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ABSTRACT 

Liver cancer is in the ten leading cancer types for estimated new cases and deaths 

in the United States in 2018, and is often detected at late stages when it is rapidly fatal. 

Of the types of liver cancers in humans, hepatocellular carcinoma (HCC) is the most 

lethal and prevalent. An important factor in the development of HCC is Farnesoid X 

Receptor (FXR). FXR acts as master regulator of bile acid homeostasis, and is involved 

in lipid, cholesterol, and glucose homeostasis. In addition, it plays a protective role 

against HCC, the precise mechanisms of which has yet to be identified.  

Ubiquitin Specific Peptidase 2 (USP2) has emerged as a promising area of 

research for cancer therapy for multiple organ systems. Recent studies have shown 

USP2 to be involved in a variety of cellular processes ranging from circadian rhythms 

to tumorigenesis. In particular, USP2 has been studied in lung, bladder, breast, prostate, 

and ovarian cancer. Additionally, USP2 has 3 distinct isoforms, USP2a, USP2b, and 

USP2c, all of which have unique functions. In manuscript 1, the purpose of the study 

was to investigate the isoform specific effects of USP2 in hepatocellular carcinoma 

(HCC) through the use of healthy human liver samples compared to tumor samples, 

paired human liver tumor and surrounding samples, paired mouse liver tumor and 

surrounding samples, and the immortalized liver cancer cell line HepG2. Of the three 

USP2 isoforms, USP2a and USP2b are the most abundant in human and murine liver. 

Both USP2a and USP2b levels are significantly lower in HCC compared to healthy liver 

samples. In paired tumor and surrounding liver samples from mice and human, USP2b 

is consistently decreased within the tumor compared to the surrounding tissue. USP2b 

was decreased in tumors in all human samples and decreased in over 80% of murine 



 
 

samples. This suggests as the state of the liver worsens in HCC pathology, USP2b will 

also decrease. In HepG2 cells, both USP2a and USP2b isoforms led to increased 

proliferation, colony formation, and wound healing. Additionally, USP2b and USP2c 

lead to increased migration, wound healing, and apoptosis. Previous studies have only 

recognized USP2b as a circadian gene, making this the first study to report involvement 

of USP2b in cellular processes beyond its circadian characteristics. Overall, USP2a and 

USP2b have opposing roles in HCC development, with USP2a displaying a tumor-

promotion role and USP2b displaying a tumor-protective role. 

In manuscript 2, we present a novel potential mechanism for USP2 regulation in 

the liver and in HCC development through FXR. Between wild type and FXR-/- mice, 

there was a dysregulation in USP2 and previously identified downstream targets. To 

determine if the changes in USP2 were due to FXR regulation, we activated FXR in 

wild type mice, over-expressed FXR in liver cancer cells, and evaluated the effects of 

FXR activation on the USP2 promoter. Upon treatment with FXR agonist in wild type 

mice, USP2 mRNA and protein significantly increased compared to vehicle. 

Additionally, transfection and activation of FXR in huh7 cells lead to an increase in 

USP2. Of importance, we found FXR directly regulates USP2 gene expression via dual 

luciferase assay. This study is the first to report FXR in the regulation of gene, mRNA, 

and protein expression of USP2 in the liver. Specifically, FXR2 is the predominant 

isoform in this regulation. In addition, this is also the first study to identify the different 

USP2 isoforms to be a results of two promoters rather than alternative splicing. As 

previous studies have found FXR to display a protective effect in HCC, this study 

identifies a novel mechanism of this protection through USP2.  
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PREFACE 

This dissertation was prepared following manuscript format. It is divided into two 

manuscripts focusing on Ubiquitin Specific Peptidase 2 (USP2). The first manuscript 

centers on the three USP2 isoforms, USP2a, USP2b, and USP2c. The isoform dependent 

relationship is explored in hepatocellular carcinoma (HCC) through the utilization of 

human HCC samples, mice tumor samples, and immortalized HCC cells. The second 

manuscript investigates how USP2 is regulated by Farnesoid X Receptor (FXR) in 

HCC. This manuscript is the first to suggest FXR as a novel regulator of USP2, and is 

also the first to identify two promoters as the source for the different USP2 isoforms. 

Both manuscripts have been prepared for submission in Hepatology.   
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ABSTRACT 

Ubiquitin Specific Peptidase 2 (USP2), a deubiquitinating enzyme, has been 

shown in recent research to be involved in a variety of cellular processes ranging from 

circadian rhythms to tumorigenesis. In particular, USP2 has been studied in lung, 

bladder, breast, prostate, and ovarian cancer. The purpose of this study was to 

investigate the isoform specific effects of USP2 in hepatocellular carcinoma (HCC) 

through the use of healthy human liver samples compared to tumor samples, paired 

human liver tumor and surrounding samples, paired mouse liver tumor and surrounding 

samples, and the immortalized liver cancer cell line HepG2. Of the three USP2 isoforms, 

USP2a and USP2b are the most abundant in human and murine liver. Both USP2a and 

USP2b levels are significantly lower in HCC compared to healthy liver samples. 

Additionally, we see a trend of decreasing USP2b from normal healthy liver, to 

surrounding tissue, to tumor tissue in humans. In paired tumor and surrounding liver 

samples from mice and human, USP2b is consistently decreased within the tumor 

compared to the surrounding tissue. USP2b was decreased in tumors in all human 

samples and decreased in over 80% of murine samples. This suggests as the state of the 

liver worsens in HCC pathology, USP2b will also decrease. In HepG2 cells, both USP2a 

and USP2b isoforms led to increased proliferation, colony formation, and wound 

healing. Additionally, USP2b and USP2c lead to increased migration, wound healing, 

and apoptosis. Previous studies have only recognized USP2b as a circadian gene, 

making this the first study to report involvement of USP2b in cellular processes beyond 

its circadian characteristics. Overall, USP2a and USP2b have opposing roles in HCC 
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development, with USP2a displaying a tumor-promotion role and USP2b displaying a 

tumor-protective role. 
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INTRODUCTION 

The control of protein turnover is a fundamental aspect of cellular processes. Of 

importance in maintenance of proper protein levels is rate of synthesis and rate of 

degradation. The two major pathways that mediate protein degradation are the 

ubiquitin-proteasome system and lysosomal proteolysis. Of the two, the ubiquitin-

proteasome system is the major pathway for selective protein degradation in eukaryotic 

cells (1). Ubiquitin can bind to its substrate and signal for protein degradation, altered 

cellular location, as well as promotion or prevention of protein interaction (2). 

Ubiquitination can be reversed by deubiquitinating enzymes, such as Ubiquitin Specific 

Peptidase 2 (USP2). USP2 has emerged as a promising area of research for cancer 

therapy for multiple organ systems. However, it is important to note that USP2 has 

multiple isoforms due to alternative splicing of 5’ exons (3), all of which have different 

actions and expression levels within cells. USP2a (NM_004205), also known as variant 

1 or USP2-69, encodes the longest isoform with 619 amino acids. USP2b 

(NM_171997), also known as variant 2 or USP2-45, is a shorter isoform comprised of 

396 amino acids and a different N-terminus. USP2b is missing 2 exons from the 5’ end 

and contains an alternative 5’ terminal exon compared to transcript variant 1. USP2c 

(NM_001243759), also known as variant 3 or USP2-41, is missing internal exon 2 in 

the 5’ region. USP2c is the shortest of the isoforms with 362 amino acids. 

USP2a has been reported in a variety of tumorigenic studies. USP2a expression 

enhances proliferation, invasion, and migration in bladder cancer by stabilizing cyclin 

A1 (4), plays a critical role in prostate cancer cell survival through fatty acid synthase 

stabilization (5), and has shown aberrant expression in breast (6), lung (7), and ovarian 
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cancer (8).  Additionally, multiple studies report USP2a to be involved in the regulation 

of Myc and p53. Myc is a proto-oncogene which is overexpressed in many types of 

human cancer, and p53 is a well-known tumor suppressor negatively regulated by 

Mdm2 and Mdmx (9). USP2a was found to regulate the p53 pathway by selectively 

targeting Mdm2 in cells (10), and was found to form a complex with MdmX both in 

vitro and in vivo and regulate its stability (11). Furthermore, USP2a targets c-Myc via 

the miRNA cluster miR-34b/c by directly impairing the MDM2-p53 pathway in prostate 

cancer (12).  

USP2b is the isoform most noted for its circadian patterns. When USP2 was first 

identified as a highly rhythmic circadian gene in multiple tissues, the various isoforms 

were not separated (13,14). Upon further investigation of the isoforms, literature 

suggests a potential role for both USP2a and USP2b in circadian rhythms. Core clock 

components include CLOCK, NPAS, ARNTL/BMAL1, PER, and CRY (15). The 

USP2b isoform was reported to complex with clock components as well as stabilize 

BMAL1, which then alters expression of several CLOCK/BMAL1 regulated genes (16). 

In addition, both USP2a and USP2b were shown to interact directly with PER via co-

immunoprecipitation and reciprocal immunoprecipitation. However, this 

deubiquitination does not affect its overall stability (17). Interestingly, USP2a was 

found to deubiquitinate and stabilize CRY1 protein in both cell culture and mouse liver, 

an effect that was not seen with USP2b. When USP2 is depleted, ubiquitination of 

CRY1 enhances and dampens oscillation amplitude of CRY1 protein during a circadian 

cycle (18).  In the current study, mRNA expression in mouse liver samples show a 

dramatic circadian pattern of USP2b, with minimal circadian rhythm of USP2a. For all 
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experiments, total USP2 followed the same pattern as USP2b and overshadowed the 

USP2a isoforms for TaqMan qPCR, which is why all are reported as USP2a and USP2b. 

Finally, little has been reported regarding USP2c. Conflicting reports claim no 

evidence supporting its existence (3), while others reported isolation of USP2c in a 

screen for proapoptotic genes (19). The later report found USP2c to elicit all features of 

apoptosis in human cells. This same research group found both USP2a and USP2c to 

cause apoptosis in MCF7 cells by targeting receptor-interacting serine/threonine protein 

kinase 1 (RIP1) (20).  

 Here, we investigated the tumor-promotion or protective effects of the 3 USP2 

isoforms in healthy human liver samples compared to tumor samples, paired human 

liver tumor and surrounding samples, paired mouse liver tumor and surrounding 

samples, and the immortalized liver cancer cell line HepG2. Compared to healthy 

human liver samples, both USP2a and USP2b have statistically significant reductions 

compared to HCC patients. When comparing 8 paired HCC samples separated into 

tumor versus surrounding tissue, USP2a is increased in 4 tumor samples while 

decreased in the other 4 tumor samples. Of these same samples, USP2b was decreased 

in all tumor samples, with an average of an 82% reduction. Of 26 paired mouse tumor 

versus surrounding tissue samples, 14 had increased USP2a within the tumor section. 

Of these same samples, 22 of the 26 samples had decrease USP2b within the tumor 

section, with 19 samples showing a greater than 20% reduction and 13 samples having 

greater than a 50% reduction. In HepG2 cells, both USP2a and USP2b increased cell 

proliferation, wound healing, and colony formation properties. USP2b and USP2c, but 

not USP2a, showed increased apoptosis in, and no isoforms showed necrotic properties.  
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Overall, consistent with previous literature USP2a shows dysregulation between 

normal and HCC samples. However, USP2b also displays dramatic changes in human 

and mouse tumor samples. Taken together, with a decrease in paired tumor versus 

surrounding samples in both humans and mice, as well as decreased levels in normal 

compared to HCC patients, USP2b correlates with a healthy phenotype and decreases 

as the state of the liver worsens. This is the first report of the USP2b isoform being 

involved in tumor formation, as opposed to the common focus in circadian patterns.  

 

MATERIALS AND METHODS 

Cell Culture: Immortalized HCC HepG2 cells (ATCC, cat# HB-8065) were utilized 

for all cell culture assays. Cells were cultured in Minimum Essential Media (MEM) 

(Thermo Fisher Scientific, cat# 11095080) complete media containing 10% Fetal 

Bovine Serum (FBS) (Atlanta biologicals, cat #S11550), 1% PenStrep (Thermo Fisher, 

cat# 15140122), and 1% Non-Essential Amino Acids (NEAA) (Thermo Fisher, cat# 

11140050). For those assays requiring serum starving, MEM contained 1% FBS, 1% 

PenStrep, and 1% NEAA. Cells were cultured at 37oC in a humidified atmosphere 

containing 5% CO2. 

 

Transfection: GenJet Reagent (Version II) (SignaGen, cat# SL100489) was used for 

transfection of USP2 plasmid constructs. Cells were seeded at 80% density prior to 

transfection. Cells were transfected for 16 hours then media was replaced with complete 

serum/antibiotic media. 
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Plasmid Constructs: Plasmids used for transfection include human USP2a, USP2b, 

and USP2c. All plasmids are in pcDNA3.1(+) vector with HindIII-BamHI cloning sites. 

USP2a is 1839bp, USP2b is 1212bp, and USP2c is 1110bp and are codon optimized to 

enhance the expression in human cell lines. Sequences are detailed in supplement table 

1.  

 

Colony Formation: USP2 isoform specific transfected cells were seeded at a low 

density of 600 cells per well in a 6 well plate and allowed to grow for 7 days. Complete 

media was changed every 2 days. Cells were fixed using 1:7 acetic acid to methanol 

solution and stained with crystal violet. Colonies were quantified using ImageJ cell 

counter plug in.  

 

Proliferation Assay: Cells were seeded at 70% confluence and transfected with USP2a 

or USP2b for 24 and 48hrs. After each time point, trypsin was added and cells were 

counted using a haemocytometer. For each well, cells were counted in the 4 sets of 16 

corner squares and an average was taken. The final average was taken of the set run in 

triplicate.  

 

Apoptosis and Necrosis assay: Cells were seeded at 70% confluence and transfected 

with USP2a, USP2b, and USP2c. RealTime-Glo Annexin V Apoptosis and Necrosis 

Assay (Promega, cat# JA1011) was used to distinguish between healthy cells and those 

in early apoptosis or secondary necrosis. Detection reagent was added to complete 

media and incubated for 0, 6, 12, and 24, and 48 hours. Relative luminescence units 
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(RLU) and relative fluorescence units (RFU) were measured using a GloMax 

Multimode Microplate Reader (Promega) with green spectrum fluorescence 

(485nmEx/525–530nmEm).  

 

Wound Healing Assay: Cells were seeded in a 6 well plate in serum starved media and 

transfected with codon optimized USP2 plasmids for 16 hours. Cells were counted and 

seeded in triplicate into CytoSelect 24-Well Wound Healing Assay plates (Cell Biolabs 

Inc, cat # CBA-120). Inserts create a wound field with a defined gap of 0.9 mm. Cells 

were allowed to adhere overnight for a monolayer to form. Inserts were carefully 

removed from each well using sterile forceps. Media was removed and the wounded 

monolayer was washed with sterile PBS twice before addition of serum starved media. 

Photographs were taken using EVOS Cell Imagining Microscope (ThermoFisher 

Scientific) at time 0 when wound was created, as well as 24 and 48 hours post insert 

removal. Average percent wound closure was calculated using ImageJ based upon 3 

random fields per well. Student t-test was then used to determine significance of percent 

wound closure compared to control. 

 

Cell Migration Assay: Cells were seeded in a 6 well plate in serum starved media and 

transfected with codon optimized USP2 plasmids for 16 hours. Cells were counted and 

seeded in triplicate into CHEMICON QCM Migration Assay (Millipore Sigma, cat# 

ECM508), which is based upon the Boyden Chamber principle. The top chamber of the 

plate had an 8m pore size polycarbonate membrane. The bottom chamber contained 

10% FBS media as a chemoattractant. Following incubation for 48 hours, cells which 
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migrated through the insert membrane were stained for 20 minutes at room temperature. 

Inserts were then dipped in water to rinse. Cells on the interior of the insert were 

mechanically removed. The stain was then extracted and transferred for colorimetric 

measurement at 560 nm using a GloMax Multimode Microplate Reader (Promega). 

 

Invasion Assay: CHEMICON Cell Invasion Assay Kit (Millipore Sigma, cat# 

ECM550) was utilized for observation of invasive properties. The same steps were 

followed for seeding, transfecting, and quantification as described in the cell migration 

assay section above. However, this kit also includes an extracellular matrix (ECM) layer 

in the insert. For cells to migrate through the 8m pore, they must be able to first pass 

through this ECM layer, indicating increased invasive properties. 

 

Human Liver samples: Twelve healthy human liver samples and 18 HCC tumor 

(HCC-T) samples with 8 paired adjacent non-tumor (HCC-NT) tissues were obtained 

from the University of Virginia, University of Pennsylvania and Ohio State University 

through the Cooperative Human Tissue Network (CHTN). The detailed information on 

HCC patients is provided in Supplement Tables 2 and 3. The protocol for using human 

tissues was approved by the Institutional Review Board (IRB) at the University of 

Rhode Island (URI).  

 

Animal Experimentation: All animals received humane care according to the criteria 

outlined in the “Guide for the Care and Use of Laboratory Animals” prepared by the 

National Academy of Sciences and published by the National Institutes of Health (NIH 
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publication 86023 revised 1985). In total, 26 FXR-/- mice between the ages of 14-18 

months were utilized. Of these mice, 12 were female and 14 were male. Mice were fed 

a regular chow diet and housed in Innovive IVC ventilated rodent housing system racks 

in IVC disposable cages. Since FXR-/- mice will spontaneously develop liver tumors as 

they age without additional insult, all 26 mice had liver tumor formation. Paired 

surrounding and tumor tissue sections were collected separately for comparison. All 

samples were snap frozen in liquid nitrogen.  

 

Quantitative real-time PCR: Total RNA was prepared from human liver samples and 

FXR-/- mouse samples by phenol-chloroform extraction using RNA-Bee RNA isolation 

reagent (Amsbio, cat #CS-501B) according to the manufacturer’s protocol. RNA was 

quantified by measuring its absorbance at 280 nm in a UV-visible spectrophotometer 

(NanoDrop ND 1000; Thermo Fisher Scientific). M-MLV Reverse Transcriptase 

(Promega, cat #M170B) was utilized to synthesize cDNA. TaqMan Gene Expression 

Assay was utilized for analysis of cDNA. All TaqMan probes were purchased through 

Thermo Fisher Scientific and are as follows. Human total USP2 (cat# 

Hs00275859_m1), USP2a (cat# Hs00374431_m1), and USP2b (Hs01592505_m1) 

were purchased from catalog. Mouse total USP2 (cat# Mm00497452_m1) and USP2b 

(cat# Mm01168648) probes were purchased from catalog. The Custom TaqMan Assay 

Design Tool (cat# 4441114) was utilized for custom design of mouse USP2a probe 

based on NM_016808 (Assay ID ARCE37A). Applied Biosystems ViiA 7 Real-Time 

PCR instrument was used for quantification using the comparative CT (CT) method 
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normalized against glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

housekeeper.  

 

Western Blotting: Liver tissue was homogenized in sucrose-Tris (ST) buffer composed 

of 0.25 M sucrose and 10 mM Tris-HCL with ph 7.4 containing Halt Protease Inhibitor 

Cocktail (Thermo Scientific, cat #87785) and phenylmethylsulfonyl fluoride (PMSF) 

(Sigma, CAS #329986). Membrane fractions containing total proteins were loaded into 

each well. After overnight wet transfer to polyvinylidene difluoride (PVDF) membrane, 

the membrane was probed for the various USP2 isoforms. Sequence specific antibodies 

were purchased from Biomatik, and are detailed in supplementary table 3. Additionally, 

the following antibodies were purchased: Cycin D1 (Santa Cruz cat# sc-8396), FAS 

(Santa Cruz cat# sc-55580), MDM2 (Santa Cruz cat# sc-965), P53 (Santa Cruz, cat #sc-

47698), and USP2 (SantaCruz cat #sc-135282). Rabbit anti-human GAPDH polyclonal 

antibody (Sigma-Aldrich, cat# G9545) was used a as housekeeper to normalize protein 

expression. Based upon the primary antibody, goat-anti rabbit or goat-anti mouse IgG 

HRP was used for secondary antibody incubation. Clarity and Clarity Max Western 

ECL Blotting Substrates (BioRad cat# 1705060) was added to membranes for 

chemiluminescent detection, incubated according to protocol, and imaged using myECL 

Imager from Thermo Scientific. ImageJ was used to quantify bands. 

 

Statistical analysis: Student t-test was applied to pair-wise comparison for normally 

distributed data. Non-parametric Mann-Whitney test was used for pair-wise comparison 
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for non-normally distributed data. P value of 0.05 or lower was considered statistically 

significant. 

 

RESULTS 

USP2a is decreased in HCC patients. 

 USP2a has been implicated in development of other cancers (4–8). To determine 

whether USP2a plays any roles in HCC development, hepatic expression levels of 

USP2a in healthy and HCC subjects were quantified. A total of 12 normal samples, 8 

paired HCC-NT (surrounding non-tumor) and HCC-T (tumor), and an additional 10 

HCC tumor samples (not paired) were compared.  

Hepatic USP2a mRNA levels are significantly decreased in HCC patient samples 

compared to normal liver tissue samples. Compared to healthy, there is a statistically 

significant decrease in all sample groups, with an 80%, 55%, 79%, 69% decrease in the 

HCC-NT (paired), HCC-T (paired), HCC (non-paired), and HCC-T (combined), 

respectively (fig 1a). The results demonstrated that hepatic USP2a expression was 

significantly deceased in HCC subjects when compared to normal subjects. 

Interestingly, these results are contradictory to a published study where they found 

increased levels of USP2a in HCC samples compared to normal subjects (21). This is 

addressed in the discussion section. 

 

USP2a is dysregulated in human tumor compared to surrounding tissue. 

A decrease is seen in USP2a expression levels in HCC tumor samples compared 

to normal liver samples. To determine whether USP2a is also dysregulated once HCC 
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has already developed, hepatic expression levels of USP2a in paired surrounding and 

tumor samples were quantified. There was an interesting relationship of USP2a between 

paired surrounding and tumor samples from a single patient. Taken as an average, there 

is a 3.12 fold increase in USP2a in tumor samples (fig 1b). However, when comparing 

each sample as a pair, half of them show over a 3 fold increase, and the other half show 

over a 65% decrease (fig. 1c). The characteristics of the subjects is summarized in 

supplement table 2. There seems to be no trend between USP2a levels for gender, race, 

age, histologic grade, pathological tumor-node metastasis (pTNM), focality, or tumor 

size, indicating another factor may have a role in regulating USP2a in HCC. These 

results demonstrate a more complex role of USP2a expression in tumor versus 

surrounding tissue, suggesting an additional factor beyond tissue status regulates USP2a 

expression in HCC. Hypotheses for this additional factor is addressed in the discussion 

section. 

 

USP2b is decreased in HCC patients. 

Unlike USP2a, little is reported on USP2b in the development of other cancers. 

To determine if USP2b plays a role in HCC development, hepatic expression levels of 

USP2b in healthy and HCC subjects were quantified. Similar to USP2a, USP2b mRNA 

levels were also significantly decreased in HCC patient samples compared to normal 

liver tissue samples. A total of 12 normal samples, 8 paired HCC-NT and HCC-T, and 

an additional 10 HCC samples (not paired) were compared. From healthy, to HCC 

surrounding, to HCC tumor samples there is a steady decrease in USP2b. Compared to 

healthy, there is a statistically significant decrease in the tumor samples, with a 39%, 
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92%, and 92% decrease in the HCC-NT (paired), HCC-T (paired), and HCC-T 

(combined), respectively (fig 2a). Compared to USP2a, USP2b displays a more 

dramatic decrease in hepatic mRNA levels. Additionally relative mRNA expression of 

both isoforms were compared for the healthy, HCC-NT, HCC-T, and HCC (non-paired). 

Based upon the change in CT value, the smaller the value the more abundant the mRNA. 

In both healthy and HCC-NT samples, USP2b is the more abundant isoform. In HCC-

T and HCC (non-paired), levels are comparable (fig. 3), suggesting USP2b may play a 

more important role in HCC than USP2a. 

 

USP2b decreased in human tumor compared to surrounding tissue.  

A decrease is seen in both USP2a and USP2b expression levels in HCC tumor 

samples compared to normal liver samples. To determine whether USP2b is also 

dysregulated once HCC has already developed, hepatic expression levels of USP2b in 

paired surrounding and tumor samples were quantified. In these same 8 paired tumor 

and surrounding human samples, there was a statistically significant decrease in USP2b 

within the tumor. Taken as an average, there is an 81% decrease in tumor samples 

compared to surrounding (fig 2b). When comparing each sample, all of them showed 

over a 50% reduction in USP2b compared to surrounding, with 5 of the 8 showing a 

90% or greater reduction (fig. 2c). Likewise, there’s a significant 68% reduction in 

USP2b protein in HCC-NT compared to their surrounding pairs (fig. 2d). Of the 8 paired 

samples, only 6 were available for protein analysis. Unlike USP2a, USP2b displayed a 

more consistent decrease in tumor sections compared to their surrounding pair, once 
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again suggesting USP2b is the more abundant, and may be the more influential isoform, 

in HCC. 

 

USP2a is dysregulated in murine tumors compared to surrounding tissue.  

In the current study, USP2a expression was decreased in HCC subjects 

compared to healthy subjects. Additionally, there was a dysregulation of USP2a when 

comparing HCC surrounding and tumor samples, half showing an increase and half 

showing a decrease. To determine if this same pattern is seen in murine samples, hepatic 

expression levels of USP2a were quantified in tumor versus surrounding tissue. Similar 

to the human HCC paired samples, about half of the murine samples showed increased 

USP2a mRNA while the other half showed a decrease. Of 26 paired mouse tumor versus 

surrounding tissue samples, 14 had increased USP2a within the tumor section while 12 

had a decrease. Of these, 8 mice had over a 2 fold increase, while 6 had over a 50% 

decrease (fig. 4). Age and gender did not show any distinction in magnitude of change 

of USP2a. In addition, histology and grade of the tumors among the mice were 

comparable. These results are consistent with the human data comparing surrounding 

and tumor tissue. Similar to human samples, about half are increased and half are 

decreased, once again suggesting an additional factor beyond tissue status in the 

regulation of USP2a expression.  

 

USP2b decreases in murine tumors compared to surrounding tissue.  

In the current study, USP2b expression was decreased in HCC subjects 

compared to healthy subjects. Similarly, when comparing HCC surrounding and tumor 
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samples, all showed a decrease in USP2b levels. To determine if this same pattern is 

seen in murine samples, hepatic expression levels of USP2b were quantified in tumor 

versus surrounding tissue. Of the 26 paired samples, 22 samples had decrease USP2b 

mRNA within the tumor section, with 19 samples showing a greater than 20% reduction 

and 13 samples having greater than a 50% reduction (fig. 5). The four samples that had 

increased USP2b showed no unique identifier of age, gender, histology, or grade of the 

tumors. These results are consistent with human data from the current study where 

hepatic USP2b is decrease in HCC compared to normal human samples, and decreased 

in tumor compared to surrounding samples. In addition, liver samples were taken from 

healthy wild type mice every 4 hours for a total of 24 hours and hepatic USP2a, USP2b, 

and total USP2 was quantified. The total USP2 and USP2b probe displayed similar 

abundance, as displayed in the change in CT values, while USP2a was less abundant. 

Additionally, it is important to note that the total USP2 probe follows the same trend as 

USP2b, as this is the more abundant isoform in the mouse liver (fig. 6). Like the human 

liver, murine USP2b is more abundant than USP2a. With consistent USP2b data in 

murine samples, this again suggests USP2b may be the more important isoform in HCC. 

 

USP2a and USP2b isoforms increase proliferation colony formation, and wound 

healing.  

Both USP2a and USP2b were determined to be dysregulated in human HCC 

samples and murine tumor versus surrounding tissue. To determine if the over-

expression of these isoforms would lead to functional change in hallmarks of cancer, 
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HepG2 cells were transfected with vector, USP2a, or USP2b, and proliferation wound 

healing, and colony formation were examined.  

 USP2a transfected cells had increased 25% and 30% compared to control after 

24 and 48 hours, respectively. USP2b transfected cells had a 15% increase and 20% 

increase compared to control after 24 and 48 hours, respectively. For both isoforms at 

both time points there was a statistically significant increase in cell number (figure 

7a&b). These results demonstrate when either isoform is overexpressed in HepG2 cells, 

cell proliferation increases.  

For colony formation, cells were transfected with vector, USP2a, or USP2b for 

24 hours prior to resuspension and counting. Cells were seeded at low density and 

allowed to grow in 10% FBS for two weeks. Both USP2a and USP2b showed a 

statistically significant increase in colony number compared to control. There were 28, 

66, and 77.5 colonies formed in control, USP2a, and USP2b transfected cells, 

respectively (figure 7c). Increased colony formation properties indicate cells ability to 

undergo unlimited division, suggesting both isoforms increase proliferation over long 

term.  

Similarly, HepG2 cells were transfected with vector, USP2a, or USP2b, and 

underwent wound healing assay. Between initial wound infliction and 48 hours post, 

there was a 21.33%, 32.33%, and 29.33% wound closure in control, USP2a, or USP2b, 

respectively. The wound closure of USP2a and USP2b compared to control was 

statistically significant (figure 7d). This increased wound healing with USP2 transfected 

cells indicate an increase in migration. As the cells were serum starved, proliferative 

effects should be minimized. 
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USP2b and USP2c increase migration, invasion, and apoptosis.  

Cells were transfected with vector, USP2a, USP2b, or USP2c for 24 hours prior 

to counting and transfer to CHEMICON QCM Migration Assay inserts and 

CHEMICON Cell Invasion Assay inserts. Compared to control, there was an 8%, 15%, 

and 17% increase in migration of HepG2 cells across the membrane in USP2a, USP2b, 

and USP2c, respectively. Overall, USP2b and USP2c increased migration while USP2a 

showed minimal change. Of the isoforms, USP2c was the only one to show a statistically 

significant increase (figure 8a). Compared to control, there was a 15% increase in 

invasion across the extracellular matrix for both USP2b and USP2c. For USP2a, there 

was minimal change (figure 8b). These results demonstrate USP2b and USP2c can 

move from an area with confluent cells to an area with no cells when no barrier is 

present. The addition of the ECM adds a barrier for the cells to have to go through, 

indicating additional challenge for the cells. This suggests the USP2b and USP2c 

isoforms have more aggressive migration and invasion properties than USP2a.  

In additional to proliferation, migration, and invasion, evading apoptosis is a 

hallmark of cancer. To examine apoptosis, cells were transfected with vector, USP2a, 

USP2b, or USP2c before monitoring apoptosis and necrosis using the RealTime-Glo 

Annexin V Apoptosis and Necrosis Assay. For 6 and 12 hours, no change was reported. 

After 24 hours, there was a 3.06 and 3.66 fold increase in RLU of USP2b and USP2c 

compared to vector, indicating apoptosis. Minimal change was seen in USP2a 

transfected cells, suggesting only USP2b and USP2c induce apoptosis in HepG2. For 

all time points, minimal change was seen between vector and any USP2 isoform for 
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necrosis determined by RFU (figure 8c). These results demonstrate increased apoptosis 

in cells overexpressing USP2b and USP2c, but not USP2a. Evading apoptosis is a 

hallmark of cancer, suggesting that within HepG2 cells, USP2a displays this property 

of cancer, while overexpressed USP2b and USP2c do not evade apoptosis. Interestingly, 

USP2b shows characteristics of both apoptosis and proliferation. This phenomenon is 

explained in the discussion section.  

 

DISCUSSION 

 We have found that the 3 different USP2 isoforms have distinct characteristics 

that make them unique from one another. However, only USP2a and USP2b are 

endogenously expressed in human and mice samples at levels quantifiable by TaqMan 

qPCR, so they will be the focus of the discussion. Ectopic expression of USP2c was 

studied in the liver, however it is important to note endogenous levels are usually very 

low or nonexistent. Additionally, it is critical to separate USP2 by isoform in the liver. 

As displayed in fig. 6, the total USP2 probe displayed a significant circadian pattern, 

similar to that of USP2b. However, expression levels of the USP2a probe were lower 

and did not follow the same pattern. If specific isoforms were not separated, the data 

could be misinterpreted, and total USP2 would in fact reflect the changes seen in USP2b, 

not USP2a, as this is the more abundant isoform in the mouse liver. A previous study 

analyzing isoform specific expression of USP2b in a variety of tissues shows similar 

results in mRNA expression via northern blot. Catalytic core and USP2b probes showed 

similar expression, while minimal to no USP2a was seen (3).  
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A variety of functional assays were utilized to evaluate properties of cancer. The 

6 hallmarks of cancer include evading apoptosis, self-sufficiency in growth signals, 

insensitivity to anti-growth signals, tissue invasion and metastasis, limitless replicative 

potential, and sustained angiogenesis (22). The assays utilized include proliferation, 

colony formation, wound healing, migration, invasion, and apoptosis. Both proliferation 

assay and colony formation assay assess the cells ability for sustaining proliferative 

signaling, with colony formation assessing long-term effects (23). Wound healing and 

the Boyden Chamber Migration assay assesses cell migration. The invasion assay 

assessed the invasive properties of the HepG2 cells. Migration is the movement of cells 

without having any barriers, while invasion requires cells to destroy barriers, such as 

ECM, in order to pass through (24). Finally, apoptosis assay assesses ability of cells to 

resist cell death. HepG2 cells were utilized for functional assays since they show very 

low expression of USP2b and USP2c. Huh7 cells, another HCC cell line, expressed both 

USP2a and USP2b. Although there is expression of USP2a in HepG2, we have seen 

more consistent results with USP2b, making it our point of focus. Since we are 

overexpressing the various isoforms, we want the endogenous expression to be low. 

USP2a was found to decrease in HCC compared to normal samples. However, 

in paired mice and human tumor and surrounding tissues, about half show an increase 

in USP2a in tumors, while the other half show a decrease. For human samples in 

particular, we saw both a dramatic increase and decrease. There was no trend for the 

relationship of USP2a in regards to gender, race, age, histologic grade, pTNM, focality, 

or tumor size, indicating another factor maybe affecting USP2a. Interestingly, a 

previous publication found the opposite relationship of USP2a between HCC and 
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normal samples, with USP2a expression increased in the tumor (21). Considering the 

dramatic increases and decreases seen in paired surrounding versus tumor tissue, it is 

probable that another factor affects USP2a, something unidentified in the current study 

or previous study. We propose this additional factor could be Farnesoid X Receptor 

(FXR) isoform alpha 2.  Interestingly, we noted that FXR2 was either undetected or at 

extremely low levels in the samples with low USP2a. It would be an interesting avenue 

to explore the role of FXR on USP2 expression. In addition to in vivo samples, USP2a 

function was examined in HepG2 cell lines. Overexpression of USP2a displays 

increased proliferation, colony formation, and wound healing characteristics. It showed 

minimal effect for migration, and no effect in invasion and apoptosis. This suggests of 

the 6 hallmarks of cancer, USP2a overexpression in an established HCC cell line allows 

the cells to have increased replicative potential.  

 Of great interest, this study has shown that USP2b correlates with healthier liver 

and decreased levels correlate with HCC surrounding and tumor samples. In human 

samples, USP2b was significantly decreased in human HCC samples compared to 

normal liver, and decreased within tumor samples compared to the surrounding liver 

tissue. Unfortunately, we have limited data about time of collection of samples from 

human patients. For paired samples, we addressed this uncontrollable factor by 

comparing percent decrease for each sample so time of day collected would have 

minimal impact. For normal human liver versus HCC samples, although we have no 

way to determine time of day samples were collected, there was a dramatic decrease in 

the HCC samples. Given that both HCC and normal samples were collected randomly 

through the day, the decrease seen can be taken as a true decrease. Together, this 
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suggests USP2b correlates with a healthier liver phenotype, and as the state of the liver 

worsens USP2b also decreases. In functional assays, overexpression of USP2b in 

HepG2 cells displayed increased proliferation, wound healing, colony formation, 

migration, invasion, and apoptosis. Interestingly, the overexpression of USP2b in HCC 

cells showed both tumor-enhancing and tumor-protective functions, such as 

insensitivity to anti-growth signals like apoptosis.  

While USP2b has been identified mostly as a circadian gene with little research 

into its cancer properties, this study clearly shows an involvement of USP2b with HCC. 

Although most current literature suggests a solely circadian role, cancer and circadian 

rhythms are intertwined. Notably, there has been accumulating epidemiological and 

genetic evidence implicating a connection between cancer development and circadian 

rhythms (25–27). Epidemiological studies have linked circadian disruption to increased 

susceptibility of cancer development in all key organ systems in humans, including 

breast (28), ovarian (29), lung (30), prostate (30), pancreatic (31), colorectal (32), and 

hepatocellular carcinoma (33). At the molecular level, it has been suggested that points 

of coupling between the cellular clock and cell cycle exist, thereby affecting genes 

including c-Myc and cyclin D, suggesting a potential link between cancer and circadian 

regulation (34).  

Although there is a decrease in USP2a in HCC subjects compared to healthy, 

overall USP2a displays tumor formation properties in HCC. Unlike USP2b, which 

shows a decrease in all tumors compared to surrounding pairs, USP2a shows an increase 

in half and a decrease in half for both mice and human samples. As an average, USP2a 

is increased in tumor samples compared to surrounding since the increases seen are so 
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dramatic. Additionally, all functional assays for USP2a point to increased tumor-

forming properties. The functional assays for USP2b showed both tumor-forming and 

tumor-protective properties. As discussed, USP2b has other functional characteristics, 

such as circadian effects. The opposing cancer properties seen in the functional assays 

may be due to the multifaceted role of USP2b in the cell. Unlike the functional assays, 

the tumor samples from human and mice were very consistent throughout. USP2b 

shows a steady decrease in hepatic expression from normal, to surrounding HCC tissue, 

to HCC tumor tissue. Additionally, all paired tumors showed a decrease in USP2b 

compared to surrounding tissue. This same trend is seen in paired mice samples, with 

the majority of samples showing a decrease in USP2b in tumor tissue. Taken together, 

USP2a and USP2b have opposing roles in HCC development, with USP2a displaying a 

tumor-promotion role and USP2b displaying a tumor-protective role.  
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Fig. 2 D 
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Fig. 6 
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Fig. 8 A 
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Fig. 8 C 
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FIGURE LEGENDS 

Fig. 1. USP2a mRNA levels in Healthy Liver and HCC patients. Human samples 

were divided into healthy, HCC-NT (paired), HCC-T (paired), HCC no pairs, and HCC 

combined. A single asterisk (*) indicates p<0.05, double asterisk (**) indicates p<0.01, 

and a triple asterisk (***) indicates p<0.001. (A) A statistically significant decrease in 

USP2a mRNA is seen in all sample groups compared to healthy tissue. (B) Paired HCC-

NT and HCC-T displayed an overall increase in USP2a mRNA within the tumor. (C) 

When normalized to individual samples, half of the samples displayed a dramatic 

increase while the other had a dramatic decrease. The line represents the surrounding 

tissue and the bar represents the tumor.  

 

Fig. 2. USP2b mRNA and protein levels decrease in Healthy Liver and HCC 

patients. Human samples were divided into healthy, HCC-NT (paired), HCC-T 

(paired), and HCC combined. A single asterisk (*) indicates p<0.05, double asterisk 

(**) indicates p<0.01, and a triple asterisk (***) indicates p<0.001. (A) A statistically 

significant decrease is seen between USP2b mRNA from healthy to HCC-T and again 

healthy to HCC-T (combined). (B) Paired HCC-NT and HCC-T displayed an overall 

decrease in USP2b mRNA within the tumor. (C) When normalized to individual 

samples, all showed a dramatic decrease in USP2b. The line represents the surrounding 

tissue and the bar represents the tumor.  (D) Of the 8 paired samples, 6 were available 

for protein analysis. A significant decrease in USP2b protein is seen in HCC-T samples 

compared to HCC-NT. 
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Fig. 3. Delta CT Values for USP2a and USP2b in Healthy Liver and HCC Patients. 

Delta CT values were analyzed to determine relative abundance of the two isoforms. 

The smaller the value, the more abundant the mRNA. Overall, USP2b is more abundant 

in healthy and HCC-NT samples compared to USP2a. Within HCC tumor samples, 

abundance of the two isoforms is comparable. The line represents the surrounding tissue 

and the bar represents the tumor. 

 

Fig. 4. USP2a expression levels in Murine Surrounding Liver and Tumor Samples. 

USP2a mRNA is dysregulated in murine tumor compared to surrounding tissue. In 14 

of the 26 samples there is an increase, while the other 12 show a decrease. The line 

represents the surrounding tissue and the bar represents the tumor. 

 

Fig. 5. USP2b expression decreases in Murine Surrounding Liver and Tumor 

Samples. USP2b mRNA is decreased in murine tumor compared to surrounding tissue. 

Of the 26 samples, 22 displayed a decrease. The line represents the surrounding tissue 

and the bar represents the tumor. 

 

Fig. 6. Circadian Pattern of USP2 mRNA in Healthy Mice Liver. Total USP2, 

USP2a, and USP2b mRNA levels were analyzed every 4 hours for 24 hours in healthy 

wild type mice samples. The total USP2 and USP2b probe displayed similar abundance, 

as displayed in the change in CT values, while USP2a was less abundant. Additionally, 

it is important to note from this figure the total USP2 probe follows the same trend as 

USP2b, as this is the more abundant isoform in the mouse liver.  
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Fig. 7. USP2a and USP2b Increases Proliferation, Wound Healing, and Colony 

Formation. HepG2 cells were transfected with USP2a or USP2b. A single asterisk (*) 

indicates p<0.05 and a double asterisk (**) indicates p<0.01. (A) Cells were counted 24 

and 48 hours post transfection with USP2a and (B) USP2b. (C) Cells were seeded at a 

low density of 600 cells in a 6 well plate and allowed to grow for 2 weeks. A statistically 

significant increase in colony number was seen in USP2a and USP2b transfected wells.  

(D) A scratch was taken in a monolayer of serum starved USP2 transfected HepG2 cells. 

Images were taken at time of initial wound (left) and 48 hours post scratch (right). 

Average % wound closure was measured from 3 random fields. Both USP2a and USP2b 

lead to a statistically significant increase in wound closure  

 

Fig. 8. Increased Migration, Invasion, and Apoptosis of USP2b and USP2c in 

HepG2 Cells. A single asterisk (*) indicates p<0.05 and a triple asterisk (***) indicates 

p<0.001. HepG2 cells were transfected with USP2a, USP2b, or USP2b. Cells were then 

seeded in an 8m pore chamber for (A) migration or (B) invasion chamber with ECM 

in triplicate. Media containing 20% FBS was used on opposing side of the membrane. 

An increase in both (A) migration and (B) invasion was seen for both USP2b and 

USP2c. (C) Cells were seeded into a 96 well plate, transfected, and RealTime-Glo 

Annexin V Apoptosis and Necrosis detection media was added. Luminescence and 

fluorescence were measured to detect apoptosis and necrosis, respectively. A significant 

increase in apoptosis was seen for USP2b and USP2c.  
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SUPPLEMENT TABLES 

 

Supplementary table 1: Sequence information for human USP2A, UPS2, and USP2C 

plasmid constructs in pcDNA3.1(+) vector. 

USP2A (NM_004205) 

aagcttgccgccaccATGTCCCAGCTGAGCAGCACACTGAAGAGATACACCGAG

AGCGCCAGGTACACAGATGCCCACTACGCCAAGTCCGGCTACGGCGCTT

ACACACCTAGCTCCTACGGCGCCAACCTGGCCGCTAGCCTGCTGGAAAA

GGAGAAGCTGGGCTTTAAGCCCGTGCCTACATCCAGCTTTCTGACCAGA

CCCAGAACCTACGGCCCCAGCTCCCTGCTGGACTACGACAGAGGCAGGC

CTCTGCTGAGACCTGATATCACCGGCGGCGGCAAGAGGGCCGAGTCTCA

AACCAGGGGCACAGAGAGACCCCTGGGCTCCGGACTGAGCGGAGGATC

TGGCTTTCCTTACGGCGTGACAAATAATTGTCTGTCCTACCTGCCCATCA

ATGCCTACGACCAGGGCGTGACACTGACCCAGAAGCTGGACAGCCAGTC

CGACCTGGCCAGGGACTTTAGCTCCCTGAGGACCTCCGATTCCTACAGA

ATCGATCCTAGAAATCTGGGCAGGTCCCCCATGCTGGCCAGGACAAGGA

AGGAGCTGTGCACCCTGCAGGGCCTGTACCAGACAGCCTCCTGCCCTGA

GTACCTGGTGGACTACCTGGAGAATTACGGCAGAAAGGGCAGCGCCTCC

CAGGTGCCTTCCCAGGCTCCTCCAAGCAGAGTGCCTGAGATCATCTCCCC

CACCTACAGACCCATCGGCAGGTACACCCTGTGGGAGACCGGCAAGGGC

CAGGCTCCAGGACCATCCAGATCCAGCTCCCCCGGCAGAGACGGCATGA

ATTCCAAGTCCGCCCAGGGCCTGGCCGGCCTGAGGAACCTGGGAAATAC

ATGTTTCATGAATAGCATCCTGCAGTGTCTGAGCAACACCAGAGAGCTG
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AGGGACTACTGCCTGCAGAGACTGTACATGAGGGATCTGCACCACGGCA

GCAATGCCCACACCGCCCTGGTGGAGGAGTTTGCCAAGCTGATCCAGAC

CATCTGGACCTCCAGCCCTAACGATGTGGTGTCCCCCTCCGAGTTCAAGA

CCCAGATCCAGAGATACGCCCCTAGATTCGTGGGCTACAATCAGCAGGA

CGCCCAGGAGTTTCTGAGATTTCTGCTGGATGGCCTGCACAACGAGGTG

AATAGGGTGACCCTGAGACCTAAGAGCAATCCTGAGAACCTGGATCACC

TGCCTGACGACGAGAAGGGCAGGCAGATGTGGAGAAAGTACCTGGAGA

GAGAGGACTCCAGGATCGGCGATCTGTTCGTGGGCCAGCTGAAGTCCAG

CCTGACCTGCACCGACTGCGGCTACTGCTCCACCGTGTTCGACCCCTTCT

GGGATCTGAGCCTGCCTATCGCCAAGAGAGGCTACCCCGAGGTGACACT

GATGGACTGTATGAGGCTGTTCACCAAGGAGGACGTGCTGGACGGCGAT

GAGAAGCCTACCTGTTGCAGATGTAGGGGCAGGAAGAGGTGTATCAAG

AAGTTTTCCATCCAGAGGTTTCCCAAGATCCTGGTGCTGCACCTGAAGAG

GTTTAGCGAGTCCAGAATCAGAACCAGCAAGCTGACCACATTCGTGAAC

TTTCCCCTGAGGGATCTGGATCTGAGGGAGTTCGCCTCCGAGAATACCA

ACCACGCCGTGTACAATCTGTACGCCGTGTCCAACCACTCCGGCACCAC

CATGGGCGGCCACTACACAGCCTACTGCAGATCCCCCGGCACAGGCGAG

TGGCACACATTTAACGATAGCAGCGTGACCCCCATGAGCTCCAGCCAGG

TGAGGACCAGCGACGCCTACCTGCTGTTCTACGAGCTGGCCTCCCCCCCT

TCCAGAATGTGAggatcc 

USP2B (NM_171997) 
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aagcttgccgccaccATGAGAACATCCTACACAGTGACCCTGCCCGAGGACCCCC

CCGCTGCTCCTTTTCCAGCCCTGGCTAAGGAGCTGAGGCCTAGAAGCCCT

CTGTCCCCTAGCCTGCTGCTGAGCACATTTGTGGGCCTGCTGCTGAATAA

GGCCAAGAATAGCAAGTCCGCCCAGGGCCTGGCCGGCCTGAGGAACCTG

GGAAACACATGTTTTATGAATAGCATCCTGCAGTGCCTGTCCAACACAA

GGGAGCTGAGAGATTACTGCCTGCAGAGACTGTACATGAGGGACCTGCA

CCACGGCAGCAATGCCCACACCGCCCTGGTGGAGGAGTTTGCCAAGCTG

ATCCAGACAATCTGGACAAGCAGCCCCAACGATGTGGTGAGCCCTTCCG

AGTTCAAGACACAGATCCAGAGATACGCCCCTAGATTTGTGGGCTACAA

CCAGCAGGACGCCCAGGAGTTTCTGAGATTCCTGCTGGATGGCCTGCAC

AACGAGGTGAACAGAGTGACACTGAGGCCCAAGTCCAATCCCGAGAAT

CTGGATCACCTGCCTGATGACGAGAAGGGCAGACAGATGTGGAGAAAG

TACCTGGAGAGAGAGGACTCCAGGATCGGCGATCTGTTCGTGGGCCAGC

TGAAGTCCTCCCTGACATGTACAGATTGTGGCTACTGCAGCACCGTGTTC

GACCCCTTTTGGGACCTGAGCCTGCCCATCGCCAAGAGGGGCTACCCTG

AGGTGACCCTGATGGACTGCATGAGGCTGTTTACAAAGGAGGATGTGCT

GGATGGCGACGAGAAGCCTACCTGCTGCAGATGCAGAGGCAGAAAGAG

ATGTATCAAGAAGTTTTCCATCCAGAGGTTCCCCAAGATCCTGGTGCTGC

ACCTGAAGAGGTTCAGCGAGTCCAGAATCAGAACAAGCAAGCTGACCA

CATTCGTGAATTTCCCTCTGAGAGATCTGGACCTGAGAGAGTTTGCCTCC

GAGAATACCAATCACGCCGTGTACAACCTGTACGCCGTGAGCAATCACT

CCGGCACCACAATGGGCGGCCACTACACCGCCTACTGCAGATCCCCCGG

CACCGGAGAGTGGCACACCTTTAATGATAGCTCCGTGACCCCCATGAGC
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TCCTCCCAGGTGAGGACATCCGACGCCTACCTGCTCTTCTACGAGCTGGC

CAGCCCCCCTTCCAGGATGTGAggatcc 

USP2C (NM_001243759) 

 

aagcttgccgccaccATGCTGGTGCCTGGCTCCACCAGGCCATACTCCAAGAAGA

GGCAGAATAGCAAGAGCGCCCAGGGCCTGGCCGGCCTGAGGAACCTGG

GAAATACATGTTTCATGAACTCCATCCTGCAGTGCCTGTCCAATACCAGA

GAGCTGAGGGATTACTGTCTGCAGAGGCTGTACATGAGGGATCTGCACC

ACGGCTCCAACGCCCACACCGCTCTGGTGGAGGAGTTCGCCAAGCTGAT

CCAGACAATCTGGACCTCCTCCCCTAACGATGTGGTGTCCCCTAGCGAGT

TTAAGACACAGATCCAGAGATACGCCCCTAGGTTCGTGGGCTACAACCA

GCAGGATGCCCAGGAGTTCCTGAGGTTCCTGCTGGACGGCCTGCACAAT

GAGGTGAACAGAGTGACACTGAGACCTAAGTCCAATCCCGAGAACCTGG

ACCACCTGCCTGATGACGAGAAGGGCAGACAGATGTGGAGAAAGTACC

TGGAGAGGGAGGATTCCAGAATCGGCGACCTGTTCGTGGGCCAGCTGAA

GTCCTCCCTGACCTGTACCGACTGCGGCTACTGCAGCACCGTGTTCGACC

CTTTTTGGGACCTGAGCCTGCCCATCGCCAAGAGGGGCTACCCTGAGGT

GACACTGATGGACTGTATGAGGCTGTTCACAAAGGAGGATGTGCTGGAT

GGCGACGAGAAGCCTACCTGTTGCAGGTGCAGGGGCAGGAAGAGATGC

ATCAAGAAGTTTAGCATCCAGAGGTTTCCCAAGATCCTGGTGCTGCACCT

GAAGAGGTTTAGCGAGTCCAGAATCAGAACCTCCAAGCTGACCACATTC

GTGAACTTCCCCCTGAGAGATCTGGACCTGAGAGAGTTTGCCTCCGAGA

ATACAAACCACGCCGTGTACAATCTGTACGCCGTGTCCAATCACTCCGG
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CACCACCATGGGCGGCCACTACACAGCCTACTGCAGGTCCCCCGGCACA

GGCGAATGGCACACCTTTAACGATAGCAGCGTGACCCCTATGAGCTCCT

CCCAGGTGAGGACCAGCGACGCCTACCTGCTGTTTTACGAGCTGGCCTC

CCCCCCTTCCAGAATGTGAggatcc 
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Supplement Table 2. Patients with pair of HCC-T and HCC-NT samples 

 

Note: a The top 5 pairs of samples were from University of Virginia, CHTN Mid-Atlantic 

Division and the bottom 3 pairs of samples were from Ohio State University, CHTN 

Midwestern Division; b F, female and M, male; c W, white and B, black; d N/A, information 

not available.  

 

Supplement Table 3. Patients with HCC-T samples 

 

Note: a The top 8 samples were from University of Pennsylvania, CHTN East Division and the 

bottom 2 samples were from Ohio State University, CHTN Midwestern Division; b F, female 

and M, male; c W, white and B, black; d N/A, Information not available. 

 

 

 

 

 

 

ID# a 

Gender
b 

Race
c Age 

Histologic 

Grades  

Focality Tumor 

Size  

Radiation/

Chemo 

MAD06-690 F W 75 G2 Multiple 11.8cm No 

MAD07-622 M W 53 G1 Solitary 6.8cm No 

MAD08-473 F W 18 G1 Solitary 9.2cm No 

MAD09-359 F W 45 N/Ad Solitary 12.1cm No 

MAD10-565 M B 60 G1 Solitary 8.7cm No 

4080892A/B M B 1 N/A Solitary 4.0cm N/A 

4110556A/B F B 68 G2/G3 Solitary 5.0cm N/A 

4101479A/B F W 69 G2 Solitary 3.5cm N/A 

ID# a 

Gender
b 

Race
c Age 

Histologic 

Grades  

Focality Tumor 

Size  

Radiation/

Chemo 

51213-T M W 78 G2/G3 Solitary 5.0cm N/A 

38403-A M B 75 G3 Solitary 6.1cm No 

45167-A M W 70 N/Ad Multiple 11.0cm No 

46728-A M W 70 G1 Solitary 9.0cm No 

47124-A F W 32 G1 Solitary 9.0cm N/A 

47419-A F B 73 G3 Multiple 5.4cm No 

47715-A M W 61 G2/G3 Solitary 3.9cm No 

52875-T F W 68 G1 Solitary 8,3cm No 

1110774A F B 59 G2 Solitary 4.0cm N/A 

1110926A M W 76 G2 Multiple 4.0cm N/A 
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USP2: Ubiquitin Specific Peptidase 2 
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ABSTRACT 

Previously, Ubiquitin Specific Peptidase 2 (USP2) has been identified as a gene 

of interest in circadian patterns, metabolism, and cancer. Here, we present a novel 

potential mechanism for USP2 regulation in the liver and in hepatocellular carcinoma 

(HCC) development through Farnesoid X Receptor (FXR). Between wild type and 

FXR-/- mice, there was a dysregulation in USP2 and previously identified downstream 

targets. To determine if the changes in USP2 were due to FXR regulation, we activated 

FXR in wild type mice, over-expressed FXR in liver cancer cells, and evaluated the 

effects of FXR activation on the USP2 promoter. Upon treatment with FXR agonist in 

wild type mice, USP2 mRNA and protein significantly increased compared to vehicle. 

Additionally, transfection and activation of FXR in huh7 cells lead to an increase in 

USP2. Of importance, we also found FXR directly regulates USP2 gene expression by 

dual luciferase assay. This study is the first to report FXR in the regulation of gene, 

mRNA, and protein expression of USP2 in the liver. Specifically, FXR2 is the 

predominant isoform in this regulation. As previous studies have found FXR to display 

a protective effect in HCC, this study identifies a novel mechanism of this protection 

through USP2.   
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INTRODUCTION 

Liver cancer is in the ten leading cancer types for estimated new cases and deaths in the 

United States in 2018, and is often detected at late stages when it is rapidly fatal (1). 

Risk factors include cirrhosis, hepatitis B, hepatitis C, tobacco smoking, alcohol, 

diabetes, and other metabolic liver disease. (2–7). Of the types of liver cancers in 

humans, hepatocellular carcinoma (HCC) is the most lethal and prevalent (8). An 

important factor in the development of HCC is Farnesoid X Receptor (FXR) (nuclear 

receptor subfamily 1, group H, member 4). FXR has a variety of important functions in 

the liver in both metabolic and non-metabolic processes. It is the master regulator of 

bile acid homeostasis, and plays a critical role in lipid, cholesterol, and glucose 

homeostasis (9–15).  In addition, FXR also plays an important role in both liver 

regeneration and liver cancer (16–18). It has been demonstrated that the relative 

expression levels of two FXR isoforms, FXR1 and FXR2, are significantly altered 

in HCC (19). Furthermore, FXR has been proposed to have a protective role from 

hepatocarcinogenesis through its anti-inflammatory activities and ability to prevent and 

repair liver injury (16,20–24). However, the mechanism by which FXR signaling 

protects against HCC development is still unclear.  

Characterization by microarray analysis of wild type and FXR-/- mice revealed 

multiple target genes that are regulated by FXR signaling. A large number of genes, 

especially those involved in cell proliferation and apoptosis, were regulated by FXR. 

Among these genes, Ubiquitin Specific Peptidase 2 (USP2) exhibited the most altered 

expression levels between wild type and FXR-/- mice. USP2 is a deubiquitinating 

enzyme (DUB), ultimately regulating protein stability through deubiquitination. 
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Posttranslational modification with ubiquitin regulates protein stability and has an 

essential role in regulating a variety of cellular processes. Ubiquitin can be reversed by 

DUBs, such as USP2, which involves hydrolysis of an isopeptide bond (25). Recent 

studies have shown that USP2 regulates a number of target proteins involved in cell 

proliferation, apoptosis, and tumorigenesis. These target proteins include cyclin A1, 

cyclin D1, mouse double minute 2 homolog (MDM2), MDM4, p53, fatty acid 

synthetase (FASN), receptor-interacting serine/threonine-protein kinase 1 (RIP1), and 

period circadian protein homolog 1 (PER1) (26–32). We hypothesized FXR regulates 

USP2 expression to protect from HCC development. 

Wild type and FXR-/- mice were used for the current study. A previous study 

found FXR-/- mice are a useful model for HCC studies, as they resemble HCC 

progression in humans with altered metabolism and increased inflammatory response 

and fibrosis (33). We report a dysregulation for USP2a and USP2b isoforms between 

wild type and FXR-/- mice during both their peak and trough time points. As previous 

literature has shown, the USP2b isoform is a circadian gene in mice. Based upon our 

previous studies, we found the highest expression of USP2 mRNA to occur at 2pm, and 

the lowest levels to occur at 6am when lights first turn on in the morning. For this reason, 

these are the two time points we used for our studies. FXR-/- mice display an increase 

in USP2a at both time points, and a decrease in USP2b at both time points. Additionally, 

downstream target genes were also shown to dysregulated. MDM2 decreased slightly 

in FXR-/- mice, while FASN and cyclin D1 were increased compared to the wild type.  

Importantly, we found that treatment of wild type mice with Obeticholic acid 

(OCA), a selective FXR agonist, leads to a significant increase in both USP2a and 
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USP2b. OCA has been found to reduce hepatic inflammation and fibrosis in a rat model 

of cirrhosis (34), as well as to protect against liver injury and inflammation in both 

lipopolysaccharide-induced (35) and carbon tetrachloride-induced liver injury (36). 

Notably, OCA has also been found to play a protective role in the liver. It protects 

against hepatocyte death and liver fibrosis in a murine model of nonalcoholic 

steatohepatitis (NASH) (37), and suppresses HCC proliferation and metastasis (38).  

In the HCC cell line Huh7, we explored the role of co-transfection with FXR1 

and FXR2 isoforms. When transfected with vector alone and treated with FXR 

agonists and antagonists, cells displayed no change in USP2 mRNA expression levels. 

When transfected with FXR2 and treated with FXR agonist, USP2b expression 

significantly increased. Additionally, we identified two separate promoters for USP2a 

and USP2b. Previously, the two isoforms are suggested to be due to alternative splicing 

(39). However, our data suggests they in fact come from different promoters. Through 

a dual luciferase reporter system we found co-transfection of the USP2 promoters with 

FXR2 and treated with FXR agonist leads to a dramatic increase in USP2 gene 

expression. This effect was not seen with transfection of the USP2 promoter alone. 

Overall, FXR has been shown to play a protective role against HCC 

development. Activation of FXR by OCA has been shown to have a variety of protective 

roles in response to liver injury and against HCC. Here, we report that treatment of wild 

type mice with OCA leads to significant increases in USP2. Previously it has been found 

that USP2 is significantly reduced in human HCC tumor samples compared to normal 

liver samples (manuscript 1). Additionally, the current study shows FXR regulates 

USP2 gene expression in Huh7 cells through two promoters. Taken together, this is the 
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first report of USP2 displaying a protective role against HCC development via FXR 

regulation. 

 

MATERIALS AND METHODS 

Cell Culture: Huh7 and HepG2 liver cancer cell lines were cultured at 37oC in a 

humidified atmosphere containing 5% CO2. Fetal Bovine Serum (FBS) (Atlanta 

biologicals, cat #S11550) was used at 10% for passing and 1% for treatment. Dulbecco’s 

Modified Eagle Medium (DMEM) was used for Huh7 culture and Minimum Essential 

Media (MEM) (Thermo Fisher Scientific, cat# 11095080) was used for HepG2. All 

media contained 1% PenStrep (Thermo Fisher, cat# 15140122), and 1% NEAA 

(Thermo Fisher, cat# 11140050). 

 

Cell Treatments: Cells were treated with drug dissolved in dimethyl sulfoxide (DMSO) 

(Sigma, cat# 276855) as a vehicle. DMSO was used for control for all experiments. DY 

268, a highly potent FXR antagonist, was purchased from Axon Medchem (cat# 2561) 

and treated at 1 M. Chenodeoxycholic acid (CDCA) was purchased from Sigma 

Aldrich (cat# C9377) and was treated at 10 M. GW4064, a selective FXR agonist, was 

purchased from Tocris (cat# 2473) and was treated at 1 M. 

 

Plasmid Constructs: Expression plasmids for human FXRα1 and FXRα2 were 

provided by Dr. Matthew Stoner and Dr. David Mangelsdorf (University of Texas 

Southwestern Medical Center).  
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Dual Luciferase Assay: Huh7 cells were plated at 80% confluence in 48 well plates in 

DMEM media. GenJet Reagent (Version II) (SignaGen, cat# SL100489) was used for 

transfection of USP2 promoter in luciferase vector along with co-transfection of human 

FXRα1 or FXRα2 into Huh7 cells according to suggested company protocol. Standard 

amounts of plasmid DNA was used and Renilla Luciferase null plasmid was used as an 

internal control for cell number and transfection efficiency. After transfection, cells 

were treated for 30 hours with FXR agonist or antagonists. Dual-Luciferase Reporter 

Assay System (Promega, cat# E1960) was used to determine the activity of the firefly 

and Renilla luminescence sequentially. Post treatment, cells were washed with PBS and 

lysis buffer was added followed by rocking. Cell lysates were transferred to a 96-well 

white walled plate and luciferase activities were measured using a dual injector GloMax 

Multimode Microplate Reader (Promega). Firefly luminescence was normalized based 

on Renilla luminescence signal, and the ratio of treatment over control served as fold 

activation. Data are presented as mean  standard deviation. 

 

Animal Experimentation General Care: All animals received humane care according 

to the criteria outlined in the “Guide for the Care and Use of Laboratory Animals” 

prepared by the National Academy of Sciences and published by the National Institutes 

of Health (NIH publication 86023 revised 1985). Mice were fed a regular chow diet and 

housed in Innovive IVC ventilated rodent housing system racks in IVC disposable 

cages. In total, 32 wild type mice (C57BL/6) and 17 FXR-/- mice were utilized. Of the 

wild type mice, 16 were female and 16 were male. Of the FXR-/- mice, 8 were female 

and 9 were male.  
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Wild Type versus FXR-/- mice samples: When comparing wild type and FXR-/- mice, 

the two time points previously discussed (6am and 2pm) had to be taken into 

consideration. All organ isolation occurred within 1 hour from these start times. For the 

6am group, 5 wild type and 8    FXR-/- mice were utilized. The wild type group 

contained 3 females and 2 males, and the FXR-/- group contained 4 females and 4 males. 

For the 2pm group, 8 wild type and 9 FXR-/- mice were utilized. The wild type group 

contained 3 females and 5 males, and the FXR-/- group contained 4 females and 5 males. 

All samples were snap frozen in liquid nitrogen.  

 

Wild Type Mice Obeticholic Acid Oral Gavage Treatment: A total of 19 wild type 

mice were utilized for this study. There were 8 mice in the vehicle control group, 5 of 

which were female and 3 were male. There were 11 mice in the treatment group, 5 of 

which were females and 6 were male. Their age ranged from x-x. The treatment group 

received a total of 5 doses of FXR agonist OCA at 50mg/kg over a course of 3 days. 

The control group received the vehicle, 1,2-propanediol diluted in PBS 1:4. They 

received 2 doses daily once in the morning and once at night for two days, and one final 

dose at 6am. Organ isolation started at 8am and was completed within 1 hour. All 

samples were snap frozen.  

 

Quantitative real-time PCR: RNA isolation, cDNA synthesis, and TaqMan qPCR 

assays were performed as previously described (manuscript 1). In short, RNA was 

extracted from tissue and cell samples using RNA-bee according to manufacturer’s 
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protocol (Amsbio, cat #CS-501B). M-MLV Reverse Transcriptase (Promega, cat 

#M170B) was utilized to synthesize cDNA. TaqMan Gene Expression Assay was 

utilized for analysis of cDNA. All TaqMan probes were purchased through Thermo 

Fisher Scientific and are as follows. Human total USP2 (cat# Hs00275859_m1), USP2a 

(cat# Hs00374431_m1), and USP2b (Hs01592505_m1) were purchased from catalog. 

Mouse total USP2 (cat# Mm00497452_m1) and USP2b (cat# Mm01168648) probes 

were purchased from catalog. The Custom TaqMan Assay Design Tool (cat# 4441114) 

was utilized for custom design of mouse USP2a probe based on NM_016808 (Assay ID 

ARCE37A). Applied Biosystems ViiA 7 Real-Time PCR instrument was used for 

quantification using the comparative CT (CT) method normalized against 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) housekeeper. 

 

Western Blotting: Liver tissue was homogenized in sucrose-Tris (ST) buffer composed 

of 0.25 M sucrose and 10 mM Tris-HCL with ph 7.4 containing Halt Protease Inhibitor 

Cocktail (Thermo Scientific, cat #87785) and phenylmethylsulfonyl fluoride (PMSF) 

(Sigma, CAS #329986). Membrane fractions containing total proteins were loaded into 

each well. After overnight wet transfer to polyvinylidene difluoride (PVDF) membrane, 

the membrane was probed for the various USP2 isoforms. Sequence specific antibodies 

were purchased from Biomatik, and are detiled in supplementary table 3. Additionally, 

the following antibodies were purchased: Cycin D1 (Santa Cruz cat# sc-8396), FAS 

(Santa Cruz cat# sc-55580), MDM2 (Santa Cruz cat# sc-965), P53 (Santa Cruz, cat #sc-

47698), and USP2 (Proteintech cat# 10392-1-AP). Rabbit anti-human GAPDH 

polyclonal antibody (Sigma-Aldrich, cat# G9545) was used as housekeepers to 
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normalize protein expression. Clarity and Clarity Max Western ECL Blotting Substrates 

(BioRad cat# 1705060) was added to membranes for chemiluminescent detection, 

incubated according to protocol, and imaged using myECL Imager from Thermo 

Scientific. ImageJ was used to quantify all bands which were normalized against 

GAPDH. 

 

Statistical analysis: Student t-test was applied to pair-wise comparison for normally 

distributed data. Non-parametric Mann-Whitney test was used for pair-wise 

comparison for non-normally distributed data. P value of 0.05 or lower was considered 

statistically significant. 

 

RESULTS 

USP2 and downstream target genes are dysregulated between WT and FXR-/- 

mice.  

 Previous studies have found a dysregulation of the USP2 isoforms in healthy 

versus HCC subjections, human tumor versus surrounding samples, and murine tumor 

versus surrounding samples (manuscript 1). Considering FXR-/- mice resemble HCC 

progression in humans (33), USP2 levels were compared in wild type and FXR-/- mice. 

As discussed, USP2 has multiple isoforms. When looking at USP2a and USP2b in wild 

type versus FXR-/- mice during peak and trough time points, they have opposing 

relationships. During the 2pm time point, USP2a shows a significant 1.7 fold increase 

in expression (fig. 1a) and a 46% decrease in USP2b expression (fig. 1b) in FXR-/- 

mice. During the 6am time point, the USP2 isoforms follow the same trend. USP2a 
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shows a significant 2.6 fold increase (fig. 1c), while USP2b shows a 37% decrease (fig. 

1d). Similarly, protein levels of USP2b displayed a 7% decrease in FXR-/- mice 

compared to wild type (fig. 2a).  In addition, previous publications have shown USP2 

to regulate MDM2, FASN, and cyclin D1. Compared to wild type mice, FXR-/- mice 

displayed a minor 16% decrease in MDM2 protein levels (fig. 2b), while FASN and 

cyclin D1 showed a 2 fold (fig. 2c) and 1.7 fold (fig. 2d) increase in protein levels, 

respectively. These results demonstrate USP2 is dysregulated between wild type and 

FXR-/- mice, as well as previously reported downstream USP2 protein targets. Overall, 

USP2b expression is decrease in FXR-/- mice while USP2a expression is increase. As 

FXR-/- mice mimics human HCC, the knockout of FXR leading to a decrease in USP2b 

expression suggests a protective role in HCC pathogenesis, and the increase in USP2a 

suggests a tumor formation role.  

 

Activation of FXR in WT mice leads to increased USP2 expression. 

The data comparing wild type and FXR-/- showed opposing relationships of 

USP2a and USP2b. To determine if activation of FXR would change expression levels 

of USP2, wild type mice were treated with OCA, an FXR agonist. Based upon previous 

studies in both humans and animals, a dose of 50mg/kg of OCA for a total of 5 doses 

over 3 days was chosen. FDA Full Prescribing Information for OCALIVA (obeticholic 

acid/OCA) animal data section doses range from 5-75mg/kg/day. The doses in clinical 

trials for OCA range from 10-50 mg daily for 2-72 weeks (40–43). Overall, wild type 

mice treated with OCA had dramatic 8.5, 3.0, and 8.5 fold increase in total USP2, 

USP2a, and USP2b mRNA levels, respectively (fig. 3a-c). These same samples also 
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showed a statistically significant increase in protein levels for both isoforms, with a 1.6 

fold increase in USP2a (fig. 4a), and a 1.6 fold increase in USP2b (fig. 4b). SHP was 

used as a positive control to confirm FXR activation in the treatment group. As 

expected, SHP expression levels displayed a 2.8 fold increase following treatment (fig. 

3d). Additionally, ARNTL, a main core component of the circadian clock, was probed 

to determine if the effects of FXR activation on USP2 is resulted from modulation of 

the circadian clock. As shown in fig. 3e, there were no changes ARNTL expression 

between vehicle and treatment, indicating that FXR signaling specifically regulates 

USP2 expression and FXR activation increased USP2 expression. Interestingly, both 

isoforms displayed increases in expression rather than opposing relationships as seen in 

wild type versus FXR-/- mice. Potential reasons for this effect is reviewed in the 

discussion.   

 

FXR activation in HCC cells increases USP2b mRNA levels.  

FXR activation in wild type mice led to increased hepatic UPS2 expression. To 

determine if this effect is also seen in a human cell line, Huh7 cells were transfected 

with pcDNA vector, FXR1, FXR2, or co-transfected with both isoforms. Cells were 

then treated with DMSO vehicle, FXR antagonist DY268, or FXR agonist GW4064. 

Between all transfected and treatment groups, no change in USP2a mRNA levels were 

seen (fig. 5a). Among all transfection groups, USP2b mRNA levels increased following 

GW4064 treatment. However, cells that were co-transfected with FXR2 and FXR1/2 

saw a statistically significant 1.8 and 1.5 fold increase in USP2b following GW4064 

treatment, respectively. While those transfected with pcDNA vector, FXR1, or 
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FXR1/2 only displayed a slight increase (fig. 5b). The increases in USP2b expression 

following GW treatment in these cells are a result from activation of endogenous FXR.  

These results demonstrate that FXR activation in human HCC cells increases USP2b 

expression, but not USP2a. In line with the OCA treatment in wild type mice, USP2b is 

the predominant isoform regulated by FXR. 

 

USP2a and USP2b are transcribed from two separate promoters 

Previous literature has presented USP2a and USP2b to be a result of alternative 

splicing of 5’ exons (39). In the current study, USP2a and USP2b showed opposing 

relationships in wild type compared to FXR-/- mice. When wild type mice were treated 

with FXR agonist, a dramatic increase was seen in USP2b, while a lesser increase was 

seen in USP2a. Additionally, previous studies (manuscript 1) found USP2b to have 

tumor protective properties while USP2a had tumor promotion properties. The different 

characteristics of the isoforms imply a potential for two separate promoters for USP2a 

and USP2b. The use of multiple promoters is a complex, but frequently used, 

mechanism (44). Studies have shown that at least 53% of human genes have alternative 

promoters (45). A depiction of the promoter map is shown in fig. 6. Both USP2a and 

USP2c contain the same exon 1, with exon 2 removed in the USP2c isoform. USP2b 

does not contain exon 1 or 2 from the USP2a isoform, and has a different exon 1. 

Based upon current findings of USP2a and USP2b displaying different 

responses, we identified the USP2a and USP2b promoters. The USP2a promoter was 

cloned into a luciferase reporter vector and transfected into Huh7 cells. Cells were either 

transfected with USP2 promoter alone, or co-transfected with FXR1, FXR2 or 
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FXR1/2 followed by treatment with FXR agonists and antagonists. Transfection and 

treatment with the USP2 promoter alone showed a minimal increased in luciferase 

expression, likely due to endogenous expression of FXR in Huh7 cells. Co-transfection 

with FXR1 showed no change among treatment groups. Co-transfection with FXR2 

showed a significant 54% decrease in luciferase when treated with FXR antagonist, and 

a dramatic 2.2 fold and 2.7 fold increase when treated with FXR agonists CDCA and 

GW4064. Co-transfection with FXR1/2 displayed a similar trend, but overall had a 

less robust increase or decrease following treatment (fig. 7a).  

Similar results were seen with the USP2b promoter, with no change in luciferase 

following promoter or FXR1 transfection and treatment. When transfected with 

FXR2 a significant 14% decrease in luciferase when treated with antagonist, and a 

dramatic 2.4 fold and 2.9 fold increase when treated with agonists CDCA and GW4064. 

This same change in USP2 expression was seen with FXR1/2 co-transfection, but with 

a less robust increase (fig. 7b). To control for effects of our vector, vector was 

transfected with or without FXR and treated with agonist. No change in luciferase was 

displayed for any group besides the promoter transfected and agonist treated group (fig. 

7c). Together, this data shows that the FXR2 isoform is the predominant isoform 

regulating USP2 transcription.  

 

Mapping of the FXR response elements in 1.5 kb USP2a and USP2b promoters 

(in progress). 

After it was determined FXR regulates USP2 transcription, a series of deletions 

from the distal end of the 1.5kb USP2 promoters was conducted to identify the response 
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element. The serial deletions for USP2a include 1.0, 0.5, 0.4, 0.3, 0.2, and 0.1kb 

promoter reporters, and for USP2b include 1.0 and 0.5kb. All data showed the same 

trend of FXR activation on USP2a (fig 8a) and USP2b (fig. 8b) as the 1.5kb constructs, 

suggesting the FXR response element for USP2a is within the 0.1kb region, while the 

FXR response element for USP2b is in the 0.5kb region. To further identify the precise 

location of the response element, 6 element reporter constructs were cloned into a 

luciferase reporter vector. These results identified a potential FXRE in element 3. 

 

DISCUSSION 

 A unique relationship is seen in USP2 levels between wild type and FXR-/- 

mice. USP2a levels are increased in FXR-/- mice while USP2b levels are decreased 

prior to spontaneous tumor formation seen in FXR-/- mice (8 months of age). 

Additionally, previously identified USP2 downstream target genes, including MDM2 

(28), FASN (32), and Cyclin D1 (27), were dysregulated. MDM2 levels did not show a 

dramatic change between wild type and FXR-/- mice. However, FASN and Cyclin D1 

displayed a 2 fold and 1.7 fold increase, respectively, in FXR-/- mice. The 

overexpression of FASN and Cyclin D1 have been linked to tumorigenesis in human 

tumors. Additionally, previous reports found USP2 to interact with and stabilize FASN 

in prostate cancer (32) and Cyclin D1 in 293 cells and in vivo (27). The first report 

identifies USP2a specifically, while the second report only references USP2. Based on 

the data in the current study, the increase seen in USP2a correlates with the increases 

previously seen in FASN and Cyclin D1. FXR-/- mice are used as a model of HCC 

progression, suggesting USP2a as a regulator of these two downstream target genes in 
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liver cancer. It remains to be determine whether FASN and Cyclin D are the downstream 

targets of USP2a, USP2b, or both.  

To determine if this change in USP2 levels between wild type and FXR-/- mice 

was truly caused by FXR, we treated wild type mice with an FXR agonist over a course 

of 3 days. This activation of FXR lead to an increase in both USP2a and USP2b isoforms 

at the mRNA and protein level. Although previous literature has cited USP2 to be a 

component of the circadian clock (46–49), ARNTL, a major component of the circadian 

clock, was not affected by this treatment. This suggests that although USP2 is involved 

in circadian patterns, it can be affected by other stimuli, such as FXR activation. 

Interestingly, USP2a expression is increased in FXR-/- mice during both time points 

compared to wild type mice, while USP2b expression is decrease. However, when wild 

type mice were treated with an FXR agonist, both isoforms increased. USP2a increased 

by 3 fold and USP2b increased by 8.5 fold. The USP2b trend is what is expected 

considering when FXR is knocked out in mice, USP2b also decreases. This increase in 

USP2a, which is much less dramatic than that of USP2b, may be due to the short 

duration of the study. As this was a short term study only lasting a few days, the changes 

seen in USP2 after FXR activation can be attributed to a direct effect of this activation. 

For a long term study, other factors could contribute to the changes seen in USP2, such 

as liver damage from inflammation and degradation. USP2a was increased in the FXR-

/- mice compared to wild type mice, in which both group were 8 months of age. This 

proposes a potential time effect of FXR activation or knockout on the USP2a isoform.  

 The effects of FXR were also investigated in Huh7 cells. Cells treated with 

transfection of FXR1, FXR2, or FXR1/2 displayed no changes in USP2a 
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expression following FXR drug treatments. After transfection of FXR2 and FXR 

activation, USP2b showed a significant increase in mRNA expression. Considering 

there was an increase in both USP2a and USP2b expression levels following FXR 

activation in mice, it was anticipated that both USP2a and USP2b would increase 

following FXR activation in cells. However, an increase in expression was only seen in 

USP2b following agonist treatment. Although no increase was seen in USP2a, this still 

correlates with the OCA mice treatment. A dramatic 8.5 fold increase was seen in 

USP2b, while only a 3.0 increase was seen in USP2a following activation in wild type 

mice. Considering USP2b saw the more dramatic fold increase in vivo, since there is 

only a 1.8 fold increase in expression in cells it would be expected that USP2a would 

show a much less fold increase. Since the increase in USP2b was so small, no increase 

in USP2a can be expected. 

To determine if FXR regulates USP2 at the transcriptional or post-

transcriptional level, USP2 promoters were characterized, and a dual luciferase 

promoter reporter assay was conducted using USP2a or USP2b promoters alone or co-

transfected with FXR1, FXR2, or FXR1/2. Activation of USP2a and USP2b 

promoters following FXR agonists indicated that FXR-mediated regulation of USP2a 

and USP2b is at the transcriptional level. A significant increase in USP2 gene expression 

was seen with co-transfection with FXR2. This effect was not seen with promoter 

transfection alone or with FXR1, suggesting this increase in gene expression is FXR2 

specific. Previous studies of human HCC samples comparing surrounding tissue to 

tumor tissue found an interesting relationship with USP2a. Of 8 paired samples, half 

displayed a dramatic increase in USP2a within the tumor sample, while the other half 
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had a dramatic decrease (manuscript 1). Interestingly, we noted that FXR2 was either 

undetected or at extremely low levels in the samples with low USP2a. In line with these 

findings, the current study shows USP2 gene expression is primarily regulated by the 

FXR2 isoform, and changes in mRNA were seen only in huh7 cells transfected with 

the FXR2 isoform. No change was seen in gene expression or mRNA levels with the 

FXR1 isoform alone, suggesting FXR2 is the predominant isoform regulating USP2. 

Overall, this study is the first to report FXR in the regulation of gene, mRNA, 

and protein expression of USP2 in the liver. Specifically, FXR2 is the predominant 

isoform in this regulation. FXR plays protective roles in HCC development and is also 

required for liver regeneration (17,18,22,33). As reported in manuscript 1, USP2b has 

apoptotic activity and protects HCC development. FXR-mediated regulation of USP2b 

and its downstream targets may provide a mechanistic link between FXR and its 

protective activity on HCC development.   
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FIGURE LEGENDS 

Fig. 1. USP2 mRNA levels are dysregulated between Wild Type and FXR-/- Mice 

at peak and trough time point in the liver. Wild type and FXR-/- liver were compared 

at the highest (2:00pm) and lowest levels of USP2 mRNA expression (6:00am). A single 

asterisk (*) indicates p<0.05 and a double asterisk (**) indicates p<0.01. (A) A 

significant increase in mRNA levels of USP2a was seen in FXR-/- mice compared to 

wild type, (B) while a significant decrease in mRNA levels of USP2b was seen at the 

2pm time point. Similarly, this same trend was seen at the 6am time point with a (C) 

significant increase in USP2a expression in FXR-/- mice, and a (D) decrease in USP2b. 

 

Fig. 2. USP2 and downstream target protein levels are dysregulated between Wild 

Type and FXR-/- Mice. Wild type and FXR-/- liver samples were compared to analyze 

USP2 and downstream target protein expression. A single asterisk (*) indicates p<0.05. 

(A) Consistent with mRNA expression, protein levels of USP2b are decreased within 

FXR-/- mice. Additionally, downstream target genes are also affected. (B) MDM2 

protein levels are slightly decrease in     FXR-/- mice, while (C) FASN and (D) Cyclin 

D1 display increased expression. 

 

Fig. 3. Treatment with FXR agonist OCA increases USP2 mRNA expression in the 

liver. Wild type mice were treated with OCA at 50mg/kg for a total of 5 doses over a 

course of 3 days. A single asterisk (*) indicates p<0.05, double asterisk (**) indicates 

p<0.01, triple asterisk (***) indicates p<0.001, and a quadruple asterisks (****) 
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indicates p<0.0001. (A) Total USP2 (B) USP2a, and (C) USP2b mRNA levels were all 

significantly increased in the treatment group compared to vehicle control. (D) SHP was 

used as a positive control to ensure FXR activation following treatment. (E) No change 

was seen in ARNTL, a core component of the circadian clock.  

 

Fig. 4. Treatment with FXR agonist OCA increases USP2 protein expression in the 

liver. Wild type mice were treated with OCA at 50mg/kg for a total of 5 doses over a 

course of 3 days. A double asterisk (**) indicates p<0.01. Both (A) USP2a and (B) 

USP2b displayed significant increases in protein levels following treatment. 

 

Fig. 5. USP2B mRNA increases after transfection and activation of FXR. Huh7 cells 

were transfected with vector, FXR1, FXR2, or co-transfected with both isoforms, 

and treated with FXR antagonist DY 268 or agonist GW 4064. A single asterisk (*) 

indicates p<0.05. (A) No change in USP2a mRNA expression levels was seen for any 

isoform transfection or treatment. (B) USP2b mRNA levels were significantly increased 

in the FXR2 and FXR1/2 groups following FXR activation.  

 

Fig 6. USP2a and USP2b are transcribed from two separate promoters.  Based 

upon the current study and previous studies, the expression levels and responses seen 

between USP2a and USP2b are very different. The different characteristics of the 

isoforms imply a potential for two separate promoters for USP2a and USP2b. Here, a 

map of the two promoter regions is depicted.  
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Fig. 7. FXR Regulates the USP2a and USP2b Promoter. Huh7 cells were transfected 

with (A) USP2a or (B) USP2b promoter either alone or co-transfected with FXR1, 

FXR2, or FXR1/2, followed by treatment with FXR antagonist DY 268 or agonists 

CDCA and GW 4064. A single asterisk (*) indicates p<0.05, double asterisk (**) 

indicates p<0.01, triple asterisk (***) indicates p<0.001, and a quadruple asterisk (****) 

indicates p<0.0001. (A) Following transfection with the USP2a promoter, no increase 

is seen in gene expression with transfection of the promoter alone or with FXR1. Co-

transfection with FXR2 and treatment with FXR agonists lead to a significant increase 

in USP2 gene expression, while antagonism lead to a significant decrease. Co-

transfection with FXR1/2 and treatment with FXR agonists lead to a significant 

increase in USP2 gene expression, while antagonism lead to a significant decrease, 

However, changes were stunted compared to FXR2 co-transfection. (B) Similar results 

were seen with the USP2b promoter. (C) Additionally, pGL3 luciferase vector had no 

effect on USP2. Huh7 cells were transfected with empty luciferase vector or USP2 

promoter with or without FXR2 and treated with FXR agonist GW4064. The only 

increase in luciferase ratio was seen in the USP2 promoter co-transfected with FXR2, 

determining this increase in luciferase is indeed dependent on FXR2 co-transfection, 

and not from the vector or treatment alone.  

 

Fig. 8. Mapping of the FXR response elements in 1.5 kb USP2a and USP2b 

promoters (in progress). After it was determined FXR regulates USP2 transcription, a 

series of deletions from the distal end of the 1.5kb USP2 promoters was conducted to 

identify the response element. The serial deletions for (A) USP2a include 1.0, 0.5, 0.4, 
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0.3, 0.2, and 0.1kb promoter reporters, and for (B) USP2b include 1.0 and 0.5kb. All 

data showed the same trend of FXR activation on (A) USP2a and (B) USP2b as the 

1.5kb constructs, suggesting the FXR response element for USP2a is within the 0.1kb 

region, while the FXR response element for USP2b is in the 0.5kb region.  
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APPENDIX 

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related 

deaths in the United States. HCC has a 5 year survival rate of only ~15% for all stages 

and ~3% for distant stages (1). Unfortunately, it is often detected at late stages when it 

is rapidly fatal. Risk factors include cirrhosis, hepatitis B, hepatitis C, tobacco smoking, 

alcohol, diabetes, and other metabolic liver disease. (2–7). Of interest in HCC is 

farnesoid X receptor (FXR), the nuclear receptor through which bile acids exert their 

functions through. FXR maintains bile acid homeostasis by regulating CYP7A1 and 

CYP8B1, which convert cholesterol into bile acids, hepatic export transporters such as 

bile salt export pump (BSEP) and ABCB4, which transports bile acids out of the liver 

and into the bile, and hepatic uptake transporters such as NTCP and OATPs. In addition, 

FXR has a wide range of functions beyond regulation of bile acids, including protective 

effects from HCC, liver regeneration, and anti-inflammatory activity (8–11). Elevated 

intrahepatic bile acids due to FXR knockout can lead to cholestatic liver injury in the 

short term, and HCC in the long term (12). Of importance, mice FXR KO models 

resemble HCC progression in humans. They display altered metabolism, elevated 

inflammation response, and fibrosis (13). It has also been reported that FXR knockout 

mice spontaneously develop HCC as they age (10). Although FXR has been implicated 

in protection against HCC, the mechanism by which it exerts its protective effects are 

unclear.  

Preliminary studies have been conducted using wild type and FXR knock out 

mice. Characterization by microarray analysis revealed ubiquitin specific peptidase 2 

(USP2) as a gene of interest. USP2 is a deubiquitinating (DUB) enzyme, ultimately 
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regulating protein stability through deubiquitination. Posttranslational modification 

with ubiquitin regulates protein stability and has an essential role in regulating a variety 

of cellular processes. Ubiquitin can be reversed by DUB, such as USP2, which involves 

hydrolysis of an isopeptide bond (14). Recent studies have shown that USP2 regulates 

a number of target proteins involved in cell proliferation, apoptosis, and tumorigenesis. 

These target proteins include cyclin D1 (15), cyclin A1 (16), mouse double minute 2 

homolog (MDM2) (17),  receptor-interacting serine/threonine-protein kinase 1 (RIP1) 

(18), and period circadian protein homolog 1 (PER1) (19). 

Based upon the identified trends and an abundance of literature implicating 

USP2 in tumorigenesis, we explore the role of the various USP2 isoforms in HCC. 

Additionally, we investigate how FXR regulates USP2, as well as the identification of 

two separate promoters.  

Methods, instrumentation, and techniques are thoroughly described in the 

manuscripts. In summary, Huh7 and HepG2 immortalized cell lines were used for cell 

based assays and for treatment with FXR agonists or antagonist drugs. GenJet Reagent 

(Version II) was used for transfection of USP2 and FXR plasmid constructs. Cell based 

assays include colony formation, proliferation, apoptosis and necrosis, wound healing, 

migration, and invasion. Human liver samples included healthy subjects, HCC paired 

tumor and surrounding tissue, and HCC tumor tissue. Wild type and FXR-/- mice were 

utilized for FXR activation studies and tumor studies. Total RNA was prepared by 

phenol-chloroform extraction and used to synthesize cDNA for TaqMan qPCR analysis. 

Applied Biosystems ViiA 7 Real-Time PCR instrument was used for quantification 

using the comparative CT (CT) method. Western blot was used for protein analysis 
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and was imaged using myECL Imager from Thermo Scientific. Dual Luciferase 

Reporter Assay system was used to measure gene expression using a dual injector 

GloMax Multimode Microplate Reader.  

Based upon the findings of the two manuscripts, USP2 is a very promising area 

for cancer research, specifically HCC. Consistently, USP2b is decreased within HCC 

subjects and in tumor mouse models. In addition, it is clear that there is a significant 

relationship between USP2 and FXR. This study is the first to report FXR regulating 

USP2 at the transcriptional level, specifically FXR2. A previous publication by the 

Deng lab has also shown FXR2 diminishes significantly, or is even untraceable, in 

HCC tumor samples (20). Based upon the current and previous findings, regulation of 

USP2 by FXR in HCC is a promising avenue to explore. 
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