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ABSTRACT

The overall objective of this dissertation is to effectively and efficiently obtain

some important characteristic functions of acoustic transducers, such as electrical

impedance function, transmitting voltage response (TVR) and beam pattern (BP).

Oftentimes, one makes measurements on these functions through traditional ways,

e.g., stepped harmonic analysis method and Fourier-based analysis method. To

improve the accuracy and efficiency of computing these characteristics, new ap-

proaches by pole-residue operations are developed and verified in this dissertation.

In this new approach, the poles and residues associated with the input and

output signals are extracted with the multi-signal Prony-SS method, which is an

extension and improvement of the classical Prony’s method. The system functions

can be computed by the operations of those poles and residues from input and

output signals. Compared with traditional methods, the new one not only turns

out effective and computationally efficient but also overcomes the leakage and the

frequency resolution problems, by getting a continuous function in the frequency

domain without periodic assumption. In addition, many significant characteristics,

such as modal frequencies and modal damping, can be precisely calculated from

the system poles other than reading them from the plotting of system functions in

traditional ways.

When a periodic loading excites the linear system, the calculation of transien-

t response is discussed in manuscript 1. Compared with time-domain methods,

frequency-domain methods are more computationally efficient when computing

the responses of linear dynamic systems. However, frequency-domain method-

s can only compute the steady-state response instead of the total response. To

the author’s best knowledge, the transient response of a dynamic system to arbi-

trary periodic loading can not be solved analytically. In the first manuscript, a



closed-form solution for the transient responses of linear multi-degree-of-freedom

(MDOF) systems to arbitrary periodic excitations is derived. By taking advantage

of the fast Fourier transform (FFT) algorithm, a very efficient numerical method

is developed to compute the transient and total responses of MDOF systems, suit-

able for both damped and undamped systems. In the newly developed method,

the computational time required for obtaining the transient response is much less

than that for the steady state response. Three numerical examples are provided

in this manuscript to verify the correctness, and demonstrate the effectiveness as

well, of the newly developed method.

Discussed in the second manuscript is the impedance function, which is very

essential for a transducer. The impedance function contains many important char-

acteristics, such as the resonant frequencies, anti-resonant frequencies, and max-

imum/minimum impedance values. In addition, the modal damping can also be

calculated through impedance function. It is usually measured first under air load-

ing and then under water loading. When the transducer is operated in water, some

characteristics, such as resonant and anti-resonant frequencies, are changed because

the acoustic medium becomes denser in water, and the added radiation mass in

water is much greater than that in air. This new method by pole-residue opera-

tions is applied to estimate impedance functions of acoustic transducers. With this

new method, the poles of the impedance function can be used to precisely com-

pute some characteristics of the transducer, such as modal frequencies and modal

damping. Four numerical examples show the procedures to calculate impedance

functions of the transducer under air and water loadings through both finite ele-

ment model and experiments. Together with their comparisons, the influence of

water to the transducer, the radiating mass, has been quantified.

Transmitting voltage response (TVR) and beam pattern (BP) are two of the



most important measures of a transducer’s ability to perform the functions of ra-

diating sound. Traditionally, there are two kinds of methods for measuring TVR

and BP, namely, single-frequency harmonic analysis method and Fourier-based

analysis method. But, both methods have drawbacks. The former one is too time-

consuming while the latter one suffers from the leakage and frequency resolution

problems. Additionally, both of them are usually influenced by the reflecting waves

from boundaries, such as water surface and acoustic tank walls. In manuscript 3,

a new approach by pole-residue operations is developed to estimate TVR and BP,

which overcomes the above drawbacks. Unlike the traditional methods, continu-

ous characteristic functions in the frequency domain can be obtained by one-time

measurement with the new method. Since very short signal is needed in this ap-

proach, the calculation of characteristic functions can be finished before the sound

waves travel back from the boundaries. Two numerical examples are provided to

show the procedures to compute TVR and BP of an underwater transducer. The

effectiveness is verified by the harmonic analysis method. The accuracy and the

efficiency are also demonstrated by the comparisons with traditional methods.
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PREFACE

This dissertation follows the University of Rhode Island Graduate School

guidelines for the preparation of a dissertation in manuscript format. The ma-

terial presented in this thesis is divided into six chapters.

• Chapter 1 provides an introduction to the studies within this dissertation, as

well as a review of the relevant research in obtaining characteristic functions

of a transducer.

• Chapter 2 is an introduction to methodology used throughout the disserta-

tion. It begins with a brief overview of traditional methods to calculate the

characteristic functions of a system. A recent pole-residue method is used

to develop how to compute the TVR and BP of acoustic transducers. This

approach is to calculate the system transfer functions based on pole-residue

operations.

• Chapter 3 is a manuscript to derive a closed-form solution for the transient

and total responses of SDOF/MDOF systems to arbitrary periodic excita-

tions. It showed that the transient response could be obtained in a similar

fashion as the steady-state response, but the roles of the system and excita-

tion were reversed. Additionally, computational time needed for getting the

transient response could be much less than that for the steady state response.

This manuscript has been published by Journal of Engineering Mechanics in

2018.

• Chapter 4 shows a manuscript to discuss the influence of water to the char-

acteristics of a transducer by comparing impedance functions when it’s oper-

ated with air and water loadings. In this chapter, finite element models are

developed both in air and in water to compute the reactive nodal charges

vii



(output) due to the input voltage (input) applied on the transducer. In or-

der for verification, experiments are designed to measure the voltage across

the transducer (input) and electrical current in the circuit (output). The

poles and residues are obtained by processing those input and output signals

from FEM and experiments, which are used for the calculation of impedance

functions and their comparisons. The resonant frequencies and damping

ratios can be accurately obtained from the system poles instead of observ-

ing impedance function in the traditional way. The influence of water to the

characteristics of underwater transducers is also quantified in this manuscrip-

t. This manuscript will be submitted to IEEE Transactions on sonics and

ultrasonics.

• In Chapter 5, a manuscript presents how to calculate TVR and BP of an

underwater transducer from finite element model by pole-residue operations.

This new method can be applied to effectively compute the characteristic

functions. Compared with traditional ways, in addition to the common leak-

age and frequency resolution problems, the proposed method also overcomes

the contamination problem of reflected acoustic waves from boundaries by

using very short signal. Furthermore, the efficiency of this method is demon-

strated by giving a continuous function for all frequency components with

one single input at a time when calculating TVR and beam pattern. This

manuscript will be submitted to The Journal of the Acoustical Society of

America.

• Conclusions and plans for future work are given in Chapter 6.

Appendix A is an introduction to the fundamentals of underwater transducers,

such as piezoelectric material, acoustic medium, free flooded ring transducers and

viii



Helmholtz frequency. Appendix B presents how to set up the finite element models

in air and in water, and lists the details of key techniques of FE models. In

appendix C, the author demonstrates the procedures to update material properties

of the transducer used in this study.

ix
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response ũjk(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Summary of operations for calculating the system functions h̃jk(s) . 21

3.1 Numerical values of the components of a square wave . . . . . . . . 37

3.2 System poles and residues of h̃62(s), and corresponding modal fre-
quencies and damping ratios . . . . . . . . . . . . . . . . . . . . 47

3.3 Values of Vn and p̃(µn) for v62(t) . . . . . . . . . . . . . . . . . . . . 48

3.4 Computational time required for the steady state solution Tss and
the transient solution Ttr against the number of time steps Ns . 51

4.1 Summary of operations for calculating the system functions h̃jk(s) . 61

4.2 FEM signal decomposition results of the transducer in air . . . . . . 65

4.3 Experimental signal decomposition results of the transducer in air . 68

4.4 Transducer Properties of original and updated experiment models . 70

4.5 Updated FEM signal decomposition results of the transducer in air
(with polyurethane layer) . . . . . . . . . . . . . . . . . . . . . 70

4.6 FEM signal decomposition results of the transducer in water . . . . 73

4.7 FEM signal decomposition results of the transducer in water (with
air filled in the tube) . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Experimental signal decomposition results of the transducer in water 77

5.1 Summary of operations for calculating the system functions h̃jk(s) . 87

5.2 Signal decomposition for input voltage and output acoustic pressure 92

xviii



CHAPTER 1

Introduction

1.1 Problem statement

The study of electroacoustics began more than 200 years ago and the develop-

ment expanded rapidly during the last decades. Currently, it has been grown to a

large field with many significant applications, which involve mechanics, electricity,

magnetism and acoustics.

A transducer is usually referred to a device that converts energy from one

form to another. So, the electroacoustic transducer converts electrical energy to

acoustical energy or vice versa, which is a multi-physics device and can be di-

vided into three parts, mechanical as a moving body controlled by forces, electri-

cal as a current controlled by voltage, and acoustical as an interaction between

its moving surface and the ambient acoustic medium. Important characteris-

tics of a transducer, such as resonant frequency, mechanical damping, electrical

impedance function, electromechanical coupling coefficient, TVR and BP, are al-

ways the focuses for the design and practical applications of acoustic transducers

(Sherman and Butler, 2007).

Electrical impedance function, TVR and BP will be studied in this disserta-

tion. Electrical impedance function is a complex function in the frequency domain

that describes the opposition of a current in a circuit to the applied voltage. As

the complex ratio of the voltage to the current in an alternating current circuit,

impedance possesses both magnitude and phase angle. The magnitude presents the

resistance in the circuit and phase angle stands for the offset of the phase between

the current and the applied voltage (Wikipedia Electrical Impedance, 2018).

The transmitting voltage response of a projector is defined as the pressure

referenced to 1 meter and a pressure of p0 = 1 µPa in underwater applications,
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which is often represented on dB scale. It is one of the most important measure-

ments for the acoustic performance of a transducer. Oftentimes TVR is measured

in the direction of the maximum response axis at a radial distance in the far field

(Sherman and Butler, 2007). However, the TVR in this study is extended to a

function in the frequency domain in any direction other than only in the direction

of maximum response axis, which can be interpreted as the transfer function from

input voltage to output pressure referenced to 1 meter and 1 µPa.

Radiation usually refers to the emission or reception of wave front. In any

case, a sketch drawn to show the radiation of a device is its radiation pattern,

also called beam pattern. Beam pattern of a transducer is the variation of sound

pressure level in the far field, which is a function of the direction away from the

transducer. Since it is a relative quantity and only the power radiation pattern is

concerned, the beam pattern is often scaled and plotted on logarithmic or dB scale

(Wikipedia Radiation Pattern, 2018; Sherman and Butler, 2007).

Measurements of these functions are usually carried out at one single frequen-

cy, or over a range of frequencies of interest in the frequency domain. Generally,

there are two types of traditional methods for measuring the above characteris-

tic functions, i.e., stepped harmonic analysis method and Fourier-based analysis

method. The stepped harmonic analysis is to repeatedly apply a harmonic input

signal to get the corresponding steady state response of the given frequency, and is

generally considered to be an accurate way to obtain frequency response function

(FRF). The Fourier method computes the system function through the application

of FFT of both input and output signals, and is considered to be an efficient way

on estimating FRF. Both methods have drawbacks though. The stepped harmonic

analysis method is time costly especially when very high time/frequency resolu-

tion is required, while the Fourier-based analysis method is always affected by the
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periodic assumption and sampling rate for signals and consequently suffers from

the leakage problem and frequency resolution issue.

In this study, a recently developed method in the Laplace domain, called

pole-residue method, will be applied to estimate those characteristic functions.

The application of the new method is to obtain the poles and residues of input

and output signals processed by the Prony-SS method. Next, the system functions

can be computed by manipulating those poles and residues, which will be shown in

Chapter 2. Compared with traditional ones, the new method by pole-residue oper-

ations is more effective and more efficient to calculate the characteristic functions,

and its accuracy in theory is higher than that of any time-domain approaches.

Furthermore, it overcomes the leakage and the frequency resolution problems by

getting a continuous function in the frequency domain without any assumption.

In addition, many significant characteristics, such as modal frequencies and modal

damping, can be precisely calculated from the system poles other than reading

them from the plotting of system functions in traditional ways.

1.2 Organization of the text

This dissertation on characteristic functions has been written in the following

five chapters.

Chapter 2 is an introduction to methodology used throughout the dissertation.

It begins with a brief overview of traditional methods to calculate the characteristic

functions of a system. A recent pole-residue method is used to develop how to

compute the TVR and BP of acoustic transducers. This approach is to calculate

the system transfer functions based on pole-residue operations.

Chapter 3 is a manuscript to derive a closed-form solution for the transient

and total responses of SDOF/MDOF systems to arbitrary periodic excitations. It

showed that the transient response could be obtained in a similar fashion as the
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steady-state response, but the roles of the system and excitation were reversed.

Additionally, computational time needed for getting the transient response could

be much less than that for the steady state response.

Chapter 4 shows a manuscript to discuss the influence of water to the charac-

teristics of a transducer by comparing impedance functions when it’s operated with

air and water loadings. In this chapter, finite element models are developed both

in air and in water to compute the reactive nodal charges (output) due to the input

voltage (input) applied on the transducer. In order for verification, experiments

are designed to measure the voltage across the transducer (input) and electrical

current in the circuit (output). The poles and residues are obtained by processing

those input and output signals from FEM and experiments, which are used for the

calculation of impedance functions and their comparisons. The resonant frequen-

cies and damping ratios can be accurately obtained from the system poles instead

of observing impedance function in the traditional way. The influence of water to

the characteristics of underwater transducers is also quantified in this manuscript.

In Chapter 5, a manuscript presents how to calculate TVR and BP of an

underwater transducer from finite element model by pole-residue operations. This

new method can be applied to effectively compute the characteristic functions.

Compared with traditional ways, in addition to the common leakage and frequen-

cy resolution problems, the proposed method also overcomes the contamination

problem of reflected acoustic waves from boundaries by using very short signal.

Furthermore, the efficiency of this method is demonstrated by giving a continu-

ous function for all frequency components with one single input at a time when

calculating TVR and beam pattern.

Finally, Chapter 6 concludes all the findings and contributions of this disser-

tation.
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CHAPTER 2

Theoretical Development of System Functions

Characteristic functions of a transducer generally fall into the category of sys-

tem functions. In engineering, a system function usually refers to a mathematical

expression of the system characteristics, which demonstrates the relationship be-

tween the response (output) and the excitation (input) in some specific domain,

oftentimes time-, frequency- or Laplace- domain. System functions provide the

information that describes the behavior of a system, for example a transducer.

Therefore, they are very essential for the studies of underwater transducers with

respect to electrical and acoustical performance. The methods and the procedures

to calculate system functions will be discussed in this chapter.

2.1 Introduction and literature review

System functions are commonly used in the analysis of systems which are

linear time-invariant or having behavior that is close enough to linear. For con-

venience, this section will focus on the system functions of linear single-degree-of-

freedom (SDOF) systems.

Traditional methods for obtaining system functions have been carried out in

three distinct domains: time, frequency and Laplace domains, which are unit Im-

pulse Response Function (IRF), Frequency Response Function (FRF) and Transfer

Function (TF), respectively.

Throughout this dissertation, three types of specific notations are used to

denote different variables in the three domains, i.e., lower-case letters for functions

depending on time t, the same letters with a tilde for their Laplace transforms on

s, and the same capital letters for their Fourier transforms on frequency ω. For

example, x(t), x̃(s) and X(ω) represent a function in time domain, its Laplace
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transform and its Fourier transform, respectively.

Following are the preliminaries and some discussion of above three methods.

2.1.1 IRF

The unit impulse function, δ(t), also referred to as the Dirac delta function,

is defined as (Wikipedia Delta Function, 2018)

δ(t) =


+∞, t = 0

0, t ̸= 0

(2.1)

and is also constrained by the following feature∫ +∞

−∞
δ(t)dt = 1 (2.2)

Consider a damped SDOF system subject to an excitation of unit impulse.

Let the system initially be at rest. One can write the equation of motion as

mü+ cu̇+ ku = δ(t) (2.3)

and initial conditions as

u(0) = 0, u̇(0) = 0 (2.4)

In physics, the unit impulse excitation only yields a sudden change of momen-

tum between at and right after the time t = 0. Since momentum is the product

of mass and velocity, together with the fact that mass is a constant value in this

time-invariant system, the change of momentum can be expressed as change of

velocity multiplied by the mass. In other words, the unit impulse external force is

equivalent to giving the mass an initial velocity of 1/m. Therefore, the dynamic

problem becomes

mü+ cu̇+ ku = 0 (2.5)

u(0) = 0, u̇(0) = 1/m (2.6)
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which is a free vibration with equivalent initial velocity 1/m.

One can easily solve the unit impulse response function, denoted h(t), as

h(t) =
1

mωd

e−ξωnt sin(ωdt) (2.7)

in which, the natural frequency

ωn =

√
k

m
(2.8)

the damped frequency

ωd =
√

1− ξ2ωn (2.9)

and the damping ratio

ξ =
c

2
√
mk

(2.10)

2.1.2 FRF

Consider again the SDOF system in Eq. 2.3 for the complex frequency response

function (Craig and Kurdila, 2006). Instead of δ-function, let the external force

be p(t) = p0 cosΩt, where p0 and Ω are the amplitude and the frequency of this

periodic excitation, respectively. Therefore, the equation of motion for the damped

SDOF system becomes

müR + cu̇R + kuR = p0 cosΩt (2.11)

Similarly, when the external force is changed to p0 sinΩt, the equation of motion

will be

müI + cu̇I + kuI = p0 sinΩt (2.12)

Multiplying Eq. 2.12 by imaginary unit i =
√
−1 and adding it to Eq. 2.11, together

with Euler’s formula, one can have the complex equation of motion as

mü+ cu̇+ ku = p0e
iΩt (2.13)
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in which u represents the complex response as u = uR+ iuI . One can easily obtain

the steady state solution of Eq. 2.13, denoted us(t), as

us(t) = UeiΩt (2.14)

in which the complex amplitude U has the expression of

U =
p0

(k −mΩ2) + icΩ
(2.15)

or

U =
p0/k

(1− r2) + i(2ξr)
(2.16)

where r = Ω/ωn is the frequency ratio.

Therefore, the complex frequency response function, denoted H(Ω) or H(r), can

be obtained

H(Ω) = H(r) ≡ U

p0
=

1

(k −mΩ2) + icΩ
=

1/k

(1− r2) + i(2ξr)
(2.17)

Eq. 2.17 can also be written in the form of amplitude and phase angle as

H(r) = Aeα (2.18)

in which the amplitude of complex FRF is

A = |H(r)| = 1/k√
(1− r2)2 + (2ξr)2

(2.19)

and the phase angle is

α = tan−1(− 2ξr

1− r2
) (2.20)

2.1.3 TF

Transfer function is used to calculate the system response by the Laplace

transform (LT) method. The one-sided Laplace transform of an arbitrary function

f(t) in the time domain can be written as (Craig and Kurdila, 2006)

f̃(s) ≡ L[f(t)] =
∫ ∞

0

e−stf(t) dt (2.21)
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where f̃(s) represents the signal in the Laplace domain and s is the Laplace vari-

able.

Consider the SDOF system with given external force p(t). Let the initial

conditions be the displacement u0 = u(0) and the velocity v0 = u̇(0). The equation

of motion can be written as

mü+ cu̇+ ku = p(t) (2.22)

By definition of Laplace transform in Eq. 2.21, one can get the Laplace transform

of u̇ and ü as

L[u̇(t)] = s

∫ ∞

0

e−stu(t)dt+ e−stu(t)

∣∣∣∣∞
0

= sũ(s)− u0 (2.23)

and

L[ü(t)] = s2ũ(s)− su0 − v0 (2.24)

respectively.

Applying Laplace transform to both sides of Eq. 2.22, the equation of motion

in the Laplace domain is obtained

(ms2 + cs+ k)ũ(s) = p̃(s) +mv0 + (ms+ c)u0 (2.25)

The last two terms of right-hand side in Eq. 2.25 are the initial condition problems

and they have been theoretically solved in many textbooks. To focus on the trans-

fer function, the system will be considered initially at rest. Therefore, Eq. 2.25

becomes

(ms2 + cs+ k)ũ(s) = p̃(s) (2.26)

The response in Laplace domain can be written as

ũ(s) = h̃(s)p̃(s) (2.27)
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where h̃(s) is the transfer function of the system

h̃(s) =
1

ms2 + cs+ k
=

1

m(s2 + 2ξωns+ ω2
n)

(2.28)

The transfer function h̃(s) is a complex function of s and is displayed as a

surface in Laplace domain. Consider the characteristic equation of the denominator

in Eq. 2.28. For this damped system, the two roots s1 and s2 of the characteristic

equation can be written as

s1,2 = −ξωn ± iωd (2.29)

where s1 and s2 are complex conjugate, denoted µ and µ∗ in the following presen-

tation. The transfer function becomes

h̃(s) =
1

m(s− µ)(s− µ∗)
(2.30)

where µ and µ∗ are the so-called poles of the transfer function, which are related

to the resonant frequencies and damping of the system. Through partial fraction

expansion, Eq. 2.30 can be expressed as

h̃(s) =
1

m(s− µ)(s− µ∗)
=

β

(s− µ)
+

β∗

(s− µ∗)
(2.31)

in which the complex conjugates β and β∗ are called the residues of the transfer

function, which are related to the amplitude of the response. The residues can be

easily derived as

β =
1

i(2mωd)
(2.32)

2.1.4 Discussion

When solving dynamic problems, the three methods discussed in this section

have their respective advantages and disadvantages/limitations, especially when

systems become multi-degree-of-freedom (MDOF).

Time-domain method involves the convolution process and step-by-step nu-

merical integration with the required time-step resolution. Although this method is
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usually considered accurate, it is computationally expensive to carry out, especial-

ly when calculating a lengthy response with small time steps and a large number

of DOF (Clough and Penzien, 2003; Craig and Kurdila, 2006; Hu et al., 2016).

To implement frequency-domain method, one firstly needs to decompose the

input signal into some discrete harmonic components by Fourier transform. Multi-

plying the Fourier transform of input by the FRF of the system, one can calculate

the response in the frequency domain. Finally, the time-domain response can be ob-

tained by applying the inverse Fourier transform to the frequency-domain response.

Due to the application of fast Fourier transform algorithm, frequency-domain

method is usually more computationally efficient than time-domain method. How-

ever, the frequency-domain method can only deal with problems aiming at the

steady-state response because it never includes any initial conditions. Furthermore,

due to the periodic assumption, this method always suffers the leakage problem

and frequency resolution issue (Clough and Penzien, 2003; Hu et al., 2016).

To solve a dynamic problem by the Laplace transform method, one needs

to (1) obtain the transformed input signal in Laplace domain and the transfer

function of the system, (2) multiply the Laplace-domain input by the transfer

function, and (3) transform the results from Step 2 back to the time domain. The

above procedures only consider the system with zero initial conditions because non-

zero conditions can be easily solved separately. The Laplace transform method is

pretty useful when the forward and inverse transforms can be found in the table of

Laplace transforms. Therefore, traditional Laplace methods can only be applied

under some particular conditions (Polking et al., 2006; Hu et al., 2016).

2.2 Pole-Residue Method

A recently developed pole-residue method used in this article falls into the

category of Laplace-domain method. Compared with traditional methods that are

11



only limited to analytical forms, the new method are applicable to arbitrary input

functions. The key development of the new method is to calculate the poles and

residues of the response function. By the partial fraction forms of a function with

the poles and residues, one can directly write the function in both time and Laplace

domains. This section introduces how to obtain the poles and residues of all three

components in a dynamic problem, i.e., input/excitation, system function, and

output/response.

2.2.1 Poles and residues of an excitation

Consider a general complex function

f(t) = α exp(λt) (2.33)

in which α and λ are complex constant parameters.

By the definition of Laplace transform in Eq. 2.21, one can get its Laplace transform

as

f̃(s) ≡ L[f(t)] = α

s− λ
(2.34)

Therefore, α exp(λt) and α/(s− λ) are a Laplace transform pair.

Mathematically, an arbitrary external force p(t) can always be decomposed into a

finite number of components (Hu et al., 2016)

p(t) =
L∑

ℓ=1

αℓ exp(λℓt), 0 6 t < T (2.35)

By Eqs. 2.33 and 2.34, one can have the Laplace-domain excitation as

p̃(s) =
L∑

ℓ=1

αℓ

s− λℓ

(2.36)

This expression is often called partial fraction form, or pole-residue form, in which

λℓ are the poles and αℓ are the corresponding residues.

Particularly, when substituting s by iω, Eq. 2.36 becomes

P (ω) ≡ p̃(s = iω) =
L∑

ℓ=1

αℓ

iω − λℓ

(2.37)
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which can be interpreted as the Fourier transform of p(t) with continuous frequency

domain.

2.2.2 Poles and residues of a system

The equation of motion for an N -DOF system can be expressed by the fol-

lowing form (Craig and Kurdila, 2006; Hu et al., 2016)

Mü(t) +Cu̇(t) +Ku(t) = p(t) (2.38)

where M,C,K are N × N matrices of mass, damping and stiffness, respectively,

u(t) is a N×1 vector of the displacement, and p(t) is a N×1 vector of the external

force.

Consider the system initially at rest. Similar with the derivation of SDOF in

section 2.1.3, one can get the Laplace transform of Eq. 2.38 as

(Ms2 +Cs+K)ũ(s) = p̃(s) (2.39)

The transfer function matrix is defined from input p̃(s) to output ũ(s), denoted

by an N ×N matrix h̃(s). Thus, one obtains

ũ(s) = h̃(s)p̃(s) (2.40)

Combining Eqs. 2.39 and 2.40, one can get

h̃(s) = (Ms2 +Cs+K)−1 (2.41)

Each entry of h̃(s), denoted by h̃jk(s), is a transfer function, which relates the out-

put at coordinate j to its input at coordinate k in this N -DOF system. Therefore,

one can obtain all the poles and residues of this system once each transfer function

h̃jk can be expressed in pole-residue form.

Now consider the state space model. Let the state vector be defined as a 2N

vector

z(t) =

{
u(t)
u̇(t)

}
(2.42)
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Thus, Eq. 2.38 can be rewritten in generalized state-space form

Aż(t) +Bz(t) = q(t) (2.43)

where

A =

[
C M
M 0

]
, B =

[
K 0
0 −M

]
and q(t) =

{
p(t)
0

}
.

are the 2N × 2N coefficients matrices and 2N × 1 state forcing vector. In physics,

matrices M, C, and K are usually symmetric. Therefore, the coefficient matrices

A and B in Eq. 2.43 are still symmetric.

The solution for this set of ordinary differential equations with constant coefficients

has the form

z(t) =

{
u(t)
u̇(t)

}
= θθθeµt =

{
ϕϕϕ
µϕϕϕ

}
eµt (2.44)

where µ is a scalar, θθθ a 2N × 1 vector, and ϕϕϕ an N × 1 vector corresponding to the

displacement vector u(t).

Combining Eqs. 2.43 and 2.44, one can obtain the generalized eigenvalue e-

quation

[µA+B]θθθ = 0 (2.45)

By solving the characteristic equation

det(µA+B) = 0 (2.46)

one can get the solution of Eq. 2.45 with 2N eigenvalues µn and 2N corresponding

eigenvectors θθθn, where n = 1, 2, · · · , 2N . Note that the 2N eigenvalues µn must

either be real or occur in complex conjugate pairs. Likewise, the eigenvectors θθθn

will correspondingly be real or complex conjugate pairs.

According to the orthogonality equations for complex modes, together with

the symmetry of A and B, one has

θθθtrAθθθs = 0, θθθtrBθθθs = 0, for µr ̸= µs, r, s = 1, 2, · · · , 2N (2.47)
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Defining the complex modal matrix

Θ = [θ1 θ2 · · · θ2N ] (2.48)

and the physical-modal coordinate transformation relationship

z = Θy (2.49)

one can decouple Eq. 2.43 into 2N modal first-order equations of motion

anẏn + bnyn = qn, n = 1, · · · , 2N (2.50)

where yn is the ‘state-space’ solution of nth mode, an = θθθtnAθθθn, bn = θθθtnBθθθn, and

qn = θθθtnq. Then, from Eq. 2.50, the transfer function of nth modal equation of

motion can be easily derived as

h̃n(s) =
1

ans+ bn
=

1

an(s− µn)
, n = 1, · · · , 2N (2.51)

where poles µn = −bn/an. According to the principle of mode superposition, the

transfer function h̃jk(s) can be written in the pole-residue form

h̃jk(s) =
2N∑
n=1

βjk,n

s− µn

(2.52)

where residues

βjk,n =
ϕk,nϕj,n

an
(2.53)

in which ϕk,n and ϕj,n are the k-th (input) and j-th (output) coordinates of ϕϕϕn.

discussion

The eigenvalue µn can be expressed in terms of the natural frequency ωn and

damping factor ξn:

µn = −ξnωn + iωn

√
1− ξ2n (2.54)
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In other words, the system natural frequencies and damping ratio can be calculated

from the poles µn as

ωn = |µn|, ξn =
−Re(µn)

|µn|
(2.55)

In addition, once obtaining the transfer function hjk(s) in pole-residue form,

one can write impulse response function hjk(t) immediately

hjk(t) =
2N∑
n=1

βjk,ne
µnt (2.56)

2.2.3 Poles and residues of the response

The total response at coordinate j due to all components of the excitation

vector p(t) for the N -DOF system in Eq. 2.38 can be written as (Hu et al., 2016)

uj(t) =
N∑
k=1

ujk(t) (2.57)

in which ujk(t) is the displacement response at coordinate j to the external force

at k expressed by the convolution integral

ujk(t) =

∫ t

0

hjk(t− τ) pk(τ) dτ (2.58)

Therefore, to obtain the total response, one just needs to calculate each ujk(t).

Applying Laplace transform to Eq. 2.58, one can get the displacement response in

the Laplace-domain

ũjk(s) = h̃jk(s)p̃k(s) (2.59)

where the system is considered initially at rest. The key to obtaining the response

ũjk(s) is to compute its poles and residues.

From Eqs. 2.36 and 2.52, the external force p̃k(s) and the transfer function

h̃jk(s) are written as

p̃k(s) =
L∑

ℓ=1

αℓ

s− λℓ

(2.60)
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and

h̃jk(s) =
2N∑
n=1

βn

s− µn

(2.61)

where the subscripts j and k of the residues of p̃k(s) and h̃jk(s) are omitted for

the simplification of notations.

Substituting Eqs. 2.60 and 2.61 into Eq. 2.59, it yields

ũjk(s) =

(
2N∑
n=1

βn

s− µn

)(
L∑

ℓ=1

αℓ

s− λℓ

)
(2.62)

Eq. 2.62 can be rewritten in the pole-residue form

ũjk(s) =
L+2N∑
m=1

γm
s− νm

(2.63)

Comparing Eq. 2.62 and Eq. 2.63, one can notice that the total L + 2N response

poles νm are originally from the L excitation poles and 2N system poles. Arrange

the first L poles as the excitation poles, i.e., νm = λm, m = 1, · · · , L, and the last

2N poles as the system poles, i.e., νm+L = µm, m = 1, · · · , 2N . For each response

pole νm, the corresponding residue can be computed by (Hu et al., 2016)

γm = lim
s→νm

(s− νm)ũjk(s) = lim
s→νm

(s− νm)p̃k(s)h̃jk(s) (2.64)

Thus, from Eq. 2.64, the residues corresponding to the first L response poles (at

the excitation poles) are

γm = lim
s→νm

(s− νm)

(
L∑
l=1

αℓ

s− λℓ

)
h̃jk(s) = αm h̃jk(λm), m = 1, · · · , L (2.65)

and the residues corresponding to the last 2N response poles (at the system poles)

are

γm+L = lim
s→νm+L

(s− νm+L) p̃k(s)

(
2N∑
n=1

βn

s− µn

)
= βm p̃k(µm), m = 1, · · · , 2N

(2.66)

Eqs. 2.65 and 2.66 indicate that all residues of the response can be easily obtained

from simple operations of the poles and residues of the excitation and system

transfer function.
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2.3 Pole-Residue Operations

Summarized in Table 2.1 are the poles, residues, and their operations of the

three elements in a dynamic problem, i.e., input, system, and output. Based on

any two, the other one can be obtained by the pole-residue operations. Since the

input is always known, two scenarios commonly arise in many engineering fields,

i.e., forward and inverse problems.

Table 2.1. Summary of operations for calculating the poles and residues of response
ũjk(s)

Input p̃k(s) Transfer Function h̃jk(s) Output ũjk(s)

poles residues poles residues poles residues
(1) (2) (3) (4) (5) (6)

λm αm – –
νm = λm γm = αmh̃jk(λm)

m = 1, · · · , L m = 1, · · · , L m = 1, · · · , L m = 1, · · · , L

– –
µm βm νm+L = µm γm+L = βmp̃k(µm)

m = 1, · · · , 2N m = 1, · · · , 2N m = 1, · · · , 2N m = 1, · · · , 2N

When the input and the system are given, it is called a forward problem. To

calculate the response, one first needs to prepare the poles and residues of input

signal and the system, shown in columns 1 − 4 of Table 2.1, by decomposing

the input signal with Prony-SS method and performing modal analysis based on

mass, stiffness and damping matrices of the system. The poles and residues can

be calculated by the formulas shown in columns 5 and 6 of Table 2.1. Applying

inverse Laplace transform by Eqs. 2.33 and 2.34, the response in time domain will

be immediately obtained. Manuscript 1 is basically to solve a forward dynamic

problem when the excitation is periodic, which improves the transient solution of
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frequency-domain method.

While the input and output are known, it is called an inverse problem.

To calculate the system characteristics, one needs to prepare the poles and

residues of the excitation and the output, shown in columns 1, 2, 5 and 6 in

Table 2.1, by simultaneously processing input and output signals using Prony-

SS method (Hu et al., 2016; Hu and Gao, 2018). By applying this multi-signal

method, Prony-SS method, to process the input and output signals simultaneous-

ly, it numerically guarantees that the poles of the input signals will always be

included in those of the output signals, which are called global poles. The out-

comes of the Prony-SS method consist of the global poles, input residues, and

output residues. The system function can be calculated by the operations of these

poles and residues from input and output. Manuscripts 2 and 3 are associated with

the inverse problems on calculating the system functions of underwater transduc-

ers, i.e., electrical impedance function, transmitting voltage response function, and

beam pattern.

Calculating system functions by pole-residue operations

Shown in Table 2.2 are the decomposition outcomes of input and output sig-

nals by multi-signal Prony-SS method. One can distinguish the input poles and

system poles by observing the columns 1 and 2 in Table 2.2. In column 2, the

input residues can be divided two groups, nonzero ones αℓ and zero or negligibly

small ones. In column 1, the global poles are correspondingly divided into two

groups, νℓ and νn+L. The input poles are the ones νℓ in the group of nonzero input

residues while the system poles µn are the remaining ones νn+L in the group of

zero or negligibly small input residues (Cao et al., 2017), which can also be inter-

preted that the system poles are simply the output poles ν minus the input poles

λ in Table 2.1. From Eq. 2.55, together with the system poles, one can accurately
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calculate the modal frequencies and modal damping of the system, which will be

frequently used in this dissertation.

Eq. 2.59 shows the relationship among input, system and output in the Laplace

domain for a system initially at rest. Thus, one can simply calculate the transfer

function by

h̃jk(s) =
ũjk(s)

p̃k(s)
(2.67)

From Eqs. 2.60 and 2.63, one obtains

p̃k(s) =
L∑

ℓ=1

αℓ

s− νℓ
(2.68)

ũjk(s) =
2N+L∑
m=1

γm
s− νm

=
L∑

ℓ=1

γℓ
s− νℓ

+
2N∑
n=1

γn+L

s− νn+L

(2.69)

Notice that p̃k(s) and ũjk(s) can be expressed by the global poles ν, input residues

α and output residues γ.

Combining Eqs. 2.67 to 2.69, it yields the transfer function

h̃jk(s) =

2N+L∑
m=1

γm
s−νm

L∑
ℓ=1

αℓ

s−νℓ

(2.70)

By substituting s with iω, Eq. 2.70 becomes complex FRF

Hjk(ω) ≡ h̃jk(s = iω) =

2N+L∑
m=1

γm
iω−νm

L∑
ℓ=1

αℓ

iω−νℓ

(2.71)
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Table 2.2. Summary of operations for calculating the system functions h̃jk(s)

global input output system system
poles residues residues poles residues

νℓ αℓ γℓ – –

ℓ = 1, · · · , L ℓ = 1, · · · , L ℓ = 1, · · · , L

νn+L 0
γn+L µn = νn+L βn = γn+L/p̃k(µn)

n = 1, · · · , 2N n = 1, · · · , 2N n = 1, · · · , 2N n = 1, · · · , 2N

Furthermore, the transfer function h̃jk(s) can also be calculated through the

system identification procedures. After obtaining the system poles µn = νL+n, the

remaining work is to compute the residues βn in Eq. 2.61. According to column

5 in Table 2.2, the system residue βn is equal to the output residue γn+L (at the

system pole µn) divided by the value of input function at system pole location

p̃k(µm) as

βn =
γn+L

L∑
ℓ=1

αℓ

µn−νℓ

(2.72)

With the system poles µn and the residues βn, one can numerically compute the

transfer function

h̃jk(s) =
2N∑
n=1

βn

s− µn

(2.73)

and complex FRF

Hjk(ω) ≡ h̃jk(s = iω) =
2N∑
n=1

βn

iω − µn

(2.74)

discussion

Both Eq. 2.71 and 2.74 can be applied to calculate the system functions by

the pole-residue operations of input and output signals. Eq. 2.71 is applicable for

general problems while applying Eq. 2.74 requires that the global poles of input
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and output signals can be easily differentiated as shown in column 1 and 2 of

Table 2.2. If none of the input residues is negligibly small, one can’t distinguish

input poles and system poles. In that case, only the general method (Eq. 2.71) is

applicable.

In manuscript 2 and 3, it frequently happens that none of the input residues

is zero or negligibly small for FE models and experiments. One reason is that the

decomposition of input signals can be influenced by the components of some strong

system poles when applying multi-signal Prony-SS method. Details will be shown

in the manuscripts. Therefore, the method by pole-residue operations in Eq. 2.71

will be applied to calculate the characteristic functions of the transducers, i.e.,

electrical impedance function, transmitting voltage response and beam pattern.

Compared with traditional methods, a continuous function in the frequency domain

is obtained without any assumption and it overcomes the leakage and frequency

resolution problems.In addition, many significant characteristics, such as modal

frequencies and modal damping, can be precisely calculated by the system poles

other than reading them from the plotting of system functions in traditional ways.
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CHAPTER 3

Manuscript 1: Computing Transient Response of Dynamic Systems in
the Frequency Domain

3.1 Abstract

Frequency-domain methods are usually more efficient computationally than

time-domain methods to compute the responses of linear dynamic systems. How-

ever, a common drawback of frequency-domain methods is that computed respons-

es are merely the steady-state response, not the total response. It appears that no

analytical solution has been derived for the transient response of a multiple-degree-

of-freedom (MDOF) dynamic system to arbitrary periodic loading. An analytical

contribution of this article is deriving a closed-form solution for the transient re-

sponses of linear MDOF systems to arbitrary periodic excitations. Together with

the fast Fourier transform (FFT) algorithm, a very efficient numerical method is

developed to compute the transient and total responses of MDOF systems, suit-

able for both damped and undamped systems. In the newly developed method,

the computational time required for obtaining the transient response is much less

than that for the steady state response. Three numerical examples are provided

in this paper to verify the correctness, and demonstrate the effectiveness as well,

of the newly developed method.

3.2 Introduction

Computing the dynamic response of a linear multiple-degree-of-freedom (MD-

OF) system to periodic loading, operated in the frequency domain, is considered

in this paper. Analytically, the total dynamic response is the sum of two parts:

(1) the steady-state response, which mathematically is the particular solution to

the periodic input function, and (2) the transient response which is the homoge-
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neous solution that satisfies the given initial conditions (Craig and Kurdila, 2006;

Clough and Penzien, 2003; Kreyszig, 2011). The transient response has been so

named because the damping effect would cause the free-vibration term to vanish

eventually. For an undamped system, however, this term would not damp out

but continue indefinitely. To the best knowledge of the authors, there is no an-

alytical close-form solution available in the existing literature for computing the

transient response of dynamic system to arbitrary periodic loading. The novelty

of this paper is to analytically and numerically compute the transient response in

the frequency domain of MDOF systems to arbitrary periodic loading.

In the calculation for the total response of a dynamic system, one often em-

ploys a time domain approach. Implementing a time domain approach is costly

in computational time, especially evaluating a lengthy response with small time

steps for systems with a large number of degrees-of-freedom. In contrast, conduct-

ing a frequency-domain method is computationally efficient when the fast Fourier

transform (FFT) algorithm is employed in the procedure. However, a common

drawback of frequency-domain methods is that the computed response is only the

steady-state response.

All frequency-domain methods, in computing the dynamic response of a lin-

ear system, require the loading be resolved into its discrete harmonic compo-

nents by Fourier transformation. When a discrete Fourier transform or Fouri-

er series of a signal is invoked, the signal is intrinsically assumed to be peri-

odic. For a single-degree-of-freedom (SDOF) system to periodic loading, tradi-

tional frequency-domain methods multiply the harmonic loading components by

the frequency response function (FRF) of the system to obtain the correspond-

ing harmonic response components; and finally the response of the system is ob-

tained by implementing the inverse Fourier transform (Clough and Penzien, 2003;
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Craig and Kurdila, 2006). Apparently, this obtained response is the steady-state

response associated with the periodic loading. As no analytical method was avail-

able to compute the transient response, a numerical technique to compute the total

response has been employed by padding the input signal with sufficient zeros so

that the free vibration response during the intervals of zero excitation would damp

out completely (Clough and Penzien, 2003). Even for a simple SDOF system, this

technique does not work if the system is undamped or lightly damped.

A new frequency domain method is to be developed in this paper to compute

not only the steady state response but also the transient response of MDOF linear

systems to arbitrary periodic loading. It will be shown that the transient response

can be obtained in a similar fashion as the steady-state response. In brief, the

newly developed method includes the following five sequential steps while com-

puting both the steady-state and transient response components: (1) conducting

the Fourier analysis of the periodic excitation to obtain its Fourier coefficients;

(2) obtaining the poles and residues associated with the system transfer functions,

and then the corresponding frequency response functions; (3) following a classical

way to calculate the steady-state response using the knowledge of (1) and (2); (4)

computing the transient response using the knowledge of (1) and (2), which is to

be newly derived in this article; and (5) combining (3) and (4) to get the total

response.

Three numerical examples will be provided in this paper to verify the cor-

rectness of the newly developed method. For illustrating the detailed operations

of the proposed method, the first numerical example considers a SDOF system to

a square wave periodic loading. For demonstrating the effectiveness of the pro-

posed method in practical engineering application, the second example computes

the response of a lightly damped SDOF system to a recorded El Centro earthquake
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loading. The purpose of the third example is to demonstrate the applicability of

the developed method to a MDOF system.

3.3 Preliminaries

This section reviews the background material related to complex exponential

functions, complex Fourier series and linear MDOF systems that is essential to

this article; it also intends to acquaint the reader with the notation convention to

be used. Throughout this paper, functions depending on time t are in lower cases;

their Laplace transforms on s denoted by the same letters with a tilde, and their

Fourier transforms on ω denoted by the same capital letters. For example, ỹ(s)

and Y (ω) denote the Laplace transform and Fourier transform of y(t), respectively.

3.3.1 Complex exponential functions

It is easy to show that α exp(λt) and α
s−λ

form a Laplace transform pair

(Kreyszig, 2011). In turn, for the complex exponent function

y(t) =
L∑

ℓ=1

αℓ exp(λℓt) (3.1)

one shows

ỹ(s) =
L∑

ℓ=1

αℓ

s− λℓ

(3.2)

Eq. 3.2 in the Laplace domain is often called a partial fraction form, or pole-residue

form, with poles λℓ and the corresponding residues αℓ. When the real part of the

complex variable s is set equal to zero, that is, substitutes s by iω in Eq. 3.2, it

yields the corresponding Fourier transform function:

Y (ω) ≡ ỹ(s = iω) =
L∑

ℓ=1

αℓ

iω − λℓ

(3.3)

which is essentially the frequency domain representation of y(t).
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3.3.2 Periodic excitation

Forces acting on structures are frequently periodic, or can be approximated

closely by periodic forces. A periodic function with period T1, that is p(t+ T1) =

p(t), can be decomposed into its harmonic components by means of a Fourier series.

The complex Fourier series of p(t) may be written as

p(t) =
∞∑

m=−∞

Cm exp (iΩmt) (3.4)

where Ωm = mΩ1, Ω1 = 2π/T1 is the fundamental frequency (in rad/s), and Cm is

the mth complex Fourier coefficient of the periodic function:

Cm =
1

T1

∫ T1

0

p(t)e−iΩmtdt (3.5)

Because C−m = C∗
m, where “∗” denotes the complex conjugate operator, one can

also write

p(t) = C0 +
∞∑

m=1

[Cm exp (iΩmt) + C∗
m exp (−iΩmt)] (3.6)

Theoretically, a Fourier series representation of p(t) may contain an infinite number

of terms, however, in actual practice p(t) can generally be approximated with

sufficient accuracy by a relatively small number of terms. The Laplace transform

of this periodic function p(t) in Eq. 3.4 yields

p̃(s) =
∞∑

m=−∞

Cm

s− iΩm

(3.7)

In this partial fraction form (a pole-residue form), iΩm represent equally spaced

poles in the imaginary axis and Cm are the corresponding residues. Furthermore,

substituting s by iω in Eq. 3.7 leads to the corresponding frequency representation:

P (ω) =
∞∑

m=−∞

Cm

iω − iΩm

(3.8)

28



3.3.3 MDOF systems

The mathematical model of an N -DOF system is often written in the fol-

lowing second-order matrix differential equation form (Clough and Penzien, 2003;

Craig and Kurdila, 2006):

Mẍ(t) +Cẋ(t) +Kx(t) = p(t) (3.9)

whereM,C,K ∈ RN×N are the mass, damping and stiffness matrices, respectively;

x(t) ∈ RN×1 is the displacement vector and p(t) ∈ RN×1 is the load vector. Under

the assumption that the system is initially at rest, that is, ẋ(0) = 0 and x(0) = 0,

taking the Laplace transform of both sides of Eq. 3.9 yields

(Ms2 +Cs+K)x̃(s) = p̃(s) (3.10)

Let the transfer matrix function from input p̃(s) to output x̃(s) of this dynamic

system be denoted by h̃(s) ∈ RN×N , that is,

x̃(s) = h̃(s)p̃(s) (3.11)

A general form of the transfer function (TF) for the displacement response

at coordinate j to the loading at k is expressed as (Craig and Kurdila, 2006;

Hu et al., 2016):

h̃jk(s) =
N∑

n=1

(
βn

s− µn

+
β∗
n

s− µ∗
n

)
(3.12)

where poles µn are related to the eigen values of the system and are global system

parameters, independent of the coordinates j and k, but residues βn are related to

the eigen vectors of the system which are jk-dependent local system parameters.

Furthermore, the corresponding complex frequency response function (FRF)

and unit impulse response function (IRF) are

Hjk(ω) =
N∑

n=1

(
βn

iω − µn

+
β∗
n

iω − µ∗
n

)
(3.13)
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and

hjk(t) =
N∑

n=1

[βn exp (µnt) + β∗
n exp (µ

∗
nt)] (3.14)

respectively.

3.4 Total Response to Periodic Loading

In the time domain, the generalized expression for the displacement response

xjk(t) at coordinate j to the load pk(t) at k is the convolution integral, as follows:

xjk(t) =

∫ t

0

hjk(t− τ) pk(τ) dτ (3.15)

The total response xj(t) at coordinate j produced by a general loading involving

all components of the load vector p(t) is obtained by summing the contributions

from all load components:

xj(t) =
N∑
k=1

xjk(t) (3.16)

The Laplace-domain analysis is similar to the time-domain procedure in that

it involves superposition of the effects at coordinate j to the load applied at coor-

dinate k; however, in this case both the load and the response are in the Laplace-

domain. Corresponding to Eq. 3.15, the resulting displacement at the jth coordi-

nate in the Laplace-domain x̃jk(s) is expressed in terms of the transfer function

h̃jk(s)

x̃jk(s) = h̃jk(s)p̃k(s) (3.17)

and the total response at coordinate j in the Laplace-domain x̃j(s) produced by a

general loading involving all components of the load vector p(t) could be obtained

by

x̃j(s) =
N∑
k=1

x̃jk(s) (3.18)

The above equation constitutes general solutions for the equation of motion shown

in Eq. 3.9 under the assumption of zero initial conditions.
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3.4.1 Computing xjk(t) through the frequency domain

As implementing the principle of superposition in Eq. 3.16 or Eq. 3.18 is

straightforward, the following derivation will focus on computing xjk(t) only. When

the loading pk(t) is periodic with the form of Eq. 3.4, an efficient frequency domain

approach for computing xjk(t) is developed in this section.

In Eq. 3.17, substituting p̃k(s) by Eq. 3.7 and h̃jk(s) by Eq. 3.12, respectively,

yields

x̃jk(s) =
N∑

n=1

(
βn

s− µn

+
β∗
n

s− µ∗
n

) ∞∑
m=−∞

Cm

s− iΩm

(3.19)

Because the common denominator in Eq. 3.19 is the product of (s− µn), (s− µ∗
n)

and (s− iΩm) for all n and m terms, mathematically Eq. 3.19 can be rewritten in

a partial fraction form

x̃jk(s) =
N∑

n=1

(
Vn

s− µn

+
V ∗
n

s− µ∗
n

)
+

∞∑
m=−∞

Um

s− iΩm

(3.20)

From Eq. 3.20, it is evident that Vn can be obtained by the following operation

(Kreyszig, 2011)

Vn = lim
s→µn

(s− µn)x̃jk(s) (3.21)

Using Eq. 3.19 for x̃jk(s) in Eq. 3.21, one obtains

Vn = βn p̃k(µn) (3.22)

where

p̃k(µn) =
∞∑

m=−∞

Cm

µn − iΩm

(3.23)

Similarly, Um can be obtained by

Um = lim
s→iΩm

(s− iΩm)x̃jk(s) (3.24)

and then

Um = Cm h̃jk(iΩm) (3.25)
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or

Um = Cm Hjk(Ωm) (3.26)

Once Vn and Um are computed, by taking the inverse Laplace transform of

Eq. 3.20, one has

xjk(t) =
N∑

n=1

[Vn exp (µnt) + V ∗
n exp (µ∗

nt)] +
∞∑

m=−∞

Um exp(iΩmt) (3.27)

Clearly, the second summation term of the right hand side in Eq. 3.27, denoted by

ujk(t), is the familiar steady-state response operated in the frequency domain:

ujk(t) =
∞∑

m=−∞

Um exp(iΩmt) (3.28)

which is related to the excitation frequencies Ωm. The first summation term of the

right hand side in Eq. 3.27, denoted by vjk(t), is the transient response related to

the system poles (complex frequencies) of the N -degrees-of-freedom system:

vjk(t) =
N∑

n=1

[Vn exp (µnt) + V ∗
n exp (µ∗

nt)] (3.29)

or

vjk(t) =
N∑

n=1

exp (−ξnωnt) [An cos(ω̂nt) +Bn sin(ω̂nt)] (3.30)

where An = 2Re(Vn), Bn = −2 Im(Vn), ωn = |µn|, ω̂n = Im(µn) =
√

1− ξ2n ωn and

ξn = −Re(µn)/|µn|, in which Re(·) and Im(·) represent the real part and imaginary

part, respectively.

If the initial conditions are not at rest, a free vibration response must be

added to the forced-vibration response given by Eq. 3.27. Analytical solutions to

compute the free vibration response of SDOF and MDOF systems have been well

described in textbooks (Clough and Penzien, 2003; Craig and Kurdila, 2006).

3.4.2 Numerical implementation in the frequency domain

For getting the total response that includes the effect of the zero initial con-

ditions by using a frequency domain approach, one has often relied on using the
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technique of padding zeros. This technique is adding sufficient zeros at the end of

the original excitation. Essentially, zeros are padded into the end of every period

of the original excitation. So during the zero excitation interval, the free vibration

damps out completely, satisfying zero initial conditions at the start of the next

period (Clough and Penzien, 2003). If it does not add enough zeros, then the as-

sumed zero initial conditions at the start of the excitation will not be sufficiently

satisfied. Two points are worthy of mention: (1) the padding zero technique is not

an analytically improved method to solve the transient response, and this technique

works numerically only for systems possessing relatively large damping ratios; and

(2) theoretically, the obtained total response is merely a steady-state response to a

modified periodic loading which differs from the original periodic loading. In con-

trast, the newly derived method analytically solves the transient response without

altering the given periodic loading, and it works for both undamped and damped

systems.

3.4.3 Undamped systems

Consider an undamped N -degrees-of-freedom system subjected to a periodic

loading which is zero-mean with M number of harmonic components:

pk(t) =
M∑

m=1

[Cm exp (iΩmt) + C∗
m exp (−iΩmt)] (3.31)

Because the poles µn of an undamped MDOF system are reduced to pure imaginary

quantities iωn, Eq. 3.27 becomes

xjk(t) =
N∑

n=1

[Vn exp (iωnt) + V ∗
n exp (−iωnt)]+

M∑
m=1

[Um exp(iΩmt) + U∗
m exp(−iΩmt)]

(3.32)

In Eq. 3.32, one notices the similarity in computation for the transient response and

steady-state response. Both response calculations are carried out in the frequency

domain. While the steady state part has the coefficient Um being computed by
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Um = CmHjk(Ωm), the coefficient Vn associated with the transient response can

be obtained from Eq. 3.22 in the frequency domain as

Vn = βn Pk(ωn) (3.33)

where

Pk(ωn) =
M∑

m=1

(
Cm

iωn − iΩm

+
C∗

m

iωn + iΩm

)
(3.34)

3.5 Numerical Examples

Three numerical examples are presented below. For illustrating the detailed

operations of the proposed method, a SDOF system to a square wave loading is

considered in the first example. The correctness of the numerical results will be

verified by those from a time domain method. To demonstrate the effectiveness

of the proposed method in practical engineering application, the second example

considers a lightly damped SDOF system to a recorded El Centro earthquake

loading. The third example expands the demonstration to a MDOF dynamic

system. Specifically, a 6-DOF system which models a linear two-dimensional one-

half of a railway structure will be studied. Throughout the numerical examples

of this paper, the system of units is the MKS (meter-kilogram-second) system

based on measuring lengths in meters, mass in kilograms and time in seconds. For

briefness, explicit units for quantities are omitted in the following presentation.

3.5.1 Example 1: SDOF to square wave

Although the method developed in this paper is aimed at computing the

response of any linear MDOF dynamic system to an arbitrary periodic loading,

it is instructive to begin the numerical example with a SDOF system to a square

wave excitation (see Fig. 3.1). As the equation of motion for a SDOF system is

given by

mẍ+ cẋ+ kx = p(t) (3.35)
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the unit impulse response function (IRF) of this system is writ-

ten (Clough and Penzien, 2003; Craig and Kurdila, 2006)

h(t) =
1

mωd

e−ξω1t sinωdt (3.36)

where the natural frequency ω1 =
√
k/m, damping ratio ξ = c/2

√
mk and damped

frequency ωd =
√
1− ξ2ω1. The corresponding transfer function (TF) is the

Laplace transform of Eq. 3.36:

h̃(s) =
β

s− µ
+

β∗

s− µ∗ (3.37)

where the pole µ = −ξω1 + iωd and residue β = −i/(2mωd). Substituting s by iω

into Eq. 3.37 leads to the complex frequency response function (FRF):

H(ω) =
β

iω − µ
+

β∗

iω − µ∗ (3.38)

In the numerical study, consider m = 1, k = 12 and c = 0, which is an un-

damped system that could not be handled by using the padding-zero technique.

Another reason to choose an undamped system is to demonstrate that the op-

eration of computing the transient response is analogous to that of the steady

state response (see Eq. 3.32). For this undamped system, its two system poles

are pure imaginary numbers µ, µ∗ = ±3.4641i, and the corresponding residues

β, β∗ = ∓0.1443i. One obtains the natural frequency ω1 = 3.4641 rad/s, i.e.,

f1 = 0.5513 Hz.

Let the system be initially at rest, and the excitation p(t) be a periodic square

wave function (see Fig. 3.1) with period T = 10 s:

p(t) =

{
1 for 0 < t < 5
−1 for 5 < t < 10

(3.39)

For this square wave excitation, the complex Fourier coefficients associated with

Ωm = mπ/5 are obtained to be

Cm =

{
−
(

2
mπ

)
i m = 1, 3, 5, · · ·

0 m = 0, 2, 4, · · · (3.40)
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Once Cm and Ωm are determined, the corresponding p̃(s) and P (ω) can be obtained

from Eq. 3.7 and Eq. 3.8, respectively.
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Figure 3.1. Periodic square wave excitation with period T = 10 s

It is informative to use graphics to show the operations of computing the

steady state response and transient response. To compute the steady state re-

sponse, one follows Eq. 3.28. A graphical explanation of the steady state response

operated in the frequency domain is shown in Fig. 3.2. Since quantities at the

negative frequency are the complex conjugate of those at the corresponding pos-

itive frequency, only data at the positive frequency part are shown. Fig. 3.2(a)

and Fig. 3.2(b) are the complex Fourier coefficients of the excitation Cm, and the

frequency response function of the undamped SDOF system H(ω), respectively.

Fig. 3.2(c) is obtained from multiplying Fig. 3.2(a) with Fig. 3.2(b), resulting in

the complex Fourier coefficients Um = CmH(Ωm) of the steady state response. The

numerical quantities of Um, m = 0, · · · , 10, together with those of Cm and H(Ωm),

are listed in Table 3.1. For m > 10, Um become negligibly small. Dropping all
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Table 3.1. Numerical values of the components of a square wave
m Ωm Cm H(Ωm) Um

0 0 0 0.0833 0
1 π

5
−0.6366i 0.0862 −0.0549i

2 2π
5

0 0.0960 0
3 3π

5
−0.2122i 0.1184 −0.0251i

4 4π
5

0 0.1759 0
5 π −0.1273i 0.4694 −0.0598i
6 6π

5
0 −0.4520 0

7 7π
5

−0.0909i −0.1362 0.0124i
8 8π

5
0 −0.0754 0

9 9π
5

−0.0707i −0.0501 0.0035i
10 2π 0 −0.0364 0

terms for m > 10, one obtains the numerical steady state response in the time

domain

u(t) =
10∑

m=−10

Ume
iΩmt (3.41)
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Figure 3.2. Computing the steady state response in the frequency domain: (a) com-
plex Fourier coefficients of the excitation (b) complex frequency response function
of the system (c) complex Fourier coefficients of the steady state response
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The transient response of this SDOF system is expressed as

v(t) = V eµt + V ∗eµ∗t (3.42)

One follows Eq. 3.33 to get V = βP (ω1), and obtains V = 0.0000 + 0.0563i at

ω1 = 3.4641 rad/s. Shown in Fig. 3.3 is a graphical explanation of computing

transient response associated with an undamped system. In the calculation for the

transient response, the operation is analogous to that for the steady state response,

but the roles of the excitation and the SDOF undamped system are exchanged.

Fig. 3.3(a) shows the excitation function in frequency P (ω) based on the complex

Fourier coefficients of the excitation (see Eq. 3.8). Fig. 3.3(b) presents the residue

β of the SDOF system at the pole µ (a pure imaginary value for an undamped

system) in frequency. Fig. 3.3(c) is obtained from multiplying Fig. 3.3(a) with

Fig. 3.3(b), resulting in the residue V of the response at the system pole location.

The steady state response u(t) at Eq. 3.41 and the transient response v(t) at

Eq. 3.42 are plotted in Fig. 3.4a and Fig. 3.4b, respectively. Shown in Fig. 3.5 is the

total response x(t), which is the sum of u(t) and v(t). The correctness of x(t) has

been verified by the response calculated by a time domain method. One notices

that the slope of total response at time t = 0 is zero, showing that the initial

velocity of the transient response is just sufficient to cancel the initial velocity of

the steady-state response for satisfying the specified initial condition ẋ(0) = 0.

38



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

P(ω)

 

 

real

imaginary

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

β

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

frequency (Hz)

V
n

 

 

real

imaginary

real

imaginary

(a)

(b)

(c)

Figure 3.3. Computing the transient response of an undamped system in the fre-
quency domain: (a) P (ω) from the complex Fourier coefficients of the excitation
(b) residue β of the undamped system (c) complex Fourier coefficients of the tran-
sient response
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Figure 3.4. Response components for the undamped SDOF system of Example 1:
(a) steady-state response, (b) transient response
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Figure 3.5. Comparison between the proposed method and a time domain method
for the total response of the undamped SDOF system in Example 1

For a damped system with m = 1, k = 12 and c = 0.3464 (i.e., damping

ratio ξ = 5%), the system poles and residues are µ = −0.1732 ± 3.4598 and

β = 0.0000 ∓ 0.1445, respectively. The numerical operations for computing the

transient response of a damped system remain the same as that of an undamped

system. Because the poles of a damped system are complex numbers, one must

compute the transient solution in the s-domain (see Eq. 3.29). From the operation

V = βp̃(µ), one obtains V = 0.0300 ± 0.0443i. Shown in Fig. 3.6 is the total

response of this damped system computed by the proposed method, which is in

excellent agreement with that by a time domain method.

3.5.2 Example 2: SDOF to earthquake loading

In designing structures to perform satisfactorily under earthquake conditions,

the response of a simple oscillator, such as the SDOF frame has proved to be

invaluable (Clough and Penzien, 2003). To demonstrate the applicability of the
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Figure 3.6. Comparison between the proposed method and a time domain method
for the total displacement response of the damped SDOF system in Example 1

proposed method to an engineering problem, a lightly damped SDOF system to a

measured El Centro earthquake signal is chosen in the second numerical example.

The equation of motion is written

mẅ + cẇ + kw = −mz̈ (3.43)

where z is the ground motion, w is the relative displacement between the movement

of the SDOF mass and the moving base, and −mz̈ is the effective force.

Considering m = 10, k = 40, and c = 0.4, one obtains the natural frequency

ω = 2 rad/s, damping ratio ξ = 0.01, two system poles µ, µ∗ = −0.0200± 1.9999i,

and the corresponding residues β, β∗ = 0 ∓ 0.0250i. In the computation of the

effective force p(t) = −mz̈, a recorded El Centro earthquake acceleration signal

in the East-West direction is utilized for z̈. This earthquake acceleration signal

contains Ns = 2048 steps, with the sampling interval ∆t = 0.02 s. Plotted in

Fig 3.7 is the corresponding effective force p(t) = −mz̈. Conducting the FFT
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for this effective force yields 1023 pairs of complex Fourier coefficients Cm, m =

1, · · · , 1023, at the corresponding frequencies Ωm = (2πm)/40.96, together with

two real Fourier coefficients at zero and Nyquist frequencies, respectively. Shown

in Fig 3.8 are the absolute values of the complex Fourier coefficients Cm at the

corresponding positive frequency in Hz, fm = Ωm/2π. Afterwards, using Eq. 3.7

and Eq. 3.8, one can obtain the corresponding p̃(s) and P (ω), respectively, based

on the computed Cm and Ωm.

0 5 10 15 20 25 30 35 40 45
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t (sec.)

p(t)

Figure 3.7. Effective force based on a recorded El Centro earthquake acceleration
signal

42



0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

f (Hz)

|C
m

|

Figure 3.8. |Cm| of the earthquake loading shown in Fig 3.7

Carrying out the same procedure employed in Example 1, one computes the

steady-state response and the transient response, respectively. As illustrated in

Example 1, only a small range of excitation frequencies that are close to the natural

frequency of the SDOF system will contribute to the steady-state response (see

Fig. 3.9a). The transient response (see Fig. 3.9b) does not die out quickly for a

lightly damped system. Compared in Fig. 3.10 is the total response calculated

by the proposed frequency domain method with that by a time domain method.

Clearly, they are in excellent agreement.
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Figure 3.9. Response components of Example 2: (a) steady-state response, (b)
transient response
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Figure 3.10. Comparison between the proposed method and a time domain method
for the total response of the system in Example 2
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3.5.3 Example 3: MDOF to arbitrary loading

The purpose of the third example is to demonstrate the effectiveness of the

proposed method for MDOF systems to periodic loadings. Herein, the emphasis

is not on the physical interpretation, but on the mathematical capability to solve

the transient response of a MDOF system in the frequency domain. A linear two-

dimensional one-half of a railway structure is modeled as a 6-DOF system shown

in Fig. 3.11, with coordinates x1 to x6 specified (Hu et al., 2014). Let this 6-DOF

dynamic system be initially at rest. The system is subjected to a periodic loading

p(t) at coordinate 2 and the displacement at coordinate 6 is sought.

Figure 3.11. Sketch of the 6-DOF system in Example 3

Referring to Fig. 3.11, the mass and stiffness matrices of this 6-DOF system
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are formulated by

M =


m1 0 0 0 0 0
0 m2 0 0 0 0
0 0 M/3 M/6 0 0
0 0 M/6 M/3 0 0
0 0 0 0 m5 0
0 0 0 0 0 m6

 (3.44)

and

K =


k1 + k2 −k2 0 0 0 0
−k2 k2 + k3 −k3 0 0 0
0 −k3 k3 0 0 0
0 0 0 k4 −k4 0
0 0 0 −k4 k4 + k5 −k5
0 0 0 0 −k5 k5 + k6

 (3.45)

respectively. The damping matrix C of this system has the same form as its

stiffness matrix K.

In the following numerical exercise, let [m1,m2,M,m5,m6] =

[1200, 850, 4125, 850, 1220]; c1 = c6 = 0, c2 = c5 = 3 × 103, c3 = c4 = 9 × 103;

k1 = k6 = 3 × 107, k2 = k5 = 1 × 106, and k3 = k4 = 6 × 106. The

transfer function h̃62(s) of the system can be written in the pole-residue

form (Craig and Kurdila, 2006; Hu et al., 2016):

h̃62(s) =
6∑

n=1

(
βn

s− µn

+
β∗
n

s− µ∗
n

)
(3.46)

One can follow a state-space approach to compute µn and βn

(Craig and Kurdila, 2006). Shown in Table 3.2 are the numerical results for

µn and βn and the corresponding modal frequencies fn and damping ratios ξn.

Notice that poles µn are global parameters— independent of the input and output

coordinates, but the residues βn are specifically for the system function h̃62(s).

46



n
poles (×102) residues (×10−6) modal frequency (Hz.) damping ratios

µn βn fn ξn
1 −0.0043 + 0.1750i 0.0064− 0.1359i 2.7868 0.0244
2 −0.0087 + 0.2466i −0.0144 + 0.2032i 3.9265 0.0352
3 −0.0862 + 1.0350i 0.0488− 0.1102i 16.5298 0.0830
4 −0.1251 + 1.2707i −0.0606 + 0.0752i 20.3221 0.0979
5 −0.0144 + 1.5951i 0.0179− 0.0056i 25.3875 0.0090
6 −0.0146 + 1.6083i 0.0019 + 0.0027i 25.5977 0.0091

Table 3.2. System poles and residues of h̃62(s), and corresponding modal frequen-
cies and damping ratios

On evaluating the proposed method, for simplicity but without losing gener-

ality, the loading at coordinate 2 is considered to be the same square wave used

in Example 1. The complex Fourier coefficients Cm of this square wave excitation

has been presented in Eq. 3.40, but for treating the proposed approach to be a

general numerical method, FFT would be invoked to get the Fourier coefficients

Cm in the following stead-state and transient response calculation.

As the values of µn and βn have been obtained, the transfer function h̃62(s)

and the complex frequency response function H62(ω) of the system are readily

known. Denote the steady-state response at coordinate 6 to the periodic square

wave excitation at coordinate 2 as u62(t) which could be obtained by a traditional

frequency domain approach. For brevity, the procedure to compute u62(t), shown

in Fig. 3.12, is omitted.

On computing the corresponding transient response v62(t), one follows Eq. 3.29

with N = 6:

v62(t) =
6∑

n=1

[Vn exp (µnt) + V ∗
n exp (µ∗

nt)] (3.47)

where the values of Vn are computed from Vn = βn p̃(µn), noting that the function

p̃(s) would follow Eq. 3.7 with a finite number of Cm and Ωm. The numerical

values for Vn and p̃(µn) are listed in Table 3.3, and the computed v62(t) shown in

Fig. 3.12b. One notices that the computed v62(t) would diminish eventually due
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to damping terms of all 6 modes. The total response x62(t) = u62(t) + v62(t) is

plotted in Fig. 3.13, together with a time-domain solution for verification purpose.

Clearly, the computed result from the proposed frequency domain method is in

excellent agreement with that of the time domain method.

n p̃(µn) Vn × 10−8

1 −0.0271 + 0.0499i 0.6611 + 0.4004i
2 0.0058 + 0.0427i −0.8750 + 0.0559i
3 0.0001 + 0.0096i 0.1063 + 0.0454i
4 0.0001 + 0.0078i −0.0591− 0.0465i
5 −0.0008 + 0.0062i 0.0021 + 0.0116i
6 −0.0006 + 0.0063i −0.0018 + 0.0011i

Table 3.3. Values of Vn and p̃(µn) for v62(t)
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Figure 3.12. Response components of Example 3 to a square wave loading: (a)
steady-state response u62(t), (b) transient response v62(t)
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Figure 3.13. Comparison between the proposed method and a time domain method
for the total response x62(t) of the system in Example 3 to a square wave loading

Furthermore, to demonstrate the effectiveness of the proposed method to a

more complex loading, the square wave excitation is replaced by the earthquake

loading that has been utilized in Example 2. With the Fourier coefficients Cm

identical to those in Example 2, carrying out the proposed method yields the

steady-state response u62(t) and the transient response v62(t) shown in Fig. 3.14.

The total response x62(t) from the proposed method is plotted in Fig. 3.15(a), and

the difference of x62(t) between the proposed method and a time domain method

is shown in Fig. 3.15(b). Notice that the difference ∆x62(t) is in the order of 10−7,

very small relative to the magnitude of x62(t) which is in the order of 10−5.
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Figure 3.14. Response components of Example 3 to an earthquake loading: (a)
steady-state response u62(t), (b) transient response v62(t)
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Figure 3.15. Response of Example 3 to an earthquake loading: (a) the total
response x62(t) computed by the proposed method, (b) the difference of x62(t)
between the proposed method and a time domain method
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computation efficiency

The computational time required in the proposed method can be divided

into 2 parts: (1) Tss: the computational time needed to compute the steady s-

tate response, and (2) Ttr: the additional computational time needed to compute

the transient solution. Regarding the complexity of the solution algorithms, the

steady-state response for each vibration mode obtained by using FFT and inverse

FFT has been well documented to be in the order Ns log2 Ns in which Ns is the

number of time steps of the excitation. In contrast, the transient response for each

vibration mode, as suggested from Eq. 3.47, can be computed by a straightforward

procedure in the order Ns .

By varying the number of time steps Ns from 27 to 215, the corresponding

computation times needed by a laptop to obtain Tss and Ttr in Example 3 are

tabulated in Table 3.4. The ratio Ttr/Tss is always less than 1, indicating that

the computation time for the transient response is just a fraction of that for the

steady state response. As anticipated, the ratio Ttr/Tss becomes smaller when Ns

is getting larger.

log2 Ns Tss(sec.) Ttr(sec.) Ttr/Tss

7 0.0097 0.0060 0.6186
8 0.0119 0.0060 0.5042
9 0.0169 0.0062 0.3669
10 0.0264 0.0071 0.2689
11 0.0430 0.0081 0.1884
12 0.0943 0.0087 0.0923
13 0.2059 0.0116 0.0563
14 0.5509 0.0146 0.0265
15 1.7218 0.0238 0.0138

Table 3.4. Computational time required for the steady state solution Tss and the
transient solution Ttr against the number of time steps Ns
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3.6 Concluding Remarks

Deriving a closed-form solution for the transient and total responses of SD-

OF/MDOF systems to arbitrary periodic excitations was an analytical contribu-

tion of this article. It showed that the transient response could be obtained in a

similar fashion as the steady-state response, but the roles of the system and exci-

tation were reversed. Together with the FFT algorithm, a very efficient numerical

method has been developed to compute the total response for MDOF systems,

suitable for both damped and undamped systems. The paper demonstrated that

the computational time needed for getting the transient response could be much

less than that for the steady state response. The correctness of the proposed

method has been verified through three numerical examples by comparing the to-

tal responses obtained from the proposed method to those obtained from using a

time domain method.
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CHAPTER 4

Manuscript 2: Impedance Function Comparison of Underwater
Transducers in Air and in Water by Pole-Residue Method

4.1 Abstract

Impedance function is very essential for the transducer design. It includes

many important characteristics, such as the resonant frequencies, anti-resonant

frequencies, and maximum/minimum impedance values. In addition, the modal

damping can also be calculated through impedance function. It is usually mea-

sured first under air loading and then under water loading. When the transducer

is operated in water, some characteristics, such as resonant and anti-resonant fre-

quencies, are changed because the acoustic medium becomes denser in water, and

the added radiation mass in water is much greater than that in air. A newly

developed method by pole-residue operations is applied to estimate impedance

functions of acoustic transducers in this paper. With this new method, the poles

of the impedance function can be used to precisely compute some characteristics

of the transducer, such as modal frequencies and modal damping. Four numerical

examples show the procedures to calculate impedance functions of the transduc-

er under air and water loadings through both finite element method (FEM) and

experiments. Together with their comparisons, the influence of water to the trans-

ducer, the radiating mass, has been quantified.

4.2 Introduction

Impedance function is of great importance to a transducer since it contains

many essential characteristics, such as resonant/anti-resonant frequencies, capac-

itance, bandwidth, impedance values and damping. Accuracies of the impedance

properties have significant influences on the performance of transducers.
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Many studies have been carried out to estimate electrical impedance in air and

in water. Multiple typical methods are introduced in textbooks, like impedance an-

alyzer, single frequency harmonic analysis and Fourier-based analysis method using

transient signals (Wilson, 1988; Sherman and Butler, 2007). A study on electrical

impedance of piezoelectric ceramics under acoustic loads, with water column in

and both ends covered, was performed experimentally to analyze the behavior of

the resonances, anti-resonances and the effective electromechanical coupling factor

of a piezoelectric ceramic ring vibrating in thickness mode (Arnold et al., 2014;

Arnold et al., 2015). In addition, Sherman and Butler (2007) discuss the tradi-

tional methods on measuring the piezoelectric transducer in water and some of the

quantities are discussed, such as resonant frequency, the radiation impedance, and

radiation mass. In the above studies, the characteristics are usually obtained by

directly reading from the impedance plot. Since impedance functions calculated

by traditional methods suffers from leakage and frequency resolution problems, the

characteristics, such as resonant frequencies and radiating mass, can’t be accurate

enough.

A recent article (Hu et al., 2016) developed an efficient pole-residue method

for computing the dynamic response of the MDOF system, which showed that

the poles and residues of dynamic response could be easily obtained from those

of the input and system functions. Following the same theoretical principle, a

new approach is used to estimate impedance functions by pole-residue operations.

With this new method, some system characteristics, such as modal frequencies and

damping ratios, can be accurately quantified for determining the properties of the

transducer in water and the influence of fluid-structure interaction.

In this article, a tube piezoelectric transducer is simulated using finite element

package Abaqus and measured experimentally both in air and in water. Four
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numerical studies are provided to demonstrate the procedures of computing the

impedance functions through the pole-residue operations. With the comparison

of impedances in water and in air, one can obtain the influence of water loading

and the change of characteristics. In addition, before the transducer is placed into

water, the finite element model updating is applied to correct some coefficients

of material properties based on the impedance functions obtained from FEM and

experiments.

4.3 Preliminaries

This section reviews the background materials of importance to this article,

including electrical impedance function, pole-residue form of a signal and radiating

mass.

4.3.1 Electrical impedance function

The electrical impedance function is a function of frequency, and it is generally

referred to as the total resistance generated by a device to a current flow at specific

frequencies. The impedance function is defined as the ratio of voltage and current

in complex form

Z(ω) =
V

I
(4.1)

Thus, the polar form conveniently captures both magnitude |Z| and phase θ char-

acteristics as

Z =
|V |
|I|

ej(ϕV −ϕI) = |Z|ejθ (4.2)

When plotted in the frequency domain, the impedance function amplitude |Z(ω)|

can be used to study many characteristics of a transducer, including resonant

frequencies (local minima), anti-resonant frequencies (local maxima) and damping

ratio.
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4.3.2 Pole-residue form of a signal

An arbitrary signal f(t) can always be decomposed into a finite number of

exponential components

f(t) =
L∑

ℓ=1

αℓ exp(λℓt) 0 ≤ t < T (4.3)

where L is the number of terms, αℓ and λℓ are constants.

After the signal decomposition of Eq. 4.3 has been done, the Laplace transform

of Eq. 4.3 yields the following pole-residue form in the Laplace-domain

f̃(s) =
L∑

ℓ=1

αℓ

s− λℓ

(4.4)

where all the λℓ and αℓ ℓ = 1, . . . , L are the poles and residues of this sig-

nal. This decomposition can be done by the Prony-SS method (Hu et al., 2013;

Hu et al., 2016).

4.3.3 Radiating mass

When a transducer is measured in water, one of the characteristics, resonant

frequency, will be changed because of the greater radiation impedance, which adds

a radiation mass Mr to the transducer. At resonance in air and in water, the

frequencies can be calculated by

ωra = 1/(McE)1/2 (4.5)

and

ωrw = 1/[cE(M +Mr)]
1/2 (4.6)

respectively, where M represents total mass of the transducer and cE stands for

the compliance with constant electric field (Sherman and Butler, 2007).

Combining Eqs. 4.5 and 4.6, one can derive the radiation mass as

Mr =
ω2
ra − ω2

rw

ω2
rw

M =
f 2
ra − f 2

rw

f 2
rw

M (4.7)
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where fra and frw are the resonant frequencies (cycles per second) in air and in

water.

4.4 Pole-Residue Approach of Estimating Impedance Function
4.4.1 Pole-residue method

The generalized expression for the displacement response at coordinate j to

the load at k can be written by the following convolution integral

ujk(t) =

∫ t

0

hjk(t− τ) pk(τ) dτ (4.8)

where hjk(t) is the unit impulse response function associated with coordinates

j and k. Applying Laplace transform to Eq. 4.8, one can get the displacement

response in the Laplace-domain

ũjk(s) = h̃jk(s)p̃k(s) (4.9)

According to Eq. 4.4 and the reference (Hu et al., 2016), the external force

p̃k(s) and the transfer function h̃jk(s) of an N -DOF system can be written as

p̃k(s) =
L∑

ℓ=1

αℓ

s− λℓ

(4.10)

and

h̃jk(s) =
2N∑
n=1

βn

s− µn

(4.11)

where the subscripts j and k of the residues of p̃k(s) and h̃jk(s) are omitted for

the simplification of notations.

Substituting Eqs. 4.10 and 4.11 into Eq. 4.9, it yields

ũjk(s) =

(
2N∑
n=1

βn

s− µn

)(
L∑

ℓ=1

αℓ

s− λℓ

)
(4.12)

Eq. 4.12 can be rewritten in the pole-residue form

ũjk(s) =
L+2N∑
m=1

γm
s− νm

(4.13)
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Comparing Eq. 4.12 and Eq. 4.13, one can notice that the total L + 2N response

poles νm are originally from the L excitation poles and 2N system poles. Arrange

the first L poles as the excitation poles, i.e., νm = λm, m = 1, · · · , L, and the last

2N poles as the system poles, i.e., νm+L = µm, m = 1, · · · , 2N . For each response

pole νm, the corresponding residue can be computed by (Hu et al., 2016)

γm = lim
s→νm

(s− νm)ũjk(s) = lim
s→νm

(s− νm)p̃k(s)h̃jk(s) (4.14)

Thus, from Eq. 4.14, the residues corresponding to the first L response poles (at

the excitation poles) are

γm = lim
s→νm

(s− νm)

(
L∑
l=1

αℓ

s− λℓ

)
h̃jk(s) = αm h̃jk(λm), m = 1, · · · , L (4.15)

and the residues corresponding to the last 2N response poles (at the system poles)

are

γm+L = lim
s→νm+L

(s− νm+L) p̃k(s)

(
2N∑
n=1

βn

s− µn

)
= βm p̃k(µm), m = 1, · · · , 2N

(4.16)

Eqs. 4.15 and 4.16 indicate that all residues of the response can be easily obtained

from simple operations of the poles and residues of the excitation and system trans-

fer function. Generally, this pole-residue method can be applied to the response

calculation to arbitrary loading for a linear multi-DOF system, not only limited to

compute the displacement response due to external force.

4.4.2 pole-residue operations for computing system functions

Shown in Table 4.1 are the decomposition outcomes of input and output sig-

nals by multi-signal Prony-SS method, i.e., global poles, input residues, and output

residues. One can distinguish the input poles and system poles by observing the

columns 1 and 2 in Table 4.1. In column 2, the input residues can be divided two

groups, nonzero ones αℓ and zero or negligibly small ones. In column 1, the global
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poles are correspondingly divided into two groups, νℓ and νn+L. The input poles

are the ones νℓ in the group of nonzero input residues while the system poles µn

are the remaining ones νn+L in the group of zero or negligibly small input residues

(Cao et al., 2017), which can also be interpreted that the system poles are simply

the output poles ν minus the input poles νℓ. With the system poles, one can

accurately calculate the modal frequencies and modal damping of the system by

ωn = |νn+L|, ξn =
−Re(νn+L)

|νn+L|
(4.17)

Eq. 4.9 shows the relationship among input, system and output in the Laplace

domain for a system initially at rest. Thus, one can simply calculate the transfer

function by

h̃jk(s) =
ũjk(s)

p̃k(s)
(4.18)

From Eqs. 4.10 and 4.13, one obtains

p̃k(s) =
L∑

ℓ=1

αℓ

s− νℓ
(4.19)

ũjk(s) =
2N+L∑
m=1

γm
s− νm

(4.20)

Notice that p̃k(s) and ũjk(s) can be expressed by the global poles ν, input residues

α and output residues γ.

Combining Eqs. 4.18 to 4.20, it yields the transfer function

h̃jk(s) =

(
2N+L∑
m=1

γm
s− νm

)
/

(
L∑

ℓ=1

αℓ

s− νℓ

)
(4.21)

By substituting s with iω, Eq. 4.21 becomes complex FRF

Hjk(ω) ≡ h̃jk(s = iω) =

(
2N+L∑
m=1

γm
iω − νm

)
/

(
L∑

ℓ=1

αℓ

iω − νℓ

)
(4.22)
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Table 4.1. Summary of operations for calculating the system functions h̃jk(s)

global input output
poles residues residues

νℓ αℓ γℓ

ℓ = 1, · · · , L ℓ = 1, · · · , L ℓ = 1, · · · , L

νn+L 0
γn+L

n = 1, · · · , 2N n = 1, · · · , 2N

4.5 Impedance Functions Calculation and Their Comparisons

Impedance function of a cylindrical piezoelectric transducer is studied in this

article. The transducer is simulated using Abaqus under two conditions – with and

without water. Furthermore, the transducer is also tested experimentally in air

and in water to obtain impedance function and verify FE models. Additionally, to

make the simulation accurate, finite element model updating is carried out before

the transducer is placed into water.

4.5.1 Impedance function in air from FEM

Shown in Fig. 4.1, the tube transducer used in this study is radially polarized

and made of piezoelectric material PZT4 with dimensions 13mm×26mm×22mm

(L× OD × ID). When studying the mechanical properties, the transducer in air

is treated as in vacuum because the influence of air is negligible. The piezoelectric

transducer is electroded on both the inner and outer surfaces. Since compliance

coefficients are not allowed for elasticity in Abaqus, together with the manufacturer

specification sheet (STEMiNC, 2018), the e-form property matrices in a cylindrical

system are calculated:
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Elasticity (stiffness) matrix cE:
132.64 76.92 76.92 0 0 0
76.92 134.68 63.76 0 0 0
76.92 63.76 134.68 0 0 0
0 0 0 25.64 0 0
0 0 0 0 25.64 0
0 0 0 0 0 35.46

 GPa

Piezoelectric coupling matrix (stress coefficients e): 20.9048 −3.1669 −3.1669 0 0 0
0 0 0 12.7179 0 0
0 0 0 0 12.7191 0

 C/m2

Dielectric matrix with constant strain εS: 4.819 0 0
0 6.752 0
0 0 6.752

× 10−9 F/m

The 1-, 2- and 3-direction are radial, tangential, and axial, respectively. In this

model, the poling direction is radially outwards from the axis of symmetry. The

mass density is 7900 kg/m3. A light Rayleigh damping model is assumed for the

piezoelectric material with coefficients α = 700, β = 1.3×10−9. As Fig. 4.1 shows,

the transducer is modeled by a piece of cross section of the cylinder tube structure

with 8-node axisymmetric piezoelectric elements (CAX8E).
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Figure 4.1. The geometry and finite element model of the transducer in air: a) 2D
axisymmetric model, b) 3D model

Fig. 4.2 shows the modal analysis results of the transducer under short-circuit

condition, whose resonant frequencies under 200 kHz are 43.790 kHz, 60.189 kHz

and 129.924 kHz. Likewise, the modal frequencies under open-circuit condition,

corresponding to the anti-resonance of the transducer, are 46.744 kHz, 60.203 kHz,

and 145.962 kHz. Based on values of α and β, the corresponding theoretical modal

damping are 0.1451%, 0.1171%, and 0.0959%.
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Figure 4.2. Modal analysis results of the transducer under short-circuit condition
(grey for original shape, green for deformed one): a) radial (breathing) mode, b)
bending mode and c) longitudinal mode

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−4

−1.5

−1

−0.5

0

0.5

1

1.5

time (sec.)

 

 
normalized input
normalized output

Figure 4.3. Normalized FEM input voltage and output nodal charge for the trans-
ducer in air: voltage scale 1 V, charge scale 7.8253× 10−9 C

To calculate impedance function, one carries out the dynamic analysis. The
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excitation of a sinusoidal electrical potential v(t) with the amplitude 1 V and

the frequency 30 kHz is applied through electrical boundary condition, while the

reactive electrical charge q(t) is computed. Both signals are shown in Fig. 4.3. The

time increment and total time duration are 0.2 µs and 200 µs, respectively.

Applying Prony-SS method to decompose v(t) and q(t) simultaneously, the

corresponding global poles ν and residues λ and γ are shown in columns 1 through

3 of Table 4.2. The corresponding modal frequencies and modal damping are also

calculated by ω = |ν| and ξ = −real(ν)/|ν| listed in columns 4 and 5 of Table 4.2.

The modal frequencies and modal damping match the results of modal analy-

sis very well, with relative errors of the three modes as {0.02%, 0.06%, 0.022%}

and {0.05%, 6.35%, 0.46%}, respectively. Unlike traditional method, the dominant

mode, longitudinal mode (129.924 kHz), can be determined by the largest value

in Column 6 of Table 4.2 before calculating impedance function. By pole-residue

operation in Eq. 4.22, one can calculate the frequency response function HQV (ω).

Since the electrical current i(t) = q̇(t), the impedance function will be obtained

using

Z(ω) =
V (ω)

iωQ(ω)
=

1

iωHQV (ω)
(4.23)

Shown in Fig. 4.4 is the impedance plot and all resonant and anti-resonant

frequencies match pretty well with modal analysis results. The accuracy and effi-

ciency has been stated in references (Su, 2016; Hu et al., 2017).

Table 4.2. FEM signal decomposition results of the transducer in air
modal modal

poles ν input residues λ output residues γ frequencies damping |γ/Ṽ (ν)|
×105 ×10−8 kHz ×10−3

(1) (2) (3) (4) (5) (6)
0.0000 + 1.8850i 0.0188− 0.4996i 0.0125− 0.3391i 30.0000 −− −−
0.0000− 1.8850i 0.0188 + 0.4996i 0.0125 + 0.3391i 30.0000 −− −−
−0.0040 + 2.7507i 0.0000− 0.0000i −0.0024 + 0.0491i 43.7792 0.1450% 0.1046
−0.0040− 2.7507i 0.0000 + 0.0000i −0.0024− 0.0491i 43.7792 0.1450% 0.1046
−0.0041 + 3.7793i −0.0000− 0.0000i −0.0000 + 0.0001i 60.1494 0.1097% 0.0004
−0.0041− 3.7793i −0.0000 + 0.0000i −0.0000− 0.0001i 60.1494 0.1097% 0.0004
−0.0078 + 8.1453i 0.0000− 0.0000i −0.0021 + 0.0132i 129.6361 0.0955% 0.4391
−0.0078− 8.1453i 0.0000 + 0.0000i −0.0021− 0.0132i 129.6361 0.0955% 0.4391
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Figure 4.4. Impedance plot in air from FEM

4.5.2 Impedance function in air from experiment

Figure 4.5. Experiment setup circuit in air

The circuit diagram of the experiment is shown in Fig. 4.5, where the resistance

R = 324 ohm. The input voltage, Vin = exp(−10000t) volt, is generated by

the function generator (Tektronix) with time increment 0.2 µs and time duration

100 µs, and Vx is the response voltage across the piezoelectric transducer (shown

66



in Fig. 4.6).
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Figure 4.6. Normalized experimental input voltage and voltage across the trans-
ducer (xducer voltage) in air: input voltage scale 4.7200 V, xducer voltage scale
4.8000 V

Similarly, Table 4.3 shows the decomposition results of Vin and Vx and the

corresponding modal frequencies and modal damping using the Prony-SS method.

The second row of Table 4.3 shows a real pole, which is neither input pole nor

system poles. This component is caused by the sudden increase from 0 V to 1 V

when the function generator outputs an exponential decay function. The decay

time of this component is about 2 µs and will negatively die out very quickly. As

shown in Table 4.3, the bending mode doesn’t participate since it is very hard to

be excited experimentally. The impedance function can be calculated through

Z(ω) =
Vx

VR/R
=

Vx

Vin − Vx

R =
H(ω)

1−H(ω)
R (4.24)

whereH(ω), the FRF from input voltage to response voltage across the transducer,

can be calculated by the pole-residue operations in Eq. 4.22. Plotted in Fig. 4.7
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is the comparison of impedance function between FEM and experiment results.

There are some discrepancies at both resonant and anti-resonant frequencies. In

addition, the modal damping of FE model is much smaller than the real transducer.

Therefore, material parameters from the manufacturer used in FEM are inaccurate

and need to be updated before the model is used for further studies.

Table 4.3. Experimental signal decomposition results of the transducer in air

poles (ν) input residues output residues modal frequencies damping
×105 |ν|/2π (kHz) −real(ν)/|ν|
(1) (2) (3) (4) (5)

−0.0991 + 0.0000i 5.0153− 0.0000i 5.1581 + 0.0000i −− −−
−4.6614 + 0.0000i −0.7886 + 0.0000i −5.2702 + 0.0000i −− −−
−0.0875 + 2.7682i 0.0210 + 0.0111i 0.1269 + 0.0695i 44.0795 0.0316
−0.0875− 2.7682i 0.0210− 0.0111i 0.1269− 0.0695i 44.0795 0.0316
−0.5408 + 9.0705i 0.0334− 0.0163i 0.2764− 0.1057i 144.6186 0.0595
−0.5408− 9.0705i 0.0334 + 0.0163i 0.2764 + 0.1057i 144.6186 0.0595
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Figure 4.7. Impedance function comparison of the transducer in air: original FEM
v.s. experiment

4.5.3 Model updating

The model updating method employed in this study is the cross-model cross-

mode (CMCM) method. Only four major coefficients, i.e. elastic property s11/c11,
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s12/c12, electrical permittivity εT33/ε
S
33 and piezoelectric coupling d31/e31, of the

piezoelectric material are updated instead of all 10 parameters (Su, 2016).

With the two modal frequencies of the target short-circuit model: 43.26 kHz

and 131.7 kHz, those of the target open-circuit model: 46.18 kHz and 151.7 kHz,

and the impedance values from the impedance function

Z0 = {12860 5442 3902 2728 2267 1802 1580 1327 1195 1031} Ω

at the corresponding frequencies

f0 = {2 5 7 10 12 15 17 20 22 25} kHz,

one can apply the extended CMCM method to perform the finite element model

updating and obtain the corrected properties of piezoelectric material. In addition,

a thin polyurethane layer with density 1012 kg/m3 is coated on the surfaces of

this transducer to isolate water in further study. Since this layer is only 0.5 mm

thick and changes the electrical and mechanical system very slightly, to simplify

the simulation, this polyurethane material is considered to be linearly isotropic

elastic material in current study. To follow similar procedures, together with the

modal frequencies of the target short-circuit model: 41.9 kHz and 126.1 kHz, one

can update the Young’s modulus and Poison’s ratio of the ‘linear’ polyurethane

material (more details shown in Appendix C).

Shown in Table 4.4 is the comparison of properties between original and up-

dated ones. After the model updating, the outcomes of finite element model have

very good agreement with those of experiments, which are shown in Figs. 4.8 and

4.9.
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Table 4.4. The comparison of properties between original and updated models

material parameters unit original updated
relative
error

PZT Young’s modulus Y11 GPa 86 84.390 −1.91%
manufacturer Poison’s ratio ν12 — 0.2126 0.2844 25.25%

form coupling d31 pm/V −140 −141.98 1.40%
permittivity εT33/ε0 — 1400 1376.4 −1.71%

PZT mass term α — 700 2446.4 —
damping stiffness term β ×10−9 1.3 3.6782 —

polyurethane Young’s modulus Epoly GPa 1 1.4706 —
elastic Poison’s ratio νpoly — 0.3 0.3076 —

polyurethane mass term αpoly — — 18320 —
damping stiffness term βpoly ×10−6 — 2.2427 —

Table 4.5. Updated FEM signal decomposition results of the transducer in air
(with polyurethane layer)

modal

poles ν input residues λ output residues γ frequencies damping |γ/Ṽ (ν)|
×105 ×10−8 kHz ×10−3

(1) (2) (3) (4) (5) (6)
−0.0000 + 1.8850i 0.0188− 0.4996i 0.0050− 0.1702i 30.0000 −− −−
−0.0000− 1.8850i 0.0188 + 0.4996i 0.0050 + 0.1702i 30.0000 −− −−
−0.0279 + 2.6306i 0.0000 + 0.0000i −0.0002 + 0.0279i 41.8696 0.0106 0.0499
−0.0279− 2.6306i 0.0000− 0.0000i −0.0002− 0.0279i 41.8696 0.0106 0.0499
−0.0602 + 3.6074i 0.0000 + 0.0000i −0.0000 + 0.0001i 57.4214 0.0167 0.0003
−0.0602− 3.6074i 0.0000− 0.0000i −0.0000− 0.0001i 57.4214 0.0167 0.0003
−0.1049 + 7.9338i 0.0000 + 0.0000i −0.0011 + 0.0079i 126.2812 0.0132 0.2480
−0.1049− 7.9338i 0.0000− 0.0000i −0.0011− 0.0079i 126.2812 0.0132 0.2480
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Figure 4.8. Impedance function comparison of the transducer in air: updated FEM
v.s. experiment (before adding polyurethane layer)
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Figure 4.9. Impedance function comparison of the transducer in air: updated FEM
v.s. experiment (after adding polyurethane layer)
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4.5.4 Impedance function in water from FEM

After studies in air, the acoustic water will be added to FE model. The wa-

ter domain is spherical with radius of 20 cm and shown in Fig. 4.10 is only one

quarter cross-section of the sphere. The acoustic water is simulated by axisym-

metric acoustic elements ACAX4 with two properties of density 1000 kg/m3 and

bulk modulus 2.1404 GPa. The fluid-structural interaction is defined by a tie con-

straint, which automatically computes the region of influence for each internally

generated acoustic-structural interface element. To simulate an infinite domain,

the nonreflective boundary is applied to the water domain to absorb the acoustic

waves.

Figure 4.10. FEM set-up of the transducer in water: a) water domain and the
transducer (left bottom corner), b) the transducer with polyurethane layer

A continuous sinusoidal electrical potential v(t) with the amplitude 1 volt and

the frequency 30 kHz is applied to the transducer as an electrical boundary condi-

tion on inside surface and the reaction charge q(t) is collected. Total time duration

is 200 µs with time increment 0.2 µs. Shown in Fig. 4.11 are the normalized input

and output signals.
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Figure 4.11. Normalized input voltage and output charge for the transducer in
water: input scale 1 V, output scale 3.0925× 10−9 C

The decomposition results of v(t) and q(t) are shown in Table 4.6, and the

impedance function comparison of the transducer between in air and in water from

FEM is plotted in Fig. 4.12.

Table 4.6. FEM signal decomposition results of the transducer in water
modal

poles ν input residues λ output residues γ frequencies damping |γ/Ṽ (ν)|
×105 ×10−8 kHz ×10−3

(1) (2) (3) (4) (5) (6)
0.0000 + 1.8850i 0.0188− 0.4995i −0.0148− 0.1398i 30.0000 −− −−
0.0000− 1.8850i 0.0188 + 0.4995i −0.0148 + 0.1398i 30.0000 −− −−
−0.1037 + 1.4171i 0.0000− 0.0000i 0.0096− 0.0102i 22.6140 0.0730 0.0118
−0.1037− 1.4171i 0.0000 + 0.0000i 0.0096 + 0.0102i 22.6140 0.0730 0.0118
−0.5122 + 2.7760i −0.0001− 0.0000i 0.0078 + 0.0067i 44.9279 0.1814 0.0266
−0.5122− 2.7760i −0.0001 + 0.0000i 0.0078− 0.0067i 44.9279 0.1814 0.0266
−0.1921 + 3.2798i 0.0000− 0.0000i 0.0009 + 0.0003i 52.2894 0.0585 0.0037
−0.1921− 3.2798i 0.0000 + 0.0000i 0.0009− 0.0003i 52.2894 0.0585 0.0037
−0.3411 + 7.8002i 0.0000− 0.0000i −0.0002 + 0.0081i 124.2621 0.0437 0.2467
−0.3411− 7.8002i 0.0000 + 0.0000i −0.0002− 0.0081i 124.2621 0.0437 0.2467
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Figure 4.12. Impedance function comparison of the transducer: in air (FEM) v.s.
in water (FEM)

For this transducer, water is surrounding not only outside the transducer but

also inside the tube, which is called free flooded ring transducer. In order to figure

out the influence of two parts of water to the transducer, one additional FE model is

carried out, in which the water inside the tube is replaced by air. The model setup

is the same with shown in Fig. 4.10 except that the water at the left bottom corner

(inside the cylinder) is changed to air with density 1.11 kg/m3 and bulk modulus

0.134 MPa. Shown in Table 4.7 are the signal decomposition outcomes of input

voltage and output charge signals. With the modal frequencies of the transducer

in water frw = {36.1098, 54.3060, 122.5889} kHz (in column 4 of Table 4.7) and

in air fra = {41.8696, 57.4214, 126.2812} kHz (in column 4 of Table 4.5), the

radiation mass can be calculated by Eq. 4.7 as Mr = {0.0058, 0.0020, 0.0010} kg,

where M = ρpztπ(D
2
o−D2

i )L/4+ρpolyVpoly = 0.0167 kg. As expected, the outcomes

shows that the water adds more radiation mass on radial mode than the other two

because of the larger interaction area with the fluid.
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Notice that there are one additional pair of poles extracted besides those

three structure modes in column 4 of Table 4.6. This is the so-called Helmholtz

frequency caused by the resonance of water column flooded in the tube. The

comparison between the modal frequencies in columns 4 of Table 4.6 and Table 4.7

indicates that the inside water column is equivalent to adding stiffness to the

system, while the comparison with modal frequencies of the transducer in air yield

that the outside water is to add mass to the transducer. According to reference

(McMahon, 1964), the Helmholtz frequency of a cylinder with water column inside

can be calculated as 31.133 kHz. After adding mass to the transducer by the

outside water, this frequency will be reduced. The additional mode, 22.6140 kHz,

in Table 4.6 should be the Helmholtz mode. In addition, column 5 of Table 4.6

shows that there is extra damping in water, which is also caused by the fluid-

structure interaction but beyond the scope of this article.

Observing Table 4.6 and Fig. 4.12, one can notice that the radial mode,

44.9279 kHz mode, is very hard to be read from impedance plot using traditional

method because the damping of this mode is too large to generate obvious valley

and peak in the plot. But, this mode can be effectively extracted by the pole-

residue method and the modal frequency can exactly calculated from the system

poles.

Table 4.7. FEM signal decomposition results of the transducer in water (with air
filled in the tube)

modal

poles ν input residues λ output residues γ frequencies damping |γ/Ṽ (ν)|
×105 ×10−8 kHz ×10−3

(1) (2) (3) (4) (5) (6)
0.0000 + 1.8849i 0.0189− 0.4995i −0.0191− 0.1812i 29.9999 −− −−
0.0000− 1.8849i 0.0189 + 0.4995i −0.0191 + 0.1812i 29.9999 −− −−
−0.3211 + 2.2460i −0.0001− 0.0001i 0.0246 + 0.0408i 36.1098 0.1415 0.0509
−0.3211− 2.2460i −0.0001 + 0.0001i 0.0246− 0.0408i 36.1098 0.1415 0.0509
−0.0054 + 3.4121i −0.0000− 0.0000i 0.0000 + 0.0001i 54.3060 0.0016 0.0004
−0.0054− 3.4121i −0.0000 + 0.0000i 0.0000− 0.0001i 54.3060 0.0016 0.0004
−0.2884 + 7.6971i 0.0000− 0.0000i −0.0012 + 0.0086i 122.5889 0.0374 0.2559
−0.2884− 7.6971i 0.0000 + 0.0000i −0.0012− 0.0086i 122.5889 0.0374 0.2559
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4.5.5 Impedance function in water from experiment

Figure 4.13. Experiment setup circuit in water

The setup of measuring the transducer in water is shown in Fig. 4.13, in which

the same resistor and input signal Vin = 10 exp(−10000t) as in air are used. Vx is

the response voltage across the piezoelectric transducer (shown in Fig. 4.14). The

total time duration is 100 µs long with time increment 0.1 µs.
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Figure 4.14. Normalized experimental input voltage and voltage across the trans-
ducer (xducer voltage) in water: input voltage scale 9.6000 V, xducer voltage scale
9.6000 V

Shown in Table 4.8 are the decomposition outcomes of Vin and Vx, and

Fig. 4.15 displays the impedance function comparison between FEM and experi-

ment when the transducer is operated in water. The impedance functions obtained

from FE model and experiment match very well with each other except some s-

mall discrepancy at the longitudinal mode, and the FE model has well captured

the characteristics of the transducer.

Table 4.8. Experimental signal decomposition results of the transducer in water
poles input residues output residues modal frequencies
×107 kHz
(1) (2) (3) (4)

−0.0998 + 0.0000i 10.1092− 0.0000i 10.3675− 0.0000i −−
−3.7963 + 0.0000i −1.7357 + 0.0000i −10.8814 + 0.0000i −−
−0.1541 + 1.5892i 0.0164 + 0.0178i 0.0296 + 0.0840i 25.4123
−0.1541− 1.5892i 0.0164− 0.0178i 0.0296− 0.0840i 25.4123
−0.5247 + 2.9250i 0.0435 + 0.0152i 0.1618− 0.0685i 47.2957
−0.5247− 2.9250i 0.0435− 0.0152i 0.1618 + 0.0685i 47.2957
−0.7462 + 8.6881i 0.0675− 0.0511i 0.3599− 0.3300i 138.7844
−0.7462− 8.6881i 0.0675 + 0.0511i 0.3599 + 0.3300i 138.7844
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Figure 4.15. Impedance function comparison of the transducer in water: FEM v.s.
experiment

4.6 Concluding Remarks

Impedance functions of a piezoelectric transducer are used to study the influ-

ence of surrounding water to the system. In this study, the pole-residue method

are employed to estimate the impedance functions, by which the modal frequen-

cies and modal damping can be exactly computed from the system poles. It shows

that the ambient water adds both radiating mass and additional damping to the

transducer. The radiation mass of each mode can be obtained by the resonant

frequencies of the transducer in air and in water. For the free flooded transduc-

er, the inner water column is equivalent to add stiffness to the system while the

outside water is to add mass to the transducer. In addition, pole-residue method

is more efficient for measuring the characteristics of the transducers. For the tube

transducer in this study, the radial mode is hard to be read on the impedance plot

in traditional way while it can be exactly extracted by the pole-residue method.

78



Chapter 5

“Impedance Function Comparison of Acoustic Transducers in Air and

in Water by Pole-Residue Operations”

by

Bin Gao1, Sau-Lon James Hu2 and Harold T. Vincent3

will be submitted to Journal of the Acoustical Society of America

——————————————
1 PhD Candidate, Department of Ocean Engineering, University of Rhode Island, Narragansett, RI 02882.

E-mail: gaobinouc@gmail.com

2 Professor, Department of Ocean Engineering, University of Rhode Island, Narragansett, RI 02882. E-mail:

jameshu@uri.edu

3 Research Professor, Department of Ocean Engineering, University of Rhode Island, Narragansett, RI 02882.

E-mail: vincentht@uri.edu

79



CHAPTER 5

Manuscript 3: Estimating TVR and Beam Pattern of Underwater
Transducers by Pole-Residue Operations

5.1 Abstract

Transmitting voltage response (TVR) and beam pattern (BP) are two of the

most important measures of a transducer’s ability to perform the functions of ra-

diating sound. Traditionally, there are two kinds of methods for measuring TVR

and BP, namely, single-frequency harmonic analysis method and Fourier-based

analysis method. But, both methods have drawbacks. The former one is too time-

consuming while the latter one suffers from the leakage and frequency resolution

problems. Additionally, both of them are usually influenced by the reflecting waves

from boundaries, such as water surface and acoustic tank walls. In this article, a

new approach by pole-residue operations is developed to estimate TVR and BP,

which overcomes the above drawbacks. Unlike the traditional methods, continu-

ous characteristic functions in the frequency domain can be obtained by one-time

measurement with the new method. Since very short signal is needed in this ap-

proach, the calculation of characteristic functions can be finished before the sound

waves travel back from the boundaries. Two numerical examples are provided to

show the procedures to compute TVR and BP of an underwater transducer. The

effectiveness is verified by the harmonic analysis method. The accuracy and the

efficiency are also demonstrated by the comparisons with traditional methods.

5.2 Introduction

An electroacoustic transducer is usually used to transmit sound into a medium

or to detect sound from the medium. The transmitting response and radiating

beam pattern are measures of a transducer’s ability to perform these functions.
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TVR is the far field pressure produced on its maximum response axis and BP is

the spacing transmitting pattern operated at one fixed frequency. Accurately and

efficiently estimating these characteristics becomes significant for applications of

acoustic transducers.

Measurements of these functions are usually carried out at one single frequen-

cy or over a range of frequencies of interest in the frequency domain. Generally,

there are two types of traditional methods for measuring the above characteris-

tic functions, i.e., single-frequency harmonic analysis method and Fourier-based

analysis method. The single-frequency harmonic analysis is to repeatedly apply a

harmonic input signal to get the corresponding steady state response of the given

frequency, and is generally considered to be an accurate way to obtain frequency

response function (FRF). The Fourier method computes characteristic functions

through the application of the fast Fourier transform (FFT) of both input and

output signals, and is considered to be an efficient way on estimating FRF. Both

methods have drawbacks though. The single-frequency harmonic analysis method

is time costly especially when very high frequency resolution is required; and the

Fourier-based analysis method is always affected by the periodic assumption and

time interval resolution for signals, and suffers from the leakage problem and fre-

quency resolution issue. In addition, the pressure signals are usually contaminated

by the reflected waves from boundaries when measured in acoustic tank with tra-

ditional methods.

A new approach for estimating characteristic functions of underwater trans-

ducers, such as TVR and BP, by pole-residue operations is developed in this article.

Unlike the traditional methods, this new method can calculate the system func-

tions as a continuous function without periodic assumption. With the advantages

of the new method, one can efficiently obtain the TVR and BP by a one-time
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measurement instead of repeating many times.

This paper will provide two numerical examples to verify the correctness and

demonstrate the effectiveness of the newly developed method by pole-residue op-

erations. To illustrate the procedures of the new approach, the first study shows

how to implement it to compute TVR numerically. The second one presents the

calculation of multiple beam patterns using only one single input at a time with

the new method.

5.3 Preliminaries

This section reviews the mathematics of importance to this article, including

signal decomposition using Prony-SS method, the governing differential equation

of underwater projectors, the transmitting voltage response function, and beam

pattern.

5.3.1 Pole-residue form of a signal

An arbitrary signal f(t) can always be decomposed into a finite number of

exponential components

f(t) =
L∑

ℓ=1

αℓ exp(λℓt) 0 ≤ t < T (5.1)

where L is the number of terms, αℓ and λℓ are constants.

After the signal decomposition of Eq. 4.3 has been done, the Laplace transform

of Eq. 4.3 yields the following pole-residue form in the Laplace-domain

f̃(s) =
L∑

ℓ=1

αℓ

s− λℓ

(5.2)

where all the λℓ and αℓ ℓ = 1, . . . , L are the poles and residues of this sig-

nal. This decomposition can be done by the Prony-SS method (Hu et al., 2013;

Hu et al., 2016).
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5.3.2 Acoustic pressure field

The key of acoustic problems is to solve the acoustic field that generated

by a vibration surface. The acoustic pressure, p(x⃗, t), is a scalar quantity and

usually defined as the variation pressure from the static pressure. The governing

differential equation for the acoustic pressure is

∇2p− 1

c2
∂2p

∂t2
= 0 (5.3)

where ∇2 is the Laplace operator and c is the speed of sound.

5.3.3 TVR of underwater projectors

The transmitting voltage response is one of the most important measurements

for the acoustic performance of a projector. Oftentimes it is measured in the direc-

tion of the maximum response axis at a radial distance in the far field. It is usually

defined as the pressure per unit electrical excitation referenced to 1 meter and a

pressure of p0 = 1 µPa in underwater applications as (Sherman and Butler, 2007)

TVR = 20 log10 |p/p0| re 1 volt @ 1 m (5.4)

where p is the pressure at 1 m generated by 1 volt input signal. Thus, if the

transducer is excited by a voltage v0 and the pressure pr collected at distance r,

Eq. 5.4 becomes

TVR = 20 log10

∣∣∣∣pr/(1/r)v0p0

∣∣∣∣ = 20 log10 |rpr/v0|+ 120 dB//µPa @ 1m/V (5.5)

5.3.4 BP of underwater projectors

Acoustic pressure field is a scalar field with respect to the distance r and the

angle θ. Therefore, one can separate the far field pressure amplitude p(r, θ) into two

parts, one only associated with r and another one only with the direction θ. The

acoustic pressure amplitude in the far field can be written as (Kinsler et al., 2000)

p(r, θ) = pax(r)g(θ) (5.6)
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where pax and g(θ) are far field axial pressure and directional factor, respectively.

The axial pressure is proportional to 1/r in the far field. The variation of sound

pressure level with angle is the beam pattern

BP (θ) = 20 log10 g(θ) (5.7)

which usually refers to some specific frequency.

Traditionally, beam patterns can be measured by rotating the directional hy-

drophone under test in the time domain (Sherman and Butler, 2007). At fixed

frequency f0, the transducer is driven by a sinusoidal voltage with amplitude V0

and one can obtain the pressure amplitude p(θ) or scaled one g(θ) when it reaches

steady state. By rotating the transducer to all desired angles and repeating the

above procedures, the total directional factor g(θ) could be acquired. Finally, sub-

stituting normalizing g(θ) into Eq. 5.7, the beam pattern can be plotted in a polar

coordinate.

5.4 Pole-Residue Operations of Estimating TVR Function and BP
5.4.1 Pole-residue method

The generalized expression for the displacement response at coordinate j to

the load at k can be written by the following convolution integral

ujk(t) =

∫ t

0

hjk(t− τ) pk(τ) dτ (5.8)

where hjk(t) is the unit impulse response function associated with coordinates

j and k. Applying Laplace transform to Eq. 5.8, one can get the displacement

response in the Laplace-domain

ũjk(s) = h̃jk(s)p̃k(s) (5.9)

According to Eq. 4.4 and the reference (Hu et al., 2016), the external force

p̃k(s) and the transfer function (TF) h̃jk(s) of an N -DOF system can be written

84



as

p̃k(s) =
L∑

ℓ=1

αℓ

s− λℓ

(5.10)

and

h̃jk(s) =
2N∑
n=1

βn

s− µn

(5.11)

where the subscripts j and k of the residues of p̃k(s) and h̃jk(s) are omitted for

the simplification of notations.

Substituting Eqs. 5.10 and 5.11 into Eq. 5.9, it yields

ũjk(s) =

(
2N∑
n=1

βn

s− µn

)(
L∑

ℓ=1

αℓ

s− λℓ

)
(5.12)

Eq. 5.12 can be rewritten in the pole-residue form

ũjk(s) =
L+2N∑
m=1

γm
s− νm

(5.13)

Comparing Eq. 5.12 and Eq. 5.13, one can notice that the total L + 2N response

poles νm are originally from the L excitation poles and 2N system poles. Arrange

the first L poles as the excitation poles, i.e., νm = λm, m = 1, · · · , L, and the last

2N poles as the system poles, i.e., νm+L = µm, m = 1, · · · , 2N . For each response

pole νm, the corresponding residue can be computed by (Hu et al., 2016)

γm = lim
s→νm

(s− νm)ũjk(s) = lim
s→νm

(s− νm)p̃k(s)h̃jk(s) (5.14)

Thus, from Eq. 5.14, the residues corresponding to the first L response poles (at

the excitation poles) are

γm = lim
s→νm

(s− νm)

(
L∑
l=1

αℓ

s− λℓ

)
h̃jk(s) = αm h̃jk(λm), m = 1, · · · , L (5.15)

and the residues corresponding to the last 2N response poles (at the system poles)

are

γm+L = lim
s→νm+L

(s− νm+L) p̃k(s)

(
2N∑
n=1

βn

s− µn

)
= βm p̃k(µm), m = 1, · · · , 2N

(5.16)
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Eqs. 5.15 and 5.16 indicate that all residues of the response can be easily obtained

from simple operations of the poles and residues of the excitation and system trans-

fer function. Generally, this pole-residue method can be applied to the response

calculation to arbitrary loading for a linear multi-DOF system, not only limited to

compute the displacement response due to external force.

5.4.2 pole-residue operations for computing system functions

Shown in Table 5.1 are the decomposition outcomes of input and output sig-

nals by multi-signal Prony-SS method, i.e., global poles, input residues, and output

residues. One can distinguish the input poles and system poles by observing the

columns 1 and 2 in Table 5.1. In column 2, the input residues can be divided two

groups, nonzero ones αℓ and zero or negligibly small ones. In column 1, the global

poles are correspondingly divided into two groups, νℓ and νn+L. The input poles

are the ones νℓ in the group of nonzero input residues while the system poles µn

are the remaining ones νn+L in the group of zero or negligibly small input residues

(Cao et al., 2017), which can also be interpreted that the system poles are simply

the output poles ν minus the input poles νℓ. With the system poles, one can

accurately calculate the modal frequencies and modal damping of the system by

ωn = |νn+L|, ξn =
−Re(νn+L)

|νn+L|
(5.17)

Eq. 5.9 shows the relationship among input, system and output in the Laplace

domain for a system initially at rest. Thus, one can simply calculate the transfer

function by

h̃jk(s) =
ũjk(s)

p̃k(s)
(5.18)

From Eqs. 5.10 and 5.13, one obtains

p̃k(s) =
L∑

ℓ=1

αℓ

s− νℓ
(5.19)
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ũjk(s) =
2N+L∑
m=1

γm
s− νm

(5.20)

Notice that p̃k(s) and ũjk(s) can be expressed by the global poles ν, input residues

α and output residues γ.

Combining Eqs. 5.18 to 5.20, it yields the transfer function

h̃jk(s) =

(
2N+L∑
m=1

γm
s− νm

)
/

(
L∑

ℓ=1

αℓ

s− νℓ

)
(5.21)

Table 5.1. Summary of operations for calculating the system functions h̃jk(s)

global input output
poles residues residues

νℓ αℓ γℓ

ℓ = 1, · · · , L ℓ = 1, · · · , L ℓ = 1, · · · , L

νn+L 0
γn+L

n = 1, · · · , 2N n = 1, · · · , 2N

5.4.3 Estimating TVR by pole-residue operations

Start from the input voltage signal v(t) to a transducer and the measured

acoustic pressure signal pr(t) at some distance r away from it along some direc-

tion, say radial direction. Applying Prony-SS method to process these two signals

simultaneously, one can obtain ṽ(s) and p̃r(s) in the pole-residue form. With

the proposed method, the transfer function h̃pv(s) from voltage to pressure can

be computed by pole-residue operations. Thus, TVR can be calculated through

Eq. 5.5

TV R(s) = 20 log10

∣∣∣∣ p̃r(s)

(1/r)ṽ(s)p0

∣∣∣∣ = 20 log10 |rh̃pv(s)|+ 120 (5.22)

Substituting s by iω, TVR in Eq. 5.22 becomes a continuous function in the

frequency domain. Furthermore, this function could be reflection-free because
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the Prony-SS method only needs very short signal and the decomposition is done

before reflective waves travel back.

5.4.4 Estimating BP by pole-residue operations

Let v(t) be the input voltage and pr(t, θi) the pressure field at distance r, where

θi (i = 1, . . . , N) is the angle position in the polar coordinate. Multi-signal Prony-

SS method yields the signal decompositions ṽ(s) and p̃r(s, θi), and the transfer

functions h̃i(s) can be computed by the operations of those poles and residues

respectively. To have the BP, let θ1 = 0 and θN = 2π. Therefore, one can obtain

the transfer function matrix h̃(s) = [h̃1(s), . . . , h̃N(s)]. Substituting s by iω, one

has

H(ω) = [H1(ω), . . . , HN(ω)] (5.23)

Every transfer function in Eq. 5.23 is a continuous function in frequency domain.

Therefore, one can compute the BP at any frequency f0 by the follow expression

BP (f0) = [|H1(f0)|, . . . , |HN(f0)|] (5.24)

The resolution along the direction of θ depends on the available data of acoustic

field pr(t, θi).

5.5 Numerical Studies

Two numerical studies are carried out to show the procedures of proposed

method to compute TVR and BP. All calculation are based on the pressures field

data from FE model. The system considered here consists of a piezoelectric trans-

ducer and the surrounding water domain. In the FE model, the cylindrical trans-

ducer is placed in the center of a spherical water domain in Abaqus. Shown in

Fig. 5.1 is one quarter cross section of the sphere. To focus on the method de-

velopment and simplify the problem, the thin waterproof layer is omitted at this

time.
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The transducer used in this article is radially polarized and made of a piezo-

electric material PZT4 (STEMiNC) with dimensions 13mm × 26mm × 22mm

(L × OD × ID). The piezoelectric transducer is electroded on both the inner

and outer surfaces. The material properties for PZT4 in a cylindrical system are:

Elasticity (stiffness) matrix cE:
132.64 76.92 76.92 0 0 0
76.92 134.68 63.76 0 0 0
76.92 63.76 134.68 0 0 0
0 0 0 25.64 0 0
0 0 0 0 25.64 0
0 0 0 0 0 35.46

GPa

Piezoelectric coupling matrix (stress coefficients e): 20.9048 −3.1669 −3.1669 0 0 0
0 0 0 12.7179 0 0
0 0 0 0 12.7191 0

 coulomb/m2

Dielectric matrix with constant strain εS 4.819 0 0
0 6.752 0
0 0 6.752

× 10−9F/m

The 1-, 2- and 3-direction are radial, tangential, and axial, respectively. The

poling direction is radially outwards from the axis of symmetry. The mass density

is 7900 kg/m3. The transducer is modeled as an axisymmetric structure utilizing

8-node axisymmetric elements (CAX8E) in Abaqus.

Figure 5.1. The sketch of FEM setup for the transducer in water
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Linear 4-node axisymmetric acoustic elements (ACAX4) are used to simulate

the spherical water domain with radius 0.2 m and mesh size 1.5 × 10−3 m. The

acoustic water are defined by density 1000 kg/m3 and bulk modulus 2.1404 GPa.

The surface-based tie constraint is used to couple the structure with the surround-

ing water. Surfaces are defined at the outside of the transducer and at the free

surface of the water. To consider the symmetric property, all points of the bottom

and the left boundary for both water and the transducer are constrained no move

along longitudinal and radial directions, respectively. A nonreflecting boundary

condition is applied at the water boundary to absorb the acoustic waves (shown

in Fig. 5.1).

A sinusoidal electrical potential signal of 10 volts with the frequency 30 kHz

is applied using an electrical boundary condition. The pressure response of the

system is calculated by implicit dynamic analysis. The acoustic pressure signals is

collected at the distance of 0.1 m away from the center of the transducer.

Fig. 5.2 shows the input voltage and the output acoustic pressure signals. The

total time duration of the simulation is 600 µs with time increment 0.5 µs. Since

the pressure is collected at 0.1 m away from the center, time of arrival for acoustic

waves will be (0.1 − 0.013)/1463 ≈ 60 µs. Given the water boundary located at

0.2 m, first reflection waves travel back in (0.1− 0.013+0.2)/1463 ≈ 196 µs if any.
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Figure 5.2. Normalized input voltage and output pressure (radial direction at 0.1
m) signals: input voltage scale 10 V, output pressure scale 708.0390 Pa

5.5.1 Estimating TVR

Shown in Table 5.2, the voltage and pressure signals with time duration 180 µs

are decomposed into pole-residue form using multi-signal Prony-SS method. Col-

umn 1 through 3 of Table 5.2 are the global poles, voltage (input) residues, and

pressure (output) residues, respectively. By observing the values of Column 2, one

can figure out the first two poles are input poles because all other values are neg-

ligibly small, saying less than 0.1% of the first two. Thus, the others in Column 1

are system poles. Column 4 shows the modal frequencies of the components under

150 kHz obtained from the absolute value of system poles. Note that poles and

residues of input and output signals are available, together with Eqs. 5.21 and 5.22,

one can obtain the TVR function numerically with any frequency resolution.
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Table 5.2. Signal decomposition for input voltage and output acoustic pressure
poles voltage residues pressure residues frequency normalized

×105 ×102 Pa kHz |γ/Ṽ (µ)|
−0.0000 + 1.8849i 0.4713− 4.9791i −2.5631− 1.8515i 29.9998 −−
−0.0000− 1.8849i 0.4713 + 4.9791i −2.5631 + 1.8515i 29.9998 −−
−0.1184 + 1.5549i −0.0011− 0.0002i 0.9063 + 1.6341i 24.8188 0.2421
−0.1184− 1.5549i −0.0011 + 0.0002i 0.9063− 1.6341i 24.8188 0.2421
−1.9708 + 0.0000i −0.0060 + 0.0000i −0.5964 + 0.0000i −− 0.5270
−0.5625 + 2.8882i 0.0013− 0.0007i 1.6523− 0.1606i 46.8301 1.0000
−0.5625− 2.8882i 0.0013 + 0.0007i 1.6523 + 0.1606i 46.8301 1.0000
−0.0010 + 3.4736i −0.0000 + 0.0001i −0.0100− 0.0072i 55.2840 0.0111
−0.0010− 3.4736i −0.0000− 0.0001i −0.0100 + 0.0072i 55.2840 0.0111
−0.2892 + 5.6168i −0.0000− 0.0002i 0.0690− 0.0209i 89.5126 0.2117
−0.2892− 5.6168i −0.0000 + 0.0002i 0.0690 + 0.0209i 89.5126 0.2117
−0.7445 + 6.8566i 0.0001− 0.0006i 0.0716− 0.0788i 109.7673 0.4918
−0.7445− 6.8566i 0.0001 + 0.0006i 0.0716 + 0.0788i 109.7673 0.4918
−0.0439 + 7.5168i 0.0000− 0.0000i 0.0013− 0.0011i 119.6364 0.0089
−0.0439− 7.5168i 0.0000 + 0.0000i 0.0013 + 0.0011i 119.6364 0.0089
−0.1183 + 7.9534i 0.0001− 0.0000i 0.0467− 0.1381i 126.5961 0.8704
−0.1183− 7.9534i 0.0001 + 0.0000i 0.0467 + 0.1381i 126.5961 0.8704
−0.1664 + 9.1139i −0.0001− 0.0000i 0.0307− 0.0638i 145.0767 0.5520
−0.1664− 9.1139i −0.0001 + 0.0000i 0.0307 + 0.0638i 145.0767 0.5520

Plotted in Fig. 5.3 is the TVR function on radial axis. The peaks in the plot

are corresponding to the resonant frequencies of the whole system. Some of them

are from the resonance of the transducer while others are caused by the water

column inside the tube. According to the former study, the components with

frequencies 46.8301 kHz, 55.2840 kHz and 126.5961 kHz are the radial, bending

and longitudinal modes of the transducer, respectively. Values in column 6 of

Table 5.2 represent the relative amplitudes of the corresponding components in

forming the system functions. Therefore, the radial mode (largest value in column

6) and the longitudinal mode (second largest value) are two dominant transmitting

modes of the transducer. In addition, Helmholtz mode, the first mode of water

column (24.8188 kHz), is also concerned in this study.

92



0 15 30 45 60 75 90 105 120 135 150 165
110

115

120

125

130

135

140

145

150

155

frequency (kHz)

T
V

R
 (

dB
)

Figure 5.3. TVR on radial axis computed by pole-residue operations

Fig. 5.4 is the TVR comparison between the proposed method and tradition-

al single-frequency harmonic analysis method, which is usually considered to be

accurate. As illustrated, there is no noticeable difference between the proposed

method and the single-frequency method at the measured frequencies. In addi-

tion, one can hardly have as many points as possible on the TVR function with

single-frequency method because the process of performing the repeated measure-

ments is very time consuming. In contrast, the proposed method can obtain the

function by a one-time measurement of the input voltage and output pressure sig-

nals. From this point of view, the proposed method is much more efficient than

the single-frequency method.

Fig. 5.6 shows the TVR comparison between the proposed method and

Fourier-based method. As shown in Fig. 5.5, a chirp signal, with duration 5 ms

and time increment 1 µs, is used to excite the transducer when applying Fourier

based method. After calculating the FRF Hpv(ω) by taking FFT of the input

voltage and output pressure signals, together with Eq. 5.22, one can calculate the

93



TVR in the frequency domain. Shown in Fig. 5.6 indicates that the TVR from

Fourier method is aliased after 75 kHz. Besides leakage and frequency resolution

problems, it also suffers from the reflection waves because FFT requires long signal

to guarantee the accuracy, during which the reflective waves travel back and forth

for several times. In contrast, the proposed method uses only 180 µs before the

reflective waves are back. In addition, only about 300 data points are used to

calculate poles and residues, which makes it a computationally efficient way.
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Figure 5.4. TVR comparison between traditional single-frequency harmonic anal-
ysis method and proposed method
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Figure 5.5. Normalized input voltage (chirp signal) and output pressure (radial
direction at 0.1 m) signals: input voltage scale 10 V, output pressure scale 3.2453×
103 Pa
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Figure 5.6. TVR comparison between proposed method and Fourier based method

5.5.2 Estimating BP

To obtain beam pattern, one needs to measure the pressure field p(t, θ) around

the transducer. In this study, there are 158 points used to collect pressure data
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along a 0.1 m arc from x-axis to y-axis (shown in Fig. 5.1). Thus, the angle θ

distribution is from 0◦ to 90◦ with degree interval 0.5732◦. Eq. 5.24 indicates that

the remaining task is to compute the transfer functions at each angle θ.

By pole-residue operations, one can obtain the transfer functions for all angles.

In fact, TVR is only one specific type of TF, which will be used to calculate the

BP in the following presentation. Fig. 5.7 are some representative TVRs at four

different angles. It shows that the three major modes, Helmholtz mode (25 kHz),

radial mode (46 kHz) and longitudinal mode (127 kHz), always dominate the

transmitting of acoustic pressure waves but their ‘weights’ are different at different

angles. As illustrated in Fig. 5.7, the beam pattern can be treated as the collection

of all the TVRs along a vertical line (one specific frequency) if they are plotted at all

angles. Since there has been one quarter of the field, together with the symmetric

geometry, one can have the BP for all surrounding angles. In this study, the BP

are plotted in dB based on normalized TVRs/TFs.

Figs. 5.8, 5.9 and 5.10 are comparisons of beam patterns between tradition-

al ‘single-angle’ harmonic analysis method, which is considered accurate, and

proposed method at 25 kHz (Helmholtz), 46kHz (radial) and 127kHz (longitu-

dinal), respectively. As expected, they all agree with each other pretty well. The

Helmholtz mode and radial mode mainly transmit acoustic energy along radial

direction while the longitudinal mode does that along axial direction. As far as

the computational time is concerned, the proposed method is much more efficient

than traditional method because one can obtain all beam patterns at any frequency

from one single input other than repeating it many times with harmonic analysis

method.
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Figure 5.7. Transfer functions (TVRs) at four different angles around the trans-
ducer: 0◦ (x-axis), 30◦, 60◦, 90◦ (y-axis)
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Figure 5.8. BP comparison between harmonic analysis method and proposed
method at 25 kHz
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Figure 5.9. BP comparison between harmonic analysis method and proposed
method at 46 kHz
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Figure 5.10. BP comparison between harmonic analysis method and proposed
method at 127 kHz

5.6 Concluding Remarks

An efficient method to estimate characteristic functions of underwater trans-

ducers by pole-residue operations has been developed in this paper. The correct-

ness of the new method has been verified by using a ‘single-angle’ harmonic analysis
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method. In this article, a key development is on how to manipulate the poles and

residues of input voltage and output pressure signals to calculate TVR and beam

pattern. With the pole-residue method, TVR and BP can be computed by a one-

time measurement as a continuous function in the frequency domain. The new

method is proved to be much more efficient than the traditional single-frequency

(for TVR) and single-angle (for BP) harmonic analysis method. Furthermore, it is

also demonstrated in this paper that the new method can eliminate the influence

of reflective waves by using a very short signal.
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CHAPTER 6

Concluding Remarks

Characteristic functions, such as impedance function, TVR and beam pattern,

are of great importance for acoustic transducers. To estimate them accurately and

efficiently, a new approach by pole-residue operations is developed and implement-

ed in this dissertation. In the proposed method, the global poles and corresponding

residues associated with the input and output signals are first extracted with the

multi-signal Prony-SS method. Therefore, one can calculate the transfer function

by manipulating those poles and residues. In addition, by using this multi-signal

method to process the input and output signals simultaneously, one can easily

pick the system poles from the outcomes of signal decomposition, by which one

can precisely calculate the modal frequencies and modal damping. Both comput-

er simulations and lab experiments have been conducted to verify the correctness

and accuracy of the proposed method on above characteristics of the underwater

transducer.

Major findings and contributions are summarized as follows:

Frequency domain method for total response Deriving a closed-form solu-

tion for the transient and total responses of SDOF/MDOF systems to ar-

bitrary periodic excitations is an analytical contribution of this article. It

showed that the transient response could be obtained in a similar fashion as

the steady-state response, but the roles of the system and excitation were re-

versed. Together with the FFT algorithm, a very efficient numerical method

has been developed to compute the total response for MDOF systems, suit-

able for both damped and undamped systems. The paper demonstrated

that the computational time needed for getting the transient response could
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be much less than that for the steady state response. The correctness of

the proposed method has been verified through three numerical examples by

comparing the total responses obtained from the proposed method to those

obtained from using a time domain method.

Improved method for impedance function Impedance functions of a piezo-

electric transducer are used to study the influence of surrounding water to the

system. In this study, the pole-residue method are employed to estimate the

impedance functions, by which the modal frequencies and modal damping

can be exactly computed from the system poles. It shows that the ambient

water adds both radiating mass and additional damping to the transducer.

The radiation mass of each mode can be obtained by the resonant frequen-

cies of the transducer in air and in water. For the free flooded transducer,

the inner water column is equivalent to add stiffness to the system while the

outside water is to add mass to the transducer. In addition, pole-residue

method is more efficient for measuring the characteristics of the transducers.

For the tube transducer in this study, the radial mode is hard to be read on

the impedance plot in traditional way while it can be exactly extracted by

the pole-residue method.

Improved method for TVR and BP An efficient method to estimate charac-

teristic functions of underwater transducers by pole-residue operations has

been developed in this paper. The correctness of the new method has been

verified by using a ‘single-angle’ harmonic analysis method. In this article,

a key development is on how to manipulate the poles and residues of input

voltage and output pressure signals to calculate TVR and beam pattern.

With the pole-residue method, TVR and BP can be computed by a one-

time measurement as a continuous function in the frequency domain. The
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new method is proved to be much more efficient than the traditional single-

frequency (for TVR) and single-angle (for BP) harmonic analysis method.

Furthermore, it is also demonstrated in this paper that the new method can

eliminate the influence of reflective waves by using a very short signal.
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APPENDIX A

Fundamentals of Underwater Transducers

A transducer is a device that converts energy from one form to another. The

transducer used in this study is an electroacoustic transducer, which converts elec-

trical energy to acoustical energy, or vice versa. This kind of transducer can be

operated in either transmitting or receiving mode. A transmitter can generate

acoustic wave by applied electrical signal, which is called loudspeaker in air or

projector in water. A receiver can generate electrical signal by incident acoustic

wave, which is called microphone in air or hydrophone in water. The transducer

used here is a projector.

The projector has the shape of a cylindrical tube and is made of piezoelectric

material. The typical feature of this material is the piezoelectric effect, which

is stated that a voltage will be generated over the piezoelectric material when

mechanical stress is applied to it. Conversely, a mechanical strain will be caused

by applying a voltage on the material, which is called inverse piezoelectric effect.

One of the most popular piezoelectric material is lead zirconate titanate (PZT)

and it usually displays a linear relationship between mechanical stress/strain and

electric displacement/field by the strong piezoelectric effect.

Constitutive equations demonstrate the linear effect of piezoelectric material.

The so-called e-form equations are stated as

T = cES− etE (A.1)

D = eS+ εSE (A.2)

where T, S, E and D are variable vectors of stress, strain, electric field and electric

displacement vectors, respectively; cE, e and εS are the coefficients matrices of elas-

tic stiffness, stress piezoelectric coupling and permittivity, respectively; superscript
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t represents the transpose. The superscript E/S indicates that the variable is mea-

sured when the electric field/stress is held constant(Sherman and Butler, 2007).

Combined Eqs. A.1 and A.2, one can obtain{
T
D

}
=

[
cE −et

e εS

]{
S
E

}
in which the symmetric 9×9 coefficient matrix usually contains 45 independent co-

efficients for a general material. However, because of the permanent polarization of

PZT material, many of them are zeros or related. Eventually only 10 independent

coefficients are remaining and the explicit expression is as follows

T1

T2

T3

T4

T5

T6

D1

D2

D3


=



cE11 cE12 cE13 0 0 0 0 0 −e31
cE12 cE11 cE13 0 0 0 0 0 −e31
cE13 cE13 cE33 0 0 0 0 0 −e33
0 0 0 cE44 0 0 0 −e15 0
0 0 0 0 cE44 0 −e15 0 0
0 0 0 0 0 cE66 0 0 0
0 0 0 0 e15 0 εS11 0 0
0 0 0 e15 0 0 0 εS11 0
e31 e31 e33 0 0 0 0 0 εS33





S1

S2

S3

S4

S5

S6

E1

E2

E3


(A.3)

where cE66 = (cE11− cE12)/2 and the subscripts follow IEEE convention standard: 3 is

the poling direction, 1 and 2 the directions perpendicular to poling direction, and

4, 5 and 6 the shear directions 23, 13 and 12. It is worth mentioning that Abaqus

uses a different convention for shear directions, i.e., 12 → 4, 13 → 5, and 23 → 6.

An example of material properties will be shown in Section B.2.1.

Another pair of constitutive equations in d-form are also used

(Sherman and Butler, 2007)

S = sE T+ dt E (A.4)

D = dT+ εT E (A.5)

where sE, d and εT are the matrices of elastic compliance, strain piezoelectric

coupling and permittivity with constant stress.
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With the d-form and e-form equations, one can derive the relationships among

the coefficient matrices:

cE = (sE)
−1

(A.6)

e = d (sE)
−1

(A.7)

εS = εT − edt (A.8)

Substituting Eqs. A.6 and A.7 into Eq. A.8, one can have other expressions of εS

as

εS = εT − dcEdt (A.9)

or

εS = εT − esEet (A.10)

Besides the above introduction of piezoelectric material, some fundamentals

of underwater acoustic transducers are introduced in the following sections.

A.1 Acoustic medium

The acoustic medium is very important for acoustic transducers, which is

commonly a fluid, such as air and water. The properties of acoustic medium can be

characterized by some parameters, including fluid density ρ, bulk modulus B and

speed of sound c. Since they are related by c =
√

B/ρ, any two of them can fully

describe the acoustic property of a fluid. For example, Abaqus, a finite-element-

analysis package, uses the density ρ and bulk modulus B to define acoustic medium.

Sometimes the pair of density and speed of sound are very convenient for transducer

analysis. The product of them, ρc, is the specific acoustic impedance, which defines

the opposition of a system to the acoustic flow. Since the acoustic impedance of

water ( 1.5×106 kg/m2s) is much greater than that of air ( 420 kg/m2s), the fluid-

structure interaction takes more effect when the transducer is operated in water
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than in air (Sherman and Butler, 2007). The influence of water to the transducer

is one of the focuses of this study, which is discussed in Chapter 4.

When dealing with problems of underwater acoustic transducers, the acoustic

pressure is a principle parameter. The acoustic pressure field is caused by vibrat-

ing surfaces of a transducer, which is a time- and space- dependent scalar field.

The acoustic pressure p is the variation from static pressure p0 in the fluid, i.e.,

p = pt − p0, where pt represents the total pressure. The acoustic pressure filed can

be calculated by acoustic wave equation, which is derived from the following govern-

ing equations (Sherman and Butler, 2007; Wikipedia Acoustic Wave, 2018). The

linearized equation of state for the fluid is

p = Bs (A.11)

where s = ρ−ρ0
ρ0

is the condensation of the fluid, and ρ0 is the static density or

ambient fluid density.

The continuity equation (conservation of mass) can be written as

∂s

∂t
+∇ · u⃗ = 0 (A.12)

where ∇ is the gradient operator and u⃗ stands for the particle velocity.

The equation of motion (conservation of momentum) is given as

ρ0
∂u⃗

∂t
= −∇p (A.13)

Combining the time derivative of Eq. A.12 and the space derivative of E-

q. A.13, together with substituting the equation state to eliminate s, one can

obtain the acoustic wave equation for the acoustic pressure as

∇2p− 1

c2
∂2p

∂t2
= 0 (A.14)

where ∇2 is the Laplace operator.

Given the solved acoustic pressure p = p(x, y, z, t), one can compute other charac-
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teristics of the acoustic field. For example, with Eq. A.13, the particle velocity u⃗

can be calculated.

A.2 Free flooded ring transducers

Free flooded ring (FFR) transducers refer to cylindrical tube transducer-

s with water free-flooded interior. The inner surface of the transducer can

excite the interior water column, which is proved to add radial stiffness that

increases the resonant frequency and reduces the effective coupling coefficient

(Sherman and Butler, 2007). FFR transducers are widely used for underwater

applications because of these special features. Due to the open body design, they

provide the balancing mechanism of hydrostatic pressure. Compared with other

common transducers, this mechanism makes it theoretically possible to operate F-

FR transducer at any depth. Additionally, the low mechanical quality factor offers

reasonably flat transmit response and a broad band for transmitting and receiving

(Kuntsal, 2003).

Compared with most transducers, it is more difficult to calculate the acoustic

pressure field because the inner, the top and the bottom surfaces are vibrating and

generating sound signals. As the ring expands, the outer surface is compressing

the surrounding outer water while the inner tube space is sucking water inward.

The opposite effects on the transducer cause out-of-phase pressures and partial

cancellation along the axis of the ring. In addition, the resonance of the interior

water column can also be generated by the vibrating inner surface, which are cavity

modes. The squirting resonance of first cavity mode is typically at or below ring

resonance (Sherman and Butler, 2007). These cavity modes will be introduced in

the next section.
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A.3 Helmholtz frequency

Radial motion of the cylinder walls can excite the symmetrical cavity modes

in the enclosed water column. The frequencies of these modes are given by

(McMahon, 1964)

ω(n)
c =

(2n− 1)πc

h+ 2αa
n = 1, 2, · · · (A.15)

where c is the speed of sound in the water column, h the length of the cylinder, a

the inside radius, and α the end correction coefficient.

Now only consider n = 1. ω
(1)
c is the fundamental resonant frequency of the

enclosed water column, which is called Helmholtz frequency ωh. For dimensionless

quantity Ω = ωha/c from 0.33 to 3.3, the theoretical curve of the end correction

parameter can be expressed as

α = 0.633− 0.106Ω (A.16)

Combining Eqs. A.15 and A.16, one have the equation

Ω(h/2a+ 0.633)− 0.106Ω2 = π/2 (A.17)

Given the length h = 0.013 m and the inside radius a = 0.011 m of the transducer,

together with Eq. A.17, one can compute Ω = 1.4708. Therefore, Eqs. A.16

and A.15 yield α = 0.4771 and fh = ωh/(2π) = 31.133 kHz, which is the Helmholtz

frequency of the tube transducer used in this study.

Before using the above theoretical value for further study, four FE tests are

done to discuss the influence of surrounding water to the resonant frequencies of

the transducer:

• Water is surrounding the transducer both inside and outside the tube, which

is named IWOW shown in Fig. A.1 (a).

• The transducer is placed in water but it is filled by air inside the tube

(IAOW ) shown in Fig. A.1 (b).
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• The transducer is placed in air but there is a water column inside the tube

(IWOA) shown in Fig. A.1 (c).

• The transducer is modeled in air and no water is involved (IAOA) shown in

Fig. A.1 (d).

Figure A.1. The sketch of models for testing the influence of surrounding water
to the resonant frequencies (top view): (a) IWOW ; (b) IAOW ; (c) IWOA; (d)
IAOA. Colors of blue, grey and white indicate the water, the transducer and the
air, respectively.

According to the definition of resonant frequency, adding stiffness means high-

er frequency while adding mass means lower frequency. Table A.1 shows the reso-

nant frequencies of those four cases, calculated from impedance function by pole-
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residue operation. If focusing on the radial mode in Column 2, the comparison

between IAOA and IAOW (37.6722 < 43.1021) or between IWOA and IWOW

(45.8825 < 48.0953) indicates that the outside water is equivalent to adding mass

effect to the system. The above theoretical solution only considers the inside water

column and the transducer, which is very similar to the senario IWOA. Accord-

ing to the above conclusion that outside water adds mass effect to the system,

the Helmholtz frequency of IWOW would be lower than theoretical value, which

matches the results in Column 1 of Table A.1.

Table A.1. Resonant frequencies (kHz) for different models of water column influ-
ence

scenarios Helmholtz radial mode bending mode longitudinal mode
IWOW 24.8125 45.8825 55.0218 126.5384
IWOA 33.1923 48.0953 57.1127 127.7400
IAOW −− 37.6722 57.5884 127.1357
IAOA −− 43.1021 60.0112 129.5881
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APPENDIX B

Finite Element Model

The finite element method (FEM) is one of the most important and useful

tools for engineers and researchers. It is a numerical method to solve the differential

equations of mathematical models of engineering systems, which are usually hard

to obtain the theoretical solutions. Therefore, FEM has been widely applied to

most fields of engineering analysis, such as structures and solids, fluid mechanics,

and heat transfer. The electroacoustical transducer used in this study involves

multiple disciplinary, including mechanical, electrical and acoustical domain. Since

it is extremely difficult to have analytical solutions of multiphysics problems, the

development of FE modeling gives people more effective and more efficient ways to

solve them. Many FE software packages are capable of modeling the transducers,

such as Abaqus, ANSYS, and COMSOL. In this study, all the FE models are

developed in Abaqus.

B.1 Abaqus introduction

Abaqus is a popular software package for finite element analysis, which was

originally developed for nonlinear problems and is now widely used in plenty of

industries applications for solving routine and complicated engineering problems.

For example, in the automotive industry, engineers use Abaqus to solve problems

of full vehicle loads, dynamic vibration, nonlinear static analysis, thermal coupling,

etc. Abaqus also has multiphysics capabilities, such as piezoelectric and coupled

acoustic-structural capabilities, which are used for the simulations of underwater

acoustic transducers in this study.

A complete finite-element analysis can usually be divided into 3 stages

(Abaqus Release Notes, 2014; Wikipedia Abaqus, 2018):

111



• Preprocessing or modeling: In this stage, users can create a FE model

of specific physical problem, including geometries, materials, mesh, etc. Two

methods are available in Abaqus:

– Abaqus/CAE: It is a Complete Abaqus Environment that provides

an GUI window for creating, submitting, monitoring, and evaluating

results from Abaqus simulations. Abaqus/CAE is divided into modules,

where each module defines a logical aspect of the modeling process; for

example, defining the geometry under the Parts module, creating and

submitting analysis jobs under Jobs module, and interpreting results

under Visualization module. Therefore, Abaqus/CAE can usually be

used for all 3 stages. However, some specific applications/functions are

only available for input file.

– Input file: It is a script file using Abaqus programming language,

which contains 3 types of input lines, i.e., keyword lines, data lines, and

comment lines. Thus, input file can be used for both preprocessing and

analysis stages.

Besides Abaqus, the first stage can also be done by other compatible CAD

software, or even a text editor, for example, ANSYS input file and AutoCAD.

• Processing or finite element analysis: In this stage, finite element anal-

ysis is carried out and output data are produced, which can be submitted to

the solver by Abaqus/CAE and input file. There are 3 analysis products in

Abaqus:

– Abaqus/Standard: This general-purpose analyzer provides a wide

range of static, dynamic, thermal, electrical, and piezoelectric analysis

of linear and nonlinear problems using implicit time integration. The
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mechanical-electrical-acoustical transducer used in this study can be

modeled and simulated by this product because the elements of coupling

three domain are only available in Abaqus/Standard.

– Abaqus/Explicit: This analyzer specifically provides dynamic analy-

sis of highly nonlinear systems under transient loads using explicit time

integration. Its powerful contact capabilities on large models also make

it highly effective for solving discontinuous nonlinear problems. This

product has the capability of structural-acoustic coupling, but piezo-

electric elements are not available for further coupling.

– Abaqus/CFD: This analyzer provides dynamic analysis of fluids, non-

linear coupled fluid-thermal and fluid-structural problems with exten-

sive support for modeling, analysis, and postprocessing in Abaqus/CAE.

• Postprocessing or results visualization: In this stage, users can visualize

the results from the output file (.odb) through Visualization module, such

as extracting modal frequencies, plotting mode shapes, generating animation

and writing desired data to separate files.

To solve problems of special fields, Abaqus provides many add-on analyses for

users, such as Abaqus/Aqua, Abaqus/Design and Abaqus/Foundation. In addi-

tion, Abaqus translators also provides the interfaces between other FE software

packages, such as ANSYS, LS-DYNA, and NASTRAN. If interested, the readers

can refer to Abaqus manuals.

The following sections show the FE models of the underwater acoustic trans-

ducer in air and in water as well as some techniques used in this study.
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B.2 FE model of the transducer

In this section, major procedures of building up the models will be shown, in-

cluding the properties of a piezoelectric material, mechanical and electrical bound-

ary conditions, and modal and dynamic analyses.

B.2.1 FEM in air

Shown in Fig. B.1, the tube transducer used in this study is radially polarized

and made of piezoelectric material PZT4 with dimensions 13mm×26mm×22mm

(L×OD× ID ). When studying the mechanical properties, the transducer in air

is treated as in vacuum because of the negligible influence of air. The piezoelectric

material is electroded on both the inner and outer surfaces. The material properties

from the manufacturer specification sheet are shown in Table B.1

material properties units values
Young’s Y33 (1/sE33) GPa 73
modulus Y11 (1/sE11) GPa 86
piezoelectric d33 pm/V 320
coupling d31 pm/V −140
dielectric εT33/ε0 – 1400

Table B.1. The material properties of modified PZT4 (SM111) from STEINER &
MARTINS, INC. (STEMiNC, 2018)

where the manufacturers always follow IEEE convention standard and use sub-

script 3 for the poling direction and subscripts 1 and 2 for the perpendicular

directions.

As shown in Table B.1, the manufacturer only gives 5 parameters out of 10

independent ones, which are necessary to fully describe the piezoelectric materials.

Since 4 of the 5 missing ones are of negligible importance, they are just filled by

the values of typical PZT4 properties from textbooks (Sherman and Butler, 2007):

compliance sE13 = −5.31 pm2/N, compliance sE44 = 39 pm2/N, piezoelectric constant

d15 = 496 pm/V, and permittivity εT11/ε0 = 1475. In terms of the parameters
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totally provided by the manufacturer, the important compliance coefficient sE12 can

be calculated with the formula (Sherman and Butler, 2007)

sE12 =
2d31g31

k2
p

− sE11 = −2.4721 pm2/N

where g-form piezoelectric constant g31 = −11 × 10−3 Vm/N and electromechan-

ical coupling coefficient kp = 0.58 are also from the manufacturer specification

sheet (STEMiNC, 2018).

Since compliance coefficients are not allowed for elasticity in Abaqus, the e-

form property matrices in a cylindrical system are used:

Stiffness matrix cEij:
132.64 76.92 76.92 0 0 0
76.92 134.68 63.76 0 0 0
76.92 63.76 134.68 0 0 0
0 0 0 25.64 0 0
0 0 0 0 25.64 0
0 0 0 0 0 35.46

 GPa

Piezoelectric coupling matrix (stress coefficients eij): 20.9048 −3.1669 −3.1669 0 0 0
0 0 0 12.7179 0 0
0 0 0 0 12.7191 0

 C/m2

Dielectric matrix with constant strain εSij: 4.819 0 0
0 6.752 0
0 0 6.752

× 10−9 F/m

The 1-, 2- and 3-direction are radial, tangential, and axial, respectively. In this

model, the poling direction is radially outwards from the axis of symmetry (1-

direction). The mass density is 7900 kg/m3. A light Rayleigh damping model is

assumed for the piezoelectric material with coefficients α = 700, β = 1.3×10−9. As

Fig. B.1 shows, the transducer is modeled by a piece of cross section of the cylinder

tube structure with 8-node axisymmetric piezoelectric elements (CAX8E).
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Figure B.1. The geometry and finite element model of the transducer in air: a)
2D axisymmetric model, b) 3D model

First, linear perturbation frequency analysis is performed under short-circuit

condition, where the potentials on both the inside and outside surfaces are set to 0.

The modal frequencies correspond to the resonance of the transducer. There are 3

x-axis symmetric modes under 200 kHz, whose resonant frequencies are 43.790 kHz,

60.189 kHz and 129.924 kHz and mode shapes are shown in Fig. B.2. Likewise,

the frequency analysis is performed under open-circuit condition, where potential

on one side is set to 0 and that on the other side is left unspecified. The modal

frequencies, corresponding to the anti-resonance of the transducer, under 200 kHz

are 46.744 kHz, 60.203 kHz, and 145.962 kHz.
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Figure B.2. Modal frequencies and corresponding mode shapes of the transducer in
air under short-circuit (grey for original shape, green for deformed one) condition

Dynamic analysis is defined through Step module by the keyword dynamic,

implicit. Since inner/outer surface is physically equipotential, a constraint using

keyword equation is applied to couple the electrical degree of freedoms of all nodes

on the surface. The excitation is applied through the electrical boundary condition,

which is a sinusoidal electrical potential with the amplitude 1 V and the frequency

30 kHz. The time increment and total time duration are set to be 0.2 µs and

400 µs, respectively. At the same time, the reactive electrical nodal charge q(t) is

calculated. Shown in Fig B.3 are the input electrical potential and output reactive

change.
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Figure B.3. Normalized input voltage and output charge for the transducer in air:
voltage scale 1 V, charge scale 7.8253× 10−9 C

B.2.2 FEM in water

The spherical water domain is modeled by 4-node linear axisymmetric acoustic

elements (ACAX4) with radius 0.2 m and mesh size 1.1 × 10−3 m. The water

properties are defined by density ρw = 1000 kg/m3 and bulk modulus B = 2.1404

GPa.

The surface-based tie constraint is used to couple the transducer and the sur-

rounding water. Surfaces are defined at the outside of the transducer and at the

water free surface adjacent to the transducer. To consider the symmetric property,

all points of the bottom and the left boundary for both water and the transduc-

er are constrained no move along longitudinal and radial directions, respectively.

The Acoustic Impedance under Interactions module is used to model the motions

of waves out of the mesh, which is an impedance-type radiation boundary condi-

tion. The nonreflecting boundary condition is applied at water domain boundary

(located 0.2 m away from the center), which absorbs the acoustic wave (shown in
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Fig. 5.1). More details can be referred to section B.3.

Modal analysis shows that there are thousands of modes for the coupled

acoustic-structure model, each of which includes both mechanical and acousti-

cal patterns. Shown in Fig. B.5 are the acoustic radiating patterns of some typical

modes for this tube transducer.

Dynamic analysis is performed through the dynamic, implicit under Step mod-

ule. The input is a sinusoidal signal with the amplitude 1 V and the frequency

30 kHz. The output will be reactive nodal charge and acoustic pressure at 10 cm

away from the center of water domain, which is shown in Fig. B.4.
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Figure B.4. Normalized input voltage and output pressure for the transducer in
water: voltage scale 1 V, pressure scale 61.7224 Pa
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Figure B.5. Radiating patterns of three typical modes for the transducer: a)
Helmholtz mode, b) radial mode, and c) longitudinal mode.
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B.3 Key techniques of FEM

In this section, some key techniques used in the FE model will be demonstrated

for both CAE and input-file usages, including electrical constraints, fluid-structure

interaction, acoustic field boundary, and mesh refinement.

B.3.1 Electrical constraints

In this dissertation, 2D axisymmetric piezoelectric elements are used for the

simulation of the tube transducer. Physically, the inner and the outer surfaces

are coated by a very thin silver layer electrically. So, all the degrees of freedom

in those two surfaces are constrained to be equipotential, including the amplitude

and the phase angle. A linear multi-point constraint equation will be used to carry

it out in Abaqus.

This technique requires that a linear combination of nodal variables is equal

to zero (Abaqus Keywords, 2014)

A1u
P
i + A2u

Q
j + . . .+ ANu

R
k = 0 (B.1)

where uP
i is a nodal variable at node P, degree of freedom i; and the AN are

coefficients that define the relative motion of the nodes.

To define a linear constraint equation, the coefficients in Eq. B.1 must be

specified. For input file usage, the parameters are listed in the following way

(Abaqus Keywords, 2014)

• First line

– Number of terms, Nt, in the equation

• Following lines

– Node number or node set label, P, of first nodal variable, uP
i .

– Degree of freedom, i, at above node for variable uP
i .
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– Value of A1

– Node number or node set label, Q, of second nodal variable, uQ
j .

– Degree of freedom, j, at above node for variable uQ
j .

– Value of A2

– Etc., up to four terms per line

For the transducer used in this dissertation, in order to define a equipotential

surface, one needs to make sure that the electrical potential of each node keeps

identical to that of any other one on the surface. To implement this constraint,

the users need to select one reference point (P 1) and the remaining ones on the

surface (P i, i = 2, . . . , Np) to form a group of equations

P 1
9 − P i

9 = 0, i = 2, . . . , Np

in which Np is the number of node points in one constrained surface and 9 stands

for the electrical degree of freedom in Abaqus. So, the input usage for the inner

surface of this transducer model will be

*Equation

2

pzt-1.inner-others, 9, -1.

pzt-1.inner-main, 9, 1.

where the number 2 in the first line means that there are 2 terms in the equation,

pzt-1.inner-main and pzt-1.inner-others in the following lines are the node set

labels for the selected reference node P 1 and all remaining nodes P i on the inner

surface respectively, −1 and 1 are the corresponding coefficient values of node

variables. It is worth mentioning that the first set can contain one or more points

while the subsequent sets must contain only one single point. This rule applies for

both input-file and CAE usages.
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In Abaqus/CAE, one can set it by Create Constraint: Equation under the

Interaction (Constraints) module, which is shown in Fig. B.6.

Figure B.6. Setup of electrical constraint Equation in Abaqus/CAE. a), con-
strained nodes on the inner surface; b),l setup window of the constraint Equation

B.3.2 Fluid-Structure Interaction (FSI)

In the FSI region, momentum and energy are transferred between the trans-

ducer and the acoustic medium (water). The interaction means that water creates

a normal surface traction on the transducer and the vibrational surface of the

transducer creates the natural forcing term on water.

In this study, the interaction is just simply modeled by a surface-based cou-

pling procedure of tie constraint, using which users need to define two surfaces

on the structural and fluid meshes as well as the interaction between the t-

wo meshes. For this tie constraint, Abaqus automatically computes the region

of influence for each internally generated acoustic-structural interface element

(Abaqus Analysis, 2014).

A tie constraint is defined by a set of parameters, including required (name),
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mutually optional (position tolerance, tie nset), and optional ones (adjust, con-

straint ratio, etc). So, the input-file usage for the interaction will be

*Tie, name=FSI, adjust=yes

transducer-1.FSI-transducer, water-1.FSI-water

where FSI, transducer-1.FSI-transducer and water-1.FSI-water are user-defined

names of the interaction, coupled surface of the transducer (slave surface), and

coupled surface of water (master surface), respectively. The setting adjust=yes is

the default of optional parameter adjust. Since the water mesh is coarser than the

transducer mesh, the water surface serves as the master surface.

In Abaqus/CAE, one can set it by Create Constraint: Tie under the Interac-

tion (Constraints) module, which is shown in Fig. B.7.

Figure B.7. Setup of fluid structural interaction tie in Abaqus/CAE
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B.3.3 Acoustic field boundary

In Abaqus, the default boundary condition for an acoustic medium is a bound-

ary with a stationary rigid wall or a symmetry plane. So, some technique needs

to be applied to model an acoustic medium of infinite extent. Impedance-type

radiation boundary condition is used to model the motions of waves out of the

mesh in this study.

A boundary impedance specifies the relationship between the pressure of an

acoustic medium and the normal motion at the boundary. All the points on the

boundary surface is governed by (Abaqus Analysis, 2014)

u̇out =
1

k1
ṗ+

1

c1
p

where u̇out is the acoustic particle velocity in the outward normal direction of the

acoustic medium surface, p is the acoustic pressure, 1/k1 is the proportionality

coefficient between the pressure and the displacement normal to the surface, and

1/c1 is the proportionality coefficient between the pressure and the velocity normal

to the surface.

This model can be conceptualized as a spring and dashpot in series placed

between the acoustic medium (water domain) and a rigid wall (boundary of the

water domain). The spring and dashpot parameters are k1 and c1, respectively.

When the coefficients k1 and c1 are chosen for some specific values, the boundary

will be energy absorbing. In order to specify this boundary condition, users can

define the impedance condition on a surface. The impedance is applied to element

edges in two dimensions and to element faces in three dimensions.

For input-file usage, the keyword simpedance is used to provide surface

impedance information or nonreflecting boundaries for the acoustic analysis, in

which parameters, including property, nonreflecting and op (optioanl), need to be

specified. Available options for nonreflecting includes planner, circular, ellipti-
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cal, etc. In this study, the transducer is simulated by 2D axisymmetric elements

so that the boundary is circular as shown in Fig. B.8. The input-file usage for

impedance-type boundary will be

*Simpedance, nonreflecting=circular

WaterBoundary, 0.2

whereWaterBoundary is the surface name and 0.2 is the specified radius (in meter)

of the circle, which defines the absorbing boundary surface.

In Abaqus/CAE, one can set the boundary condition by Acoustic impedance

under the Interaction module, which is shown in Fig. B.8).

Figure B.8. Setup of acoustical field boundary in Abaqus/CAE. a), the boundary
surface in the model; b), setup details of the boundary condition

In order to verify the effectiveness of the boundary condition, two experiments

are designed: 1) the transducer is placed in a water domain with radius 0.2 m,

and 2) the transducer is placed in a water domain with radius 0.3 m. Impedance-

type boundary conditions are applied at the boundaries of water domain. Fig. B.9

shows the comparison of acoustic pressure history, which are measured at the

location (0.1, 0). Since there are some noticeable differences only after tr = 196 µs,

it indicates that the boundary can’t perfectly absorb the incident waves. But,
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Figure B.9. The comparison of acoustic pressures (at 0.1 m away from the center
of the transducer) from two models with different size of water domain: radius 0.2
m and radius 0.3 m. ta and tr represent the arrival time of acoustic waves, 59 µs,
and the travel time of possible reflective waves, 196 µs, respectively.

the difference, up to 1.17% of maximum pressure, shows that the impedance-type

boundary condition is good enough to model the acoustic medium to infinite extent.

B.3.4 Mesh refinement

In acoustic and vibration analysis, users usually need to judge whether the

mesh of the model is fine enough, which is a common trade-off between accura-

cy and efficiency. For reasonable accuracy, at least six internodal intervals of the

acoustic mesh per shortest acoustic wavelength are necessary. An internodal in-

terval means the distance between a node and its nearest neighbor in an element,

which is the element size for a linear element or half of the element size for a

quadratic element. Any finite element discretization of a domain in which waves

127



propagate introduces a certain amount of error per wavelength. In larger meshes,

the accumulated per-wavelength error may be present if the mesh refinement is

inadequate (Abaqus Analysis, 2014).

Therefore, the requirement of mesh size can be expressed as

nminLmax 6 λmin (B.2)

where nmin, Lmax, and λmin represent the minimum number of internodal intervals

per acoustic wavelength, the maximum internodal interval of an element, and the

minimum acoustic wave length of interest, respectively. Since the frequency of

acoustic wave is concerned, Eq. B.2 can be rewritten as

Lmax 6 c

nminfmax

(B.3)

in which fmax is the maximum acoustic frequency of interest, and c the speed of

sound in the medium.

Eq. B.3 can be used to estimate the maximum allowable element length if the

maximum frequency of interest is given. For the underwater transducer used in

this study, the parameters used are speed of sound in water c =
√

B/ρw = 1463

m/s, nmin = 8, and maximum acoustic wave frequency of interest fmax = 160 kHz.

Thus, the maximum element length can be computed by Eq. B.3 as Lmax = 1.1

mm.
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APPENDIX C

Model Updating of Piezoelectric Transducers

C.1 Introduction

The values of piezoelectric material properties from the manufacture’s spec-

ification sheets are often inaccurate, the tolerance of which could be up to 20%.

However, some of them are essential to the performance of the transducer, which

significantly affect the accuracy of finite element (FE) model. As Fig. C.1 shows,

the discrepancy between FE model and experimental results indicates the necessity

of model updating.
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Figure C.1. Impedance function comparison of the transducer in air: original FE
model v.s. experiment

Traditionally, there are mainly two types of model-updating techniques:

direct methods using modal data and iterative methods using modal data

(Friswell and Mottershead, 1995). The direct methods are capable of reproducing

the measured data exactly, which are based on the calculation of direct changes
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to the mass and stiffness matrices. But, those updated matrices in this way are

lack of physical meaning and very hard to be interpreted in the original FE mod-

el. Therefore, the direct methods are usually called “represential”. The iterative

methods aims at improving the correlation between the measured data and the

FE model, which have more physical meaning. Generally, the correlation is deter-

mined by a nonlinear penalty function, which involves the eigenvalues and mode

shapes data. Therefore, the convergence of updated parameters needs to be proved

after the iterative procedures. Although there are some problems for implement-

ing the method, such as pairing the same mode and damping related issue, it

has been successfully applied to update the parameters of ultrasound transducers

(Piranda et al., 1998; Piranda et al., 2001).

The model-updating method used in this study is the cross-model cross-mode

(CMCM) method, which combines the advantages of both direct methods and it-

erative methods (Hu et al., 2007). Based on the modal frequencies obtained from

the impedance function, one can update the parameters of a piezoelectric trans-

ducer, even when the measured mode shapes are incomplete (extended CMCM

method, Su, 2016). Details will be shown in the following sections.
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Figure C.2. Model updating procedures of a tube piezoelectric transducer

As shown in Fig. C.2, there are 3 phases of the transducer (cross sections of

the tube) and 4 stages to update the material properties of FE model to match the

experimental data before it is ready into water. Phase 1, 2 and 3 are FE models

with original piezoelectric parameters from manufacturer, updated piezoelectric

parameters, and updated piezoelectric transducer with a polyurethane layer, re-

spectively. To update the piezoelectric material from phase 1 to phase 2, one needs

to carry out 3 stages, including the model-updating of elastic, dielectric and piezo-

electric coupling parameters. Since the transducer needs to be prevented from

short-circuited by water, a thin polyurethane coating layer is added to the surface

of the transducer in phase 3. Stage 4 demonstrates the updating of polyurethane

material coefficients. Since it is very thin and its key contribution to the system

is mass effect instead of stiffness, this material is simply considered to be linear

elastic material in this study. This chapter shows the key theories and procedures

of model updating of the above transducer.
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C.2 Methodology

As shown in Eq. A.3, the piezoelectric material can be fully defined by 10

independent parameters, namely, 5 elastic, 2 dielectric and 3 piezoelectric coeffi-

cients. According to the sensitivity study in the reference (Su, 2016), there are 6

insensitive parameters sE13, s
E
33, s

E
44, ε

T
11, d33 and d15 for a thin-wall tube transducer,

which can theoretically be arbitrary values and will be simplified in the following

way

sE13 = sE12, s
E
33 = sE11, s

E
44 = sE66 (C.1)

and

εT11 = 0, d33 = d15 = 0 (C.2)

The 4 remaining parameters are 2 elastic (s11/c11, s12/c12), 1 dielectric (εT33/ε
S
33)

and 1 piezoelectric (d31/e31).

When updating the transducer model from Phase 1 to Phase 2, the system

equations for the piezoelectric transducer can be written as[
M 0
0 0

]{
Ü

Φ̈

}
+

[
KUU KUΦ

KΦU KΦΦ

]{
U
Φ

}
=

{
F
Q

}
(C.3)

where M, KUU , KUΦ/KΦU , and KΦΦ are the matrices of mass, displacement stiff-

ness, piezoelectric coupling stiffness, and dielectric ‘stiffness’, respectively; U and

Φ are the coupled variables of displacements and electrical potentials; F and Q

stand for the external forces and the electrical charges.

If the electric potential Φ is controlled, the first equation in C.3 becomes

MÜ+KUUU = F−KUΦΦ (C.4)

where the right hand side is the total loads, i.e. external forces and equivalent

electrical loads. Assuming a short-circuit condition (Φ = 0), one can get the

eigenvalue problem as

(KUU − ω2
rM)U = 0 (C.5)
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in which ωr represents the modal frequencies of the short-circuit model.

Likewise, if the system is open-circuited (Q = 0), the second equation of C.3

can be rewritten as

Φ = −(K−1
ΦΦKΦU)U (C.6)

Combining Eq. C.6 and Eq. C.4, one obtains

MÜ+ (KUU −KUΦK
−1
ΦΦKΦU)U = F (C.7)

Denoting the condensed eletro-elastic stiffness matrix

K̃UU = KUU −KUΦK
−1
ΦΦKΦU (C.8)

one can get the eigenvalue problem under open-circuit condition as

(K̃UU − ω2
aM)U = 0 (C.9)

where ωa represents the modal frequencies of the open-circuit model.

Figure C.3. Flowchart of the extended CMCM method to update the parameters
of piezoelectric material
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The CMCM method employed in this study is intended to update the mass

and stiffness matrices by some measured modal frequencies (ωr and ωa) and cor-

responding mode shapes. As shown in Fig. C.3, to implement this method, one

needs to iteratively compute the physically meaningful correction coefficients until

they converge to constant values. The calculation is to solve a set of linear equa-

tions simultaneously, each of which is formulated based on two modes related to

the finite element and experimental models. Assume that the stiffness matrix K∗

and mass matrix M∗ of the experimental model are modifications of K and M of

FE model by the following linear relationships

K∗ = K+
Ne∑
n=1

αnKn (C.10)

and

M∗ = M+
Ne∑
n=1

βnMn (C.11)

in which Kn/Mn is the stiffness/mass matrix corresponding to the nth ele-

ment; αn and βn are the desired correction coefficients of the CMCM method

(Hu et al., 2007).

C.3 Model updating procedures

For this tube piezoelectric transducer, the measured data are totally from the

electrical impedance functions, which are modal frequencies of short-circuit model,

those of open-circuit model, and impedance amplitude values at low frequency

region. Since mode shapes are very difficult to obtain experimentally and they

don’t change significantly during the updating, the measured ones will be replaced

by those of updated FE model in each iterative step. With above data, one can

update the three groups of parameters, i.e., elastic, dielectric and piezoelectric ones.

The elastic (stiffness) parameters are only determined by the resonant frequencies,

which are the modal frequencies under short-circuit condition; dielectric parameter
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(permittivity with constant stress) can be calculated by free capacitance of the

transducer; and all parameters can affect the anti-resonant frequencies, which are

the modal frequencies under open-circuit condition. After piezoelectric properties

are all updated, the polyurethane layer will be added to the model. The Young’s

modulus E and Poisson’s ratio ξ of this material can be updated in a similar way

of updating elastic properties of piezoelectric material. The detailed procedures to

implement this method are as follows (Su, 2016):

stage 1 According to the measured resonant frequencies ωr (corresponding to local

minimum impedance amplitude) of the impedance function, one can update

the stiffness parameters (c11 and c12) based on a short-circuit FE model.

For this linear material, assuming that each element of the model has the

same properties determined by the stiffness coefficients cE11, c
E
12, c

E
13, c

E
33 and cE44,

the global displacement stiffness matrix can be written as

KUU = cE11 KcE11
+ cE12 KcE12

+ cE13 KcE13
+ cE33 KcE33

+ cE44 KcE44
(C.12)

where KcEij
is the change of KUU due to the unit change of cEij, which is called unit

“submatrix” of cEij. Combining Eqs. A.6 and C.1, the physical simplification yields:

cE44 = (cE11 − cE12)/2, cE33 = cE11, cE13 = cE12 (C.13)

Therefore, Eq. C.12 can be rewritten as

KUU = cE11K̂cE11
+ cE12K̂cE12

(C.14)

where

K̂cE11
= KcE11

+KcE33
+

1

2
KcE44

(C.15)

and

K̂cE12
= KcE12

+KcE13
− 1

2
KcE44

(C.16)
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According to Eqs. C.10 and C.14, the updated displacement stiffness matrix

K∗
UU can be written as

K∗
UU = (1 + α1)c

E
11K̂cE11

+ (1 + α2)c
E
12K̂cE12

= KUU +
2∑

i=1

αiK̂i (C.17)

where α1 and α2 are the correction coefficients of cE11 and cE12 respectively, which

can be obtained by applying the extended CMCM method.

stage 2 According to the measured impedance value Z0 at the low frequency region f0,

one can update the permittivity with constant stress εT33 in the poling direction.

A tube piezoelectric transducer can be treated as a capacitor when it is excited

at a low frequency f0. Therefore, the impedance amplitude Z0 can be calculated

by

Z0 =
1

2πf0Cf

(C.18)

where Cf = 2πεT33ℓ/ ln(Do/Di) is the free capacitance of the tube transducer; Di,

Do, and ℓ represent the inner diameter, the outer diameter, and the axial length

of the transducer, respectively. Therefore, εT33 can be updated by

εT33
∗
=

ln(Do/Di)

4π2ℓf0Z0

(C.19)

stage 3 According to the measured anti-resonant frequencies ωa (corresponding to

local maximum impedance amplitude) of the impedance function, one can

update the piezoelectric parameters (e31) based on a open-circuit FE model.

The linear operations on the piezoelectric coupling stiffness matrix KUΦ can

be written as

KUΦ = Kt
ΦU = e31Ke31 + e33Ke33 + e15Ke15 (C.20)

where Ke31 , Ke33 and Ke15 are the unit submatrices of e31, e33 and e15, respectively.

According to Eqs. A.6, A.7 and C.2, one can obtain

e15 = 0, e33 =
2cE12

cE11 + cE12
e31 (C.21)
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Therefore, Eq. C.20 becomes

KUΦ = e31K̂e31 (C.22)

where

K̂e31 = Ke31 +

(
2cE12

cE11 + cE12

)
Ke33 (C.23)

Similarly, one can obtain the linear operations on the dielectric stiffness matrix

KΦΦ as

KΦΦ = εS11KεS11
+ εS33KεS33

(C.24)

where KεS11
and KεS33

are the unit submatrices of εS11 and εS33, respectively. Com-

bining Eqs. A.9 and C.2, one can have εS11 = 0. Thus, Eq. C.24 becomes

KΦΦ = εS33 KεS33
(C.25)

Substituting Eqs. C.22 and C.25 into Eq. C.8, one obtains

K̃UU = KUU +K3 (C.26)

where

K3 = −aK̂e31(KεS33
)−1K̂t

e31
(C.27)

in which

a =
(e31)

2

εS33
(C.28)

Since K∗
UU has been updated in stage 1, the updated condensed eletro-elastic

stiffness matrix K̃∗
UU can be formulated as

K̃∗
UU = K∗

UU + (1 + α3)K3 (C.29)

where α3 is the correction coefficient of a, which can be calculated by applying the

extended CMCM method. Therefore,

a∗ = (1 + α3)a (C.30)
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According to Eqs. A.6 - A.8, one can derive the permittivity with constant

strain εS33 as

εS33 = εT33 −
2(e31)

2

cE11 + cE12
(C.31)

Combining Eqs. C.28 and C.31, one can obtain

εS33
∗
=

(cE11
∗
+ cE12

∗
)εT33

∗

cE11
∗
+ cE12

∗
+ 2a∗

(C.32)

and

e∗31 = −
√
a∗ εS33

∗
(C.33)

stage 4 According to the measured resonant frequencies ωr,poly (corresponding to local

minimum impedance amplitude) of impedance function for the transducer

with polyurethane layer, one can update the elastic parameters (E and ξ)

based on a short-circuit FE model.

The linear operations on the global total stiffness matrix Kpoly can be ex-

pressed as

Kpoly = EKE + ξKξ (C.34)

and the updated global total stiffness can be formulated as

K∗
poly = (1 + α4)EKE + (1 + α5)ξKξ = Kpoly +

5∑
i=4

αiKi (C.35)

where α4 and α5 are the correction coefficient of E and ξ, respectively, which can

be computed by applying CMCM method.

C.4 Results of updating a tube transducer

The Abaqus FE models in this example use the 3D solid piezoelectric el-

ement C3D20E. The material properties from manufacturer are Young’s modu-

lus Y11 = 86 GPa, Poisson’s ratio ν12 = 0.2126, piezoelectric coupling coefficient

d31 = −140 pC/N and permittivity with constant stress εT33 = 1400 ε0, where
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ε0 = 8.854 × 10−12 F/m is the vacuum permittivity. The calculated e-form pa-

rameters are stiffness c11 = 97.154 GPa, c12 = 26.233 GPa and c44 = 32.461

GPa, piezoelectric coupling e31 = −17.2740 C/m2 and e33 = −7.3449 C/m2, and

permittivity with constant strain εS33 = 853.7258 ε0.

With the two modal frequencies of the target short-circuit model: 43.26 kHz

and 131.7 kHz, and those of the target open-circuit model: 46.18 kHz and

151.7 kHz, one applies the extended CMCM method to update the material prop-

erties of the piezoelectric tube transducer model. To implement this updating

method, one still needs to obtain those submatrices in addition to the measured

modal frequencies. Take KcE11
, unit submatrix of cE11, as an example to show one

numerical method for the calculation:

KcE11
=

K
(n)
UU −K

(m)
UU

(n−m)cE11
(C.36)

where K
(n)
UU and K

(m)
UU are the displacement stiffness matrices obtained from FE

model with mcE11 and ncE11, respectively. Considering the physical meaningfulness

of FE model, the multiples’ coefficients should be set close to 1, for example,

m = 0.5 and n = 1. One can follow a similar way to calculate the submatrices

of other properties, such as dielectric property (εS33) and piezoelectric coupling

properties (e31 and e33).

First, one can update the elastic parameters (c11 and c12) with the two mea-

sured resonant frequencies: 43.26 kHz and 131.7 kHz, and two submatrices: K̂cE11

and K̂cE12
. The correction coefficients of cE11 and cE12, α1 and α2 respectively, can be

calculated by the extended CMCM method.
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Figure C.4. Iteration results of α1 and α2

Shown in Fig. C.4 is the iteration sequences of α1 and α2, which converge

to 0.1223 and 0.6520, respectively. And, the modal results of updated FE short-

circuit model agree very well with the experimental data. The updated cE11
∗
and

cE12
∗
can be calculated as

cE11
∗
= (1 + α1)c

E
11 = 109.04 GPa

and

cE12
∗
= (1 + α2)c

E
12 = 43.336 GPa

f0 (kHz) 2 5 7 10 12 15 17 20 22 25
Z0 (Ω) 12860 5442 3902 2728 2267 1802 1580 1327 1195 1031

Table C.1. The measured impedance values and corresponding frequencies from
the impedance function

According to Eq. C.19, together with the measured impedance values at corre-

sponding frequencies from the impedance function in Table. C.1, one can calculate

140



the average permittivity at constant stress

εT33
∗
=

ln(Do/Di)

4π2ℓZLfL
= 1376.4 ε0

After updating c∗11, c
∗
12 and εT33

∗
, the remaining is to update the piezoelectric

parameter e31. With the original piezoelectric constant d31 = −140 × 10−12 C/N

and updated ones above, one can compute the e-form parameters by Eqs. A.6 and

A.7

e31 = (cE11
∗
+ cE12

∗
)d31 = −21.3326 N/V·m

e33 = 2cE12
∗
d31 = −12.1341 N/V·m

εS33 = εT33
∗ − 2d231(c

E
11

∗
+ cE12

∗
) = 701.8007 ε0

and the original linear variable for K3

a =
(e31)

2

εS33
= 0.6484/ε0

The submatrices Ke31 (Ke33) and KεS33
can be obtained in a similar way with

Eq. C.36 as

Ke31 =
K

(2)
UΦ −K

(1)
UΦ

e31
(C.37)

and

KεS33
=

K
(2)
ΦΦ −K

(1)
ΦΦ

εS33
(C.38)

Following Eq. C.23, one can calculate the submatrix K̂e31 .

With the two anti-resonant frequencies: 46.18 and 151.7 kHz, and two sub-

matrices: K̂e31 and KεS33
, one can apply the extended CMCM method to update

the correction coefficient α3.
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Figure C.5. Iteration results of α3

Shown in Fig. C.5 is the iteration sequences of α3. Within 4 steps, the cor-

rection coefficient quickly converges to 0.0576. The updated parameter a∗ is

a∗ = (1 + α3)a = 0.6858/ε0

According to Eqs. C.32 and C.33, one can calculate the updated εS33
∗
and e∗31

εS33
∗

=
(cE11

∗
+ cE12

∗
)εT33

∗

cE11
∗
+ cE12

∗
+ 2a∗

= 682.5254 ε0

e∗31 = −
√
a∗ εS33

∗
= −21.6348 N/V·m

Therefore, the updated parameters in ‘manufacturer’ form, which are originally

from the manufacturer specification sheet, can be calculated

d∗31 =
e∗31

cE11
∗
+ cE12

∗ = −141.98 pC/N

ν∗
12 =

cE12
∗

cE11
∗
+ cE12

∗ = 0.2844

Y E
11

∗
= (cE11

∗
+ cE12

∗
)(1 + ν∗

12)(1− 2ν∗
12) = 84.390 GPa
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Fig. C.6 shows the impedance function of updated FE model and that of experi-

mental data have a very good agreement except some negligible discrepancy.
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Figure C.6. Impedance comparison of piezoelectric transducer in air: updated FE
model v.s. experiment (without the polyurethane layer)

Before placed into water, the transducer is coated by a 0.5mm-thick

polyurethane layer and the model is shown in Fig. C.7. According to the general

property of polyurethane material, the equivalent linear properties are originally

set to be Young’s modulus Epoly = 1 GPa and Poisson’s ratio ξpoly = 0.3. By ap-

plying the extended CMCM method in a similar way of updating elastic properties

of piezoelectric material, the coefficients can be updated based on the measured

resonant frequencies 41.9 kHz and 126.1 kHz. Shown in Fig. C.8, the correction

factor α4 and α5 converge to 0.4076 and 0.0252 respectively after 3 iteration steps.

The Young’s modulus and Poisson’s ratio are updated to 1.4706 GPa and 0.3076,

respectively.
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Figure C.7. Finite Element model of the piezoelectric transducer with the
polyurethane layer: left panel for 3D model, right panel for a cross section
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Figure C.8. Iteration results of the correction coefficients for Young’s modulus and
Poisson’s ratio of ‘linear’ polyurethane material
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Finally, all the properties have been updated. Table C.2 shows the comparison

of material property coefficients between the original values and updated ones.

The relative errors provided in last column of Table C.2 are calculated by the

formula (updated value − original value)/(updated value)× 100%. The errors

indicate that the manufacturer gives relatively accurate property coefficients for

this transducer except the Poison’s ratio, the tolerance of which is up to 25.25%.

To have better impedance function, the model damping are corrected by traditional

methods in this study. Since it is beyond the scope of current study, only the results

are shown in Table C.2 and not discussed here. Based on all updated parameters,

Fig. C.9 shows the impedance function comparison between updated FE model

with polyurethane layer and experiment results. On the whole, they match each

other very well. The small discrepancy might result from the linear assumption

and the inaccurate damping model of polyurethane material. But, the FE model

has been updated well enough for current research of characteristic functions of

underwater transducers.
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Figure C.9. Impedance function comparison of the transducer in air: updated FE
model v.s. experiment(with the polyurethane layer)

material parameters unit original updated
relative
error

stiffness c11 GPa 97.154 109.04 10.90%
PZT stiffness c12 GPa 26.233 43.336 39.46%
e-form coupling e31 C/m2 −17.2740 −21.6348 20.16%

permittivity εS33/ε0 — 853.7258 682.5254 −25.08%
PZT Young’s modulus Y11 GPa 86 84.390 −1.91%

manufacturer Poison’s ratio ν12 — 0.2126 0.2844 25.25%
form coupling d31 pm/V −140 −141.98 1.40%

permittivity εT33/ε0 — 1400 1376.4 −1.71%
PZT mass term α — 700 2446.4 —

damping stiffness term β ×10−9 1.3 3.6782 —
polyurethane Young’s modulus Epoly GPa 1 1.4706 —

elastic Poison’s ratio νpoly — 0.3 0.3076 —
polyurethane mass term αpoly — — 18320 —
damping stiffness term βpoly ×10−6 — 2.2427 —

Table C.2. The comparison of material properties between original and updated
models
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