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ABSTRACT 

 One of the things that makes economics such an interesting social science sub-

field to study is the analysis of unintended or unforeseen consequences. In order for 

policies to be efficient and equitable, it is important to first understand how endogenous 

policy decisions and exogenous events can affect communities either directly or 

indirectly. In this dissertation research, I examine how communities react to discrete 

environmental events over time. I do so in the context of tropical storm and hurricane 

activity in U.S. counties and media markets as well as land conservation spending 

decisions in Massachusetts and New Jersey municipalities. Using micro-level data on 

environmental events and behavior in difference-in-differences and dynamic regression 

discontinuity frameworks, I test whether: (1) hurricane strikes affect poverty levels in 

impacted counties, (2) tropical storms and hurricanes create a window of opportunity 

where the affected population is interested in taking action to mitigate against future 

costs, and (3) local municipal conservation actions cause crowd-in or crowd-out 

conservation behavior from the state and neighboring local governments.  The use of 

micro-level data (at the sub-state level) allows for the possibility of rigorous treatment 

identification that hold important implications for policymakers in all three settings. 
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PREFACE 

 I use a manuscript format for this dissertation that contains three independent 

chapters which when combined constitute the entire work. The first two of the chapters 

are being prepared for publication and the third chapter is currently under review for 

publication. The goal of this dissertation is to measure how communities respond to 

discrete environmental events over time. 

 The first chapter is an examination of indirect effects of hurricane strikes in the 

United States. We measure how hurricane strikes affect the poverty rates of impacted 

counties and how long the effect lasts. We find that hurricanes dynamically decrease 

county level poverty rates through two possible mechanisms – an increase in business 

activity and a decrease in population.  

 The second chapter is an examination of community engagement and interest in 

reducing future damage costs after experiencing a strong storm. We measure how tropical 

storm and hurricane strikes affect relative internet search activity for flood insurance of 

the populations in impacted media markets and how long the effect lasts. We find that 

tropical storms and hurricanes dynamically increase relative search activity for flood 

insurance.  

 The third chapter is an examination of state and local government responses to 

changes in local conservation policy. We measure how local municipal conservation 

policies crowd-in or crowd-out neighboring municipalities’ actions and state government 

conservation spending and how long the effect lasts. We find local municipal 

conservation decisions do not affect neighboring and municipality or state conservation 

activity. 
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 The three chapters are followed by a conclusion chapter that summarizes all three 

manuscripts. The appendices provide supplemental analysis to the main chapters that are 

not intended for publication.
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MANUSCRIPT 1 

The Effect of Hurricane Strikes on County Poverty Measurements in the United 

States 

(To be submitted to Environmental and Resource Economics) 

By 

Patrick Prendergast a and Emi Uchida a 

a Department of Environmental and Natural Resource Economics, University of Rhode 

Island, Kingston, RI 

Abstract 

The direct and indirect costs of hurricane strikes have been examined in prominent 

studies over the years, but little is known about how hurricanes affect poverty levels. This 

study uses a difference-in-differences approach to observe the dynamic within county 

variation of poverty levels from hurricane strikes in the United States. We find that 

hurricane strikes reduce overall county level poverty and the number of children in 

poverty until one and three years after a strike, respectively. To give context to this 

change, we also investigate dynamic changes in personal income, wages and salaries, 

total employment, and population. We observe an increase in per capita personal income 

and decreases in wages and salaries, total employment, and population. This implies the 

change in poverty levels after a hurricane may be due to a combination of labor and 

population dynamics. We also find families around the poverty line may be 

disproportionately more affected by hurricanes than other families. 
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1.1 INTRODUCTION 

Natural disasters such as hurricanes, tornadoes, wildfires, droughts, and freezes 

cause enormous environmental and economic damage in the United States. Since 1980, 

there have been 212 weather events where the overall damages have reached or surpassed 

$1 billion. In 2017 alone, there were 15 weather and climate disaster events with 282 

deaths and financial losses over $1 billion (NCEI, 2017). Despite the magnitude of these 

losses, we lack full understanding of the complete economic effects of natural disasters. 

Growing research has shown that a person’s socioeconomic status often determines 

vulnerability to natural disaster impacts (Fothergill and Peek 2004). This link between 

income and natural disaster impact leads to such questions as – do natural disasters affect 

the poverty levels in the areas they occur? What happens to economic activities? How do 

natural disasters affect the population of areas they hit over time? 

 We address these questions in the context of hurricanes that strike the United 

States. We use a panel of coastal counties in states that border the Atlantic Ocean and 

Gulf of Mexico to identify the dynamic effect hurricane strikes have on poverty levels 

over a course of seven to eight years after a storm. To give context to our findings, we 

also investigate the effect hurricane strikes have on per capita personal income, per capita 

wages and salaries, per capita total employment, and population. We find evidence that 

hurricane strikes reduce overall county level poverty and the number of children in 

poverty up until one and three years after the initial strike, respectively. We also observe 

that hurricane strikes increase personal income per capita, and decrease wages and 

salaries per capita, total employment per capita, and the population in the counties that 

get hit. Finally, we test the robustness of our results and observe that families around the 
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poverty line may be more vulnerable to hurricane strikes than families in other income 

groups. 

 The relationship between an area’s income and poverty with the costs that are 

incurred from natural disasters is well established. Many studies explicitly control for a 

country’s income level and in general find a negative relationship between income and 

natural disaster vulnerability, damages, and fatalities (Kahn 2005; Anbarci, Escaleras, 

and Register 2005; Toya and Skidmore 2007; Masozera, Bailey, and Kerchner 2007; 

Kellenberg and Mobarak 2008). Other studies note the importance of normalizing natural 

disaster damages by wealth when making comparisons over time (Pielke and Landsea 

1998, Brooks and Doswell 2000, Pielke et al. 2003, Pielke et al. 2008). Others investigate 

the role income has in adaptation to natural disaster damages as countries develop 

(Nordhaus 2010, Hsiang and Narita 2012, Fankhauser and McDermott 2014, Bakkensen 

and Mendelsohn 2016). Most studies agree that richer areas are not as negatively 

impacted by natural disasters as poor areas. 

While these studies are important for understanding the link between natural 

disasters and income, there are surprisingly few analyses that examine the direct effect 

natural disasters have on various poverty, income inequality, and human development 

measurements (Karim and Noy 2016). Studies that have done so either look at a single 

environmental event or measure poverty changes at a single point in time. These studies 

include the effect of El Niño on poverty at the household level in the Philippines (Datt 

and Hoogeveen 2003), the effect of experiencing a natural disaster on household poverty 

in Vietnam (Bui et al. 2014), the effect of Hurricane Mitch on people in poverty in the 

rural areas of Honduras (Morris et al. 2002), and the effect of a drought on poverty and 
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income inequality at the household level in Burkina Faso (Reardon and Taylor 1996). In 

a study that looks at the dynamic effects of natural disasters, Yamamura (2015) uses a 

panel of countries to observe changes in inequality over time. Yamamura observes floods 

increase a country’s Gini coefficient up until one year after the occurrence but does not 

find a dynamic effect for storms and earthquakes. 

Very few studies investigate the dynamic effect natural disasters have on poverty 

measurements within a single country. One study that is most related to this study in that 

regard is Rodriguez-Oreggia et. al (2013). The authors look at the effect of natural 

disasters on human development and poverty indices over time at the municipal level in 

Mexico. Using a two-period panel dataset, the authors use a fixed-effects model to 

estimate the treatment effect of a municipality experiencing a natural disaster on a human 

development index and various poverty indices. They find the occurrence of a natural 

disaster between 2000-2005 reduce the human development index by about 1% and 

increases poverty between 1.5 and 3.7% depending on the measure.  

Unfortunately, their dataset was not rich enough to disentangle the effects of 

individual natural disaster incidents instead of aggregate natural disaster treatment 

between 2000-2005. This means their treatment effect estimates could be influenced by 

events of different magnitudes or multiple natural disaster events hitting the same 

municipalities over their sample period. Their estimates might also not account for any 

recovery that happens after natural disasters that occur earlier in their sample. In this 

study, we overcome these limitations by observing effects on our dependent variables 

from individual storms, conditioned on past hits, while observing the dynamic effects 

over seven to eight years after the strike. 
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 The main contribution of this study is to examine the dynamic effects multiple 

hurricanes have on poverty levels within a country over time. Other studies have looked 

at the dynamic effect hurricanes on employment and earnings (Belasen and Polachek 

2009), government fiscal outcomes (Ouattara and Strobl 2013, Belasen and Dai 2014, 

Deryugina 2017), fertility (Evans, Hu, and Zhao 2010), economic and personal income 

growth (Strobl 2011, Hsiang and Jina 2014, Bakkensen and Barrage 2016), and of a 

single hurricane on economic impacts (Coffman and Noy 2011). However, to the best of 

our knowledge our study is the first to measure the effects of hurricanes on poverty levels 

over time within a single country. We follow in the footsteps of these studies by using a 

difference-in-differences approach that identifies the within-county variation of poverty 

levels and other outcome variables over time. 

1.2 DATA 

 This section describes the data sources we used for the different parts of our 

analysis: 1) dependent variables at the county level and 2) hurricane wind model for 

identifying “treated counties.” Data were collected for all coastal counties in the US 

states that border the Atlantic Ocean and Gulf of Mexico where dependent variables were 

compared between counties that were hit by a hurricane and those that were unaffected 

but are geographically close.1 

1.2.1 County Level Dependent Variables 

 The main dependent variables in our analysis are county level poverty estimates 

from the Small Area Personal Income and Poverty Estimates (SAIPE). SAIPE reports 

                                                           
1 The use of unaffected coastal counties in the 21 states that border the Atlantic Ocean and Gulf of 
Mexico as a control group is consistent with the literature. See Strobl (2011) as an example. 
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estimates of the amount of people in poverty of all ages, ages 0-17, ages 5-17, and under 

the age of five, as well as household median income. Data are reported at school district, 

county, and state levels for years 1989, 1993, and 1995-2015. We focus our analysis 

either on years 2005-2014 or 2006-2014 depending on the variable being analyzed.2 

Table 1.1 shows the summary statistics for the number of people of all ages in poverty 

(People in Poverty) and the number of school age children (ages 5-17) in poverty 

(Children in Poverty) for all the coastal counties in the sample. The average county had 

about 29,698 people in poverty and about 6,584 school age children in poverty. Poverty 

in coastal counties seem to occur at higher levels than the national averages for the same 

figures. Averages for all counties reported in the SAIPE dataset from 2005-2014 were 

about 14,000 people in poverty and 3,150 children in poverty. 

 To help give context to any observed changes to county poverty levels after a 

hurricane strike, we also investigate how hurricanes affect county level per capita 

personal income, wages and salaries per capita, total employment per capita, and 

population. We collected per capita personal income, wages and salaries, and total 

employment from the Bureau of Economic Analysis (BEA). From 2005-2014, average 

per capita personal income in coastal counties was about $40,500, average per capita 

wages and salaries was about $17,050, and average per capita total employment was 

about 0.5 (Table 1.1). Population data was collected from the National Cancer Institutes’ 

Surveillance, Epidemiology, and End Results Program (SEER). From 2005-2014, the 

                                                           
2 The US Census Bureau cautions against making year-to-year comparisons between certain years in the 
SAIPE dataset due to estimations based off different data sources (e.g. estimates based on the Census, 
Current Population Survey (CPS), or American Community Survey (ACS) surveys). Therefore, we limit our 
analysis to either years 2005-2014 or 2006-2014 depending on the dependent variable to reduce the 
probability identified variation in the data is coming from different survey methodologies. 
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average county had about 213,800 residents (Table 1.1). Again, the coastal counties in 

our sample have higher values than the national averages for per capita personal income 

($37,200), per capita wages and salaries ($14,580), and population (99,220). Average per 

capita total employment is right in line with the national average of 0.52, however. 

1.2.2 Hurricane Strike Treatment 

 Figure 1.1 shows the central storm tracks of the hurricanes included in our 

sample. We used the Regional and Mesoscale Meteorology Branch’s (RAMMB) 

Extended Best Track Dataset to identify which US coastal counties were affected by 

hurricanes from 1998-2014. Studies that identify hurricane strikes at a sub-national level 

in the United States typically either only identify treatment based on the area directly 

around the storm’s eye (e.g. Belasen and Polachek 2007), the radius of maximum wind 

(e.g. Deryugina 2017) or limits their analysis to hurricanes of category 3 or higher on the 

Saffir-Simpson scale (e.g. Strobl 2011). This could lead to some counties being 

misidentified as control units when they could have been affected by hurricanes further 

outside the radius of maximum wind or hurricane eye or by weaker hurricanes. Instead, 

we used the RAMMB’s Extended Best Track Dataset to estimate a complete wind field to 

identify the treatment of counties by hurricanes during the sample period. 3  

The Extended Best Tracks Dataset reports the latitude, longitude, maximum wind 

intensity, and minimum central pressure of the center of tropical cyclones as well as 

information about the storm structure such as the maximum radial extent of 34, 50, and 

64 knot winds in four quadrants at six-hour intervals from 1988-2015. We used the 

                                                           
3 Available at: 
http://rammb.cira.colostate.edu/research/tropical_cyclones/tc_extended_best_track_dataset/. Accessed 
December 2016. 
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latitude and longitude coordinates of the center of the storm and the reported radial wind 

distances to approximate the path of a complete wind field through the life of a 

hurricane4. We assumed the storm track and wind quadrant radii are linear between 

consecutive points and interpolated the storm path and wind strength radii to half hour 

intervals. We then used ArcGIS to create a hurricane wind field by interpolating between 

central storm maximum wind measurements and the 34, 50, and 64 knot wind extents. As 

an illustration, Figure 1.2 shows the complete wind field for the 2005 storm Katrina. We 

then determined the maximum wind speed each county was exposed to in a given year 

during our sample and qualified hurricane treatment as a county that was estimated to 

experience a hurricane strength of at least 64 knots. With our simulated wind fields, we 

are also able to identify coastal counties surrounding those that are affected by hurricane 

strength intensity that experience tropical storm strength intensity.5  

1.3 METHODOLOGY 

To estimate the impact hurricane strikes have on poverty levels in coastal 

counties, we use a difference-in-differences framework that compares the outcome 

variables of interest between treatment counties that get hit by a hurricane and unaffected 

coastal control counties over time. We observe yearly changes in our dependent variables 

either up to seven or eight years after a hurricane strike due to the dependent variable data 

restrictions mentioned in Section 1.2.  

                                                           
4 Any missing values for the radial extent of the 34, 50, and 64 knot winds were interpolated based from 
the minimum central pressure of the storm. 
5 Storm classification is based off the Saffir-Simpson scale which considers tropical storms wind speeds to 
be 34-63 knots and hurricane wind speeds to be above 64 knots. 
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While observing changes in poverty levels over time, we assume conditional 

convergence where counties with initially high levels of poverty will decrease faster over 

time than those with lower levels of poverty. Studies show that there is conditional 

convergence in global poverty levels (Cuaresma, Klasen, and Wacker 2016) and in 

personal income among counties within the United States (Higgins, Levy, and Young 

2006; James, Harrison, and Campbell 2013).  In the context of the effects of hurricanes, 

we follow Strobl (2011) and use a conditional convergence growth equation for our 

econometric model. Our model takes the following form: 

𝐺𝑟𝑜𝑤𝑡ℎ(𝑌𝑖,(𝑡−1)→𝑡) =  ∑[𝛽𝑡 × log(𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑖,(𝑡−𝑇))

𝑇

𝑡=0

] + 

∑[𝜌𝑡 × log(𝑇𝑟𝑜𝑝𝑖𝑐𝑎𝑙 𝑆𝑡𝑜𝑟𝑚 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑖,(𝑡−𝑇))] +

𝑇

𝑡=0

  

 𝛾𝑌𝑖,(𝑡−1) + 𝛼𝑖 +  𝛿𝑡 +  𝜃𝑖 × 𝑡 + 𝜖𝑖,𝑡          (1) 

where 𝐺𝑟𝑜𝑤𝑡ℎ(𝑌𝑖,(𝑡−1)→𝑡) is the growth rate of the dependent variable for county 𝑖 from 

time (𝑡 − 1) to time 𝑡, 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑖,(𝑡−𝑇) is the maximum wind speed of a 

hurricane county 𝑖 experienced in a 𝑡 − 𝑇 window, 𝑇𝑟𝑜𝑝𝑖𝑐𝑎𝑙 𝑆𝑡𝑜𝑟𝑚 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑖,(𝑡−𝑇) is 

the maximum tropical storm wind speed county 𝑖 experienced in a 𝑡 − 𝑇 window if they 

did not experience hurricane intensity, 𝛼𝑖 is a county fixed effect, 𝛿𝑡 is a time fixed 

effect, and 𝜃𝑖 × 𝑡 is a county-specific time trend. 6, 7 We perform a log(x + 1) 

transformation on 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑖,(𝑡−𝑇) and 𝑇𝑟𝑜𝑝𝑖𝑐𝑎𝑙 𝑆𝑡𝑜𝑟𝑚 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑖,(𝑡−𝑇) 

in order to preserve the “zero” values of the control coastal counties that neither 

                                                           
6 𝐺𝑟𝑜𝑤𝑡ℎ(𝑌𝑖,(𝑡−1)→𝑡) was calculated as the difference between log (𝑌𝑖,𝑡) and log (𝑌𝑖,(𝑡−1)). 
7 𝑌𝑖,(𝑡−1) is in logged terms. 



10 
 

experience hurricane nor tropical storm intensity winds from the hurricanes in our 

sample.  

The parameters of interest are the coefficients 𝛽𝑡 which show the marginal effect 

of maximum wind of a hurricane on the growth of our dependent variables in a 𝑡 − 𝑇 

window, conditioned on past hurricane strikes. Though they are of secondary importance 

to 𝛽𝑡, the parameters 𝜌𝑡  (𝑡 = 0, … , 𝑇) serve two purposes in our analysis. First, they 

allow us to examine and variation in the data between the unaffected control counties and 

counties that are further away from the hurricane intensity but are still affected by the 

tropical storm intensity parts of the hurricanes in our dataset. These coastal counties may 

not sustain the same wind damage of the counties that experience hurricane strength 

winds, but they still are at risk of flooding which could affect the outcome variables. 

Second, counties affected by the tropical storm intensity portion of hurricanes surround 

the counties that are affected by hurricane intensity. Allowing these counties to have their 

own slope gives us the opportunity to examine if counties that surround the ones affected 

by hurricane intensity experience upticks in population or business activities to 

compensate for those lost in the hurricane stricken coastal counties. 

 We take careful considerations in our analysis to control for issues that can arise 

from correlations between geographically close locations and using the same treatment 

and data to test multiple hypotheses. We use an Ordinary Least Squares estimator and 

correct the standard errors for spatial and time correlation (Conley 1999, Hsiang 2010). 

We follow Deryugina (2017) and allow for serial correlation of up to 5 years and spatial 

correlation between counties of up to 200 km. We also adjust the p-values of our 

coefficient estimates to reduce the probability of false rejection of null hypotheses across 
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a family of dependent (our outcome variables) and independent variables (the lags 

associated with hurricane strikes) (Veazie 2006).8 We adjust the p-values using a free 

step-down resampling method as outlined in Anderson (2008).9 

1.4 RESULTS 

We first use Equation (1) to investigate the effect of hurricane strikes on poverty 

levels for coastal counties in the United States. We also investigate the effect hurricane 

strikes have on per capita personal income, per capita wages and salaries, per capita total 

employment, and population. We then check the robustness of our results by expanding 

the sample of counties to all counties in the states that border the Atlantic Ocean and Gulf 

of Mexico and investigate how hurricane strikes affect family income distributions in 

counties that take part in the American Community Survey (ACS). 

1.4.1 Changes in Poverty After a Hurricane Strike 

 We find that hurricane strikes dynamically affect county poverty levels in the 

United States (Table 1.2 and Figure 1.3). Hurricane strikes have dynamic effects on the 

number of people in poverty (Column 1) and the number of children in poverty (Column 

2). Both measures of poverty show patterns of initial decreases in the first few years after 

a hurricane strike with increases later. Statistically significant coefficient estimates range 

from -0.0102 to 0.0059 for the number of people in poverty and -0.011 to 0.0071 for 

children in poverty. The interpretation of coefficient estimates from a hurricane that 

                                                           
8 For the purposes of p-value adjustments, we define a family of hypotheses as the matrix of hurricane 
strike lags and dependent variables they are used to explain. So, hurricane strike estimates were adjusted 
for 53 hypothesis tests (five dependent variables with nine lags of hurricane strikes plus eight lags for 
overall poverty). Tropical storm strength strikes are considered their own family of hypotheses and are 
also adjusted for 53 hypothesis tests. 
9 Stata code for p-value adjustment available at 
https://are.berkeley.edu/~mlanderson/ARE_Website/Research.html 
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struck a county a year ago is that with a 1% increase in hurricane maximum wind 

intensity there is expected to be a 1.02% decrease in the number of people in poverty and 

a 1.03% decrease in the number of children in poverty. 

 While these point estimates seem small, applying the effects to dependent variable 

mean values and assuming stronger storms quickly shows that these estimates are 

economically meaningful. Applied to the mean values presented in Table 1.1, a 1% 

increase in the maximum wind of an average hurricane of 73.56 knots that struck a 

typical county one year ago translates to a reduction of about 300 people in poverty and a 

reduction of about 68 children in poverty. Increasing the maximum wind of a hurricane 

by one standard deviation to 83.88 knots (an increase of about 13% from the logged 

values) would reduce the amount of people in poverty by about 3,900 people and the 

number of children in poverty by about 885 children. 

 Counties that miss getting hit by hurricane intensity winds but still get hit by the 

tropical storm strength winds further away from the eye of the storm also experience 

changes in poverty levels (Table 1.2 and Figure 1.3). These surrounding coastal counties 

do not experience the same initial dip in overall poverty as the counties that got hit by 

hurricane intensity, but they do experience similar increases in poverty levels that 

hurricane-stricken counties do five and six years after. Coastal counties also seem to 

experience an initial dip in the number of children in poverty after experiencing the 

tropical storm intensity winds of a hurricane. 

 The initial decreases in poverty levels in coastal counties that are affected by 

hurricanes is a new finding in the literature. Most studies that investigate the effect 

natural shocks have on poverty and inequality find they decrease human development 
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(Rodriguez-Oreggia et al. 2013), increase poverty (Datt and Hoogeveen 2003), and 

increase inequality (Reardon and Taylor 1996, Bui et al. 2014, Yamamura 2015) in the 

areas they occur. To investigate why we observe different poverty outcomes than what is 

typical in the literature, we observe the effect hurricanes have on other outcome 

variables. 

1.4.2 Changes in Personal Income after a Hurricane Strike 

 We find that hurricane strikes affect per capita personal income, wages and 

salaries, and total employment (Table 1.2 and Figure 1.3). Per capita personal income 

(Column 3) increases immediately after a hurricane hits and lasts for two years 

afterwards before a noticeable decrease that starts around four years after the hurricane 

strike. Estimates range from an increase of 0.31% and 0.5% during the first two years 

after a hurricane hits to decreases between 0.16% and 0.21% between four and eight 

years after a hurricane strike for a 1% increase in maximum wind. Applied to the mean 

value of $40,447 per capita and increasing the maximum wind speed of a hurricane by 

one standard deviation would result in annual personal income increases between $1,625-

$2,625 per capita and then decreases between $845-$1,105 per capita between four and 

eight years after the strike of a coastal county. Personal income per capita also changes in 

the surrounding counties that are affected by the tropical storm intensity portions of 

hurricanes. In these areas, personal income per capita raises at a smaller magnitude than 

the hurricane-stricken counties, but growth stays positive for longer until turning negative 

in the eighth year after a strike. 

This initial increase in personal income per capita of counties that are affected by 

a hurricane before a later decrease is also a new finding in the literature. In analyzing the 
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effect of only strong hurricanes on personal income in coastal counties in the United 

States from 1970-2005, Strobl (2011) finds evidence of an initial decrease in personal 

income per capita with no lasting effect up to five years after the strike. Differences 

between our results and that of Strobl may be due to different time periods of our datasets 

(our dependent variable measurements start where his ends), the fact that we included all 

hurricanes instead of just those of category 3 or higher, or that we use more recently 

updated BEA data.10 In contrast, Coffman and Noy (2011) find that Hurricane Iniki 

decreased total personal income but did not seem to affect per capita personal income in 

Kauai County in Hawaii.  

1.4.3 Changes in Salaries and Wages and Total Employment after a Hurricane Strike 

 Per capita wages and salaries (Column 4) and per capita total employment 

(Column 5) follow a similar trend as personal income per capita by initially increasing 

after a hurricane strike before decreasing over time. Applied to the means of wages and 

salaries per capita and total employment per capita from Table 1.1, a one standard 

deviation increase in the maximum wind speed of a hurricane would increase wages and 

salaries by about $730 per capita the year of the strike before annual decreases between 

$440-$1,175 per capita from two to eight years after. Also, total employment per capita 

would increase between 0.014 and 0.017 jobs per capita up to one year after a hurricane 

strike before annual decreases between 0.006 and 0.012 jobs per capita between three and 

eight years after a hurricane strike. Surrounding coastal counties that experience tropical 

                                                           
10 In 2014, BEA revised it’s estimates for personal income data due to methodological improvements. 
Information can be found at: 
https://www.bea.gov/scb/pdf/2015/12%20December/1215_local_area_personal_income.pdf 
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storm intensity winds also experience initial increases in wages and salaries and total 

employment, though at a lower magnitude, before experiencing decreases later. 

 The gradual decrease in employment and wages in areas directly hit by hurricanes 

is consistent with other findings in the literature. Coffman and Noy (2011) find Hurricane 

Iniki decreased private sector employment in the county that was affected. Belasen and 

Polachek (2009) find that Florida counties that are directly hit by a hurricane experience 

an immediate growth in earnings and employment before a downturn. Unlike Belasen 

and Polachek, we find surrounding counties that experience tropical storm intensity of the 

hurricanes follow the same general pattern as the counties hit by hurricanes, but at a 

smaller magnitude. 

1.4.4 Changes in Population after a Hurricane Strike 

 We also find that hurricane strikes affect county level population (Table 1.2 and 

Figure 1.3). Population (Column 6) decreases in coastal counties over time after a 

hurricane strike. Statistically significant coefficient estimates show annual decreases that 

range from .08% to 0.12% within the eight-year lags we test. With a one standard 

deviation increase in max wind speed, this translates to annual decreases in population 

between 2,225-3,335 people for a typical coastal county. Coffman and Noy (2011) also 

find evidence of a dynamic decrease in county population after a hurricane strike.  

Interestingly, the surrounding coastal counties that experience tropical storm 

intensity winds show statistically significant increases in population three to seven years 

after a hurricane strike. These increases in population for the surrounding coastal counties 

coincide with decreases in employment per capita and wages and salaries per capita and 

occur after the population decrease in hurricane affected counties which suggests there 
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may be a labor shock in the surrounding counties that are driving down employment and 

wages per capita. 

1.4.3 Robustness of Results 

 We test the robustness of our findings by examining if results are sensitive to 

changes in the county control group and if analyzing additional data results in the same 

conclusions.11 First, we expand the number of counties that are in the control group. Up 

until this point, coastal counties that border the Atlantic Ocean and Gulf of Mexico have 

been analyzed where changes in outcome variables over time have been compared 

between coastal counties that experience hurricanes (or tropical storm strength intensity 

of those hurricanes) and coastal counties that were not affected by hurricanes in our 

sample period. We re-estimate Equation (1) with the inclusion of all the counties in the 

21 states that border the Atlantic Ocean and Gulf of Mexico (Table 1.3 and Figure 

1.4).12,13  

Results show nearly identical post storm trends as those reported in Table 1.2 and 

Figure 1.3 for coastal counties. The main differences between the two sets of results are 

that the model fits slightly decrease, and some coefficient estimates lose significance 

when the control group is expanded. Our main conclusions hold, however. Hurricanes 

still appear to decrease overall poverty up to one year after the strike, the number of 

                                                           
11 The p-values of the robustness check results are also adjusted for multiple hypothesis testing but are 
considered separate families of hypotheses than our main results because they are performed on 
different samples of counties (e.g. all counties in states that boarder the Atlantic Ocean and Gulf of 
Mexico or counties that take part in the American Community Survey vs. just coastal counties). 
12 Using all the counties that are unaffected by hurricanes in the states that border the Atlantic Ocean and 
Gulf of Mexico that as a control group is consistent with the literature. See Deryugina (2017) as an 
example. 
13 These states are Alabama, Connecticut, Delaware, Florida, Georgia, Louisiana, Massachusetts, Maine, 
Maryland, Mississippi, New Hampshire, New Jersey, New York, North Carolina, Pennsylvania, Rhode 
Island, South Carolina, Texas, Vermont, Virginia, and West Virginia. 
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children in poverty decreases over the first three years after, personal income per capita 

increases before decreasing later, wages and salaries decrease over time, total 

employment per capita increases at first, and population decreases over time. Statistical 

significance in the surrounding counties that are affected by tropical storm intensity 

portions of hurricanes is a little sparser than our previous estimates, but clear patterns of a 

reduction in the number of children in poverty and an increase in population in the years 

following the storm remain. 

Second, we test the robustness of our main poverty results on additional data. Of 

the two main poverty outcome variables we analyze, the reduction of the number of 

children in poverty that results from hurricane strikes both lasts longer than changes in 

overall poverty and is more robust to control group changes. This suggests families 

around the poverty line may be a group of people that are consistently affected by 

hurricanes. To further test if families around the poverty line are affected by hurricanes 

more than families with more income, we re-estimate Equation (1) with data on family 

income distribution from the American Community Survey (ACS). The ACS provides 

estimates of the number of families in specified income bins for a sample of counties in 

each state from 2007-2013.14 We estimate how hurricanes affect the number of families 

in these income bins for coastal counties that take part in the ACS (Table 1.4) and all 

ACS counties in coastal states (Table 1.5). What becomes immediately clear from 

comparing results in these two tables is the robustness of the decrease of number of 

families in the $15,000-$24,999 income bin. According to the U.S. Department of Health 

and Human Services, families in this income bin were considered below the poverty line 

                                                           
14 We use the 3-year estimates from the ACS because 5-year estimates are not available before 2010. 
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in 2013 if they had at least three people in the family.15 This reduction of families in an 

income bin that would be considered below the poverty line after a hurricane strike is 

consistent with a reduction of children in poverty and an initial increase in personal 

income per capita we observed in our main results. 

1.5 CONCLUSION 

From Katrina in 2005 to Harvey and Irma in 2017, hurricanes have caused large 

destruction in the United States. Often the severity of a hurricane strike is determined by 

the direct costs such as fatalities and capital damages. Indirect costs such as economic 

growth, government finances, and employment in the aftermath of hurricane strikes have 

been studied in the literature, but only a few examine the effect on poverty. We 

contribute to the literature by analyzing the dynamic effects hurricanes have on poverty 

within coastal counties in the United States, an analysis that has not been done before. 

We use a difference-in-differences model, while correcting standard errors for spatial and 

time correlation, to observe within county variation in poverty levels after a hurricane 

strike over time. 

We find hurricane strikes cause statistically significant changes to poverty at the 

county level. Results suggest overall county level poverty decreases between 0.5 to 1% 

for each year from the hurricane strike until two years after and the poverty levels of 

children between the ages of 5 and 17 decrease between 0.6 and 1.1% for each year from 

the hurricane strike until three years after. We also show there is somewhat of a “rebound 

                                                           
15 Information available at: https://aspe.hhs.gov/2013-poverty-guidelines 
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effect” later on where the number of people in poverty and children in poverty increase 

starting five years after a hurricane hit. 

Drawing any broad conclusions from analysis using aggregated data inevitably 

requires a certain level of ecological inference. With hurricanes also affecting income per 

capita, wages and salaries per capita, total employment per capita, and population, it is 

not entirely clear if county poverty levels decrease at first due to spurring business 

activity involved with initial cleanup or by displacing people that are poor to other 

counties. Our robustness analysis on how hurricanes affect the income distribution of 

families in counties that are hit suggests it is the latter – perhaps there is a reduction in the 

number of people and children in poverty because families around the poverty line face 

more incentive to leave damaged areas to seek employment elsewhere. 

This analysis does not propose any recommendations on how to mitigate indirect 

costs of hurricanes in the United States. It does, however, provide evidence that 

hurricanes can affect areas in which they occur differently than what would be expected 

and what the literature suggests by dynamically decreasing poverty levels. Further 

research can focus on individual data to investigate if decreases in county poverty levels 

and increases in personal income are primarily being driven by the outmigration of 

people in poverty after a hurricane strike. Future research could also focus on families 

around the poverty line and investigate if they are, indeed, more vulnerable to natural 

shocks than other families or single people in poverty. 
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Figure 1.1: Tracks of Hurricanes that Affected US Counties 1998-2014 

 

Notes: Figure shows the central storm paths of all hurricanes that were estimated to pass over coastal counties (blue) or other 

counties in coastal states that border the Atlantic Ocean and Gulf of Mexico (gray). 



 

 
 

2
4

 

Figure 1.2: Hurricane Katrina (2005) Wind Field Estimation 

 

Notes: Figure shows the estimated wind field of Hurricane Katrina with pixelated values of wind speed measured in knots. 
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Figure 1.3: The Dynamic Effect of Hurricane Strike on Coastal Counties that Border the Atlantic Ocean and Gulf of Mexico 

 

Notes: Graphs show point estimates from Equation (1) and 95% confidence intervals. Standard errors are corrected for spatial correlation up to 200 

km around a county's centroid and time correlation up to 5 years. P-values are further adjusted for multiple hypothesis testing. Controls include a 

one-year lag of the dependent variable, county fixed effects, year fixed effects, and a county-year time trend.
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Figure 1.4: The Dynamic Effect of Hurricane Strike on Counties in States that Border the Atlantic Ocean and Gulf of Mexico 

 

Notes: Graphs show point estimates from Equation (1) and 95% confidence intervals. Standard errors are corrected for spatial correlation up to 200 

km around a county's centroid and time correlation up to 5 years. P-values are further adjusted for multiple hypothesis testing. Controls include a 

one-year lag of the dependent variable, county fixed effects, year fixed effects, and a county-year time trend.
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Table 1.1: Summary Statistics for County Level Variables 

Variable Sample Description Source Mean Std. Dev. 

Max Wind 1998-2014 Maximum sustained wind of a county in a given year RAMMB 73.56 10.32 

People in Poverty 2006-2014 Number of people in poverty SAIPE 29,698 66,105 

Children in Poverty 2005-2014 Number of children ages 5 to 17 in poverty SAIPE 6,584 15,789 

Personal Income 2005-2014 Per capita personal income ($) BEA 40,447 13,335 

Wages and Salaries 2005-2014 Per capita wages and salaries ($) BEA 17,049 1,922 

Total Employment 2005-2014 Per capita jobs BEA 0.50 0.16 

Population 2005-2014 County residents SEER 213,801 387,583 

Notes: Summary statistics for Max Wind reported for non-zero values. 
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Table 1.2: Dynamic Effect of Hurricane Strike on Coastal Counties 

 (1) (2) (3) (4) (5) (6) 

VARIABLES 

People in  

Poverty 

Children 

in  

Poverty 

Personal  

Income 

Wages 

and  

Salaries 

Total  

Employ Population 

              

Max Wind (H)       
Concurrent Year -0.007** -0.011*** 0.005*** 0.003** 0.002** -0.000 

 (0.003) (0.002) (0.001) (0.001) (0.001) (0.000) 

1 Year Ago -0.010** -0.010** 0.003** -0.001 0.003*** -0.001*** 

 (0.004) (0.004) (0.001) (0.001) (0.001) (0.000) 

2 Years Ago -0.005 -0.009*** 0.004*** -0.002* 0.001 -0.001*** 

 (0.004) (0.003) (0.001) (0.001) (0.001) (0.000) 

3 Years Ago -0.004 -0.006** 0.000 -0.005*** -0.001* -0.000 

 (0.003) (0.003) (0.001) (0.001) (0.001) (0.000) 

4 Years Ago 0.000 0.000 -0.002* -0.004*** -0.002** -0.000 

 (0.003) (0.003) (0.001) (0.001) (0.001) (0.000) 

5 Years Ago 0.005* 0.005* -0.002* -0.005*** -0.002** -0.000 

 (0.003) (0.003) (0.001) (0.001) (0.001) (0.000) 

6 Years Ago 0.006** 0.007** -0.002* -0.003*** -0.001* -0.000 

 (0.002) (0.003) (0.001) (0.001) (0.001) (0.000) 

7 Years Ago 0.001 0.001 -0.002** -0.004*** -0.001* -0.000 

 (0.002) (0.002) (0.001) (0.001) (0.001) (0.000) 

8 Years Ago  0.004** -0.002** -0.002** -0.001* -0.001** 

  (0.002) (0.001) (0.001) (0.001) (0.000) 

Max Wind (TS)       
Concurrent Year 0.000 -0.002 0.002*** 0.001* 0.001* 0.000 

 (0.002) (0.002) (0.001) (0.001) (0.000) (0.000) 

1 Year Ago -0.001 -0.004* 0.001 -0.001 0.000 0.000 

 (0.002) (0.002) (0.001) (0.001) (0.000) (0.000) 

2 Years Ago -0.000 -0.005* 0.002* 0.002* 0.001** 0.000 

 (0.002) (0.002) (0.001) (0.001) (0.000) (0.000) 

3 Years Ago -0.000 -0.007*** 0.002** 0.000 0.000 0.001* 

 (0.002) (0.002) (0.001) (0.001) (0.000) (0.000) 

4 Years Ago 0.003 -0.000 -0.001 -0.001 -0.001** 0.001** 

 (0.002) (0.002) (0.001) (0.001) (0.000) (0.000) 

5 Years Ago 0.005** 0.001 0.002** -0.002*** -0.002*** 0.001** 

 (0.002) (0.002) (0.001) (0.001) (0.000) (0.000) 

6 Years Ago 0.005** 0.000 0.001 -0.001 -0.001** 0.001* 

 (0.002) (0.002) (0.001) (0.001) (0.000) (0.000) 

7 Years Ago 0.002 -0.002 0.001 -0.001* -0.000 0.001*** 

 (0.002) (0.002) (0.001) (0.001) (0.000) (0.000) 

8 Years Ago  -0.000 -0.001** -0.000 -0.000 0.000 

  (0.001) (0.000) (0.001) (0.000) (0.000) 
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Table 1.2: (continued) 

Initial Value       
Dep. Var. (t-1) -1.117*** -1.065*** -0.784*** -0.661*** -0.756*** -1.087*** 

 (0.0242) (0.0248) (0.0604) (0.0674) (0.0793) (0.0706) 

       
Observations 3,448 3,879 3,879 3,879 3,879 3,879 

R-squared 0.67 0.6727 0.663 0.6357 0.6996 0.9179 

Adjusted R-squared 0.5559 0.5754 0.5627 0.5274 0.6103 0.8935 

Within R-squared 0.5682 0.5585 0.51 0.3849 0.4624 0.8846 

Notes: Dependent variable units are in log differences. Maximum wind and initial values are in log 

transformations. Standard errors are shown in parentheses and are corrected for spatial correlation up 

to 200 km around a county's centroid and time correlation up to 5 years. P-values are further adjusted 

for multiple hypothesis testing. Controls include county fixed effects, year fixed effects, and a 

county-year time trend. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, 

respectively. 
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Table 1.3: Dynamic Effect of Hurricane Strike on all Counties in Coastal States 

  (1) (2) (3) (4) (5) (6) 

VARIABLES 

People in  

Poverty 

Children 

in  

Poverty 

Personal  

Income 

Wages and  

Salaries 

Total  

Employ Population 

              

Max Wind (H)       
Concurrent Year -0.006* -0.011*** 0.004*** 0.002 0.002* -0.000 

 (0.003) (0.002) (0.001) (0.001) (0.001) (0.000) 

1 Year Ago -0.010** -0.011*** 0.002* -0.000 0.003*** -0.001*** 

 (0.004) (0.004) (0.001) (0.001) (0.001) (0.000) 

2 Years Ago -0.006 -0.010*** 0.004*** -0.002 0.001 -0.001* 

 (0.003) (0.003) (0.001) (0.001) (0.001) (0.000) 

3 Years Ago -0.004 -0.006* 0.001 -0.004*** -0.001 -0.000 

 (0.003) -0.003 (0.001) (0.001) (0.001) (0.000) 

4 Years Ago -0.002 -0.003 -0.000 -0.003** -0.001 -0.000 

 (0.003) (0.003) (0.001) (0.001) (0.001) (0.000) 

5 Years Ago 0.001 -0.000 -0.001 -0.004*** -0.001 -0.001 

 (0.003) (0.003) (0.001) (0.001) (0.001) (0.000) 

6 Years Ago 0.002 0.001 -0.001 -0.002 -0.000 -0.001* 

 (0.002) (0.003) (0.001) (0.001) (0.001) (0.000) 

7 Years Ago -0.000 -0.001 -0.001 -0.003*** -0.001 -0.000 

 (0.002) (0.003) (0.001) (0.001) (0.001) (0.000) 

8 Years Ago  0.002 -0.002** -0.002 -0.001 -0.001*** 

  (0.002) (0.001) (0.001) (0.001) (0.000) 

Max Wind (TS)       
Concurrent Year 0.000 -0.002 0.001 -0.000 0.000 0.000 

 (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) 

1 Year Ago -0.000 -0.004** -0.000 -0.001 0.000 0.000* 

 (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) 

2 Years Ago 0.000 -0.004* 0.000 0.001 0.001** 0.000 

 (0.002) (0.002) (0.001) (0.001) (0.000) (0.000) 

3 Years Ago -0.001 -0.006*** 0.001 0.000 0.000 0.000* 

 (0.002) (0.001) (0.001) (0.001) (0.000) (0.000) 

4 Years Ago -0.000 -0.002* -0.001 -0.001 -0.001* 0.000** 

 (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) 

5 Years Ago 0.001 -0.001 0.002** -0.002* -0.001* 0.000* 

 (0.001) (0.002) (0.001) (0.001) (0.000) (0.000) 

6 Years Ago -0.000 -0.004* 0.001 -0.001 -0.001* 0.000* 

 (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) 

7 Years Ago 0.001 -0.002 0.001 -0.001 0.000 0.001** 

 (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) 

8 Years Ago  0.001 0.000 0.001 0.000 0.000 

  (0.001) (0.000) (0.001) (0.000) (0.000) 
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Table 1.3: (continued) 

Initial Value       
Dep. Var. (t-1) -1.129*** -1.063*** -0.893*** -0.607*** -0.658*** -0.976*** 

 (0.0153) (0.0157) (0.0336) (0.0326) (0.0382) (0.0894) 

       
Observations 9,752 10,971 10,971 10,971 10,971 10,971 

R-squared 0.6549 0.6578 0.6251 0.5788 0.6256 0.8408 

Adjusted R-squared 0.5383 0.5586 0.5164 0.4568 0.517 0.7946 

Within R-squared 0.5676 0.539 0.4958 0.3201 0.3612 0.743 

Notes: Dependent variable units are in log differences. Maximum wind and initial values are in log 

transformations. Standard errors are shown in parentheses and are corrected for spatial correlation up 

to 200 km around a county's centroid and time correlation up to 5 years. P-values are further adjusted 

for multiple hypothesis testing. Controls include county fixed effects, year fixed effects, and a 

county-year time trend. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, 

respectively. 
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Table 1.4: Dynamic Effect of Hurricane Strike on Income Distribution in ACS Coastal Counties 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

VARIABLES 

< 

$10,000 

$10,000 -  

$14,999 

$15,000 - 

$24,999 

$25,000 - 

$34,999 

$35,000 - 

$49,999 

$50,000 - 

$74,999 

$75,000 - 

$99,999 

$100,000 - 

$149,999 

$150,000 - 

$199,999 

> 

$200,000 

                      

Max Wind (H)           
Concurrent Year 0.004 -0.003 -0.013* -0.001 -0.010** -0.003 -0.001 0.001 -0.013 0.006 

 (0.009) (0.008) (0.006) (0.004) (0.003) (0.003) (0.003) (0.004) (0.007) (0.011) 

1 Year Ago 0.010 0.004 -0.023*** 0.000 -0.009* -0.002 -0.000 0.004 -0.009 0.024* 

 (0.009) (0.007) (0.006) (0.004) (0.004) (0.003) (0.003) (0.004) (0.007) (0.009) 

2 Years Ago -0.003 -0.011 -0.019** -0.000 -0.010** 0.000 0.005 0.005 0.005 0.024* 

 (0.010) (0.007) (0.006) (0.005) (0.004) (0.004) (0.004) (0.004) (0.009) (0.010) 

3 Years Ago 0.007 -0.007 -0.020*** -0.001 -0.010*** -0.000 -0.004 0.011** 0.001 0.017* 

 (0.007) (0.007) (0.004) (0.003) (0.003) (0.004) (0.003) (0.004) (0.006) (0.009) 

4 Years Ago 0.006 0.001 -0.008* 0.005 0.001 0.002 0.000 0.009** 0.006 0.005 

 (0.005) (0.005) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.006) (0.007) 

5 Years Ago 0.011 -0.002 -0.001 0.001 -0.001 0.004 -0.001 0.007* -0.000 -0.004 

 (0.005) (0.004) (0.004) (0.003) (0.002) (0.002) (0.003) (0.003) (0.006) (0.006) 

Max Wind (TS)           
Concurrent Year 0.010 0.004 0.004 0.007* -0.007** -0.003 -0.001 0.001 -0.010 0.020* 

 (0.007) (0.006) (0.003) (0.003) (0.002) (0.002) (0.002) (0.003) (0.007) (0.008) 

1 Year Ago 0.010 0.005 0.007* 0.005 -0.004 -0.003 0.000 0.002 -0.005 0.029*** 

 (0.007) (0.005) (0.003) (0.003) (0.002) (0.002) (0.002) (0.003) (0.007) (0.007) 

2 Years Ago 0.008 -0.001 0.005 0.002 -0.005* -0.001 0.001 -0.003 -0.004 0.023** 

 (0.008) (0.006) (0.003) (0.003) (0.002) (0.002) (0.003) (0.003) (0.006) (0.007) 

3 Years Ago 0.017* 0.001 0.000 0.005* 0.000 -0.001 -0.002 -0.001 -0.008 0.013* 

 (0.007) (0.004) (0.003) (0.002) (0.002) (0.002) (0.002) (0.003) (0.006) (0.006) 

4 Years Ago -0.002 -0.001 0.002 0.002 0.004* -0.002 -0.003 0.001 -0.004 0.007 

 (0.005) (0.003) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.004) (0.005) 

5 Years Ago -0.001 -0.001 0.001 0.000 0.004** -0.001 -0.004** -0.000 -0.008* -0.000 

 (0.004) (0.003) (0.002) (0.002) (0.001) (0.001) (0.001) (0.002) (0.003) (0.004) 
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Table 1.4: (continued) 

Initial Value           
Dep. Var. (t-1) -0.734*** -0.972*** -0.916*** -0.924*** -0.912*** -0.941*** -0.917*** -0.923*** -0.945*** -0.903*** 

 (0.136) (0.0333) (0.0384) (0.0330) (0.0372) (0.0371) (0.0379) (0.0366) (0.0485) (0.0589) 

           
Observations 2,133 2,133 2,133 2,133 2,133 2,133 2,133 2,133 2,133 2,133 

R-squared 0.5082 0.6449 0.6247 0.6227 0.6345 0.6203 0.6381 0.6682 0.6887 0.6419 

Adjusted R-

squared 0.2512 0.4593 0.4286 0.4256 0.4436 0.4219 0.449 0.4948 0.5261 0.4547 

Within R-

squared 0.3336 0.5076 0.4664 0.4697 0.489 0.4778 0.4745 0.4817 0.517 0.4456 

Notes: Dependent variable units are in log differences. Maximum wind and initial values are in log transformations. Standard errors are shown in 

parentheses and are corrected for spatial correlation up to 200 km around a county's centroid and time correlation up to 5 years. P-values are further 

adjusted for multiple hypothesis testing. Controls include county fixed effects, year fixed effects, and a county-year time trend. *, **, and *** 

indicate statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Table 1.5: Dynamic Effect of Hurricane Strike on Income Distribution in ACS Counties in Coastal States 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

VARIABLES 

< 

$10,000 

$10,000 -  

$14,999 

$15,000 - 

$24,999 

$25,000 - 

$34,999 

$35,000 - 

$49,999 

$50,000 - 

$74,999 

$75,000 - 

$99,999 

$100,000 - 

$149,999 

$150,000 - 

$199,999 

> 

$200,000 

                      

Max Wind (H)           
Concurrent Year 0.004 -0.001 -0.012* -0.001 -0.005 -0.000 -0.004 0.001 -0.001 -0.013 

 (0.008) (0.007) (0.005) (0.004) (0.003) (0.003) (0.003) (0.004) (0.006) (0.010) 

1 Year Ago 0.008 0.001 -0.022*** -0.000 -0.004 0.001 -0.004 0.004 0.003 0.009 

 (0.008) (0.007) (0.005) (0.004) (0.003) (0.003) (0.003) (0.004) (0.006) (0.008) 

2 Years Ago -0.001 -0.017* -0.016** 0.001 -0.005 0.001 0.001 0.006 0.014 0.014 

 (0.010) (0.007) (0.006) (0.004) (0.004) (0.004) (0.004) (0.004) (0.007) (0.009) 

3 Years Ago 0.007 -0.001 -0.020*** -0.004 -0.009** 0.005 -0.007** 0.010** 0.01 0.009 

 (0.006) (0.007) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.006) (0.008) 

4 Years Ago 0.008* 0.002 -0.007* 0.005 0.000 0.006** -0.001 0.009** 0.008 0.005 

 (0.005) (0.005) (0.003) (0.003) (0.002) (0.002) (0.003) (0.003) (0.005) (0.007) 

5 Years Ago 0.007 -0.002 -0.003 0.001 -0.002 0.005 -0.001 0.008** -0.006 0.005 

 (0.005) (0.004) (0.004) (0.003) (0.002) (0.002) (0.003) (0.002) (0.005) (0.007) 

Max Wind (TS)           
Concurrent Year 0.013** 0.002 0.002 0.005* -0.003 -0.001 -0.001 -0.001 0.008 0.005 

 (0.005) (0.004) (0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.004) (0.005) 

1 Year Ago 0.014** 0.003 0.003 0.006** -0.001 -0.001 -0.001 -0.001 0.016*** 0.01 

 (0.005) (0.004) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.004) (0.005) 

2 Years Ago 0.011 -0.008 0.003 0.004 -0.002 0.002 0.000 -0.004 0.019*** 0.005 

 (0.006) (0.005) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.004) (0.005) 

3 Years Ago 0.020*** -0.004 -0.002 0.005** 0.002 -0.001 -0.003 -0.003 0.009 -0.000 

 (0.005) (0.004) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.005) (0.005) 

4 Years Ago 0.006 0.001 0.002 0.002 0.002 -0.002 -0.001 -0.002 0.002 0.001 

 (0.003) (0.003) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.004) (0.004) 

5 Years Ago 0.000 -0.002 0.000 -0.001 0.002 -0.001 -0.002 -0.000 -0.009** -0.001 

 (0.003) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.004) 
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Table 1.5: (continued) 

Initial Value           
Dep. Var. (t-1) -0.828*** -0.970*** -0.903*** -0.929*** -0.919*** -0.938*** -0.935*** -0.927*** -1.027*** -0.930*** 

 (0.0735) (0.0211) (0.0229) (0.0209) (0.0225) (0.0230) (0.0232) (0.0259) (0.0527) (0.0337) 

           
Observations 5,026 5,026 5,026 5,026 5,026 5,026 5,026 5,026 5,026 5,026 

R-squared 0.5626 0.6344 0.6199 0.608 0.6285 0.6167 0.6344 0.6722 0.659 0.659 

Adjusted R-

squared 0.3387 0.4472 0.4253 0.4073 0.4383 0.4204 0.4473 0.5044 0.4844 0.4844 

Within R-

squared 0.3997 0.5032 0.452 0.4656 0.4791 0.4804 0.4791 0.4914 0.5466 0.5466 

Notes: Dependent variable units are in log differences. Maximum wind and initial values are in log transformations. Standard errors are shown in 

parentheses and are corrected for spatial correlation up to 200 km around a county's centroid and time correlation up to 5 years. P-values are further 

adjusted for multiple hypothesis testing. Controls include county fixed effects, year fixed effects, and a county-year time trend. *, **, and *** indicate 

statistical significance at the 10%, 5%, and 1% levels, respectively. 
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MANUSCRIPT 2 

Is There a Window of Opportunity for Future Damage Mitigation After a 

Hurricane Strike? Evidence from Google Search Terms 

(To be submitted to Climatic Change) 

By 

Patrick Prendergast a and Emi Uchida a 

a Department of Environmental and Natural Resource Economics, University of Rhode 

Island, Kingston, RI 

Abstract 

Climate events such as hurricanes, droughts, floods, and tornados can cause billions of 

dollars in damages per year in the United States. Environmental damage cost mitigation 

strategies will need to be enacted at both the individual and community levels and depend 

on supportive and engaged voters and stakeholders to be effective. We test whether storm 

experience increases the attention a common cost mitigating strategy is given in a panel 

of media markets. We find that tropical storm and hurricane strikes cause statistically 

significant positive and dynamic changes to the relative internet search popularity of 

flood insurance in the areas they affect. We believe these results are useful to 

policymakers that want to take advantage of a window of opportunity to propose 

environmental damage mitigating policies where people are more engaged and willing to 

learn about mitigation measures soon after experiencing a storm. 
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2.1 INTRODUCTION 

Every year, vulnerable communities in the United States are negatively affected 

by climatic events. Perhaps this fact has never been more salient than in 2017 when U.S. 

experience a record breaking $306.2 billion in cumulative damage costs from weather 

and climate events (NOAA 2018). Hurricanes were the most notable of these events with 

Harvey, Maria, and Irma accounting for about 85% of total costs. Unfortunately, 

hurricane damages are expected to increase in future years from an increased probability 

of major hurricanes due to climate change and continued coastal development along the 

East and Gulf coasts (CBO 2016). Research suggests collective community actions can 

be a key component of mitigating storm damage costs through actions like conserving 

coastal wetlands (Costanza et al. 2008), land use planning (Burby et al. 2000), and 

improved building codes (Leatherman et al. 2007). The success of such actions depends 

on community stakeholder cooperation and support. Attaining efficient and equitable 

protection from natural hazard damage means taking advantage of policy opportunities 

when support is most likely to be highest. 

 Our goal is to test whether there is a window of opportunity where people in 

communities affected by tropical storms and hurricanes might be more interested in 

acting to mitigate against potential future weather damages. We use Google Trends data 

of internet searches for the term flood insurance as a proxy for public interest in taking 

mitigating action. Using a panel of 170 designated media areas (DMAs) in the contiguous 

United States, we observe how the experience of tropical storms and hurricanes 

dynamically affect the relative popularity of monthly searches for flood insurance from 

2004-2014. Results indicate that experiencing a storm increases search interest during the 
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concurrent month and up to two months after. We also find a statistically significant 

increase in search interest in the months leading up to the one-year anniversary of a 

storm, indicating people may be anticipating potential damages of the hurricane season 

after a recent experience. 

 Certain events can trigger a window of opportunity for new policy support 

(Kingdon 1984). In the case of weather and climatic events, many studies have noted that 

there is a window of opportunity soon after a major disaster where there is likely to be 

support for future hazard mitigating policies (Prater and Lindell 2000; Pelling and Dill 

2006; Birkmann et al. 2010; McSweeney and Coomes 2011). While it is certainly 

important for policymakers to note this opening after a rare event, less is known about 

more regularly occurring environmental phenomena like tropical storms and hurricanes 

that occur on a yearly basis. By including both tropical storms and hurricanes in our 

analysis, we are able to test if there is a generalizable increase in damage mitigation 

interest that extends beyond catastrophic natural disasters. 

Purchasing flood insurance is one of the most straightforward ways to mitigate 

against future weather-related costs. It is an action that individuals can take on their own 

that has relatively immediate effects compared to changing development patterns, 

retrofitting homes to withstand flood damage, or waiting for policymakers to propose 

coastal wetland protection and restoration. Flood insurance premium rates have also 

historically been heavily subsidized where costs to policyholders often did not reflect 

actual risks (GAO 2013). Even so, market penetration rates of National Flood Insurance 

Program (NFIP) eligible households are estimated to be below 50% (Dixon et al. 2006, 

Atreya et al. 2015). This low market penetration rate has been one of the primary reasons 
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why the relationship between weather and events and flood insurance preferences has 

been studied extensively in the literature.  

 We examine this relationship from a different perspective than the previous 

literature. While exploring the determinants of flood insurance purchases is undoubtedly 

valuable at a time when extreme weather events cause billions of dollars in costs, there 

are disadvantages to conclusions drawn from studies that examine people’s willingness to 

pay for flood insurance in contingent markets (e.g. Botzen et al. 2009, Botzen et al. 2013, 

Raschky et al. 2013) or insurance purchasing patterns following weather events (e.g. 

Kriesel and Landry 2004, Michel-Kerjan and Kousky 2010, Michel-Kerjan et al. 2012, 

Atreya et al. 2015). Results from studies that use survey data might suffer from 

hypothetical bias while observations of flood purchasing decisions are based on 

observations where both the community participates in the NFIP and people’s willingness 

to pay for damage protection is at least as high as the flood insurance cost. Changes in 

behavior or preferences noted in these types of studies after an environmental event 

might not fully reflect actual willingness or interest of people in affected communities to 

take action and, in turn, could undervalue the effects of a well-timed policy proposal that 

relies on stakeholder engagement and support. 

 We draw upon an extensive breadth of literature that uses internet search activity 

data. Google Trends search term popularity has been used to help forecast economic 

indicators (Choi and Varian 2012), measure the popularity of conservation related topics 

(Ficetola 2013, Proulx et al. 2013, Nghiem et al. 2016), explain reduction in teen 

childbirth rates (Kearney and Levine 2015), and to track disease outbreaks (Carneiro and 

Mylonakis 2009). More closely related to the present study, many studies have found that 
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average weather and extreme weather events drive internet information seeking for terms 

like hurricane and global warming (Sherman-Morris et al. 2011, Cavanagh et al. 2014, 

Lang 2014, Lang and Ryder 2016). Many of these studies note that internet information 

seeking is an indication of a populations attention (Swearingen and Ripberger 2014).  

The use of Google Trends data in our context allows us to examine if public 

attention shifts to future cost mitigating strategies, like information seeking behavior 

about flood insurance, after experiencing a weather event. We are able to measure 

changes of attention in a cost mitigating strategy relative to all other searched topics, 

regardless if the individuals seeking information can afford insurance or not, and for how 

long this attention is maintained for. We believe this information is useful to 

policymakers that want to know if there is an optimal time period (window of 

opportunity) after an environmental event to propose individual or community level 

mitigating actions against future environmental damages. 

2.2 DATA 

 This section describes the two data sources used in our analysis: 1) Google Trends 

data used as the dependent variable, and 2) Storm data used to identify hurricane and 

tropical storm treatment of DMAs. 

2.2.1 Google Trends Data 

 We use Google Trends data for aggregate searches for the term flood insurance as 

the dependent variable in our analysis. Google Trends is a service provided by Google 

Inc. that allows users to analyze the search activity of words or phrases over a specified 

time frame in the form of a relative popularity index. This index shows how often a word 

or phrase is searched by people using Google Search relative to the total search volume 
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either for a cross-section of regions or within a single region over time. The index is 

normalized to be on a scale from 0 to 100. For example, an index value of 100 in a time 

series analysis for a particular search term within a geography (such as a state or country) 

would indicate the time period where that search term had the biggest share of total 

searches within the geography. Index values above 0 and below 100 indicate percentages 

of the time period with the biggest share of searches (e.g. an index value of 55 in a time 

period would indicate the share of searches for a particular search term was 55% of the 

time period that had the greatest share of total searches for that search term). Google 

censors the data by assigning a value of 0 when search volume for the specified search 

term does not exceed an undisclosed threshold. 

 We used Google Trends to download relative search activity for the term flood 

insurance in December of 2017. Data were downloaded for 170 designated media 

markets (DMAs) in the continental United States.16 Data was downloaded for each DMA 

separately, so search index values represented relative search popularity for flood 

insurance within each DMA at the monthly level from January 2004 to December 2014. 

With an average index value of about 10, flood insurance is not a particularly popular 

search term, however, interesting patterns start to emerge when viewing a histogram of 

search popularity by month (Figure 2.1). The top left panel of Figure 2.1 shows that 

average search activity for flood insurance is higher during hurricane season in North 

America (with an average index value of 11.7) than other months (with an average index 

value of 9.1). This pattern still holds when splitting the DMAs into groups based on the 

                                                           
16 There are 206 DMAs in the continental United States, but search volume for flood insurance never 
exceeded the threshold for 36 DMAs during the time period we analyzed. 
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likelihood of experiencing a tropical storm or hurricane. DMAs that border the Atlantic 

Ocean and Gulf of Mexico have a slightly higher index average for the hurricane season 

months (with an average value of 12.1) and lower index average for other months (with 

an average index value of 9) when compared the other panels. Our analysis will show if 

actual tropical storm or hurricane experience is one of the factors that drives the 

popularity of flood insurance searches in DMAs. 

2.2.2 Storm Treatment Data 

 Since our dependent variable is observed at the DMA-month level, we define 

storm treatment as the maximum intensity a DMA experiences each month from tropical 

storms and hurricanes. We follow the methodology of Prendergast and Uchida (2018) 

and use GIS and the RAMMB’s Extended Best Track Dataset to estimate a complete, 

pixelated wind field from the maximum wind speed of the center of each storm out to 34 

knots for each hurricane and tropical storm that hit the United States from 2003-2014. As 

an illustration, Figure 2.2 shows which DMAs fall under the wind field of the 2005 storm 

Rita. Each DMA-month is assigned the maximum estimated storm intensity pixel it 

experiences from hurricanes and tropical storm and assigned a value of zero otherwise. 

Table 2.1 shows that of DMAs that experienced a storm, the average intensity (Max 

Wind) was about 47 knots, with 470 instances of DMAs experiencing a tropical storm 

strength winds and 54 instances of DMAs experiencing hurricane strength winds 

according to the Saffir-Simpson scale. 

2.3 METHODOLOGY 

 To estimate the impact hurricane and tropical storm strikes have on Google 

Trends search data, we use a difference-in-differences framework that compares the 



 

43 

 

search volume of flood insurance between treatment DMAs that get hit by hurricanes and 

tropical storms and unaffected DMAs over time. We observe monthly observations of our 

dependent variable for each DMA and estimate storm treatment effects up to one year 

afterwards. Our econometric model takes the following form: 

𝑓𝑙𝑜𝑜𝑑 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑖,𝑚,𝑦 =  ∑ [𝛽𝑚

𝑀

𝑚=0

× log(𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑖,(𝑚−𝑀))] 

+ 𝛼𝑖 +  𝑓(𝛿𝑚, 𝛾𝑦) +  𝜖𝑖,𝑚,𝑦              (1) 

where 𝑓𝑙𝑜𝑜𝑑 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑖,𝑚,𝑦 is the relative search rate for searches related to “flood 

insurance” in DMA 𝑖 for month 𝑚 in year 𝑦, 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑖,(𝑚−𝑀) is the maximum wind 

speed that DMA 𝑖 experiences in an 𝑚 − 𝑀 window, 𝛼𝑖 is a DMA fixed effect, 𝛿𝑚 is a 

month fixed effect, and 𝛾𝑦 is a year fixed effect. We test the robustness of coefficient 

estimates using different combinations of month and year fixed effects, which is why 

they are expressed as a function in the Equation (1). We perform a log(x + 1) 

transformation on 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑖,(𝑚−𝑀) in order to preserve the “zero” values of the months 

when a DMA does not experience a storm. The parameters of interest are the coefficients 

𝛽𝑚 which show the marginal effect of maximum wind of a storm on the monthly relative 

search volume of flood insurance in a 𝑚 − 𝑀 window. 

 We also investigate whether there is heterogeneity in the effect storm strength has 

on Google search share by testing whether hurricanes and tropical storms have differing 

effects. Our second econometric model takes the following form: 

𝑓𝑙𝑜𝑜𝑑 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑖,𝑚,𝑦 =  ∑ (𝜆𝑚

𝑀

𝑚=0

× 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑖,(𝑚−𝑀)) + 
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∑ (𝜙𝑚

𝑀

𝑚=0

× 𝑇𝑟𝑜𝑝𝑖𝑐𝑎𝑙 𝑆𝑡𝑜𝑟𝑚𝑖,(𝑚−𝑀)) + 𝛼𝑖 +  𝑓(𝛿𝑚, 𝛾𝑦) +  𝜖𝑖,𝑚,𝑦              (2) 

where 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑖,(𝑚−𝑀) is a dummy variable equal to one if DMA 𝑖 experienced a 

storm with a maximum wind strength of 𝑥 ≥ 64 knots in an 𝑚 − 𝑀 window, 

𝑇𝑟𝑜𝑝𝑖𝑐𝑎𝑙 𝑆𝑡𝑜𝑟𝑚𝑖,(𝑚−𝑀) is a dummy variable equal to one if DMA 𝑖 experienced a storm 

with a maximum wind strength 34 ≤ 𝑥 < 64 in an 𝑚 − 𝑀 window. The parameters of 

interest are the coefficients 𝜆𝑚 and 𝜙𝑚 which show the marginal effect of a hurricane and 

a tropical storm wind strength strike on the monthly search volume of flood insurance in 

an 𝑚 − 𝑀 window. 

 We perform multiple regressions to identify storm treatment effects on Google 

searches for flood insurance. Models (1) and (2) are conducted using the full set of 

DMAs in our sample as well as just those in coastal states in order to compare outcomes 

in DMAs that are both geographically close and have a chance of actually experiencing a 

hurricane or tropical storm. We use ordinary least squares as our estimation technique for 

our main results. As discussed in the data section, the dependent variable in our models 

has many zero values due to censoring by Google. With a dependent variable that is 

overdispersed (mean = 9.998, variance = 294.718), a logical option may be to use a 

negative binomial or tobit estimation technique. However, studies have warned against 

the use of fixed effects in these settings. Depending on the number of time periods in a 

panel, the incidental parameters problem can cause biased slope estimations from a 

negative binomial fixed effects regression and biased standard deviations from a tobit 

fixed effects regression that ultimately biases marginal effects (Green 2004, Greene 

2007). For completeness, we present results from negative binomial and tobit fixed 
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effects regression in the appendix, however, interpretation of the coefficient estimates 

should be done cautiously. 

2.4 RESULTS 

2.4.1 The Effect of Storm Experience on Flood Insurance Search Volume  

Table 2.2 presents the results for the estimates of the effect maximum wind has on 

search activity for flood insurance as modeled in Equation (1). Results show statistically 

significant and dynamic coefficient estimates. Depending on the set of fixed effects used, 

a 1% increase in the maximum wind that a DMA experiences increases the flood 

insurance search index between 1.1 and 1.5 points in the month of the storm. This effect 

lasts for multiple months, with a 1% increase in maximum wind increasing the search 

index by 0.8 to 1.1 points the month after a strike and an increase of 0.51 to 0.53 points 

two months after. Applied to a mean relative search volume of 9.998 (Table 2.1), a 1% 

increase in maximum wind of an average storm of 46.83 knots translates to an overall 

level of relative flood insurance search volume between 10.5 and 11.1 points during the 

month of and two months following a storm strike (using coefficient estimates from 

Column 3).  

 Table 2.2 also shows some interesting dynamic results further down the line after 

a storm hits. After months of no discernible effect on the flood insurance search index, 

there are statistically significant and robust coefficient estimates 11 to 12 months after a 

storm strike. This may seem curious at first, but the seasonal nature of hurricane and 

tropical storm activity may explain the pattern of treatment effects shown. The coefficient 

estimates between the concurrent month and up to two months after a storm strike shows 

that people that directly experience a tropical storm or hurricane may be interested in 



 

46 

 

things like the availability and price of flood insurance in their area for a short time 

period after as a reaction to that experience. The positive coefficients at the 11 and 12-

month time lags show that after people experience a storm, they may be anticipating the 

consequences of an upcoming hurricane season by searching for information about flood 

insurance. Unfortunately, we do not have the data to test whether this later uptick in 

relative search activity is an artifact of individuals that experience flooding from a 

previous storm, or if interest is driven by media coverage of the fallout of a tropical storm 

or hurricane near the anniversary of the event. 

2.4.2 The Effect of Storm Heterogeneity on Flood Insurance Search Volume 

The results presented from Equation (1) treat storm strength as a continuous 

variable, however, there is reason to believe there could be heterogeneous effects storms 

have on Google search activity for flood insurance based on what type of storm a DMA 

experiences. Hurricanes may have a bigger impact on search volume than tropical storms 

due to more damage from flooding or from increased media coverage hurricanes have 

over tropical storms. Table 2.3 presents the results of Equation (2) where storm treatment 

is broken up into dummy variables that indicate whether a DMA experienced a storm of 

hurricane strength or tropical storm strength. Results corroborate those presented in Table 

2.2 where storms cause an increase in the flood insurance search index over time in 

DMAs that experience storms.  Coefficient estimates also follow intuition that hurricanes 

have a larger impact on search volume than tropical storms do. On average, a hurricane 

will increase the flood insurance search index between 13.4 and 16.9 points in a DMA 

during the month of the strike and between 10.9 and 14 points in the following month.  

Tropical storms, on the other hand, increase relative search volume between 2.9 and 4.3 
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points during the month of a strike, on average, and between 2 and 2.3 points the 

following month (although the coefficient estimate is not statistically significant in 

Column (3) that uses month-year fixed effects). Interestingly, results still show 

statistically significant longer lags, but mainly with the tropical storm dummy variables. 

2.4.3 Coastal DMA Analysis 

 Table 2.4 and Table 2.5 recreate the results from Equation (1) and Equation (2) on 

the smaller sample of DMAs in states that border the Atlantic Ocean and Gulf of Mexico, 

respectively. Both sets of results are very similar to the results from the full sample of 

DMAs. Table 2.4 shows the effect maximum wind has on relative search activity for 

flood insurance in coastal DMAs. Depending on the set of fixed effects used, a 1% 

increase in maximum wind that a coastal DMA experiences results in an increase in the 

flood insurance search index in the range of 0.95 and 1.61 points during the month of the 

storm and between 0.76 and 1.12 points the following month. Results also show 

statistically significant coefficient estimates 11 and 12 months following a storm strike, 

although the results are not as robust as they were in Table 2.4. 

 Results for the heterogeneity of storm effects on search activity is presented in 

Table 2.5. Similar to the results of the full sample of DMAs from Table 2.3, hurricanes 

increase flood insurance search activity by 12.1 to 16.8 points during the concurrent 

month in coastal DMAs and between 10.2 and 13.9 points the next month. Tropical 

storms cause an increase in search activity at a smaller magnitude than hurricanes with an 

increase in the range of 2.4 to 4.6 points during the concurrent month and between 2.3 

and 2.5 points in the following month.  Again, there are signs that people in DMAs that 

experience a tropical storm may be anticipating the consequences of future storms 11 and 
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12 months afterwards (although the coefficient of the 12-month lag is not statistically 

significant in the model that uses month-year fixed effects). 

2.4.4 Comparison of Results with Related Studies 

 Although we are the first to examine the effect of tropical storm and hurricane 

treatment on the relative popularity of flood insurance Google searches, it is informative 

to compare our results with studies that used similar settings. In a study that looks at how 

weather fluctuations affect information seeking about climate change and global 

warming, Lang (2014) does not examine the effects of individual tropical storms and 

hurricanes but does find that increased precipitation leads to more searches for the term 

flood. Our results show similar behavior for DMAs when the universe of searches is 

restricted further to the more specific term flood insurance.  

 There have been a few studies that look at how storms cause changes in internet 

search behavior. Both Sherman-Morris et al. (2011) and Lang and Ryder (2016) find that 

experience increases searches for the term hurricane. Lang and Ryder (2016) also find 

that storm experience increases searches for climate change and global warming in a 

delayed manner two months after the event. Our results fit in well with these studies 

where people may spend the time immediately following a storm strike seeking 

information about hurricane characteristics, flood patterns and warnings, as well as cost 

mitigating options such as flood insurance before turning their attention to less urgent 

narratives such as how weather patterns related to climate change and global warming. 

2.5 CONCLUSION 
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 A growing literature has been using Google Trends search activity as a “revealed 

preference” for environment and climatic concerns (Kahn and Kotchen 2010). Many 

studies have investigated the relationship between storm experience and information 

seeking about hurricanes, flooding, and climate change. We add to the literature by 

investigating if there is a window of opportunity after a storm strike where people are 

interested in ways to mitigate future environmental damages. To do so, we use a 

difference-in-differences model to observe how the relative popularity of the search term 

flood insurance in U.S. DMAs is affected by exogenous exposure to tropical storm and 

hurricane strikes from 2004 to 2014. 

 We find that storm strikes cause statistically significant changes to the relative 

popularity of flood insurance over time. Results indicate that a 1% increase in the 

strength of a storm results in an increase in flood insurance search index of 1.08 points 

the month of the strike, 0.82 points the following month, and 0.51 points two months 

after. Estimates remain significant when storms are split into effects from hurricanes and 

tropical storms separately. This indicates that there is a temporary amount of time after a 

storm strike (regardless of whether the storm is a tropical storm or hurricane) where there 

is an increased public attention on learning about flood insurance. Due to the low cost, 

anonymous, and revealed preference nature of internet search term behavior, we believe 

our results are useful for policymakers that want to propose individual or community 

based environmental damage mitigation policies that need an engaged and supportive 

stakeholder base to enact. 
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Figure 2.1: Flood Insurance Searches by Month 

 

Notes: Bar graphs show average relative search volume for flood insurance by month. The top panel shows the distribution of flood insurance searches 

by month for all DMAs in the sample, while the bottom left and bottom right panels do the same for DMAs that do not border the Atlantic Ocean and 

Gulf of Mexico and those that do, respectively. Red colored bars indicate searches that occur during hurricane season in the North Atlantic Ocean 

between June and September. 
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Figure 2.2: Sample DMAs and Rita Storm Example 

 

Notes: Figure shows the estimated wind field of Hurricane Rita (2005) with pixelated values of wind speed measured in knots.
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Table 2.1: Summary Statistics 

Continuous Variables      

Variable Years Mean Std. Dev. Min Max 

Flood insurance searches 2004-2014 9.998 17.167 0 100 

Max Wind 2003-2014 46.833 14.071 33.388 116.411 

      

Discrete Variables      

Variable Years Count    

Hurricane 2003-2014 54    

Tropical Storm 2003-2014 470       

Notes: Summary statistics for Max Wind given for non-zero values 
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Table 2.2: Effect of Storm Experience on Flood Insurance 

Google Searches on all DMAs 

VARIABLES (1) (2) (3) 

        

Max Wind (log)    

Concurrent Month 1.495*** 1.286*** 1.084*** 

 (0.195) (0.198) (0.208) 

1 Month Ago 0.995*** 1.057*** 0.815*** 

 (0.195) (0.197) (0.208) 

2 Months Ago 0.293 0.529*** 0.506** 

 (0.194) (0.197) (0.208) 

3 Months Ago 0.0202 0.276 0.265 

 (0.194) (0.197) (0.208) 

4 Months Ago -0.263 -0.0251 -0.0274 

 (0.190) (0.193) (0.203) 

5 Months Ago -0.107 0.0727 0.136 

 (0.189) (0.193) (0.202) 

6 Months Ago -0.0980 0.0319 0.132 

 (0.188) (0.192) (0.201) 

7 Months Ago 0.103 0.0993 0.148 

 (0.188) (0.191) (0.200) 

8 Months Ago 0.191 0.0566 0.101 

 (0.188) (0.191) (0.200) 

9 Months Ago 0.376** 0.113 0.344* 

 (0.188) (0.191) (0.200) 

10 Months Ago 0.366* 0.168 0.220 

 (0.188) (0.191) (0.200) 

11 Months Ago 0.621*** 0.384** 0.516** 

 (0.188) (0.191) (0.201) 

12 Months Ago 0.988*** 0.654*** 0.410** 

 (0.188) (0.191) (0.201) 

    

Observations 22,440 22,440 22,440 

DMA FE Yes Yes Yes 

Month FE No Yes No 

Year FE No Yes No 

Month-Year FE No No Yes 

Adjusted R-squared 0.147 0.158 0.176 

Notes: Results are from three separate OLS regressions. Observations are at the DMA-month level. DMA 

Google search share of queries that include flood insurance is the dependent variable and a log 

transformation of monthly maximum wind strength with lags are the independent variables. *, **, and *** 

represent statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 2.3: Effect of Storm Experience Heterogeneity on Flood 

Insurance Google Searches on all DMAs 

VARIABLES (1) (2) (3) 

        

Hurricane Dummy    
Concurrent Month 16.89*** 15.48*** 13.37*** 

 (4.089) (4.008) (3.967) 

1 Month Ago 13.99*** 13.45*** 10.92*** 

 (3.917) (3.935) (3.710) 

2 Months Ago 4.095 4.246 4.287 

 (3.459) (3.431) (3.342) 

3 Months Ago 1.689 2.559 2.050 

 (2.337) (2.238) (2.186) 

4 Months Ago 2.729 2.775 3.043 

 (3.003) (2.912) (2.910) 

5 Months Ago 2.309 2.175 2.408 

 (2.487) (2.580) (2.575) 

6 Months Ago 2.763 2.298 3.286 

 (3.238) (3.263) (3.250) 

7 Months Ago 5.332 4.669 5.273 

 (3.464) (3.408) (3.346) 

8 Months Ago 3.302* 2.101 2.487 

 (1.854) (1.798) (1.813) 

9 Months Ago 3.206 1.377 2.076 

 (3.034) (3.069) (3.074) 

10 Months Ago 2.142 0.955 0.764 

 (2.665) (2.657) (2.693) 

11 Months Ago 0.0184 -1.199 0.0526 

 (2.059) (2.025) (2.101) 

12 Months Ago 8.386** 6.170* 3.673 

 (3.407) (3.301) (2.960) 
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Table 2.3: (continued) 

Tropical Storm Dummy    
Concurrent Month 4.304*** 3.576*** 2.930*** 

 (0.867) (0.859) (0.942) 

1 Month Ago 1.957** 2.291** 1.527 

 (0.924) (0.958) (1.011) 

2 Months Ago 0.197 1.174 1.065 

 (0.901) (0.925) (0.964) 

3 Months Ago -0.586 0.388 0.369 

 (0.785) (0.803) (0.822) 

4 Months Ago -1.650*** -0.634 -0.663 

 (0.570) (0.585) (0.625) 

5 Months Ago -0.855 -0.0338 0.212 

 (0.756) (0.770) (0.771) 

6 Months Ago -0.808 -0.153 0.166 

 (0.717) (0.710) (0.767) 

7 Months Ago -0.395 -0.282 -0.222 

 (0.786) (0.798) (0.859) 

8 Months Ago 0.190 -0.208 -0.116 

 (1.070) (1.082) (1.164) 

9 Months Ago 1.246 0.340 1.207 

 (0.797) (0.820) (0.902) 

10 Months Ago 1.506* 0.792 1.038 

 (0.806) (0.824) (0.886) 

11 Months Ago 2.907*** 2.041** 2.481*** 

 (0.855) (0.867) (0.907) 

12 Months Ago 3.398*** 2.234** 1.479 

 (0.843) (0.861) (0.906) 

    
Observations 22,440 22,440 22,440 

DMA FE Yes Yes Yes 

Month FE No Yes No 

Year FE No Yes No 

Month-Year FE No No Yes 

Adjusted R-squared 0.149 0.159 0.178 

Notes: Results are from three separate OLS regressions. Observations are at the DMA-month level. DMA 

Google search share of queries that include flood insurance is the dependent variable and dummy variables 

indicating hurricane and tropical storm strength wind strikes with lags are the independent variables. *, **, 

and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Table 2.4: Effect of Storm Experience on Flood Insurance Google 

Searches on DMAs in Coastal States 

VARIABLES (1) (2) (3) 

        

Max Wind (log)    

Concurrent Month 1.608*** 1.399*** 0.947*** 

 (0.259) (0.251) (0.284) 

1 Month Ago 1.116*** 1.139*** 0.757** 

 (0.273) (0.295) (0.320) 

2 Months Ago 0.376 0.580** 0.464 

 (0.263) (0.276) (0.286) 

3 Months Ago 0.0495 0.254 0.334 

 (0.228) (0.236) (0.228) 

4 Months Ago -0.312* -0.102 -0.0687 

 (0.170) (0.172) (0.181) 

5 Months Ago -0.137 -0.0604 0.108 

 (0.199) (0.194) (0.196) 

6 Months Ago -0.213 -0.189 0.0224 

 (0.206) (0.200) (0.216) 

7 Months Ago 0.176 0.156 0.128 

 (0.251) (0.246) (0.268) 

8 Months Ago 0.257 0.0867 0.189 

 (0.286) (0.285) (0.307) 

9 Months Ago 0.375* 0.0669 0.210 

 (0.209) (0.216) (0.256) 

10 Months Ago 0.403* 0.153 0.162 

 (0.217) (0.220) (0.250) 

11 Months Ago 0.619*** 0.351 0.456* 

 (0.223) (0.223) (0.253) 

12 Months Ago 1.088*** 0.710*** 0.338 

 (0.232) (0.236) (0.254) 

    

Observations 11,748 11,748 11,748 

DMA FE Yes Yes Yes 

Month FE No Yes No 

Year FE No Yes No 

Month-Year FE No No Yes 

Adjusted R-squared 0.134 0.148 0.178 

Notes: Results are from three separate OLS regressions. Observations are at the DMA-month level. DMA 

Google search share of queries that include flood insurance is the dependent variable and a log 

transformation of monthly maximum wind strength with lags are the independent variables. *, **, and *** 

represent statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 2.5: Effect of Storm Experience Heterogeneity on 

Flood Insurance Google Searches on DMAs in Coastal 

States 

VARIABLES (1) (2) (3) 

        

Hurricane Dummy    
Concurrent Month 16.81*** 15.52*** 12.05*** 

 (4.089) (3.976) (4.003) 

1 Month Ago 13.94*** 13.52*** 10.22*** 

 (3.928) (3.953) (3.754) 

2 Months Ago 4.120 4.278 3.570 

 (3.460) (3.418) (3.367) 

3 Months Ago 1.843 2.667 2.100 

 (2.342) (2.204) (2.166) 

4 Months Ago 2.831 2.854 3.277 

 (3.022) (2.928) (2.936) 

5 Months Ago 2.493 1.980 3.012 

 (2.487) (2.616) (2.546) 

6 Months Ago 2.744 1.787 2.843 

 (3.243) (3.277) (3.236) 

7 Months Ago 5.353 4.554 4.945 

 (3.473) (3.390) (3.290) 

8 Months Ago 3.325* 1.851 2.733 

 (1.859) (1.812) (1.836) 

9 Months Ago 3.139 1.109 1.430 

 (3.042) (3.086) (3.141) 

10 Months Ago 2.071 0.467 -0.0749 

 (2.673) (2.639) (2.659) 

11 Months Ago -0.197 -1.599 -0.608 

 (2.053) (2.036) (2.125) 

12 Months Ago 8.296** 5.799* 2.513 

 (3.422) (3.270) (2.920) 
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Table 2.5: (continued) 

Tropical Storm Dummy    
Concurrent Month 4.640*** 3.905*** 2.390** 

 (0.919) (0.893) (1.011) 

1 Month Ago 2.324** 2.469** 1.247 

 (1.013) (1.073) (1.147) 

2 Months Ago 0.467 1.270 0.868 

 (0.978) (1.027) (1.054) 

3 Months Ago -0.544 0.172 0.568 

 (0.862) (0.900) (0.889) 

4 Months Ago -1.986*** -1.130* -0.988 

 (0.577) (0.595) (0.651) 

5 Months Ago -1.091 -0.682 -0.0463 

 (0.798) (0.781) (0.780) 

6 Months Ago -1.428* -1.161* -0.365 

 (0.722) (0.695) (0.794) 

7 Months Ago -0.187 -0.0923 -0.327 

 (0.850) (0.873) (0.967) 

8 Months Ago 0.400 -0.0710 0.162 

 (1.180) (1.197) (1.301) 

9 Months Ago 1.197 0.158 0.658 

 (0.828) (0.867) (1.013) 

10 Months Ago 1.682** 0.819 0.904 

 (0.846) (0.871) (0.985) 

11 Months Ago 3.017*** 2.075** 2.423** 

 (0.886) (0.882) (0.988) 

12 Months Ago 3.830*** 2.546*** 1.368 

 (0.917) (0.932) (0.994) 

    
Observations 11,748 11,748 11,748 

DMA FE Yes Yes Yes 

Month FE No Yes No 

Year FE No Yes No 

Month-Year FE No No Yes 

Adjusted R-squared 0.138 0.150 0.180 

Notes: Results are from three separate OLS regressions. Observations are at the DMA-month level. DMA 

Google search share of queries that include flood insurance is the dependent variable and dummy variables 

indicating hurricane and tropical storm strength wind strikes with lags are the independent variables. *, **, 

and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Appendix 1: Supplemental Analysis for Manuscript 2 

This appendix provides information and analysis that supplements the analysis done in 

the main paper. 

 As discussed in the main paper, Google Trends search activity data for flood 

insurance is censored at zero for geographies where the raw number of searches for the 

population does not exceed an undisclosed threshold. With many zero values, logical 

estimators to use in our analysis could be the negative binomial or the tobit model. We 

are interested in within DMA variation over time, however, and the use of negative 

binomial and tobit estimators in panel data settings are controversial. For completeness, 

we present results from negative binomial and tobit models that included the full set of 

fixed effects that we use in the main analysis but refrain from exact interpretation of 

coefficients or marginal effects. Instead, we focus on coefficient direction and 

significance. 

 Table A1.1 serves as a robustness check to Table 2.2 in the main text that 

examines the effect of the max wind variable on flood insurance search activity in all 

available DMAs in the sample. Columns (1) through (3) present results using negative 

binomial models and Columns (4) to (6) present results using tobit models. Results 

confirm those found in the main paper. Both sets of models show positive and significant 

treatment effects during the month of the storm strike until one month after. The tobit 

models also show robust evidence that flood insurance interest also increases leading up 

to the one-year anniversary of a storm strike. 

 Table A1.2 serves as a robustness check to Table 2.3 in the main text that 

examines the heterogeneity of the effect of storm strikes on flood insurance search 
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activity for all DMAs in the sample by separating storms into discrete indications of 

whether they were hurricanes or tropical storms. Columns (1) through (3) present results 

using negative binomial models and Columns (4) to (6) present results using tobit 

models. Results confirm those found in the main paper. Both sets of models show 

positive and significant treatment effects for hurricane strikes during the concurrent 

month until one month after. Both sets of models also show positive and significant 

treatment effects for tropical storms, although the magnitudes are smaller than for 

hurricane strikes. 
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Table A1.1: Effect of Storm Experience on Flood Insurance Google Searches on all DMAs 

 Negative Binomial  Tobit 

 (1) (2) (3)  (4) (5) (6) 

VARIABLES 

Flood 

Insurance 

Searches 

Flood 

Insurance 

Searches 

Flood 

Insurance 

Searches   

Flood 

Insurance 

Searches 

Flood 

Insurance 

Searches 

Flood 

Insurance 

Searches 

           
Max Wind (log)        
Concurrent 

Month 0.109*** 0.0862*** 0.0595***  2.110*** 2.167*** 1.703*** 

 (0.0246) (0.0235) (0.0220)  (0.350) (0.361) (0.401) 

1 Month Ago 0.0802*** 0.0866*** 0.0653***  1.310*** 1.797*** 1.237*** 

 (0.0205) (0.0201) (0.0226)  (0.383) (0.415) (0.444) 

2 Months Ago 0.00822 0.0277 0.0372  0.0135 0.818* 0.839* 

 (0.0262) (0.0270) (0.0286)  (0.413) (0.430) (0.454) 

3 Months Ago -0.0105 0.0181 0.0138  -0.191 0.622 0.622 

 (0.0233) (0.0241) (0.0250)  (0.374) (0.395) (0.382) 

4 Months Ago -0.0283 0.00915 0.0204  -0.623* 0.201 0.161 

 (0.0208) (0.0217) (0.0277)  (0.322) (0.332) (0.343) 

5 Months Ago -0.00905 0.0184 0.0111  -0.277 0.329 0.486 

 (0.0215) (0.0227) (0.0257)  (0.342) (0.363) (0.373) 

6 Months Ago 0.00395 0.0206 0.0534*  -0.345 0.193 0.483 

 (0.0261) (0.0261) (0.0304)  (0.368) (0.375) (0.404) 

7 Months Ago 0.0301 0.0350 0.0504  0.0320 0.265 0.439 

 (0.0360) (0.0337) (0.0374)  (0.384) (0.394) (0.430) 

8 Months Ago 0.0521 0.0379 0.0355  0.0947 0.0941 0.160 

 (0.0437) (0.0426) (0.0368)  (0.450) (0.477) (0.516) 

9 Months Ago 0.0258 -0.00303 0.0361  0.414 0.167 0.586 

 (0.0293) (0.0286) (0.0325)  (0.351) (0.360) (0.403) 

10 Months Ago 0.0444* 0.0232 0.0267  0.302 0.164 0.250 

 (0.0258) (0.0260) (0.0278)  (0.368) (0.386) (0.421) 

11 Months Ago 0.0448** 0.0123 0.0362  0.901** 0.622* 0.869** 

 (0.0222) (0.0226) (0.0241)  (0.358) (0.377) (0.402) 

12 Months Ago 0.0696*** 0.0269 -0.00843  1.417*** 1.006*** 0.558 

 (0.0230) (0.0234) (0.0232)  (0.322) (0.348) (0.371) 

        
Observations 22,440 22,440 22,440  22,440 22,440 22,440 

DMA FE Yes Yes Yes  Yes Yes Yes 

Month FE No Yes No  No Yes No 

Year FE No Yes No  No Yes No 

Month-Year FE No No Yes  No No Yes 

Log Likelihood -58940 -58868 -58726   -54039 -53688 -53427 

Notes: Results in Columns (1) to (3) are from three separate negative binomial regressions while results in 

columns (4) to (6) are from three separate tobit regressions. Observations are at the DMA-month level. 

DMA Google search share of queries that include flood insurance is the dependent variable and a log 

transformation of monthly maximum wind strength with lags are the independent variables. *, **, and *** 

represent statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table A1.2: Effect of Storm Experience Heterogeneity on Flood Insurance Google Searches 

on all DMAs 

 Negative Binomial  Tobit 

 (1) (2) (3)  (4) (5) (6) 

VARIABLES 

Flood 

Insurance 

Searches 

Flood 

Insurance 

Searches 

Flood 

Insurance 

Searches   

Flood 

Insurance 

Searches 

Flood 

Insurance 

Searches 

Flood 

Insurance 

Searches 

           
Hurricane Dummy        
Concurrent Month 1.105*** 0.976*** 0.763***  19.88*** 21.99*** 17.36*** 

 (0.222) (0.218) (0.236)  (5.508) (5.333) (5.314) 

1 Month Ago 0.828*** 0.772*** 0.498***  15.93*** 19.28*** 14.11*** 

 (0.186) (0.173) (0.160)  (4.768) (4.679) (4.395) 

2 Months Ago 0.335 0.337 0.351  0.966 5.914 6.144 

 (0.252) (0.246) (0.268)  (5.397) (5.428) (5.429) 

3 Months Ago 0.290 0.383* 0.311  0.278 6.360 5.178 

 (0.216) (0.210) (0.232)  (4.376) (4.094) (4.014) 

4 Months Ago 0.269 0.283 0.382  0.729 5.386 6.057 

 (0.247) (0.239) (0.250)  (5.055) (4.992) (4.985) 

5 Months Ago 0.220 0.344 0.231  1.081 4.866 5.790 

 (0.195) (0.223) (0.227)  (3.810) (4.268) (4.225) 

6 Months Ago 0.571* 0.544 0.688**  1.086 4.372 7.237 

 (0.335) (0.336) (0.337)  (5.691) (5.809) (5.806) 

7 Months Ago 0.761 0.707 0.769  3.695 6.740 8.526 

 (0.618) (0.578) (0.578)  (5.411) (5.527) (5.460) 

8 Months Ago 0.191 0.127 0.149  1.352 3.341 4.245 

 (0.154) (0.160) (0.187)  (2.774) (2.729) (2.821) 

9 Months Ago 0.749 0.572 0.722  0.972 2.105 3.555 

 (0.617) (0.597) (0.569)  (5.023) (5.089) (5.114) 

10 Months Ago 0.0491 0.00473 -0.0183  -0.725 1.257 0.489 

 (0.165) (0.171) (0.225)  (4.062) (4.098) (4.185) 

11 Months Ago -0.0294 -0.146 0.0104  -1.879 -0.794 1.747 

 (0.164) (0.166) (0.176)  (3.446) (3.419) (3.617) 

12 Months Ago 0.452** 0.201 -0.00356  7.960* 7.600* 2.868 

 (0.205) (0.192) (0.175)  (4.608) (4.424) (3.967) 

 



 

66 
 

Table A1.2: (continued) 

Tropical Storm Dummy        
Concurrent Month 0.306*** 0.230** 0.149*  6.470*** 6.379*** 4.938*** 

 (0.0946) (0.0921) (0.0850)  (1.330) (1.398) (1.533) 

1 Month Ago 0.197** 0.243*** 0.190**  2.847* 4.374*** 2.631 

 (0.0892) (0.0892) (0.0954)  (1.550) (1.649) (1.721) 

2 Months Ago -0.0450 0.0543 0.104  -0.751 2.003 2.128 

 (0.108) (0.115) (0.119)  (1.552) (1.666) (1.732) 

3 Months Ago -0.150* -0.0211 -0.0284  -1.608 1.042 1.159 

 (0.0896) (0.0948) (0.0984)  (1.494) (1.538) (1.536) 

4 Months Ago -0.193** -0.0239 0.00512  -3.073** -0.181 -0.407 

 (0.0810) (0.0881) (0.115)  (1.206) (1.261) (1.329) 

5 Months Ago -0.108 0.0152 -0.00155  -1.439 0.684 1.229 

 (0.0936) (0.0997) (0.109)  (1.459) (1.536) (1.559) 

6 Months Ago -0.0784 0.00425 0.136  -1.658 0.259 1.159 

 (0.0919) (0.0955) (0.118)  (1.301) (1.336) (1.500) 

7 Months Ago -0.0114 0.0243 0.0793  -0.591 0.0343 0.419 

 (0.132) (0.126) (0.135)  (1.383) (1.450) (1.580) 

8 Months Ago 0.151 0.106 0.0943  -0.0236 -0.308 -0.252 

 (0.193) (0.192) (0.171)  (1.869) (2.006) (2.163) 

9 Months Ago 0.00433 -0.0951 0.0470  1.729 0.466 1.995 

 (0.105) (0.105) (0.127)  (1.437) (1.485) (1.664) 

10 Months Ago 0.162 0.0768 0.102  1.748 0.839 1.281 

 (0.0986) (0.0982) (0.106)  (1.453) (1.553) (1.662) 

11 Months Ago 0.206** 0.0772 0.162*  4.649*** 3.258** 4.055*** 

 (0.0857) (0.0885) (0.0945)  (1.395) (1.484) (1.550) 

12 Months Ago 0.228** 0.0821 -0.0328  5.415*** 3.664*** 2.318 

 (0.0893) (0.0924) (0.0934)  (1.326) (1.422) (1.501) 

        
Observations 22,440 22,440 22,440  22,440 22,440 22,440 

DMA FE Yes Yes Yes  Yes Yes Yes 

Month FE No Yes No  No Yes No 

Year FE No Yes No  No Yes No 

Month-Year FE No No Yes  No No Yes 

Log Likelihood -58927 -58859 -58719   -54029 -53676 -53417 

Notes: Results in Columns (1) to (3) are from three separate negative binomial regressions while results in 

columns (4) to (6) are from three separate tobit regressions. Observations are at the DMA-month level. 

DMA Google search share of queries that include flood insurance is the dependent variable and a log 

transformation of monthly maximum wind strength with lags are the independent variables. *, **, and *** 

represent statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Abstract 

Understanding responses to government actions is critical for developing efficient 

policy. In the context of land conservation, this paper examines whether municipal 

policy has a crowding-in or crowding-out effect on neighboring municipalities’ 

actions and state government actions. Importantly, we focus on municipal 

conservation referendums, which allow us to use a regression discontinuity 

framework for causal inference. Using data from Massachusetts and New Jersey, 

our findings suggest municipal conservation referendum decisions have no effect on 

neighboring local governments’ or the state’s conservation activity.  
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3.1 INTRODUCTION 

 One of paramount roles of government is the provision of public goods. In the 

United States, there are 30,000 municipal governments, and nested on top of that are 

county, state, and federal governments. When multiple governments can provide the 

same or similar public good, it is critical to understand if governments behave 

strategically with respect to other governments’ actions. A wide variety of research 

focuses on how competition can cause government entities to react to the public good 

decisions of others which in turn affects the overall provisioning of public goods 

including charitable donations (Heutal, 2014), public school inputs (Millimet and 

Rangaprasad, 2006), and property tax rates (Bruickner and Saavedra, 2001), amongst 

others. This reactionary dynamic gives rise to many questions: when a government entity 

provides a public good, how does that affect the actions of government at different 

levels? How might this decision affect the decisions of neighboring governments? Do 

reactions have a crowd-in effect where provisioning for public goods increases, or does a 

crowding-out effect result? 

 In this paper, we address these questions in the context of land conservation. With 

about 2 million acres of farm, forest, and open space land being converted to 

development each year (Cordell et al. 2014), federal, state, and local governments have 

established themselves as important agents in curbing urbanization by accounting for 

about half of total conservation easement holdings in the United States (NCED, 2017). 

The overall production of conservation goals depends on, in part, the size and 

connectivity of conservation lands. The way governmental conservation agents react to 

the actions of other agents in conservation provisioning decisions holds implications for 
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how successful we are at protecting our natural resources, supplying ecosystem services, 

providing outdoor recreational opportunities, and maintaining a representative sample of 

the full variety of biodiversity (Margules and Pressey 2000). In this paper, we test 

whether the passage of a conservation referendum in a municipality affects state level 

conservation activity in that and surrounding municipalities. We also test if there are 

spatial spillover effects among municipalities where local government activity influences 

the local government conservation activity of surrounding municipalities. 

We build a panel dataset of conservation activity of multiple agents for 

Massachusetts and New Jersey. Both Massachusetts and New Jersey have state programs 

– the Community Preservation Act for Massachusetts and Green Acres for New Jersey – 

that incentivize municipal land conservation. This makes Massachusetts and New Jersey 

ideal places to study because of their substantial amount of conservation activity and 

available data. We collect state level conservation spending for Massachusetts from the 

Conservation Almanac and local government conservation referendum activity for 

Massachusetts and New Jersey from the Trust for Public Land, both at the municipal 

level. 

Since residents vote on local government conservation referendums, we utilize the 

regression discontinuity (RD) framework developed by Cellini et al. (2010) to test 

whether the relationship between conservations agents among different levels of 

government and across space are causal.17 Past studies in the conservation literature that 

test for spillovers of conservation activity typically use models that rely on correct 

                                                           
17 Cellini et al. (2010) study how housing prices respond referendums authorizing school infrastructure 

spending in California. The dynamic RD method has been applied in a handful of papers since (e.g., Isen 

2014, Martorell et al. 2016). Lang (2018) uses the same open space referendums data in this paper and 

examines housing price responses to authorization of conservation spending.   



 

70 
 

covariate selection to produce unbiased results (see Albers et al. 2008 and Parker and 

Thurman, 2011 as examples). Omission of key covariates in these instances may lead to 

results that are indicative of correlations instead of causal relationships. We believe we 

are the first to use a causal framework that controls for both observed and unobserved 

municipal characteristics to estimate conservation spillover effects that do not suffer from 

omitted variable bias. To highlight the importance of using a causal framework such as 

the dynamic RD model, we also produce cross-sectional (XS) and difference-in-

difference (DID) estimates and contrast results.  

Results from the dynamic RD framework suggest there is not a causal relationship 

between municipal level conservation referendum activity and state level conservation in 

the municipalities that pass conservation referendums and neighboring municipalities. 

We also do not find a causal relationship between municipal level conservation 

referendum activity among neighboring municipalities in both Massachusetts and New 

Jersey. There are two main implications of our findings. First, municipal governments 

may not need to be concerned about whether their conservation referendum activity 

crowds-out state level conservation and neighbor municipality conservation referendum 

activity in their town and surrounding areas. Conversely, they should not expect the state 

and surrounding municipalities to crowd-in additional conservation land in the area after 

a conservation referendum passage. Second, land conservation provisioning may be at an 

efficient level where surrounding towns do not need to compete with their neighbors 

through the allocation of conservation areas in order to attract residents. Our main results 

differ with results we obtain from XS and DID estimates, which show positive and 

statistically significant crowding-in effects between local and state conservation activity, 
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as well as neighboring conservation activity. We interpret these differences as evidence 

of bias in the XS and DID estimates. 

We contribute to the literature in two important ways. First, we believe we are the 

first to investigate whether the actions of conservation agents at different levels of 

government affect each other. Many papers in the public finance literature have 

investigated the dynamics between different levels of government in the context of 

setting consumption taxes (Besley and Rosen 1998), income and wealth taxes (Brülhart 

and Jametti 2006), and funding decisions for public schools (Cascio et al. 2013). 

Prominent papers in the land conservation literature have analyzed the effects public 

conservation activity has on private conservation activity (Parker and Thurman 2011; 

Albers, Ando, and Chen 2008; Lawley and Yang 2015). We extend this idea and test 

whether there is a reactionary dynamic between local and state governments when it 

comes to land conservation activity because such reactions can hold important 

implications for conservation efficiency.  

Second, we use a causal framework to investigate the relationships between 

conservation agents instead of investigating spatial correlations that previous studies have 

identified. According to the public finance literature, public good decisions by a local 

government may cause a reaction to neighboring local governments because people can 

choose to move to a community with a level of public goods that fit their preferences 

(Tiebout 1956) or voters may judge their public officials based on the tax performance of 

politicians in surrounding areas in what is referred to as a yardstick competition (Besley 

and Case 1995, Bordignon et al. 2003). In addition, spatial spillovers often result due to 

strategic competition between neighboring jurisdictions when setting property tax rates 
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(Brueckner and Saavedra 2001), school inputs (Millimet and Rangaprasad 2006), and 

other public finances (Baicker 2005, Isen 2014). Similarly, studies in the land 

conservation literature find evidence of spatial clustering between conservation agents 

and voting outcomes (e.g., Albers and Ando 2003, Heintzelman et al. 2013, Altonji et al. 

2016), but tend not to make causal claims either due to dataset limitations or the scope of 

the study.  

We aim to add to the valuable insights provided by the land conservation 

literature by analyzing a novel dataset that allows us to identify conservation activity 

spillover effects in a quasi-experimental manner. We do not find evidence of the positive 

spillover effect between conservation agents that many studies find. 

3.2 DATA 

This section describes the four sources of data used in our analysis: 1) municipal 

level referendums and associated spending, 2) state government conservation spending, 

3) land use characteristics, and 4) municipal demographics. 

3.2.1 Land Conservation Referendum Data  

Land conservation referendum data come from The Trust for Public Land’s 

LandVote Database (The Trust for Public Land, LandVote, 2016) and spans the years 

1996-2016. The data include proposed municipal level referendum information such as 

date, financial mechanism, total funds at stake, total funds approved, conservation funds 

at stake, conservation funds approved, as well as percentage of yes and no votes. Tables 

A2.1 and A2.2 in the online appendix show a yearly breakdown of municipal referendum 

activity for Massachusetts and New Jersey, respectively. On average, Massachusetts 

municipalities vote on 15 conservation related referendums a year, approve 10 of them, 
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and dedicate about $28 million to conservation activities. Over the same time period, 

New Jersey municipalities experience more conservation referendum activity compared 

to Massachusetts. They vote on an average of 23 referendums a year, pass 17 of them, 

and dedicate about $66 million to conservation activities. 

Figures 3.1 and 3.2 show the spatial distribution of Massachusetts and New Jersey 

municipal referendum activity, respectively. The top map in Figure 3.1 and the map in 

Figure 3.2 differentiate municipalities that have never passed a referendum from 

municipalities that have passed at least one referendum. Conservation referendum 

activity in Massachusetts seems to be primarily concentrated in the eastern part of the 

state. Though municipalities in western Massachusetts have also held referendums, many 

municipalities either never proposed a referendum or never passed one. Like for 

Massachusetts, there appears to be spatial patterns of referendum activity in New Jersey 

with activity being concentrated to the northern and western part of the state. Our 

analysis will allow us to determine if the spatial clustering of conservation referendum 

activity is caused by municipalities reacting to the conservation activity of their neighbors 

or is a function of observable and unobservable population characteristics that are 

spatially correlated.  

3.2.2 State Conservation Spending Data   

Due to data availability, we are only able to observe historical state conservation 

spending at the municipal level for Massachusetts. Data on Massachusetts state 

conservation spending come from The Trust for Public Land’s Conservation Almanac 

(The Trust for Public Land, Conservation Almanac, 2016). The data include dollars spent 

on land conservation from state programs such as the Massachusetts Department of 
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Agricultural Resources (MDAR), Department of Conservation and Recreation (DCR), 

Department of Fish and Game (DFG), and others from 1998-2011. We aggregate dollar 

amounts by municipality by year for every year available.18 On average, the state spends 

about $37 million on conservation in Massachusetts municipalities.19 

The bottom map in Figure 3.1 shows the spatial distribution of state conservation 

spending per capita from 1998-2011 for Massachusetts. State conservation spending 

occurs throughout Massachusetts, with the heaviest concentration in the western part of 

the state and the least amount of activity in the eastern part of the state right before the 

state’s peninsula, Cape Cod.  

By comparing state conservation and referendum activity, we can get an initial 

assessment of how municipal and state conservation actions relate to one another. 

Referendum activity appears to have a few distinct pockets with a lot of activity in the 

entire eastern part of the state, where state spending is sparse, and a smaller concentration 

in the western part of the state right before the highest concentration of state spending. 

Visually, there seems to be a substitution effect of conservation vehicle where state 

conservation spending reacts to municipality referendum activity by increasing spending 

in municipalities that do not hold referenda or vice versa.20 This may lead to the 

                                                           
18 Table A2.1 in the appendix shows a yearly breakdown of state conservation spending. 
19 Massachusetts municipalities that adopt the Community Preservation Act (CPA) to preserve open space, 

affordable housing, and historical sites automatically receive funding from the CPA Trust Fund which 

disperses revenues collected from statewide real estate transactions each year. Inclusion of CPA Trust Fund 

revenues in state spending measurements for our models would be expected to upwardly bias the estimated 

relationship between local referendum passage and state conservation spending. We do not believe this is a 

concern with our dataset because, after multiple communications with the Trust for Public Land, it was 

determined that money spent from the CPA Trust Fund would most likely be reflected in local and not state 

expenditures in the Conservation Almanac dataset. This concern is further dispelled by the mostly negative 

(and insignificant) coefficient estimates from our causal framework models. 
20 This visual substitution effect holds when comparing only years where state spending and local 
referendum activity overlap. Figure A2.1 shows referendum activity in Massachusetts between 1998 and 
2011. 
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conclusion that referendum activity crowds-out state conservation spending where 

Massachusetts conservation funds are focused on communities that may not have the 

resources or support to conserve on their own. Our main analysis allows us to investigate 

whether this relationship is causal. 

3.2.3 Land Use Data 

 Municipalities that hold referendums are matched with land cover control 

variables. Acres available in each municipality for open space is calculated using GIS and 

the National Land Cover Database (NLCD) (Homer et al., 2015). The NLCD creates a 

pixelated map of the United States, available for years 2001, 2006, and 2011, where each 

pixel is assigned a category based on land use type. We use this information to calculate 

the percentage of total land within each municipality categorized as developed open 

space, forests, and grasslands to proxy for acres available for conservation for 2001 and 

2011. We then linearly interpolate available acres for years in between and extrapolate 

for years before and after 2001 and 2011.   

3.2.4 Demographic and Partisanship Data 

Finally, municipalities that hold referendums are matched with municipal level 

socioeconomic data from the 2000 Census, 2010 Census, and 2010 American 

Community Survey. We collect data on municipal level median household income, 

population density, median house price, and proportion of residents under 18, over 65, 

white, black, and with a bachelor’s degree or higher. Sociodemographic values were 

interpolated for years between 2000 and 2010 and extrapolated for years before and after.  

We use presidential election outcomes as a proxy for political ideology. For 

Massachusetts, we gathered results for each election at the municipal level between 1996 
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and 2016 from the Elections Division of the Secretary of the Commonwealth. For New 

Jersey, the same data was only available between 2004 and 2016 (from the Division of 

Elections). With this data, we calculate the Democrat share deviation, which equals the 

share of votes the Democrat candidate received in a given municipality minus the 

statewide Democrat vote share. This measurement accounts for changing candidate 

popularity and provides a better accounting of changes to partisanship over time (Lang 

and Pearson-Merkowitz 2015). As with census data, we interpolate Democrat share 

deviation for years between elections.  

3.2.5 Links Between State and Local Conservation Activity 

An important assumption in our analysis is that locally raised conservation funds and 

state conservation spending by state departments like MDAR, DCR, and DFG can be either 

complements (that could crowd-in each other) or substitutes (that could crowd-out each other). If 

the types of conservation projects that each funding source typically supports are not related to 

each other at all, then we would expect to see insignificant estimation results regardless of the 

appropriateness of methodology used. Massachusetts municipalities that adopt the Conservation 

Preservation Act (CPA) are incentivized to fund projects that preserve open space, affordable 

housing, historical sites, and recreation. Completed projects have funded agricultural 

preservation, bike trails, fish ladders, shellfish population preservation, among many others.21  

There are no overt policy mechanisms that link voting behavior to state spending or 

neighboring municipality activity. There is very limited information about the motivations of 

individual towns. The Land Vote database provides the wording that is listed on the ballot and 

does not indicate explicit coordination with neighboring towns or with the state spending activity 

that we observe. Because of this, we fundamentally view municipal referendums as discrete 

                                                           
21 For a full list of CPA related projects, please visit: http://communitypreservation.org/projects/new. 
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activities between municipalities rather than coordinated. At the state level, however, we do 

see evidence of coordinated efforts in the Conservation Almanac dataset. For example, the state 

may partner with the federal U.S. Fish and Wildlife and a municipality to purchase a land 

easement. In the end, however, it is unclear if state efforts are attracted or repulsed by municipal 

efforts in a causal way. We believe projects funded by towns using the CPA are related enough to 

what state departments MDAR, DCR, and DFG would focus on that it is plausible to test for 

crowding-in or crowding-out activity, and this is ultimately an empirical matter.  

3.3 METHODOLOGY 

3.3.1 Outcome Variable Construction 

 To assess the effect that municipal open space conservation has on other 

government decision making, we construct and test empirical models with four different 

outcome variables. The first outcome variable is the amount of state government 

conservation spending per capita in the municipality that passed the referendum. To form 

this variable, we sum state level spending for each municipality by year and normalize it 

by population. The second dependent variable is state government spending per capita in 

neighboring municipalities. To form this variable, we calculate annual state level 

conservation spending per capita and then calculate a weighted average of all 

municipalities that share a border with a given municipality with weights proportional to 

the length of border in common.22 The third dependent variable is the number of open 

space referendums passed by neighboring municipalities. The last dependent variable is 

the amount of open space funding per capita approved by referendums held by 

                                                           
22 The intuition behind this construction is that there is more likely to be strategic behavior between 

municipalities that share a longer border. Results are qualitatively similar with different weights. 
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neighboring municipalities. Both of these neighbor averages are similarly weighted by 

length of border.  

3.3.2 Dynamic Regression Discontinuity Model 

We begin with a simple model and build up to our preferred specification in order 

to build intuition. We are interested in whether municipal conservation decisions have 

any effect on state and neighboring municipality conservation decisions. We observe 

municipality j hold an open space referendum, and the measure passes if the vote margin, 

which equals the percent approval minus the percent required to pass, is greater than zero, 

i.e., 𝑃𝑎𝑠𝑠𝑗 = 1 if 𝑚𝑎𝑟𝑔𝑖𝑛𝑗 > 0. We also observe our four outcome variables for 

government i that is linked to municipality j, denoted 𝑦𝑖𝑗. Government i can be the state 

government or a municipality that neighbors j. A simple bivariate regression of the 

outcome on referendum passage would be: 

𝑦𝑖𝑗 =  𝛼 +  𝛽𝑃𝑎𝑠𝑠𝑗 +  𝜀𝑖𝑗  (1) 

Since voting outcomes are correlated with observable and unobservable municipality 

characteristics that are also likely correlated with state and neighbor actions, it is likely 

that 𝛽̂ will be biased.  

This endogeneity problem can be mitigated by applying the RD framework 

originally proposed by Thistlethwaite and Campbell (1960) that takes advantage of the 

continuous nature of vote margin. By flexibly controlling for the vote margin, we can 

essentially compare outcomes just below the passing threshold (the control group) and 

just above (the treatment group) where both observable and unobservable characteristics 

of municipalities holding referendums are most likely very similar. Transforming 

Equation (1) into an RD model, we get: 
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𝑦𝑖𝑗 =  𝛼 +  𝛽𝑃𝑎𝑠𝑠𝑗 + 𝑓(𝑚𝑎𝑟𝑔𝑖𝑛𝑗, 𝛾) +  𝜀𝑖𝑗  (2) 

where 𝑓(∙) is a flexible polynomial and 𝛾 signifies the corresponding parameter. We use 

a cubic polynomial of vote margin in our main analysis, but also present results with 

linear and quadratic polynomials in the online appendix as a robustness check.23  

Comparing outcomes for municipalities that are just below and just above the 

threshold results in a quasi-experiment where referendum passage is as good as randomly 

assigned, and the causal effect of referendum passage on other government conservation 

spending can be isolated. Election outcomes in an RD framework have been used to 

examine causal relationships between incumbency and election advantage in the House 

of Representatives (Lee, 2008), electoral support and legislator’s voting behavior (Lee et 

al. 2004), political party affiliation and land use policies (Solé-Ollé and Viladecans-

Marsal, 2013), legislator partisanship on city policing and fire protection expenditures 

(Gerber and Hopkins, 2011), and the spillover effects of incumbency in mixed election 

systems (Hainmueller and Kern, 2008). 

While RD is a powerful research design for causal inference, we must further 

modify Equation (2) for this specific setting. Municipalities can and do hold more than 

one referendum, which necessitates incorporating dynamics into the model. Following 

the model developed by Cellini et al. (2010), we implement a dynamic RD estimator that 

conditions treatment effects on other referendums a community has held. Our preferred 

specification is:  

                                                           
23 Gelman and Imbens (2014) argue that high order polynomials can lead to biased inference and should be 

avoided. We chose to use a cubic polynomial in our main specification because Cellini et al. (2010) and 

Lang (2018) use a cubic in similar setting. We admit this is ad hoc, which is why we present estimates 

using linear and quadratic polynomials in the online appendix (Tables A3 and A4). Results are similar 

regardless of polynomial order choice. 
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𝑦𝑖𝑗𝑡 =  𝛼𝑗 +  ∑ [𝛽𝜏𝑃𝑎𝑠𝑠𝑗,𝑡−𝜏
𝜏̅
𝜏=0 + 𝑓(𝑚𝑎𝑟𝑔𝑖𝑛𝑗,𝑡−𝜏, 𝛾𝜏) +  𝜇𝜏𝐻𝑒𝑙𝑑𝑗,𝑡−𝜏] +  𝜋𝑡 +  𝜀𝑖𝑗𝑡

 (3) 

where t indicates the year of observation, 𝜏 is the number of years since a referendum, 

𝑃𝑎𝑠𝑠𝑗,𝑡−𝜏 is a binary indicator for municipality j passing a referendum 𝜏 years prior to 

year t, 𝐻𝑒𝑙𝑑𝑗,𝑡−𝜏 is a binary indicator for municipality j holding a referendum (this acts as 

an intercept to separate municipalities that do versus do not hold referendums in a given 

year), 𝛼𝑗 is a municipality fixed effect, and 𝜋𝑡 is a year fixed effect. Additionally, this 

specification allows the polynomial in vote margin to vary across lagged years. By 

controlling for the vote margin, past referendum activity, and municipality and year fixed 

effects in Equation (3), 𝛽𝜏 no longer suffers from the endogeneity problem that plagued 

Equation (1) and is interpreted as the causal effect that passing a conservation referendum 

has on another government 𝜏 years after the referendum is passed for municipalities that 

are near the vote margin threshold. Additionally, Equation (3) models time paths of 

government responses. Conserving land parcels or placing items on the ballot is not 

immediate, and thus the effect may be delayed or heterogeneous over time.24 

 

3.4 REGRESSION DISCONTINUITY DIAGNOSTICS 

 The RD framework aims to replicate the identification of treatment effects from 

randomized experiments in settings where treatment is not randomly assigned. This is 

done by focusing regression analysis to observations just below and just above an 

arbitrary threshold where treatment assignment is as good as randomized due to the 

                                                           
24 In the context of U.S. state capital tax policy, Chirinko and Wilson (2017) find that a dynamic 

specification is critical for understanding strategic responses. 
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similarity of observation characteristics and the inability of observations to affect the 

treatment outcome.  

The key identifying assumption of the framework is the continuity of the 

conditional expectations of counterfactual observations below and above the threshold. 

This assumption may not be valid, however, if observations can manipulate their 

treatment status. Though very unlikely in our setting where municipalities use thousands 

of votes to determine the passage of a referendum, we can test for manipulation in a few 

ways. One way is to look at the density of observations around the threshold. If 

municipalities cannot manipulate their treatment status, we would expect a relatively 

smooth density of observations across the passage threshold. Another way is to analyze 

the similarity of municipality characteristics around the passage threshold. Municipalities 

can be similar in observable and unobservable ways. Although it is impossible to 

explicitly test for similarities in unobservable characteristics, we can compare observable 

municipality characteristics for municipalities that fail a referendum and municipalities 

that pass a referendum. 

3.4.1 Referendum Vote Margin Density 

 Figure 3.3 shows the distribution of vote margins for all referendums held in 

Massachusetts from 1996-2016 in the form of a local polynomial density estimator of 

observations on either side of the passage threshold. Evidence of strategic behavior in 

voting outcomes would reveal a statistically significant difference in the frequency of 

vote margins just below and just above the threshold of a 0% vote margin.  A visual 

inspection of the vote margin distribution shows an increase in frequency on the positive 

side of the threshold, but a density test for manipulation of the running variable proposed 
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by Calonico et al. (2014) reveals an insignificant test statistic of 1.105 with a p-value of 

0.269. This suggests manipulation of the running variable should not be an issue in our 

identification strategy for Massachusetts. 

 Figure 3.3 also shows the vote margin distribution for New Jersey referendums 

during the same time period. New Jersey municipality vote margins visually do not show 

the same jump that Massachusetts has around the threshold. Any worries of strategic 

behavior are further dismissed after the manipulation test reveals a statistically 

insignificant test statistic of -0.2975 with a p-value of 0.7661. Like for Massachusetts, 

this suggests that manipulation of the running variable should not be an issue for New 

Jersey.  

3.4.2 Sociodemographic Balance 

Table 3.1 presents the means and standard deviations of Massachusetts 

sociodemographic characteristics to investigate whether municipalities that have failed at 

least one conservation referendum are similar to those that have passed at least one 

referendum. Columns 1 and 2 show municipalities that have ever failed a referendum and 

municipalities that have ever passed a referendum are very similar in median income, 

percentage of population under the age of 18, percentage of population that is white, 

percentage of population that is black, population density, number of acres that are 

available for conservation, and median house price. Column 3 shows the results of a t-test 

between the means presented in Columns 1 and 2. There is a statistically significant 

difference between the two groups of municipalities when it comes to the percentage of 

population over the age of 65, the proportion of populations that have a bachelor’s degree 

or higher, and Democrat share deviation.  
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 RD makes a comparison at the threshold, and it is most important that there is 

balance, and hence no manipulation, at that point rather than across the whole 

distribution. Lee and Lemiuex (2010) suggest a way to test this balance, which is to 

estimate the RD model with the sociodemographic variables as the dependent variables 

and inspect for discontinuity at the threshold. Since we have many covariates, we follow 

Lee and Lemiuex’s suggestion to perform a chi-squared test for the discontinuity to be 

zero for all covariates after running a Seemingly Unrelated Regression (SUR). Column 

(4) of Table 3.1 shows the results of the SUR model where each sociodemographic 

variable is a dependent variable with a dummy variable indicating a passed referendum 

and a cubic polynomial for vote margin as the independent variables. Individual 

coefficient estimates for the pass dummy variable are mostly not statistically different 

than zero, with the exception of proportion over age 65 (at the 10% level). However, a 

postestimation Chi2 test does not allow for the rejection of the null hypothesis that each 

of the coefficients are equal to zero. Together with the results of the vote margin 

manipulation test, we are comfortable proceeding with the RD framework to analyze 

Massachusetts referendum data. 

 Table 3.2 repeats the same columns as in Table 3.1, but for New Jersey. Democrat 

share deviation is not included because those data are only available 2004 and after, 

which removes about one-third of observations. Column (3) shows that there are 

statistically significant differences in means between towns that have ever failed a 

conservation referendum and those that have ever passed a referendum in the proportion 

of population under the age of 18 and median house price. Estimation results of the SUR 

model in Column (4) show a statistically significant discontinuity for the proportion of 
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the population over the age of 65, but the Chi2 test shows the same conclusions as those 

for Massachusetts. This suggests we can use a RD framework to analyze New Jersey 

referendum data as well. 

The strength of the regression discontinuity design is that it eliminates the 

endogeneity issue of omitted variable bias by analyzing outcomes in a way that makes 

variation in treatment exogenous. Omitted variable bias is not the only contributor of 

endogeneity, however. Reverse causality is also a concern for endogeneity in 

econometric settings. In our context, reverse causality would be a concern if regression 

results were being driven by the influence of state activity or neighbor conservation 

activity on a municipality passing a referendum instead of the other way around. 

Although regression discontinuity does not explicitly control for reverse causality (which 

is typically addressed through instrumental variables), we are not worried about it in our 

analysis due to the exogenous nature of treatment assignment in the regression 

discontinuity setting.  

Reverse causality may be a concern in our setting if our dependent variables are 

influencing where towns fall on the vote margin spectrum. By analyzing treatment effects 

in a small neighborhood around the referendum passage threshold where municipalities 

are similar in observable and unobservable ways, the independent variables in our model 

are unlikely to be influenced by the dependent variables. We have already shown that 

town demographic characteristics do not influence vote margin outcomes around the 

passage threshold using SUR models. In the appendix, we use the same approach to show 

that prior state and neighbor conservation activity is not influencing referendum passage 

among municipalities close to the threshold, diminishing concerns of reverse causality. 
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3.5 RESULTS 

Table 3.3 shows the main results from Equation (3). Columns 1-4 present results 

for Massachusetts with each column being a different outcome variable. Across columns, 

almost all of the coefficients are not statistically significantly different from zero, which 

suggests municipal referendum passage does not have any effect on state conservation 

spending, neighbor state conservation spending, or neighbor referendum activity in the 

year of the referendum and the years following. There is a statistically significant 

coefficient estimate for neighbor state spending per capita six years after a passed 

referendum, however, it is not robust to controlling for alternate vote margin 

polynomials.25 Estimates are also inconsistent throughout time with coefficient signs 

switching between positive and negative magnitudes in each model. 

Table 3.3 also produces the results from Equation (3) for New Jersey referendum 

activity. Consistent with the results for Massachusetts, nearly all coefficients are 

statistically insignificant, which suggests municipal referendum passage does not have a 

causal effect on neighbors’ conservation referendum activity. 

While there is no statistical evidence of strategic responses by other governments, 

we must caution against strong conclusions because our results are not precisely 

estimated zeros. Point estimates vary considerably across years and standard errors are 

large, meaning that within the bounds of what is statistically consistent with the data are 

economically meaningful strategic responses. We attempted to improve precision by 

including socioeconomic covariates that vary by year in Equation (3) and by combining 

data from Massachusetts and New Jersey, but neither are a panacea. These results are 

                                                           
25 Robustness results that control for linear and quadratic polynomials of vote margin are included in the 

online appendix. 
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reported in the online appendix and have similar coefficient variation and standard errors. 

We proceed cautiously with the interpretation that there is no causal effect of municipal 

conservation on other governments’ actions.  

3.6 TESTING THE IMPORTANCE OF THE RESEARCH DESIGN  

To better understand the importance of our dynamic RD modeling strategy, we 

also estimate cross-sectional (XS) and difference-in-differences (DID) models that 

address the same questions, and then we compare the results to our preferred results to 

assess bias in XS or DD models. The DID model analysis is performed on the same 

dataset as the dynamic RD model. The specification does not control for the referendum 

vote margin, but is otherwise identical to Equation (3), namely the specification still 

conditions on past referendum activity to account for municipalities that hold more than 

one referendum. For the XS analysis, we sum our outcome variables across years and the 

independent variable of interest is a binary indication of whether the municipality passed 

at least one conservation referendum over the whole time period. In the XS specification, 

we lose municipality fixed effects, but instead include a rich set of socioeconomic 

variables that are averaged across years. When the outcome variable measures actions 

taken in a neighboring municipality, the socioeconomic variables are averaged across 

neighbors, using the same weights (border length) as the dependent variable construction 

(see Section 3.1). Lastly, for the XS model, we include all municipalities, not just those 

that hold a referendum, though results are similar if we do not expand the sample in that 

way.  

3.6.1 Cross-Sectional Analysis 
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 Table 3.4 shows the results from XS regressions for Massachusetts (columns 1-4) 

and New Jersey (columns 5-6). All models regress the outcome variable (identified at the 

column header) on an indicator for referendum passage and a suite of socioeconomic 

variables.  

 Columns 1 and 2 of Table 3.4 show the correlations between a municipality 

passing a referendum and the amount of state funded conservation that happens in that 

municipality and in neighboring municipalities. Column 1 shows a statistically 

insignificant positive coefficient between a referendum passage and state conservation 

spending while Column 2 shows a statistically significant coefficient for the relationship 

between a municipality passing a referendum and state spending in neighboring 

municipalities. 

Columns 3 and 4 show the conditional correlations between a municipality 

passing a referendum and the referendum activity of neighboring municipalities in 

Massachusetts. The results indicate a positive and statistically significant coefficient for 

the relationship between a municipality passing a referendum and the number of 

referendums their neighbors pass and the total conservation funds attached to those 

referendums. The results are quite similar for New Jersey, as shown in columns 5-6.  

3.6.2 Difference-in-Differences Analysis 

 Table 3.5 presents regression results from the DD analysis for Massachusetts 

(columns 1-4) and New Jersey (columns 5-6). Columns 1-2 of Table 3.5 estimate the 

dynamic relationship between passing a conservation referendum and the amount of state 

conservation expenditure in the municipality that held the referendum and neighboring 

municipalities. These results have both positive and negative coefficients, and most are 



 

88 
 

insignificant. Columns 3-4 show positive and statistically significant coefficients in the 

concurrent year, as well as a lag of seven years, which indicates some support for a 

crowd-in effect for neighboring municipalities. This finding is bolstered and more 

pronounced in New Jersey (columns 5-6), which shows positive and statistically 

significant coefficients in the concurrent year through a four year lag.  

 

3.6.3 Comparison to the main results 

The main results using the dynamic RD indicate that no causal effect of municipal 

open space referendums on other government conservation actions. The intuitive appeal 

of the dynamic RD model is that it controls for time-invariant and time-varying 

unobservables, which could lead to biased inference if not controlled for. However, the 

extent of bias is an empirical question for this given setting.  

Both the XS and DD models do not find evidence of municipal actions affecting 

state actions in the municipality that holds a referendum, the same conclusion as the 

dynamic RD. Thus, in this case, we find no evidence of bias in this setting.  

In contrast, XS and DD models do find evidence that municipal actions positively 

affect neighboring state and municipal actions, whereas the dynamic RD models 

indicated no effect. We interpret these differences as evidence of bias in the XS and DID 

estimates. We hypothesize that the XS and DD results reflect spatial correlations that are 

not adequately captured by socioeconomic control variables or municipality fixed effects. 

Supporting this idea, the DD models estimate a statistically significant positive effect in 

the concurrent year, which is near impossibly causal given that it takes time to 

strategically respond.  
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3.7 CONCLUSION 

 We use local government conservation referendum data from Massachusetts and 

New Jersey, two states with land conservation incentive programs, as well as state 

government conservation spending data from Massachusetts, to investigate the 

relationship between public conservation agents at different levels of government and 

across space. Using a RD framework, our results suggests there is not a causal 

relationship between the conservation referendum activity of local and state governments 

as well as between neighboring local governments. 

 By investigating whether there are spillover affects among public conservation 

agents at different levels of government and neighboring governments, we make two 

main contributions to the literature. First, we believe we are the first to investigate 

whether conservation agents in different layers of government react to each other. Prior 

literature investigates externalities between different levels of governments for other 

public goods, but not for land conservation. Second, our methodology allows us to 

investigate these relationships between public conservation agents in a more causal 

manner than what has been done in the past. 

 As urban sprawl in the United States continues to damage biodiversity and natural 

resources, communities can use land conservation as a tool to curb urban sprawl. The 

types of agents involved in conservation and how they react to each other will determine 

how efficient conservation actions will be. Our empirical setting is unique in that 

extensive municipal conservation voting allows for causal identification, however this 

may impact external validity. We choose to study two states that have state-level 

incentives for municipalities to take conservation actions. Results found here may not 



 

90 
 

hold in states without these types of policies. One could imagine that state-level policies 

increase positive responses because municipalities face the same incentives and their 

state institutions see conservation as a priority. On the other hand, municipalities in states 

without conservation incentives may, in the face of scarcer resources, be more proactive 

in building off of neighbors’ actions to enhance conservation benefits. Future research 

that examines states without strong land conservation incentive programs or uses a causal 

framework to examine the relationship between public conservation agents and private 

land trusts can also aid in the understanding of the efficiency of land conservation 

provisioning. 
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Figure 3.1: Massachusetts Land Conservation Activity 

 

 

 

Notes: Figures show referendum and state spending activity for conservation in Massachusetts 

municipalities. 
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Figure 3.2: New Jersey Land Conservation Activity 

 

Notes: Figure shows referendum activity for land conservation in New Jersey municipalities. 
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Figure 3.3: Distribution of referendum voting by margin for Massachusetts and New 

Jersey 

 

 

 
Notes: Graphs are visualizations of manipulation tests for open space referendum vote margins in 

Massachusetts and New Jersey using a quadratic local-polynomial to construct the density point estimator 

and a cubic polynomial to construct the bias-corrected density point estimator. Solid lines are density point 

estimates and the shaded areas are 95% confidence intervals. Test statistics of density discontinuity are 

insignificant for both states.
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Table 3.1: Sociodemographic Balance of Treatment and Control Groups for Massachusetts 

 (1) (2) (3) (4) 

  

Municipalities 

that ever fail a 

referendum 

(std. dev.) 

Municipalities 

that ever pass 

a referendum 

(std. dev.) 

Difference 

of means 

(t stat) 

SUR model 

difference 

(std. error) 

     

Median Income ($) 88,977 88,633 -344 -8,071 

 (24,441) (29,264) (-0.11) (5,955) 

Bachelor's Degree or more (%) 40.06 43.27 3.22* -1.941 

 (14.11) (15.21) (1.82) (3.288) 

Population Under 18 (%) 23.45 22.96 -0.49 -0.837 

 (4.16) (5.05) (-0.88) (1.017) 

Population Over 65 (%) 13.64 15.16 1.52*** 2.114* 

 (3.91) (6.02) (2.75) (1.095) 

White Population (%) 93.25 92.51 -0.74 -0.729 

 (6.73) (7.57) (-0.87) (1.583) 

Black Population (%) 1.78 1.86 0.08 0.272 

 (3.08) (2.96) (0.24) (0.653) 

Population Density 1,305 1,096 -210 -197.1 

 (2,044) (2,047) (-0.88) (446.0) 

Available Acres 8,923 8,992 68 634.3 

 (6,607) (6,830) (0.09) (1,471) 

Median House Price ($) 366,801 397,879 31,078 -17,556 

 (131,672) (171,608) (1.68) (34,321) 

Democrat Vote Share Margin (%) -4.80 -2.92 1.88* 1.968 

 (8.52) (9.96) (1.70) (2.044) 

     

Observations 115 203 318 318 

Number of Municipalities 96 171 267 267 

Vote Margin Polynomial    Cubic 

Chi2 Test    8.07 

Prob > Chi2       0.6215 

Notes:  Demographic data is for the year the referendum was held. Values were 

interpolated/extrapolated from the 2000 Census and 2010 Census or ACS, NLCD database for 

2001 and 2011, and the Elections Division of the Secretary of the Commonwealth of 

Massachusetts. Results for Column (4) are from seemingly unrelated regressions where the error 

terms are assumed to be correlated between individual regression equations where municipality 

demographics were the dependent variable and the exogenous explanatory variables were a dummy 

variable for a passed referendum and a cubic vote margin polynomial. Coefficient estimates for the 

pass dummy variable are shown. *, **, and *** indicate statistical significance at the 10%, 5%, and 

1% levels, respectively. 
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Table 3.2: Sociodemographic Balance of Treatment and Control Groups for New Jersey 

 (1) (2) (3) (4) 

  

Municipalities 

that ever fail a 

referendum 

(std. dev.) 

Municipalities 

that ever pass 

a referendum 

(std. dev.) 

t-test  

difference 

(t stat) 

SUR model 

estimated 

difference 

(std. error) 

     

Median Income ($) 105,423 106,291 868 -1,371 

 (31,480) (29,697) (0.26) (6,059) 

Bachelor's Degree or more (%) 39.79 40.56 0.77 -0.312 

 (15.19) (16.23) (0.43) (3.212) 

Population Under 18 (%) 24.47 25.23 0.77* 0.813 

 (3.65) (4.09) (1.73) (0.791) 

Population Over 65 (%) 14.42 13.47 -0.95 -2.448** 

 (4.77) (6.22) (-1.45) (1.192) 

White Population (%) 85.61 87.24 1.63 -0.320 

 (10.31) (12.10) (1.25) (2.345) 

Black Population (%) 4.24 4.59 0.35 1.870 

 (5.81) (7.94) (0.42) (1.492) 

Population Density 1,968 1,802 -166 65.60 

 (1,838) (2,830) (-0.57) (530.0) 

Available Acres 7,765 7,965 201 2,178 

 (8,963) (8,000) (0.22) (1,647) 

Median House Price ($) 440,913 379,184 

-

61,730*** -35,759 

 (235,050) (193,801) (-2.73) (41,022) 

     

Observations 105 357 462 462 

Number of Municipalities 77 235 312 312 

Vote Margin Polynomial    Cubic 

Chi2 Test    9.53 

Prob > Chi2       0.3897 

Notes: Results for Columns (1) to (3) are from t-tests between municipalities that have ever 

failed a conservation referendum and municipalities that have ever passed a referendum. 

Demographic data is for the year the referendum was held. Values were 

interpolated/extrapolated from the 2000 Census and 2010 Census or ACS, NLCD database for 

2001 and 2011. Results for Column (4) are from seemingly unrelated regressions where the 

error terms are assumed to be correlated between individual regression equations. Municipality 

demographics were the dependent variables and the exogenous explanatory variables were a 

dummy variable for a passed referendum and a cubic vote margin polynomial. Coefficient 

estimates for the pass dummy variable are shown. *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. 
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Table 3.3: The Effect of Passing a Conservation Referendum on Own and Neighbor State 

Spending and Neighbor Referendum Activity 

 (1) (2) (3) (4)  (5) (6) 

 Massachusetts  New Jersey 

VARIABLES 

State 

Spending 

per capita 

(log) 

Neighbor 

State 

Spending 

per capita 

(log) 

Neighbor 

Refs 

Passed 

per 

neighbor 

Neighbor 

Funds 

Approved 

per capita 

(log)  

Neighbor 

Refs 

Passed 

per 

neighbor 

Neighbor 

Funds 

Approved 

per capita 

(log) 

                

Pass Concurrent Year 0.258 -0.839 0.013 -0.343  0.040 0.091 

 (0.455) (0.547) (0.060) (0.547)  (0.054) (0.669) 

Pass 1 Year Ago 0.631 0.363 -0.023 0.175  -0.031 -0.946* 

 (0.644) (0.512) (0.042) (0.451)  (0.040) (0.560) 

Pass 2 Years Ago -0.113 0.092 0.005 -0.042  -0.061 -0.344 

 (0.525) (0.382) (0.026) (0.323)  (0.040) (0.559) 

Pass 3 Years Ago 0.349 -0.183 0.023 0.005  -0.010 -0.287 

 (0.416) (0.470) (0.048) (0.598)  (0.035) (0.525) 

Pass 4 Years Ago 0.081 0.036 0.011 0.390  -0.024 -0.080 

 (0.482) (0.491) (0.035) (0.439)  (0.025) (0.463) 

Pass 5 Years Ago 0.004 -0.432 0.007 0.065  -0.029 -0.352 

 (0.852) (0.624) (0.031) (0.446)  (0.023) (0.378) 

Pass 6 Years Ago -0.087 1.224*** 0.049 0.287  -0.017 -0.293 

 (0.456) (0.442) (0.042) (0.441)  (0.028) (0.410) 

Pass 7 Years Ago -0.369 0.950 -0.053 -0.211  0.005 0.109 

 (0.660) (0.724) (0.055) (0.517)  (0.022) (0.370) 

        

Observations 3,220 3,220 4,830 4,830  5,565 5,565 

Adjusted R-squared 0.251 0.375 0.212 0.159  0.134 0.172 

Vote Margin 

Polynomial Cubic Cubic Cubic Cubic  Cubic Cubic 

Year Fixed Effects Yes Yes Yes Yes  Yes Yes 

Municipality Fixed 

Effects Yes Yes Yes Yes  Yes Yes 

Notes: Each column is a separate regression. Standard errors are shown in parentheses and are 

clustered at the town level. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, 

respectively. 
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Table 3.4: Cross-sectional Relationship between Passing a Conservation Referendum with Own and 

Neighbor State Spending and Referendum Activity 

 (1) (2) (3) (4)  (5) (6) 

 Massachusetts  New Jersey 

VARIABLES 

State 

Spending 

per 

Capita 

(log) 

Neighbor 

State 

Spending 

per capita 

(log) 

Neighbor 

Refs 

Passed 

per 

neighbor 

Neighbor 

Funds 

Approved 

per capita 

(log)   

Neighbor 

Refs 

Passed 

per 

neighbor 

Neighbor 

Funds 

Approved 

per capita 

(log) 

        
Passed a Referendum 0.168 0.406** 0.265*** 0.553***  0.159*** 0.674*** 

 (0.230) (0.175) (0.039) (0.156)  (0.049) (0.161) 

Demographics        
Median Income (log) 0.631 0.168 -0.931*** -1.325  0.720*** 3.541*** 

 (0.986) (1.206) (0.267) (1.074)  (0.268) (0.878) 

Bachelor's Degree or 

Higher (%) 0.012 0.031* 0.016*** 0.041**  0.008 0.040** 

 (0.015) (0.018) (0.004) (0.016)  (0.005) (0.018) 

Under 18 Years Old (%) -0.101** -0.260*** -0.025* -0.058  0.008 -0.037 

 (0.042) (0.058) (0.013) (0.052)  (0.014) (0.045) 

Over 65 Years Old (%) 0.006 -0.085** 0.032*** 0.033  0.015** 0.027 

 (0.033) (0.038) (0.008) (0.034)  (0.007) (0.024) 

White Population (%) 0.013 0.021 0.006 0.047  0.011** -0.001 

 (0.027) (0.039) (0.009) (0.035)  (0.005) (0.016) 

Black Population (%) 0.073 0.028 -0.008 -0.002  -0.001 0.014 

 (0.054) (0.071) (0.016) (0.063)  (0.005) (0.017) 

Population Density (log) -0.827*** 0.000 0.135*** 0.519***  -0.047 0.268** 

 (0.106) (0.134) (0.030) (0.120)  (0.034) (0.110) 

Acres Available (log) 0.000*** 1.058*** 0.173*** 0.762***  0.155*** 0.645*** 

 (0.000) (0.187) (0.041) (0.167)  (0.027) (0.089) 

Median House Price (log) -1.134* -0.494 0.593*** 2.500***  -0.002 -1.319** 

 (0.590) (0.559) (0.124) (0.498)  (0.180) (0.589) 

Democratic Vote Margin -0.021 -0.085*** -0.023*** -0.016  0.023*** -0.001 

 (0.019) (0.020) (0.004) (0.018)  (0.006) (0.020) 

        
Observations 349 349 349 349  565 565 

R-squared 0.495 0.357 0.564 0.466  0.399 0.459 

Years 

1998-

2011 

1998-

2011 

1996-

2016 

1996-

2016  

1996-

2016 

1996-

2016 

Municipality 

Characteristics Own Avg Nbr Avg Nbr Avg Nbr   Avg Nbr Avg Nbr 

Notes: Each column is a separate regression where the independent variables include a dummy variable 

indicating whether a municipality passed at least one referendum and municipality or neighbor 

demographic variables. "Own" demographic characteristics are the demographic variables for the 

municipality that holds a referendum averaged over the years indicated. "Average neighbor" demographic 

characteristics are the average of demographics variables of towns that border the municipality that holds 

a referendum, weighted by border length. Standard errors are shown in parentheses. *, **, and *** 

indicate significance at the 10%, 5%, and 1% levels, respectively. 
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Table 3.5: Difference-in-Differences Estimates of the Effect of Passing a Conservation 

Referendum on Own and Neighbor State Spending and Neighbor Referendum Activity 

 (1) (2) (3) (4)  (5) (6) 

 Massachusetts  New Jersey 

VARIABLES 

State 

Spending 

per capita 

(log) 

Neighbor 

State 

Spending 

per 

capita 

(log) 

Neighbor 

Refs 

Passed 

per 

neighbor 

Neighbor 

Funds 

Approved 

per capita 

(log)  

Neighbor 

Refs 

Passed 

per 

neighbor 

Neighbor 

Funds 

Approved 

per capita 

(log) 

                

Pass Concurrent Year -0.072 -0.117 0.165*** 1.097***  0.039*** 0.425*** 

 (0.110) (0.103) (0.027) (0.197)  (0.010) (0.109) 

Pass 1 Year Ago 0.087 0.150 0.011 0.237**  0.018** 0.305*** 

 (0.127) (0.119) (0.010) (0.106)  (0.009) (0.108) 

Pass 2 Years Ago 0.135 -0.099 0.005 0.113  0.020** 0.427*** 

 (0.122) (0.106) (0.007) (0.101)  (0.008) (0.097) 

Pass 3 Years Ago -0.062 -0.088 0.002 0.092  0.020** 0.350*** 

 (0.112) (0.097) (0.009) (0.115)  (0.008) (0.104) 

Pass 4 Years Ago 0.098 0.066 -0.001 0.127  0.005 0.133 

 (0.136) (0.115) (0.008) (0.100)  (0.007) (0.090) 

Pass 5 Years Ago 0.040 -0.043 -0.004 -0.036  -0.003 0.020 

 (0.119) (0.118) (0.006) (0.075)  (0.006) (0.094) 

Pass 6 Years Ago -0.189* 0.058 0.009 0.047  0.006 0.115 

 (0.101) -0.108 (0.008) (0.087)  (0.006) (0.085) 

Pass 7 Years Ago 0.077 -0.013 0.066*** 0.475***  0.002 0.117 

 (0.158) (0.126) (0.014) (0.106)  (0.006) (0.089) 

        

Observations 3,220 3,220 4,830 4,830  5,565 5,565 

Adjusted R-squared 0.256 0.371 0.176 0.145  0.138 0.175 

Vote Margin 

Polynomial None None None None  None None 

Year Fixed Effects Yes Yes Yes Yes  Yes Yes 

Municipality Fixed 

Effects Yes Yes Yes Yes  Yes Yes 

Notes: Each column is a separate regression. Standard errors are shown in parentheses and are 

clustered at the town level. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, 

respectively. 
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Appendix 2: Supplemental Analysis for Manuscript 3 

This appendix provides supplemental figures, statistics, and results to our main 

paper. 

 Figure A2.1 shows Massachusetts referendum activity from 2008 to 2011 for a 

more direct comparison to our state spending data. The map looks almost identical to 

Figure 3.1 with a visual appearance of a substitution effect between state spending and 

referendum activity. 

Studies that use RD in their analysis typically present RD plots that fit separate 

lines to the relationship between a running variable, such as vote margin, and the 

dependent variable in question below and above a threshold to show the discontinuity in 

the outcome variable that results from treatment. While this is a good practice to build 

intuition for interpreting statistically estimated results, it is harder to do in our situation 

where a dynamic framework would call for multiple plots across time. The use of 

municipality and year fixed effects in our model further complicates the visualization of 

the relationships we estimate in one graph. Regardless, we present RD plots which are 

more akin to cross-sectional results than dynamic results for Massachusetts and New 

Jersey referendums that were held in the previous year in Figure A2.2.   

Figure A2.2 shows regression discontinuity plots for state conservation spending 

per capita, neighbor state conservation spending per capita, neighbor conservation 

referendums passed per neighbor, and neighbor conservation funds approved per capita 

for Massachusetts and New Jersey. Dependent variables are grouped into 2% vote margin 

bins. The visualized relationships are not directly comparable with the coefficients we 

estimate from Equation (3) in the main paper due to the inability to present dynamic 
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results and control for municipality and year fixed effects. The small discontinuities 

between municipalities that barely fail a referendum and those that barely pass a 

referendum for most of the dependent variables are consistent with our estimations for 

Massachusetts. The plots for New Jersey seem to show consistent discontinuities between 

treated and untreated municipalities which suggests treatment may affect neighboring 

municipality conservation activity which is not consistent with our New Jersey 

estimations. 

 Tables A2.1 and A2.2 show the yearly breakdown of aggregate local conservation 

referendum activity and state conservation spending activity where available for 

Massachusetts and New Jersey, respectively. These tables show the prevalence of 

conservation activity in each state from 1996-2016 for referendums and 1998-2011 for 

state conservation spending. 

 Table A2.3 serves as a robustness check to Table 3.3 in the main paper by 

controlling for different vote margin polynomials for Massachusetts. In general, these 

regressions confirm the insignificant results found with a cubic polynomial. The 

regressions that use a linear polynomial of vote margin show positive and significant 

crowding-in results for neighboring conservation activity 1-2 years after a passed 

referendum, but this result is not robust to controlling for quadratic and cubic vote margin 

polynomials. 

 Table A2.4 serves as a robustness check to Table 3.3 in the main paper by 

controlling for different vote margin polynomials for New Jersey. Controlling for linear 

and quadratic vote margin polynomials do not reveal any statistically significant results 

other than a significant coefficient for neighbor referendums passed two years after at the 
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10% level. This estimate is not robust to controlling for linear and cubic vote margin 

polynomials, however. 

 Table A2.5 serves as a robustness check to Table 3.3 in the main text by including 

town level sociodemographic variables in the dynamic regression discontinuity model. 

Sociodemographic variables add explanatory power to the model with significant 

coefficient estimates, however, coefficient estimates for the dynamic effect of passing a 

referendum remain insignificant. 

 Table A2.6 serves as a final robustness check to Table 3.3 in the main text by 

pooling together referendum activity in Massachusetts and New Jersey. Standard errors 

are slightly lower for pooled coefficient estimates compared to individual state results, 

however, coefficient estimates are still statistically insignificant and inconsistent 

throughout time. 

 Table A2.7 serves as a test of reverse causality in the dynamic regression 

discontinuity setting. If our dependent variables are influencing treatment status, then we 

would expect to see prior state and neighbor conservation activity to influence 

municipality vote margins around the threshold. To test this, we use SUR models to see if 

there are discontinuities between towns that barely fail and barely pass a conservation 

referendum based on prior (and concurrent year) state and neighbor conservation activity. 

SUR models for each state are the same models run in Table 3.1 for Massachusetts and 

Table 3.2 for New Jersey in the main text, but with the additional concurrent and prior 

year dependent variables. Coefficient estimates for town demographics are left out of the 

table for brevity.  
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Estimates for Massachusetts show that there are statistically significant 

discontinuities between municipalities that barely fail and barely pass conservation 

referendums based on the number of referendums passed by their neighbors during the 

year a municipality holds a referendum (Column 1) and the number of referendums 

passed by their neighbors the year before the municipality holds a referendum (Column 

2). A postestimation Chi2 test does not allow for the rejection of the null hypothesis that 

each of the coefficients are equal to zero, however. A similar story is seen with New 

Jersey where there is a statistically significant discontinuity between municipalities that 

barely fail and barely pass a conservation referendum based on the amount of 

conservation funds passed by their neighbors during the year they hold a referendum 

(Column 4). A postestimation Chi2 test does not allow for the rejection of the null 

hypothesis that each of the coefficients are equal to zero, as well. 
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Figure A2.1: Massachusetts Referendum Activity 1998-2011 
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Figure A2.2: Static Regression Discontinuity Plots 
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Table A2.1: Referendum and State Spending Conservation Statistics 

for Massachusetts 

Year 

Referendums 

Held 

Referendums 

Passed 

Conservation 

Funds 

Approved 

State 

Spending 

1996 1 0 $0 - 

1997 5 5 $18,398,000 - 

1998 18 17 $101,431,459 $4,758,851 

1999 0 0 $0 $54,716,714 

2000 3 3 $17,415,000 $43,344,154 

2001 67 35 $109,830,772 $51,897,637 

2002 46 22 $47,546,162 $74,827,403 

2003 6 4 $6,395,006 $12,779,610 

2004 18 17 $48,858,902 $13,997,265 

2005 31 28 $94,592,119 $27,484,753 

2006 36 18 $30,629,839 $43,118,496 

2007 17 11 $23,677,068 $35,980,955 

2008 21 14 $15,425,933 $47,758,589 

2009 4 2 $2,747,987 $45,240,840 

2010 7 6 $9,404,884 $42,221,711 

2011 4 3 $1,417,860 $21,985,087 

2012 11 7 $28,113,508 - 

2013 2 0 $0 - 

2014 13 6 $19,154,148 - 

2015 4 3 $12,499,016 - 

2016 4 2 $2,309,939 - 

Average 15 10 $28,087,981 $37,150,862 
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Table A2.2: Referendum and State Spending 

Conservation Statistics for New Jersey 

Year 

Referendums 

Held 

Referendums 

Passed 

Conservation 

Funds 

Approved 

1996 7 6 $54,383,998 

1997 8 6 $28,882,368 

1998 55 46 $234,091,328 

1999 38 36 $116,858,202 

2000 43 42 $168,405,307 

2001 49 43 $115,493,091 

2002 30 24 $123,695,970 

2003 37 28 $98,943,898 

2004 40 29 $64,091,930 

2005 29 20 $45,275,606 

2006 23 14 $39,362,914 

2007 24 11 $82,538,428 

2008 21 13 $37,753,200 

2009 7 2 $3,404,981 

2010 5 3 $1,724,147 

2011 8 4 $10,162,888 

2012 9 7 $68,695,485 

2013 8 6 $28,094,534 

2014 2 1 $2,616,721 

2015 3 3 $2,053,726 

2016 16 13 $50,149,292 

Average 22 17 $65,556,096 
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Table A2.3: Robustness Check of the Effect of Passing a Conservation Referendum on Neighbor Referendum Activity in 

Massachusetts 

 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES 

State 

Spend 

per cap 

(log) 

Neighbor 

State 

Spend 

per cap 

(log) 

Neighbor 

Referendums 

per neighbor 

Neighbor 

Funds 

per cap 

(log) 

State 

Spend 

per cap 

(log) 

Neighbor 

State 

Spend 

per cap 

(log) 

Neighbor 

Referendums 

per neighbor 

Neighbor 

Funds per 

cap 

(log) 

                  

Pass Concurrent Year 0.175 -0.214 0.040 0.147 0.152 -0.542 0.098* 0.292 

 (0.275) (0.291) (0.035) (0.319) (0.352) (0.412) (0.050) (0.434) 

Pass 1 Year Ago 0.102 -0.132 0.040* 0.691*** 0.482 0.444 0.000 0.331 

 (0.312) (0.298) (0.023) (0.245) (0.456) (0.424) (0.032) (0.347) 

Pass 2 Years Ago -0.096 0.007 0.047*** 0.538*** -0.248 0.029 0.004 0.082 

 (0.306) (0.223) (0.016) (0.201) (0.440) (0.315) (0.021) (0.256) 

Pass 3 Years Ago -0.072 -0.219 0.042* 0.364 0.259 -0.007 0.016 -0.013 

 (0.266) (0.237) (0.022) (0.292) (0.343) (0.372) (0.035) (0.455) 

Pass 4 Years Ago 0.008 -0.337 0.019 0.312 -0.139 -0.009 -0.001 0.160 

 (0.286) (0.297) (0.023) (0.286) (0.405) (0.404) (0.027) (0.377) 

Pass 5 Years Ago -0.268 -0.419 -0.006 -0.217 -0.050 -0.367 -0.014 -0.197 

 (0.395) (0.356) (0.022) (0.263) (0.627) (0.510) (0.025) (0.338) 

Pass 6 Years Ago -0.206 0.078 0.022 0.196 0.110 0.411 0.040 0.378 

 (0.317) (0.305) (0.023) (0.246) (0.436) (0.350) (0.033) (0.354) 

Pass 7 Years Ago 0.154 0.291 0.025 0.283 0.481 0.762 -0.040 -0.088 

 (0.375) (0.367) (0.034) (0.279) (0.530) (0.536) (0.047) (0.396) 
         

Observations 3,220 3,220 4,830 4,830 3,220 3,220 4,830 4,830 

Adjusted R-squared 0.252 0.373 0.201 0.156 0.251 0.375 0.205 0.156 

Vote Margin 

Polynomial Linear Linear Linear Linear Quadratic Quadratic Quadratic Quadratic 
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Table A2.3: (continued) 

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Municipality Fixed 

Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: Each column is a separate regression. Standard errors are shown in parentheses and are clustered at the municipality level. 

*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Table A2.4: Robustness Check of the Effect of Passing a Conservation Referendum 

on Neighbor Referendum Activity in New Jersey 

 (1) (2) (3) (4) 

VARIABLES 

Neighbor 

Referendums 

Passed per 

neighbor 

Neighbor 

Funds 

Approved 

per capita 

(log) 

Neighbor 

Referendums 

Passed per 

neighbor 

Neighbor 

Funds 

Approved 

per capita 

(log) 

          

Pass Concurrent Year 0.022 0.353 0.041 0.401 

 (0.027) (0.313) (0.041) (0.500) 

Pass 1 Year Ago 0.015 0.038 -0.019 -0.500 

 (0.025) (0.332) (0.032) (0.449) 

Pass 2 Years Ago -0.013 0.152 -0.053* -0.316 

 (0.023) (0.297) (0.030) (0.421) 

Pass 3 Years Ago -0.005 -0.023 -0.024 -0.371 

 (0.018) (0.263) (0.025) (0.402) 

Pass 4 Years Ago -0.003 0.110 -0.009 0.078 

 (0.017) (0.242) (0.020) (0.357) 

Pass 5 Years Ago -0.001 -0.077 -0.016 -0.224 

 (0.016) (0.257) (0.019) (0.297) 

Pass 6 Years Ago -0.017 -0.162 -0.019 -0.347 

 (0.017) (0.236) (0.021) (0.306) 

Pass 7 Years Ago 0.016 0.165 -0.008 -0.136 

 (0.015) (0.244) (0.018) (0.293) 

     

Observations 5,565 5,565 5,565 5,565 

Adjusted R-squared 0.137 0.174 0.136 0.174 

Vote Margin Polynomial Linear Linear Quadratic Quadratic 

Year Fixed Effects Yes Yes Yes Yes 

Municipality Fixed 

Effects Yes Yes Yes Yes 

Notes: Each column is a separate regression. Standard errors are shown in parentheses and are clustered at 

the municipality level. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, 

respectively. 
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Table A2.5: The Effect of Passing a Conservation Referendum and Demographics on Own and Neighbor State Spending and 

Neighbor Referendum Activity 

 (1) (2) (3) (4)  (5) (6) 

 Massachusetts  New Jersey 

VARIABLES 

State 

Spending per 

capita (log) 

Neighbor 

State 

Spending per 

capita (log) 

Neighbor 

Referendums 

Passed per 

neighbor 

Neighbor 

Funds 

Approved 

per capita 

(log)  

Neighbor 

Referendums 

Passed per 

neighbor 

Neighbor Funds 

Approved per 

capita (log) 

                

Pass Concurrent Year 0.297 -0.835 0.011 -0.394  0.038 0.048 

 (0.450) (0.548) (0.060) (0.544)  (0.054) (0.658) 

Pass 1 Year Ago 0.658 0.347 -0.027 0.094  -0.036 -1.010* 

 (0.655) (0.513) (0.042) (0.450)  (0.040) (0.563) 

Pass 2 Years Ago -0.109 0.050 -0.001 -0.140  -0.064 -0.396 

 (0.535) (0.390) (0.026) (0.319)  (0.040) (0.561) 

Pass 3 Years Ago 0.346 -0.241 0.017 -0.093  -0.012 -0.320 

 (0.423) (0.469) (0.049) (0.594)  (0.035) (0.525) 

Pass 4 Years Ago 0.060 -0.062 0.006 0.301  -0.024 -0.088 

 (0.483) (0.497) (0.034) (0.432)  (0.025) (0.461) 

Pass 5 Years Ago -0.068 -0.555 0.002 -0.017  -0.028 -0.346 

 (0.865) (0.621) (0.031) (0.446)  (0.022) (0.367) 

Pass 6 Years Ago -0.150 1.121** 0.043 0.196  -0.014 -0.274 

 (0.458) (0.446) (0.042) (0.441)  (0.027) (0.400) 

Pass 7 Years Ago -0.425 0.803 -0.058 -0.279  0.010 0.154 

 (0.662) (0.698) (0.056) (0.511)  (0.021) (0.357) 

Demographics        

Median Household Income (log) -0.715 -2.410*** 0.043 0.805*  -0.090* -0.553 

 (0.690) (0.878) (0.044) (0.475)  (0.049) (0.679) 
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Table A2.5: (Continued) 

Bachelor's Degree (%) 0.027 0.050* -0.002* -0.007   0.002     0.027 

 (0.019) (0.029) (0.001) (0.011)  (0.002)     (0.024) 

Under 18 Years Old (%) -0.019 -0.075 -0.004** -0.073***  -0.002 -0.034 

 (0.044) (0.071) (0.002) (0.021)  (0.002) (0.033) 

Over 65 Years Old (%) -0.025 -0.040 -0.010*** -0.128***  -0.008*** -0.103*** 

 (0.039) (0.054) (0.002) (0.021)  (0.002) (0.027) 

White Population (%) 0.025 0.027 0.004*** 0.063***  0.001 0.009 

 (0.026) (0.044) (0.002) (0.016)  (0.001) (0.019) 

Black Population (%) -0.005 -0.001 0.005 0.049  -0.005** -0.053* 

 (0.054) (0.066) (0.003) (0.033)  (0.002) (0.029) 

Population Density (log) -0.274 -0.261 0.070 -0.479  -0.108** -1.129* 

 (1.123) (1.866) (0.059) (0.608)  (0.045) (0.649) 

Acres Available (log) 0.000 3.141 -0.249*** -4.237***  -0.158** -2.310** 

 (0.000) (2.152) (0.086) (1.152)  (0.077) (1.087) 

Median House Price (log) 1.369*** 1.000* -0.038 0.171  0.006 0.143 

 (0.521) (0.599) (0.026) (0.259)  (0.023) (0.348) 

Democratic Vote Margin 0.023** 0.031*** 0.001** 0.020***    

 (0.009) (0.011) (0.000) (0.005)    

        

Observations 3,220 3,220 4,830 4,830  5,565 5,565 

Adjusted R-squared 0.253 0.380 0.217 0.168  0.142 0.181 

Vote Margin Polynomial Cubic Cubic Cubic Cubic  Cubic Cubic 

Municipality Characteristics Own Avg Neighbor Avg Neighbor Avg Neighbor  

Avg 

Neighbor 

Avg 

Neighbor 

Year Fixed Effects Yes Yes Yes Yes  Yes Yes 

Municipality Fixed Effects Yes Yes Yes Yes  Yes Yes 

Notes: Each column is a separate regression. Standard errors are shown in parentheses and are clustered at the town level. *, 

**, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 
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Table A2.7: Test of Reverse Causality 

 (1) (2)  (3) (4) 

 Massachusetts  New Jersey 

VARIABLES 

SUR 

model 

difference 

(std. error) 

SUR 

model 

difference 

(std. 

error)   

SUR 

model 

difference 

(std. error) 

SUR 

model 

difference 

(std. 

error) 

State Spending 8.449 2.928    

 (12.43) (14.56)    

Neighbor State Spending -3.052 -2.842    

 (6.224) (4.931)    
Neighbor Referendums 

Passed 0.103* 0.0433**  0.0542 0.0444 

 (0.0596) (0.0218)  (0.0355) (0.0314) 

Neighbor Conservation 

Funds 35.43 4.460  58.38** 16.85 

 (34.42) (4.860)  (25.04) (12.03) 

      

Observations 318 317  462 461 

Conservation Activity Concurrent 

Year 

1-Year 

lag  

Concurrent 

Year 

1-Year 

lag 

Vote Margin Polynomial Cubic Cubic  Cubic Cubic 

Chi2 Test 10.42 17.24  13.65 11.68 

Prob > Chi2 0.7307 0.2436   0.2528 0.3881 
Notes: Each column is a separate regression. Results are from seemingly unrelated regressions 

where the error terms are assumed to be correlated between individual regression equations where 

municipality demographics were the dependent variable and the exogenous explanatory variables 

were a dummy variable for a passed referendum and a cubic vote margin polynomial. SUR 

regressions include the same municipal demographic variables that were included in Table 3.1 and 

Table 3.2 in the main text. 
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CONCLUSION 

Communities in the United States have a complex relationship with the environment. 

For instance, if a municipality has been experiencing rapid development, they could 

conserve land around the municipality to curb urban sprawl. However, this may cause a 

“free-rider” problem where surrounding towns are less likely to conserve land on their 

own and consequently miss out on the ecological benefits of connected conservation 

land. Another example is the physical threat that counties along the East Coast and Gulf 

of Mexico face from strong tropical storms and hurricanes. When a hurricane hits, both 

people and businesses may be affected. The policies that communities adopt will govern 

how successful they will be at maximizing future benefits and minimizing future costs 

related to both types of environment-related events. 

  In order for communities to efficiently manage responses to environmental events 

such as severe weather and land conservation decisions of surrounding communities, it is 

important first to quantify and understand how these events affect communities over 

time. In my dissertation research, I conduct three independent studies to examine how 

environmental events such as hurricane strikes and land conservation decisions affect 

communities in the United States. 

 In the first chapter, I examine how hurricane strikes affect the economy in U.S. 

counties, including poverty levels, public business accounts, and population trends. The 

main hypothesis tested in this chapter was that hurricane strikes increase poverty levels 

and the effect persists over multiple years after the strike. Interestingly, we see that 

hurricane strikes decrease poverty levels in affected counties using a difference-in-
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differences methodology. There are two vehicles that can be causing this decrease after a 

strike – an increase in business activity (including per capita personal income, wages, and 

employment) as well as a decrease in population. Supplementary analysis on shifts of 

income distribution shows that the decrease in poverty is most likely due to displacement 

of families around the poverty line. 

 In the second chapter, I examine if there is a “window of opportunity” in 

communities that experience a tropical storm or hurricane strike where people are more 

interested in taking preventative action against future storm damage costs. The main 

hypothesis tested in this chapter is that hurricane strikes cause an increase in interest 

activities used to mitigate against future hurricane damage costs – measured by relevant 

Google search terms – during the month of a hurricane strike and a short duration 

afterwards. Results using a difference-in-differences methodology reflect this 

relationship. Populations in media markets that experience tropical storms and hurricanes 

show increased popularity of internet searches of flood insurance during the concurrent 

month up to a few months after. This suggests there may be a window of opportunity in 

which stakeholders are more likely to be engaged and support policies aimed at reducing 

future damage costs from environmental events like tropical storms and hurricanes. 

 In the third chapter, I examine whether municipalities that pass land conservation 

referenda cause state and neighboring municipalities to crowd-in or crowd-out land 

conservation spending. The main hypothesis tested in this chapter is that municipalities 

that pass conservation referenda are more likely to receive additional state land 

conservation funding and encourage neighboring towns to pass conservation referenda 

(i.e. a crowd-in effect). Results from a dynamic regression discontinuity methodology do 
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not show a consistent causal effect in any of the relationships tested – passing a 

referendum does not result in any patterns of state spending in the focal municipality, 

state spending in neighboring municipalities, or referendum activity in neighboring 

municipalities. Results indicate that municipalities need not worry that their own 

conservation activity will crowd-out state and neighboring municipality conservation 

spending. Conversely, they should not expect crowding-in activity as well. 

 Discrete environmental events such as storm experience and natural resource 

decisions have the potential to have widespread consequences. Most of the research in 

this dissertation focuses on the impacts of environmental events in directly affected 

communities – although neighboring counties to those that experience hurricane strength 

intensity are identified in the first chapter conservation activity in neighboring 

municipalities was examined in the third chapter. Future research can focus on examining 

if willingness to mitigate against future environmental damages is shown in neighboring 

communities. Future research can also examine individual data instead of aggregate data, 

which was the focus of this dissertation. 
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