. Each hatchling was sexed 

using the presence/absence of post-anal scales and dorsal patterning, measured for 

SVL to the nearest 0.5 mm and mass to the nearest 0.01 g within 24 hours of hatching 

and placed into a 11 x 6.75 x 6.5 in terrarium with two perches, artificial plants and a 

small container filled with moistened coconut husk to maintain humidity. We housed 

hatchlings in pairs that were from the same habitat (i.e., with or without predators) and 

within 1 week of age to minimize any dominance effects within cages. Mortality over 

the course of the experiment required that we re-pair single hatchlings using these 

criteria. Lighting, misting and feeding schedules for hatchlings were the same as those 

for adult females. We randomized cage positions every two weeks to eliminate 

potential positional effects. Hatchlings below six weeks of age were fed five 0.5-week 

old crickets every third day. We then provided five one-week old crickets for 

hatchlings between six and 14 weeks of age. Lastly, we increased the amount of one-

week old crickets from five to eight for hatchlings over 14 weeks of age. We measured 

the mass and SVL of each hatchling prior to feeding every two weeks for up to 18 

weeks. 

 

Statistical Analysis 

We log-transformed body size for analysis using linear mixed-effect models 

with habitat type, age, egg mass, egg order, and mother SVL as fixed effects. We also 

included the interaction between habitat type and age to test for differences in growth 

rate between habitats. Survival rates of hatchlings did not differ between habitats for 

either males (coef: 0.1215, exp(coef): 1.1292, se(coef): 0.2147, z=0.566, p=0.572) or 
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females (coef: -0.03299,   exp(coef): 0.96755,  se(coef): 0.19718, z =-0.167, p=0.867) 

and thus all individuals (i.e., both survivors and non-survivors) were included in the 

analysis. We used a nested random effect structure (random intercept) with hatchling 

ID nested within mother, which was nested within site. Due to the sexual dimorphism 

observed in this species, we modeled male and female body size separately.  

 

Results 

Predator abundance was the only significant predictor of anole body size for 

both males and females among the 38 urban sites (Table 1). Specifically, body size 

increased with increasing predator abundance (Figure 1). For males, body temperature 

was also significantly related to body size such that larger individuals had higher 

temperatures, but there was no relationship between body temperature and female 

body size (Table 1). We observed a significant negative correlation between body size 

variation (i.e., the coefficient of variation for SVL) and predator abundance for males 

(cor=-0.329, p=0.043). This relationship was also negative for females, but not 

significant (cor=-0.102, p=0.542). The correlation between brown anole perch heights 

(in the afternoon) and predator abundance was positive, but not significant across all 

38 sites for males (cor=0.066, p=0.697) and females (cor=0.136, p=0.415). These 

correlation coefficients increased when considering only those sites with non-zero 

predator abundance, but they were still non-significant (males: cor=0.317, p=0.200; 

females: cor=0.389, p=0.100). 

 In the tethered intruder survival analysis, anole SVL was found to be the only 

significant predictor of latency to attack (coef: -0.054, exp(coeff): 0.948, se(coeff): 
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0.027, z = -1.959, p = 0.050 ). Larger brown anoles were attacked less often and at 

longer latencies compared to smaller individuals (Figure 2). 

 For the common garden experiment, we found significant effects of age and 

egg mass on both male and female hatchling body sizes (Table 2). Body size increased 

with age and egg mass (Figure 3).  For males, we also found a significant interaction 

between habitat and age indicating faster growth rates in anoles from habitats with 

predators compared to anoles from habitats without predators. In contrast, no 

differences in female growth rate were observed between sites with and without curly-

tailed lizard predators (Figure 4). 

 

Discussion 

In this study, we utilized urbanization-induced variation in multiple abiotic and 

biotic factors to simultaneously test their relative effects in shaping body size variation 

of urban brown anoles. Across 38 sites, brown anole body size in both males and 

females was positively related to predator abundance. To further assess the role of 

curly-tailed lizard predation on brown anole body size, we also demonstrate that larger 

anole body size confers reduced attack rates by predators, suggesting that being larger 

might offer a survival advantage when confronted with this predator. Lastly, male 

body size differences between habitats with and without predators are, at least in part, 

determined by genetic differences in growth rate. Overall, these results suggest that 

predators may be important agents of natural selection on brown anole body size in 

urban environments.  
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 Both ecological and evolutionary mechanisms have been considered to drive 

patterns in body size variation of anoles. First, a recent study in the Bahamas found 

that in the field, male body size of brown anoles was explained by the availability of 

arthropod biomass (Bonneaud et al., 2016). In the lab, male hatchlings reared under 

high food availabilities had faster growth and attained larger maximum body sizes 

compared to males raised under a low food treatment. While genetic differences 

between populations were not assessed in this study, these results provide support for 

the role of food in determining brown anole body size. Second, changes in male brown 

anole body size have been attributed to variation in population density, with larger size 

favored in those populations with the highest density (Calsbeek & Cox, 2010). For 

food availability, we found no relationship between arthropod biomass and body size 

for either male or female brown anoles in southeast Florida, despite using similar 

methods compared to Bonneaud et al. (2016). Theoretically, the relationship between 

food availability and body size could be obscured if arthropod abundances exceed that 

which would promote maximum anole growth. Therefore, this discrepancy may 

potentially be explained by food saturation in urban habitats. Arthropod biomass in 

our urban sites was on average over 12 times greater than the site with the highest 

biomass in the study by Bonneuad et al. (2016). Moreover, other studies have also 

found that some groups of arthropods can reach exceedingly high abundances in urban 

areas (Shochat et al., 2004; Bang & Faeth, 2011; Philpott et al., 2015).  For 

competition, we did not observe any relationship between body size and conspecific 

abundance suggesting that, at least in our system, predator-induced selection may be 

relatively more important compared to that generated by intraspecific competition.  
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Predators have also been shown to alter body size distributions and body size 

selection in brown anoles. The experimental introduction of curly-tailed lizards to 

naturally occurring populations of brown anoles in the Bahamas revealed selection for 

larger body size in females, but not males (Losos et al., 2004). In a different study in 

the same island system, curly-tailed lizard introductions resulted in narrower brown 

anole body size distributions such that smaller lizards were less common on islands 

with predators (Schoener et al., 2002). We also found reductions in brown anole body 

size variation in habitats where predators occurred, which was driven by a reduction in 

the number of smaller individuals. However, our results suggest that predatory curly-

tailed lizards similarly influence both male and female body size. While it is uncertain 

why predator-induced selection was found only for female body size in the Bahamas, 

this does provide evidence that predatory curly-tailed lizards can indeed generate 

natural selection on anole body size.  

 Though we did not measure selection in our study, we present multiple lines of 

evidence that suggest size-selective predation may be a source of natural selection 

influencing brown anole body size in urban habitats. Several criteria are needed to 

support evolution by natural selection. First, body size variation must exist for 

selection to act. We observed the greatest variation in body size (i.e., coefficient of 

variation for SVL) in sites without predators, and brown anole body size variation 

decreased with increasing predator abundance. This reduction in body size variation is 

consistent with the expectation from directional selection favoring larger body size 

(Endler, 1986). Second, body size must be linked to differences in survival. Our 

tethered intruder experiment suggests that curly-tailed lizards attack smaller anoles 
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more rapidly and more often than larger ones, which may lead to larger lizards having 

a higher probability of survival during predatory confrontations compared to smaller 

lizards. Additionally, hindlimb length is positively related to body size and sprint 

speed in many squamate lizards, including A. sagrei, meaning that larger lizards are 

also faster (Losos, 1990; Van Damme & Vanhooydonck, 2001). Thus, even smaller 

brown anoles (e.g. females) can benefit from being relatively large compared to other 

individuals through an increased ability to escape from predators. Lastly, some 

component of body size must be heritable for selection to translate into evolution in 

the next generation. Our common garden experiment supports that genetic differences 

in male growth rate contribute to the observed differences in body size between sites 

with and without predators. This is further supported by other studies demonstrating 

relatively high heritability estimates (h2=0.55) for body size in brown anoles 

(Calsbeek & Smith 2007; also see Calsbeek & Bonneaud, 2008). Therefore, we have 

shown that the relationship between body size variation and predator abundance is 

consistent with expectations under predator-induced selection, larger brown anoles 

have a survival benefit when confronted with predatory curly-tailed lizards, and body 

size is indeed heritable. Yet, to verify that predators are in fact producing selection on 

brown anole body size, we suggest that future work should use mark-recapture studies 

to estimate selection gradients on the body size for brown anoles in urban areas. 

 While increases in body size may include substantial fitness benefits, it is 

important to also consider the potential costs. For example, the resting metabolic rate 

of many reptiles scales with body size, which increases the amount of food needed by 

larger individuals for maintenance (Andrews & Pough, 1985). Such increases in 
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metabolism likely require higher foraging rates and may lead to greater risk-taking 

behaviors to fuel higher metabolic demands. However, even if urban environments 

contain sufficient food, the presence of predatory curly-tailed lizards can reduce food 

availability through reductions in anole ground use, a potential proxy for foraging 

activity (Lapiedra et al., 2017). The higher growth rate of males from habitats with 

predators may also entail costs, specifically in immune function. Trade-offs between 

growth and immune function have been demonstrated in a variety of taxa including 

lizards (e.g. chickens: van der Most et al., 2011; insects: Rantala & Roff, 2005; 

lizards: Uller et al., 2006). Furthermore, the costs of impaired immune function are 

likely to be exacerbated in urban environments given the positive relationship  

between parasitism and distance to urban habitats for brown anoles (Perkins et al., 

2007).  

 Urban habitats have been increasingly regarded as hotspots for evolutionary 

change (Johnson & Munshi-South, 2017). Over the past decade, evidence for 

genetically based changes between urban and non-urban populations has been 

growing. For example, male European Blackbirds showed decreased migratory 

behavior, a genetically determined trait, in urban habitats compared to forest 

conspecifics (Partecke & Gwinner, 2007). More recent studies have also demonstrated 

urbanization-induced changes in genetically determined traits such as seed dispersal in 

plants (Cheptou et al., 2008) and pollution tolerance in killifish (Whitehead et al., 

2010). Yet, most of these studies fail to explicitly address the fitness consequences of 

these changes as well as the specific drivers underlying them (Donihue & Lambert, 

2015). Nonetheless, the altered abiotic and biotic conditions in cities are generally 
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hypothesized to create novel selection pressures that result in phenotypic divergence 

between urban and natural populations (e.g., Garroway & Sheldon, 2013; Winchell et 

al., 2016; Brans et al., 2017). While this may indeed be the case, urban habitats are 

often highly fragmented, which may decrease gene flow among nearby populations 

and thus impact the ability of urban populations to evolve (Keyghobadi, 2007). 

Genetic drift can erode genetic variation in such isolated populations and thereby 

constrain future evolutionary potential (e.g. Epps et al., 2005). However, if sufficient 

genetic variation exists in a population, these dispersal limitations imposed by habitat 

fragmentation can facilitate genetic differentiation and thus local adaptation among 

urban populations. Given the high variability of abiotic and biotic conditions within a 

given urban area, selective pressures are likely to differ even among neighboring 

localities. Therefore, reduced dispersal of individuals among these localities can 

prevent maladapted genotypes from entering a population and spreading deleterious 

alleles (Boulding & Hay, 2001). In our study, curly-tailed lizards were patchily 

distributed and urbanization-induced habitat fragmentation is likely facilitating body 

size evolution by reducing the possibility of genetic mixing between brown anoles 

from habitats with and without predators. Therefore, in order to better predict the 

potential for adaptive evolution in urban habitats, it is important to identify the 

specific factors responsible for phenotypic changes and the geographic scale at which 

these factors vary. 

 Predation is considered a fundamental mechanism driving the structure of 

natural communities (Shochat et al., 2006). However, the role of predators in urban 

systems is currently under debate (Fischer et al., 2012). This is due to conflicting 
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reports of increased predator abundance in urban habitats, but also decreased anti-

predator behavior and mortality in urban prey populations. We propose that these 

contradictory findings may be the result of underlying evolutionary mechanisms. 

Urbanization has facilitated the establishment and spread of predatory curly-tailed 

lizards in southern Florida (Smith et al., 2004), supporting the argument for higher 

predator abundances in urban habitats. Furthermore, the fact that curly-tailed lizards 

attacked brown anoles in over half of our tethered intruder trials suggests that these 

higher predator numbers may translate into higher predation pressure. But if predator-

induced selection towards larger brown anole body size is sustained, this could result 

in lower brown anole mortality as populations adapt while predators remain in high 

abundance. Furthermore, we found no support for alternative hypotheses for body size 

variation except for predation, highlighting its importance relative to other biotic and 

abiotic factors in structuring urban animal communities in our system. To fully 

understand the ecological and evolutionary consequences of urbanization on animal 

communities, future research should focus on predation and species interactions in 

general given the lack of information regarding their importance in urban habitats.
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Table 1 Results of the linear mixed effect models for male and female SVL. Site was 
included as a random effect. SVL was squared before fitting each model to improve 
normality of the residuals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Variable Value Std. Error DF T-Statistic P 

Males       

 Intercept 2123.233 415.089 560 5.115 0 

 Body Temperature 31.506 12.069 560 2.610 0.009 

 A. sagrei Abundance 439.527 1529.483 34 0.287 0.776 

 L. carinatus Abundance 20831.648 8998.844 34 2.315 0.027 

 Food Availability 3275.911 3526.924 34 0.929 0.360 

Females       

 Intercept 2009.928 183.632 558 10.945 0 

 Body Temperature -4.450 5.263 558 -0.846 0.398 

 A. sagrei Abundance 1033.586 757.992 34 1.364 0.182 

 L. carinatus Abundance 11286.512 4457.508 34 2.532 0.016 

 Food Availability 2375.751 1745.266 34 1.361 0.182 
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Figure 1 Relationships between SVL and L. carinatus abundance for male (top) and 
female (bottom) brown anoles. Each point represents a single individual and SVL 
values were squared to improve normality 
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Figure 2 Survival analysis comparing latency of L. carinatus individuals to attack 
male brown anoles of varying SVL. To better visualize this relationship, brown anole 
SVLs were binned into large (green), intermediate (blue) and small (red) sizes.  
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Figure 3 Growth rate of male (left) and female (right) brown anole hatchlings whose 
mothers were from habitats with (red) and without (blue) predators. 
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