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ABSTRACT 

 

Two-dimensional materials, such as graphene and semiconductor transition metal 

dichalcogenides (TMDCs), exhibit remarkable optical properties which are of great 

potential for applications in modern electronics. The first part of this dissertation 

focuses on the dispersion of the second order resonant nonlinearity (χ
(2)

) in  the single 

layer TMDC. We begin with the study of the nonlinear optical properties of 

monolayer TMDC, WSe2. We experimentally obtain the χ
(2)

 dispersion data from the 

single layer sample of WSe2 by using broadband ultrashort pulse laser sources. The 

broadband pulse is generated by specially designed photonic crystal fiber (PCF). This 

PCF fiber is pumped by TiS mode-locked laser to generate continuum pulse that spans 

from visible to near-infrared. This continuum broadband pulse is used as a 

fundamental beam to generate signal at the second harmonic frequency in 2D 

semiconductor material. We detect the signal generated in the sample by using 

monochrometer and charge-coupled device (CCD), which provide the spectrum of the 

second harmonic signal that carries the signature of the materials. To get the images of 

these materials, we employ an optical parametric oscillator (OPO) tuning at reasonable 

wavelengths. Then we shine the beam on the sample, and after the signal has been 

generated in the sample, it gets reflected and this beam is then collected by 

photomultiplier (PMT) before angle scanned using galvo-mirror scanner to provide 

200x200 µm
2
 imaging area. The  2 dispersion obtained with better than 3 meV 

photon energy resolution showed peak value being within 6.3-8.410
-19

 m
2
/V range. 

We estimate the fundamental bandgap to be at 2.2 eV. Sub-structure in the  2



 

 

dispersion reveals a contribution to the nonlinearity due to exciton transitions with 

exciton binding energy estimated to be at 0.7 eV. 

In the second half of this work, we study two other materials. First, we show 

resolution of fine spectral features within several Raman active vibrational modes in 

potassium titanyl phosphate (KTP) crystal. Measurements are performed using a 

femtosecond time-domain coherent anti-Stokes Raman scattering spectroscopy 

technique that is capable of delivering equivalent spectral resolution of 0.1 cm
-1

. The 

Raman spectra retrieved from our measurements show several spectral components 

corresponding to vibrations of different symmetry with distinctly different damping 

rates. In particular, linewidths for unassigned optical phonon mode triplet centered at 

around 820 cm
-1

 are found to be 7.50.2 cm
-1

, 9.10.3 cm
-1

, and 11.20.3 cm
-1

. 

Second, we demonstrate the quantitative spectroscopic characterization and imaging 

of biological tissue using coherent time-domain microscopy with femtosecond 

resolution. We identify tissue constituents and perform dephasing time (T2) 

measurements of characteristic Raman active vibrations. This was shown in 

subcutaneous mouse fat embedded within collagen rich areas of the dermis and the 

muscle connective tissue. The demonstrated equivalent spectral resolution (<0.3 cm
-1

) 

is an order of magnitude better compared to commonly used frequency-domain 

methods for characterization of biological media. 
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This dissertation is written in the ‘Manuscript Format’ using the Thesis/ Dissertation 
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mathematical formalisms are also provided. 
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  We demonstrate an effective microspectroscopy technique by tracing the 

dispersion of second order nonlinear susceptibility (  2 ) in a monolayer tungsten 

diselenide (WSe2). The  2 dispersion obtained with better than 3 meV photon energy 

resolution showed peak value being within 6.3-8.410
-19

 m
2
/V range. We estimate the 

fundamental bandgap to be at 2.2 eV. Sub-structure in the  2 dispersion reveals a 

contribution to the nonlinearity due to exciton transitions with exciton binding energy 

estimated to be at 0.7 eV. 

 Two-dimensional materials have attracted very strong interest due to their 

promise in practical applications. For example, monolayer MoS2 has been shown 

recently as an efficient material for low-power field effect transistors [1]. Strongly 

enhanced second order optical nonlinearity  2
 
in monolayers of transition metal 

dichalcogenides (TMDC) is also predicted due to the lack of an inversion center in 

their crystalline structure. The reported absolute values of  2  vary though by orders 

of magnitude 5 -10
5
 pm/V [2-4]. Very few studies though address the spectral 

response of  2 . This type of data can provide new information along with the results 

of traditional optical methods for condensed matter characterization. Wang et al. [5] 

performed experiments on obtaining  2 dispersion in WSe2 at low temperatures. 

Multiple peaks in  2  dispersion within SHG photon energy range of 1.7-2.4 eV were 

clearly attributed to excitons with n=1-3. Large variations in the SHG signal have 

made this point-by-point measurement insensitive to smaller features in the SHG 

spectra. In addition, the incident photon energy range was limited so that the near 

bandgap nonlinear optical response of the material could not be obtained.  
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In this letter, we report on a microspectroscopy method applied to characterize 

monolayer WSe2 within a photon energy range of 2.4-3.2 eV. We detect single-shot 

second harmonic (SH) spectra from monolayer WSe2 material with better than 0.3 nm 

resolution (~3 meV) and low noise (5-6% rms) using broadband femtosecond 

continuum pulses. Fine sub-structure features that can be detected within the main 

peak of  2  indicate the impact of near bandgap exciton transitions. We retrieve, with 

a fairly good precision, the fundamental bandgap and exciton binding energy. The 

absolute values for  2  are also provided. We believe that our experimental results 

will aide in developing refined theoretical models for 2D materials. 

  The experimental idea is presented in Fig. 1(a). Femtosecond continuum pulses 

with a smooth spectral envelope centered in the near-IR are used to generate SHG 

signal within an atomically thin semiconductor sample. Spectrum of the second 

harmonic signal that carries spectral signatures of the sample is then detected with fine 

(~3 meV) spectral resolution. Laser part of the experimental arrangement, shown in 

Fig. 1(b), generates spectrally smooth shape for the ultra-broad continuum in the near 

infrared (780-1050 nm) with typical power density of ~50 μW/nm. Chromatic 

dispersion compensated optics were used to deliver the fundamental beam to the 

sample within less than 400 nm spotsize. The incident beam can be angle scanned 

using galvo-mirror scanner to provide 200×200 μm
2
 imaging area. SH signal from the 

sample was collected through the same objective lens in the backward direction. The 

SHG signal spectra were resolved using monochromator (Horiba, Inc. model: iHR320) 

and cooled CCD detector (Syncerity-UV/Vis, Horiba Inc.) Single layer WSe2 flakes 

were prepared by micromechanical cleavage of bulk WSe2 crystal on 90 nm SiO2 on a 
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Si substrate.  Figure 2(a) shows SHG image of the flake. We present SEM image of 

the flake in Fig. 2(b). The flake also characterized in a separate photoluminescence 

measurement. The latter reveals a narrow (~45 meV) peak at 746 nm (~1.662 eV) that 

is shown in Fig. 2(b) and corresponds to the first exciton line characteristic for single 

layer. We have checked the SHG signal dependency versus incident power of the 

fundamental beam to reveal the quadratic increase shown in Fig. 2(d). The SHG image 

shown in Fig. 2(a) displays high contrast and absence on any appreciable signal from 

interfaces other than the one created by the flake. Fairly large SHG signal variations 

(up to 30%) are observed even within the unripped parts of the flake (Fig 2(e)). We 

believe that this is due to local field variations affecting  2  at the flake/SiO2 

interface. The SHG spectrum is shown in Fig. 3(a) by the blue curve. We have also 

performed, for comparison purposes, point-by-point wavelength tuning SHG 

measurements with wavelength tunable Ti:sapphire oscillator (filled circles data in Fig 

3(a)). The SHG signal fluctuations are significantly higher (σ=±54% ) for this case. 

We believe that much higher SHG signal variations versus wavelength observed in the 

point-by-point measurements are couple of additional sources of the variation. Namely 

, changes in the fundamental field parameters like pulsewidth and spatial mode while 

the wavelength is tuned. The lowered precision for the SHG spectra were also 

observed in the referred point-by-point measurements [5] as authors pointed to the 

uncertainties in the pulsewidths while the wavelength was tuned as being the main 

reason.   

The observed increase in the resonant nonlinearity  2
2D  matches well with 

split-off band transitions (i.e. B-exciton) if one considers bandstructure parameters for 
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single layer of WSe2 at K-point such as bandgap ( gE ) and split-off energy ( SO ) [5, 

6]. A similar effect has been observed in MoS2 involving a different energy valley that 

is at   point [3].  

We have obtained  2
2D  spectra two approaches. The first one exploits the 

relationship between the fundamental and SH powers. In the other one we used 

comparative approach when a material with known second order nonlinearity is used. 

We have chosen thin KTP crystal. The crystal is well characterized from many 

aspects. The second order effective nonlinearity ( effd ) is between 1.72-2.01 pm/V [7] 

for the incoming beam polarization and crystal orientation that we used. By 

normalizing our WSe2 SH data to the one obtained from the crystal ( ), we obtain a 

ratio (𝜌 = 𝑃2
2𝐷 𝑃2

𝐵⁄ ) that provides dispersion of the absolute value of 𝜒2𝐷
(2)

 and is free 

from measurement artifacts (e.g., 2T , etc.). The result is displayed in Fig. 3(b) by blue 

curve for a comparison. Some difference can be seen at lower photon energies. We 

note that SHG and fundamental signal have been detected by different spectral devices 

in the first method. The second method is free from artifact. 

Bloembergen et al [8] were first to consider SHG from thin layers and interfaces. 

SHG power has been derived by Merano [9] by considering real experimental 

situation of a sheet of 2D material on the top of the layered substrate. Following the 

approach developed in [9,10] and making use of the results by Boyd et al. [11] SHG 

pulse peak power from 2D material  ( DP2
2 ) and bulk crystal (P2

B ) can be expressed as 

shown in Supplement [12]. Based on that, the absolute value of  2
2D  expressed in 

P2

B
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terms the crystal’s effective nonlinearity effd , refractive index ( bn ), numerical aperture 

of the objective lens ( ) and the measured ratio (  ) is:  

                                  
 

    
eff

bb

D d
nnrr 23

2
2

12
2

111

16







                             (1) 

It is important to note that the two-layered substrate can lead to the enhancement or 

attenuation of the SHG intensity due to interference effects that depends on the 

thickness of the SiO2 layer. This is taken into account in the factor containing complex 

field reflectivity (  2,rr ). With the help of formula (1), we can provide absolute 

scaling for the result shown in Fig. 3(b) (left scale). For KTP material the refractive 

index ( bn ) changes by only few percent within the photon energy range that we have.  

The median peak value of 𝜒2𝐷
(2)

 for WSe2 monolayer at the SH photon energy of 2.76 

eV can be estimated at 7.310
-19

 pm
2
/V. We provide 15% range owing to several 

factors such as the range for effd itself and taking into account signal variations across 

the flake that were discussed earlier. The value is on the same order of magnitude with 

the one quoted for the measured MoS2 sheet nonlinearity in  [13] and factor of 2.7 

smaller than the one provided by Merano [9] for MoS2. If we straightforwardly use 

solutions provided in [8] and assume that the sample still has bulk refractive index 

[14] and nonlinearity  2
2D   (in units of m/V) the expression for estimate is: 

                                       
   

 
 2

23

2
2

1

8
BD

nn

nf










                                           (2) 

In the formula above,  nf    is a factor containing refractive indices of bulk WSe2 and 

is coming from solutions for the SH field [17],  -factor accounts for the interference 
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effects. Additional details are provided in Supplement [12]. This approach may cause 

controversy and disagreement. We, however, we would like to provide an estimate just 

for sake of comparing the material’s nonlinearity with the one of other bulk non-

centrosymmetric semiconductors. The estimated  2
2D  value is in the 932-1233 pm/V 

range for peak SH photon energy while the off-peak value is about 440 pm/V.The 

values are comparable with the ones for well known non-centrosymmetric 

semiconductors (GaAs, CdTe, ZnSe [15]) that are used in parametric devices and 

frequency converters in the infrared [16]. Comprehensive theoretical treatment and 

modeling of the second order nonlinearity is based on rigorous approaches outlined in 

[17,18]. Here we will use an approach based on parabolic bands approximation, 

accounting for Coulomb effects via exciton continuum states above bandgap in order 

to estimate dispersion of the absolute value of  2  due to interband transitions first. 

The expression for  2  along the electric field and induced dipole moment in x-

direction can be represented by [18]: 

         k cvc ccv
X
vc

X
cc

X
vcXXX FMMM

m

ie  


 ,,33

3
2

2
2       (3) 
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X
vcM - factors represent momentum matrix elements for valence to conduction, 

conduction to upper conduction band transitions,  kEcv


is energy difference between 

bands,  kcv


 is the interband polarization dephasing rate. We have considered four 

parabolic energy bands near K-point of the Brillouin zone (BZ). Those include two 
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valence bands with split off energy difference of eVSO 52.0 , with the effective 

masses of esoev mmmm 51.0,52.0   and two conduction bands with the effective 

masses of ecec mmmm 92.0,53.0    and energy difference at K-point eVcc 79.1   

[6]. We have also considered momentum matrix elements and dephasing rates are k-, 

and therefore energy, independent. The summation over k-states can be replaced by 

integral over energy that couples the resonant denominator in formula (4) and joint 

density of states factor for the first conduction and top valence bands for continuum 

excitons        gcvgcveRcv EEEEmmeVE  ;6.13exp1
21

 . Figure 4 shows 

the results of our calculations when   was set to 35 meV. It is important to note that 

the nonlinearity is sensitive to a change of gE . This is shown by comparing two 

simulations when gE  is changed from 2.22 eV (green curve) to 2.15 eV (dash-dotted 

curve). It is apparent that when the bandgap is set at ~ 2.2 eV a better match with the 

experimental data around the peak area is obtained. We believe that band non-

parabolicity becomes critical to explain the experimental data at higher photon 

energies. On the lower energy side one finds that the rise in simulated  2  is 

noticeably sharper when compared to our experimental data. The discrete exciton 

contributions can be represented mainly by resonant factors that are similar to the term 

in formula (4) with peak energies  20 21 nEEn  used instead of  kE . There are at 

least two clearly pronounced peaks in the experimental curve at photon energies of 

2.64 eV and 2.69 eV. The 50 meV energy difference matches well for n=2 and n=3 

excitons when the binding energy eVE 71.04 0   is assumed. Figure 4(b) shows total 

nonlinearity due to the interband transitions and multiple exciton lines (n=1-5) below 
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the first conduction band states. The best fit is obtained for the exciton binding energy 

of 0.71 eV while the bandgap ( gE ) parameter was set at 2.22 eV. The obtained value 

for the bandgap matches well with the ones reported in [5,6]. Exciton binding energy 

obtained from our data is also in close agreement with the value of 0.60.2 eV 

reported by Wang et al. [5]. 

In conclusion, we have demonstrated precise measurements of the second 

order nonlinearity in atomically thin layer of semiconducting material within broad 

range of photon energies. Using ultra-broadband continuum pulses, we were able to 

detect fine features in the  2  dispersion with high spectral resolution (<3 meV). The 

nonlinearity onset is primarily due to monolayer WSe2 states that couple valence 

bands, excitonic levels and the continuum states above the first conduction band. 

Using our data, we estimate peak nonlinearity range for a sheet of WSe2 at 6.3-8.410
-

19
 m

2
/V and 932-1233 pm/V if we assume the existence of bulk properties. We also 

obtained from our data the room temperature bandgap and exciton binding energy that 

are estimated at 2.2 eV and 0.7 eV correspondingly. Our results show that the 

experimental  2  dispersion data provide clear resolution of the near band-gap exciton 

states in comparison with traditional linear methods that target measurement of the 

linear dielectric function. 
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Figure 1. 

 

 

Fig. 1. (a) Photon diagram SHG process in monolayer semiconductor. (b) Setup: ISO-

optical isolator, PCF –photonic crystal fiber, DCM- dichroic mirror, OBJ-high 

numerical aperture objective lens, SPF-short pass filter. Broadband near-IR pulse 

derived from femtosecond continuum serves as fundamental beam. Spectra of the 

generated second harmonic pulses carrying resonant features are analyzed. (c) spectra 

of the femtosecond continuum, used as a fundamental beam, obtained by moving the 

second dispersive prism in the set up (see part (b)) into the beam with the spectrum 

shown in red corresponding to more prism insertion.  
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Figure 2. 

 

Fig. 2. (a) SHG image of a single layer WSe2 flake. Lower left corner of the sample 

contains three WSe2 layers and therefore show four times smaller signal. (b) SEM 

image of the same area with about 10 nm spatial resolution (c) Photoluminescence 

data obtained from the flake when it was excited by 532 nm continuous wave beam, 

(c) detected second harmonic beam power versus power of the fundamental beam, (d) 

SHG signal change across the image along the dashed line. 

 

 

 

 

 



 

14 

 

Figure 3. 

 

Fig. 3. (a) Second harmonic signal spectrum ( DP2
2 ) detected from monolayer part of 

WSe2 sample (blue), relative transmission ( T ) of the optical system versus 

wavelength (cyan), calculated enhancement factor   (black dash); (b) resulting 

absolute value of the second order nonlinearity (  2 ) obtained by power relationship 

(blue curve) and the comparative method using KTP crystal (red curve). 
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Figure 4. 

 

Fig. 4. (a) Normalized  2
2D   versus SH photon energy (black curve). Green solid curve 

is the result of  2
2D  calculations for gE  =2.21eV while changing the parameter to 

2.15eV results in the blue dash-dotted curve. (b) Experimental  2
2D  dispersion (black 

line) and result of calculations accounting for contributions due to exciton states with 

energies nE  below the bandgap. Colored (dashed) lines show contributions to the 

nonlinearity from broadened ( meVn 4235 ) exciton lines with the main 

quantum numbers n=2-5. 
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 We show resolution of fine spectral features within several Raman active 

vibrational modes in potassium titanyl phosphate (KTP) crystal. Measurements are 

performed using a femtosecond time-domain coherent anti-Stokes Raman scattering 

spectroscopy technique that is capable of delivering equivalent spectral resolution of 

0.1 cm
-1

. The Raman spectra retrieved from our measurements show several spectral 

components corresponding to vibrations of different symmetry with distinctly different 

damping rates. In particular, linewidths for unassigned optical phonon mode triplet 

centered at around 820 cm
-1

 are found to be 7.50.2 cm
-1

, 9.10.3 cm
-1

, and 11.20.3 

cm
-1

. Results of our experiments will ultimately help to design an all-solid-state source 

for sub-optical-wavelength waveform generation that is based on stimulated Raman 

scattering. 

Precise information on fine structure and decay of Raman active modes is 

essential from both fundamental and device applications point of views. Time-domain 

studies provide direct information on decay and dephasing processes for vibrational 

modes and, for solid-state media, provide most valuable information as concerned 

parametric phonon interaction due to deformation potential anharmonicity. In 

frequency domain, dispersion of the corresponding nonlinear optical susceptibility is 

an essential charcateristic in order to get an insight into physics of intra- and 

interatomic groups interactions. In this paper we focus on an important nonlinear 

optical gain material that is used both as intracavity and external gain material in 

multi-wavelength laser devices. The attention has recently grown due to possible 

applications of efficient frequency converters in generating phase-locked frequency 

combs for attosecond waveform generation. Potassium titanyl orthophosphate 
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KTiOPO4 (KTP) is a widely known optical material that is particularly attractive for 

nonlinear optical applications. Because of its high nonlinear optical coefficient and its 

optical and mechanical stability, the crystal is used in laser sources as an optical 

frequency converter. Its large electro-optic coefficient, low dielectric constant and ion 

exchange properties also make it suitable for electro-optic [1] and waveguided laser 

devices [2]. The crystal was previously shown to be an efficient source for multi-

wavelength pulse generation via stimulated Raman scattering (SRS) [3,4] or as a 

combination of SRS and efficient second order frequency conversion [5]. Renewed 

interest came with recent SRS experiments on high-frequency crystal vibrations that 

promised a pathway towards a solid-state sub-optical-cycle waveform source [6-8]. In 

other words, materials with high second and third order nonlinearity
 
associated with 

several Raman active vibrations at high frequency range are of interest from the 

standpoint of generating a frequency comb that would ultimately support attosecond 

waveforms [9]. Knowledge of key properties of lattice vibrations is thus important in 

the light of the applications of this material as a nonlinear gain (of both second and 

third order) medium. 

 KTP’s vibrational spectra are quite complex. The spectra consist of about 100 

Raman active peaks as a result of the crystal’s multiatomic unit cell. The complexity 

makes it difficult to perform comprehensive and unambiguous phonon line 

assignment, to precisely measure bandwidth and separation of individual Raman 

active peaks, as well as to estimate Raman cross-section for each individual phonon 

line. Even though the material has been known for more than three decades, detailed 

spectroscopic studies on its Raman active vibrations are relatively scarce [10-12]. The 
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performed studies helped to elucidate contributions to Raman and infrared spectra 

from major atomic units within the primitive cell, as represented by TiO6 octahedra 

and PO4 tethrahedra. Also, important details concerning line assignments and their 

major characteristics were provided by the studies.  However, the information 

ultimately proved to be contradictory and detailed spectral features of some peaks 

were not provided by these experiments. In particular, the first comprehensive Raman 

study of KTP [10] assigned peaks at around 818 cm
-1

 to the 1 symmetric stretching 

mode within slightly distorted PO4 tetrahedra simply due to the fact that the line does 

not show up in the infrared reflectivity spectra. There are either two or three 

components spaced apart by approximately 16-40 cm
-1

 with linewidths within the 15-

25 cm
-1

 range, depending on the vibrational mode symmetry. Another study 

characterized Raman peaks in the vicinity of 800 cm
-1

 as most likely belonging to 

TiO6 octahedra vibrational modes of different symmetry, providing mode separations 

within 11-38 cm
-1

 and the linewidth range of 9.2-16.4 cm
-1

 [11]. A study that followed 

later stated that the Raman line detected at ~830 cm
-1

 is an intergroup (Ti-O-P) 

vibration, but provided no details on the detected linewidths and separations for the 

different peaks [12]. 

At room temperature, the Raman spectroscopy of KTP has also been investigated from 

10 to 1400 cm
-1

 [13-14]
 
and also studied as a function of high pressure revealing the 

existence of two additional phase transitions near the critical pressures of 5.5 and 10 

GPa [15]. Temperature dependent Raman scattering were studied [16-17] and found 

that no phonon mode coalesces to central peak near Tc  and reported it as a sign of 

damped soft mode [16]. A study on polarized Raman spectra showed strongest phonon 
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line located at 234 cm
-1 

[18]. It is worth mentioning that no experimental or theoretical 

study can be found which addresses phonon dispersion properties or mechanisms for 

phonon line decay. As was mentioned above, there is a motivation for a more detailed 

characterization of phonon vibrations in the material in the light of a search for an 

efficient solid-state media for a sub-optical-waveform source. Indeed, the crystal 

possesses several high-scattering cross-section phonon modes within energy range of 

200-1000 cm
-1

. The modes are conveniently spaced apart so that generation of a 

frequency comb, via SRS with intrinsically phase-locked spectral components, would 

provide multi-octave bandwidth to support sub-femtosecond pulses. 

 In this work, we present data on the decay of some of the KTP crystal phonon 

modes within 640-850 cm
-1

. We reveal the fine structure of the vibrations by 

retrieving the vibrational system’s response function and Raman spectra. Our data 

provide details on the crystal’s complex vibrational spectra supported by important 

quantitative results. The data obtained for an unassigned vibrational mode at 820 cm
-1

 

supports the conclusion that the modes decay noticeably slower when compared to 

high-frequency modes originating from vibrations of the main TiO6 or PO4 atomic 

groups. We attempt to explain our linewidth results within the framework of 

parametric phonon interaction due to the deformation potential anharmonicity.  

 Time-domain CARS spectroscopy is a valuable tool that enables probing the 

dynamics of elementary excitations in condensed matter. This technique monitors in 

time a degree of coherence within the lattice or molecular vibrations created by two 

ultrashort optical pulses at an earlier moment of time. Tracing the net coherence 

provides information on characteristic relaxation and dephasing processes. In our 
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studies we employed three-color CARS geometry with widely tunable 110-150 fs 

pulses [19,20]. The experimental set up is schematically shown in Figure 1. The two 

pulses that are needed to coherently drive lattice vibrations within a sample’s 

macroscopic volume are provided by synchronously pumped optical parametric 

oscillators (OPOs) running at 76 MHz. The OPOs utilize high parametric gain 

periodically poled lithium tantalate (PPSLT) crystals. The OPOs were simultaneously 

pumped by a split output of a high-power mode-locked Ti:sapphire oscillator tuned to 

765 nm. Detailed OPO characteristics and performance were reported in our recent 

publications [21,22]. The OPOs with pulsed outputs at 970-1020 nm and 1050-1100 

nm, served to coherently drive lattice vibrations with energies within 600-990 cm
-1

. 

Another small part of the Ti:sapphire oscillator was delayed and served as a probe 

pulse. All of the three pulses were intrinsically synchronized, made to overlap in 

space, and focused by a high numerical aperture (NA~1.25) objective lens. In the 

detection arm, we used a high numerical aperture (NA~0.9) condenser followed by a 

diffraction grating and a set of bandpass filters. This permitted efficient detection of 

the signal of interest on the background of other signals generated within the focal 

volume. A photomultiplier tube (PMT) with high gain and quantum efficiency 

(Hamamatsu model #R10699) was used to detect anti-Stokes signal photons at 

selected wavelengths. The PMT current output was digitized by a high-speed data 

acquisition card. Using this experimental arrangement, we can routinely detect CARS 

signals versus probe pulse delay times within five decades.  The corresponding total 

power on the sample from the three beams does not exceed 15-20 mW. Other details 

and characteristics of the set up are described in our most recent work [20]. Figure 2 
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(a) demonstrates sensitivity and the attainable time resolution using the experimental 

arrangement. In addition, using theoretical algorithms and owing to the experiment’s 

great sensitivity, we can retrieve the vibrational system’s response function and 

Raman spectra for several vibrational modes.  The flux-grown KTP crystal used in the 

experiment was cut at =40 and =90. Polarizations of all the three beams were 

made parallel and aligned in XY-plane of the crystal. Thus, technically, all the four 

symmetry tensor components [10,11] are involved in Raman mode excitation and 

scattering processes during CARS. 

 Lattice dynamics in condensed matter is modeled as time-dependent behavior 

regarding the expectation value of molecular/atomic displacement amplitude under a 

driving force. This driving force consists of a pair of pulsed fields with an optical 

frequency difference matching the energy of vibration quanta [23-25]. Quantitatively, 

the scattering signal at anti-Stokes frequency (Sas(td)) can be expressed as the 

following: 

                        
(1). 

In the above equation, 𝜗(𝑡) and (t) are normalized time-dependent envelopes for 

atomic displacement amplitude and probe pulse, respectively.  This also implies that 

0 represents detected anti-Stokes signal at a zero delay. The ensemble averaged 

displacement amplitude is negligible well before the arrival of the driving pulse pair 

and one can find a solution for the dynamics equation in the form of correlation 

integral: 

(2). 

In the equation above, g(t) represents the response function of the corresponding 
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vibrational system to -pulsed driving fields. Both equations are of Fredholm type-I 

and can be solved using the Fourier transform method [26]. This is ensured by the 

correlation integral theorem and the fact that spectra and/or envelopes of 1,2,pr 

pulses are known and can be measured. In the case when 𝜗(𝑡) is a real function, the 

response function g(t) and its Fourier transform can be ultimately obtained. The 

condition holds true for many types of vibrational systems that do not involve 

diffusional phase shifting events. As a consequence, precise spectra and fine features 

in the vicinity of Raman active vibrations can be effectively resolved. Figure 2 (a) 

shows an experimentally measured CARS signal versus delay time in the KTP crystal 

(open circles) under conditions that favor a coherently driven high-frequency (21.3 

THz or ~710 cm
-1

) Raman mode. For this case the OPO wavelengths were tuned to 

1020 nm and 1098 nm respectively. The coherently driven Raman mode belongs to a 

main symmetric Ti-O bond stretching vibrations (1(A1g)) within the distorted TiO6 

octahedra. The vibration has a relatively high damping rate so that the corresponding 

CARS signal decay time (~250 fs) is comparable with pulsewidths used in our 

experiments.   The crystal is of high quality and the only mechanism that results in the 

CARS signal decreasing versus time delay, is a decay of the coherently driven phonon 

into phonons of lower energy. From the measurement, a crude estimate can be made 

for the phonon lifetime (T1495 fs) and the corresponding phonon line bandwidth in 

(=1/cT1 21 cm
-1

). A more rigorous analysis that concerns spectral domain 

information retrieved from the time-domain data is needed. For this particular case, 

the excitation and probe pulses can not be considered as -functions (tp~3T1) and an 

approach reported earlier by our group, described in Ref. [27], yields in somewhat 
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distorted spectral data. Thus, equations above need to be solved in order to retrieve 

Raman spectra along with the dispersion of the real part of the associated resonant 

third order nonlinearity (χ
(3)
(ω)).  The Fourier transform (Sas()) of the measured 

time-dependent CARS signal is a first step in solving the equations. The 

corresponding result is shown in Figure 2 (b). The spectrum is smooth, as high-

frequency noise in the time-domain CARS signal has a relatively low spectral power 

density and is not visible on linear scale. The main characteristic of the spectrum is a 

broadband and high-intensity pedestal, associated with ultrafast signal rise-time. The 

pedestal masks a narrower spectral feature. The latter may reflect a slower decay rate 

due to the phonon decay process mentioned above. Knowing the measured probe pulse 

spectrum, (Ipr()=FT(pr
2
(t)), and applying the inverse Fourier transform operation, 

allows the collection of time-domain data on the coherent displacement amplitude 

(𝜗(𝑡)) at |𝜗(𝑡)|2 = 𝐹𝑇−1 (
𝑆𝑎𝑠(𝜔)

𝐼𝑝𝑟(𝜔)
) . Further, having 𝜀1(𝜔), 𝜀2(𝜔) available from OPO 

pulse autocorrelation and spectral measurements and a Fourier transform of  𝜗(𝑡) , one 

can arrive to resonant third order nonlinearity (χ
(3)
(ω)) spectra contained in real and 

imaginary parts of g(). Figure 2 (c) shows the retrieved coherent amplitude function 

(𝜗(𝑡)) and the real and imaginary part of the resonant third order nonlinearity (Fig 

2(d)) in the vicinity of the coherently driven 1(A1g) -phonon mode.  The main peak’s 

asymmetry is caused by the presence of two components with relative amplitude ratio 

of 26:11, bandwidths (FWHM) of 17.2±0.7 and 24±1.2 cm
-1

 and an energy separation 

of 16 cm
-1  

for the doublet. The difference in the bandwidths is explained by different 

damping rates for in-plane and along long axis vibrations within the TiO6 octahedron 

[10]. A third component is also pronounced in the spectra with a position shifted to 
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lower energies by 65 cm
-1

. This mode has a different symmetry and represents ν2(Eg) 

anti-phase stretching vibration within TiO6 octahedra. The peak can be better resolved 

under condition when one of the OPOs is detuned to provide more efficient coherent 

excitation for the ν2(Eg) mode. As a result, the time-dependent CARS signal exhibits a 

more pronounced quantum beats pattern. Using this arrangement, the spectral 

bandwidth of the ν2(Eg) mode was determined to be 21.30.7 cm
-1

. The obtained 

parameters for the main 1(A1g) doublet and for the 2(Eg) modes are in good general 

agreement with the referenced reports [10,11]. We must note, however, that consistent 

bandwidth and Raman shift data for the doublet components could not be found 

throughout Raman spectroscopy characterization studies of KTP crystal published in 

the past [10-18, 28-31].  The result of fitting imaginary part of the resonant third order 

nonlinearity (i.e. Raman spectrum) using Lorentz-shaped multi-peak curves is also 

shown in Fig. 2(d) by solid lines with individual line details provided in the figure 

caption. 

 An unassigned phonon mode centered at ~820 cm
-1

 is perhaps a better example 

of the complex nature of Raman active vibrations in the crystal.  Figure 3 (a) shows a 

CARS transient obtained for this case. The overall signal behavior shows quantum 

beats of at least two spectral components on the background of characteristic 

exponential decay with a noticeably longer time constant than for the 1(A1g) mode. 

Modeling of the time-domain behavior of CARS signals and the fitting of the 

experimental data require certain assumptions and use of multi-parametric fitting 

algorithms that do not have global minima. We have instead analyzed the obtained 

data by the approach that was outlined above. Fourier analysis of the signal 
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unequivocally reveals a presence of a strong nonresonant signal on the background of 

weaker contributions from the clustered phonon mode. This proves the fact that the 

mode is noticeably weaker in its intensity when compared to the 1(A1g)  and 2(Eg) 

modes. Retrieved Raman spectra (Im(χ
(3)
(ω))) and data for the real part of the third 

order nonlinearity are shown in Figures 3 (b) and 3 (c) respectively. Three spectral 

components are involved in this case. They have energy separations of 18 cm
-1

 and 46 

cm
-1

 and the values are in relatively good agreement with spontaneous Raman 

scattering measurements. The latter provide the range of 20.4-29.0 cm
-1

 and 

cm
-1

 for the corresponding two parameters [11]. Spectral component 

bandwidths obtained from our data are 9.10.4 cm
-1

, 7.50.6 cm
-1

 , and 11.20.5 cm
-1

 

for the three components compared to ranges of 10.2-12.6 cm
-1

, 9.2-10.8 cm
-1

, and 

14.0-16.4 cm
-1 

respectively reported by spontaneous Raman spectroscopy study [11]. 

The spread for both parameters is dependent on particular experimental conditions 

(e.g. crystal axes orientations with respect to laser polarization) when different 

scattering tensor elements have been accessed within the measurements. And finally 

we report a component amplitude ratio of 46:5:31. The value is not available for 

comparison from spontaneous Raman spectroscopy studies Phonon line bandwidths 

are approximately two times narrower (i.e. the corresponding phonon decay rate is two 

times lower) when compared to the high frequency modes (1(A1g)  and 2(Eg)) that 

are stronger in Raman scattering. We explain this by the fact that the latter modes have 

a variety of efficient overtone or combinational phonon decay channels within either 

of the TiO6 or PO4 groups, resulting in lower energy vibrations. Therefore, we think, 

that based on the fact that the investigated ~820 cm
-1

 mode has a significantly lower 
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damping rate, the mode is not a vibration originating from either of the two main 

atomic groups and it is rather within Ti-O-P intergroup vibrations. The complex 

structure (i.e. presence of the triplet line) can be explained by shifted frequencies for 

vibrations of different symmetry within the group. Lower phonon damping rates (i.e. 

higher effective dephasing time T2*=T1) makes up to a certain degree for the 

difference in the steady state SRS gain between the relatively weak mode at 820 cm
-1

 

and the strong 1(A1g)  and 2(Eg) vibrations. By using proper crystal orientation, it is 

possible to produce in SRS experiments (Stokes and anti-Stokes scattering) a nearly 

equal intensity and equidistant comb of frequencies that includes ~820 cm
-1

 mode. The 

comb can be used for ultrafast waveform synthesis. 

 In conclusion, we have demonstrated, using femtosecond time-domain 

coherent anti-Stokes Raman scattering spectroscopy, a resolution of complex Raman 

active vibrations in KTP crystal. The Raman spectra retrieved from our measurements 

show several spectral components corresponding to vibrations of different symmetries 

with distinctly different damping rates. Relative amplitude ratio, energy shifts, and 

bandwidths for an unassigned optical phonon mode triplet centered at ~ 820 cm
-1

 have 

been reported. The mode is thought to belong to vibrations in the Ti-O-P intergroup 

within the crystal. Results of our experiments can be used to estimate stimulated 

Raman gain for different vibrational modes in the crystal.  

 Authors acknowledge funding support from NSF (DBI-135530). A. Card and 
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Figure 1. 

 

Experimental diagram and layout for three-color time-domain CARS spectroscopy 

experiments that employ tunable optical parametric oscillators. Pair of transform-

limited 110-150 fs pulses at  λ1and λ2 wavelengths are used to coherently drive 

Raman active vibrational modes in the vicinity of corresponding  ω1-ω2frequency 

shifts. A pulse at λpr=765 nm is time delayed and probes the resulting coherent 

excitation at different delay times.  CARS transients at anti-Stokes frequency are 

detected within five orders of magnitude. Polarizations of all the three beams were 

made parallel to each other and aligned either along X- or Y-axis of the KTP crystal 

under study. 
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Figure 2. 
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Time-domain CARS system instrument response obtained in quartz glass (black 

curve). Simulated CARS transient for Raman active vibrational mode with dephasing 

time T2=150fs (red curve). CARS transient detected in KTP crystal under the 

conditions specified below (blue curve). The broadband OPO pulses were tuned to 
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1020 nm and 1100 nm center wavelengths to coherently drive the main ν1 (A1g) high 

frequency Raman active mode at ~700 cm-1. (b) CARS signal spectrum (𝑆𝑎𝑠(𝜔)) 

showing a narrower spectral feature on the background of a broadband pedestal 

corresponding to the transient signal‘s fast rise time. (c) Time-domain response 

function (g(t)) that was obtained by solving equations (1) and (2) using Fourier 

transform method. (d) Dispersion of real (red open circle) and imaginary (blue open 

circles) parts of the resonant third order optical nonlinearity (𝜒(3)(𝜔)) in the vicinity 

of the coherently driven Raman active modes. The part corresponding to Raman 

spectra ( i.e. Im𝜒(3)(𝜔))  is also shown fitted with solid black curve representation a 

sum of three Lorentz-shaped envelopes with bandwidths of 21 cm
-1

 , 17 cm
-1

 , and 25 

cm
-1

 starting from the red shifted ν2 (Eg)–mode (cyan color peak). 

  



 

34 

 

Figure 3. 
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(a) CARS transient (blue circles) obtained from KTP crystal when unassigned Raman 

active vibrational modes at ~820 cm
-1 

are coherently driven and probed.  A proper 

wavelength combination was chosen for the OPOs (𝜆1=967 nm and 𝜆2= 1051 nm) so 

that the corresponding shift is targeted at its center.  Simulated CARS signal (black 

curve) obtained under amplitude, damping rate, spectral shift parameter values for the 

vibrational modes using retrieved Raman spectra data. (b) Retrieved Raman spectra 

(blue curve), simulated Lorentz-shape curves for the three spectral components that 

yield in cumulative fitting curve (black). (c) Corresponding real part of the third order 

optical nonlinearity. 
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We demonstrate the quantitative spectroscopic characterization and imaging of 

biological tissue using coherent time-domain microscopy with femtosecond resolution. 

We identify tissue constituents and perform dephasing time (T2) measurements of 

characteristic Raman active vibrations. This was shown in subcutaneous mouse fat 

embedded within collagen rich areas of the dermis and the muscle connective tissue. 

The demonstrated equivalent spectral resolution (<0.3 cm
-1

) is an order of magnitude 

better compared to commonly used frequency-domain methods for characterization of 

biological media. This provides with the new dimension and parameter in biological 

media characterization and can become an effective tool in detecting minute changes 

in bio-molecular composition and environment that is critical for molecular level 

diagnosis. 

Fundamental nonlinear optical phenomena have been shown to be useful in 

applications related to noninvasive characterization of biological media [1-4]. Raman 

scattering based techniques, both spontaneous and coherent versions, are of particular 

interest since their spectroscopic power can deliver molecular sensitive information 

that can become a key in early diagnosis of diseases. Absolute majority of the relevant 

applications of the techniques is, for natural reasons, in frequency domain. The 

coherent Raman microscopy studies were primarily applied to highlight tissue and 

cells constituent by producing high-contrast images at targeted Raman active vibration 

[5,6]. Spontaneous Raman version has been applied with greater focus towards 

detection of spectral features within cells and tissue [7]. However, the reported results 

have been limited to obtaining characteristic multi-line spectra and detecting relative 

changes in the intensities and spectral shifts with a goal to correlate those with 
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biomolecular alterations occurring on sub-cellular level [8]. The true spectroscopic 

strength, that would ultimately include resolution of molecular vibration damping rates 

 (or linewidths, =1/) and line shapes, has not been enabled and demonstrated. It 

is worth noting that the damping rate is directly affected by inter- and intra-molecular 

interactions. Therefore, ability to measure Raman line shapes with a precision is 

absolutely crucial from that point of view. Depending on the immediate molecular 

environment (e.g. density, viscosity) and composition of tissue and cells, linewidths 

for the investigated Raman active modes can vary broadly. For instance, in aqueous 

solutions solute-solvent interactions can result in linewidth range of 0.3-7.5 cm
-1

 

dependeding on the molar ratio [9]. Both spontaneous Raman and frequency-domain 

have the best possible resolution of ~ 3-7 cm
-1

. The limits are imposed by the 

detection sensitivity in spontaneous Raman spectroscopy. Laser pulse bandwidths (~3-

10 cm
-1

) employed in coherent Raman microscopy does not provide a better resolution 

either. In addition, for the latter case the need to adjust laser wavelength in point-by-

point spectral measurements adversely impacts the spectral resolution and precision. 

As a result, it becomes impossible to measure and detect Raman line shapes and 

bandwidths with a desired precision. 

An alternative to the frequency-domain Raman scattering techniques is time-

domain Coherent Anti-Stokes Raman Scattering (t-d CARS) spectroscopy. CARS 

signal can be viewed as a result of scattering of a probe pulse with amplitude Epr on 

the coherence built in the material. The initial coherence is the result of individual 

molecular displacements (qi) being phased in by the excitation pair of pulses (E1, E2) 

with the difference frequency (1-2) matching Raman active vibration (R ). The 
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action results in macroscopic coherent amplitude (Q). The coherence starts to decay 

freely in time as the consequnce of various inter- and intra-molecular interactions that 

lead to changes in the phase (pure dephasing) and amplitude of the individual 

vibrations. Ensemble averaged solution for Q contains autocorrelation function that 

yields in 〈𝑞(𝑡)𝑞(𝑡′)〉 = 𝑒𝑥𝑝(−|𝑡 − 𝑡′|)/𝑇2 for the case of phase changing collisions 

that dominate the interactions. Constant T2 represents characteristic dephasing time 

and the Raman active line is homogeneously broadened with the linewidth of

∆𝛾 = 1
𝜋𝑐𝑇2

⁄   (1), 

expressed in wavenumber units. 

The CARS signal is detected at anti-Stokes frequency(𝜔𝑎𝑠 = 𝜔𝑝𝑟 + 𝜔1 − 𝜔2). 

Non-resonant background can be more efficiently suppressed in t-d CARS down to the 

level of detector’s dark which is different from the case of a coherent frequency-

domain method. This gives an opportunity to detect really weak Raman active lines 

and potentially the ones that cannot be detected by spontaneous or coherent Raman 

spectroscopy. Tracing t-d CARS signal at longer delays (i.e. slower resonant part) 

within a decade translates to better than few percent precision in T2 () 

measurements [10].  In other words, t-d CARS can result in the Green’s function 

(G(t)) for the molecular system as a response to the ultrashort (E1(t),E2(t))–pulse 

excitation. An ability to measure (G(t)) on extended time scale and within high 

dynamic range provides much more fine information about the corresponding Raman 

lineshape [10]. Lower limit for the equivalent spectral resolution is determined by 

one’s ability to trace t-d CARS signal for as long time delays as possible.  



 

40 

 

The goal of this work is the first direct dephasing time (T2) measurement of 

specific molecular vibrations within biological tissue. Another novelty is that we 

demonstrate detection of time-domain replica within biological tissue, traced within 

more than one decade, for important and previously unresolved Raman signature line 

within fat cells. The ability to measure the corresponding dephasing times with high 

precision resulted in equivalent spectral resolution of better than 0.3 cm
-1

. This 

constitutes another important point since the achieved resolution is an order of 

magnitude better than the one that can be ultimately achieved by frequency-domain 

approaches applied to tissue or cell characterization. These highlight the strong 

potential of the time-domain approach with regard to biochemical and biomedical 

applications that seek reliable molecular level indicators for early disease diagnosis, 

etc. The only demonstration of the time-domain CARS microscopy showed lower 

sensitivity and was limited to artificial structures like polysterene beads probed at 

much stronger Raman resonance [11].  

The ultrashort pulses (E1,E2) are provided by independently tunable (960-1120 

nm) optical parametric oscillators (OPO) running at 76 MHz [12]. A small part of 

femtosecond Ti:sapphire laser output, that simultaneously pumped the OPOs, served 

as a third color pulse (Epr) that  can be delayed. The three pulses are intrinsically 

synchronized in time.  

For the case of biological tissue, generated SHG and CARS signals are 

detected in backward direction. SHG and CARS signals were filtered by the 

appropriate bandpass filter (BP) and diffraction grating (GR) with 1200 grooves/mm. 

The cooled PMT detector has a gain of up to 10
7
, high cathode sensitivity, and a dark 
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current below 1 nA. The detected signal was digitized by data acquisition card. The 

card also provided synchronized analog signals to drive x-y galvo-scanners in order to 

generate raster scans for imaging. SHG and time-delayed CARS images can be 

generated with a spatial resolution of 300 nm using high-numerical aperture (NA=1.2) 

objective.  

The tissue samples used in this investigation were dissected from above the 

longisimus dorsi muscle of C57BL/6 mice under after euthanasia with outer and inner 

surfaces of the adipose tissue identified. Slices of up to 100 µm in thickness were 

fixed for 1 hr in 4% PFA at 3°C. The coverslips were treated with gelatin-chromium 

potassium sulfate solution for optimal tissue contact. 

Fig.1 (a) shows a SHG image obtained with scanned fundamental beam, at 

optical frequency ω2, delivered by one of the OPOs tuned to ~1095 nm. The image 

shows a high SHG signal within the collagen type-II rich areas within the dermis and 

connective muscle tissue for which the second order optical nonlinearity is strong due 

to the lack of inversion center in the molecular structure of this type of protein. 

There are fairly large areas in between the collagen areas where the SHG 

signal is absent. The collagen bundles could sustain 30-40 mW average power levels 

at this wavelength in the scanning mode of 2 frames/sec without the collagen fibrils 

being visibly altered or damaged. With the focused beam fixed on one spot within the 

collagen rich area a detectable damage could occur within the timeframe of few 

minutes. Figure 1(b) shows CARS image of the same area at zero time delay. The 

OPO wavelengths were tuned to 978 nm and 1095 nm respectively so that the targeted 

Raman active mode is at a frequency shift of ω1-ω2≈ 1072 cm
-1

. Some collagen 
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bundles seen in Fig. 1(a) can be still fairly well identified on the CARS image. 

However, the contrast is significantly lower with respect to surrounding areas. The 

image shows very strong signals coming from the areas where SHG signal was absent. 

These parts are filled with dense mouse fat as this was further confirmed by time-

domain CARS measurements. Unlike the collagen, the structure of the fat molecules is 

centro-symmetric and therefore the areas with the fat are not seen on the SHG image. 

The CARS image clearly resolves a blood vessel with red blood cells (RBC) that does 

not have any trace in the SHG image. CARS and SHG images complement each other 

in a useful way. SHG imaging modality helped in positioning of the sample so that the 

other two beams can be blocked to minimize the risk of damage while we were 

identifying parts of tissue to be characterized. CARS image shown in Fig. 1(c) was 

obtained when the probe pulse was delayed by 200 fs (td=200 fs) with respect to the 

excitation pair. Both b) and c) images rather display frequency unspecific non-

resonant CARS background. Indeed, the contrast ratio between fat tissue part and the 

remaining background remains about the same with a maximum value of about factor 

of 2.8. When the delay is further increased beyond 500 fs the contrast drastically 

improves and the ratio of CARS signal within the fat tissue and the surrounding areas 

can exceed an order of magnitude [Fig. 1(d) and 1(e)].  

Fig. 2(a) shows CARS signal versus delay time when Raman active vibrations 

within ~1075cm
-1

 vicinity were targeted. For this case the scanning area was reduced 

(~20x20 µm
2
) to match large piece of fat located at around the center of the image 

shown in Fig 1(b). Signal fluctuations are fairly high and the signal-to-noise ratio is 

about factor of 5 despite the fact that the data were effectively averaged across more 
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than 4000 pixel area. The data quality degraded further if the scanning was not 

performed and this has been the case for fairly moderate (i.e. <25 mW in combined 

power for the three beams) average power levels focused into the fat area.  Some 

observations indicate that the tissue samples have been altered due to accumulated 

excess heat and high peak powers that lead to molecular ionization. The detailed study 

on this issue has not been performed. The obtained CARS transient clearly shows at 

least two spectral components that result in the coherent beat signal. The decay time is 

fairly long (~2 ps) and there is an indication of different decay times for the 

components. This can be noticed in decreased modulation depth for the beat signal at 

longer time delays. The obtained transients have been further analyzed by generating 

theoretical curves to fit the experimental data. We have applied a model that is based 

on time dynamics of the macroscopic coherent amplitude (Q) [13]. Time-domain 

CARS signal can then be calculated by using the following formulae: 

 

𝒔
𝒂𝒔(𝒕𝒅)=𝝃𝟎 ∫ |𝑸(𝒕)|𝟐𝜺𝒑𝒓

𝟐 (𝒕−𝒕𝒅)𝒅𝒕
∞

−∞
          (2) 

𝑄(𝑡) = ∫ 𝐺(𝑡 − 𝑡′)𝜀1(𝑡
′)𝜀2(𝑡

′)𝑑𝑡
∞

−∞
  (3). 

 

In the equations above, 1,2,pr(t) stand for unit area driving and probe pulses, 0 -

detected anti-Stokes signal at zero delay, G(t) - response (Green’s) function of the 

corresponding vibrational system to -pulsed driving fields. Applying certain solution 

algorithms for the above Fredholm type-I equations the G(t) can be retrieved for 

arbitrarily shaped pulses [8].  We can also seek solution for G(t) function for our case 

of i) Gaussian pulses and ii) when molecular collisions dominate the dephasing 

process. As was discussed in the introduction, the latter condition represents the case 
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of homogenously broadened line. Therefore, 

𝐺(𝑡) = ℎ(𝑡)∑ 𝐴𝑗𝑒
−𝑡(

1

𝑇2𝑗
−𝑖∆𝜔𝑗)

𝑗   (4), 

where h(t) is Heaviside step function, Aj – Raman line component amplitude, T2j –the 

component‘s dephasing time, j - the component‘s shift from reference frequency 

(e.g. from (1-2)). By varying the above parameters we can find the best fit to our 

experimental data. For the vibrational modes in the vicinity of (1-2)≈1072 cm
-1

 the 

best fit corresponded to the presence of two vibration lines with a frequency difference 

of ∆12= ∆𝜔1 − ∆𝜔2 =28.7 cm
-1

, dephasing times of 2.6 and 1.7 ps and the amplitude 

ratio of A1/A2=19:5 respectively. The dephasing times (T2j) obtained from our 

measurements suggest, if we apply formula (1), that the two homogenously broadened 

vibrations have linewidths of ∆𝜈1 = 4.1 cm
-1

 and ∆𝜈2=6.3 cm
-1

. Some comparison can 

be made with spontaneous Raman data available for fats [14,15]. We did not find any 

data on the relevant case that is obtained with a coherent frequency-domain technique. 

Spontaneous Raman spectroscopy of adipose tissue in mice has shown two not well 

resolved C-C bending vibrations within ~1060-1120 cm
-1

 range sitting on a broad 

shoulder [15]. The line separation within the doublet at around 1080 cm
-1

 is not 

reported and could not be inferred from the data. The two, strongly overlapping and 

merging lines, show the combined width of about 25 cm
-1

 which is about the 

separation ∆12that we found using our data. Thus, our results represent first 

measurement of the linewidths and the spectral difference for the C-C vibrations in fat 

and clearly demonstrate the power of the time-domain method. Another feature that 

follows from our data is that the individual components with the doublet have different 

linewidth. 
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We next targeted higher-frequency and stronger line at ~1265-1275 cm
-1

, 

assigned as a =C-H bending vibration, to get a better comparison with available 

spontaneous Raman studies since the line is better resolved in them. Fig. 3 shows the 

transient signal when Raman active vibrations at around ~1270 cm
-1 

frequency shift 

were excited and probed within the fat tissue. By fitting the data, using the model 

described above, we found that there are two closely spaced vibration modes at 1272 

cm
-1

 with the frequency difference of ∆𝟏𝟐= 𝟒𝟖. 𝟓 cm
-1

, dephasing times of 550 fs 

(∆𝝂𝟏 = 𝟏𝟗. 𝟑 cm
-1

) and 670 fs (∆𝝂𝟏 = 𝟏𝟓. 𝟖 cm
-1

) , and the amplitude ratio of 33:13. 

The study reported in [15] identifies this C-H bending doublet positioned at 1264 cm
-1

 

and 1301 cm
-1

 resulting in a frequency spacing of 35-40 cm
-1

 with linewidths that 

could not be obtained from the data. The doublet line frequency differences show 

some agreement with the one detected in our experiments.  As concerned the 

linewidths, our work is again the first to address and report that. Overall, none of the 

Raman studies that we found on fatty acids, proteins, DNA [16] provided explicit line 

bandwidths. This is presumably due to the limited (~3-7 cm
-1

) spectral resolutions and 

low scattering signals. Thus, we find our data to be the first to reveal the more precise 

information on line separations and the only one available for the corresponding 

linewidths.  

We have compared our results in mouse fat with identical time-domain CARS 

measurements that we performed in olive oil. Oils and lipids in fats have similar 

molecular composition and thus should have similar Raman active vibrational spectra. 

Raman active lines corresponding to C-C stretching vibration at ~1070 cm
-1

 and 

scissoring (C-H) modes at 1267 cm
-1

 [17] were targeted. The corresponding results are 
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shown in Fig. 4 (a) and (b). Since the data quality had been substantially better we 

were able to determine the parameters (see figure caption) more precisely. We point 

out again that a comprehensive comparison with data obtained by frequency- domain 

methods could not be performed since linewidths data were not available for the two 

modes in oil either.  In general, from our experiments, fairly good agreement is found 

between fat and oil data as concerned linewidth and spectral separation parameters. 

However, the small differences, above spectral resolution, still noticeable. More 

detailed studies are needed, especially for different types of oils and fatty acids, in 

order to come up with a credible explanation for the detected differences. If we turn to 

the data for mouse fat again, one can see that there is a factor of 3-4 difference in 

linewidths for the targeted C-C and =C-H bending vibrations. We attribute this to the 

differences in character and lengths of the bonds and we think that those play a larger 

role in determining the dephasing times (damping rates, linewdith) for the vibrations 

compared to the heterogenous molecular environment. 

In conclusion, we reported on implementation of spectroscopic imaging and 

characterization approach based on time-resolved version of CARS. We can identify 

tissue constituents and measure dephasing times for the associated vibrational modes. 

We show that the time-domain nonlinear microscopy of tissue delivers much more 

precise information on molecular fingerprints of the tissue constituents. Relating this 

type of information to diagnostics of diseases will be the task of major importance for 

future efforts.  
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Figure 1. 

 

 
 

(a) SHG image obtained from the mouse dermis area; (b) CARS image of the same 

area at zero delay time between the probe (Epr) and driving (E1,E2) pulses and 1-

2=1072 cm
-1

. (c)-(f) CARS images at different delay times. 
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Figure 2. 

 

Time-domain CARS signal obtained from the ~16 µm diameter fat area located at the 

center of the mouse tissue for the image shown in Fig. 1(b). Solid green line represents 

non-resonant CARS signal obtained in microscope glass slide that was detected in the 

same (i.e. backward) direction and under the same other conditions. Dash dotted line 

represents the best fit to the data obtained by using formulae (2)-(4) and varying the 

corresponding line parameters (see text). 
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Figure 3. 

 

 

Time-domain CARS signal obtained from the mouse tissue area identified as a fat in 

the vicinity of Raman frequency shift of ≈1270 cm
-1

. Solid line represents the best fit 

to the data obtained by using formulae (2)-(4) and varying the corresponding line 

parameters (see text). 
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Figure 4 (a), (b). 

 

Time-domain CARS signals (open circles) obtained from a drop of olive oil. The 

Raman active vibrations near a) ≈1070 cm
-1

 and b) 1265 cm
-1

 were targeted and 

probed. The solid line represents the best fit to the data obtained using formulae (2)-

(4) with the following parameters: (a) Δ𝜈1 = 3.7 𝑐𝑚−1, Δ𝜈2 = 5.6 𝑐𝑚−1,  Δ12 =

23 𝑐𝑚−1, A1/A2=13/3; b) Δ𝜈1 = 21.6 𝑐𝑚−1, Δ𝜈2 = 17.5 𝑐𝑚−1,  Δ12 = 41.4 𝑐𝑚−1, 

A1/A2=11/3. 
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APPENDIX 

 

Detailed experimental procedure and alignment: 

In this section, we will discuss the light sources at first, which is the pivotal part of the 

experiment, and then we will briefly describe the concept and set up of our two 

experimental techniques, Coherent Anti stokes Raman scattering (CARS) 

microspectroscopy and SHG microspectroscopy.  

1. The sources of light: 

Mode-locked Ti. Sapphire laser: 

The main laser source we have used is the mode-locked ultrafast laser that uses 

Titanium: sapphire as the gain medium (Mira-HP, Coherent), tunable from 700 to 

1000 nm.  This laser is also pumped by another laser, green laser, with power 

17W.The repetition rate (or frequency) of this laser is 76 MHz. The output power (~ 3- 

3.7 mW) of this mode-locked laser is then passed through the two cavity prism to 

compensate the pulse. A small portion of this pulse is out coupled through the side-

port of the Glan-Taylor prism. The large portion of the beam, however, spilt into two 

equal parts, and used to synchronously pump the two OPOs. On the other hand, the 

small portion of the beam is used as probe pulse for CARS experiment. 

Optical parametric oscillator (OPOs).  

OPO-1. 

The nonlinear gain media, allowing quasi-phase matching condition, for OPO1 is the 

stoichiometric lithium tantalate (PPSLT) nonlinear crystal, generating parametric 
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oscillation at the near IR-pump wavelengths in both for continuous wave (cw) and 

short pulse mode.  

The crystal is 1 mm width, 0.5 mm thick, and 15 mm long-z cut that was pooled 

within 13 mm distance along the height.  The grating period is varied from 17.50 to 

24.80 micron with 0.6 micron differences between consecutive periods. The pump 

power is 1.15 mW, delivered by TiS mode-locked laser.  The pump beam is focused 

onto the crystal by a 76 mm focal length lens. The OPO cavity is consist of two 

concave mirrors and three plane parallel substrate mirrors. A pair of Brewster cut 

angle prisms was used to compensate the dispersion. The optimal distance between the 

two prisms (apex to apex) was found to 280 mm in order to get the short pulses within 

the tuning range from 960 to 1050 nm. The pulse characteristics are shown in figure 1. 

OPO-2 

OPO2 is based on a periodically pooled lithium niobate (PPLN) nonlinear crystal. This 

OPO serves the wavelengths ranging from 1050 to 1100 nm. 

Detailed OPOs characteristics and performance were reported in [1, 2] 

 

2. Super continuum generation: 

Supercontinuum generation was first observed in 1970 by Alfano and Shapiro [3]. 

Supercontinuum generation is the production of ultra-broadband spectrum pumped by 

a high power laser source- femtosecond pumped pulse, in our case. A photonic crystal 

that has 1.2 µm core diameter and zero group dispersion at 750 nm was used to 

produce broadband (450-1150nm) continuum. A characteristic spectrum is shown in 

Figure 2. 
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3. Experimental Techniques  

CARS microspectroscopy 

CARS as spectroscopic technique was first reported in 1965 [4], showing that two 

coherent light beams of frequency w1 and w2 can be used to drive a Raman 

vibrational mode at frequency ωR= ω1-ω2. When the two beams are overlapped in 

space and time, it was observed ω+ ωR signal, which is the CARS signal. 

Experimental set up 

The experimental set up is schematically shown in Figure 3. The two pulses that are 

needed to coherently drive lattice vibrations within a sample’s macroscopic volume 

are provided by synchronously pumped optical parametric oscillators (OPOs) running 

at 76 MHz. The OPOs were simultaneously pumped by a split output of a high-power 

mode-locked Ti:sapphire oscillator tuned to 765 nm. The OPOs with pulsed outputs at 

970-1020 nm and 1050-1100 nm, served to coherently drive lattice vibrations, and 

another small part of the Ti:sapphire oscillator was delayed and served as a probe 

pulse. All of the three pulses were intrinsically synchronized, made to overlap in space 

and time, and focused by a high numerical aperture (NA~1.25) objective lens. Actual 

set up of CARS spectroscopy is also shown in figure 4. 

Measurement procedure 

The signal detection system is shown in figure 5. We use a high numerical aperture 

(NA~0.9) (Olympus model: UplanSApo-60x/1.20 W IR) condenser followed by a 

diffraction grating and a set of bandpass filters. This permitted efficient detection of 

the signal of interest on the background of other signals generated within the focal 
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volume. A photomultiplier tube (PMT) with high gain and quantum efficiency 

(Hamamatsu model #R10699) is used to detect anti-Stokes signal photons at selected 

wavelengths. The PMT current output is digitized by a high-speed data acquisition 

card (DAQ, NI-6361). Using this experimental arrangement, we can routinely detect 

CARS signals versus probe pulse delay times within five decades. 

4. SHG microspectroscopy 

As illustrated in fig 6, SHG is the nonlinear process where the energy of a short optical 

pulse of frequency ω propagating through a nonlinear medium is converted to a wave 

of 2ω, at twice the original frequency. SHG is also known as frequency doubling, 

which is special case of sum frequency generation (SFG). 

 

Experimental set up 

We employ high-repetition rate femtosecond Ti:Sapphire oscillator with central 

wavelength tuned to 750 nm. The beam was coupled into photonic crystal fiber (PCF) 

with core diameter of 1.2 µm using 40x objective lens (NA=0.75) to generate 

spectrally stable continuum that stretches from UV (~450 nm) to IR (~1200 nm) with 

a total power of about 45 mW (for 100 mW incident beam) [ figure 1(b) of 

manuscript-1]. The continuum was dispersed by a pair of prisms and then part of the 

spectrum, with fairly smooth envelope in the wavelength range of interest, was 

selected as a fundamental beam. The beam can be angle scanned to provide scanning 

area of about 200x200 μm
2
 in the image plane of the objective and help to select part 

of a sample of interest for testing. Samples can also be precisely positioned using 

micrometer driven translation stage. 
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Measurement procedure 

Spectral shape and power of the incoming fundamental beam is detected before the 

objective with a help of optical spectrum analyzer (Anritsu: MS 9710C). Second 

harmonic from the sample is collected through the same objective in the backward 

direction and filtered out with dichroic mirror (DCM)(Semrock) and shortpass filter 

(SPF) before entering calibrated grating monochromator (Horiba model: iHR320) with 

cooled and sensitive CCD detector (Syncerity-356399, Horiba) attached to the exit. 

The SHG signal is also sent to photomultiplier tube (PMT) to enable sample imaging.  

The SHG signal beam is effectively de-scanned for the signal detection geometry 

shown here which helps to focus into the monochromator and use narrow slit in order 

to achieve higher spectral resolutions. Data acquisition have been performed using 

data acquisition card, in the case of sample imaging, and the monochromator’s USB 

interface, in the case of spectral measurements, with both controlled by LabView 

interface software.   

 

5. Making 0 (zero) time delay for CARS experiment 
 
One most important condition for generation of a CARS signal is the spatial and 

temporal overlap of the three color beams. To ensure the spatial overlap two irises 

were placed after the dichroic mirror, and then the beams were guided in such way 

that the beams pass through the center of iris. On the other hand, in order to set up the 

correct timing between the beams, the optical path lengths of all beams were first 

measured by the measuring tape. In order to take into account the retardation as the 

beams pass through any optic, an additional lengths equivalent to the thickness of any 
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optic along each beam path were added to the length that was measured by the 

measuring tape. After measuring the optical path lengths, translational stages for the 

delay lines were adjusted to make the path lengths equal. 

To find the zero-delay point , a nonlinear optical crystal , Beta-Barium Borate (BBO), 

was used to observe the sum frequency generation (SFG) signal generated when the 

two beams are focused at the crystal that are spatially and temporally overlapped.   

First Ti:S laser  has been directed through the BBO crystal while being blocked the 

two OPOs. Then by vertically rotating the crystal we find the SFG signal being color 

as purple. During this work, we also move the crystal holder back and slight slightly to 

observe the brightest color or optimize the signal. We do it as a warm-up. It is better to 

work with two OPOs very first. So at this time we block the TiS and unblock the two 

OPOs. 

Upon rotating the crystal, we find the two spots in a white paper which are essentially 

second harmonic signals of OPOs at two different crystal positions. Now we set the 

crystal position in between the two spots where we found the second harmonic signal. 

Now we move mirror backward and forward, the mirror on the translational stage of 

an extra-cavity of OPO1, to detect the mixing signal. This means that at this mirror's 

screw position makes zero time delay for two OPOs. We can test it by blocking any 

OPO. In other words, if we block one of the OPO, the signal disappears. 

Now we block the one OPO and unblock the TiS. Very much the same way, we 

observe the two spots on the white paper and lens behind the crystal as well. We 

notice blue color signal for OPO and purple for TiS. Then we set the crystal in 

between the two spots. After that, we detect the mixing signal by rotating the screw 
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meter of the corner cube (CC) sitting on a translational stage. Before that, we also 

position the CC by using translational stage controller. 

Now all are in zero time delay. We also unblock the other OPO at this time. We see 

the two mixing signal on the white paper. If we block one OPO, one of the two spots 

disappears. On the other hand, if we block another OPO (unblock the one which is 

now blocked), the other spot disappears. This test confirms the zero time delay of the 

three colors. 

While performing the above procedure, we keep the power of OPO1 as 56 mW and 

200 mW for OPO2. That means the combined power after DCM1 was 256 mW. 

During the observation, all light in the lab room was off. 

 

6. Supercontinuum generation setup 
 

 

The broad band continuum pulses needed for the SHG set-up are based on the 

generation of the supercontinuum from a photonic crystal fiber (PCF). 

Using the beam splitter and the steering mirror, the Tis:S beam is aligned at the optical 

table where the translational stage is installed. Then we install the fiber on XYZ stage 

making the aligned parallel between the polarization of TiS beam and the line markers 

of the polarization direction of the fiber. We align the beam in such way that the 

height of the Ti:S beam matches to that of facet of the PCF from optical table, and the 

height was 93 nm. The half wave plate and Glan Thomson polarizer was installed and 

the laser power initially set to 50 mW by rotating the half-wave plate and placing a 

power meter after the polarizer. We were very careful so that powers do not exceed 50 

mW while aligning to eschew damaging the fiber.  
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The stage (466A XYZ fixture, Newport Corp.) is installed in order to focus into the 

fiber by a 40x microscopic objective lens, maintaining the focusing length of the 

objective and fiber as well. In order to make sure the right focusing, we reflect the 

beam from the facet back to nearest starring mirror.  

At the very first, however, the focusing objective lens was removed and a white paper 

was placed about five inches away and the beam position was marked. The focusing 

objective lens was then replaced and the XYZ stage was adjusted to center the beam to 

the target. The transmitted beam was observed using an IR viewer on the white paper. 

The vertical and horizontal axes of the stage were alternately fine-tuned until the 

central spot was minimized and completely diminished and evenly diffused light was 

observed. The X- axis of the stage along the optical axis of the fiber was adjusted to 

focus the beam into the fiber core. The steering mirrors were also adjusted to get the 

maximum output power. 

Once the continuum pulse was observed, the input power was increased to 100 mW. 

Then output power was optimized by fine tuning of the stage and steering mirror as 

well. The collimating objective lens (20X, Newport Corp.) was then installed. The 

lens was then adjusted to collimate and adjust the spot size of the output beam. 

It is important to note that the properties of the generated continuum pulse are defined 

by the amount of the coupled power rather than the coupling frequency. The coupled 

power is the measured power after the collimating objective and power before the 

focusing objective. The actual set-up is shown in fig 7. 

 

 



 

62 

 

Figure 1 

 

 

 

Fig.1. OPO output pulse characteristics (a) shows OPO pulse spectra obtained 

throughout available tuning range for the OPO. (b),( c) shows typical pulse 

autocorrelations for signal (b) and idler (c) beams. (d) shows idler pulse spectrum at 

~4.5 µm while OPO can still deliver ~50 mW of average power in idler branch. 
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Figure2 

 

 

Fig.2. The characteristic curve of a broadband pulse generated by PCF (a) 

Fundamental pulse of TiS at 750 nm. (b) The output broadband pulse when the 750 

nm pulse with energy 150 mW passes through the PCF. 
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Figure 3 

 

Fig.3. Schematic of the experimental CARS set up. ISO: isolator; WP: wave plate; 

GT: Glan Thomson polarizer; BS: beam splitter; HR: high reflected mirror; M: 

mirrors; CR: crystal; OC: output couplers; DCM: dichroic mirrors. 
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Figure 4 

 

Fig.4.  Actual set up of CARS spectroscopy 
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Figure 5 

 

 

Fig. 5. Schematic diagram of image/data acquisition system. GR: grating; OBJ: 

objective; CC: corner cube; CL: collimating lens; BP: bandpass filter. 
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Figure 6 

 

 

 

Fig. 6. A schematic diagram of the second harmonic wave of frequency 2ω, generated 

by a short optical pulse of frequency ω, in the nonlinear medium 
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Figure 7 

 

Fig. 7: Actual set up for the continuum generation 
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MATHMATICAL FORMALISM 

 

SHG intensity solution for undepleted fundamental wave: 

In order to derive expression for the second harmonic intensity we start off with the 

Maxwell’s equation. We neglected the free charges and free currents in the equations: 

∇. 𝐷⃗⃗ = 0     (1) 

∇ × 𝐸⃗ = −
1

𝑐

𝜕𝐵⃗ 

𝜕𝑡
        (2) 

∇. 𝐵⃗ = 0       (3) 

∇ × 𝐵⃗ =
1

𝑐

𝜕𝐷⃗⃗ 

𝜕𝑡
          (4) 

Where 𝐷⃗⃗  is displacement field vector, 𝐸⃗  is the electric field, 𝐵⃗  is the magnetic field, 

and c is the speed of light. The following relationship between D, E, and P is given by 

the following equation- 

𝐷 = 𝐸 + 4𝜋𝑃     (5) 

Where P is the incident field induced polarization. 

Now solving the two curl equations (2), and (4), and using equation (5), we obtain the 

following: 

∇ × ∇ × 𝐸 +
1

𝑐2

𝜕2𝐸

𝜕𝑡2 = −
4𝜋

𝑐2

𝜕2𝑃

𝜕𝑡2   (6) 

We can also represent the total polarization (P) as the combination of linear and 

nonlinear parts (P= P+P
NL

). Using the above two relationships, we can get the 

following wave equation: 

−∇2𝐸 +
1

𝑐2

𝜕2𝐷

𝜕𝑡2
= −

4𝜋

𝑐2

𝜕2𝑃𝑁𝐿

𝜕𝑡2
   (7) 

Using the relationship D=εΕ, we again obtain 
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−∇2𝐸 +
𝜀

𝑐2

𝜕2𝐸

𝜕𝑡2 = −
4𝜋

𝑐2

𝜕2𝑃𝑁𝐿

𝜕𝑡2    (8) 

This is the driven wave equation where the right hand part acts as a source term for 

harmonic signals and P
NL

 represents nonlinear response of the medium due to incident 

field(s). We will consider this equation to describe the second harmonic generation in 

a nonlinear optical medium. We consider the electric field and nonlinear polarization 

field as 

𝐸2 = 𝐸2(𝑧)𝑒
𝑖(𝑘2𝑧−𝜔2𝑡) + 𝑐. 𝑐 

𝑃2 = 𝑃2(𝑧)𝑒
−𝑖𝜔2𝑡,  

Where, 𝑃2 = 𝜒(2)𝐸1
2 

Equation (8) turns into 

𝜕2𝐸2

𝜕𝑧2 + 2𝑖𝑘2
𝜕𝐸2

𝜕𝑧
= −

8𝜋𝜒(2)𝜔2
2

𝑐2 𝐸1
2𝑒𝑖∆𝑘𝑧   (9) 

Where Δk represents the phase mismatch between fundamental and harmonic waves 

while ∆𝑘 = 2𝑘1 − 𝑘2 . 

Now, we consider slowly varying amplitude approximation which means that the 

magnitude and the phase of the wave amplitude vary slowly in propagation direction 

over a length comparable to wavelength. In mathematical from, it can be written as 

|
𝜕2𝐸2

𝜕𝑧2
| ≪ |𝑘2

𝜕𝐸2

𝜕𝑧
| 

By applying the slowly varying amplitude approximation, the equation (9) becomes 

𝜕𝐸2

𝜕𝑧
=

4𝜋𝑖𝜔2
2𝜒(2)

𝑘2𝑐2
𝐸1

2𝑒𝑖∆𝑘𝑧    (10) 

This is first order differential equation for the second harmonic field. Now the second 

harmonic field can be obtained by integrating the above equation over the interaction 
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length L. For the case of undepleted fundamental E1 is constant over z. Then the final 

result for the second harmonic field is the following: 

𝐸2(𝐿) =
4𝜋𝑖𝜔2

2𝜒(2)

𝑘2𝑐2 𝐸1
2 (

𝑒𝑖∆𝑘𝑧−1

𝑖∆𝑘
)   (11) 

The intensity of the second harmonic wave is given by the magnitude of the time-

averaged Poynting vector, 

𝐼2 =
𝑛2𝑐

2𝜋
|𝐸2|

2      (12) 

Using the solution (11) for the field in equation (12) we can obtain 

𝐼2 =
8𝑛2𝜋𝜔2

4|𝜒(2)|
2

𝑘2
2𝑐3

|𝐸1
2|2𝐿2 |

𝑠𝑖𝑛(
∆𝑘𝐿

2
)

(
∆𝑘𝐿

2
)

|

2

   (13) 

Now expressing the incident field in terms of the intensity, we have the second 

harmonic intensity as 

𝐼2 =
128𝜋5

𝑛1
2𝑛2𝜆2

2𝑐
|𝜒(2)|

2
𝐼1
2𝐿2𝑠𝑖𝑛𝑐2 (

∆𝑘𝐿

2
)   (14) 

 

 

 

SHG in bulk media under tight focusing condition 

Note that the solution (14) is for the power density. I2 and I1 are expressed in power 

densities. Power density is proportional to the square of the electric field, or 

alternatively the power divided by the beam size. Now the question is if we try to do 

the experiment, instead of having power density, how much power we have in the 

second harmonic power in Watts, or energy in Joule. 

So the power density does not provide the real solution. If we focus the beam, and we 

want to know the power in the output power in Watt, we take into account the 

focusing factors. 



 

72 

 

The second harmonic power in Watt for this system is given by the following 

expression: 

𝑊2
𝐵 =

2𝜔1
2|𝜒(2)|

2

𝜀0𝑐3𝑛1
2𝑛2𝜋

1

𝑤0
2 4𝑙𝑓

2𝑊1
2   (15) 

Where, 𝑙𝑓  is the effective length of focus and is defined by 

𝑙𝑓 =
𝜋

2
𝑘𝑤0

2     (16) 

Now we obtain 

𝑊2
𝐵 =

8𝜋𝜔1
2|𝜒(2)|

2

𝜀0𝑐3𝑛2

1

𝜃2
𝑊1

2   (17) 

Where we have introduced the expression: 

𝑤0 =
𝜆

𝜋𝜃
 

𝜃 =
𝜆

𝜋𝑤0
 

Where, 𝜃 is the numerical aperture of the objective,  𝑤0 is the spot size of the beam, 

and λ is the fundamental wavelength. 

Note that equation (17) is derived considering the fact there are no interface. In other 

words, the crystal is immersed in the medium in such a way that the refractive indices 

match. 

However, in our case, the beam is incident from air to crystal. In order to that feature 

into account, we consider the following transmission factors: 

𝑇1,2 = (
2

1+𝑛1,2
)
2

    (18) 

Where,𝑛1  is the refractive index of the fundamental beam in the crystal, and 𝑛2 is the 

refractive index of the second harmonic in the crystal. 

Using the factors of equation (18), the equation (17) becomes 



 

73 

 

𝑊2
𝐵 =

8𝜋𝜔1
2|𝜒(2)|

2

𝜀0𝑐3𝑛2

1

𝜃2 (
2

1+𝑛1
)
4

(
2

1+𝑛2
)
2

𝑊1
2 (19) 

Neglecting the dispersion in the crystal, i.e., the refractive index at fundamental is 

close to that of at the second harmonic; the equation (19) turns into 

𝑊2
𝐵 =

8𝜋𝜔1
2|𝜒(2)|

2

𝜀0𝑐3𝑛2

1

𝜃2
(

2

1+𝑛
)
6

𝑊1
2  (20) 

This equation is very important for our study because it will be used to obtain the 

absolute value of the second order nonlinear susceptibility. 

 

SHG in two-dimensional crystal 

Since we have very thin material, we need to consider the SHG in thin layer. The 

nonlinear two- dimensional crystal is placed between the linear bulk media. The 

crystal is treated as a zero-thickness interface, and the second harmonic signal 

generate from the boundary. 

After writing the right boundary conditions and solving, we obtain the second 

harmonic filed for s and p polarized light as 

𝐸2𝑥 =
−𝑖𝑘1𝜒(2)

𝑛1
𝑠𝑖𝑛(3𝜃)(1 + 𝑟𝜔)2(1 + 𝑟2𝜔)𝐸1𝑥

2   (21) 

𝐸2𝑦 =
𝑖𝑘1𝜒(2)

𝑛1
𝑐𝑜𝑠(3𝜃)(1 + 𝑟𝜔)2(1 + 𝑟2𝜔)𝐸1𝑥

2   (22) 

The second harmonic is written as 

𝐼2 =
1

2
𝜀0|𝐸2𝑥 + 𝐸2𝑦|

2
      (23) 

The second harmonic power is defined by 

𝑊2
2𝐷 = ∫ 𝐼2(𝑥, 𝑦)𝑑𝑥𝑑𝑦     (24) 
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The total reflected second harmonic power in terms of the input fundamental power 

can be written as  

𝑊2
2𝐷 =

2𝑘1
2𝜉2|𝜒2𝐷

(2)
|
2

𝜋𝜀0𝑐𝑤0
2 𝑊1

2     (25) 

Where, ξ is defined as  

𝜉 = |(1 + 𝑟𝜔)2(1 + 𝑟2𝜔)|2 

Where, 𝑟𝜔  is reflection coefficient at fundamental and 𝑟2𝜔 is the reflection coefficient 

at second harmonic. 

The equation (25) will also be used for absolute calibration of second order 

nonlinearity.  

To estimate the second order nonlinearity, we normalize the two-dimensional second 

harmonic data to the one obtained from the reference crystal. 

We obtain a ratio from equations (20) and (25) which will essentially provide the 

dispersion of the absolute value of second order nonlinear susceptibility: 

𝑊2
2𝐷

𝑊2
𝐵 =

𝑛(𝑛+1)6𝜃2|𝜒2𝐷
(2)

|
2
𝜉2

256𝜋2𝑤0
2|𝜒(2)|

2 ≡ 𝜌     (26) 

Now we can write the expression for the absolute value of second order nonlinearity in 

terms of the known reference crystal’s nonlinearity, refractive index, numerical 

aperture of the objective lens, and the measure ratio: 

|𝜒2𝐷
(2)

| = √𝜌
16𝜆

(𝑛+1)3√𝑛𝜃2
|𝜒(2)|     (27) 

This equation was used to calibrate the second order nonlinear susceptibility in 

manuscript-2. 
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CARS theory 

At the beginning, it is important to note that CARS signal is generated due to the third 

order nonlinear susceptibility while the SHG is due to the second order nonlinear 

susceptibility which is discussed above. 

CARS is used to investigate Raman active resonances and modes. In this process, in 

general, one deal with three different incident waves at frequencies 𝜔1, 𝜔2, 𝜔3. During 

the CARS process, a new wave at 𝜔4 = 𝜔3 + (𝜔2 − 𝜔1) is generated. This new 

generated wave is called anti-Stokes wave at optical frequency 𝜔𝑎𝑠 = 𝜔4. However, 

when the opposite happens, i.e., when 𝜔4 = 𝜔3 − (𝜔2 − 𝜔1) , then one deals with 

Coherent Stokes Raman Scattering (CSRS) . CSRS is almost like CARS except for the 

fact that Stokes wave is detected which is at a lower optical frequency 𝜔𝑎𝑠 = 𝜔4. 

CARS can be described as two photon excitation process followed by a two-photon 

de-excitation process. Combined together the two constitute a resonantly enhanced 

four-wave mixing process. In an experiment, a degenerate CARS process is realized at 

least two laser beams with strong intensity. The first beam at the optical frequency 𝜔2 

is often called pump and the second with frequency is 𝜔1 called Stokes beam. Both 

beams are focused onto the sample simultaneously. We not that 𝜔2 > 𝜔1. The 

incident beam excite the corresponding Raman active transition. The same beam at 

will also serve, for this particular case, as a third or probe beam with frequency 

𝜔3 = 𝜔2. The beam is scattered off the excited vibrations to form a wave with 

frequency  𝜔4 = 𝜔2 − 𝜔1 + 𝜔1 = 2𝜔1 − 𝜔2 which is anti-Stokes that is 𝛺 = 𝜔2 −

𝜔1 shifted from 𝜔2. The new wave is resonantly enhanced since frequency difference 

𝜔2 − 𝜔2 is matched to 𝛺 as was just mentioned. 
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𝛺 = 𝜔2(𝑝𝑢𝑚𝑝) − 𝜔2(𝑆𝑡𝑜𝑘𝑒𝑠) 

𝜔4(𝑎𝑛𝑡𝑖 − 𝑆𝑡𝑜𝑘𝑒𝑠) = 𝜔2(𝑝𝑢𝑚𝑝) + 𝜔3(𝑝𝑟𝑜𝑏𝑒) − 𝜔1(𝑠𝑡𝑜𝑘𝑒𝑠) 

Thus the anti-Stokes wave in the CARS process will follow at frequency  

𝜔𝑎𝑠 = 2𝜔2 − 𝜔1 

If the 𝜔2 frequency is tunable a dispersion of the corresponding 𝜒(3)can be measured 

by detecting anti-Stokes wave’s intensity. 

The third-order nonlinear polarization is used as a driving force in Maxwell’s 

equations for the anti-Stokes field. In general, a set of coupled wave equations 

involving pump, Stokes, and anti-Stokes waves should be solved in order to obtain the 

coherent anti-Stokes field amplitude and the corresponding intensity. 

The polarization drives the anti-Stokes field that builds up along the beam’s 

interaction path and can be calculated using the following wave equation that is 

derived from the Maxwell’s equations: 

                           ∇2𝐸⃗ 𝑎𝑠 −
1

𝑐2

𝜕2𝐸⃗ 𝑎𝑠

𝜕𝑡2 = 𝜇0
𝜕2𝑃𝐶𝐴𝑅𝑆

(3)

𝜕𝑡2             (28)  

Where 𝐸𝑎𝑠 is the electric field amplitude at anti-Stokes frequency of 𝜔2 − 𝜔1 + 𝜔3. 

As was mentioned above, the four waves 𝐸𝑎𝑠, 𝐸1, 𝐸2, 𝑎𝑛𝑑 𝐸3 (embedded into nonlinear 

polarization term𝑃𝐶𝐴𝑅𝑆
(3)

), should interact in an efficient way so that their phase match 

along the path. In this case, the interaction yields in strong CARS signal. In order to 

demonstrate this we will consider a case of degenerate CARS ( i.e., 𝜔𝑎𝑠 = 𝜔2 − 𝜔1 +

𝜔2 = 2𝜔2 − 𝜔1) with the three waves propagating along the same z-direction, i.e., a 

collinear interaction. A solution to the equation () will be sought in the following 

format: 

𝐸𝑎𝑠(𝑧, 𝑡) = 𝐸𝑎𝑠(𝑧)𝑒
−𝑖(𝜔𝑎𝑠𝑡−𝑘𝑎𝑠𝑧)  (29) 
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Also, we will assume that the CARS process efficiency is rather low so that (a) we can 

apply slowly varying (along z) amplitude approximation approach, and (b) assume 

that fields 𝐸1(𝑧) and 𝐸2(𝑧) are not attenuated or depleted in the interaction process 

(i.e., 𝐸1(𝑧) = 𝐸1𝑒
−𝑖(𝜔1𝑡−𝑘1𝑧), 𝐸2(𝑧) = 𝐸2𝑒

−𝑖(𝜔2𝑡−𝑘2𝑧) ). 

Taking into account equation (29) and the two conditions, equation (28) transforms 

into a simpler, first order differential equation: 

𝜕𝐸𝑎𝑠(𝑧)

𝜕𝑧
=

𝑖𝑘𝑎𝑠

2𝑛𝑎𝑠
𝜒(3)𝐸1𝐸2

2𝑒−𝑖(2𝑘2−𝑘1−𝑘𝑎𝑠)𝑧 (30) 

The solution for the anti-Stokes field 𝐸𝑎𝑠 is straightforward for the interaction length 

L. For the amplitude 𝐸𝑎𝑠(𝐿) at the medium’s output we obtain the following: 

𝐸𝑎𝑠(𝐿) =
𝑖𝑘𝑎𝑠

2𝑛𝑎𝑠
𝜒𝐶𝐴𝑅𝑆

(3)
𝐸1𝐸2

2 (
𝑠𝑖𝑛(

∆𝑘𝐿

2
)

(
∆𝑘𝐿

2
)

)𝐿 (31) 

∆𝑘 = 2𝑘2 − 𝑘1 − 𝑘𝑎𝑠 

Further, assuming field-intensity relationship, 

𝐼𝐶𝐴𝑅𝑆 = 2𝑐𝑛𝑎𝑠𝜀0(𝐸𝑎𝑠(𝐿))
2 

We finally obtain for CARS signal intensity 

𝐼𝐶𝐴𝑅𝑆 = 𝐼𝐶𝐴𝑅𝑆(0) |
𝑠𝑖𝑛(

∆𝑘𝐿

2
)

(
∆𝑘𝐿

2
)

|

2

   (32) 

𝑤ℎ𝑒𝑟𝑒 𝐼𝐶𝐴𝑅𝑆(0) =
𝑘𝑎𝑠𝐿

2

16𝑛𝑎𝑠𝑛1𝑛2
2𝜀0

|𝜒(3)|
2
𝐼1𝐼2

2 

Here we used the relationship for intensities and fields 𝐸1
2 =

𝐼1

2𝑐𝑛1𝜀0
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MATLAB CODES 

Codes for getting SHG signal change across the image used in 

manuscript-1 

 

%loads image data (500x500 pixel^2) saved within the image data 

acquisition Labview driver 
%'continuos...vi' and plots it in 3D colormap, the image is cropped 

at 
%pixel positions noted below (see command line 12) 
close all 
%path='/Volumes/USB 

DISK/manuscripts/Optics_Letters/figures_data/figure_2/'; 
%addpath(path) 
%fullname='/Volumes/USB 

DISK/manuscripts/Optics_Letters/figures_data/figure_2/wse2_image_data

.dat'; 
%dlmread(fullname); 
importdata('wse2_image_data.txt'); 
IM1=flipud(ans); 
IM2=rot90(IM1,-2); 
IM2D=130*(IM2+0.008); 
IM3D=IM2D(160:340,140:360); 
figure('Position',[400 400 900 540]) 

  
%draw horizontal dashed line at vert pixel 100 accross the image 
IM3D(100,1:10)=100;IM3D(100,21:30)=100;IM3D(100,41:50)=100;IM3D(100,6

1:70)=100; 
IM3D(100,81:90)=100;IM3D(100,101:110)=100;IM3D(100,121:130)=100;IM3D(

100,141:150)=100; 
IM3D(100,161:170)=100;IM3D(100,181:190)=100;IM3D(100,201:210)=100; 
IM3D(170,190:207)=100;  

  
%plot image in RGB 
image(IM3D) 
hot(128) 
colormap(hot) 
axis image 
axis off 
text(190,164,'5\mum','Color','y','Fontsize',6) 

  
set(gcf, 'PaperPositionMode', 'manual'); 
set(gcf, 'PaperUnits', 'inches'); 
set(gcf,'PaperSize',[8.5,11]); 
set(gcf, 'PaperPosition', [0.69 6.875 4.4 2.6]); 
print -f1 -r600 -dtiff Fig2a 

  
%take crossectional data accross horizontal line at pixel 99 and save 

it 
line1=IM3D(99,:); 
pixel=1:221; 
figure (2) 
hold on 
plot(pixel,line1) 
section=[pixel' line1'/20] 
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%fullname2='/Volumes/USB 

DISK/manuscripts/Optics_Letters/figures_data/figure_2/cross_section_d

ata_pix100Y.dat'; 
%dlmwrite(fullname2,section,'\t') 
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These codes were used in manuscript-3 to fit the CARS data: 

%manual parameter fit to experimental CARS signal - simulates CARS 

signal (trapezoid integration method is used) 
clear variables 
close all 

  
%fname1=strcat('/Volumes/VERBATIM/best_KTP_data/for_papers/',... 
    

%'APL_fig_v2/Fig_3/Figure_3a_ktp_cars_967_1051_good_spectrum_01.dat') 
%fname1=strcat('D:\best_oil_data\data27\oil_cars_target1280_965_1100_

repeat.dat'); 
%for windows PC 

  
fname1=strcat('C:\Users\carruba\Documents\MATLAB\CARS_sig_fit\oil_123

9cm-1_968nm_1100nm_1.dat');%for MAC 

  
dlmread(fname1); 
time11=ans(:,1)-260;signal11=ans(:,2); 
figure (1) 
semilogy(time11,signal11,'bo') 

  
c=2.99792e10;                     %speed of light in [cm/s] 
                                        

l1=965;l2=1100;                   %OPO1 and OPO2 wavelengths in [nm] 
w1=1e7*2*pi*c/l1;w2=1e7*2*pi*c/l2;        %OPO1 and OPO2 freq in [Hz] 
wt=w1-w2;                                     %target frequency [Hz] 
wtcm=wt/(2*pi*c);                         %target frequency in [cm-1] 
norm=1e-15;                        %[fs] to [s] translation constant 
norm1=6.2e43; 

  

  
%calculating coeherent amplitude Q(t) 
nuR1=1268;wR1=2*pi*nuR1*c;%Raman shift in [cm-1] and in [Hz] for 

first peak 
nuR2=1317;wR2=2*pi*nuR2*c; %Raman shift in [cm-1] and in [Hz] for 

second peak 
nuR3=0;wR3=2*pi*nuR3*c;  %Raman shift in [cm-1] and in [Hz] for third 

peak 

  
wr1=(wt-wR1)*norm;wr2=(wt-wR2)*norm;      %detunings in [fs-1] 
wr3=(wt-wR3)*norm; 

  
tp1=335;tp2=335;                   %pulsewidth of I1 and I2 in [fss] 
a12=-2*log(2)*(1/tp1^2+1/tp2^2);   %pulsewidth coeff at the Gaussian 

envelope func 

  
T21=550;T22=670;T33=1400000;T44=10;    %dephasing times in [fs] 

  
b21=-1/T21-1i*wr1; 
b22=-1/T22-1i*wr2; 
b33=-1/T33-1i*wr3; 
b44=-1/T44-1i*wr1; 
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phi1=0; 
A1=0.033;                                    %relative ampl of peak 1 
A2=0.129;                                    %realtive ampl of peak 2 
A3=0;                                        %.................peak 3 
A4=40;                                    %.................NR backgr 
floor=3.1e-45; 

  
step0=2; 
tmin=-2000;tmax=5000;step1=2; 
t1=tmin:step1:tmax;m1=length(t1); 
lim=5*tp1; 
ts=-lim:step0:lim; 
for j1=1:m1 
    t=t1(j1); 
    if t<-lim 
        hs=zeros(1,length(ts)); 
    elseif t>lim 
        hs=ones(1,length(ts)); 
    else 
        p1=round((t+lim)/step0); 
        hs=[ones(1,p1) zeros(1,(length(ts)-p1))]; 
    end 
    F1=hs.*(A1*exp(b21*(t-ts)+phi1)+A2*exp(b22*(t-ts))... 
        +A3*exp(b33*(t-ts))+A4*exp(b44*(t-ts))).*exp(a12*ts.^2);       

%integrand G(t-t')*f(t') 
    Q(j1)=step0*trapz(F1); 
end 
Q11=(norm*abs(Q)).^2; 
%figure (1) 
%semilogy(t1,Q11,'b-','LineWidth',2) 
%set(gca,'FontSize',14) 
%axis([-1500 9000 1e-8*max(Q11) 2*max(Q11)]) 
%xlabel('time delay [fs]','FontSize',14) 
%ylabel('abs(Q^2)','FontSize',14) 

  
%convolution of the absolute value... 
%squared Q with probe pulse 

  
tp3=100; 
a3=-4*log(2)*(1/tp3^2);step2=2; %pulsewidth coeff at the Gaussian 

envelope func 
td=(tmin+5*tp3):step2:(tmax-5*tp3);m2=length(td);  %time delay 

  
for j2=1:m2  
    I3=sqrt(-a3/pi)*exp(a3*(t1-td(j2)).^2); 
    F2=Q11.*I3; 
    signal(j2)=norm1*(norm*step2*trapz(F2)+floor)-0.9e-1; 
end 
hold on 
semilogy(td,signal,'r-','LineWidth',2) 

  

  
set(gca,'FontSize',14) 
axis([(tmin+5*tp3) (tmax-5*tp3)+1000 8e-6*max(signal11) 

2*max(signal11)]) 
xlabel('time delay [fs]','FontSize',14) 
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ylabel('CARS signal [a.u.]','FontSize',14) 
D1=[(td+0)' signal']; 
%fname2=strcat('D:\best_oil_data\data27\oil_cars_target1280_965_1100_

repeat_best_fit.dat') 
fname2=strcat('C:\Users\carruba\Documents\MATLAB\CARS_sig_fit\best_oi

l_data\data23\oil_1239cm-1_968nm_1100nm_1.dat'); 
%dlmwrite(fname2,D1) 
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SOFTWARE USED IN THIS THESIS 

Front view of LabVIEW: SHG spectra 
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Front view of LabVIEW: SHG image 
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Front view of LabVIEW: CARS spectra 
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