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Table of contents  

 

We introduce new PFAS passive sampling devices based on porous graphene monoliths grafted 

with cationic functional groups for broad-spectrum PFAS pre-concentration including short-chain 

anionic species. 

Environmental Significance Statement  

The aquatic environment is a key medium that mediates human exposure to various pollutants 

via drinking water and consumption of aquatic food with bioaccumulated contaminants. Per- and 

polyfluorinated alkyl substances (PFAS) are among the most important aqueous pollutants and 

are toxic, bioaccumulative, degradation resistant, and globally distributed. The scientific 

community is still lacking effective and sensitive tools for their environmental monitoring, 

especially when they are present in low concentrations. In this study a graphene-based porous 
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monolith was designed, fabricated, surface functionalized and characterized as a passive sampler 

for PFAS in water. One formulation of the graphene monolith sampler shows great potential for 

equilibrium sampling and pre-concentration of broad range of PFAS as a promising tool for 

monitoring of emerging organic contaminants in aquatic environments. 

Abstract  

Aquatic contamination by per- and polyfluorinated alkyl substances (PFAS) has attracted global 

attention due to their environmental and health concerns. Current health advisories and surface 

water regulatory limits require PFAS detection in the parts per trillion (ppt) range. One way to 

achieve those low detection limits is to use a reliable passive sampling-based monitoring tool for 

PFAS, as exists for numerous nonpolar persistent organic pollutants. Here we introduce a new 

graphene-based hydrogel monolith and describe its synthesis, chemical functionalization, 

property characterization, and testing as a PFAS equilibrium passive sampler. The graphene 

monoliths were self-assembled by hydrothermal treatment from graphene oxide (GO) aqueous 

dispersions to produce free standing cylinders of ~563 mm3 volume consisting of ~4 wt-% thin-

walled porous graphene and ~96 wt-% water. The uptake of 23 PFAS was measured on the as-

produced monoliths, and equilibrium partition coefficients (KSW), were derived for longer chain 

(C≥8) perfluoroalkyl acids (PFAA) and neutral precursors such as sulfonamides (log KSW range 

1.9 - 3.6). To increase the KSW for shorter chain PFAA, the monoliths were chemically modified 

by a new diazonium-based grafting reaction that introduces positive surface charge without 

damage to the graphenic backbone. Introduction of benzylamine moieties through the diazonium 

intermediate switches zeta potential at pH 7 from -45mV (as-produced graphene) to + 5mV. This 

modification increased the sorption of short and middle chain PFAA by ten-fold (e.g. log KSW for 

PFBA increased from 1.3 to 2.2), thereby improving the functionality of the passive sampler device 

for a wider range of PFAS. Field deployments demonstrated that the graphene monoliths were 

capable of detecting key PFAS in the Delaware River. 

Introduction  

Per- and polyfluorinated alkyl substances (PFAS) are manmade chemicals extremely resistant to 

environmental degradation. Due to their unique physico-chemical characteristics (e.g. ability to 

lower the interfacial or/and surface tension, conferring water, stain and oil repellency), PFAS are 

used in many industrial applications (e.g. polymer and photographic industries, photolithography 

and manufacturing of semi-conductors) 1 and are components of various raw materials as well as 

common consumer products 2. Many applications directly release PFAS into all environmental 



compartments 3–5 and pose a potential risk of contamination to a drinking water source 6 or 

contribute to secondary PFAS sources such as wastewater treatment plant effluents 7,8 or landfill 

leachates 9–11. 

PFAS are known as immunotoxic environmental contaminants 12–14 and were systematically 

reviewed by the International Agency for Research on Cancer (IARC) as chemicals with 

carcinogenic potential. In 2016 perfluorooctanoic acid (PFOA) was classified as a group 2B 

chemical, a possible human carcinogen 15. Additionally, the U.S. Environmental Protection 

Agency (EPA) classified two other PFAS, perfluorooctanesulfonate (PFOS) and 

hexafluoropropylene oxide-dimer acid HFPO-DA, as having suggestive evidence of carcinogenic 

potential 16–18. Due to the combination of PFAS persistence, their toxic potential and worldwide 

dispersion, PFOS and PFOA have been listed under the Stockholm convention (SC) of persistent 

organic pollutants 19,20 and the global production and application of these PFAS is banned or 

restricted.  

The release of PFAS to the aquatic environment has caused extensive background exposure to 

PFAS that affect the global population via drinking water 21. In 2017 the U.S. EPA issued drinking 

water health advisories for two common PFAS: PFOA and PFOS at 70 ng/L for combined 

concentrations. More recently, individual US states and countries all around the world have issued 

more stringent drinking water guidelines for either the sum of multiple PFAS, or the individual 

congeners 22,23. Increasing regulatory attention highlights both the continuing concern over human 

exposure to PFAS and the need for an ability to measure time weighted average (TWA) 

concentrations, and to better assess PFAS sources, transport and exposure. 

Passive samplers are a robust tool for deriving the TWA concentration of pollutants in water, but 

there is a lack of suitable options for PFAS. Most efforts on passive sampling for PFAS have 

focused on validating the Polar Organic Chemical Integrative Sampler (POCIS) sampler 

developed by the United States Geological Survey 24–29. The drawbacks of the POCIS include the 

dependency of PFAS uptake rates on water flow velocity caused by the changeable water 

boundary layer (WBL) on the membrane surface 30. As an alternative, passive samplers based 

on diffusive gradients in thin hydrogel films (DGT) were recently modified for PFAS sampling in 

water 31,32. However, the agarose-based DGT sampler has low long-term stability in surface water 

and limited capacity for PFAS beyond PFAA 32.  

Here we pursue a new approach for PFAS passive sampling, based on the self-assembly of 

graphene oxide nanosheets into porous “monoliths” (non-particulate-based, one-piece, 

connected, free-standing objects) of controlled shape. The 2004 discovery of graphene 33 has led 



to a family of mass-produced sheet-like carbon materials that are now available as enabling 

components in environmental protection and remediation technologies 34–36. In these applications, 

collections of graphene nanosheets are assembled into powders, films, or three-dimensional 

bodies with high internal surface area and surface chemistries tailored for the target contaminants. 

Graphene has exceptional properties but is not competitive in some large-scale applications 

where lower-performing, but lower-cost commodity porous carbons can also be applied. In 

contrast, miniature passive sampling devices are an ideal application for graphene materials due 

to the small amounts of base material required (milligrams per device) coupled with the stringent 

performance requirements, which include high contaminant uptake capacity, purity, monolithic 

form, and high contaminant recovery by extraction. 

This article describes the fabrication of shape-controlled graphene hydrogel monoliths, their 

physical properties and PFAS adsorption / extraction performance of relevance to equilibrium 

passive sampling devices, followed by a field deployment to test its performance under realistic 

conditions. A new method of surface modification by diazonium covalent grafting is also 

demonstrated, which increases the partition coefficients for short chain PFAA compounds and 

broadens the spectrum of PFAS that can be effectively sampled and detected.  

Methods 

Graphene monolith synthesis  

Graphene Oxide (GO) nanosheet suspensions were prepared by a modified Hummers’ method 

described in detail by Liu et.al 37, yielding a solid product with C:O atomic ratio of ~2.0 and trace 

amounts of S, N and Cl impurities (<0.52%) determined by x-ray photoelectron spectroscopy 

(XPS). 10 mL of GO nanosheet suspensions at a concentration of 2 mg.mL-1 were loaded into a 

15 mL Teflon lined stainless steel autoclave and heated to 180º C for 10 hrs. After several hours 

of cooling, a self-assembled cylindrical hydrogel monolith was removed, and its surface blotted 

dry for weighing, characterization, and use.  

Chemical functionalization 

The graphene monolith (GM) in its as-produced form carries a negative surface charge due to 

deprotonation of acidic oxygen-containing functional groups that are a common feature on as-

produced carbon surfaces (see Results). This negative surface charge introduces a repulsive 

electrostatic force component for anionic PFAS, and in particular may suppress adsorption of 

short-chain varieties where the attractive hydrophobic forces are less pronounced. Introducing 

positively charged functional groups can reduce or even flip the sign of the net surface charge, 



and we hypothesize should increase affinity for short-chain PFAA. Here we covalently grafted 4-

aminobenzylamine (4-ABA) to the graphene surfaces by adapting a chemical pathway based on 

diazonium intermediates that has been demonstrated previously on carbons for different aryl-

amine precursors 38–40. The procedure exposes the graphene monolith to a slightly acidic solution 

with 0.15 M hydrochloric acid (37%, Fisher Scientific, MA, USA), 0.085 M 4-ABA (98%, Acros 

Organics, NJ, USA), and 0.085 M sodium nitrite (99%, Fisher Scientific, MA, USA) at 80º C for a 

tested range of 2 to 18 hrs with gentle stirring on a shaker table. Sodium nitrite is added last, after 

the monolith is placed in the solution. The reaction takes place in 50 mL round bottom flasks 

submerged in mineral oil on a heated magnetic stir plate. The graphene monolith is then washed 

in methanol (Fisher Scientific, MA, USA), tetrahydrofuran (99.9%, Mallinckrodt Chemicals, NJ, 

USA) and DI water sequentially for 24 hrs each. 

Monolith property characterization 

Thermal gravimetric analysis (TGA) was performed on a Mettler Toledo TGA/DSC 1 Star to 

determine water content and confirm GO reduction during the hydrothermal treatment. TGA tests 

were run on 10 mg samples in 150 µL alumina crucibles under a nitrogen flow of 80 mL.min-1 with 

a temperature ramp rate of 10 mL.min-1 from 25º to 800º C. All scanning electron microscopy 

(SEM) images (LEO 1530) were acquired at 20 kV. X-ray diffraction (XRD) analyses wereas 

performed on a Bruker D8 Discovery 2D X-ray Diffractometer mounted on to a Si substrate in 

which all crystalline peaks from substrate were removed. X-ray photoelectron spectroscopy (XPS) 

work was performed on a Thermo Fisher K-Alpha X-ray Photoelectron Spectrometer. SEM and 

XPS samples were freeze-dried prior to imaging. 

Surface charge was characterized by measuring zeta potential of both as-produced and 

functionalized graphene monoliths as a function of solution pH. The monolith was sectioned into 

1 mm x 1 mm pieces and then dispersed in 15 mL of DI water with 0.1 mM NaCl (Fisher Scientific, 

MA, USA) as background electrolyte and sonicated for 20 minutes to create small debris particles 

in suspension whose surface (zeta) potentials could be determined by electrophoretic 

measurements. pH was controlled by titration with small amounts of HCl or NaOH. Zeta potentials 

were then measured at 25º C using a Malvern Nano ZS.  

Methylene blue (MB) dye was used as a model adsorbate to estimate the graphene monolith 

surface area available to aqueous-phase organic contaminants. Initial concentrations of the 

cationic dye, MB (Aldrich Chemical Company, St. Louis, MO), ranged from 4 to 170 mg.L-1 in a 

100 mL solution. A single intact graphene monolith was added to the 100 mL solutions with 

varying MB concentration and shaken at 100 rpm on a shaker table continuously while samples 



were taken at various time points to determine an equilibrium concentration of MB. These 

concentrations were measured by UV-Vis spectroscopy (Jasco V-730) at a fixed wavelength of 

664 nm with some requiring dilution to be within the appropriate concentration range of the 

spectrometer. Spectral measurements were also performed to verify that there was no peak shift 

due to dimer formation at higher concentrations. Initial calibrations were made in the range of 

diluted samples, and daily single point calibrations were performed thereafter. The dry solid mass 

of a single monolith device used for normalizing adsorbate uptake values was determined 

gravimetrically after oven drying at 65º C for 24 hrs.  

PFAS standards 

The solid PFAS standards for laboratory experiments: perfluoro-n-butanoic acid (PFBA); 

perfluoro-n-pentanoic acid (PFPeA); perfluoro-n-hexanoic acid (PFHxA); perfluoro-n-heptanoic 

acid (PFHpA); perfluoro-n-octanoic acid (PFOA); perfluoro-n-nonanoic acid (PFNA); perfluoro-n-

decanoic acid (PFDA); perfluoro-n-undecanoic acid (PFUnDA); perfluoro-n-dodecanoic acid 

PFDoDA); perfluoro-n-tridecanoic acid (PFTrDA); perfluoro-n-tetradecanoic acid (PFTeDA); per-

fluoro-1-butanesulfonate (PFBS); perfluoro-1-hexanesulfonate (PFHxS); perfluoro-1-heptane-

sulfonate (PFHpS); perfluoro-1-octanesulfonate (PFOS); perfluoro-1-butanesulfonamide (FBSA); 

perfluoro-1-octanesulfonamide (FOSA); N-methylperfluoro-1-octanesulfonamide (MeFOSA); N-

ethylperfluoro-1-octanesulfonamide (EtFOSA); 1H,1H,2H,2H-perfluoro-1-hexane sulfonate (4:2 

FTS); 1H,1H,2H,2H-perfluoro-1-octane sulfonate (6:2 FTS); 1H,1H,2H,2H-perfluoro-1-decane 

sulfonate (8:2 FTS); and 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-hepta-fluoro-propoxy)-propanoic acid 

(HFPO-DA) - purity 95-97%; were purchased from SynQuest Labs (FL, USA), Santa Cruz 

Biotechnology (TX, USA) and Toronto Research Chemicals (Ontario, Canada). The solutions of 

individual compounds (concentration approx.10 mg.mL-1) were created by dissolving 

approximately 30 mg of each compound (exact mass recorded) in 3 mL of LC/MS grade methanol 

(Honeywell Riedel-de Haën, Germany). The working solution mixtures (concentration 

200 µg.mL-1) of various PFAS were prepared by mixing individual PFAS in LC/MS grade 

methanol. 

The 8-point calibration curve (0.001 – 100 ng.mL-1), QA/QC instrumental performance check, and 

surrogate standard were created using analytical PFAS standards purchased from Wellington 

Laboratories (Ontario, Canada). Specifically, PFAC-24PAR; MPFAC-24ES; N-MeFOSA-M; N-

EtFOSA-M; FBSA-I; FHxSA-I; HFPO-DA; d-N-MeFOSA-; d-N-EtFOSA-M; and M3HFPO-DA 

were used. Individual target PFAS and corresponding isotope labelled analogues are listed in 

Table SI 1.  



LC-MS/MS analysis  

The LC-MS/MS analysis of targeted PFAS in laboratory experiments relied on a liquid 

chromatograph (Shimadzu Prominence UFLC) equipped with Gemini C18 hybrid column (3 µm, 

2.1 mm X 50 mm; Phenomenex) coupled to mass spectrometer (AB Sciex 4500 QTRAP) 

operating in negative mode. To reduce background contamination in the system, a delay column 

(Luna 5 µm C18(2) 100 Å, LC Column 30 x 2 mm) was installed to the LC system. For analysis, 

20 µL of prepared extract was injected on the analytical column and PFAS were separate and 

determined (all analytical details are listed in SI, Table SI 2, 3 and 4). The LC-MS/MS analysis of 

targeted PFAS in-field deployment samples was performed using a Vanquish UPLC system 

(Thermo Fisher Scientific, Waltham, MA) equipped with a heated Accucore C18+ column (2.1 mm 

x 100 mm x 1.5 um particles) coupled with a Thermo Orbitrap Fusion mass spectrometer (Thermo 

Fisher Scientific, Waltham, MA) with a heated electrospray ionization (HESI) source operated in 

negative mode 41.  

PFAS Partitioning Experiments 

PFAS partitioning experiments were performed in high density polyethylene bottles (Nalgene® 

Fisher Scientific, MA, USA) to minimize PFAS sorption to secondary surfaces. For each 

experiment a single graphene monolith was exposed to a PFAS aqueous solution (DI water with 

pH 5.5 - 5.8 and PFAS concentration between 5 and 50 ng.mL-1 and the experiment repeated in 

triplicate. To maintain linear flow conditions during the partitioning experiments, the centrifuge 

tubes were vertically shaken on a platform shaker at a moderate speed (100 rpm). Same 

experiments were utilized to study: i) elution profiles of PFAS, ii) adsorption isotherms and iii) 

partition coefficients for graphene monolith in both, pristine and modified form. 

At the end of each experiment, the monolith was drained for 30 seconds prior to its transfer to 2 

mL of LC/MS grade methanol in 15 mL polypropylene centrifuge tube. Time-dependent adsorption 

experiments were carried out from 1 hr to 48 hrs on 16 PFAS species to establish criteria for 

reaching equilibrium. Data in Table SI 5; and Figure SI 1 show equilibration times on the order of 

12 hrs, and 24 hrs was selected as a safe time point for all further experiments. As a next step, 

the elution profile of solid liquid extraction of monolith was established (see Table SI 6 and Figure 

SI 2), and two subsequent extraction steps were assessed as sufficient for PFAS extraction and 

utilized for all partitioning experiments.  

Particularly, 2 x 2 mL of monolith’s extracts were combined from each experiment, spiked with 50 

µL of PFAS surrogate standard (final concentration 2 ng.mL-1) and evaporated under a gentle 

stream of nitrogen to the final volume of 500 µL. Prior the instrumental analysis, the aliquot of 



80 µL of monolith’s extract was diluted using 120 µL of 4 mM ammonium acetate (LiChropur, 

Supelco, PA, USA) in LC/MS grade water (Fisher Scientific, MA, USA). Similarly, the 600 µL 

aliquot of PFAS aqueous solution was spiked with 50 µL of surrogate standard (final concentration 

2 ng.mL-1) and mixed with 350 µL of 4 mM ammonium acetate in LC/MS grade methanol prior the 

instrumental analysis. 

A sampler/water partition coefficient (KSW) was calculated as: 

𝐾𝑆𝑊 =
𝑞

𝐶
          𝐸𝑞. 1, 

where q is the adsorbed amount (moles adsorbate per mass of adsorbent) and C is equilibrium 

concentration (moles per mass of solution) making KSW dimensionless.  

Mass balance experiments  

To calculate the mass balance, the partitioning experiment was performed using 3 graphene 

monoliths exposed in 500 mL of aquatic solution of PFAS (10 ng.mL-1) for 24 hrs. The mass 

balance was calculated by combining the total amount of individual PFAS in both phases 

(graphene monolith extract and water) and comparing it to the mass of the originally introduced 

PFAS. For most of the compounds the mass balance fell between 59% and 124% (median 71%) 

as seen in Table SI 7. The compounds with recoveries lower than 59% were either PFAAs with 

very long chains (≥ C12) or sulfonamides (MeFOSA and EtFOSA). The lower recovery for these 

hydrophobic compounds could be caused by one of two phenomena: i) their high tendency to 

sorb to all surfaces, including walls of HDPE exposure bottles, caused by their hydrophobic 

character 42, and/or ii) their irreversible sorption to the graphene monolith.  

Field deployments  

Modified graphene monoliths were deployed in Delaware River (New Jersey, USA) at localities 

with known high concentration of legacy (e.g., PFOA, PFOS and PFNA) and emerging PFAS 41. 

Graphene monoliths in triplicates were arranged in stainless-steel cages (Figure SI 7) at 3 

locations (Site A, B & C) for 7 days. Recovered samplers were immediately placed into extraction 

solution (methanol), spiked with the mass labeled PFAS analogs and prepared for the LC-MS/MS 

analysis (see sample preparation details above). The results were contrasted to background 

contamination in field blanks which undergo the same procedure as the deployed samplers and 

compare to PFAS determined in grab water samples (see SI for details).  



Results and Discussion 

Graphene monolith synthesis and characterization 

To create an effective passive sampling device, we attempted to make a single-piece, shaped 

material (a monolith, not a powder) that preserves as much as possible the high specific surface 

area of individual atomically-thin graphene nanosheets. Figure 1a shows the selected 

hydrothermal synthesis route that begins with 10 mL of GO stock suspension (2 mg.mL-1) 

processed at 180º Celsius in a 15 mL Teflon-lined autoclave. The result is a cylindrical monolith 

(Fig. 1c) approximately 6.8 mm in diameter and 15.5 mm in height. After formation, the excess 

liquid is optically clear, indicating that almost all of the original nanosheets became associated 

with the solid monolith during the hydrothermal assembly process. After blotting to remove surface 

moisture, the monolith weighs ~500 mg, and has an overall density ~0.9 g.cm-3. TGA analysis 

indicates ~96 wt-% water (Fig. SI 3), which together with the density value indicates that the 

internal spaces of this as-produced monolith are nearly filled (saturated) with liquid H2O as 

depicted in figure 1d. The monolith is thus classified as a hydrogel, where the residual hydrophilic 

oxygen functional groups on the reduced GO (rGO) provide hydrogen bonding sites for retention 

of water molecules within the complex internal porous structure 43. After thermal drying for 24 hr 

at 65 C, the monolith mass falls dramatically to an average of 11.2 mg with a standard deviation 

of 0.35 mg and standard error of 3% based on 5 samplers chosen from two synthesis batches 

fabricated at different times. The dry mass allows us to estimate the graphene product yield, which 

is 11.2 mg / 20 mg-starting-GO or 56%, which is a value similar to the typical mass loss associated 

with the conversion of GO to reduced GO (rGO) by thermal reduction methods. This dry solids’ 

mass (11.2 mg) is used later to normalize adsorbed amounts of PFAS for adsorption isotherms. 

Figure 1b shows that the process of random nanosheet coalescence creates a cellular-foam-like 

internal structure consisting of thin walls surrounding cavernous pores that range in size from 2 

to 4 microns. Using the dry mass of ~11.2 mg and a typical density of 2.0 g.cm-3 for solid rGO, 

the as-produced product has a solid volume fraction of only 1%. We hypothesize that this 

extremely large pore volume (99%) when saturated with water in the immersed stated will allow 

for rapid equilibration during sampling, especially relative to other sampling technologies that 

require PFAS solid state diffusion through non-porous polymeric material. This hypothesis is 

tested using time-dependent adsorption experiments (described later) and the results used to 

establish criteria for reaching the equilibrium regime. Figure SI 4 is a SEM image that shows a 

skin-like outer layer, which is still porous but of higher solid density than the core. This skin layer 

appears to aid in the mechanical stability of the monolith against handling and processing 



stresses. Interestingly, during elevated temperature drying (65 C), the monolith shrinks 

irreversibly by a factor of ~4 in each linear dimension to ~1/64th of its original hydrated volume. 

This highlights the importance of water in forming and maintaining the hydrogel structure. 

 

Figure 1: Synthesis and structure of the graphene hydrogel monolith. (a) Graphene oxide 

nanosheet suspension synthesized by a modified Hummers’ method (2 mg/ml stock 

suspension). (b) SEM image showing a foam-like structure in the interior of the monolith, 

with micron-sized pores surrounded by thin graphene-based walls. (c) Hydrothermal 

treatment leads to the porous graphene monolith product shown with scale reference. (d) 

Sketch showing the hydrophobic sheet-to-sheet interactions leading to gelation and the 

water association on the remaining oxygen-containing surfaces. 

Figure 2a and b show a methylene blue (MB) adsorption isotherm at 20C, used to estimate the 

total surface area of the monolith when immersed in aqueous media, as in the intended passive 

sampling application. The monolith has a maximum capacity approaching 300 mg-MB.g-1-rGO. 

For comparison, literature studies on suspended precursor GO nanosheets (which are isolated 

single-layer materials) reported capacities from 671 to 1450 mg.g-1 44 which suggests that the 

monolith internal cavity walls consist of only a few graphene layers. The present data shows a 

type 1 isotherm, and the Langmuir model was thus used to estimate surface area, as done 

previously for other carbon-based solids 45. Figure 2b shows the Langmuir linearization of the 

isotherm, and the derived surface area estimate of 1210 m2.g-1. Bradder et al., 2011 reported that 

surface acidity in graphite oxide (the bulk form of graphene oxide) plays an important role in the 

adsorption of cationic dyes such as MB, and that electrostatic attraction is the primary mechanism. 

96% Water 

a 

c d 

b 

2 µm  



When GO goes through a chemical reduction process, the negative charge density decreases, 

and this has been shown to enhance anionic dye adsorption and reduce cationic dye adsorption 

47. 

 

Figure 2: a) Methylene blue adsorption isotherm used for surface area determination; b) 

Linearization and fit to Langmuir isotherm. c) XPS spectra showed a change in the carbon 

oxygen ratio from ~2:1 (original GO precursor [see SI]) to ~7:1 in the hydrothermally 

treated monolith. d) XRD analysis also shows a change in the interlayer spacing from 

0.80 nm (GO) to 0.36 nm (rGO-HG) which reflects the loss of oxygen functional groups 

between individual sheets. 

Figure 2c shows XPS spectra revealing presence of both oxygen and carbon at ~540 and ~295 

eV respectively, and an increase in the carbon:oxygen (C:O) atomic ratio from 2:1 (GO precursor) 

to 7:1 (final product). Figure SI 5 shows XPS data on stock graphene oxide used for comparison 

purposes. Figure 2d shows comparative results between a thin GO film made from stock GO in 

suspension and the rGO monolith showing a shift in interlayer spacing from 0.80 to 0.36 nm. 

Other hydrothermally prepared aerogels show similar patterns 48 with loss of the ~11 peak and 

introduction of a broadened peak at ~25 associated with graphene layer pi-stacking. Our 

hydrothermal processing time was 10 hrs, while other hydrothermal studies report that GO 



deoxygenation reaches a maximum after about 6 hrs 43,49 and further increases in C:O ratio are 

negligible.  

Surface charge modification through covalent grafting 

Short-chain PFAA are as environmentally persistent as their long-chained counterparts, and 

present a greater challenge for effective capture on adsorbents 50,51. Carbon-based solids have 

been reported to be effective sorbents for long chain PFAS molecules but are less successful at 

capturing short chain PFAS (< C7) 52,53. This trend is attributed to the increased hydrophilicity of 

short-chain PFAS, and in turn, the decreased hydrophobic forces between shorter perfluorinated 

alkylchains and the carbon surface 53. Electrostatic interactions are generally important forces in 

the adsorption of aliphatic anions to carbon basal planes 54. These ideas suggest that varying 

adsorbent surface charge can be a useful tool to enhance the adsorption capacity of charged 

PFAS molecules, especially those with short chains where the hydrophobic driving force is weaker 

and electrostatic contributions are relatively more important.  

Most PFAS are anionic, and most as-produced carbon or graphenic surfaces are negatively 

charged at near neutral pH due to acidic oxygen-containing functional groups, which arise either 

from the carbonization precursor or from chemisorption of atmospheric oxygen. The dual negative 

charges suggest that electrostatic repulsion may be limiting adsorption, especially for short-chain 

species where the weaker hydrophobic driving forces are more easily overcome. Figure 3c shows 

that this specific graphene monolith, in its as-produced form, has a negative surface charge over 

the entire range of pH studied (3 to 11) and a large zeta potential of -47 mV near neutral pH.  

We hypothesized that the introduction of positively charged functional groups would decrease 

these repulsive forces and produce local net positive charges that favor the partitioning of short-

chain anionic PFAS to the graphene surfaces. To introduce permanent positive surface charge, 

we sought a covalent grafting method compatible with graphene monoliths. First, the selected 

grafting method must be carried out in aqueous media to preserve hydrated state and monolith 

structure, and also must use reactive chemistry that avoids oxidative damage to the thin graphene 

walls. Many carbon functionalization protocols begin with -COOH introduction through treatment 

in concentrated oxidizing acids (e.g. HNO3), but these routes can easily damage or even destroy 

(mineralize) thin-walled carbon structures 55,56.  



 
Figure 3. Covalent modification of graphene monoliths using diazonium chemistry: 

mechanisms and surface charge effects. a) Diazonium functionalization mechanism, where 

-R is a general, nonspecified functional group to be introduced (Kariuki & McDermott, 1999; 

Liu et al., 2014) b) Structure of 4-ABA used as a new precursor to introduce positive charge 

to the graphene surfaces up to neutral pH c) Measurement of pH-dependent zeta potentials 

for the GO precursor suspension (blue), unmodified graphene monolith (green), and ABA-

functionalized graphene monolith (orange). 

A mild, non-oxidizing, aqueous, and flexible class of methods for covalent grafting onto carbon-

based surfaces is based on in situ generation of diazonium salts 38,40. Figure 3a illustrates this 

mechanism for the general case where “R” represents the target functional group to be introduced 

when the diazonium salt intermediate attaches to carbon surfaces through a covalent-aryl bond 

39. A chosen aniline reagent containing “R” in a mildly acidic aqueous solution at 80°C first reacts 

with a nitrosonium (NO+) ion, which is formed via the double protonation of NO2
- and the loss of 

a water molecule. The aniline nitrogen subsequently forms an N-N bond with NO+, which then 

undergoes two successive protonations and an elimination of a water molecule, allowing for the 

formation of a nitrogen triple bond and a diazonium salt intermediate 57. A free electron transfer 

from the rGO surface to the diazonium group liberates N2 gas and results in a reactive aryl radical 

58. The radical then bonds with a free electron and couples to the carbon surface, with the entire 

process occurring in a single aqueous step 59.  

We sought a specific method within this class (an R group) to produce a stable positive charge 

up to pH 8.3 for applications in natural waters 60. Alkyl amines are suitable, having pKa values 

commonly >9. In general, amine-functionalized sorbents have shown great promise in the capture 

and remediation of aqueous PFAS, especially porous sorbents that retain hydrophobic segments 

in addition to electrostatic functionalities 61. The simplest alkylamine derivative of aniline is 4-

aminobenzylamine (4-ABA) and was chosen here as the precursor for the diazonium reaction 



(Fig. 3b). The final grafted group has an outward-facing benzylamine structure with its conjugate 

acid having a pKa of 9.34 62.* Note that previous studies have used 4-ABA in surface 

functionalization, but using amine coupling chemistry rather than diazonium chemistry, and in this 

configuration the grafting site is reported to be the alkylamine, leaving the arylamine (aniline 

moiety) as the functional group presented to the environment, and this route would not introduce 

positive surface charge at neutral pH 63,64. 

Figure 3c shows that 4-ABA functionalization dramatically alters the surface charge states of the 

graphene monolith. Across a wide pH range (3 – 10), the functionalized monolith has a much 

greater zeta potential than the unmodified monolith, and a net positive charge is observed from 

pH 3 - 7.5. At about pH 11, the zeta potentials of original and functionalized monoliths become 

equal. This can be attributed to the loss of positive charge due to deprotonation of the 

benzylamine functional groups between pH 7 and 11, which is consistent with the pKa of the 

conjugate acid of benzylamine (9.34). To our knowledge, this is the first time net positive charge 

has been introduced to a carbon surface through mild diazonium chemistry via a non-

electrochemical route. This one-pot diazonium functionalization mechanism represents a simple, 

novel way to introduce positive charge to the surfaces of the rGO monoliths under our desired pH 

conditions. 

-------- 
* Note that the symmetric para-phenylenediamine is a widely used additive, and was considered as an alternative, but it possesses 

an aromatic amine with a pKa value of only 6.2 65. The final grafted group would have the aniline structure with the aromatic amine 

facing outward (aniline conjugate acid pKa = 4.59) and would not exist in the majority protonated, positively charged state under most 

environmental pH values 66.  



PFAS adsorption and partition coefficients 

Time-dependent adsorption experiments over 48 hours were carried out on 16 PFAS species to 

establish the exposure times needed for equilibration (Table SI 5, Figure SI 1). Adsorbed amounts 

increase steadily over 8 hrs and reach an apparent plateau from 12 - 48 hrs. This result confirms 

our initial hypothesis that the highly porous monolith structure would permit rapid equilibration, 

and further experiments were carried out at the 24 time point and the results analyzed using 

equilibrium-based models (isotherms and partition coefficients). Adsorbed amounts at equilibrium 

range from about 1 to 35 ng PFAS / sampler (Table SI 5). This is a maximum mass loading of 35 

ng / 11.2 mg ~ 3.10-6. On a surface area basis, using 1210 m2.g-1 for the device, and typical 

molecular sizes and densities gives a PFAS fractional area coverage on the order of 10-6. Such 

extremely low surface coverage values reflect the ultra-dilute PFAS concentrations in solution 

that the samplers are in equilibrium with. Note that at high solute concentrations (see methylene 

blue data in Fig. 2a and b) these high-area solids can adsorb up to 30 wt-% organic adsorbates. 

For PFAS, both the mass-based and area-based fractional loadings are very small - of order 1 

ppm, which strongly suggests that the partition coefficient approach is appropriate for quantifying 

performance. 

Partition coefficients (KSW, Eq. 1) were therefore determined for 20 individual PFAS. The adsorbed 

amounts of individual PFAS on the pristine graphene monolith at equilibrium were calculated in 

ng.g-1, where the dry sampler mass was used for normalization (Table SI 8). Derived 

concentrations were corrected for the loses during the extraction by using mass labeled PFAS 

analogs (Table SI 1). The calculated log KSW values for targeted PFAS are shown Figure 4 and 

generally increase with increasing chain-length. In particular, log KSW values increase linearly with 

increasing chain length for perfluorinated sulfonic acids (PFSA, red) as well as for middle and 

long chain perfluorinated carboxylic acids (PFCA, light blue). C8 sulfonamide (FOSA, green) as 

well as its methyl- and ethyl- derivatives are strongly adsorbed to the graphene monolith in 

comparison with their PFCA and PFSA counterparts due to their hydrophobic characters 42. Short 

chain PFAAs (dark blue) and short chain perfluoroalkane-ethers (HFPO-DA, yellow) do not 

significantly concentrate at the sampler (KSW ~ 1) relative to dissolved concentrations. This chain-

length trend is also seen in activated carbon adsorption 50, and is believed to reflect the reduction 

in hydrophobic (attractive) forces with decreasing chain length, coupled in this case with the 

electrostatic repulsion between sorbent and adsorbate. 



 

Figure 4 Partition coefficient measurements: Pristine (unmodified) graphene hydrogel sampler water 

partition coefficient (KSW) for perfluoroalkyl carboxylic acids (PFCA, blue), perfluoroalkyl sulfonates (PFSA, 

red), perfluoroalkyl sulfonamides (green), HFPO-DA (yellow) and 6:2 FTS (grey). 

Adsorption isotherms 

Graphene monoliths (in triplicates) were exposed to a mixture of PFAS at 3 different 

concentrations (5, 50 and 500 ng.mL-1 in 500 mL) and adsorption isotherms for individual 

substances were derived. The data were fit to the Freundlich isotherm (Eq. 2) and the distribution 

coefficient (KD) for individual PFAS was calculated from its linearized form (Eq. 3) 

Freundlich model of adsorption isotherm (Eq. 2) and its linear expression (Eq. 3): 

    𝑞 = 𝐾𝐷 . 𝐶
1

𝑛                                                                        𝐸𝑞. 2 

𝑙𝑜𝑔 𝑞 = 
1

𝑛
𝑙𝑜𝑔 𝐶 + 𝑙𝑜𝑔  𝐾𝐷                                                   𝐸𝑞. 3    

Here q is the amount of adsorption (moles adsorbate per mass unit of adsorbent), KD is distribution 

coefficient, C is equilibrium concentration and n is correction or nonlinearity factor (when n = 1 

then KD becomes the partition coefficient) 

The regression coefficients and Pearson correlation coefficient for Freundlich isotherm model are 

presented in Table 1. Given the R-values (0.93-1.0), the Freundlich model describes the PFAS 

adsorption onto the graphene monolith well. For selected PFAS (PFDoDA, PFTrDA, PFTeDA, 

MeFOSA and EtFOSA) the factor correcting for nonlinearity (n) exceeded 1. This is most often 

attributed to adsorbate-adsorbate interactions 67, creation of PFAS micelle at a critical 

concentration on the surfaces 68 or losses due to PFAS irreversible sorption (potentially causing 

an underestimation of dissolved concentrations). Given that for most PFAS n was not significantly 
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different from 1, the linear model (n factor = 1) was fitted to the data and the good agreement 

between the measured data and the model was achieved (Pearson coefficient in Table 1).  

Table 1 Adsorption isotherms: Regression coefficients for Freundlich and linear models of 

adsorption isotherms (1/n, log KD) and Pearson correlation coefficient (r) 

 Freundlich model  Linear model 

Compound 1/n (± CI*) Log KD R  Log KD R 

PFBA 0.99 (± 0.36) 1.20 1.00  1.19 ± 0.05 1.00 

PFPeA 1.02 (± 0.16) 1.19 1.00  1.24 ± 0.04 1.00 

PFHxA 1.00 (± 0.66) 1.28 1.00  1.27 ± 0.04 0.99 

PFHpA 0.97 (± 0.48) 1.51 1.00  1.46 ± 0.05 0.99 

PFOA 0.94 (± 0.68) 1.93 1.00  1.80 ± 0.04 0.99 

PFNA 1.02 (± 0.48) 2.29 1.00  2.34 ± 0.09 1.00 

PFDA 1.09 (± 0.42) 2.50 1.00  2.69 ± 0.08 0.99 

PFUnDA 1.01 (± 2.55) 3.01 0.98  3.04 ± 0.14 0.98 

PFDoDA 0.67 (± 0.61) 3.42 1.00  2.93 ± 0.11 0.97 

PFTrDA 0.53 (± 0.21) 3.62 1.00  3.07 ± 0.11 0.98 

PFTeDA 0.64 (± 1.38) 3.03 0.99  2.58 ± 0.11 0.99 

       

PFBS 1.11 (± 0.90) 1.26 1.00  1.47 ± 0.07 1.00 

PFHxS 0.96 (± 0.90) 1.92 1.00  1.86 ± 0.08 0.99 

PFHpS 0.92 (± 1.58) 2.17 1.00  2.14 ± 0.08 0.99 

PFOS 1.12 (± 3.13) 2.46 0.99  2.70 ± 0.16 0.99 

       

FOSA 1.01 (± 0.92) 2.96 1.00  2.98 ± 0.11 0.99 

MeFOSA 0.59 (± 0.25) 3.14 1.00  2.66 ± 0.16 0.98 

EtFOSA 0.53 (± 1.92) 3.37 0.93  3.01 ± 0.18 0.82 

       

HFPO-DA 1.00 (± 0.62) 1.13 1.00  1.13 ± 0.05 0.99 

6:2 FTS 0.95 (± 1.08) 2.20 1.00  2.09 ± 0.05 0.98 

 * CI – 95% confidence interval  

Performance of surface-modified graphene monoliths 

Partition coefficients for PFAS onto graphene monoliths in the pristine and surface-modified forms 

were calculated and compared for 23 individual compounds. In each case, 11.2 mg of each 

sampler (in replicates) were exposed to 100 mL of PFAS solution (5 ng.mL-1) give that the 

previous results implied mostly linear sorption isotherms. We derived the KSW for PFAS 

compounds (Figure 5) and divided them into four subgroups based on their functional headgroups 

(Table 2). 



 

Figure 5 Partition coefficient: Surface-modified graphene hydrogel sampler water partition coefficient (KSW) 

for perfluoroalkyl carboxylic acids (PFCA, blue), perfluoroalkyl sulfonates (PFSA, red), perfluoroalkyl 

sulfonamides (green), HFPO-DA (yellow) and FTSs (grey).  
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Table 2 PFAS partition coefficients (log KSW) for pristine and modified graphene monolith sampler: PFAS 

subgroups, 1 –perfluorinated carboxylic acids (PFCA, -COOH), 2 - perfluorinated sulfonic acids (PFSA, -SO3H), 3- 

perfluorinated sulfonamides (-SO2N=), and 4 – fluorotelomer sulfonic acids (FTS, -SO3H) 

    log KSW 

Functional 
group 

Fluorination1 n(CF2) Compound 
pristine 

GM# 

surface-
modified 

GM## 
2 

1 

-COOH 

 3 PFBA 1.31 ± 0.17 2.18 ± 0.07 0.87* 

 4 PFPeA 1.52 ± 0.09 2.57 ± 0.13 1.05** 

 5 PFHxA 1.66 ± 0.01 2.93 ± 0.16 1.27** 

 6 PFHpA 1.93 ± 0.06 3.30 ± 0.17 1.37** 

 7 PFOA 2.33 ± 0.04 3.96 ± 0.33 1.63** 

Per- 8 PFNA 2.62 ± 0.06 4.24 ± 0.36 1.62** 

 9 PFDA 2.63 ± 0.01 4.44 ± 0.33 1.81** 

 10 PFUnDA 3.03 ± 0.04 4.52 ± 0.37 1.49** 

 11 PFDoDA 3.43 ± 0.12 4.67 ± 0.23 1.24** 

 12 PFTrDA 3.90 ± 0.19 4.40 ± 0.24 0.50 

 13 PFTeDA 4.37 ± 0.19 3.87 ± 0.19 -0.50 

       

2 

-SO3H 

 4 PFBS 1.73 ± 0.05 2.91 ± 0.17 1.18** 

Per- 6 PFHxS 2.29 ± 0.03 3.54 ± 0.24 1.25** 

 7 PFHpS 2.48 ± 0.03 3.71 ± 0.22 1.23** 

 8 PFOS 2.82 ± 0.06 4.15 ± 0.26 1.33** 

       

3 

-SO2N= 

 4 FBSA 1.78 ± 0.11 3.05 ± 0.17 1.27* 

Per- 8 FOSA 3.78 ± 0.06 4.47 ± 0.21 0.69* 

 8 MeFOSA 3.80 ± 0.18 3.95 ± 0.26 0.15 

 8 EtFOSA 4.01 ± 0.11 3.81 ± 0.49 -0.20 

       

  5 HFPO-DA 1.68 ± 0.03 2.86 ± 0.15 1.18** 

       

4 

-SO3H 

 4 4:2 FTS 1.65 ± 0.04 2.95 ± 0.18 1.30** 

Poly- 6 6:2 FTS 2.24 ± 0.12 3.49 ± 0.23 1.25** 

 8 8:2 FTS 2.83 ± 0.11 4.01 ± 0.24 1.18** 

1  per-fluorinated and poly-fluorinated carbon chains 
2  GM and modified GM log KSW delta (), significance p-value ** <0.005, * <0.05 

  number of replicates n = #2, ##5 

Given the difference between the PFAS partitioning to pristine and surface-modified graphene 

monolith, a significant improvement (p < 0.005) in partitioning towards modified GM was observed 



for all PFAS with log KSW (pristine GM) < 3, including short and middle chain perfluorinated PFAA 

(group 1 and 2), perfluorinated ether (HPFO-DA) and polyfluorinated sulfonates (group 4).  

Focusing only on the fluorinated carbons, a linear increase of log KSW within each PFAS subgroup 

can be observed, both for fully (per)fluorinated PFAS (group 1, 2, and 3) and partially 

(poly)fluorinated FTS (group 4 in Table 2). The average increase from the pristine to the modified 

graphene monolith was 1.2 log units, or 30-times. The only exception was FOSA, for which 

partition coefficients were higher than expected based on chain length. In contrast to PFAAs, the 

sulfonamides (FOSA and alkyl-FOSA) are neutral (uncharged) molecules, which likely explains 

the smaller enhancement factors and values (delta) achieved by introduction of positive charge 

relative to the PFAAs with their anionic head groups. Additionally, on the surface modified 

graphene monoliths the very long chain PFAAs (CF2 ≥ 11) have lower partition coefficients than 

shorter PFAAs, which may be caused by the loss of hydrophobic, non-polar (carbon-centered) 

sites or by lower desorption efficiency during extraction. 

When comparing the increase of δ log KSW, either for the pristine or modified graphene monolith 

samplers, we found them largely consistent (between 0.26 and 0.36 unit increase for every 

additional CF2- moiety) and can be used for predicting of environmental behavior 69. This suggests 

(together with previous findings) that the perfluorinated chain is dominating the PFAS-graphene 

partitioning for longer chain lengths. However, the strong increase from pristine to surface-

modified monoliths also shows that electrostatic interactions increase partitioning by over one 

order of magnitude (average of 1.2 log units); or in other words the addition of a positive charge 

increases sorption as much as 4-5 CF2- moieties. Knowing the respective roles of increasing CF2- 

moieties versus electrostatic interactions may be used to predict log KSW for unknown PFAS 

congeners detected on GM passive samplers. 

First proof-of-principle field demonstration of graphene monoliths as PFAS passive samplers 

Concentrations of PFAS in water (ng.L-1) at all locations derived from the graphene monolith 

results (Figure 6b, Table SI 9) were compared with PFAS concentrations (ng.L-1) obtained from 

grab water samples analysis (Figure 6a, Table SI 10). The PFAS composition was the same in 

both passive samplers and water grabs at all three locations, with elevated PFAS concentration 

present at the Site B. At this site, all legacy PFAS constituents (PFNA, PFOA, PFOS and 6:2 FTS) 

were captured by graphene monoliths as well as additional PFAS found in water at lower 

(< 5 ng.L-1) concentrations (PFDA, PFUnDA and PFTrDA). Overall, the derived water 

concentrations from graphene monolith sampler were 4-fold lower than the data obtained from 

analysis of the water with the factor consistent for all compounds at all locations. Overall, the field 



deployments demonstrate that the passive samplers can be successfully used to measure PFAS 

in the field. Future work will need to determine the reason for the differences between laboratory- 

and field-derived partitioning values for the graphene monoliths. 

 

Figure 6 PFAs water concentration (ng.L-1) at 3 localities (Site A, Site B and Site C) in Delaware 

River (New Jersey, USA). The concentrations were derived from a) analysis of water grabs or b) 

analysis of graphene monoliths samplers. 

To derive the detection limits (DL; ng/sampler) for a single graphene monolith and the overall 

method detection limits (MDL; ng/L) (Table SI 11) we used the LC-MS/MS detection limits 

determined as a 0.125 calibration curve point if no blank contamination was presented or the 

mean concentration in field blanks plus 3 times the standard deviation of the blank response 

(Table SI 9). The MDLs varies between sub nanogram per liter for the long chain PFCAs (C11-

C13), single ng per liter for the sulfonamides and most of the PFAA, and up to tens of ng per liter 

for the short chain PFCAs (C4-C6) and HFPO-DA (SI Table 11). The overall detection limits for a 

single graphene monolith are higher than recently tested PFAS integrative passive samplers such 

a POCIS 70. This disadvantage can be easily overcome by creating samplers containing a larger 

GO mass or by co-deploying and pooling multiple graphene monoliths. A major advantage of the 

graphene monolith equilibrium sampler (in contrast to integrative passive samplers) is the short 

deployment time (days) along with the PFAS uptake independent on environmental conditions, 

such as water flow. 

 
 

a 

b 



Conclusions  

Here we demonstrate that graphene oxide nanosheets can be hydrothermally assembled into 

porous graphene monoliths that act as miniature devices to concentrate PFAS from aqueous 

environments and enable their detection at trace concentrations. Devices fabricated with pristine 

graphene surfaces are effective at concentrating long-chain, but not short-chain PFAS in 

laboratory experiments. A new diazonium-based grafting chemistry based on aryl-amine 

precursors is shown to introduce positive charge to the graphene surfaces, which enables 

concentration of a broader range of PFAS species, including short-chain anionic compounds 

(carboxylic acids, sulfonic acids) that are challenging to capture by other techniques. Measured 

PFAS partition coefficients demonstrate significant correlations with chain length and molecular 

charge, which in the future may lead to generalized predictive methods for other PFAS species. 

Field deployment of the modified graphene monolith demonstrated its capability to quantitatively 

detect PFAS under environmentally relevant conditions (e.g., in a presence of co-contaminants 

and dissolve organic matter). This rapid equilibration of this aquatic passive sampling technology 

appears promising as an effective PFAS screening tool. Future work will focus on the formulation 

of the miniature monoliths as operator-friendly passive sampler devices, as well as validation of 

performance, recovery, and robustness in various water environments. 
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