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Abstract 

The focus of this dissertation is on discrete classification problems in agricultural and 

behavioral economics. In my first two manuscripts, I take up the issue of producer 

misperceptions of yield risk relative to their objective, a well-established phenomenon in 

which farmers tend to be overly optimistic in their perceptions of yield risk, forecasting 

yields with higher mean and lower variance than historical outcomes would suggest. 

Manuscript 1 focuses on estimating both how such misperceptions are distributed across 

individual forecasts, as well as how such misperceptions might arise. Manuscript 2 goes on 

to look at how these misperceptions of yield risk affect farm-level crop insurance coverage 

level choices, simulating cross-coverage crop insurance demand across a broad set of 

scenarios. In my third chapter, I present a hierarchical Bayesian methodology for 

disaggregating, or downscaling, aggregated count data using an outside statistical sample. 

As an application, this chapter demonstrates how stakeholders can use readily available yet 

incomplete land use (e.g. agricultural) count data in combination with censored/aggregated 

census data provided at the county level to recover/estimate land use count data at the 

municipality (town, city, or any other sub-county region) level.  

In Manuscript 1, we estimate the distribution of miscalibrated perceptions of yield 

risk, using the expectation maximization algorithm to perform a latent class analysis to 

uncover potential heterogeneity (clustering) in the parameters of our yield miscalibration 

model. Using self-reported yield forecasts and yield history from rural Chinese farmers, 

we estimate miscalibration parameters for each of our 879 forecast/history observations, 

using expectation maximization to fit these parameters to a Gaussian mixture model. We 

find that forecasts can best be described as coming from three distinct distributions or 

clusters that can best described as ‘optimistic’, ‘unbiased’, and ‘pessimistic’. We find that 

roughly 67% of forecasts can be defined as optimistic with producers perceiving that, on 



average, yields face only half (55%) of their true risk. 12% of forecasts can be defined as 

pessimistic with producers perceiving that, on average, yields face 50% more risk than that 

of their objective risk. The remaining 21% of forecasts can be classified as unbiased, with 

perceived yield risk being largely in line with objective yield risk. In addition, we find that 

our optimistic group separates cleanly into two distinct clusters of roughly equal size – one 

comprised of ‘mild optimists’, and another comprised of ‘extreme’ optimists.  

We go on to examine the possible causes of these misperceptions of risk, finding 

that such misperceptions are not inherent to the producer, but rather result from crop-

specific yield experience. Using regression methods, we find statistically significant 

evidence that recent historic losses increase the amount of producer’s level of perceived 

risk, while increases in the length of time since experiencing a historic loss decrease the 

level of perceived risk.  

These results have important implications for crop insurance demand modeling. 

These findings also suggest that a targeted subsidy approach based on outcome history 

may be more cost-effective at inducing insurance participation than subsidies that are fixed 

across locations. Namely, Not only is it important to incorporate miscalibrated perceptions 

of risk in crop insurance demand models, it is also important to include heterogeneity with 

regard to those misperceptions. 

Manuscript 2 takes up the question of how misperceptions of yield risk effect 

producers’ decisions regarding which crop insurance coverage level to participate in. We 

simulate cross-coverage level crop insurance demand for both yield and revenue insurance 

across four potential models of risk misperception and three potential models of decision-

making - one based on expected utility and two based on cumulative prospect theory yet 

differentiated by whether decisions are framed within the broader context of farm risk-

management, or whether decisions/outcomes are more narrowly framed - for a total of 



twelve choice models. Optimal coverage level choices are simulated for both corn (based 

on data from York Count, NE and considered to be ‘low risk’) and wheat (based on data 

from Sumner County, KS and considered ‘high risk’). We find that increases in optimism 

bias drive down the optimal choice of coverage level, eventually inducing producers not to 

participate in crop insurance at all. Conversely, pessimism causes producers to increase 

their coverage level to the point of maximum coverage. We also find that this effect is 

strongest in the case of yield insurance, although the effect is still significant for revenue 

insurance. Further sensitivity analyses suggest that these results are not highly sensitive to 

correlations between prices and yields.  

The aim of Manuscript 3 is to help stakeholders obtain policy-critical micro-level 

statistical data in cases where such data may only exist at a higher level of aggregation 

than is desired (e.g. aggregated census data). In this manuscript, published in the 

December 2017 edition of Agricultural and Resource Economics Review, we develop a 

hierarchical Bayesian methodology for downscaling regional count data to the sub-region 

level through the incorporating of an outside statistical sample in the form of sub-regional 

lower bounds (e.g. sub-regioni has at least xi farms, sub-regionj has at least xj farms, etc…). 

Our methodology combines numerical simulations with exact calculations of 

combinatorial probabilities in order to determine which values of sub-regional counts are 

most likely to have resulted in the available statistical sample given the information 

contained in our two data sources. Although our method is designed to provide 

municipality count data based on county level data, as a proof of concept, we demonstrate 

our approach by estimating Rhode Island county level farm counts (which are known, but 

are not used in the estimation procedure) using state level farm count data provided by the 

Ag Census, along with a sample of Rhode Island farm locations collected by the 

University of Rhode Island. By estimating values that are known we are able to measure 



the accuracy of our estimates. We are able to show that not only do our estimates 

outperform those obtained via maximum likelihood, but that they are robust to sampling 

variability across heterogeneous population sizes. We go on to expand our model to 

incorporate spatial considerations and demonstrate how the use of an informative prior 

based on relevant sub-region characteristics (land area, in our application) can further 

improve the estimates.  
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Abstract 

Understanding how farmers perceive risk is crucial in designing effective risk-

management tools and policies. Federal crop insurance subsidies have grown 

dramatically over time to address low program participation, and it has been 

suggested that the widespread behavioral phenomenon of optimism bias may play a 

role. Nonetheless, no model currently exists to map optimistically biased forecasts 

into crop insurance demand. We develop a new behavioral model of perceived yield 

risk as shifting and scaling the objective distribution of yield risk. We fit the model to 

yield forecasts and yield histories of wheat and corn farmers in China, and find that 

forecasts are anchored to historical positive experience and they are optimistically 

biased, on average. To evaluate multi-modal heterogeneity in the forecasts, we 

estimate a Gaussian mixture model using expectation-maximization and find 

evidence for three basic forecast types: optimistic (roughly 67%), realistic or neutral 

(about 20%), and pessimistic (about 12%), with a small, extremely pessimistic outlier 

group. We find further clustering within the optimistic group, with about half highly 

optimistic and about half mildly so. The group-wise means and mixture weights are 

robust to inclusion of additional elicited data, and also to inclusion of a shape 

parameter in the forecast model. Moreover, we find no evidence that forecast 

classifications map to a classification of the individual farmer making them. Instead, 

recent severe loss experience in the crop of interest appears to be the strongest single 

predictor of pessimism, though we also find statistically significant gender 

differences.  
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1.1 Introduction 

Since passage of the Federal Crop Insurance Act of 1980, policy makers and 

agricultural economists have struggled to understand the factors driving farmer 

adoption of crop insurance in the United States. Despite the obvious benefits of risk 

management, participation in crop insurance programs has historically been 

puzzlingly low unless heavily subsidized by the federal government (Coble and 

Barnett, 2013). Congress passed reform bills in 1994 and 2000 that dramatically 

increased the size and scope of the Federal Crop Insurance Program because of 

failures to attract adequate participation at sufficiently high coverage levels (Glauber 

and Collins, 2002), and program costs have now grown to almost 30 times 1980s 

levels: the federal government is projected to spend over 6 billion dollars on crop 

insurance subsidy programs in 2017 (USDA ERS). 

 Common hypotheses for the presence of “demand frictions” limiting crop 

insurance participation have included adverse selection, expectations of ad hoc 

disaster relief, and availability of alternative risk management tools (see, for example, 

Coble and Barnett, 2013; Coble et al., 1999; Just, Calvin and Quiggin, 1999; Smith 

and Goodwin, 1996; Skees and Reed, 1986), though these factors are observed in 

other insurance markets without the same severe effects. Some recent studies, 

however, posit that lower than expected demand for crop insurance results from a 

systematic miscalibration of subjective yield risks by farmers (Egelkraut et al. 2006; 

Turvey et al., 2013). There is empirical evidence that, on average, producers are 

optimistically biased with respect to yields and yield variability, expecting better than 

average yields and below average yield risk (Pease, 1992; Umarov and Sherrick, 
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2005; Egelkraut et al., 2006; Turvey et al., 2013), and a number of studies have 

shown that perceived yield risk affects crop insurance demand around the world, 

including farmers in the United States (Horowitz and Lichtenberg, 1993; Sherrick et 

al., 2004; Egelkraut et al., 2006; Shaik et al., 2008), in France (Enjolras and Sentis, 

2011) and in China (Wang, Ye and Shi, 2016). While extensive work has been done 

attempting to model the distribution of crop yields, especially for crop insurance 

rating purposes (see Woodard and Verteramo-Chiu, 2017; Ker et al., 2015; and 

Woodard and Sherrick, 2011, for recent examples), modeling the transformation of 

perceived yields due to optimism bias remains an open question. Addressing this gap 

in the literature is a critical step in the development of behavioral models of crop 

insurance demand going forward. 

 In this article, we formulate and test a parsimonious and distribution-agnostic 

model in which subjective yield risks (herein, “forecasts”) are derived as shift-and-

scale transformations of the historical distribution of outcomes. The model can be 

estimated by regression on a per-farmer and per-crop basis using simple elicitation 

data, and it allows for inclusion of a reference point anchoring the forecast to a 

summary statistic of the historical distribution. Using data from corn and wheat 

farmers in Shanxi Province, China, we find statistical evidence that farmers anchor to 

past positive yield experience and that they are optimistically biased on average. 

Critically, the distribution of model parameters appears to be multi-modal, meaning 

that there are heterogeneous clusters among forecasts which are not well-described by 

the population average (cf., Bruhin, Fehr-Duda and Epper, 2010; Sproul and 

Michaud, 2017). 
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Using a finite Gaussian mixture model, we find evidence for three basic 

forecast types: optimistic (about two thirds), realistic or neutral (about 20%), and 

pessimistic (most of the remainder), plus a small outlier group of extreme pessimists. 

On average, optimistic forecasts had half the risk (a scale parameter, proportional to 

standard deviation) of their objective historical yield distribution, while pessimistic 

forecasts had approximately twice the risk of their objective distribution. Expanding 

our analysis to consider more classes, we find that the optimistic group cleanly 

separates into mildly and strongly optimistic groups of roughly equal size. Our results 

are robust to changing the number of data points per elicitation, and to adding a shape 

parameter to the model.  

Since our data set contains many farmers who make more than one forecast, 

we are able to test whether forecast classifications are also classifications of the 

farmers themselves. We do not find statistical evidence in support of this hypothesis. 

To gain further insight, we conduct a regression analysis to identify factors 

influencing the degree of optimism bias in the parameters, and find that the recency 

of historic losses is the most statistically and economically significant. Farmers’ 

forecasts exhibit a 1% decrease in scale (risk) for each additional year since their 

historic minimum yield. We find no similar effect for historic gains, and also find no 

evidence of a cross-crop effect within farmers, i.e. wheat forecasts do not seem 

affected by the same farmer experiencing corn losses, and vice versa. We also find 

statistically significant differences in optimism bias by gender: men forecast about 

85% of their historical yield risk, while women forecast only 74% on average, after 
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controlling for other factors. Finally, we find that optimism bias appears to be 

persistent over time, as it does not vary with years of farming experience. 

The remainder of this article is organized as follows: the next section provides 

a background of the literature pertaining to optimistically biased forecasting by 

farmers, and of the relevant behavioral economics literature more generally. The 

following two sections introduce our model and our data set. We then estimate the 

basic model, address the presence of reference points in forecasts, and estimate a 

mixture model to evaluate heterogeneity. Finally, we examine predictors of optimism 

bias, including demographic variables and yield history. The last section discusses 

implications for policy design and future research, and concludes. 

 

1.2 Background 

In the words of De Bondt and Thaler (1995, p. 389), “perhaps the most robust finding 

in the psychology of judgment is that people are overconfident.” There is a vast body 

of widely replicated experimental studies showing that individuals are systematically 

overly optimistic in the face of risk: by and large, individuals believe that they are 

more likely than average to experience positive future events, while being less likely 

to experience negative events (cf. Slovic, 2016; Sandroni and Squintani, 2007). The 

finding is consistent across domains as diverse as post-college job prospects 

(Weinstein, 1980; Hoch, 1985), construction costs (Statman and Tyebjee, 1985), 

health risks (Kreuter and Strecher, 1995; Robb et al., 2004), entrepreneurship (Cooper 

et al., 1988; Camerer and Lovallo, 1999; Landier and Thesmar, 2009), and the now-

canonical popular culture example, in which over 80% of drivers think they have 
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above average ability (Svenson, 1981; Groeger and Grande, 1996). A unifying feature 

of overconfident beliefs is their dependence on the perception of control or ability to 

exert skill over the outcome (Sandroni and Squintani, 2004). Though the terms 

‘optimism bias’ and ‘overconfidence’ are often used interchangeably, there is a 

noteworthy distinction that is particularly relevant to this analysis. Overconfidence 

generally refers to the belief that one’s expected outcome will be more favorable than 

the expected outcome of one’s peers.  Optimism bias, on the other hand, is a more 

general term that refers to the belief that one’s future outcomes will be more 

favorable than past outcomes, possibly including those experienced by others. 

Unfortunately this distinction is not always carefully applied in the literature, so to 

avoid constant context-switching and qualification of terms, we will refer to these 

phenomena herein under the umbrella term ‘optimism bias’. 

The above examples are not simply cases of wishful thinking or otherwise 

erroneous reporting on surveys, nor are they confined to the behavioral laboratory: 

acting on misperceptions about risk has been observed as affecting health outcomes 

(Hoorens, 1994), legal settlements (Babcock et al., 1997), mergers and acquisitions 

(Malmendier and Tate, 2006; 2008), and insurance purchasing decisions 

(Bhattacharya et al., 2004). In a theory paper, Spinnewijn (2013) presents a model in 

which individuals are overly optimistic with regard to probabilities of discrete health 

outcomes as a function of effort, demonstrating how such a belief decreases an 

individual’s willingness to pay for health insurance. One feature of behavioral 

phenomena is that some can be “unlearned” through market or professional 

experience, like the endowment effect (List, 2003), while others persist, like myopic 
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loss aversion (Haigh and List, 2005). It appears that optimism bias falls in the latter 

category, and persists in the face of experience (Dalziel and Job, 1997), consistent 

with our results.  

Despite the widespread evidence, optimistically biased beliefs do not apply to 

everyone in a given domain. Nearly every article on optimism bias has a subtext in 

which a surprisingly large percentage of subjects are overly optimistic and a 

surprisingly small (but non-zero) percentage are overly pessimistic. For example, 

Svenson (1981) finds that 82% of students placed themselves among the top 30% of 

drivers, and Wenglert and Rosén (2000) find that 72% of their subjects were 

classified as being overly optimistic about their personal future. Cooper et al. (1988) 

find that 68% of entrepreneurs believe their startup is more likely to succeed than 

comparable enterprises and that furthermore, only 5% believe that their odds of 

success are worse than their competitors (similar findings are reported by Landier and 

Thesmar, 2009). In the investment domain, a survey by Benartzi (2001) found that 

only 16.4% percent of respondents believed that their company’s stock was riskier 

than the stock market as a whole.  

Despite the breadth of this literature, there are two key areas where it lacks 

depth that we hope to address here. The same challenges exist in the relevant 

agricultural economics literature, discussed below. First, most approaches rely on 

estimating optimism bias on average, either by regression or comparison of 

distribution moments, but none of them (to our knowledge) explicitly estimate how 

past experience is transformed into an optimistically biased forecast. Second, there is 

a consistent finding of widespread optimism but always at least some pessimism, and 
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little work has been done to estimate the incidence of these beliefs more broadly. A 

key contribution in this article is the classification of forecasts into optimistic, neutral 

and pessimistic types. 

Within agricultural economics, Pease (1992) is the first study we are aware of 

to statistically compare farmers' subjective and historical crop yield probability 

distributions, evaluating historical yields and subjective expectations for the 1987 

crop year for 98 Western Kentucky grain farmers. Pease finds that in many 

individuals, there exist large differences in the moments of the subjective and 

historical distributions. He also finds that corn forecasts were mildly pessimistic, on 

average, while soybean forecasts were optimistic. These differences were driven 

primarily by regional differences, with severe drought conditions affecting yields in 

both 1980 and 1983 for areas predominately planted in corn, while drought conditions 

affected yields only in 1983 for areas planted predominately in soybeans. The result 

that pessimistic forecasting bias is influenced by recent negative yield outcomes is 

consistent with our results as discussed above. 

 In a conference paper, Umarov and Sherrick (2005) test the “better than 

average” effect in a survey of 870 corn and soybean farmers in Illinois, Iowa and 

Indiana. They find strong evidence of optimism bias in terms of above average yields 

and below average stability (lack of variance) relative to their primary county, 

consistent across both crops. For each crop, approximately 60% of farmers reported 

mean yields different from their county average, and of these, 90% reported above 

average yields. Only 2% of large farms in their sample reported below average mean 

yields. With respect to variance, about 45% of farmers reported yield stability 
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different than county average, and of these, about 75% reported above average yield 

stability. Their results are telling in much of the literature we review here: optimism 

bias is a widespread phenomenon, but nearly every paper observing optimism bias 

also observes some pessimistic members of the population (and possibly some neutral 

ones as well). 

 In another conference paper, Egelkraut et al. (2006) replicate the results in 

Umarov and Sherrick on outside data while adding a probability elicitation task. 

Farmers were asked to compare their own yields and yield risks to other farmers in 

their county. Only 12% reported below-average yields, while 42% and 46% reported 

average or above-average yields, respectively. On the risk side, 20% reported above-

average yield risk, while 38% and 42% reported average and below-average yield 

risk, respectively. In a first approach to (implicitly) model farmers’ optimism bias in 

yields, the authors elicit a forecast distribution as a Weibull and compare it to a fitted 

Weibull distribution at the county level, using a Q-Q plot (quartile-quartile). 

Unfortunately, their data set lacks the farm-level yield histories necessary for the type 

of evaluation done by Pease, or herein. 

Turvey et al. (2013), the source of our data set, elicit yield forecasts and yield 

histories for 570 corn farmers in China using the Beta-PERT expert elicitation 

method. Similar methods have been used elsewhere in agricultural economics to fit 

Beta distributions to yield forecasts (e.g., Shaik et al., 2008). Turvey et al. indicate 

two aims of their study: first, to propose a solution for estimating the historical yield 

distribution for insurance pricing in the absence of annual data, and second, to 

evaluate the degree to which that insurance would be demanded by farmers according 
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to their subjective forecasts. The authors find strong evidence of optimism bias, with 

82% of households expecting average yields to exceed their historical experience, and 

72% forecasting lower risk. These results are significantly correlated with farmers’ 

self-reported “interest” in crop insurance, suggesting that optimism bias may be a key 

explanation for the need to subsidize crop insurance premiums. 

In addition to their yields, there is consistent evidence that farmers are 

optimistically biased with respect to the prices they will receive. Eales et al. (1990) 

find that Illinois farmers and grain merchandisers had accurate forecasts of futures 

prices but were optimistically biased in consistently underestimating the futures price 

volatility, while Kenyon (2001) finds producer price expectations to be skewed 

toward higher prices and consistently underestimating the risk of large price changes 

during the season. More recently, in a conference paper, Riley and Anderson (2009) 

find the forecasts of Mississippi corn, cotton and soybean farmers to overestimate 

price and underestimate volatility relative to commodity futures and options markets. 

As mentioned above, the perception of skill or control over outcomes is a critical 

feature of optimism bias. While it is not reasonable to expect that farmers think they 

influence commodity prices, there may be a framing effect in which farmers 

recognize that they influence their income through skill (via yields), and this may 

carry over to optimism bias being exhibited in price forecasts when elicited 

separately. In a case without this framing issue, Sherrick (2002) finds farmers to be 

pessimistic on average with respect to weather forecasts.  

To summarize, there is extensive evidence of optimism bias in the population 

at large and in farmers, as well. The agricultural economics literature is by-and-large 
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consistent with the mainstream behavioral economics literature, finding optimism 

bias to be widespread and persistent in the face of experience. There is not, to our 

knowledge, a mainstream model of optimism bias in terms of the way in which 

historical experience is explicitly transformed into an optimistically biased forecast. 

In the paper of Spinnewijn (2013) discussed above, there is a model of 

overconfidence about effort affecting a model of binary outcomes of success or 

failure, but this model does not generalize to continuous outcomes or non-binary 

distributions. There is some evidence in the above literature that optimism about 

average outcomes (e.g., mean yields) may materially differ from pessimism about risk 

(e.g., higher yield variance), but no model exists to bring these findings together 

under a cohesive structure. In what follows, we aim to satisfy these gaps in the 

literature and provide a structural model for future researchers to build upon.  

 

1.3 A Location-Scale Model of Forecasts from Historical Data 

We model the forecast distribution as an affine, “shift and scale” transformation of 

the historical distribution of the form: 

          Y =α + βX .    (1.1) 

In the above equation, X and Y are random variables representing the historical 

distribution and forecast distribution, respectively,  is a shift parameter, and  is a 

scale parameter. We select this specification because it is a priori reasonable and 

consistent with basic statistical intuition. The model’s simplicity does come with the 

downside that higher moments of the distribution are not considered (e.g., a shape 

α β
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parameter), though we will show in what follows that allowing a skewness 

adjustment from historical to forecast does not meaningfully change our results.  

The benefits of this simple specification appear to dramatically outweigh its 

downside: i) the model requires only the assumption that the historical and forecast 

distributions come from the same family, ii) it does not impose any directional bias 

on the nature of forecasts, and iii) it includes as a special case a normalization step, in 

which the historical X might be adjusted to have zero mean and unit variance before 

shifting and scaling. Past research has tended to find that forecasts deviate 

systematically from average, or typical, experience, and that they usually do so in an 

optimistic fashion for the majority of the population. Lack of directional bias is 

important in a model precisely because what is optimistic may change sign depending 

on the application: an optimistic earning forecast might include an upward shift, 

whereas an optimistic forecast of commute time might include a downward shift.  

The generality of our model with respect to normalizing X is demonstrated as 

follows. First, assume that X has known mean and standard deviation,  and , so 

the normalized forecast would be constructed with parameters a and b according to: 

      (1.2) 

This is a special case of our model obtained by setting  equal to the parenthetical 

term and by setting . In fact, our model substantially generalizes this 

approach by the simple fact that  and  need not be known in order to make 

progress.  

µ σ
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σ

⎛
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Rather, estimating the model’s parameters requires only a minimum of two 

pairs of matching points from the support of each distribution. The pairs can be 

specific points in the support of the distribution, as well as the mean (even if it is not 

in the support, as for a categorical random variable), or they might be elicited 

according to specific percentiles (min, max, median, IQR, or endpoints of a 

confidence interval). The two modeling parameters,  and , can be solved exactly 

from two such pairs of data points, or they can be estimated by regression in cases 

where more data are available and the system of equations is treated as over-

identified with attendant errors. The specification in Equation 1.1 lends itself 

naturally to a regression approach. 

The basic model can be extended to include a reference point. In this setting, 

the shift parameter is applied to a reference point, r, which might be a point in the 

support of X or a summary statistic derived from the historical distribution. This 

transformation takes the form: 

     ,     (1.3) 

where X is not adjusted for r by the same reasoning as in the normalization discussion 

above. In practice, r might be the mean or median, or some other salient point that 

serves to anchor the forecast. In our application, we apply goodness-of-fit testing to 

determine that including a reference point outperforms a raw shift parameter, and to 

select a model in which forecasts are anchored to the reported historical maximum 

value.  

It is important to point out that our model is not designed to be an alternative 

to the probability weights used in cumulative prospect theory (Tversky and 

α β

Y =αr + βX
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Kahneman, 1992), despite the familiar use of the reference point terminology. 

Prospect theory probability weights, often referred to as decision weights, are simply 

another measure of risk preferences, and are not designed to model an individual’s 

subjective beliefs about risk. In contrast, our forecasting model is designed to model 

beliefs about future risk as a function of a historic outcome distribution, in which the 

support of the distribution is allowed to vary from history to forecast. Probability 

weights transform the relative probabilities associated with each outcome, but do not 

contemplate the potential for changing support of the distribution. That being said, 

our forecasting model could easily be incorporated into a cumulative prospect theory 

framework by layering probability weights on top of elicited, subjective probabilities. 

 

1.4 Data 

The observations for corn farmers in our data set were originally published in Turvey 

et al. (2013), in an effort to identify whether crop insurance could be rated and 

introduced in a setting with limited yield history available. The authors used a survey 

method to elicit information from corn and wheat farmers across three counties (25 

villages) in Shanxi Province, China, in October and November, 2010. Surveys were 

administered by 20 Chinese graduate students of the Northwest Agriculture and 

Forestry University (supervised by faculty researchers), who visited 780 households 

and collected 730 questionnaires. Turvey et al. report the results of 570 complete 

questionnaires from corn farmers, but their data collected from wheat farmers are 

published for the first time here. From these totals we removed all forecasts by 

farmers not actively growing that crop, as well as 19 nonsense forecasts with zero 
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risk. The resulting data set contains surveys from 483 households, 396 of which 

farmed both corn and wheat, 46 of which farmed only corn, and 41 of which farmed 

only wheat, giving us a total of 879 usable forecasts.  

The survey had 9 sections with 117 total questions, which were primarily 

devoted to understanding financial well-being of, and financial risk-taking by, the 

farmers. These questions included many potential sources of debt, corresponding 

interest rates, attitudes toward borrowing, different types of assets, percentage of off-

farm income, etc. Basic demographic information was also collected, including 

gender, education and years of farming experience for the head of household. About 

55% of respondents were male, with an average age of 48 years, and at least high 

school completion. On average, respondents had farmed for about 27 years but this 

ranged from first year farmers to about 60 years. Income averaged 23,354 Yuan per 

year (about $3,500 at the time) from all sources with the highest being 248,000 Yuan 

($37,200). Summary statistics for the demographic information are included in table 

1.1. 

[ Table 1.1 ] 

 A small section of the survey was dedication to eliciting forecasts of crop 

yield distributions in the coming year (the 2011 crop year). Each farmer was asked 

for the minimum and maximum yield that might be achieved in the coming year, as 

well as the most likely yield outcome. Farmers were asked to make forecasts for both 

corn and wheat, so the data set contains a forecast for each crop in cases where the 

farmer was a grower of both. All yield questions were asked in Chinese units of Jin 

(1.102 lbs.) per Mu (about 0.165 acres, or 0.067 hectares), where one Jin/Mu is 
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equivalent to United States units of 0.119 bushels per acre for corn, or 0.112 bushels 

per acre for wheat. The two key survey questions for eliciting the crop yield 

distributions are presented in figure 1.1.  

 To avoid inducing the farmers to anchor their forecasts to historic experience, 

the questions about historic experience were administered only after the forward-

looking forecast information was collected. In this manner, the forecasts are intended 

to capture farmers’ true risk assessments, which still would be based on historical 

experience, but would not be explicitly anchored to their reported historical 

experience in the same survey. The historical yield information collected from each 

farmer (for each crop, if applicable) included the lowest ever and highest ever yields 

in his/her memory, the years when those yields occurred, and the average yield in 

their experience. We eliminate incomplete questionnaires, farmers who do not grow 

corn or wheat, and also farmers with a degenerate distribution (minimum equal to 

maximum) reported for either their historical experience or their future forecast (these 

were the nonsense forecasts mentioned above). 

[ Figure 1.1 ] 

  The nature of the forecast and historical information elicited was determined 

by the authors’ choice of the well-known Beta-PERT expert elicitation procedure to 

estimate the forecast and historical distributions (Malcolm et al., 1959; Bewley et al., 

2010). The Beta-PERT procedure, originally developed for estimating project 

completion times, operates by asking experts for the upper bound, lower bound and 

most likely (modal) outcome. These estimates are then incorporated as parameters of 

a Beta distribution, resulting in something close to a Normal distribution when the 
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minimum and maximum are symmetric about the modal value, but allowing for 

skewness otherwise. The Beta-PERT elicitation is nearly identical to the Beta 

elicitation used with United States farmers by Shaik et al. (2008). For more 

information on the advantages of the PERT method in estimating agricultural yields, 

see Turvey et al. (2013). 

 We selected this data set because the elicitation of future and historical 

minima and maxima are consistent with the data requirements of our model, and 

because many farmers gave multiple forecasts. The presence of multiple forecasts 

gives us the opportunity to test whether classifications of forecasts map to 

classifications of the people making them; in other words, are optimistic forecasts 

made only by optimistic people and vice versa, or do people make forecasts in 

different modes according to domain-specific information, such as historical 

experience?  

There are also three potential downsides of the data collection method that we 

try to rule out empirically: i) the elicitation of future mode versus historical mean,  ii) 

the potential for technological change affecting yields over time, and iii) the potential 

for inconsistent mapping between historical and forecasted minimum/maximum as 

representing comparable confidence intervals (discussed in further detail in section 

1.5). First, the elicitation of the future distribution includes the mode but not the 

mean, whereas the elicitation of the historical distribution includes only the mean. We 

are confident this was not due to translation error since the survey was prepared in 

English, translated into Chinese, and then back-translated into English by two 

independent bilinguals. All students were trained prior to the survey, and were 
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debriefed twice daily by attending faculty while in the field. Rather, the modal value 

was chosen for the forecast because it is specified in the Beta-PERT methodology, 

and it is likely the mean was chosen for the historical data because of relevance. With 

yields averaging 800-1,000 Jin/Mu for many farmers, the historical values might all 

have been unique (farmers were asked to round values to the nearest 10 Jin/Mu), 

rendering a request for the historical mode ambiguous. In a later section of this 

article, we test inclusion of the mode/mean pair as a data point for regression fitting 

of our basic two parameter model, and find that it does not materially change the 

results. We also test a 3-parameter model that includes an adjustment for skewness 

net of the shift and scale parameters. Depending on the type of forecast, we find that 

subjects report, on average, a forecast mean between -1% and 3% higher than their 

historic mode, after accounting for shift and scale adjustments. However, we find no 

meaningful change in goodness of fit or in the number of mixture components 

selected. 

When modeling crop yields in the United States, it is common knowledge that 

technological improvements have played a role in dramatically increasing yield per 

acre over time. In the case of corn, national average yields per acre have increased by 

more than 7x in the last 100 years, in a manner that distinctly resembles a linear trend 

line. Simulated yield distributions often feature a detrended component (e.g., as in 

Cooper, 2010, or in the optimism bias modeling of Egelkraut et al., 2006), and crop 

insurance policies are available with a “trend adjustment” for similar reasons (RMA 

2011). However, crop yields in China have not responded nearly as aggressively to 

technological change over time as their American counterparts. A further mitigating 
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factor in our data set is the relatively high proportion of economically disadvantaged 

smallholder farmers, many of which do not report on-farm income as their primary 

income source. It is unlikely that these farmers have easy access to the latest seed, 

capital equipment and planting technologies that might be available to larger-scale 

operations.  

Given this ambiguity, we are fortunate that an explicit statistical test is 

available:  we can use the reported historical means as dependent variables, and 

regress them on years farming and other control covariates, including village fixed 

effects. If a yield trend is present, then the regression coefficient on years farming 

should be negative and significantly different from zero. Table 1.2 below presents the 

regression testing, which shows no statistical evidence of yield trends in the historic 

reported means. Model 1 shows a baseline specification and model 2 allows for 

distinct yield trends by crop. On this basis, we conclude that no yield trend 

adjustment is necessary for our data set. This finding is further confirmed in our later 

results showing the estimated optimism bias does not vary systematically with years 

of farming experience. Furthermore, we perform additional regression analysis and 

find no evidence that differences in the reported ranges (minimum yield – maximum 

yield) are significantly affected by years farming. This implies that the historical 

ranges reported are independent of the number of yields experienced, a finding which 

is somewhat at odds with the typical assumption of yields as following a Markov 

process (more sample draws should give a wider range, on average). We therefore 

recommend that future surveys also ask respondents to report yields in the previous 



 
21  

growing season in order to test for such a possibility, and therefore reduce the need 

for such assumptions. 

[ Table 1.2 ] 

 

1.5 Model Selection 

Figures 1.2 and 1.3 provide a graphical illustration of the misalignment between 

historic outcomes and future expectations. We used average minimum, maximum, 

and modal yield values to estimate both a triangular distribution (Figure 1.2, Panel A) 

and a Beta distribution (Figure 1.2, Panel B) for both historic and expected future 

yields. We see that on average, the farmers in our data set dramatically underestimate 

downside yield risk relative to what historic outcomes might suggest. 

[ Figure 1.2 ] 

To identify whether a raw shift and scale model (Equation 1.1) or one incorporating a 

reference point (Equation 1.3) is more appropriate, we test regression fits for each and 

compare them using the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC). In particular, we test the model from Equation 1.1 

alongside several variants of the model from Equation 1.3, considering that the 

reference point might be any of the reported values from the historic distribution (the 

minimum, maximum, or mean), as well as the midpoint between the historic 

minimum and maximum. The regression results are presented in table 1.3. Both 

goodness of fit criteria unambiguously selected model 2, indicating that the best fit is 

achieved using the reported historical maximum as a reference point. This is, in and 

of itself, a finding of optimism in the sense that forecasts are apparently anchored to 
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the upside of historical experience. The finding is also intuitively appealing in the 

sense that anchoring to a reference point is more meaningful: it would be difficult to 

interpret an arbitrary shift parameter without historical context.  

[ Table 1.3 ] 

 As discussed above, there were three data points elicited from each farmer for 

each of their historical and forecast distribution. They were asked for the historical 

minimum, maximum and mean yields, and they were asked for minimum, maximum 

and modal yields in the upcoming year. The results in table 1.3 use only the minimum 

and maximum, reported for both future and historic, since they are clearly 

representative of the same points in the distribution. In fact, even if farmers were only 

reporting endpoints of a confidence interval (e.g., the 10th and 90th percentiles, as in 

Shaik et al., 2008), the data are still valid for our approach. However, this conclusion 

relies on the assumption that the minimum and maximum values being reported 

represent the same confidence intervals for both forecasted and historical outcomes. 

In practice, this may not be the case since farmers are asked to recall historical worst 

and best yields as specific events in specific years, whereas their forecast max and 

min values may not represent true extremes of the distribution. The same validity 

does not apply when comparing the historical mean against the forecast mode: we 

have no reasonable assurance that one will map to the other according to our basic 

shift and scale model. Nonetheless, we find some evidence that they are not far off, 

and that the subjects may not be differentiating between the two. To show this, and as 

a robustness check, we re-estimated the results in table 1.3 using all three data points 
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per forecast in the regression. The new model results are shown in table 1.4: it is clear 

that the results are materially unchanged by the addition of mean/mode reporting. 

[ Table 1.4 ] 

 

1.6 Identifying Heterogeneity with a Gaussian Mixture Model 

An examination of the empirical densities over the population of forecasts for 

estimates of  and  reveals substantial heterogeneity. Of particular interest, the 

empirical marginal densities appear to be multi-peaked and a joint plot indicates that 

the peaks may coincide. This is shown in figure 1.3, which is a bivariate hex-plot of 

the joint density, with marginal kernel densities along each edge. Accompanying 

summary statistics for forecast parameters by crop and by gender are presented in 

table 1.5. Together, these features give reason for concern that heterogeneity in the 

form of clustering may be present, which could be better represented by a mixture 

distribution over types or “classes” of forecasts. If so, simply reporting the 

population-mean values (implicitly as the center point of a single-peaked distribution) 

may result in estimates that do not represent any one peak in the distribution (e.g., as 

noted in Sproul and Michaud, 2017). To conduct an explicit test of whether the 

observed phenomenon is statistically meaningful, we compare goodness-of-fit 

statistics from a set of (finite) Gaussian Mixture Models (GMMs) fitted with different 

numbers of components.  

[ Table 1.5 ] 

[ Figure 1.3 ] 

α β
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Each GMM is fit using the well-known expectation-maximization (EM) 

algorithm of Dempster, Laird and Rubin (1977), an iterative procedure comprised of 

two steps. In the expectation step (“E-step”), the likelihood function is used to 

calculate so-called ‘membership probabilities,’ , denoting the probability that each 

individual i belongs to each type (or ‘class’) c. The average of these membership 

probabilities becomes the updated mixture probability for each class, . In the 

maximization step (“M-step”), the updated mixture probabilities are held fixed while 

the log likelihood is maximized by varying the parameters for each class, collectively 

referred to as the vector, . After the M-step, the algorithm repeats until suitable 

convergence is achieved.  

Formally, let t denote an iteration of the algorithm. In the E-step, the updated 

membership probabilities for step t + 1, for each individual, i, and each class, c, are 

given according to: 

    .    (1.4) 

Here,  are the data for individual i,  are the most recent maximum 

likelihood estimates for the parameters describing type c (from the previous step), and 

f denotes the likelihood of the data given the estimated parameters. The updated 

mixture probabilities for each type (at the population level) are then simply the 

averages of the membership probabilities:  

    .    (1.5) 

τ ic

π c

θc

τ ic
t+1 = π c

t ⋅ f (xi | θ̂c
t )

π j
t ⋅ f (xi | θ̂ j

t )
j=1

C∑

xi θ̂c
t

π c
t+1 = 1

I
τ ic
t+1

i=1

I∑



 
25  

The M-step then maximizes the log-likelihood function, holding the mixture 

probabilities constant. The updated estimate, , solves 

    (1.6) 

Recall that the vector  represents the parameters collectively describing the 

multivariate normal for each type, c. Since our forecasting model is a 2-parameter 

model, each vector  contains two mean parameters, as well as two additional 

parameters to populate the covariance matrix, which we assume to be diagonal 

following Bruhin, Fehr-Duda and Epper (2010).  

A known shortcoming of applying expectation-maximization to fit a mixture 

model is the researcher must specify ex ante the number of mixture components 

(types). The algorithm does have some capacity to “zero out” redundancies by giving 

near-zero weights (the mixture probabilities, ) to extraneous classes as it 

endogenously determines the classification of data points. In practice, however, 

specification of too many mixture components can lead to over-fitting, exhibited by 

ambiguous membership probabilities (e.g.,  close to 0.5).  

Information criteria such as the corrected Akaike information criterion 

(AICc), BIC, or comparable cross-validation approaches, are often used for model 

selection but may be inadequate in mixture model applications due to insufficient 

penalization of extra parameters (Celeux and Soromenho, 1996; Biernacki et al., 

2000). The latter authors introduce the integrated completed likelihood (ICL) 

criterion, a modification of BIC with an additional penalty for entropy with the goal 

of achieving better out-of-sample classification. More entropy means more 
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ambiguous assignments to the various classes, corresponding to τic values that are far 

from both 0 and 1, an indication that the fitted mixture model is not effectively 

classifying the data into distinct types. In effect, ICL adjusts BIC for the ambiguity of 

classifications, and this ambiguity is conveniently measured by the posterior 

membership probabilities estimated in the course of the EM procedure. As an 

additional check on the robustness of classification, Sproul and Michaud (2017) also 

report percentages of individuals with at least one posterior membership probability 

greater than 0.90, 0.95 and 0.99, respectively. 

Our estimation results for GMMs with up to 6 mixture components are 

presented below in table 1.6. We present results separately for corn forecasts 

(N=442), for wheat forecasts (N=437) and pooled (N=879), with boldface indicating 

model selection for each criterion. A number of features of the model selection 

process are apparent, including i) the selection by ICL of more parsimonious models 

with fewer components, ii) the ability of the EM algorithm to “zero out” extraneous 

outlier groups, iii) the “preference” of AICc and BIC for more components due to 

increases in the likelihood function, and iv) the consistent “preference” of ICL for 

models with high rates of unambiguous classifications, as evidenced by the 

percentage of individuals classified with  close to 1. Across data sets, each 

criterion selects C > 1 components, providing empirical justification of our mixture 

model approach to examine heterogeneity. 

[ Table 1.6 ] 

For each data set, ICL is minimized with a 4-component mixture, comprised 

of three main groups/classes and one small outlier group. The three larger classes are 

τ ic
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roughly the same size in each of the corn, wheat, and pooled data sets, and as will be 

seen below, they correspond to roughly identical model parameters as well. These 

classes correspond to optimistic forecasts (67%), neutral forecasts (20%) and 

pessimistic forecasts (11%), for which the interpretation of parameters into labels will 

be discussed momentarily. The final outlier group (2%) includes extremely 

pessimistic forecasts that dramatically differed from their peers. Because of the 

consistent small size of the outlier group, we will discuss these results as 

representative of a “3-component mixture with outliers” in what follows. The class 

breakdowns, indicated by the fitted mixture weights, are presented by crop and by 

number of components in table 1.7. 

[ Table 1.7 ] 

It can also be seen across the data sets that AICc and BIC are almost perfectly 

monotonically decreasing in the number of components. This is the very observation 

that led to the development of ICL by Biernacki et al. (2000), who, like others, 

observed that these criteria will very often select the maximum number of 

components in a given choice set (especially in large data sets where the log-

likelihood dominates the parameter penalty). In fact, we tested up to 8 components 

and found that AICc and BIC would select the maximum number of components if it 

were 7 or 8, as well. Those extra tests are omitted because they are otherwise 

uninformative, and to save space. 

In their 2010 article, Bruhin et al. indicate that a desirable feature of mixture 

model classification is the reliable “splitting” of classes into economically meaningful 

subgroups as the number of model components increases. In other words, it is an 
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indicator of model quality if more model components, whether chosen by AICc, BIC, 

ICL or some other criterion, tend to subdivide the space of individuals being 

classified instead of adding new classes which adopt members out of multiple 

existing groups.  

We observe this feature here. When increasing from a single component to a 

2-component mixture, the pessimistic group is split off from the rest in each data set. 

For the corn forecasts, increasing from 2 to 3 components gives us our three main 

groupings of optimistic, pessimistic and neutral, whereas in wheat and in the pooled 

data, adding a third component results in splitting off the outliers (extremely 

pessimistic) from the pessimistic group. Adding a fourth component in corn splits off 

outliers from the pessimistic group, while in wheat and pooled we observe non-

pessimists splitting into the optimistic and neutral groups. Across data sets, adding a 

fifth component results in a further split of the already-tiny outlier group, and adding 

a sixth component results in division of the optimistic group into mildly optimistic 

and extremely optimistic.  

In each case described here, the parameter estimates for  and  support our 

characterizations of the groups in a manner indicative of consistent subdivisions when 

the number of components is increased. Of particular interest are the mixture models 

with four and six components respectively, which are best characterized as a 3-

component mixture with outliers (due to the 4th outlier group), and a 4-component 

mixture with outliers (due to the outlier group being subdivided into two smaller 

outlier groups). We now explore the parameters of these two models in detail. 

Contour plots visualizing our mixture results are shown in figure 1.4.  

α β
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[ Figure 1.4 ] 

[ Table 1.8 ] 

Table 1.8 describes the 3-component mixture of optimistic, neutral (or 

“realistic”) and pessimistic forecasts with the outlier group discarded. The optimistic 

group gets its label because it is characterized by  parameters of approximately 

(0.45, 0.54) across the data sets, indicating an upward shift of 45% of the reference 

point (the historic max) and reduction of range (risk) to 54% of historic. This group, 

comprising approximately 67% of forecasts, is therefore anticipating higher yields 

with less risk than historical experience dictates. The neutral, or realistic, group has 

mean  parameters of approximately (0.02, 1.00) across the data sets, indicating 

that approximately 20% of forecasts are almost perfectly in line with historical 

experience. Finally, the pessimistic group represents approximately 11% of forecasts 

with estimated parameters of (-0.43, 1.56) on average across the population, 

indicating expectations of lower and more variable yields than historical experience 

implies.  

 [ Table 1.9 ] 

Table 1.9 describes the 4-component mixture of highly optimistic, mildly 

optimistic, realistic and pessimistic forecasts with two small outlier groups discarded 

(this was the fitted 6-component mixture from table 1.7). The key distinction between 

information presented in table 1.8 versus table 1.9 is the subdivision of the optimistic 

group into two groups, highly optimistic and mildly optimistic, for which the splits 

are relatively stable across corn, wheat and pooled forecasts. The highly optimistic 

group comprises about 35% of forecasts overall, with central  parameter 

α ,β( )

α ,β( )

α ,β( )
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estimates of (0.58, 0.40) indicating expected yields even higher and even less risky 

than those indicated by the mean estimates of the consolidated optimistic group from 

the 3-component model. The mildly optimistic group, on the other hand, exhibits 

parameter estimates of (0.31, 0.70) indicating a more neutral or realistic outlook but 

still clearly optimistic (30% reduction in risk over neutral). The mildly optimistic 

group also has consistent parameters across the data sets, and comprises 31% of 

forecasts overall. 

 

1.7 Factors Influencing Forecasts 

Having identified distinct types of forecasts, it is worthwhile to examine how these 

differing biases (or lack thereof) might arise. There are two key questions. First, are 

forecast types actually revealing types of the people making them? That is, must an 

optimistic forecast necessarily come from an optimistic person? Second, to the extent 

that forecast types might differ within individuals, what are the key sources of 

variation? 

 One reason for choosing our data set was the presence of multiple forecasts 

for many subjects interviewed, which gives the opportunity to test whether forecast 

classifications are generally consistent within individuals. A review of our evidence 

suggests they are not, in two ways. First, if we take the view that the posterior 

membership probabilities, τ ic , arising from the EM procedure represent a posteriori 

classification probabilities, then the forecast types cannot represent types of subjects. 

Simply put, only 65% of subjects growing both crops gave the same type of forecast 

for both crops. If the posterior probabilities indicate the probability that an individual 
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bears a particular classification, then this outcome is statistically impossible given the 

results in table 1.6 (Pooled Data, C=4), where 95% of forecasts had τ ic ≥ 0.99  and 

99% had τ ic ≥ 0.95 . Second, we can formally test the null hypothesis that an 

individual’s forecast classification for one crop is independent of their forecast 

classification in the other crop. We would expect this null to be rejected if 

classifications are correlated within individuals, on average. Table 1.10 below shows 

the estimated cross-forecast correlation coefficients for each crop and class, for all 

farmers growing both crops (N=396). As can be clearly seen, none of the estimated 

correlation coefficients are statistically significant at the conventional 95% level on a 

two-sided test, even before making an adjustment for the multiplicity of tests. Thus, 

we fail to reject the null hypothesis that forecasts are, on average, independent across 

crops. 

 [ Table 1.10 ] 

We are forced to conclude that variation in forecast type, while it may be influenced 

by individual factors with effect sizes too small to measure, might also be affected by 

crop-specific factors. To test for key sources of variation in forecast types, we 

conducted a number of regression tests depicted in table 1.11. 

 [ Table 1.11 ] 

 

The Effect of Historic Yield Outcomes 

Perhaps our most important finding pertains to the effect of historic outcomes on a 

farmer’s level of optimism (in terms of the scale factor, β ). The results show that for 

each year that a farmer goes without suffering a historic loss (i.e. their reported 



 
32  

minimum historic yield), he or she becomes increasingly optimistic. For each year 

that passes since a historic loss, the average farmer reduces the relative scale (β ) of 

their future yield risk by 1% (in the optimistic direction). Effects for the shift 

parameter (α ) are in the opposite direction nominally, but also optimistic.  

While these numbers may appear small, the effect can be dramatic. As shown 

in table 1.1, the average time since a historic loss is 8.65 years with a standard 

deviation of 8.49 years, and with 3 and 11 years, respectively as the bounds of the 

interquartile range (IQR). All else equal, the relative scale (compared to their own 

historic distribution) for the future yield forecast of a farmer at the top of the IQR for 

historic losses will be eight percentage points below that of a farmer who suffered a 

historic loss 3 years ago (eight percentage points is equivalent to a 13% deviation of 

β  below the mean). 

In contrast, future forecasts were not significantly affected by recent events in 

the gains domain (i.e. recent maximum historic yields). This suggests a finding 

similar to the theory intuition, namely that losses are more salient that gains. 

Explicitly testing this hypothesis, however, is beyond the scope of both our data and 

this article. 

As table 1.11 shows, we tested a number of history-related features of the data 

set, including cross-crop experience, but did not find statistically significant 

prediction from any of them, apart from recent severe losses in the crop being 

forecast. We also tested crop-level fixed effects and found no significant variation, 

implying that recent loss history is likely the dominant crop-specific factor in 

determining differential forecasts in our data set. At least in the case of cross-crop 
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experiences, it is possible that effects are not identifiable due to correlation induced 

by weather. Naturally, strong positive correlation due to weather would result in 

collinearity in our regression tests; this is shown in figure 1.4, which plots the years 

since a historic loss in corn versus in wheat for those farmers growing both. 

[ Figure 1.4 ] 

 

Gender Differences in Forecasts 

In addition to crop-specific effects arising from loss history, we also observe subject-

specific effects in the form of statistically significant differences in parameter 

estimates by gender. Our regression results show that on average, women appear to 

be even more optimistic with regard to yield risk than their male counterparts. While 

male forecasters expect future yields to have 85% the scale of their historic yield 

distribution (i.e., β̂ = 0.85 ), female forecasters expect future yields to come from a 

distribution with roughly only 74% the scale of their historic distribution (i.e., 

β̂ = 0.74 ). This finding is consistent across both crops, despite the presence of 

within-subject heterogeneity in beliefs between crops.  

Our results regarding gender differences in forecasts tend to stand somewhat 

in contrast with the literature on risk perceptions. Namely, the consensus is that on 

average, risk tends to be judged as lower by men than by women (see, for example, 

Gutteling and Wiegman, 1993; Stern et al., 1993; Flynn et al., 1994; Slovic et al., 

1997; Finucane et al., 2000), and by white men in particular (Flynn et al., 1994). 

Despite race and gender being found to be strong predictive factors for risk 

perceptions, Finucane et al. (2000) found considerable variation across both males 
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and females of ethnic minorities in their replication of Flynn et al., concluding that 

risk is a social construct depending largely on the individual, even if its perception 

may be influenced by cultural and biological factors. 

From the prospect theory literature, there has also been evidence of gender 

differences in risk preferences (as opposed to risk perceptions) and in probability 

weights. For example, Fehr-Duda, de Gennaro and Schubert (2006) and Bruhin, Fehr-

Duda and Epper (2010) both find that female subjects statistically differ in their 

application of probability weights from male subjects. Namely, the female subjects 

tended to show a substantially lower slope of the probability weighting function, 

indicating less “rational” probability weights in the sense of their elicited prospect 

values being relatively insensitive to marginal changes in probability of payment. On 

the other hand, Tanaka, Camerer and Nguyen (2010) do not find significant gender 

differences in risk or time preferences, but Liu (2013) uses the same methodology and 

a larger data set and finds that females were significantly more risk averse, in the 

sense of the curvature (exponent) of the prospect theory value function.  

To summarize this discussion, our results indicate that women tend to forecast 

less risk than men, all else equal, but the literature on risk perception suggests that 

they generally perceive risks to be more severe. At the same time, research on 

prospect theory suggests that women are more averse to risk than men, but that they 

are insensitive to marginal changes in risk for probabilities that are not close to 

certain. Clearly, further research is needed to determine whether these associations 

are unified by some underlying mechanism or model. 
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Persistence of Optimism Bias 

As mentioned in the background section, existing evidence from Dalziel and Job 

(1997) suggests that optimism bias persists in the face of professional experience: 

they showed that even professional drivers tend to underestimate their risk of an 

accident. Our data support this finding, in the sense that we find no statistical 

evidence of changing optimism bias as a function of years of farming experience. In 

fact, across all models tested in table 1.11, our estimate of the marginal effect of 

experience is best described as being precisely estimated and near-zero in terms of 

economic significance while also not being statistically different from zero. 

 

Extending the Model to Include a Shape Parameter 

While we have shown our basic shift-and-scale model to be fairly robust, we have not 

thus far tackled the question of whether the model might include a meaningful shape 

parameter to account for changes in higher moments. In particular, it might be the 

case that forecasts are not only classified according to optimistic, realistic or 

pessimistic shifting and scaling, but also that these classifications vary meaningfully 

with respect to shape changes in the transformation from the historical distribution to 

the forecast. To address this concern, we extend the model from a 2-parameter shift-

and-scale form to a 3-parameter shift-scale-and-shape form. Specifically, we include 

a third parameter, γ , mapping the historic mean into the future mode, net of changes 

already induced by the shift and scale parameters, α  and β . In terms of our 

regression specification, the shape parameter is interacted with a dummy, 1mid , equal 
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to one for rows in which central points of the historic and forecast distribution are 

matched: 

    Y =αr + βX +1mid ⋅γ X  .    (1.7) 

 It is worth repeating that any results obtained with this model on our current 

data are exploratory in nature: our data set is based on an elicitation method that does 

not match mean-to-mean or mode-to-mode for the historical and forecast 

distributions, but only allows (potentially) matching historic mean to forecast mode. 

That said, our earlier results are remarkably robust to this extension of our model. 

Table 1.12 details the goodness of fit evaluation and the mixture weights in Panel A, 

and presents the mixture means in Panel B. The only meaningful difference between 

fitting our model with the shape parameter, versus without, is that there are no longer 

small outlier groups in the 3-component and 4-component models selected 

respectively by ICL and AICc/BIC. The disappearance of outlier groups is likely 

attributable to cleaner separation in the mixture model caused by higher dimensional 

data. The group weights and their central parameter estimates remain virtually 

unchanged. In all cases, it can be clearly seen that the shape parameter is near zero, 

reaching its maximum of about a 3% increase (from mean to mode) in the pessimistic 

group.  

[ Table 1.12 ] 

 

1.8 Conclusion 

Recent literature in agricultural economics has suggested that the widespread 

behavioral phenomenon of optimism bias may play a role in lowering crop insurance 
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participation in the absence of subsidies. Optimism Bias has been widely 

demonstrated across domains, including driver safety, job expectations, mergers and 

acquisitions, entrepreneurship and (non-crop) insurance purchases, yet no agreed 

upon model makes explicit the behavioral process of transforming historical 

experience into an optimistically biased forecast. To close this gap in the literature, 

we introduce a straightforward model in which farmers generate forecasts by shifting 

and scaling their historical yield distributions. We fit the model to 879 corn and wheat 

yield forecasts of farmers in China, and find that its predictions are robust both to 

varying amounts of data per forecast and also to inclusion of a shape parameter to 

accommodate higher moments (these turn out to be near zero). We also find that 

farmers anchor to past positive experience in making their forecasts. 

We obtain new insight by exploring heterogeneous types of forecasts revealed 

by a mixture model: approximately two thirds of forecasts are found to be optimistic, 

understating their risks relative to historical experience, approximately 20% are 

realistic or neutral, and the remainder are pessimistic, predicting substantially higher 

risk in the future. These results are the first to give a modeled structure to repeated 

findings in the literature that, across domains, while a large majority of people tend to 

give optimistically biased forecasts, there is a consistent small minority observed who 

are more pessimistic than the rest. However, our results do not suggest that forecasts 

reflect personality types of the individual farmers, rather, they reflect crop-specific 

experience: in essence, forecasts seem to default towards being optimistic with recent 

large losses predicting a more pessimistic outlook which fades (by about 1% per year) 

as the losses recede into the past. We also observe statistically significant gender 
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effects, with female farmers reporting significantly more optimistic forecasts than 

their male counterparts. The gender difference is approximately equivalent to the 

difference between the top and bottom of the interquartile range in terms of loss 

experience. 

Overall, our results provide a foundation for future modeling efforts to 

evaluate the structure of optimism bias across domains. Within agricultural 

economics, we expect that our efforts can form a basis for behavioral models of crop 

insurance demand in which optimistic, neutral or pessimistic forecasts dramatically 

alter the need for subsidies to achieve desired participation rates. Our results also 

suggest that future research is needed to estimate the degree to which optimism bias 

in farmer forecasts might be mitigated by interventions such as informational 

materials or more rigorous education or training facilitated by outreach and extension 

personnel. While many agricultural economists hold the perspective that crop 

insurance demand frictions in the United States have largely been “solved” through 

the use of high subsidies, our perspective is that the policy climate may change and 

better understanding the structure of insurance demand certainly cannot hurt. 

Moreover, parts of the world where generous crop insurance subsidies are not 

established (for example, in China, where crop insurance currently only covers 

production costs rather than revenue losses), understanding the role of optimism bias 

may be key to future advances in policy design. For example, given Sherrick’s (2002) 

finding that farmers are not optimistically biased with respect to weather, it may be 

that weather index efforts being explored in China (Turvey and Kong 2010) and 

elsewhere in the developing world (cf. Chantarat et al. 2007, among many) enjoy a 
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structural advantage over farm-level yield or revenue insurance products. Clearly, 

further research is needed to test whether these phenomena actually extrapolate in this 

manner. 

A final important area for future research is reconciling the apparent 

phenomenon in the literature that farmers are optimistically biased, on average, with 

respect to both their yields and the prices they expect to receive for their harvest. In 

the case of our results here, a complete answer would require extending our model to 

a bivariate forecast and treating statistical dependence. Shaik et al. (2008) offer a 

potential insight in that they elicited both yield and price forecasts using a similar 

methodology to ours with farmers in the United States, and also elicited farmer 

estimates of the correlation coefficient of price and yield. On average, their farmers 

(N=778) reported price-yield correlations of -0.66 for corn and -0.43 for soybeans, 

indicating that their forecasts recognize the standard patterns of negative price-yield 

correlations driven by weather and supply-and-demand effects (see, e.g., Sproul and 

Kropp, 2015, among many). If farmers make optimistically biased forecasts with 

respect to both price and yield but they recognize the negative correlation between the 

two, then it will be important for future researchers to test the degree to which 

optimistically biased price and yield forecasts are influenced (and maybe 

simultaneously determined) by optimistically biased forecasts of farm income.  
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1.10 Figures 
 

Figure 1.1: Turvey et al. (2013) Survey Questions 
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Figure 1.2: Elicited Historic vs. Future Yield Distributions 
 

Panel A: Triangular Distribution 

	
  
 

Panel B: Beta-PERT Distribution 
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Figure 1.3: Hex Plot of Alpha and Beta with Marginal Densities 
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Figure 1.4: Contour Plots for Fitted 3-Mixture (Panel A) and 4-Mixture (Panel B) 
Models 
Panel A 

 
 

Panel B 
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Figure 1.5: Scatter Plot: Years Since Historic Minimum Yield (Corn and Wheat) 
 

 
 
 
 
 
 
  



 
55  

1.11 Tables 
 
 
Table 1.1: Household-Level Summary Statistics 

 
Mean S.D. Min. 25% 50% 75% Max. 

Years since Min Corn Yield (N=432) 8.42 8.48 1 3 6 11 42 
Years since Min Wheat Yield (N=423) 8.88 8.52 1 3 6 12 42 
Years since Max Corn Yield (N=432) 1.9 1.51 1 1 1 2 14 
Years since Max Wheat Yield (N=426) 2.1 1.72 1 1 2 2 14 
Gender (1=Male) 0.54 0.5 0 0 1 1 1 
Age 48.09 10.93 20 40 50 56 72 
Education 4.36 1.76 0 3 5 5 8 
Years Farming 27.01 13.04 0 19 30 37 65 
Percent Farm Income 41.08 26.95 0 20 35 58.1 100 
Household Income (Yuan/year) (N=479) 23615 22316 1000 10000 20000 30000 248000 
Note: N=483 unless otherwise noted (396 households grow both corn and wheat, 46 grow only 
corn and 41 grow only wheat). Not all households provided income or the years of historic 
gains or losses. 
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Table 1.2: Testing for the Presence of Yield Trends 

Dependent Variable: Historic Mean Model 1 Model 2 
Intercept 822.849*** 820.427*** 

 
(106.827) (109.528) 

Years Farming 2.6811 2.768 

 
(3.181) (3.296) 

Years Farming^2 -0.054 -0.054 

 
(0.056) (0.056) 

Sex (Male=1) 2.946 2.989 

 
(25.647) (25.665) 

Age (Years) -1.483 -1.485 

 
(1.696) (1.697) 

Education 3.989 3.995 

 
(7.162) (7.167) 

Crop Dummy (Corn=1) -27.617 -23.107 

 
(21.254) (49.319) 

Crop Dummy x Years Farming 
 

-0.167 

  
(1.644) 

N 873 873 
Adjusted R^2 0.022 0.020 

Notes: Standard errors in parentheses. ***, **, and * denote statistical 
significance at the 99.9%, 99% and 95% levels, respectively, using a two-
sided test. Village fixed effects not shown. 
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Table 1.3: Model Selection for Candidate Forecasting Models 

 
Model 1 Model 2 Model 3 Model 4 

Scale 0.6378*** 0.5821*** 0.8457*** 0.8926*** 

 
(0.011) (0.012) (0.014) (0.010) 

     Constant 337.25*** 
   

 
(8.442) 

   r = 
      Historic Max 
 

0.4053*** 
  

  
(0.010) 

    Historic Min 
  

0.2856*** 
 

   
(0.019) 

   Historic Mode 
   

0.1616*** 

    
(0.009) 

     Adj. R-sqaured 0.664 0.984 0.972 0.973 
Log-Likelihood -10736 -10687 -11189 -11083 
AIC 21480 21380 22380 22170 
BIC 21490 21390 22390 22180 
Notes: *** Signifies statistical significance at the 99.9% level. N=879.  
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Table 1.4: Model Selection (2 parameters, 3 observations) 

 
Model 1 Model 2 Model 3 Model 4 

Scale 0.3810*** 0.6264*** 0.5542*** 0.8533*** 

 
(0.016) (0.014) (0.017) (0.019) 

     Constant 530.68*** 
   

 
(12.941) 

   r = 
      Historic Max 0.3106*** 

  
  

(0.017) 
    Historic Min 

 
0.6597*** 

 
   

(0.024) 
   Historic Mode 

  
0.1551*** 

    
(0.018) 

     Adj. R-sqaured 0.174 0.937 0.914 0.893 
Log-Likelihood -17980 -17879 -18278 -18527 
AIC 35960 35760 36560 37060 
BIC 35980 35770 36570 37070 
Notes: *** Signifies statistical significance at the 99.9% level. N=879.  
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Table 1.5: Summary of α and β by Gender and by Crop 
Corn Farmers (N=442) 

 
Males (N=241) 

 
Females (N=201) 

 
α β 

 
α β 

Mean 0.157 0.854 
 

0.300 0.712 
Std 0.595 0.638 

 
0.331 0.371 

      Wheat Farmers (N=437) 

 
Males (N=242) 

 
Females (N=195) 

 
α β 

 
α β 

Mean 0.170 0.851 
 

0.259 0.762 
Std 0.536 0.600 

 
0.484 0.506 

Note: Of the male farmers, 222 grow both corn and wheat. Of the 
female farmers, 174 grow both.  
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Table 1.6: Model Selection Criteria by Number of Components, C  

  C N   AICc BIC ICL   τ > .99 τ > .95 τ > .90   
Corn           

 
1 442 

 
1348.85 1365.19 682.59 

 
1 1 1 

 
 

2 442 
 

570.12 606.85 431.47 
 

0.78 0.95 0.96 
 

 
3 442 

 
-627.26 -570.17 92.82 

 
0.88 0.96 0.98 

 
 

4 442 
 

-763.51 -686.11 54.1 
 

0.94 0.97 0.99 
 

 
5 442 

 
-773.64 -675.96 60.24 

 
0.93 0.97 0.98 

 
 

6 442 
 

-987.73 -869.81 173.88 
 

0.7 0.76 0.9 
 

            Wheat 
          

 
1 437 

 
1397.04 1413.34 706.67 

 
1 1 1 

 
 

2 437 
 

618.85 655.48 475.9 
 

0.77 0.96 0.97 
 

 
3 437 

 
521.05 577.97 472.19 

 
0.94 0.97 0.97 

 
 

4 437 
 

-801.41 -724.22 53.34 
 

0.96 0.98 1 
 

 
5 437 

 
-809.6 -712.2 68.22 

 
0.97 0.99 1 

 
 

6 437 
 

-1084.49 -966.91 141 
 

0.77 0.9 0.93 
 

            Pooled 
          

 
1 879 

 
2739.49 2758.59 1379.29 

 
1 1 1 

 
 

2 879 
 

1175.42 1218.38 889.89 
 

0.77 0.95 0.96 
 

 
3 879 

 
961.83 1028.64 869.77 

 
0.78 0.96 0.97 

 
 

4 879 
 

-1586.72 -1496.09 58.34 
 

0.95 0.99 0.99 
 

 
5 879 

 
-2077.98 -1963.54 236.21 

 
0.73 0.88 0.91 

   6 879   -2095.77 -1957.55 252.44   0.74 0.88 0.91   
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Table 1.7: Mixture Weights by Number of Components, C  

  C   Weights 
Corn  C1 C2 C3 C4 C5 C6 

 
1 

 
1 

     
 

2 
 

0.911 0.090 
    

 
3 

 
0.670 0.131 0.199 

   

 
4 

 
0.674 0.115 0.199 0.011 

  

 
5 

 
0.673 0.122 0.199 0.005 0.002 

 

 
6 

 
0.336 0.337 0.122 0.199 0.005 0.002 

         Wheat 
       

 
1 

 
1 

     
 

2 
 

0.890 0.110 
    

 
3 

 
0.888 0.087 0.025 

   

 
4 

 
0.659 0.103 0.213 0.026 

  

 
5 

 
0.659 0.104 0.213 0.018 0.007 

 

 
6 

 
0.370 0.289 0.104 0.213 0.018 0.007 

         Pooled 
       

 
1 

 
1 

     
 

2 
 

0.899 0.102 
    

 
3 

 
0.887 0.095 0.018 

   

 
4 

 
0.667 0.109 0.206 0.018 

  

 
5 

 
0.352 0.314 0.109 0.206 0.018 

 
  6   0.352 0.314 0.110 0.206 0.011 0.007 
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Table 1.8: 3-Component Mixture Model (with outliers omitted) 

Corn Forecasts (N=442) 

 
Optimistic Realistic Pessimistic 

 
α β α β α β 

Mean 0.439 0.542 0.027 1.000 -0.404 1.555 
Std. Dev. 0.176 0.182 0.055 0.001 0.324 3.622 
Weight 0.674 0.199 0.115 

       Wheat Forecasts (N=437) 

 
Optimistic Realistic Pessimistic 

 
α β α β α β 

Mean 0.460 0.538 0.022 1.000 -0.444 1.564 
Std. Dev. 0.175 0.182 0.056 0.001 0.303 0.288 
Weight 0.659 0.213 0.104 

       Pooled Forecasts (N=879) 

 
Optimists Realists Pessimists 

 
α β α β α β 

Mean 0.449 0.540 0.024 1.000 -0.428 1.564 
Std. Dev. 0.176 0.182 0.055 0.001 0.318 0.331 
Weight 0.667 0.206 0.109 
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Table 1.9: 4-Component Mixture Model (with outliers omitted) 
Corn Forecasts (N=442) 

 

Highly  
Optimistic 

Mildly  
Optimistic Realistic Pessimistic 

 
α β α β α β α β 

Mean 0.572 0.396 0.308 0.686 0.027 1.000 -0.443 1.590 
Std. Dev. 0.122 0.112 0.109 0.104 0.055 0.001 0.402 0.427 
Weight 0.336 0.337 0.199 0.122 

         Wheat Forecasts (N=437) 

 

Highly  
Optimistic 

Mildly  
Optimistic Realistic Pessimistic 

 
α β α β α β α β 

Mean 0.584 0.406 0.303 0.707 0.022 1.000 -0.445 1.565 
Std. Dev. 0.111 0.117 0.175 0.182 0.056 0.001 0.303 0.290 
Weight 0.370 0.289 0.213 0.104 

         Pooled Forecasts (N=879) 

 

Highly  
Optimistic 

Mildly  
Optimistic Realistic Pessimistic 

 
α β α β α β α β 

Mean 0.578 0.400 0.306 0.697 0.024 1.000 -0.425 1.562 
Std. Dev. 0.117 0.114 0.105 0.095 0.055 0.001 0.318 0.332 
Weight 0.352 0.314 0.206 0.110 
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Table 1.10: Correlation Coefficients of Classes Across Forecasts 

  
Wheat 

  
Optimistic Neutral Pessimistic 

Corn 
Optimistic  0.07 -0.05 -0.02 

Neutral -0.05  0.05  0.01 
Pessimistic -0.02  0.01  0.02 

Notes: Only farmers growing both crops (N=396). Pearson 
(linear) correlation coefficients calculated with each class X 
crop as a dummy variable. None of the coefficients are 
statistically significant at the 95% level (two-sided test). 
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Table 1.11: Regression Results 

 
β 

 
α 

 
Model 1 Model 2 Model 3 

 
Model 1 Model 2 Model 3 

Intercept 0.825*** 0.844*** 0.875*** 
 

0.191 0.178 0.199 

 
(0.145) (0.146) (0.171) 

 
(0.133) (0.135) (0.157) 

Crop Dummy (Corn=1) 
 

-0.034 -0.052 
  

0.024 0.034 

  
(0.037) (0.039) 

  
(0.034) (0.036) 

Sex (Male=1) 0.109*** 0.109*** 0.122*** 
 

-0.108*** -0.107*** -0.116*** 

 
(0.041) (0.041) (0.043) 

 
(0.038) (0.038) (0.039) 

Age (Years) 0.000 0.000 0.000 
 

-0.000 -0.000 -0.000 

 
(0.003) (0.003) (0.003) 

 
(0.003) (0.003) (0.003) 

Education -0.004 -0.004 -0.004 
 

0.003 0.003 0.004 

 
(0.012) (0.012) (0.012) 

 
(0.011) (0.011) (0.011) 

Years Farming 0.001 0.001 -0.001 
 

-0.001 -0.001 -0.001 

 
(0.002) (0.002) (0.006) 

 
(0.002) (0.002) (0.005) 

Years Farming^2 
  

0.000 
   

0.000 

   
(0.0) 

   
(0.0) 

Years since Min Yield 
-

0.013*** -0.013*** -0.010* 
 

0.012*** 0.012*** 0.009* 

 
(0.002) (0.002) (0.005) 

 
(0.002) (0.002) (0.005) 

Min Yield Last Year Dummy 
  

0.136** 
   

-0.136** 

   
(0.068) 

   
(0.062) 

Years since Max Yield -0.003 -0.004 -0.003 
 

0.003 0.004 0.005 

 
(0.012) (0.012) (0.019) 

 
(0.011) (0.011) (0.017) 

Max Yield Last Year Dummy 
  

-0.007 
   

0.006 

   
(0.064) 

   
(0.059) 

Min Yield Year > Max Yield Year 
  

-0.108 
   

0.063 

   
(0.094) 

   
(0.087) 

Years since Min Yield, Other Crop 
  

-0.002 
   

0.002 

   
(0.005) 

   
(0.005) 

Years since Max Yield, Other Crop 
  

0.012 
   

-0.008 

   
(0.014) 

   
(0.013) 

        Adj. R-squared 0.04 0.04 0.04 
 

0.05 0.05 0.05 
N 848 848 824   848 848 824 

Notes: Standard errors in parentheses. * p<.1, ** p<.05, ***p<.01 
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Table 1.12: Classification Results for the 3-parameter Model (Pooled Data) 
 

Panel A: Model Selection 
  

   
   C   AICc BIC ICL τ>.99 τ>.95 τ>.90    Weights   

 

 
1 

 
-386.43 -358.24 -179.12 1 1 1 1   

 

 
2 

 
-1369.95 -1308.91 -100.88 0.66 0.82 0.86 0.578 0.422  

 

 
3 

 
-3599.37 -3505.49 -1062.27 0.94 0.98 0.99 0.670 0.114 0.217 

 

 
4 

 
-4087.35 -3960.64 -909.62 0.74 0.89 0.92 0.336 0.335 0.112 0.217 

 
 

Panel B: 3-Class Mixture Model with Shape Parameter 

Pooled Forecasts (N=879) 
 

 
Optimistic 

 
α β γ 

Mean 0.44 0.55 -0.01 
Std. Dev. 0.166 0.171 0.087 
Weight 0.669 
  

 
Realistic 

 
α β γ 

Mean 0.02 1.00 0.01 
Std. Dev. 0.062 0.035 0.090 
Weight 0.221 
  

 
Pessimistic 

 
α β γ 

Mean -0.37 1.51 0.03 
Std. Dev. 0.290 0.327 0.156 
Weight 0.111 
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Abstract 

This manuscript examines the effect of producer misperceptions of yield risk on cross-

coverage level demand for crop insurance. Using real-world data, we simulate both 

yield and revenue insurance coverage decisions for two representative farms (“low risk” 

and “high risk”) across four potential models of risk miscalibration and three potential 

models of decision-making (generalized utility models). We find that the effect of 

optimism bias is remarkably consistent across our 48 scenarios. Given current crop 

insurance subsidy levels, we find the counterintuitive result that as optimism bias 

regarding future yields increases, producers choose to insure their crops at decreasing 

levels of coverage, eventually opting not to purchase insurance at all. Additionally, we 

find that the magnitude of this effect is larger in the case of yield insurance than revenue 

insurance. We perform a further sensitivity analysis on the effects of price-yield 

correlation but find that are results are not highly sensitive to this parameter. 

Furthermore, we demonstrate that these results are driven primarily by current subsidy 

levels, namely the fact that lower coverage levels are awarded higher proportionate 

subsidies. We go on to discuss how these results can be used to develop more cost-

effective crop insurance subsidy policies, and discuss avenues of future research. 
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2.1 Introduction 

Optimism Bias is a ubiquitous and well-known phenomenon wherein individuals 

assume they are more likely to succeed and less likely to fail than their peers (Slovic, 

1987; DeBondt and Thaler, 1995). There is a large body of evidence that such optimism 

bias leads to biased decision-making and has affects over a wide swath of domains 

ranging from health outcomes (Hoorens, 1994), legal settlements (Babcock et al., 1997), 

mergers and acquisitions (Malmendier and Tate, 2006, 2008), and insurance purchasing 

decisions (Bhattacharya et al., 2004; Barseghyan, 2013; Spinnewijn, 2013, 2015, 2017). 

For a more in-depth review of the optimism bias literature, see Manuscript 1 of this 

dissertation.  

Optimism bias has also been cited as contributing to what has historically been 

referred to as the Crop Insurance Demand Puzzle, the observation that farmers are much 

more reluctant to participate in farm risk-management programs such as crop insurance 

than economic models would suggest, and that as a result they often require large 

subsidies in order to participate. A 1988 GAO Congressional Report on crop insurance 

participation and the costs associated with the federal program lists optimism as a 

possible reason why farmers were choosing not to participate in the federal crop 

insurance program, stating “some farmers tend to underestimate their crop losses in bad 

years, and expect profitable harvests in future years. Such optimism reduces the 

expected benefit from crop insurance”. The empirical work supports such a hypothesis. 

Pease (1992), Pease et al. (1993), Umarov and Sherrick, (2005) Egelkraut et al. (2006), 

and Turvey et al. (2013) find that on average, farmers are overly optimistic about both 

their yields and yield variability, expecting better than average yields and below average 

yield risk. A number of other studies have gone on to show how perceived yield risk 
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affects demand for crop insurance (Horowitz and Lichtenberg, 1993; Sherrick et al., 

2004; Egelkraut et al., 2006; Shaik et al., 2008, Enjolras and Sentis, 2011; Wang, Ye 

and Shi, 2016). 

While optimism bias has been argued as contributing to lower than expected 

willingness-to-pay for crop insurance, another important question regarding farmers’ 

insurance decisions remains unanswered, the question of why farmers choose the 

coverage levels that they do. Expected utility theory predicts that producers will 

purchase crop insurance at a coverage level at least as high as the level that maximizes 

per-acre subsidies. In reality, however, there is no statistical evidence to support this 

hypothesis (Du, Feng, and Hennessy, 2016). To the best of our knowledge, no research 

exists looking at the effect of optimism bias on farmers’ decisions of which coverage 

level to purchase crop insurance at. To that end, this paper simulates the effect of 

optimism (pessimism) bias on cross-coverage level demand for both crop yield and 

revenue insurance. We consider three possible models of decision-making – expected 

utility, cumulative prospect theory wherein decisions are framed within the broader 

context of farm risk-management, and a cumulative prospect theory model in which 

decisions/outcomes are more narrowly framed. Furthermore, we consider four possible 

manifestations of optimism (pessimism) bias: (1) optimism bias with regard to downside 

yield risk; (2) optimism (pessimism) bias regarding upside yield risk; (3) optimism bias 

with regard only to the variability of yields, while accurate beliefs about mean yields are 

maintained; (4) and optimism (pessimism) bias regarding the shape (skewness) of the 

yield distribution. These four models of optimism bias are mathematically equivalent to: 

(1) increasing the mean and decreasing the variance of the perceived yield distribution 

as compared to the objective yield distribution by increasing the lower-bound, while 
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holding the upper-bound fixed; (2) increasing (decreasing) the mean and decreasing 

(increasing) the variance of the perceived yield distribution as compared to the objective 

yield distribution by increasing (decreasing) the upper-bound, while holding the lower-

bound fixed; (3) decreasing the variance of the perceived yield distribution as compared 

to the objective yield distribution, while holding the mean fixed; and (4) decreasing 

(increasing) the skewness of the perceived yield distribution as compared to the 

objective yield distribution such that it results in increasing (decreasing) the mean and 

scaling the variance. 

We find that the effects of optimism bias on cross-coverage level demand for 

crop insurance are consistent across all 12 models of decision-making under biased 

perceptions of yield risk, and are as follows. (1) As optimism bias increases (decreases), 

farmers prefer lower (higher) levels of crop insurance coverage than they would 

otherwise prefer, with extreme optimism bias inducing farmers to buy no insurance at 

all. (2) Optimism bias affects cross-coverage demand for revenue and yield insurance 

similarly, however the effect is more pronounced for yield insurance. (3) The effect of 

optimism bias on cross-coverage demand for revenue insurance is relatively stable 

across changes in the correlation between prices and yields. We go on to discuss why 

our main result is both surprising and significant to policy design, pointing out that such 

a result is primarily driven by decreasing proportionate subsidies as coverage levels 

increase. Further simulations go on to demonstrate that under equal proportionate 

subsidies across coverage levels, expected utility maximizers will always choose the 

maximum level of coverage until optimism bias eventually induces them not to purchase 

insurance at all. 
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2.2 Modeling Optimism bias 

In our model of decision-making under optimism bias we assume that farmers make 

their decision of which coverage level of insurance to purchase based not on   F( y, P) , 

the true distribution of yields and prices3, but rather based on   F( ŷ, P) , which is their 

forecasted or perceived distribution of yields and prices which need not be equal to the 

true distribution. We model forecasted or perceived yield risk as being miscalibrated 

from the objective yield risk such that their perceived yield distribution is a function of 

the true distribution of yields, and one or more miscalibration parameters such that 

  ŷi( yi ,φ) . We consider four potential models of optimism (pessimism) bias. Following 

standard yield modeling procedures we assume that  yi  and   ŷi each follow a beta 

distribution,   B a,b,S1,S2( )  and 
  
B â, b̂, Ŝ1, Ŝ2( ) , where a and b are the lower and upper 

bounds of the distribution, respectively, while S1 and S2 are shape parameters. Given 

these four parameters, the first three moments can be defined as follows:  

  
E[y]= a +

S1

S1 + S2

(b− a) =
S1b+ S2a
S1 + S2

, 

  
Var[y]=

S1S2

(S1 + S2 )2(S1 + S2 +1)
(b− a) , 

  
Skew[y]=

2(S2 − S1) S1 + S2 +1

(S1 + S2 + 2) S1S2

. 

Additionally, we assume the lower bound of the objective yield distribution, a, to be 

zero. This is done both because this is the case for both of the objective crop yield 

distributions we will be simulating outcomes from, as well as because for no crop is it 

                                            
3 The distribution of yields and prices is generalized to be a joint distribution to allow 
for potential price-yield correlations. 
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ever truly the case that Pr(yi = 0) = 0. Prices are assumed to be distributed according to a 

log-normal distribution which is accurately perceived by the farmer, and may or may 

not be correlated with yields.  

Optimism Bias Model 1: Underestimating Downside Yield Risk  

Under this model, farmers increase the mean and decrease the variance of their 

perceived yield distribution relative to their objective yield distribution by increasing the 

lower-bound, while holding the upper-bound fixed such that  

   
ŷi ∼ B â = (1− β1)b, b̂ = b, Ŝ1 = S1, Ŝ2 = S2( )  

where  β1  is our miscalibration parameter and where optimism bias is defined as  β1 <1 . 

Our resulting miscalibration function is thus   ŷi = (1− β1)b+ β1yi . The result of this 

model is that for any β1 <1 ,   E[ ŷ]> E[y]  and   Var[ ŷ]<Var[y]  or more specifically, 

  E[ ŷ]= (1− β1)b+ β1E[y]  and   Var[ ŷ]= β1Var[y] .  This model of optimism bias can be 

described as the belief that ‘the bad things that happen to others can’t happen to me’.  

Optimism Bias Model 2: Over(under)estimating Upside Yield Risk 

Under this model of optimism (pessimism) bias, farmers increase (decrease) the mean 

and decrease (increase) the variance of their perceived yield distribution relative to the 

objective yield distribution by increasing (decreasing) the upper-bound, while holding 

the lower-bound fixed. In this case,  

   
ŷi ∼ B â = a, b̂ = β2b, Ŝ1 = S1, Ŝ2 = S2( )  

where  β2   is our miscalibration parameter. Our resulting miscalibration function in this 

scenario is simply   ŷi = β2 yi . Under this model,   E[ ŷ]= β2E[y] ,   Var[ ŷ]= β2Var[y]  and 

optimism bias is defined as  β2 >1, while underconfidence is defined as  β2 <1. This 
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model of optimism (pessimism) bias can be described as the belief that ‘just because 

good (bad) things do not happen to other people does not mean they will not happen to 

me’. 

Optimism Bias Model 3: Underestimating Yield Variability 

In this model of optimism bias, farmers decrease the variance of their perceived yield 

distribution as compared to their objective yield distribution by increasing the lower-

bound and decreasing the upper-bound, while holding the mean fixed. In this setting,  

   
ŷi ∼ B â = (1− β3)E[y], b̂ = β3b, Ŝ1 = S1, Ŝ2 = S2( )  

giving us   ŷi = (1− β3)E[y]+ β3 yi where  β3  is our miscalibration parameter. Under this 

specification, optimism bias is defined as  β3 <1  and   E[ ŷ]= E[y] ,   Var[ ŷ]= β3Var[y] . 

This model of optimism bias is akin to the belief that ‘really good and really bad things 

might happen to others, but neither will happen to me’. 

Optimism Bias Model 4: Optimism Regarding the Shape of the Yield Distribution 

In our fourth model, farmers decrease (increase) the skewness of their perceived yield 

distribution as compared to the objective yield distribution in a way that increases 

(decreases) the mean and scales the variance. Under this specification,  

   
ŷi ∼ B â = a, b̂ = b, Ŝ1 = ZS1, Ŝ2 = S2 + (1− Z )S1( )  

 where Z is now our miscalibration parameter. Here, optimism bias is defined as Z>1 

while underconfidence is defined as Z<1. By specifying the model such that 

  Ŝ1 + Ŝ2 = S1 + S2 , we get the result that as long as a = 0,   E[ ŷ]= ZE[y] . As a result, Z is 

constrained such that  ZE[y]≤ b , since the expected value of yields cannot be greater 

than the maximum yield. Additionally, we get 
  
Var[ ŷ]= Z S2+2S1+ZS1

2

S1S2( )Var[y] , a result that 
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is independent of our assumption that a = 0. Unlike with our β s, the effect of Z on the 

new variance can go in either direction depending on the skewness of original objective 

yield distribution. More specifically, adding positive (negative) skewness to an already 

positively (negatively) skewed distribution will decrease the variance, while adding 

positive (negative) skewness to a negatively (positively) skewed distribution will 

decrease the variance.  This model of optimism bias is analogous to the belief that 

‘although the best and worst things that could happen are the same for me as for 

everyone else, I am more likely than others to experience good things’. 

 For a graphical example of how each of the four models modifies the objective 

yield distribution, see figure 2.1. 

[ Figure 2.1 ] 

 

2.3 Modeling Farmer Crop Insurance Coverage Level Decision-Making 

We consider three potential models of producer decision-making regarding which crop 

insurance cover level (if any) to purchase, specifically one based on the standard 

expected utility model, and two based on cumulative prospect theory, one in which the 

decision is framed broadly and one in which the decision is framed more narrowly.  

The Objective Function 

Given the choice between various insurance coverage levels, c, the farm’s objective 

function can be written as 

   

max
dc∈!

+
dcVc

c=c1

C

∑  

s.t. dc = 1
c=c1

C

∑
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where dc =1 denotes the decision to purchase insurance at cover level c, and C 

represents the highest coverage level available. Given that   dc ∈!
+ , the constraint 

ensures that a producer must pick one and only one coverage level. Rather than allow 

  dc = 0∑ , we simply represent the choice to not participate in the insurance program as 

choosing a coverage level of 0. This distinction is particularly important in our setting 

because depending on how the outcome is framed, it is possible that   Vc=0 < 0 .  

Vc is determined according to the cumulative prospect theory model where  

   

This states that farmers value potential outcome scenarios (‘prospects’) by considering 

the weighted average of the value placed on the M+N possible discrete outcomes, xi.  In 

accordance with cumulative prospect theory (Tversky and Kahneman, 1992), values for 

xi are sorted from smallest to largest with M representing the number of losses and N 

representing the number of gains, and where  assigns a decision weight to pi, the 

probability of xi being realized. Decision weights take the form  

   

where  

   

The value function, v(x), takes the form   

  
Vc = π ( pi

i=−m

n

∑ )v(xi )

  π ( pi )

  

π i
+ = w+ ( pi + ...+ pn )− w+ ( pi+1 + ...+ pn );

π n
+ = w+ ( pn ), and

π i
− = w− ( pm + ...+ pi )− w− ( pm + ...+ pi−1);

πm
− = w− ( pm )

  

w+ ( p) = pγ

( pγ + (1− p)γ )1/γ ;

w− ( p) = pδ

( pδ + (1− p)δ )1/δ
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x1−r               
−λ(−x)1−r  

if x ≥ 0
if x<0  

  

where  is the coefficient of loss aversion and represents the degree with which losses 

are felt more strongly than corresponding gains, such that . Figure 2.2 

provides a graphical representation of the probability weighting function, while figure 

2.3 illustrates the value function. 

[ Figure 2.2 ] 

[ Figure 2.3 ] 

One of the major strengths of the cumulative prospect theory model is that when   

λ, γ, δ = 1 and   xi ∈!
+

, the model generalizes to that of the traditional expected utility 

model, where farmers are risk averse for r > 0, risk neutral for r = 0, and risk loving for   

r < 0. This allows us to use the same model even in cases where farmers are simply 

expected utility maximizers, rather than prospect theory value function maximizers. 

The Expected Utility Model 

In our first model of decision-making λ, γ, δ = 1 and   xi ∈!
+

 so that the cumulative 

prospect theory model becomes equivalent to that of the expected utility model. In the 

traditional expected utility model of insurance choice, where it is assumed that farmers 

and insurance provider have identical expectations,  xi = Pi yi + Ii(c)− ρ(c)(1− sc )  where 

  Ii(c)  represents the indemnity paid out by the insurance provider if the outcome (yi in 

the case of yield insurance, and Piyi in the case of revenue insurance) is below that of 

the outcome guaranteed by the insurance contract (cE[y] in the case of yield insurance 

and cE[y]E[P] for revenue insurance).   ρ(c)  represents the fair-priced premium for 

insurance of a given coverage level, c, and where sc is the corresponding proportionate 

  
v(x) = {

λ

  −v(−x0 ) = λv(x0 )
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subsidy offered at that coverage level. We will layout how indemnities and premiums 

are calculated in more detail in the following section.  

Alternatively, in our model of insurance coverage level decision-making, in 

which farmer expectations are potentially misaligned with what we assume are accurate 

expectations of insurance providers,   xi = Pi ŷi + Îi(c)− ρ(c)(1− sc )  where   ŷi  represents 

the over(under)confident yield forecast and  Îi(c)  now represents the potentially 

inaccurate forecasted indemnity paid out by the insurance provider based on the 

forecasted outcome (  ŷi  in the case of yield insurance, and   Pi ŷi  in the case of revenue 

insurance).  

The Cumulative Prospect Theory Model 

A key feature of prospect theory is the idea of a reference point from which outcomes 

above the reference point are treated as gains, and outcomes below the reference point 

are treated as losses. Given our specification of the value function, v(xi), xi is calculated 

as being net of the reference point, R. For example, if R = E[y], then xi(yi, R) = yi – E[y] 

such that xi(yi<E[y]) is valued as a loss and is thus weighted according to one’s loss 

aversion coefficient, λ . The choice of a reference point is thus a critical part of properly 

specifying any model based in prospect theory. In line with Babcock (2015), we follow 

the suggestion of Koszegi and Rabin (2007) of using expected outcomes to guide the 

selection of a reference point.  

Another important and related question is how outcomes are framed. Is the 

outcome of an insurance contract broadly framed such that it includes the entirety of the 

farm’s financial risk, or is the outcome framed more narrowly such that only the 

outcome explicitly derived from the insurance is considered? In order to gain a better 
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understanding of how these framing decisions might change the effect of optimism bias 

on coverage choices, we consider two reference dependent outcomes, one in which 

outcomes are framed narrowly and one in which outcomes are framed more broadly. 

Broadly Framed Outcomes 

When outcomes are framed more broadly and   R = E[P]E[y]+ ρ(c)(1− sc ) , 

  xi = Pi ŷi − E(P)E( ŷ)+ Îi(c)− ρ(c)(1− sc )  

which states that xi is the sum of the forecasted difference between the ith realization of 

revenue and expected revenue, and the difference between the forecasted ith indemnity 

realization and the subsidized premium paid in order to receive that indemnity.  

Narrowly Framed Outcomes 

When outcomes are framed more narrowly and   R = ρ(c)(1− sc ) , 

  xi = Îi − ρ(c)(1− sc )  

which states that xi is simply the difference between the forecasted ith indemnity 

realization and the subsidized premium paid in order to receive that indemnity. Under 

this model, farmers essentially treat insurance as a one-off lottery wherein they only win 

if   Îi > ρ(c)(1− sc ) . As a result of not fully integrating the entirety of the farm’s financial 

risk, the narrow-frame farmer becomes more likely to realize an outcome that is 

perceived as being a loss causing the decision to be more affected by loss aversion than 

it otherwise would be. As demonstrated by Babcock (2015) in a non-optimism bias 

setting, this model of narrow framing outperforms the other two models when it comes 

to explaining the seemingly ‘anomalous’ coverage level choices observed in the real 

world.  
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2.4 Crop Insurance Premiums and Indemnities 

Calculating Premiums and Indemnities 

Crop insurance if offered across eight levels in .05 increments from .50 to .85 with each 

coverage level having a proportionate premium subsidies, sc, that is fixed across both 

crops and locations. The eight pairs of (c, sc) are as follows: (.50, .76), (.55, .64), (.60, 

.64), (.65, .59), (.70, .59), (.75, .55), (.80, .48), and (.85, .38). For yield insurance, yields 

are guaranteed at   cE[y] , and for revenue insurance, revenues are guaranteed at 

  cE[P]E[y] , where expectations are taken at the time the insurance is contracted. The 

indemnity provided by yield insurance is thus 
  
I y = Pmax[cE[y]− y,0] . For the majority 

of revenue insurance purchased in the United States, the guarantee actually increases if 

the actual price at harvest is greater than   E[P] . The indemnity provided by revenue 

insurance is thus   IR = max[cE[y]max(E[P], P)− Py,0] . Unsubsidized crop insurance 

premiums in the US are designed to be actuarially fair4,5, allowing us to calculate 

premiums for yield and revenue insurance as 
  
ρ y (c) = I y dF(P, y)

0

b

∫  and 

  
ρR(c) = IR df (P, y)

0

b

∫
0

∞

∫ , respectively.  

 

2.5 Simulating Optimal Cover Level Choices 

Optimal coverage level choices under our various decision-making models cannot be 

solved analytically, at least not under any realistic distribution of yields and prices. 
                                            
4 Premium rates are determined based on historical data and then loaded by a factor of 
13.6% in order to account for potential future losses that are not reflected in the 
historical data.  
5 Insurance companies are reimbursed by the federal government for the administrative 
costs of providing fair-priced crop insurance. 
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Therefore, we simulate the effect of changes in our optimism bias parameters on 

coverage level choices for both revenue and yield insurance for two representative farms 

– a ‘low risk’ irrigated corn farm in York County, NE with corr[P,y] = 0 and a ‘high 

risk’ wheat farm in Sumner County, KS with corr[P,y] = -0.3, the price-yield correlation 

used in determining Revenue Assurance premium rates in 2009, the year our simulation 

data is based on6. As a further sensitivity analysis, we also simulate revenue insurance 

coverage choices where corrcorn[P,y] = -0.3 and corrwheat[P,y] = 0. 

For each crop, we simulate 5,000 random yield and price outcomes. Yields are 

assumed to follow a beta distribution, while prices follow a log-normal distribution. The 

parameters of these distributions are taken from Babcock (2015). Babcock uses 2009 

harvest price means and volatilities as used by the crop insurance program to fit the log-

normal distribution, where as the parameters of the beta distribution were estimated by 

minimizing the sum of squared errors between target premium rates (obtained from 

USDA’s Risk Management Agency Premium Calculator, also for 2009) and simulated 

premium rates across the eight coverage levels. These values are displayed in table 2.1. 

Price-yield and yield distribution plots for our simulated data are shown in figure 2.4. In 

order to reduce any potential error causes by sampling variability, both guarantees and 

premiums were re-calculated based on our simulated data. 

[ Table 2.1 ] 

[ Figure 2.4 ] 

For all three of our decision-making models, r, the coefficient of risk aversion, is 

set equal to 0.12. In our expected utility model λ, γ, δ = 1, while in both of our 

                                            
6 The price-yield correlation for corn was set to zero based on the fact that almost 90% 
of corn in York County is irrigated and irrigated corn yields are not highly correlated 
with national corn prices. 
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cumulative prospect theory models λ = 2.25, γ = 0.61, δ = 0.69, which are the values 

estimated by Tversky and Kahneman (1992) based on their experimental data7.  

Calculating Decision Weights on Simulated Outcomes 

The values and signs of xi for a given ith realization vary across different coverage levels 

and therefore w(pi) much be calculated independently for each coverage level, c, in 

order to calculate Vc. For each coverage level, xis are sorted in ascending order from 

largest loss to largest gain. Let Mc be the number of losses and Nc be the number of 

gains. Losses are labeled such that for the largest loss, mc = Mc; for the second largest 

loss, mc = Mc - 1;…; for the second smallest loss mc = 2 and for the smallest loss mc = 1. 

For all gains, mc = 0. The same thing is done for gains such that for the largest gain, nc 

= Nc, for the second largest gain, nc = Nc - 1;…; for the second smallest gain nc = 2; and 

for the smallest gain nc = 1. For all losses, nc = 0. This set up makes calculating 

decision weights straightforward as each of the simulated outcomes (yield, price, and 

resulting indemnity) have equal probability of occurring in the simulation, 1/(Mc + Nc). 

For each coverage level, c,  

πn,c = w+[nc/(Nc + Mc)] - w+[(nc - 1)/(Nc  + Mc)], and 

πm,c = w− [mc/(Nc + Mc)] - w− [(mc - 1)/(Nc + Mc)]. 

 

2.6 Results  

Our main results are presented in tables 2.2A through 2.2D. Although we calculate 

significantly different optimal coverage levels across our twelve models, two crops, and 

two insurance types, the overall effects of optimism bias on coverage level choices are 

                                            
7 λ=2.25 is reported as the median estimated value. Since the distribution of λ is highly 
non-normal and positively skewed, the median value serves as a better representative 
estimate than the mean value. 
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largely consistent across all twelve specifications for both crops and both insurance 

types. Tables 2.3A through 2.3D present the results of our additional sensitivity analysis 

with regard to correlation between prices and yields.  

[ Table 2.2A ] 

[ Table 2.2B ] 

[ Table 2.2C ] 

[ Table 2.2D ] 

The Effect of Optimism (Pessimism) Bias on Cross-Coverage Level Demand 

Our first result is that as optimism bias increases, the optimal coverage level selected 

decreases. This pattern holds true for all 24 of our yield insurance simulations, and 22 of 

the 24 revenue simulations. In this case of optimism bias model 3 under the broad 

framed prospect theory model, the optimal coverage choice stay unchanged across 

changes in β3 for both crops. Furthermore, as optimism bias continues to increase, 

producers move towards preferring no insurance. 

We find that the converse effect also holds true, where increasing pessimism 

bias causes producers to prefer higher levels of coverage than they would in the 

unbiased scenario. This holds true for all cases where the unbiased coverage choice was 

not already at .85, with all choices eventually approaching .85 coverage. 

 

Further Sensitivity Analyses  

The Effect of Optimism Bias Across Insurance Type 

While the overall effect of optimism bias on coverage level choice is consistent 

across both revenue and yield insurance, we find that in general the magnitude of the 

effect of optimism bias on cross-coverage level demand is larger for yield insurance 
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than for revenue insurance. This is the case for 22 of our 24 comparisons, with 2 

comparisons -wheat, expected utility, optimism bias models 1 and 2 – having identical 

coverage choices across both yield and revenue insurance. This effect is perhaps not 

surprising given that our optimism bias model assumes producers are accurate in their 

perceptions of price risk.  

The Effect of Optimism bias Across Optimism bias Models 

When comparing the effects of optimism bias on coverage level choice across 

our four optimism bias models we find varying results. Model 1 produces the most 

dramatic effects, followed by model 3. It is probably not surprising that underestimating 

downside risk has a more dramatic effect than simply overestimating upside risk, given 

that it is downside risk that insurance is protecting against.  

The Effect of Optimism Bias Across Decision-Making Models 

Across the parameters of our four optimism bias models it is always that case 

that   cEU
* ≤ cBroad

* ≥ cNarrow
*

 and both   cBroad
* − cEU

*
 and   cBroad

* − cNarrow
*

 are monotonically 

increasing as optimism bias increases. The difference in the overall effect between 

Narrow-Framed CPT and Expected Utility are inconsistent though in general, but not 

always,   cNarrow
* < cEU

*
 . Despite the fact that when   ŷi = yi ,   cNarrow

* ≤ cEU
*

, that relationship 

does not always hold as optimism bias increases. While it is not surprisingly that 

coverage choices under the narrow CPT frame are more affected than those under the 

broad frame given that the narrow frame is more effected by loss aversion, it is 

surprising that coverage choices under expected utility are more affected than the broad 

CPT frame given that the broad CPT frame is effected by loss aversion, whereas the 

expected utility choices are not.  
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The Effect of Optimism Bias Across Crops 

Differences in the effect of optimism bias between our two crops varies across 

our four models. Under model 1, the effect is stronger for wheat (our ‘high risk’, 

positively skewed crop) than it is for corn (our ‘low risk’, negatively skewed crop). 

However, under model 2 we find just the opposite, with corn being more effect by 

optimism bias than wheat. Under model 3. We obtain conflicting results. For revenue 

insurance, the effect of optimism bias is more dramatic for wheat, whereas for yield 

insurance, the effect is more dramatic on corn. This suggests that the effect of each 

model depends on the skewness of the objective distribution and may be an area for 

future research. 

The Effect of Optimism Bias Across Price-Yield Correlations 

Our sensitivity analyses with regard to the correlation between prices and yields 

is displayed in tables 2.3A through 2.3D.  

[ Table 2.3A ] 

[ Table 2.3B ] 

[ Table 2.3C ] 

[ Table 2.3D ] 

We find that results do not change dramatically based on whether or not prices 

and yields are negatively correlated compared to when no correlation exists. Although 

some coverage level choices based on whether the price-yield correlation was set to 0 or  

-0.3, changes were minimal overall and did not consistently change in one direction or 

the other. 
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The Role of Unequal Proportionate Subsidy Levels 

It is important to point out why the finding that optimism bias causes farmers to prefer 

lower levels of crop insurance coverage is both surprising and significant. This result 

does not simply stand on its own. In fact it can be shown that in cases when subsidy 

levels are equivalent across coverage levels that this result no longer holds, and that 

instead, an expected utility maximizing farmer will purchase either maximum coverage, 

or no coverage at all.  

This is can easily be shown mathematically for the case of a risk-neutral 

expected utility maximizer. Such a farmer will choose the coverage level that 

maximizes E[Îc] – (1–sc)ρc where ρc = E[Ic]. This can be mathematically rearranged to 

state that such a farmer will maximize  

sc – (E[Ic] – E[Îc])/ E[Ic]. 

It is indeed the case that for all four of our models of optimism bias,                

(E[Ic] – E[Îc])/ E[Ic] decreases as the coverage level increases. Thus when all values of 

sc are equivalent, said farmer will always choose either c = .85, or no coverage at all. 

Thus, in order for the farmer to pick a coverage level below .85 it must be the case that s 

decreases faster than (E[Ic] – E[Îc])/ E[Ic] as coverage levels increase, i.e. 

  
Δs
Δc

<
Δ(E[Ic] – E[Îc]) / E[Ic]

Δc
. 

Re-simulating coverage choices under equal proportionate subsidies (sc = .5 for 

all c), we find that under this subsidy schedule, our mildly risk-averse EU farmer (r = 

.12) will always prefer c = .85 until eventually preferring c = 0. We find the same result 

for our mildly risk-averse, broad-framing CPT farmers. For our mildly risk-averse, 

narrow-framing CPT farmers, we find that there are still instances where the farmer 
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prefers an interior solution, however the number of interior solutions chosen is greatly 

reduced. These results are presented in table 2.4. For brevity, we only show results 

under optimism model 1, however they are consistent across all four models of risk 

misperception.  

[ Table 2.4 ] 

It is thus obvious that the mechanism driving these results is the fact that 

proportionate subsidies increase as coverage levels decrease. Thus, the impact of 

optimism bias on coverage level choices could be greatly reduced by a more equivalent 

schedule of subsidies across coverage levels. 

 

2.7 Conclusion 

In this paper we find that although expected utility suggests that producers should 

purchase crop insurance at a coverage level at least as high as the level that maximizes 

per-acre subsidies (c = .85 for corn and c = .80 for wheat), this is no longer the case 

when producers have inaccurate perceptions regarding their yield risk. We find that the 

effect of optimistically biased misperceptions of yield risk is to reduce the level of 

optimal coverage in the case of both revenue and yield insurance and that this effect is 

strongest for yield insurance. We further find that the mechanism driving this result is 

the higher levels of proportionate subsidies provided for lower levels of coverage and 

that such a result no longer exists for our expected utility farmers or broad-framing 

cumulative prospect theory farmers and is greatly reduced for our narrow-framing 

cumulative prospect theory farmers in the case of equivalent proportionate subsidies. 

These findings suggests that if a goal of policy-makers is to induce farmers to 

purchase lower-deductible (higher coverage) policies through subsidies in order to 
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reduce the risk of having to provide ad hoc disaster relief (Babcock, 2015), then 

incorporating optimism bias may allow for the design of more cost-effective subsidy 

schedules. Given that the effects we found were more pronounced for yield insurance 

relative to revenue insurance, it also suggests that in the case where yield 

misperceptions are heterogeneous across farmers (e.g. some are optimistic, while others 

are pessimistic, as was evidenced in Manuscript 1) that equivalently subsidized revenue 

insurance likely does a better job of minimizing deadweight loss by reducing the 

variance of producer surplus across farmers, relative to yield insurance. Rigorously 

testing these hypotheses, as well as looking at the interaction between optimism bias and 

yield skewness provide fruitful grounds for future research. 
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2.8 Figures 

Figure 2.1: Example Comparisons of the Objective and Perceived/Forecasted Yield 

Distributions According to our Four Models of Optimism Bias 

 

Note: Depicted above are example comparisons between a farmer’s objective yield 

distribution (in red)- which is used to set premiums- and their misperceived subjective 

yield distribution (in green)- which they use to make coverage level choices- across of 

four models of risk misperception. Miscalibration parameters are presented below each 

graph.  
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Figure 2.2: The Probability Weighting Function (γ = 0.61, δ = 0.69) 

 

Note: Depicted above is the cumulative prospect theory probability weighting function. 

It shows that individuals overweight the probability of low probability events, while 

underweighting the probability of high probability events.  
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Figure 2.3: The Prospect Theory Value Function 

 

Note: Above is a graphical representation of the cumulative prospect theory value 

function. It shows that individuals are risk averse in the gains domain, and risk-loving in 

the loss domain. It also shows that individuals are loss averse, i.e. that losses are more 

salient than equivalent gains.  
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Figure 2.4: Simulated Price-Yield and Yield Distribution Plots for Corn and Wheat  

 

Note: On the left are displayed histograms of the yield outcomes based on the 
parameters of the yield distribution for corn (above) and wheat (below). On the right are 
scatter plots of price and yield outcomes based on the joint price-yield distribution for 
both corn (above) and wheat (below). For our scatter plots, yields are presented on the 
x-axis, while prices are presented on the y-axis.
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2.10 Tables 

Table 2.1: Parameters for F(y, P) from Babcock (2015) 

  
Corn Wheat 

    York Co, NE Sumner Co, KS 
Expected Yield 190 bu/ac 33 bu/ac 
Expected Price $4.40/bu $8.77/bu 
Price Volatility 37% 33% 
Price-Yield Correlation 0 −0.3 
Yield Parameters 

    Maximum 
 

250 80 
  Minimum 

 
0 0 

  Shape 1 
 

9.34 1.938 
  Shape 2 

 
2.949 2.76 
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Table 2.2A: Optimal Coverage Level Choice by Crop, Insurance Type, Decision 
Model: Optimism Bias Model 1 

                                  Corn (York County, NE)               Wheat (Sumner County, KS)       
 

Type of 
Insurance   Revenue      Yield      Revenue      Yield   
 

Decision 
Model   EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT  EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT 

 

 
β1 =  0.50 

 
0 80 50 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.55 

 
0 80 50 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.60 

 
0 85 60 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.65 

 
70 85 60 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.70 

 
75 85 60 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.75 

 
75 85 70 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.80 

 
80 85 70 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.85 

 
80 85 70 

 
0 75 0 

 
0 75 0 

 
0 0 0 

 
β1 =  0.90 

 
80 85 75 

 
0 85 75 

 
75 80 60 

 
75 75 0 

 
β1 =  0.95 

 
85 85 75 

 
85 85 80 

 
75 80 70 

 
75 80 70 

  β1 =  1.00   85 85 75 
 

85 85 80 
 

80 80 70 
 

80 80 70 
Note: Optimal coverage level choice under identical farmer and insurer yield 
expectations are highlighted in blue.  
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Table 2.2B: Optimal Coverage Level Choice by Crop, Insurance Type, Decision 
Model: Optimism Bias Model 2 

                                  Corn (York County, NE)               Wheat (Sumner County, KS)       
 

Type of 
Insurance   Revenue      Yield      Revenue      Yield   
 

Decision 
Model   EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT  EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT 

 

 
β2 =  1.5 

 
0 70 0 

 
0 0 0 

 
70 75 60 

 
70 75 50 

 
β2 =  1.4 

 
0 75 50 

 
0 0 0 

 
70 75 60 

 
70 75 60 

 
β2 =  1.3 

 
0 80 50 

 
0 0 0 

 
75 80 60 

 
75 75 60 

 
β2 =  1.2 

 
60 80 60 

 
0 75 70 

 
75 80 70 

 
75 80 60 

 
β2 =  1.1 

 
80 85 70 

 
75 80 75 

 
75 80 70 

 
75 80 70 

 
β2 =  1.0   85 85 75   85 85 80   80 80 70   80 80 70 

 
β2 =  0.9 

 
85 85 80 

 
85 85 85 

 
80 85 75 

 
80 85 70 

 
β2 =  0.8 

 
85 85 85 

 
85 85 85 

 
85 85 75 

 
85 85 75 

 
β2 =  0.7 

 
85 85 85 

 
85 85 85 

 
85 85 80 

 
85 85 80 

 
β2 =  0.6 

 
85 85 85 

 
85 85 85 

 
85 85 85 

 
85 85 80 

  β2 =  0.5 
 

85 85 85 
 

85 85 85 
 

85 85 85 
 

85 85 85 
Note: Optimal coverage level choice under identical farmer and insurer yield 
expectations are highlighted in blue.  
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Table 2.2C: Optimal Coverage Level Choice by Crop, Insurance Type, Decision 

Model: Optimism Bias Model 3 

                                  Corn (York County, NE)               Wheat (Sumner County, KS)       
 

Type of 
Insurance   Revenue      Yield      Revenue      Yield   
 

Decision 
Model   EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT  EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT 

 

 
β3 =  0.50 

 
80 85 70 

 
0 0 0 

 
0 80 0 

 
0 0 0 

 
β3 =  0.55 

 
80 85 75 

 
0 0 0 

 
0 80 0 

 
0 0 0 

 
β3 =  0.60 

 
85 85 75 

 
0 0 0 

 
80 80 0 

 
0 0 0 

 
β3 =  0.65 

 
85 85 75 

 
0 0 0 

 
80 80 0 

 
0 75 0 

 
β3 =  0.70 

 
85 85 75 

 
0 0 0 

 
80 80 70 

 
75 80 0 

 
β3 =  0.75 

 
85 85 75 

 
0 85 0 

 
80 80 70 

 
75 80 0 

 
β3 =  0.80 

 
85 85 75 

 
0 85 75 

 
80 80 70 

 
80 80 70 

 
β3 =  0.85 

 
85 85 75 

 
85 85 80 

 
80 80 70 

 
80 80 70 

 
β3 =  0.90 

 
85 85 75 

 
85 85 80 

 
80 80 70 

 
80 80 70 

 
β3 =  0.95 

 
85 85 75 

 
85 85 80 

 
80 80 70 

 
80 80 70 

  β3 =  1.00   85 85 75   85 85 80   80 80 70   80 80 70 
Note: Optimal coverage level choice under identical farmer and insurer yield 
expectations are highlighted in blue. 
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Table 2.2D: Optimal Coverage Level Choice by Crop, Insurance Type, Decision 
Model: Optimism Bias Model 4 

                                  Corn (York County, NE)               Wheat (Sumner County, KS)       
 

Type of 
Insurance   Revenue      Yield      Revenue      Yield   
 

Decision 
Model   EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT  EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT 

 

 
Z =  1.5 

 
- - - 

 
- - - 

 
0 60 0 

 
0 50 0 

 
Z =  1.4 

 
- - - 

 
- - - 

 
0 70 0 

 
0 60 0 

 
Z =  1.3 

 
0 75 0 

 
0 0 0 

 
60 75 50 

 
50 70 50 

 
Z =  1.2 

 
0 80 50 

 
0 0 0 

 
75 80 60 

 
75 75 60 

 
Z =  1.1 

 
75 85 70 

 
0 75 0 

 
75 80 70 

 
75 80 60 

 
Z =  1   85 85 75   85 85 80   80 80 70   80 80 70 

 
Z =  0.9 

 
85 85 80 

 
85 85 85 

 
80 85 75 

 
85 85 75 

 
Z =  0.8 

 
85 85 85 

 
85 85 85 

 
85 85 75 

 
85 85 75 

 
Z =  0.7 

 
85 85 85 

 
85 85 85 

 
85 85 80 

 
85 85 80 

 
Z =  0.6 

 
85 85 85 

 
85 85 85 

 
85 85 80 

 
85 85 80 

  Z =  0.5   85 85 85   85 85 85   85 85 85   85 85 80 
Note: Optimal coverage level choice under identical farmer and insurer yield 
expectations are highlighted in blue. We are unable to calculate optimal coverage 
level choices for corn for Z = 1.4, 1.5 because Z cannot be greater than b/E[y].  
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Table 2.3A: Optimal Revenue Coverage Level Choice by Crop, Decision Model, 

and Price-yield Correlation: Optimism Bias Model 1 

                                  Corn (York County, NE)               Wheat (Sumner County, KS)       
 

Price-yield 
Correlation   0      -0.3      0      -0.3   
 

Decision 
Model   EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT  EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT 

 

 
β1 =  0.50 

 
0 80 50 

 
0 80 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.55 

 
0 80 50 

 
0 85 50 

 
0 0 0 

 
0 0 0 

 
β1 =  0.60 

 
0 85 60 

 
0 85 60 

 
0 0 0 

 
0 0 0 

 
β1 =  0.65 

 
70 85 60 

 
75 85 60 

 
0 0 0 

 
0 0 0 

 
β1 =  0.70 

 
75 85 60 

 
75 85 70 

 
0 0 0 

 
0 0 0 

 
β1 =  0.75 

 
75 85 70 

 
80 85 70 

 
0 0 0 

 
0 0 0 

 
β1 =  0.80 

 
80 85 70 

 
80 85 70 

 
0 75 0 

 
0 0 0 

 
β1 =  0.85 

 
80 85 70 

 
80 85 70 

 
0 75 0 

 
0 75 0 

 
β1 =  0.90 

 
80 85 75 

 
80 85 70 

 
75 80 60 

 
75 80 60 

 
β1 =  0.95 

 
85 85 75 

 
85 85 75 

 
75 80 70 

 
75 80 70 

  β1 =  1.00   85 85 75   85 85 75   80 80 70   80 80 70 
Note: Optimal coverage level choice under identical farmer and insurer yield 
expectations are highlighted in blue.  
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Table 2.3B: Optimal Revenue Coverage Level Choice by Crop, Decision Model, 

and Price-yield Correlation: Optimism Bias Model 2 

                                  Corn (York County, NE)               Wheat (Sumner County, KS)       
 

Price-yield 
Correlation   0      -0.3      0      -0.3   
 

Decision 
Model   EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT  EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT 

 

 
β2 =  1.5 

 
0 70 0 

 
0 75 0 

 
70 75 50 

 
70 75 60 

 
β2 =  1.4 

 
0 75 50 

 
0 80 50 

 
70 75 60 

 
70 75 60 

 
β2 =  1.3 

 
0 80 50 

 
0 80 50 

 
75 80 60 

 
75 80 60 

 
β2 =  1.2 

 
60 80 60 

 
70 85 60 

 
75 80 60 

 
75 80 70 

 
β2 =  1.1 

 
80 85 70 

 
80 85 70 

 
75 80 70 

 
75 80 70 

 
β2 =  1.0   85 85 75   85 85 75   80 80 70   80 80 70 

 
β2 =  0.9 

 
85 85 80 

 
85 85 80 

 
80 85 75 

 
80 85 75 

 
β2 =  0.8 

 
85 85 85 

 
85 85 85 

 
85 85 75 

 
85 85 75 

 
β2 =  0.7 

 
85 85 85 

 
85 85 85 

 
85 85 80 

 
85 85 80 

 
β2 =  0.6 

 
85 85 85 

 
85 85 85 

 
85 85 80 

 
85 85 85 

  β2 =  0.5 
 

85 85 85 
 

85 85 85 
 

85 85 85 
 

85 85 85 
Note: Optimal coverage level choice under identical farmer and insurer yield 
expectations are highlighted in blue.  
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Table 2.3C: Optimal Revenue Coverage Level Choice by Crop, Decision Model, 
and Price-yield Correlation: Optimism Bias Model 3 

                                  Corn (York County, NE)               Wheat (Sumner County, KS)       
 

Price-yield 
Correlation   0      -0.3      0      -0.3   
 

Decision 
Model   EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT  EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT 

 

 
β3 =  0.50 

 
80 85 70 

 
80 85 75 

 
0 80 0 

 
0 80 0 

 
β3 =  0.55 

 
80 85 75 

 
80 85 75 

 
75 80 0 

 
0 80 0 

 
β3 =  0.60 

 
85 85 75 

 
80 85 75 

 
80 80 0 

 
80 80 0 

 
β3 =  0.65 

 
85 85 75 

 
85 85 75 

 
80 80 0 

 
80 80 0 

 
β3 =  0.70 

 
85 85 75 

 
85 85 75 

 
80 80 70 

 
80 80 70 

 
β3 =  0.75 

 
85 85 75 

 
85 85 75 

 
80 80 70 

 
80 80 70 

 
β3 =  0.80 

 
85 85 75 

 
85 85 75 

 
80 80 70 

 
80 80 70 

 
β3 =  0.85 

 
85 85 75 

 
85 85 75 

 
80 80 70 

 
80 80 70 

 
β3 =  0.90 

 
85 85 75 

 
85 85 75 

 
80 80 70 

 
80 80 70 

 
β3 =  0.95 

 
85 85 75 

 
85 85 75 

 
80 80 70 

 
80 80 70 

  β3 =  1.00   85 85 75   85 85 75   80 80 70   80 80 70 
Note: Optimal coverage level choice under identical farmer and insurer yield 
expectations are highlighted in blue.  
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Table 2.3D: Optimal Revenue Coverage Level Choice by Crop, Decision Model, 

and Price-yield Correlation: Optimism Bias Model 4 

                                  Corn (York County, NE)               Wheat (Sumner County, KS)       
 

Price-yield 
Correlation   0      -0.3      0      -0.3   
 

Decision 
Model   EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT  EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT 

 

 
Z =  1.5 

 
- - - 

 
- - - 

 
0 70 0 

 
0 60 0 

 
Z =  1.4 

 
- - - 

 
- - - 

 
0 75 0 

 
0 70 0 

 
Z =  1.3 

 
0 75 0 

 
0 75 0 

 
70 75 50 

 
60 75 50 

 
Z =  1.2 

 
0 80 50 

 
0 80 50 

 
75 80 60 

 
75 80 60 

 
Z =  1.1 

 
75 85 70 

 
75 85 70 

 
75 80 70 

 
75 80 70 

 
Z =  1   85 85 75   85 85 75   80 80 70   80 80 70 

 
Z =  0.9 

 
85 85 80 

 
85 85 80 

 
80 85 75 

 
80 85 75 

 
Z =  0.8 

 
85 85 85 

 
85 85 85 

 
85 85 75 

 
85 85 75 

 
Z =  0.7 

 
85 85 85 

 
85 85 85 

 
85 85 75 

 
85 85 80 

 
Z =  0.6 

 
85 85 85 

 
85 85 85 

 
85 85 80 

 
85 85 80 

  Z =  0.5   85 85 85   85 85 85   85 85 80   85 85 85 
Note: Optimal coverage level choice under identical farmer and insurer yield 
expectations are highlighted in blue.  
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Table 2.4: Optimal Coverage Level Choice by Crop, Insurance Type, Decision 
Model: Optimism Bias Model 1 Under Equal Proportionate Subsidies (sc = .5) 

                                  Corn (York County, NE)               Wheat (Sumner County, KS)       
 

Type of 
Insurance   Revenue      Yield      Revenue      Yield   
 

Decision 
Model   EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT  EU Broad 

CPT 
Narrow 

CPT  EU Broad 
CPT 

Narrow 
CPT 

 

 
β1 =  0.50 

 
0 85 0 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.55 

 
0 85 0 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.60 

 
0 85 0 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.65 

 
85 85 50 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.70 

 
85 85 50 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.75 

 
85 85 60 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.80 

 
85 85 70 

 
0 0 0 

 
0 0 0 

 
0 0 0 

 
β1 =  0.85 

 
85 85 85 

 
0 85 0 

 
0 85 0 

 
0 0 0 

 
β1 =  0.90 

 
85 85 85 

 
85 85 85 

 
85 85 0 

 
85 85 0 

 
β1 =  0.95 

 
85 85 85 

 
85 85 85 

 
85 85 85 

 
85 85 85 

  β1 =  1.00   85 85 85 
 

85 85 85 
 

85 85 85 
 

85 85 85 
Note: Optimal coverage level choice under identical farmer and insurer yield 
expectations are highlighted in blue.
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Abstract 

Policy-critical, micro-level statistical data are often unavailable at the desired level of 

disaggregation. We present a Bayesian methodology for ‘downscaling’ aggregated 

count data to the micro-level, using an outside statistical sample. Our procedure 

combines numerical simulation with exact calculation of combinatorial probabilities. 

We motivate our approach with an application estimating the number of farms in a 

region, using count totals at higher levels of aggregation. In a simulation analysis 

over varying population sizes, we demonstrate both robustness to sampling 

variability and outperformance relative to maximum likelihood. Spatial 

considerations, implementation of “informative” priors, non-spatial classification 

problems, and best practices are discussed. 
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3.1 Introduction 

Local economic planning often relies on micro-level data that is not always available 

at the desired level of disaggregation. For example, Federal government-provided 

economic and employment data for key industry sectors is often reported at the 

county level and obtaining city or ZIP-code level data may require time-consuming 

special requests or considerable expense, or it may be simply unavailable. In this 

article, we address the need for micro-level count data by developing a Bayesian 

methodology to ‘downscale’ aggregated count data to lower levels of aggregation 

using the information contained in an outside statistical sample. 

Suppose a researcher knows the true size of a population (e.g., farmers, voters, 

customers) and would like to classify members of that population into distinct sub-

groups (e.g., by farm type, county/region, political party, or demographic attributes) 

using independent data sampled from the full population. In this setting, we 

demonstrate a method for estimating the population proportion in each sub-group, in 

a manner that provides more stable and robust estimates than maximum likelihood 

estimation (MLE) in the face of sampling variability. The method consists primarily 

of using simulated random sampling combined with exact calculation of 

combinatorial probabilities to estimate the posterior distribution over combinations of 

counts. We leverage two key restrictions: i) the sub-group counts must add up to the 

population total, and ii) the sub-group counts cannot be smaller than their observed 

counts in the outside sample, nor larger than the population minus the sum of 

observed samples in the other sub-groups. This explicit handling of sampling 
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variability, especially in small to medium-sized samples, results in smaller 

normalized errors and, consequently, more reliably accurate estimates.  

We are, of course, not the first to address the demand for more disaggregated 

data from aggregated sources. Gocht and Roder (2011), for example, employ a 

Bayesian procedure to downscale county-level German Agricultural Census estimates 

of land devoted to agricultural use. Their method incorporates land use data from GIS 

to facilitate micro-level environmental impact studies that would otherwise be 

hindered by data protection rules (i.e., censoring). Other relevant studies include 

Chakir (2009); Dendoncker, Bogaert, and Rounsevell (2006); Gärtner, Keller, and 

Schulin (2013); Howitt and Reynaud (2003); Purcell and Kish (1980); and Polasek, 

Llano, and Sellner (2010). These papers share a common thread of attempting to 

estimate land-use patterns using a variety and/or combination of methods including 

regression, multinomial logit, maximum entropy, cross-entropy, and various iterative 

fitting procedures. However, while these procedures perform well in their intended 

domain, they are ill-suited to solving the downscaling problem for count data. 

Intuitively, multinomial logit might be mapped to a count model in which sampling 

probabilities are estimated, but many observations and covariates are required. The 

methods we introduce here are designed to overcome this problem when the outside 

sample contains only limited categorical information.  

Another popular application of downscaling involves disaggregation of global 

climate data (typically reported at grid levels of 100-200km) to a level of resolution 

more useful for decision-makers and impact assessors. Such procedures are outlined, 

for example, in Coelho et al. (2006); Hashmi, Shamseldin, and Melville (2009); 
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Fasbender and Ouarda (2010); Murphy (1999); and von Storch, Zorita, and Cubasch 

(1993). The goals of such estimation procedures, however, are to disaggregate 

weather/climate data not only spatially, but temporally as well in order to model 

various potential weather outcomes for use in forecasting. The procedures outlined by 

these studies are both unnecessarily complex given our particular problem of interest, 

and potentially ill-suited to the count data problem due to highly detailed data 

requirements in the outside sample. 

In an attempt to balance precision with tractability, we develop a method that 

is adaptable to the data and computational resources of the applied researcher. 

Namely, we show that reasonable performance can be obtained using a uniform prior 

distribution over combinations of counts, but we also demonstrate a method for 

researchers to incorporate “informative” prior information generated by a simple 

linear regression or one of the more spatially-explicit and computationally demanding 

methods described above. In our simulation analysis, we demonstrate a means for 

testing the best performance among MLE, the uniform prior, or a more informative 

spatial prior, over a range of population counts and sample sizes. As might be 

expected, a more informative prior performs best for the smallest sample sizes and 

smallest population counts. However, we find that the uniform prior performs best 

over an unexpectedly wide range of sample size and population count combinations. 

To provide context, we introduce and apply our methods in the setting of 

estimating spatially disaggregated farm counts by sub-region from regional data, 

using a sample of Rhode Island farms combined with aggregated data from the 2012 

United States Department of Agriculture (USDA) Census of Agriculture (herein, “Ag 
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Census”). We explore both county-to-city downscaling and state-to-county 

downscaling, and show how spatial patterns at higher levels of aggregation might be 

used to construct an informative prior. We take special advantage of state-to-county 

downscaling as an example where the true underlying distribution is known and can 

be used to validate our methods. We also use published estimates of uncertainty in the 

Ag Census total counts to demonstrate the robustness of our methods to uncertainty in 

the top-level population count. 

Despite the focus of much of the literature, and our own application, on spatial 

downscaling problems, it is important to note that there is nothing inherently spatial 

about the mathematics involved. Our method is equally well adapted to arbitrary 

classification problems in which it is desired to estimate the size of population sub-

groups according to a number of discrete categories. These applications might include 

political polling, estimation of workforce participation rates, demographic 

breakdowns by gender, age, race or educational attainment, or market segmentation 

analysis, among many others. At the same time, though our method does not require 

spatial information per se, it is flexible enough to incorporate arbitrarily complex 

spatial information as an input to the estimation procedure, by way of the informative 

prior.  

The remainder of this article is organized as follows. The next section outlines 

and derives our estimation methodology, and the following section discusses 

selection of a prior. The fourth and fifth sections outline our sample data and 

methods, and the sixth section covers the results. The next section discusses 
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applications of our findings and areas for future research, and the final section 

concludes.  

 

3.2 Bayesian Downscaling of Aggregated Count Data 

Consider a source of aggregated count data for which estimated count data are 

required at the sub-population (e.g. sub-region, demographic classifications, etc.) 

level, for each sub-population, s = 1, …, S. Let N denote counts at the aggregate level, 

i.e. population size. We denote the counts to be estimated at the sub-population-level 

as Ns, such that the sum of sub-populations counts is equal to the total population 

count, Ns = N. We supplement this population level data with an outside, 

independently sampled data set with sub-population counts, ns, where ns = n < N. 

That is, the outside sample of sub-region data is a subset of the population to be 

estimated. The immediate impact of the outside data set is to constrain the range of 

eligible values, which we will denote as   N s
'  within each combination. Namely,  

   ns ≤ N s
' ≤ N − ns's '≠s∑ . (3.1)  

Thus, we define  to be the set of all valid combinations of integer-valued counts 

satisfying table 3.1. The cardinality of this set is denoted | | and is given by: 

.   (3.2)  

For example, consider Bristol County, Rhode Island. Bristol County is 

comprised of three municipalities and is reported by the Ag Census as containing a 

total of 42 farms. Our sample counts for these three sub-regions are (6, 3, 2). A valid 

combination would therefore be any triple with each value equal to or exceeding the 

∑

∑

 !

 !

 
! = N − n + S −1

S −1
⎛
⎝⎜

⎞
⎠⎟
=

N − n + S −1( )!
S −1( )! N − n( )!
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sample count and with the total count equal to 42. Thus, (2, 21, 19) is not a valid 

combination because there are not enough farms in the first town, and (25, 12, 7) is 

not valid because there are too many total farms (44), but both (6, 34, 2) and          

(15, 15, 12) are valid combinations.  

 We have now developed sufficient notation to outline our estimation 

procedure. First, recall Bayes’ Rule: 

.  (3.3) 

For our purposes,  in Equation 3.3 represents the probability of a specific 

combination of sub-population counts given the data, or , and the 

other terms translate similarly. That is: 

 

Pr Ci | N ,n( ) ∝Pr N ,n |Ci( )Pr Ci |C 0( )
= Pr n |Ci( )Pr Ci |C 0( )

                       ∝Pr n |Ci( )
    (3.4) 

where (i)   n =  n1 ,…,nS( )  denotes the vector of sub-population counts in the outside 

data, (ii) the equality follows from the constraint in Equation 1.1 since only 

combinations that sum to N are considered, and (iii) the final proportionality 

comparison relies on the assumption that the unconditional probability of a 

combination is uniform across combinations, representing the prior in our Bayesian 

approach. This is the simplest case of a uniform prior over combinations, which we 

will later generalize. Equation 3.4 therefore tells us that the posterior probability of a 

given combination is proportional to the probability of our outside data sample 

Pr A | B( ) = Pr B | A( )Pr A( )
Pr B( ) ∝Pr B | A( )Pr A( )

Pr A | B( )

Pr Ci | N ,n1,...,nS( )
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conditional on that combination. For the case of a non-uniform prior this 

proportionality does not hold and the final reduction in Eq. 3.4 does not apply. 

 The analysis is further simplified because the conditional probability of our 

data given a combination, Pr  (n |Ci ) , has a closed form according to the formula for 

sampling without replacement. Namely, 

 

   
Pr(n |Ci )=

Cs ,i − k
N − ( s −1)ns − kk =0

ks −1

∏
⎛

⎝⎜
⎞

⎠⎟s=1

S

∏ .               (3.5)  

Given Equation 3.5, it is theoretically possible to iterate over all eligible combinations 

of counts at the sub-population level and exactly calculate the posterior distribution 

over those counts given the outside sample data in n. Unfortunately, the number of 

combinations given in Equation 3.2 grows astronomically large rather quickly in real-

world applications. Table 3.1 provides examples for our application. 

[ Table 3.1 ] 

Because it is not computationally feasible using contemporary hardware to 

calculate Eq. 3.5 for each possible combination, we propose a (pseudo) random 

sampling procedure in which valid combinations are sample uniformly from . 

These samples are generated by recognizing that each sub-population’s count falls in 

a range containing N - n + 1 consecutive integers, whose lower bound is found in our 

sample for that sub-population. Revisiting our Bristol County example from earlier, 

wherein N - n + 1 = 42 – 11 + 1 = 32, it is only possible for sub-regional values to 

fall in the set, {ns (+ 0), ns + 1, ..., ns  + 31}. Since each sub-region must have the 

same size range, the problem reduces to picking uniform integers in this range. If we 

offset the uniform integers by their minimum values, then all the random choices 

 !
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must add up to the same total (also N - n + 1 = 32) to be a valid combination as 

described above.  

This is a well-known problem who solution is to randomly choose switching 

points, , without replacement from the set of integers, {1, 2, ..., N - n }. 

The sampled combination is then derived by differencing the switching points after 

setting s1 = 0 and . In order to handle the minimum switching interval 

being size 1, the resulting differences are added to the sample value, minus 1, and the 

sampled switching points are taken from N - n + S - 1 candidate values. Downscaling 

Bristol County into three sub-regions provides N - n + S - 1 = 42 – 11 + 3 +1 = 35.  

We would thus randomly sample S - 1 = 2 switching points from {1, ..., 35}, setting s1 

= 0 and s4 = 36. 

 

3.3 Choosing a Prior 

Researchers have two broad choices for estimating the Bayesian prior used in our 

estimation method: a uniform prior, or a more informative one. While in its most 

generalized form, our method has no requirement that sub-populations have 

additional characteristics from which to estimate a prior, researchers may be able to 

elicit a more informative prior based on additional characteristics of the sampling 

units. For example, in the case of classifying farms into sub-regions, this additional 

data may include population, land area, demographic data, etc. at the sub-region level. 

We now outline a rigorous procedure for eliciting an informative prior. In cases 

where such additional characteristic information is unavailable for whatever reason, 

ss ∈ s2,..., sS{ }

sS+1 = N − n +1
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researchers have little choice but to assume a uniform prior across the sub-

populations.  

In many cases, the assumption that counted units have an equal probability of 

occurrence across sub-populations is potentially unrealistic, particularly in our 

example application of estimating farm counts. If the data available to the researchers 

consist of aggregate count data for multiple populations, as well as additional 

covariates at the sub-regional level (and can thus be summed to the regional level, 

e.g. population, land area, demographics, spatial information, etc.), one can test and 

identify potential informative priors by regressing these covariates (summed to the 

population level) on the population-level count data. By identifying the covariates 

that are most predictive of (correlated with) counts at the population level, one can 

use these relationships to estimate sub-regional farm counts. In this fashion, a more 

informative prior is elicited than the simple uniform prior. See figure 3.1 for an 

illustration of how the data analysis is structured.  

[ Figure 3.1 ] 

In order to compare the accuracy of estimates resulting from a strong 

informative prior versus the uniform prior, we used the above procedure to elicit and 

compare various informative priors using supplemental sub-regional data obtained 

from the 2010 United States Census. Using county level Census data, we performed a 

comprehensive regression analysis, regressing various combinations of potentially 

relevant covariates such as population, area, and population density on our five 

county level farm counts. Land area was by far the most predictive covariate, being 

significantly positively correlated with farm counts (0.928). In calculating our prior, 
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we ignore the constant term in the regression to reduce bias introduced by the fact 

that the constant term is only meaningful at the aggregated level because we scaled up 

the data. Removing the constant term also imposes the intuitive constraint that a sub-

region with zero land area must also contain zero farms. Because of the combinatorial 

nature of this problem, the regression-based priors are normalized to sum to the 

known aggregate counts. This makes the elicitation of the informative prior in our 

example equivalent to distributing N across sub-regions based on their proportional 

land area, such that   nn
0 = Land  Arean

Land  AreaN
. 

In what follows, we will explicitly compare predictions of the uniform prior 

against those of this simple informative prior, and compare both against maximum 

likelihood.  

Although geographic downscaling is traditionally a spatial problem, the 

general form of our method ignores issues of spatial dependency in favor of a more 

parsimonious method that requires much less data (and less technical expertise in the 

area of spatial modeling). However, the generalized method can be easily expanded 

and the use of an informative prior in our procedure makes the incorporation of 

features such as spatial dependence relatively straightforward. While we opt for a 

simple, one-parameter, area-based prior as an example here, myriad potential models 

for eliciting an informative prior exist, including those discussed in the introduction. 

Researchers with the prior belief that the posterior distribution follows a spatial 

dependency structure (such as spatial lag or autocorrelation) can easily incorporate 

such beliefs into this methodology by eliciting their priors using a spatial model such 

as geographically weighted regression (GWR), among many choices. 
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3.4 Sample Data 

Rhode Island has a total of 39 municipalities grouped into five counties: Bristol, 

Kent, Newport, Providence, and Washington County. Counties range in size from 3 

towns in Bristol County to 16 in Providence County. Our aggregated data source 

comes from the 2012 Ag Census, which contains farm counts by county and 

consequently, at the state-level. Our outside sample data comes from a survey 

administered by the University of Rhode Island in 2011-2012 in collaboration with 

local government agencies and agricultural organizations. It contains a list of 

addresses for 229 of the 1243 farms reported in the Ag Census. We further 

supplement this data with additional sub-regional data provided by the 2010 Census. 

Of these data, only land area was used in our final estimation procedure (indirectly, to 

elicit the informative prior). This information is presented in table 3.2.  

[ Table 3.2 ] 

It is worth pointing out that since our posterior estimates depend on the 

probability of obtaining n from a random n-sized sample of Ci, the accuracy of our 

results depend upon the assumption that n was obtained via independent (random) 

sampling across s. In the case where sample data is collected via voluntary sampling, 

researchers must be confident in their belief that response rates are not affected by s. 

Similar restrictions apply in cases where sample data is collected through 

convenience sampling. For example, in the case where s represents a spatial 

classification, selection bias is likely to occur when samples are collected in person at 

non-random or limited locations. In cases where observations are business, such as 



 118 

our farm application, unbiased sample data may be collected by searching business 

databases, such as those provided by the secretary of state. As is the case with most 

estimation procedures, any selection bias resulting from characteristics of s that 

cannot be controlled for will naturally induce estimation bias.  

 

3.5 Methods 

Clearly the unknowns in our data set are the city-level counts. We focus instead on 

the county totals, as if unknown, so that we can compare the results of our procedure 

against the true underlying distribution. By aggregating our regional counts to the 

state level and aggregating our sample data to the county level, we can compare the 

accuracy of our estimates using i) a uniform prior, ii) a simple spatial prior, and iii) 

maximum likelihood. The maximum likelihood estimates (MLE) differ from those of 

the Bayesian estimates under the uniform prior since because N  and n are known, 

MLE estimates for Ns  simplify to 
  
N̂ s

MLE =
ns

n
N .   

For each methodology, we evaluate the normalized root mean squared error 

(NRMSE) of our posterior point estimates relative to the values reported in the Ag 

Census. The NRMSE is simply the familiar root mean squared error (RMSE), scaled 

by the average region-size, Ns = N / S . Using NRMSE supports our goals of 

estimating the effects of both population size, N , and sample size, n / N , on the 

relative performance of each method. 

To obtain estimates for the Bayesian methods, we use the sampling procedure 

described in Section 3.2 to calculate estimates from 100,000 sample combinations. 

We report as point estimates the means of the posterior count distributions, which is 
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why decimal values are observed in the estimates despite only considering integer-

valued combinations. We repeat the procedure 200 times for each estimate to obtain 

standard errors of our estimates and calculate the NRMSE of our posterior estimates 

relative to the values reported in the Ag Census. 

To test the effect of population size, N , on estimation performance, we 

simulate five sub-regions with our county-size proportions and sample proportion 

(approx. 0.2), at varying population sizes from N = 50  up to N = 5,000 . To test the 

effect of sample size on estimation performance, we again simulate five sub-regions 

with our county-size proportions, this time with a fixed population size of N = 1,250  

and with varying sample sizes from n / N = 0.01 up to n / N = 0.50 .  

For each comparison, we conduct two simulations, one with observations 

bootstrapped from our observed Rhode Island sample, and another randomly sampled 

from a multinomial distribution taken only from the population parameters. The 

results are nearly identical across the paired simulations, indicating that the sample 

data we collected do not contain extreme deviations from the projected sampling 

distribution. 

 

3.6 Results 

The mean NRMSE and standard error for each method are presented in table 3.3, as a 

function of varying sample size. For a population of 1,250, the Bayesian methods 

consistently outperform MLE for all sample sizes up to half of the population. Among 

the Bayesian methods, the simple, area-based, informative prior was best for small 

samples (due to greater sampling variability), but the uniform prior was best for 
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samples comprising at least 5% of the population. These results suggest a somewhat 

counterintuitive finding: namely, that even in cases where detailed spatial information 

is available, many applied problems will get more accurate results using the uniform 

prior, even when it might not seem realistic to the application at hand. The reasoning 

is that even relatively small samples will quickly become more representative of the 

underlying population than a good informative prior, but not so representative as to 

obviate the need for a Bayesian approach over MLE. 

[ Table 3.3 ] 

 When examining table 3.3, it is important to note that the conventional 

wisdom regarding standard errors and statistical significance does not hold because of 

correlated testing. That is, we are not testing whether one measure produces a lower 

NRMSE on average over independent tests, rather, we are testing whether one 

measure produced a statistically significantly lower NRMSE than the others across 

the same simulation tests. So, we do not present p-values or a fully developed 

hypothesis testing framework with our results. Rather, the “winning method” which is 

bold-faced in each column of table 3.3, is determined according to a Single 

Transferrable Vote system as outlined in Tideman (1995) based on the percentage of 

“wins” (lower observed NRMSE) out of 200 trials. In essence, the winning model is 

chosen according to winning a simple majority of trials outright, or else winning a 

“runoff” between the top two candidates. 

For the interested reader, pairwise tests of statistically significant better 

performance between two estimators can be determined as follows. The null 

hypothesis for pairwise comparison of two identical estimators is that the number of 
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wins for each estimator follows the binomial distribution with n = 200 draws and p = 

0.5. So, for individual, pairwise tests of performance, the threshold for statistical 

significance at the 95% and 99% levels are 113 wins (56.5%) and 117 wins (58.5%), 

respectively. Clearly, to evaluate every possible pairwise test in Table 3.3 involves 

many hypotheses, so p-values would need to be adjusted using either a Bonferroni 

correction or stepdown methods to control the family-wise error rate (e.g., as in 

Romano and Wolf, 2005). Explicit testing of multiple hypotheses in this fashion is 

beyond the scope of this paper.  

 [ Table 3.4 ] 

 Table 3.4 is structured similarly, but show the effect of varying population 

size given the sample size held fixed at n / N = 20%  of the population. The table also 

shows the Bayesian methods consistently outperforming MLE, but show subtly 

different patterns of performance of the informative prior against the uniform prior. 

With the sample size held at a fixed percentage, the informative prior outperforms for 

populations smaller than 500, while the uniform outperforms for larger populations. 

For populations of exactly 500, the performance of the two priors is not statistically 

different at conventional levels. 

 

3.7 Discussion 

The above results are primarily focused on evaluating the performance of our 

Bayesian methods for a case where the underlying distribution is known. However, 

our method is only designed to be useful in cases where this information is 

unavailable. Furthermore, applications of our procedure to new problems will likely 
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involve variation in population size, sample size(s) and availability of an informative 

prior, distinct from the permutations described here. In this section, we consider the 

possibility that future researchers have access to data at higher levels of aggregation, 

similar to how we have both state-level and county-level farm counts for Rhode 

Island from the Ag Census, and county-level land area data from the US Census.  

If it can be assumed that spatial (or other group-wise dependence) patterns are 

likely to hold at higher levels of aggregation, then an informative prior can be 

calibrated from that data and applied in the downscaling problem. In our application, 

that would mean calibrating the land-area prior from county-level data and then 

applying it to the city-level downscaling problem. Depending on the application, 

however, this assumption may not be palatable. Spatial econometric models can be 

conceptualized as having a direct effect from the covariates and an indirect effect 

from the spatial dependence structure. If this indirect effect is relatively smaller at 

higher levels of aggregation, then calibrating the prior at higher levels will cause it to 

appear more informative than it actually will be in the downscaled analysis. 

Identifying when this problem materially affects the analysis is an area for future 

research. That said, there is no reason why spatial dependence observed in an 

econometric model would predict non-random sampling, so whenever the spatial 

prior is suspect, researchers can always default to the uniform prior for reasonable 

performance. 

It is important to note that in an attempt to make our estimation procedure 

generalizable to non-spatial applications, as well as to reduce its dependence on 

additional outside data sources, we have intentionally ignored the explicit 
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incorporation of spatial autocorrelation. Although some degree of autocorrelation is 

likely captured implicitly via our sample, estimates might be further improved 

through incorporating such autocorrelation into our conditional probability estimates 

when possible. That said, it is beyond the scope of this chapter to quantify these 

tradeoffs, or to demonstrate the information loss associated with discarding spatial 

elements in the analysis. 

Beyond spatial dependence defined econometrically, there is also the 

possibility that the outside data sample is non-random, in the sense that spatial factors 

influence response rates. At higher levels of aggregation this can be tested simply be 

evaluating the degree to which the sample contains outliers relative to a typical 

sample from a multinomial distribution. A further verification step is possible using 

the simulation methods outlined above at higher levels of aggregation. Namely, the 

bootstrapped analysis can be replicated with counts drawn directly from a 

multinomial distribution instead of from the sample data. Below, we give an example 

of simulation results obtained in this fashion in Tables 3.5 and 3.6, which replicate 

our Tables 3.3 and 3.4 but do not use our sample data. For our specific application, it 

can be observed that the results are nearly identical, the desired outcome indicating 

that systematic sampling bias is unlikely to be a problem in our application. 

[ Table 3.5 ] 

[ Table 3.6 ] 

If we consider the city-level downscaling problem in our application, the 

above procedures indicate that every county in Rhode Island should be estimated 

using the informative, area-based prior. Clearly, we do not have the underlying, true 
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distribution of city-level farm counts for verification, so we include this observation 

only for completeness. 

Two issues not previously addressed are i) the effects of uncertainty in the 

top-level population estimates, and ii) the scenarios in which MLE does outperform 

the Bayesian estimators, according to conventional wisdom based on asymptotic 

results. While our procedure is designed to mitigate potential estimation error 

resulting from the increased sampling variability inherent in relatively small samples, 

it does not account for potential error in the aggregate count data. In our application, 

for example, the Ag Census farm counts for Rhode Island are reported as 1,243 total 

farms with a standard error of 236 (USDA 2014). The analysis thus far suggests that 

incorporating an error term on the total count may have non-linear effects because of 

simultaneous changes both in the population size, N, and in the sample proportion, 

n/N.  

To address this concern, we repeated the simulation analysis using the 

uniform prior, with each replication using a different total farm count drawn from a 

normal distribution with mean and standard deviation according to the reported Ag 

Census mean and standard error. The mean estimated farm counts arising from this 

procedure were within 1% of the values estimated with N = 1,243 . This suggests that 

errors in top-level counts are less of a concern, as long as i) it is recognized that the 

division of the population into groups will necessarily result in estimates that are 

proportional to the total used, and ii) that the estimation error in the total count is not 

so large as to make the collected sample size unlikely or impossible. 
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Additionally, it is important to give proper context to our finding that these 

Bayesian methods outperform MLE. Clearly, this is a finite sample result since, 

asymptotically, Bayesian updating with a uniform prior converges to MLE, whereas 

in small samples MLE is equivalent to Bayesian updating with zero sample weight on 

the prior. Also, it may not be immediately obvious, but our application data set 

includes considerable variation in the group sizes to be estimated: 42, 126, 214, 425, 

and 436 (from table 3.2). Having extremes in the group sizes, especially on the small 

end, leads to inherently noisier sampling of the smaller groups. This problem can be 

conceptualized as arising from the probability that a given sample will be 

representative of the population conditional on population size and sample size.  

To show how variation across group sizes affects the performance of MLE 

relative to the Bayesian methods described here, we ran some preliminary 

simulations. The simulated group sizes were all drawn IID from a normal distribution 

with sigma given by a fraction of the mean value, and samples were then drawn from 

the resulting multinomial distribution. Our sample data had a standard deviation of 

71% of the mean count, and MLE did not outperform the Bayesian methods for any 

population of N = 5,000 or below. Reducing the standard deviation to 50% of the 

mean count, we found that MLE was statistically significantly best (lowest NRMSE) 

for populations above 2,000 (as might appear in table 3.6). These preliminary results 

suggest that the efficacy of MLE relative to the Bayesian methods is not only a 

function of population size and sample size, but also of the degree of heterogeneity in 

the sub-population counts to be estimated. Naturally, however, the true distribution of 
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sub-population counts is inherently unknown a priori. We leave exact quantification 

of these tradeoffs as an area for future research. 

Lastly, one might wonder if it would be possible to apply these methods to the 

estimation procedure performed in Manuscript 1. There are two reasons why such an 

application would be inappropriate. Firstly, the classification estimates performed in 

Manuscript 1 are not explicit or ‘known’ classifications, but rather they are 

probabilistic classifications with respect to a distribution, where the probability of 

belonging to each class (or distribution) is calculated for each observation. Secondly, 

we do not posses the required independent sample. Rather, we are trying to estimate 

the distribution of classes across a sample of farmers, rather than the entire 

population, making claims about which population this distribution belongs to. 

However, if one was trying to estimate the proportion of optimistically biased, 

pessimistically biased, and unbiased individuals across a population of known size 

using sample data, our distributional estimates from Manuscript 1 would likely serve 

as a good informative prior.  

 

3.8 Conclusion 

Micro-level statistical data are often unavailable at the desired level of 

disaggregation, despite their critical importance for applied policy research. Herein, 

we present a Bayesian methodology for ‘downscaling’ aggregated count data to the 

micro-level, using an outside statistical sample. Our procedure combines numerical 

simulation with exact calculation of combinatorial probabilities. We motivate our 

approach with an application estimating the number of farms in a region, using count 
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totals at higher levels of aggregation, and data sourced from the 2012 USDA Ag 

Census. In a simulation analysis over varying population sizes, we demonstrate both 

robustness to sampling variability and outperformance relative to maximum 

likelihood. Our results show that Bayesian methods have better finite sample 

performance than MLE in many cases relevant to applied research, especially for 

relatively small populations (N < 5,000).  

 We develop a number of methods for applied researchers to calibrate 

informative prior probabilities, and to estimate whether the combination of sample 

size and population size in their application will perform best with their more 

informative prior, or a simple uniform prior. In many cases, the uniform prior 

performs reasonably well and can be used as a default in cases where a more 

informative prior is unavailable, or cannot be reasonably calibrated due to spatial 

considerations. We also show how the process of calibrating the priors can be 

simulated to verify that they are not being affected adversely by outside sample data 

that contains too many outliers. Our methods appear to be robust both to sampling 

variability in the outside data sample, and also to uncertainty in the top-level 

population counts. An area for future research is determining the effects of 

heterogeneity in sub-population sizes on the relative performance of maximum 

likelihood estimates in smaller populations.  
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3.10 Figures 
 

Figure 3.1: Nested Data Structure 
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3.11 Tables 
 
 

Table 3.1: Number of Eligible Combinations per County 
County Farms Towns Sample Number of Eligible Combinations 
Bristol 42 3 11 55,278 
Kent 126 5 27 4,421,275 
Newport 214 6 44 1,291,150,035 
Providence 425 16 82 115,508,396,906,738,000,000,000,000 
Washington 436 9 65 9,801,540,147,002,170 
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Table 3.2: Farms, Municipalities,  
and Land Area (mi2) per County 

County Farms Land Area (mi2) 
Bristol 42 24.16 
Kent 126 168.53 
Newport 214 102.39 
Providence 425 409.5 
Washington 436 329.23 
Note: Pearson’s Rho = 0.928. 
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Table 3.3: Mean Normalized Root Mean Square Error by Estimate Type: 

Fixed Population Size (1,250) with Increasing Sample Size 

Sample Proportion (n/N) 0.01 0.05 0.10 0.20 0.33 0.50 

Uniform 
Prior 

Mean 0.393 0.207 0.143 0.1 0.077 0.055 
Std. Dev. (0.163) (0.088) (0.058) (0.042) (0.029) (0.022) 
Overall Win % 0.185 0.535 0.61 0.64 0.495 0.465 

Win % vs. Informative 0.19 0.59 0.74 0.805 0.785 0.745 

Win % vs. MLE 0.95 0.69 0.815 0.79 0.61 0.585 

Informative 
Prior 

Mean 0.245 0.207 0.173 0.133 0.101 0.069 
Std. Dev. (0.014) (0.024) (0.025) (0.026) (0.028) (0.024) 
Overall Wins 0.795 0.405 0.25 0.19 0.185 0.18 
Wins vs. Uniform 0.81 0.41 0.26 0.195 0.215 0.255 

Wins vs. MLE 0.96 0.69 0.505 0.315 0.31 0.335 

Maximum 
Likelihood 

Mean 0.57 0.265 0.176 0.119 0.086 0.059 
Std. Dev. (0.209) (0.098) (0.063) (0.044) (0.029) (0.021) 
Overall Wins 0.02 0.06 0.14 0.17 0.32 0.355 
Wins vs. Uniform 0.05 0.115 0.185 0.21 0.39 0.415 
Wins vs. Informative 0.04 0.31 0.495 0.685 0.69 0.665 
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Table 3.4: Mean Normalized Root Mean Square Error by Estimate Type: 

Fixed Sample Proportion (0.20) and Increasing Population Size 

Total Farm Count (N) 50 100 250 500 750 1,250 2,000 5,000 

Uniform Prior 

Mean 0.424 0.315 0.194 0.147 0.124 0.1 0.079 0.053 
Std. Dev. (0.168) (0.129) (0.081) (0.06) (0.052) (0.042) (0.033) (0.021) 
Overall Wins 0.06 0.105 0.255 0.42 0.605 0.64 0.63 0.635 
Wins vs. Informative 0.06 0.11 0.285 0.455 0.665 0.805 0.85 0.985 
Wins vs. MLE 0.965 0.905 0.88 0.865 0.635 0.79 0.755 0.635 

Informative 
Prior 

Mean 0.258 0.203 0.159 0.138 0.135 0.133 0.129 0.129 
Std. Dev. (0.097) (0.075) (0.045) (0.038) (0.034) (0.026) (0.022) (0.012) 
Overall Wins 0.94 0.885 0.705 0.525 0.335 0.19 0.13 0.005 
Wins vs. Uniform 0.94 0.89 0.715 0.545 0.335 0.195 0.15 0.015 
Wins vs. MLE 1 0.975 0.885 0.7 0.62 0.315 0.22 0.015 

Maximum 
Likelihood 

Mean 0.605 0.42 0.252 0.182 0.15 0.119 0.094 0.061 
Std. Dev. (0.225) (0.142) (0.103) (0.071) (0.055) (0.044) (0.036) (0.022) 
Overall Wins 0 0.01 0.04 0.055 0.06 0.17 0.24 0.36 
Wins vs. Uniform 0.035 0.095 0.12 0.135 0.105 0.21 0.245 0.365 
Wins vs. Informative 0 0.025 0.115 0.3 0.38 0.685 0.78 0.985 
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Table 3.5: Mean Normalized Root Mean Square Error by Estimate Type using Simulated 

Sample: Fixed Population Size (1,250) with Increasing Sample Size 

Sample Proportion (n/N) 0.01 0.05 0.10 0.20 0.33 0.50 

Uniform Prior 

Mean 0.409 0.213 0.151 0.103 0.077 0.055 

Std. Dev. (0.168) (0.076) (0.062) (0.049) (0.032) (0.022) 

Overall Wins 0.17 0.49 0.58 0.64 0.485 0.47 

Wins vs. Informative 0.175 0.57 0.7 0.805 0.76 0.725 

Wins vs. MLE 0.945 0.86 0.795 0.78 0.63 0.585 

Informative Prior 

Mean 0.245 0.208 0.174 0.132 0.098 0.069 

Std. Dev. (0.015) (0.024) (0.026) (0.027) (0.029) (0.026) 

Overall Wins 0.815 0.43 0.3 0.18 0.21 0.225 

Wins vs. Uniform 0.825 0.43 0.3 0.195 0.24 0.275 

Wins vs. MLE 0.975 0.66 0.5 0.34 0.37 0.365 

Maximum Likelihood 

Mean 0.604 0.255 0.181 0.122 0.089 0.061 

Std. Dev. (0.228) (0.086) (0.066) (0.044) (0.034) (0.023) 

Overall Wins 0.015 0.08 0.12 0.18 0.305 0.305 

Wins vs. Uniform 0.055 0.14 0.205 0.22 0.37 0.415 

Wins vs. Informative 0.025 0.34 0.5 0.66 0.63 0.635 
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Table 3.6: Mean Normalized Root Mean Square Error by Estimate Type using Simulated Sample 

Fixed Sample Proportion (0.20) and Increasing Population Size 

Total Farm Count (N) 50 100 250 500 750 1,250 2,000 5,000 

Uniform Prior 

Mean 0.394 0.277 0.214 0.15 0.126 0.103 0.077 0.053 
Std. Dev. (0.173) (0.111) (0.09) (0.063) (0.053) (0.049) (0.031) (0.022) 
Overall Wins 0.05 0.105 0.245 0.41 0.54 0.64 0.72 0.675 
Wins vs. Informative 0.05 0.115 0.265 0.46 0.635 0.805 0.93 0.99 
Wins vs. MLE 1 0.98 0.93 0.725 0.835 0.78 0.78 0.675 

Informative 
Prior 

Mean 0.242 0.193 0.153 0.142 0.134 0.132 0.131 0.126 

Std. Dev. (0.095) (0.063) (0.05) (0.036) (0.035) (0.027) (0.023) (0.018) 

Overall Wins 0.95 0.88 0.725 0.525 0.35 0.18 0.07 0.01 

Wins vs. Uniform 0.95 0.885 0.735 0.54 0.365 0.195 0.07 0.01 

Wins vs. MLE 1 0.98 0.93 0.725 0.57 0.34 0.155 0.015 

Maximum 
Likelihood 

Mean 0.561 0.397 0.265 0.18 0.148 0.122 0.092 0.059 

Std. Dev. (0.198) (0.165) (0.096) (0.067) (0.055) (0.044) (0.037) (0.021) 

Overall Wins 0 0.015 0.03 0.065 0.11 0.18 0.21 0.315 

Wins vs. Uniform 0.01 0.075 0.11 0.14 0.165 0.22 0.22 0.325 

Wins vs. Informative 0 0.02 0.07 0.275 0.43 0.66 0.845 0.985 
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