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ABSTRACT 

In this study, a new approach to design biosensors based on selective thermal 

emitters is developed. This approach allows the detection of biological molecules or 

chemical compounds in solution using the unique thermal emissivity spectra of each 

molecule. However in the last decades the applied and developed biosensors mainly 

use changes in electrical properties such as current or voltage or changes in optical 

characteristics caused by surface Plasmon resonance or fluorescence. After years of 

research, these sensors still show disadvantages such as high cost and time-

consumptions. Biosensors based on selective thermal emitter provide an opportunity to 

avoid these weaknesses while they show a high selectivity and sensitivity, if the 

emission spectrum matches with the analyte(s) of interest.  

Therefore, various different designs of selective emitters are simulated. The 

physical principles of radiation heat transfer are transferred into a MATLAB code in 

order to analyze and compare the different emissivity spectra with certain molecules 

and chemical compounds. The investigated designs are thin film applications (single 

and multilayer) as well as polymers doped with nanoparticles. The needed optical 

properties, defined by the permittivity of the materials are implemented, as well. The 

results show that selective thermal emitter can serve as biosensors e.g. for DNA due to 

their unique spectrum of emissivity.  
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1. CHAPTER 1 – INTRODUCTION 

In the last decades, biosensors have become the most commonly used technique 

in medical detection applications. Biosensors combine the advantages of high 

selectivity and sensitivity with a high potential in low cost fabrication and 

miniaturization [1]. A considerable interest has been taken in new detection sensors, 

due to the fact that the percentage of human deaths caused by cancer is increasing and 

in addition the clinical detection techniques are time-consuming, expensive and still 

might lead to negative surgery results. Several label-based and label-free sensors have 

been introduced for lung and breast cancer cells [2,3,4,5].  

The sensing properties of biosensors are defined either by their biological 

recognition element or the applied transducer, where the transducer is transforming the 

biological/chemical reaction into a signal, which then could be analyzed. The use of 

selective thermal emitters as transducers in order to analyze samples based on their 

radiation properties is a new promising technique. These emitters are commonly used 

as non-transmitting photonic crystals. Due to various geometrical structures or applied 

materials the emissivities of these crystals can be adjusted, as it is needed. [5] [6] [7] 

In this study, a new transducer using nanoparticles instead of the biological 

recognition element is proposed. Therefore, a short insight in the fundamentals of 

biosensors, various transducer systems and their applications are given. In Addition, 

the basic functionality and designs of selective emitters are summarized with a focus 

on thermo photovoltaic systems and applications in this field.  
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Within the third chapter, the used tools are explained. This includes a detailed 

description of the assumed working principle. Based on the physical principles the 

calculation method in order to determine the hemispherical emissivity of selective 

thermal emitters is given. By means of this calculation, a MATLAB code is generated, 

which is used to simulated the emissivities of various designs of such emitters in the 

visible/near-ultraviolet (UV) region as well as in the infrared (IR) region. The 

analyzed designs are thin films of polar materials, polymers and polymers doped with 

gold (Au) nanoparticles of various volume fractions.  

Subsequently, absorption spectra of biological molecules and chemical 

compounds are compared with the simulated designs. Moreover, selective thermal 

emitter samples are experimentally investigated and their emissivity spectra are 

compared with simulated results. Finally, a conclusion is drawn in order to summarize 

the study and provide an outlook to future work.  
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2. CHAPTER 2 – REVIEW OF LITERATURE 

In the following chapter, a review of biosensors and selective thermal emitters is 

given. That includes the basic functional principle of biosensors, their classification 

based on the transducer and various applications of biosensors and their 

characteristics. Furthermore, the functionality of selective thermal emitters is 

explained with a focus on their application for thermo photovoltaic (TPV) systems.  

2.1. Biosensors 

In terms of the simplest definition, Biosensors base on the close spatial 

connection between a biological recognition element and the transducer, which is 

transforming the biochemical processes into a measurable signal (Figure 1).  

 

Figure 1 Basic structure of biosensors consisting of a biological recognition element and a 
transducer, which is generating a signal that can be analyzed after electronic processing 

Analyte(A(

Analyte(B(

Transducer(
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The binding reactions between the target analytes in a sample and the recognition 

element cause a signal, which could be electrical current or voltage among others. The 

transducer is than converting this signal into electrical data that can be analyzed and 

visualized by means of the right software [8]. Furthermore, the International Union of 

Pure and Applied Chemistry (IUPAC) defines a biosensor as a sensor with an 

integrated, sensitive biological component, which is either directly connected with the 

transducer or integrated it one. The usual objective is to generate a signal that is either 

proportional to the concentration of one specific analyte in the sample or to several 

analytes [9]. The biological elements, which have been used as a recognition element, 

vary widely over almost all known chemical categories including proteins (enzymes), 

nucleic acids (DNA), lipids, carbohydrates and combinations between these groups as 

well as living cells [10]. 

Biosensors are applied in several fields. In the field of environmental analysis 

they can be used to analyze the pollution of water in lakes and rivers as well as in the 

drinking water network. Moreover, biosensors are applied in process control and food 

analysis (e.g. to detect antibiotic residues) [11] [12] [13] [14] [15] [16]. Of importance 

are also applications in fundamental research in order to detect macromolecules and 

their interactions in biological media [17]. However, in the last 2 decades an 

increasing use of biosensors in the field on clinical diagnostics can be noticed [18] 

[19]. These already established measurement systems could be seen as precursors to 

today’s biosensors and serve to control concentrations of glucose or lactate in blood 

and urine samples [18] [20] [21] [22]. Furthermore, DNA-tests, which serve to detect 

hereditary diseases and the resulting risks, are commonly used [23] [18] [24]. 
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The selectivity and specificity is limited by the quality of the biological 

recognition element. Primarily the transducer determines the sensitivity of the sensor. 

Thus, biosensors can be classified by the biological recognition element as well as by 

the transducer [25]. However, this study focuses on developing a principle in order to 

detect analytes through their radiation properties. Therefore, biosensors are 

categorized in the following by their transducer and not by their recognition element. 

2.2. Categorization of Biosensors  

In the following section various fundamental transducer principles are explained 

in detail. That includes biosensors using electrochemical, optical and piezoelectric 

transducer. In addition, applications of these biosensors are introduced as well.  

2.2.1. Optical transducer 

Optical transducers take advantage of various optical phenomena: the surface 

Plasmon resonance on a sensors surface, Fluorescence [26] [27] [28], reflectometric 

interference spectroscopy [17] and Chemiluminescence [29] [30]. In the following, the 

surface Plasmon resonance and the Fluorescence are explained in more detail.  

The surface Plasmon resonance bases on the interaction of incident light with free 

electrons of the metals surface. In the case of total reflection of the incident light 

generates a so-called evanescent field, which is characterized by a limited penetration 

depth. For resonance conditions, this field is able to interact with the thin metallic 

surface and generate surface Plasmon polaritons (SPP), which are coupled oscillations 

of free electrons and electromagnetic wave that propagate along the boundary between 

a polar material and a metal. These can be detected by surface Plasmon resonance 
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spectroscopy (SPRS) and are applied e.g. to detect protein- as well as DNA bindings 

[31] [32]. 

Fluorescence is a natural phenomenon that is characterized by spontaneous 

emission of light shortly after the sample has been excited. In the field of biosensing 

fluorescence marker are applied, in order to mark/react with the target analyte in 

solution. Due to the fact, that each combination of marker and analyte has its own 

unique emission wavelength, the target analyte can be detected by using fluorescence 

spectroscopy [31] [33] [34]. 

 

 Applications of optical Biosensors 

Biosensors base on fluorescence can be applied for medical diagnostics. 

Therefore, Oubaha et al. introduced a new multianalyte biosensor platform combing 

the characteristics of channel waveguides and fluorescent antibody detection. This 

sensor is fabricated by s sol-gel synthesis method, which is easily structurable by 

photolithography processes [35]. 

In order to fabricate their optical sensors, Oubaha et al. are using a fabrication 

process that could be roughly described by three key steps as shown in Figure 2. At 

first, the guiding wave channel is deposited on a substrate by photolithography. 

Therefore, the entire surface of initial substrate is covered with the guiding layer 

material by a spin-on process. Afterwards, this layer is exposed with UV light through 

a photomask. By means of the UV light the desired pattern is getting solid whereas 

etching can remove the rest of the layer. 
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Figure 2 Optical waveguide sensor - fabrication steps [35] 

 

In the second step, a protection layer is deposited on top, which covers the 

guiding wave channel. In order to generate sensing windows, which will be filled with 

the fluorescent antibody in the end, photolithography is used, as well. This needed 

sensing window results after etching the protective layer and deposition of the desired 

antibody. In order to determine the analyte concentration, the fluorescent antibody is 

excited by the wave, led through the guiding channel. A CCD camera then collects 

and quantifies the resulting fluorescence. The obtained fluorescence intensity can then 

be statistically be analyzed. 
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The setup Oubaha et al. [35] introduce, is able to detect biomolecules easily, with 

a limit of 0.25 µg/ml. Moreover, they proved that fluorescent antibody detection, 

where the sensing properties are enhanced by means of a guiding wave channel, are 

capable to be employed as biosensors. Additionally, they suggest several other 

functional groups, which could be applied for detection including functional 

nanoparticles, designed for specific immobilization.  

2.2.2. Electrochemical transducer 

Electrochemical transducers take advantage of redox reactions on the electrode 

surface, which can be quantified by measuring either the occurring current 

(amperometry) or potential difference (potentiometry) [36] [37] [38].  

The amperometric method is suitable for metabolic products, which can be easily 

oxidized or reduced (e.g. Glucose, Cholesterol or lipid). Therefore, inside a 

measurement chamber, the current is recorded between two electrodes by constant 

voltage. The actual redox reaction is characterized by the current-voltage characteristic 

curve. Furthermore, the concentration of the analyte in the sample can be determined. 

The potentiometric method is suitable for ionic reaction products. The electric 

potential is the basis for the quantitative determination of these ions. It is recorded by 

the use of a measurement electrode, which is covered with a suitable recognition 

element in order to detect a certain analyte. The potentiometric method is commonly 

used for the detection of urea, creatinine or amino acids [10]. 

The control over the electrical parameter is the biggest advantage that is provided 

by the electrochemical transducer. Adjusting the electrode potential can control the 

selectivity over the analyte. Moreover the results are not depending on the geometry 
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and size of the electrodes what makes it possible to design biosensors in micro- to 

nanoscale dimensions [10]. 

Applications of electrochemical Biosensors 

Zhu et al. [39] introduced a new composite in order to detect immobilized glucose 

oxidase (GOD). Therefore, they created a new composite consisting of polyaniline 

(PANI) coated titanium dioxide (TiO2) nanotubes (TONT). The fabrication process 

and the reaction scheme of the introduced biosensor are shown in Figure 3.  

 

Figure 3 The Fabrication of TiO2 nanotubes and  the measurement process to detect glucose 
[39] 

 

In order to synthesize this composite, Zhu et al. firstly transform TiO2 

nanoparticles (NP) into TNTs by using hydrothermal reaction. This method includes 

the following steps: at first the TiO2 NPs are added into sodium hydroxide (NaOH) 

aqueous solution before the actual reaction starts in an autoclave. After this reaction 

the product is washed with hydrochloric acid (HCl) and then adjusted to pH 7.0 by 

adding distilled water. This process is repeated three times. In the last step the solution 

is centrifuged and dried in oven at 60°C. The resulting nanotubes are then coated by 

polymerizing aniline using chemical oxidation polymerization method [39]. 

In order to use the synthetized PANI-TONTs as a electro-catalyst, brominated 1-

decyl-3-methyl imidazole ([Demim]Br) and Nafion are added and the mixture is 
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deposited onto a glass carbon electrode (GCE). By adding the GOD onto this GCE the 

redox reaction gets started. By applying cyclic voltammetry, the now existing redox 

current can be measured and occurring change can be used to detect immobilized 

glucose oxidase. 

Zhu et al. show that an electrochemical biosensor of TiO2 nanotubes coated by 

polyaniline can be used to detect Glucose. Moreover, they point out, that coating the 

nanotube leads to a ~55% higher direct electron transfer (DET), which they reduce to 

the better electrical conductivity of PANI [39].  

In their paper Benvidi et al. introduce a new electrochemical biosensor in order to 

detect breast cancer, in particular breast cancer in its initial stages (BRCA1). Breast 

cancer is the most commonly diagnosed cancer, which is responsible for lots of death 

among women. Usually the clinical techniques for the determination of breast cancer 

are time-consuming. In order to enhance the detection of BRCA1 the authors present a 

biosensor based on a label-free electrochemical impedance method, which is 

characterized by a high sensitivity and reproducibility [2]. 

Similar to Zhu et al. [39], Benvidi et al. [2] also use an Au electrode (GE) in order 

to create an electrochemical biosensor. Among other commonly used metals, like 

Platinum (Pt), Silver (Ag) and also Carbon (C), Au is the mostly frequently used 

metal. Under ambient conditions, it does not form a stable oxide and thus, it works as 

a perfect catalyst for redox reactions.  

Figure 4 presents the 4 process steps, which are necessary in order to 

immobilize/synthesize the target DNA onto the Au electrode (GE).  
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Figure 4 The process steps in order to immobilize/synthesize the target DNA onto the Au 
electrode (GE) [2] 

 

At first, they placed the ssDNA (Target DNA), which is a segment of the breast 

cancer (BRCA1), onto the GE. Therefore, the electrode is electrochemical cleaned 

with sulfuric acid (H2SO4) and washed with ethanol. Than a solution (including the 

DNA sample) is placed on the electrodes surface in a wet chamber before it is kept at 

room temperature for the immobilization process. For the hybridization, a buffer 

solution containing a certain concentration of the complementary target ssDNA is 

placed on the electrode. After the hybridization, the electrode is washed again to 

remove all the unhybridized ssDNA.  

Adding the tag enzyme into the DNA synthesis environment leads to an 

increasing DNA probe length. The growth of the DNA probe significantly enhances 

the charge-transfer resistance, which increases the selectivity and sensitivity of the 

biosensor. In the last step (denaturation) the target DNAs are eliminated and just the 

synthesized probes remain at the electrode.  

Assembling Synthesis Denaturation Hybridization 

Enzyme & free Nucleotides 
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During all of these steps Benvidi et al. measure the changes by using 

electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and 

differential pulse voltammetry (DPV). In particular, EIS is a commonly used label-free 

measurement technique for molecular reactions at electrode surfaces. EIS transduces 

changes in interfacial properties between the applied electrolyte, which produced by 

DNA hybridization process and the working electrode. One of the biggest advantages 

of EIS method is, that no label (e.g. fluorophore) is needed to mark the target DNA. 

Moreover, electrochemical biosensors base on EIS provide high sensitivity and 

selectivity by lower cost and the ability to work in micro- and nanoscale application. 

Benvidi et al. [2] show that under laboratory conditions the detection by using 

EIS method provide a better sensitivity for lower concentration of the target DNA as 

the DPV. With this higher selectivity and sensitivity the designed label-free biosensor 

could successfully determine breast cancer.  

2.2.3. Piezoelectric biosensors 

Piezoelectric biosensors use acoustic waves in order to detect molecule bindings 

on a surface in real time. Therefore, they either measure the propagation of such 

waves throughout or along the surface of a piezoelectric substrate. The propagation of 

these waves along a surface is influenced by contamination, absorption caused by 

analytes and the optical properties of the surrounding medium.  

As a signal the displacement of resonance frequency or the change in the 

propagation speed of the wave are used. In order to monitor immunological 

interactions piezoelectric sensors based on the quartz crystals microbalance are 

applied commonly [40] [41]. 
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2.3. Selective thermal emitters and their application  

2.3.1. Selective thermal emitters 

Selective thermal emitters are nano- or micro-scale structures, which provide a 

unique spectrum of emissivity depending on different materials and their modification. 

They can be applied to create new or modify existing emissivity spectra for several 

applications. These could be enhancing the efficiency in energy conversion systems as 

well as detecting bio- or biochemical molecules in sensor systems [44]. 

Commonly, selective thermal emitters are generated by Photonic Crystals (PhC). 

According to the definition, PhCs have a periodic structure made of materials with 

different refractive indices (𝑛), which is defined by the material depending dielectric 

constants permittivity 𝜀 and permeability µμ [45] [32]. Sajeev John and Eli 

Yablonivitch, who published their theoretical theory independently of one another in 

1987, firstly introduced the concept of PhC [46] [47]. It is based on the idea of 

creating a artificial material that shows similar phenomenon’s of photons like 

electrons do in semiconductors  

Photonic Crystals are structures with a spatial periodic change of the refractive 

index. They can be classified based on their dimensions. Therefore, a distinction is 

made between one-dimensional (1D), two-dimensional (2D) and three-dimensional 

(3D) crystals according to the number of spatial directions, in which the refractive 

index is changing. (Figure 5) The refractive index is always positive. This index can 

be complex for absorbing materials [6] [32]. A periodic series of layers of materials 

with different refractive indices is the easiest way of a one-dimensional Photonic 

Crystal (a). 2D crystals are characterized by a refractive index, which changes into two 
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different spatial directions. Following this rule, in a 3D PhC the refractive index is 

changing in 3 different dimensions (c). 

 

Figure 5 Various Photonic Crystal Designs, a) 1D, b) 2D, c) 3D 

 

2.3.2. Application in energy conversion systems (TPV)  

The simplest way to apply selective thermal emitters in energy conversion 

systems is to enhance the efficiency of thermo photovoltaic (TPV). TPV systems use 

the thermal radiation emitted from hot bodies to transform this thermal energy into 

electrical energy. Therefore, these systems use the same principle as known from 

photovoltaic (PV) cells. Such TPV cells usually consist of a radiative heat source; an 

emitter, filter and a conventional PV cell as shown in Figure 6 [48]. 

 

Figure 6 Functional structure of conventional TPV systems without selective thermal 
emitter [48] 

 

In order to enhance the efficiency of conventional TPV systems different designs 

and materials are used for selective thermal emitters. According to Ye et al. increases 
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the application of a vanadium dioxide (VO2) two dimensional selective emitter the 

system efficiency by about 50% than with an silicon carbide (SiC) emitter. The 

applied selective emitter consists of a periodic layer of cylindrical micro cavities, 

filled with air as shown in Figure 7. Due to the geometrical structure of the VO2 layer 

forming the micro cavities, the spectral emissivity is depending on the parameters 

cavities depth and radius. Moreover, Ye et al. point out that the range, where the 

emitter emits its radiation is increasing with higher radii. At the same time, increasing 

depth for smaller wavelength leads to higher emissivities [49].  

 

Figure 7 Examples of 2D [49] and 3D [50] photonic crystal designs 

 

Another way to increase the efficiency of TPV systems is to use a 3D photonic 

crystal instead of a 2D design. A 3D design can be realized by coated macroporous 

structures. Therefore, Garín et al. introduce a silicon (Si) scaffold which is coated with 

Pt. Due to electrochemical etching process the surface oxidases, which, in particular, 

leads to a Si/SiO2/Pt structure. This metal-dielectric structure is characterized by a 

good thermal structure due to the Si scaffold with optical properties defined by the 

metal coating. However, Garín et al. observed a sharp emissivity increase at 𝜆 = 3  µμ𝑚 

[50].  

 

a b 
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3. CHAPTER 3 – METHODOLOGY 

In the following section, the basic functionalities of biosensors and selective 

thermal emitters are merged in order to suggest a sensing devise using the emissivity 

in order to detect analytes. Therefore, its basic principle is explained theoretically in 

the first step. Afterwards the applied calculation model is explained, including the 

necessary, physical fundamentals are presented, as well. This calculation is 

implemented in MATLAB in order to solve them analytically and simulate various 

structures. Comparing the results with the results already published validates the 

correctness of the self-written code. 

3.1. Basic functionality  

All mater is emitting radiation continuously. This so-called thermal radiation 

bases on thermal vibration of the particles of the matter like electrons, photons or 

atoms. Due to the unique behavior of each molecule, the emitted radiation can be 

interpreted as a fingerprint. In order to compare the radiation behavior of different real 

bodies, the hemispherical emissivity is commonly used.  

Based on this unique fingerprint of each molecule a new way of detecting 

molecules in biological samples (e.g. DNA or cells in solution) is proposed in this 

study. This detecting process can be divided into two principles, which are combined 

in the end.  
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The first theoretical principle could prove, how analyzing the hemispherical 

spectrum could lead to the detection of molecules in a sample. Therefore, in a first step 

a selective thermal emitter is designed and its emissivity spectrum is obtained by 

analytical calculation and experimental measurement methods. After this a droplet of 

the investigated solution is deposited on top of the selective thermal emitter. Due to 

this new layer the spectrum changes and by analyzing this change the molecule of 

interest could be detected. The Figure 8 shows the principle clearly.  

On the left side of the figure a photonic crystal, which is used as the detector, and 

its unique spectrum of emissivity are shown. The crystal consists of a thin film (layer 

thickness in the scale of microns) of a polar material (e.g. SiC) deposited on a 

substrate coated with a high reflective material (e.g. Au). The substrate is necessary in 

order to make this setup workable. 

 

Figure 8 Basic principle of how a sample droplet on top of a selective thermal emitter 
influences the hemispherical emissivity. 

 

∆ελ 

SiC 

Au 

Substrate (Si) 

Analyte in Solution 
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The spectrum of emissivity of such a photonic crystal can be theoretically 

calculated by using the specific optical properties of polar materials and the formula 

for the reflection coefficient. This analytical calculation method is explained in detail 

in section 3.2. The right side of the Figure 8 shows the setup, how molecules in a 

sample could be detected in the range of near-field infrared radiation. The droplet on 

top of the emitter forms a new layer, which influences the hemispherical emissivity of 

the setup. If the spectrum of emissivity of the designed selective emitter is matching 

the unique spectrum of the molecule of interest, it is assumed that the additional layer, 

created by the sample droplet, changes the resulting emissivity spectrum of the setup. 

The difference in the spectrum at the wavelength of change indicates the molecule of 

interest in the sample, due to its own unique spectrum of absorption.  

The second assumed principle is applied to quantify the sample regarding the 

amount of molecules. Therefore, a selective thermal emitter with a metal-doped layer 

of polymer is designed and the theoretical, hemispherical emissivity is calculated in a 

first step. Again, the sample is deposited as a droplet on top of the emitter and after a 

heating process, it is assumed that the molecules diffuse into the layer and react with 

Au nanoparticles. This reaction is increasing the volume fraction of nanoparticles in 

polystyrene (PS). Figure 9 shows this functional principle clearly. 
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Figure 9 The basic principle in order to quantify the sample in the visible/near-UV spectrum 

 

In the first step (a), the photonic crystal, which is applied to quantify the sample, 

is shown with its unique spectrum of emissivity. The structure of this detector crystal 

is similar to the one explained before. However, instead of the thin film of polar 

material a layer of metal-doped polymer is deposited on a substrate coated with a high 

reflective material (e.g. Au). The spectrum of emissivity of such a structure can be 
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theoretically calculated by using the effective dielectric function (see section 3.2.3) 

and also the formula for the reflection coefficient as explained in section 3.2.4.  

The top right side of the Figure 9 (b) shows the setup after the solution, including 

the molecule of interest, has been deposited on the emitter at room temperature. In 

order to measure the hemispherical emissivity of the prepared sample, it is heated up 

to a temperature, which is high enough to soften the polymer layer and support a 

chemical reaction, but is also low enough to not melt the polymer or destroy the 

molecules of interest (e.g. by denaturation) (c). After a certain time of heating it is 

assumed that all the molecules have been diffused into the layer and (partly) reacted 

with the NPs. It is assumed that, the reaction products have different optical properties 

than the pure NPs, thus the actual concentration of NPs is reduced and the spectrum of 

emissivity is assumed to be comparable to one of less volume fraction. In the end (d), 

the solution rest is cleaned from the crystal and the emissivity of the modified PS-

layer could be measured.  

3.1.1. Design boundaries and constraints 

Materials and their characteristics 

The selective thermal emitters, which are investigated in this study, are either one 

or two (multilayer) thin films of a material on a substrate coated with a high reflective 

metal. Here, Au is used for all designs to be the reflective material. Moreover, three 

different material groups, which could form the thin film layer, are investigated. These 

materials are commonly used materials for selective thermal emitters as well as for 

biosensors. In Figure 10, the groups polar materials (e.g. SiC, BN) including 
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combinations of both to create doped materials (a), pure polymer (e.g. PS) (b) and 

polymers doped with nanoparticles (PS+NPs) (c) are shown.  

 

Figure 10 Material groups of interest in this study: polar materials, polymers, doped 
polymer 

 

The polar materials SiC and boron nitride (BN) are typical materials for STEs. 

Both of them show a high absorbance signature in the IR range of the spectrum. This 

spectral range is of major interests for the detection of chemical molecules (TNT) 

[51]. Moreover, both materials can be combined to form doped materials. Therefore, 

either BN nanoparticles are added to a SiC matrix or vice versa. The second group is 

pure polymer. In the framework of this study it used as a reference for the group of 

doped materials.  

In this study the group of doped materials is formed by the combination of PS as 

the matrix material and Au nanoparticles. By varying the volume fractions of Au NPs 

from 5% up to 50% by using a step width of 5% different properties and emissivity 

spectra can be reported. Furthermore, other materials could be used as nanoparticles 

like copper (Cu) and Ag. Due to its ability to not form stable oxides under ambient 

a) Polar Materials b) Polymer  c) Doped Polymers 

SiC thin film 

BN thin film 

SiC + BN-NPs 

Polystyrene (PS) PS + Au-NPs (f=10%) 

PS + Au-NPs (f=20%) 
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conditions, Au can easily be paired with several biomaterials, such as DNA [52] [53], 

by either working as a working electrode for electrochemical sensors or working as 

binding reagents for molecules in solution for optical sensors [2] [3] [53] [54]. 

Calculation constraints 

In this study, the hemispherical emissivity is considered to be analyzed and thus 

serving as a benchmark. Therefore, for all simulations and analysis the following 

assumptions are made: the incident waves are monochromatic plane waves, the 

materials are opaque, homogenous and isotropic, and all the surfaces and interfaces of 

emitters are optical smooth, 

In the following section the calculations for irradiating electromagnetic waves at 

an interface between two different medias are conducted for the assumptions that these 

waves are monochromatic plane waves [44] [55] [56]. Monochromatic plane waves 

are defined by having the wavefront perpendicular to the wave vector k. Additionally, 

the phase is constant and given by  𝑘𝑥 − 𝜔𝑡 = 𝑐𝑜𝑛𝑠𝑡. In that case, the absolute value 

of the wave vector (𝑘 = 𝑘 ) is also called wavenumber.  

Furthermore, the reported results of this study base on the assuming the applied 

selective thermal emitters to be opaque. Opaque materials are defined as materials, 

which do not allow the transmission of radiation (𝜏 = 0). In order to guarantee this 

characteristic, the substrate is coated with a thin layer of a high reflective material 

(Au). This coating works as mirror and is assumed to reflect 100% of the irradiating 

radiation. Thus, the used selective thermal emitters can be defined to be opaque.   

For these materials Kichhoff’s law can be applied. It states that the absorption 

of a medium is equal to its emittance (𝛼 = 𝜖), thus the radiation properties of an 
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opaque body can be completely described by the reflectance (𝜌) and emittance (𝜖). 

Considering the law of nature that all radiations have to be reflected, transmitted or 

absorbed and also applying Kirchhoff’s Law, the emittance can be completely 

described by the reflectance: 

𝜖 = 1− 𝜌 (1) 

Additionally, the materials are not just assumed to be opaque but also 

homogenous. For electromagnetic waves of certain wavelengths thermal selective 

emitters can form photonic band gaps, which is comparable to the electronic band gap 

of semiconductors. Thus, it is impossible for these waves to propagate within the 

crystal. Furthermore, if the wavelength λ is much less than the lattice constant of the 

material the refraction follows the laws of geometric optics. Thus, the incident wave 

gets scattered just at interfaces between two media, due to the changes in the refractive 

indices [45] [57] [58].  

Furthermore, the surface of each layer and interface is assumed to be optical 

smooth. A rough surface could be caused by two different ways: Due to the fabrication 

process and also due to intended surface grating, which are both neglected in this 

study. 

 

3.2. Calculation of hemispherical emissivity 

The emissivity (𝜖) correlates the radiation characteristics of real bodies with the 

ideal radiation characteristics of black bodies at the same temperature over all 
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wavelengths. That leads to the analytical definition as a ratio of real body emittance to 

black body emittance.  

𝜖 =
𝑟𝑒𝑎𝑙𝑏𝑜𝑑𝑦  𝑒𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒
𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑑𝑦  𝑒𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 (2) 

A body is called to be a black body if it is neither reflecting nor transmitting 

radiation. This theory describes the ideal radiation behavior. Furthermore, a black 

body absorbs the entire specific irradiation which leads, in consideration to 

Kirchhoff’s Law, to 𝛼 = 𝜖 = 1 with 𝜏 = 𝜌 = 0, where 𝛼 is the absorbance, 𝜏 is the 

transmission and 𝜌 is the reflection, defined by:  

𝜌 =
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑  𝑓𝑙𝑢𝑥  
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡  𝑓𝑙𝑢𝑥  (3) 

𝛼 =
𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑  𝑓𝑙𝑢𝑥
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡  𝑓𝑙𝑢𝑥  (4) 

𝜏 =
𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑  𝑓𝑙𝑢𝑥
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡  𝑓𝑙𝑢𝑥  (5) 

Following Kirchhoff’s Law, black bodies emit the maximal possible energy at 

each temperature, thus they also have the maximal possible emittance. The 

consequence of this is that the emissivity of black bodies is equal to 1 and due to the 

fact that real bodies are not perfect absorbers (𝛼 < 1) their emissivity equals to values 

between 0 and 1. There are no black bodies in reality, however the sun is pretty close 

to one [59].  

However, analytically the hemispherical emissivity of a real body equals to the 

integral of the spectral hemispherical emissivity over the entire half-space: [59] 
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𝜖! =
𝜆
4𝜋! 𝑘! 1− 𝑅!,!

! !

!!!",!"

!!/!

!

𝑑𝑘! (6) 

Here, 𝑘! represents the in-plane wave vector 𝑘 and (1− 𝑅!,!
! !

)!!!",!"  

represents the spectral hemispherical emissivity for both the transverse electric (TE) 

and transverse magnetic (TM) polarized parts of an incident wave. Both key parts of 

the equation are explained below.  

3.2.1. The wave vector k  

Monochromatic waves oscillate with an angular frequency of ω. Thus, One 

oscillation would take them a time equal to 2π/ω, by definition. Assuming 

monochromatic waves are plane waves, the wavefront is then perpendicular to the 

wave vector 𝑘 and the phase is constant and given by: 𝑘𝑥 − 𝜔𝑡 = 𝑐𝑜𝑛𝑠𝑡. Therefore, 

the absolute value of the wave vector (𝑘 = 𝑘 ) is also called wavenumber. Basically, 

this is a spatial angular frequency. The distance between two different wave fronts of 

one plane wave in the same phase is also known as wavelength and given as: [56] [60]   

𝜆 =
2𝜋
𝑘  (7) 

Assuming a vacuum as the media of propagation the wave vector can be 

determined by using the given formula for a constant phase:  

𝑘! =
𝜔
𝑐!

 (8) 

 

In this case c0 is not just the speed of light in vacuum, defined as 2.998*108 m/s, 

but also the speed of propagation of the electromagnetic wave. 
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In this study the interface between the media is set as a x-y-plane, thus the in-

plane wave vector ki of the irradiation is perpendicular to this plane and is set to 

propagate in the x-z-plane as shown in Figure 11. Therefore, the y-component of the 

vector equals to 0 (𝑘! = 0). Due to a not existing y-component, the in-plane wave 

vector 𝑘! is equal to the x-component and therefore, it can also be expressed as: 

𝑘! = 𝑘!. By means of the geometrical relationship between the components of k the z-

component is determined by the Pythagoras’ theorem: 

𝑘!! = 𝑘!! − 𝑘!!!  (9) 

 

Figure 11 Interaction of the in-plane wave vector ki  at an interface between two media/layer 
[56]  

 

Assuming a transition from an optical thinner into an optically thicker medium, 

electromagnetic waves incident under the angle of θ1, thus the refracted waves in 

medium 2 propagate under  

𝑠𝑖𝑛𝜃!
𝑠𝑖𝑛𝜃!

=
𝑛!
𝑛!

 (10) 
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The refraction at the interface also leads to a change in wavelength as well as in speed 

of propagation. In order to determine these changes, the refractive index n is applied. 

This index describes how the speed of propagation of a wave changes (increasing or 

decreasing) at an interface between two different media, e.g. vacuum and bulk 

material [55] [62]. Due to the fact that the angular frequency ω is constant [55], the 

specific wavelength in the material can be determined by means of the refractive 

index, as well: 

𝑛 =
𝑐!
𝑐!

 (11) 

𝑛 =
𝜆!
𝜆!

 (12) 

The refractive index can also be written with the terms of permittivity and 

permeability [63]: 

𝑛 =
µμ!𝜀!
µμ!𝜀!

= µμ𝜀 (13) 

By the means of the refractive index, the refracted wave vector propagating in 

media is determined by:  

𝑘! =
𝜔!

𝑐!!
𝜀!µμ! (14) 

3.2.2. Complex refractive index 

In the forgoing section the media is assumed to be non-absorbing, which leads to the 

permittivity and permeability to be scalar. In the further study polar materials (SiC and 

BN) will be applied for different structures of selective thermal emitters. These 

materials do absorb and therefore, the complex permittivity has to be applied to 
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describe the refraction processes at an interface completely. The complex permittivity 

is a function of the wavelength (𝜀(𝜆)) [64]. This so-called complex dielectric function 

is defined as shown in equation (12). Due to the fact that polar materials are non-

magnetic, the permeability of a medium µm can be assumed to be 1. Thus, the 

refractive index is just depending on the dielectric function and in the case of a 

complex function this is complex as well [63] [64]:  

𝜀 = (𝑛 + 𝑖𝑘)! (15) 

Where, (𝑛 + 𝑖𝑘) is the complex refractive index, n is the non-complex refractive 

index and k is the extinction coefficient. Usually both of them are called optical 

constant of a material even though neither the refractive index nor the extinction 

coefficient are constant over a wide spectrum [63]. 

3.2.3. Permittivity 

Unfortunately, there is no general valid way to determine the permittivity 

(dielectric function) for all materials. Due to the fact that this study considers the 

material groups of polar materials, polymers and polymers doped with Au 

nanoparticles their specific equations to calculate the dielectric function are explained 

in the following.  

The permittivity for polar materials, is given by [44] [65]:  

𝜀 𝜔 = 𝜀!
𝜔! − 𝜔!"! − 𝑖𝜔ϒ
𝜔! − 𝜔!"! − 𝑖𝜔ϒ (16) 

It is depended on the angular frequency ω and some may call this equation the 

polaritonic equation [66] where, 𝜀! is the high frequency dielectric constant, � is the 

damping constant and 𝜔!" and 𝜔!" are the longitudinal and transverse optical phonon 
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frequencies. These parameters are constant and the assumed values and dimensions for 

SiC and BN are given in Table 1 [65].  

 

Table 1 Needed parameters to calculate the permittivity of polar materials SiC and BN [64] 

 

 

The permittivity for Polystyrene is taken from [67] and approximated by the 

four-term-fit model shown in equation (17). The parameters and their dimensions are 

given in 

Table 2 [67].   

 

𝜀 𝜔 = 1+
𝑓!

(𝜔!! − 𝜔! − 𝑖𝜔𝑔!)

!!!

!!!

 (17) 

 

Table 2 Needed parameters to calculate the permittivity of PS [66] 

 

 

In order to determine the permittivity of doped materials the theory of the 

effective media theory has to be applied. For a composite material consisting of a 

ε∞ ωTO [eV] ϒ [eV] ωLO [eV] 

SiC 6.7 0.098 5.88 x10-4 
 

0.12 

BN 4.46 0.1309 6.55 x10-4 0.1616 

ωi [eV] gi [eV] fi [eV] 

6.35 0.65 14.6 
14.0 5.0 96.9 
11.0 3.5 44.4 
20.1 11.5 136.9 
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matrix containing nanoparticles the effective permittivity is given by the Clausius-

Mossotti equation: [68] [69]  

𝜀!""(𝜔) = 𝜀!
𝑟! + 2𝛼 𝑟 𝑓
𝑟! − 2𝛼 𝑟 𝑓  (18) 

Here, 𝜀!, 𝑟 and 𝑓 are the dielectric function of the matrix, the radius and volume 

fraction of nanoparticles, respectively. 𝛼(𝑟) is the size dependent extension of the 

Maxwell Garnett formula, which can be determined by deriving using Mie theory, in 

particular the first electric Mie coefficient:  

𝑎 𝑟 =
3𝑖𝑐!

2𝜔!𝜀!
!
!
𝛼!(𝑟) (19) 

𝑎! 𝑟 =
𝜀!"    𝜓! 𝑥!"   𝜓!! 𝑥! −      𝜀!    𝜓! 𝑥!   𝜓!! (𝑥!")
𝜀!"    𝜓! 𝑥!"   𝜉!! 𝑥! −      𝜀!    𝜉! 𝑥!   𝜓!!(𝑥!")

 (20) 

To solve the first Mi coefficient the dielectric function of the matrix 𝜀!  and 

nanoparticles 𝜖!" as well as the Riccati-Bessel functions of the first order 𝜓! and 𝜉! of 

the size parameters of the matrix 𝑥! and NPs 𝑥!" are needed. The first order spherical 

Bessel function 𝑗! and the first order spherical Hankel functions ℎ!
(!) are used to 

determine the Riccati-Bessel function of first order [68]. 

The permittivity for the matrix material can be determined by either the already 

explained polaritonic Eq. 16 or four-term-fit model Eq 17, depending on the chosen 

material group.  

Due to the fact that metallic nanoparticles have shown to be size-depending, their 

dielectric function is not only depending on the angular frequency but also on the 

radius of the NPs. Thus, the electron scattering effect has to be taken into account.  
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𝜀 𝜔, 𝑟 = 𝜀! 𝜔 +
𝜔!!

𝜔! + 𝑖𝜔ϒ−
𝜔!!

𝜔! + 𝑖𝜔(ϒ+ 𝐴𝜐!𝑟 )
 (21) 

Here, 𝜀! 𝜔  is the dielectric function of the bulk material; 𝜔! is the plasma 

frequency; ϒ is the damping constant; A is the proportionality constant and 𝜐! is the 

Fermi velocity. The proportionality constant is depending on the electron scattering 

process at the NPs surfaces and is assumed to be unity.  

The permittivity of the bulk material can either be determined by the already 

introduced equations for polar materials or PS. However the nanoparticles employed 

in this study are made of Au, thus the function for metals has to be applied. This is 

based on the free electron theory introduced by Paul Drude and given by [70]: 

𝜀 𝜔 = 1−
𝜔!!

𝜔! + 𝑖𝜔 1𝜏
 (22) 

According to Johnson and Christy [70], the Drude model is not valid for visible 

and near-ultraviolet (near-UV) regions (0.64-6.5 eV or 0.1879-1.9373 µm) due to not 

separating the free-electron effect from the interband transitions. Therefore, the values 

obtained by solving Eq. 22 are higher than the one Johnson and Christy were able to 

measure. In order to determine the dielectric function for Au NPs in this study, these 

measurements are used for the visible and near-UV range and for the infrared region 

the Drude theory is applied. According to Johnson and Christy this method is also 

valid for other metals, such as Ag and Cu.  
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3.2.4. Spectral hemispherical emissivity and refraction coefficient 

Assuming the used photonic crystal to be opaque (no transmission), the spectral 

hemispherical emissivity (depending on the incident angle) can be derived from the 

rule that all radiation have to be either reflected or absorbed by matter: 

1 = 𝛼 𝜃! + 𝜌 𝜃!  (23) 

By considering Kirchhoff’s Law (𝛼 = 𝜖 = 1) and transposing Eq. 23 as well as 

by the means of the Fresnel reflection coefficients 𝑅!,!
(!) with t= 𝑇𝐸,𝑇𝑀, the spectral 

hemispherical emissivity can be derived by: 

𝜖! 𝜃! = 𝛼! 𝜃! = 1− 𝜌! 𝜃!  (24) 

𝜖! 𝜃! = 1− 𝑅!,!
(!) ! (25) 

Therefore, the Fresnel reflection coefficients for a certain wavelength are 

calculated by the following equation considering if the wave is either transverse 

electric (TE) or transverse magnetic (TM) polarized [71].  

𝑅!,!!" =
µμ!𝑘!! − µμ!𝑘!!
µμ!𝑘!! + µμ!𝑘!!

 (26) 

𝑅!,!!" =
𝜀!𝑘!! − 𝜀!𝑘!!
𝜀!𝑘!! + 𝜀!𝑘!!

 (27) 

Here, 𝑘!! and 𝑘!! are the z-components of the wave vector for media 1 and media 2, 

respectively. µμ! and µμ! as well as 𝜀! and 𝜀! are the permeability and permittivity of 

media 1 and media 2, respectively.  

By using the Fresnel reflection coefficients the spectral hemispherical emissivity 

𝜖! 𝜃!  can easily be determined for a system consisting of 2 different media. 

However, for further investigations systems consisting of more than 2 layers are 
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considered. Therefore, these coefficients have to be extended. Thus, the generalized 

reflective index 𝑅!,!!!
(!)  with 𝑡 = 𝑇𝐸,𝑇𝑀 is introduced: 

𝑅!,!!!
(!) =

𝑅!,!!!
(!) + 𝑅!!!,!!!

(!) 𝑒!!!!"!!(!!!!!!!)

1+ 𝑅!,!!!
(!) 𝑅!!!,!!!

(!) 𝑒!!!!"!!(!!!!!!!)
 (28) 

 

Figure 12 Reflection and Transmission for a multilayer stack of polar thin films  

 

By using the generalized reflective coefficient, it is possible to determine the 

emissivity of a system consisting of a number of i layers with each having different 

thicknesses (𝑑!) and material constants. Therefore, the generalized reflection 

coefficient is calculated for each interface by determining the known Fresnel reflection 

coefficient separately and substituting them into the generalized coefficient. In order 

to calculate the coefficients for the last interface between layer 𝑁 − 1 and 𝑁, the 

process follows the rules for a 2-media system, and thus a generalized reflection 

coefficient is not needed.  

By substituting these constraints for the in-plane wave vector and the reflection 

coefficient, the adapted formula of the hemispherical emissivity, which is applied for 

the further calculations, is:  

Medium 0   µ0 ε0  

Medium 1   µ1 ε1  

Medium 2   µ2 ε2  

Medium N-1   µN-1 εN-1  
 
Medium N   µN εN  
 

d1 
d2 

dN-1 

dN 
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𝜖! =
𝜆
4𝜋! 𝑘! (1− 𝑅!,!!!

! !
)

!!!",!"

!!/!

!

𝑑𝑘! (29) 

3.3. Implementing in Matlab 

The previously introduced equation for the hemispherical is solved numerically 

by using MATLAB [72]. Therefore one program has been coded, which refers to 

basically 3 different scripts. The flowchart in Figure 13 has been drawn, in order to 

visualize the self-written code and how the scripts are called. 

 

Figure 13 Flowchart of the self-written MATLAB-Code with its subscripts and for-loops 

 

f(kx)=kx'∑t=TE,TM(1/|Rt1,2|2)''

F(kx)=∫2π/λ'f(kx)dx'

ε(λ)'of'layer'

[kx#/90]'

{kx,end=2π/λ}'

{kx,1=0}'

{λend=15µm}'

for'N='0.001'µm'

Layer'material''
and'thickness'

ϵ(λ)'='(λ/4π2)'F(kx)'

START'

Plot'ϵλ'against'λ''

END'

{λ1=0.2µm}'

ε (λ)  
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The main program (MainProgram) calculates the hemispherical emissivity shown 

in Eq. 1. Therefore, the thickness of the thin film layer (d) in µm is the only input 

parameter, which is needed to determine the emissivity for a thin film selective 

thermal emitter. Additionally, the accuracy of the calculation is defined by the step 

width of the wavelength and the x-component of wave vector, which represents the 

incident angles. These step width are also the control variables for the implemented 

for-loops. They are set as 𝑁 = 0.001  µμ𝑚 and 𝑛 = !!
!  !  !"

. After choosing a range of 

wavelengths of interest this program uses for-loops in order to calculate the 

wavelength depended parameters permittivity and hemispherical emissivity.  

In the first step of the for-loop with the control variable N, the dielectric function 

is determined for the chosen material and saved in the matrix df. This matrix consists 

of the four columns wavelength, dielectric function, real and imaginary part of the 

dielectric function, respectively. The permeability is constant over all wavelengths and 

therefore not included in this matrix. The dielectric function is material dependent and 

thus it is from a given list in the main program (e.g. df_SiC or df_BN). In this code, 

each material constant is assigned to a different script, where the specific equation and 

necessary parameter are already defined. Thus, these scripts are just depending on the 

wavelength lambda. 

The second step in the for-loop of the main program is the calculation of the 

definite integral in Eq. 29. Due to the fact that this integral is not only depending on 

the wavelength but also on the incident angle, represented by the x-component of the 

wave vector k (kx), this loop needs to assigns another for-loop in order to calculate the 

definite integral over all angles for one specific wavelength (spectral hemispherical 
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emissivity). The script assigned within this for-loop is therefore called “integr”. Thus, 

the main script hands over:  

• the layer thickness (d),  

• the step width for the wave vector (n),  

• the wavelength and corresponding dielectric functions of layer one (thin 

film) and layer two (high reflective metal), df1 and df2, respectively 

• the permeability of both materials m_1 and m_2. 

Within the for-loop the output variable of the script integr is scalar and saved in 

the variable Integr. In order to finally calculate the hemispherical emissivity the result 

from the Integral is multiplied with !
!!!

 as described in Eq. 29 and saved in the two-

columned matrix emis of the form wavelength | hemispherical emissivity. Thus, the 

result of the main program is a matrix consisting of the wavelength and the assigned 

hemispherical emissivity of the investigated structure. 

The already mentioned script “integr” determines the Integral of Eq. 29. 

Therefore, it is divided into two steps. In the first one, another for-loop is implemented 

in order to calculate the function of the integral in Eq. 29 for each 𝑘! in the interval 

from 0 to 2𝜋/𝜆. Within this loop, a script called “f-value” is assigned and the 

material-depending variables (df1, df2, m_1, m_2), kx, the angular frequency (ω) and c, 

the speed of light are handed over. The output of this is a scalar and is assigned to the 

control variable kx in the matrix fkx of the form kx | fkx. By the means of the 

trapezoidal rule, the script “integr” determines the definite integral for the above-

mentioned function for one specific wavelength. In the end it hands over this scalar to 

the main program. 
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Within the script “f_value” main part of the calculation is conducted. At first, the 

wave vector of each layer is calculated by considering the specific permittivity and 

permeability. By the means of Eq. 9 and Eq. 14 the z-component of each layer is 

determined by solving: 𝑘!" =
!!

!!
𝜀(𝜆)!𝜇! − 𝑘!" . Since, the investigated structures are 

opaque, as explained in section 3.1.1, just the generalized reflection coefficient is 

needed to be determined. Therefore, the Fresnel reflection coefficients, which are 

depending on the kzi, the material-specific variables as well as the layer thickness (d), 

are calculated for the TE and TM wave separately at each interface. Then, by the 

means of the Fresnel reflection coefficients the generalized reflection coefficients for 

the TE and TM wave are calculated backwards. Assuming the case of one thin film on 

top of the coated substrate, just one generalized coefficient is calculated for the 

interface between the vacuum and layer one. In the case of two thin layers on top of 

the Au coating, two generalized reflection coefficients need to be calculated. At first, a 

generalized reflection coefficient for the interface between thin layer one and thin 

layer two have to be calculated (𝑅!,!
(!)). Then, by means of this reflection coefficient 

and the Fresnel reflection coefficient of the first interface the generalized reflection 

coefficient for the interface between vacuum and the first layer can be calculated.  

In the end of the script f_value these coefficients are plugged in Eq. 29 in order to 

calculate the spectral hemispherical emissivity (𝜖!(𝜃)), which is then hand over to the 

script integr as the variable fkx. 
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3.4. Simulation and Validation of the introduced material groups 

In the following section the simulation and validation of the MATLAB-code is 

conducted for the three previously introduced material groups. In this study the 

hemispherical emissivity is calculated as described before. By changing the structure 

parameter of the investigated selective thermal emitters the findings can be directly 

influence. These changes can easily be seen and compared by plotting the 

hemispherical emissivity against the wavelength. 

In order to get reliable results from the self-coded program, it is of crucial 

importance to validate the model. Thus, the results are compared with different 

publications, which are using the same materials and constraints. In the following 

section the model for all three material groups will be validated.  

Polar materials 

At first, the model is tested for the polarized materials, in particular SiC. The 

polaritonic model determines the dielectric function of SiC shown in Eq. 16. For SiC 

the parameters 𝜀!, 𝜔!", 𝜔!", and Υ are assumed to be 6.7, 9.83  𝑥10!!  𝑒𝑉, 

1.20  𝑥10!!  𝑒𝑉 and 5.90  𝑥10!!𝑒𝑉, respectively. The results, in particular the real and 

imaginary parts of the dielectric function are plotted in Figure 14. 
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Figure 14 Real and Imaginary parts of the complex dielectric function of SiC 

 

Figure 15 Hemispherical emissivity of SiC thin films on Au-coated substrate for various 
layer thickness 

SiC 

n(
λ)

 

k(
λ)

 

SiC 
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By applying the Drude model, the dielectric function of Au is determined 

according to Eq. 22. Therefore, the parameters 𝜔! = 9.06  𝑒𝑉 and Υ = 9.06  𝑒𝑉 are 

used. These values are taken from Johnson and Christy [70].  

The emissivity is compared for the thicknesses of 𝑑! = 0.40  𝑚𝑚, 𝑑! = 0.40  µμ𝑚 

and 𝑑! = 0.20  µμ𝑚. The hemispherical emissivity spectrum for a layer thickness of 

𝑑 = 0.40  𝑚𝑚 can be assumed to be equal to the emissivity of bulk SiC due to the fact 

that the absorption depth is less than 0.40 mm. In the range from ~11 µm to ~13 µm 

the emissivity is close to 0, which is called the Restrahlen band [44]. For both of the 

thin layers (0.2 µm and 0.4 µm) two peaks at approx. 10.5 microns and 13 microns 

occur. The one at around 13 microns is shifting to high wavelengths with an increasing 

layer thickness. The first peak occurs to be at the same wavelength as the minimum of 

the real part of the dielectric function. This wavelength is also called 𝜆!"# for zero-

index material, because the dielectric function would reach zero without dissipation. 

The second peaks at around 13 microns, occurs to be at the same wavelength as the 

maximum of the real part n of the refractive index n. The imaginary part k is at a 

maximum at this wavelength, as well. These presented results are equal with the ones 

published by Narayanaswamy et al. [44]. 

 

Polymer (Polystyrene) 

Secondly, the model is tested for the PS and the hemispherical emissivity is 

plotted in Figure 16. 
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Figure 16 Hemispherical Emissivity of PS thin film on Au-coated substrate for a thickness of 
0.4 µm 

Here, the dielectric function is approximated by the four-term-fit shown in Eq. 17 

and the parameters are given as 𝑓! = [14.6, 96.9, 44.4, 136.9], 

𝜔! = [6.35, 14.0, 11.0, 20.1] and 𝑔! = 0.65, 5.0, 3.5, 11.5  [67]. These parameters 

are all in eV. Here, the hemispherical emissivity is plotted for a layer thickness of 

𝑑 = 0.4  µμ𝑚 in the spectral range from 0 microns to 6 microns and compared with the 

results in Ghanekar et al. [68] In the range from 0.2 microns to approx. 0.7 microns, 

the emissivity of PS oscillates between 0.75 and 0.85 with a last peak at 0.5 microns 

and an emissivity of 0.8 before it drops down to an emissivity of 0.3 at 0.6 microns. 

The second significant peak can be obtained at approx. 0.75 µm. There the emissivity 

reaches a value of ~0.35 before it decreases continuously to a value of 0.1 with a small 
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shoulder at 2 µm. For higher wavelength the emissivity of PS converges to zero. 

Ghanekar et al. also calculated these results [68]. 

 

Polymer doped with metal nanoparticles 

At third, the model for a layer of PS doped with Au NPs is validated. Therefore, 

the dielectric function of Au is of special interest. As explained before, the permittivity 

of Au needs to be calculated in two parts: In the range from 0.2 µm to 1.9 µm the 

complex dielectric function is determined by interpolation the measurements obtained 

by Johnson and Christy [70]. In addition, the dielectric function for higher 

wavelengths is calculated by applying Drude model. The resulting real and imaginary 

parts of the complex permittivity of Au are plotted in Figure 17. 

Here, It can be seen that the real and imaginary part in the range from 0.2 µm to 

approx. 0.5 µm are almost equal. For higher wavelengths the imaginary part is strictly 

monotonic increasing. In opposite, the real part is almost zero in the range from 

approx. 0.5 microns to 2 microns. After that, it is also increasing. However, the real 

part is always significant lower than the imaginary. 
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Figure 17 Real and imaginary parts of the complex dielectric function of Au 

In order to validate the written code for PS layers doped with Au nanoparticles, 

the results are compared with the published results in Ghanekar et al. [68]. The thin 

film of PS with various volume fractions of 0%, 5%, 10% and 30% are presented in 

Figure 18, where the graph for a volume fraction of 0% correspond to the graph 

presented in Figure 16. 

In order to simulate this hemispherical emissivity with Au nanoparticles, the 

dielectric function is calculated as described in section 3.2.3, including the size 

dependence of the nanoparticles. Adding Au nanoparticles to the matrix leads to a 

decrease of emissivity in the range from 0.2 µm to 0.7 µm. Furthermore, the doped 

material shows a stronger oscillation between 0.7 µm and 1.0 µm, which can go high 

as 0.8 and low as 0.35, before it reaches the another maximum at 1.1µm. However, 

over all the different volume fractions the oscillating maximum is almost constant.  
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Figure 18 Hemispherical emissivity for PS thin films doped with Au-NPs of various volume 
fractions (0%, 5%, 10% and30%) 

 

After reaching this maximum, the emissivity for Au-doped PS also drops down to 

values of 0.3 or 0.2 for volume fractions of 5% or 30%, respectively. Then, it 

increases again to a peaks reaching from almost 0.4 to 0.45 for higher volume 

fractions. The very small peak, which occurs for pure PS to be at around 2.1 µm is 

slightly increasing with a higher volume fraction. It also can be noticed that this peak 

is shifting to higher wavelength (e.g. 3.8 µm for 30%). Ghanekar et al. have calculated 

these results, as well. [68] 
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3.5. Selectivity of different chemical and biological molecules  

In order to design a selective sensing devise based on selective thermal emitters, 

it is of crucial importance to know the optical properties of the target analyte. In 

particular, the emissivity spectrum (or absorption spectrum) of the analyte has to 

match the one of the designed emitter. Roughly, the spectral regions of possible 

analyte can be divided into 2 groups: the visible/near-UV region and the IR region. 

Table 3 lists a various number of molecules and their specific absorption 

wavelength(s) or absorption bands.  

 

Table 3 Absorption wavelength of various molecule/materials at room temperature 

Molecule/Material Absorption Wavelength [µm] Ref. 
   

Ethidium Bromide 

Ethidium + DNA complex 

0.210 to 0.480 

0.300 to 0.520 
[65] 

7-hydroxycoumarin (HCM) 0.320 to 0.380 [66] 

β-carotene 0.375 to 0.520 [67] 

1-Hydropyrene (1-OHP) 0.388 [68] 

Cysteine 0.65 to 0.725 [69] 

Hemoglobin (fully oxygenated) 0.70 to 1.05 [71] 

2,4,6-trinitrotoluene (TNT) 6.2, 6.4, 7.1 and 7.4 [44] 

Polyaniline (PANI) 6.25 to14.3  [22] 

Aromatic C-H Bending 11,6 to 14,7 [71] 

Oxonium Hexafluoridosilicate(2-) 13.55, 15.5 and 20.62 [72] 

 

Table 4 Analyte and possible marker material  

Analyte Marker Ref. 
   

H+ (ph-Sensitve) Polystyrene/polyacrylamide  [6] 

Immunoglobulin  SiO/SiO2 [31] 

Cysteine & Homocysteine Cuo/ZnO  [74] 
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For these values, it has to be noticed, that a characteristic absorption band from 

6.25 µm to 14.3 µm (see polyaniline) also includes some maxima and minima, due to 

the complex structure of the molecules. For example, the vibration of the C=C 

stretching in the existing quinoid and benzenoid rings cause two peaks at 6.39 microns 

and 6.79 microns, respectively. Moreover, the C-N stretching in the aromatic ring , the 

N-quinoid-N stretching vibration are also showing distinct peaks at 7.71 µm and 8.88 

µm. However, these peaks are extreme point within the specific absorption band of 

PANI, whereas the emissivity over the entire band is relatively high [39]. The 

hemispherical emissivity of TNT also shows four peaks in a spectral range from 6.2 microns 

to 7.4 microns, but in contrast to PANI, in between these peaks the emissivity is almost zero 

[51]. Thus, it cannot be called a characteristic absorption band, however the peaks still can be 

interpreted as a unique fingerprint of TNT.  
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4. CHAPTER 4 – Results 

In order to show that different structures of selective thermal emitters can be 

applied to detect biological analytes in biological samples, the three material groups 

and their hemispherical emissivity are analyzed in the following section. Therefore, 

different plots of hemispherical emissivity are presented. For polar materials different 

combinations of SiC and BN including thin layers with various thicknesses as well as 

doped layers are shown. Moreover, the influence of various volume fractions of Au 

nanoparticles in doped PS is investigated. 

4.1. Hemispherical emissivity of various polar material structures 

4.1.1. Thin film structures of polar materials 

At first the emissivity of polar materials, which in this study are represented by 

SiC and BN, are investigated. Initially, the hemispherical emissivity is calculated for 

thin films of both materials on Au-coated Si substrate. Based on these results a first 

assumption on how the emissivity is influenced by the materials can be made. 

Figure 19 shows the hemispherical emissivity of BN for different layer 

thicknesses (d=[0.1, 0.2, 0.4,] µm). The thin films of BN have two distinct emissivity 

peaks, one at approx. 7.5 µm and at approx. 9.5 µm. The peak at 7.5 µm is slightly 

increasing with a thicker layer of BN. However, varying the thickness leads to 

significant change for the second peak. By doubling the thickness from d=0.1 µm to 

d=0.2 µm this peak occurs to be as twice as high. Additionally, this peaks is slightly 
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shifting to a higher wavelength. For a layer thickness of 0.4 microns, the peak is 

marginally smaller than the one for d=0.2 µm. However, there occurs an additional 

peak at the same wavelength as the one for d=0.1 µm, which is connected with the 

main peak at approx. 10 microns. Between all the peaks, the emissivity is very close to 

zero, which is due to a high reflectivity at these wavelengths (see Kirchhoff’s Law and 

Eq. 23). 

 

Figure 19 Hemispherical emissivity of BN thin films on Au-coated substrate for various 
layer thickness 

Considering the hemispherical emissivity for SiC from Figure 15, which shows a 

very similar behavior regarding the increasing layer thickness, one could assume that 

this is a general law for polar materials. However, to proof this assumption more 

materials have to be analyzed. 
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4.1.2. Doped polar material 

In the next step, both materials are combined in order to form a doped layer on 

top of the Au layer. Therefore, the particle size is set to be 25 nm in diameter and the 

volume fraction of particles in the matrix is varied from 10% to 30% in three steps.  

Doped SiC thin films 

Figure 20 shows the calculated emissivities of different structures of SiC-doped 

BN matrix with a thickness of 0.4µm each. Additionally, the emissivity for thin films 

of pure SiC and BN of the same thickness are shown as a reference.  

 

 

Figure 20 Hemispherical emissivity for SiC thin films doped with BN-NPs of various volume 
fractions (10%, 20% and30%) 

In this figure, the emissivity peak of BN, which originates from the TM wave, is 

slightly increasing with a higher volume fraction of SiC nanoparticles. The behavior is 
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comparable with the one for pure BN thin films, where the same peak is increasing, by 

decreasing the layer thickness from 0.4 µm to 0.2 µm. Furthermore, four more peaks 

can be seen in this Figure 20. Two are at 8.0 microns to 8.5 microns, which are 

connected. Together with the one for the BN thin film they form a trident. 

Additionally, they are more peaks, which can be identified at 11.9 microns and 12.1 

microns for a volume fraction of 10%. These two peaks are shifting slightly away 

from 12 microns with an increasing volume fraction. The smaller one shifts closer to 

11.5 µm and the higher one to 12.5 µm. However, both new peaks are the fusion of the 

peaks known from the thin film structures. This is underlined by the fact that with an 

increase in the volume fraction, these peaks are diverging towards the peaks of pure 

BN or SiC thin films, respectively.  

Doped BN thin films 

Furthermore, selective thermal emitters with different structures of SiC matrix 

doped with various volume fractions of BN nanoparticles are simulated. In Figure 21, 

these results are plotted as well as the hemispherical emissivity for SiC and BN thin 

films of 0.4 microns each. In opposite to the pure thin films, the BN-doped SiC shows 

four more peaks. They can be identified at approx. 8.5 microns and 9.0 microns as 

well as at approx. 11.0 microns and 11.5 microns. With an increasing volume fraction 

of BN nanoparticles, the first two are slightly diverging from 8.5 microns towards 8.0 

microns or 9.5 microns, respectively The maximum of the smaller one is almost 

constant at 0.4, while the maximum for the second one is increasing from 0.7 to 0.9.  

Additionally, the interaction between BN-nanoparticles and SiC matrix leads to 

two more peaks at approx. 11.5 µm. These peaks show a similar behavior as ones for a 
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shorter wavelength. With a volume fraction of 10 % they are very close to each other 

at 11.5 µm, but with an increasing percentage of BN nanoparticles they are diverging 

to either 11.0 µm or 12.0 µm. Moreover, the higher increases from 0.45 to its 

maximum at 0.8 with the volume fractions of 10% and 30%, respectively. The smaller 

one is almost constant at approx. 0.25 for the simulated volume fractions.  

Furthermore, this combination of BN and SiC also shows two new peaks, which 

are a fusion of the peaks originating from the thin film structures of pure polar 

materials. Additionally, they are diverging towards the thin-film-peaks.  

 

 

Figure 21 Hemispherical emissivity for BN thin films doped with SiC-NPs of various volume 
fractions (10%, 20% and30%) 
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Considering the simulations of selective thermal emitters structures of BN matrix 

doped with SiC nanoparticles and vice versa, some similarities can be identified: In 

both cases the peaks known from thin film structures are almost not changing with 

added nanoparticles. However the added nanoparticles lead to interactions, which 

create new peaks in between those known from pure thin films. With an increasing 

volume fraction these peaks are diverging towards the thin film peaks. As it can be 

seen in Figure 22, depending on the material, which is forming the matrix, the new 

peaks are at different wavelength. Thus, hemispherical emissivity peaks can be created 

by varying the composition of SiC and BN at around every 0.5 µm in the range 

between 7.5 µm and 13 µm.  

 

 

Figure 22 Hemispherical emissivity for various combinations of SiC and BN 
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4.2. PS doped with Au nanoparticles 

In the following, the hemispherical emissivity of selective thermal emitters 

consisting of a PS layer doped with Au nanoparticles is simulated. The particles size is 

set to be 25 nm in diameter and the volume fraction is varied from 0% to 50% in steps 

of 5%. Figure 23 shows the spectral emissivity results for doped PS thin films of a 

layer thickness of 𝑑 = 0.40  µμ𝑚. The volume fraction varies from 0% to 50% in steps 

of 10% due to the readability. In the appendix (A1) the hemispherical emissivity is 

presented for volume fractions from 0% to 50% in steps of 5%.  However, the trend is 

also recognizable in Figure 23. 

 

Figure 23 Hemispherical emissivity of a PS thin layer (d=0.40 µm) doped with various 
volume fractions of Au nanoparticles (r=25 nm) 
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As a result, a characteristic curve profile can be noted for all volume fractions. 

This profile starts with an emissivity at around 0.77 and reaches a small plateau 

afterwards (0.2 microns to 0.6 microns). Than, the curve starts oscillating and reaches 

a first single peak before it drops down to a minimum. Right behind that minimum it 

increases to another peak before it decreases to an emissivity of approx. 0.05. With 

increasing wavelengths the curves reach another noticeable peak with a small absolute 

value but a wider range.  

However, it can be noticed that the absolute value of the plateau is decreasing for 

increasing volume fractions. It particular it is reduced from 0.87 to 0.74 for volume 

fractions of 0% and 50%, respectively. Moreover, the oscillation gets also stronger for 

higher percentage of Au nanoparticles. It drops down to values of 0.4 and 0.3 for 40% 

and 50%, respectively. Nevertheless the maximum of this oscillation is almost 

constant over all volume fractions. It is approx. 0.85. 

Furthermore, the curves minimum is shifted to higher wavelengths with a higher 

number of Au nanoparticles in the matrix. In addition, it is decreasing by 50% from 

0.3 to 0.15. At the same time the next peak is significantly increasing and shifting to 

higher wavelengths from around 0.3 at 𝜆 = 0.6  µμ𝑚 to 0.6 at 𝜆 = 1.8  µμ𝑚. Moreover, 

the small peak at wavelengths higher than 2 microns is continuously shifting with 

increasing volume fractions to higher wavelengths. This peak for a volume fraction of 

50% has a absolute value of 0.18 at a wavelength of 5.2 microns, which is just slightly 

higher than the one for 20% at 2.1 microns (+0.08). 

In general, the emissivities in Figure 23 show that an increasing volume fraction 

is shifting the peaks to longer wavelengths as well as to higher maxima and smaller 
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minima. In addition, it can noticed that the second peak is stronger increasing than 

shifting whereas the third and last peak shows a stronger shifting and just a small 

increase in the absolute values.  

The curves for a changing volume fraction from 0% to 50% in steps of 5% are 

plotted in Figure 24 and Figure 25. According to the introduced approach in Figure 9, 

by comparing the resulting curves they can be used in order to analyze how the 

analytes from the sample react with the nanoparticles in polystyrene. 
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Figure 24 Hemispherical emissivity of a Polystyrene layer doped with Au nanoparticles with 
various volume fraction from 0% to 25% 
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Figure 25 Hemispherical emissivity of a Polystyrene layer doped with Au nanoparticles with 
various volume fraction from 30% to 50% 
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4.3. Evaluation of Results 

In this section, the results of the foregoing simulations are compared regarding 

their capability of forming optical biosensors in the visible/near-UV spectrums as well 

as in the IR spectrum. The various combinations of polar materials as thin layers as 

well as doped materials, offer a wide application area in the IR spectrum. Depending 

on which material (SiC or BN) is used to form the matrix, doping this material with 

nanoparticles of the other materials creates new peaks of emissivity at different 

wavelength. In this study the scope of applied polar materials is limited to SiC and 

BN. However, the combinations of these materials create emissivity peaks at every 0.5 

µm in the spectrum between 7.5 µm and 13 µm. 

In addition, Figure 26 shows that it is also possible to design Au-doped PS 

emitters, which could detect molecules in the visible/near-UV spectrum due to a 

additional absorption. This absorption occurs in a range from 0.3 µm to 0.7 and is 

caused by the presence of the Ethidium-DNA complex. Using a volume fraction of 5% 

the selective thermal emitter provides a high absolute emissivity, which would be 

reduced due to an additional absorbance. Furthermore, increasing the volume fraction 

up to 10%, this emitter would be useful in order to investigate fully oxygenated 

Hemoglobin in the range from 0.71 microns to 1.05 microns.  
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Figure 26 Matching emissivity spectrum of PS thin layer doped with Au nanoparticles and 
absorption bands of Ethidium w/ DNA complex and Hemoglobin 

4.4. Experimental measurement 

Besides theoretical calculations, experimental measurements of different 

structures are of crucial importance in order to verify the properties and transfer them 

into practical applications. In order to conduct the measurement three selective 

thermal emitter samples, which have been fabricated by Prof. H. Sun and H. W. Su. 

from Umass Lowell, are investigates. These emitters consist of a multilayer structure 

on top of an Au-coated Si substrate. The first layer is made of SiO2 and its thickness is 

varied (𝑑! = [0.2, 0.6, 1.0]  µμ𝑚). In between this layer and the coated substrate a thin 

layer of PS is deposited. Its layer thickness is constant for all three samples (𝑑! =

0.3  µμ𝑚). A picture of these samples has been taken before the FTIR measurement and 

is shown in Figure 27. 

Ethidium+DNA Complex 

Hemoglobin 
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Figure 27 Selective thermal emitter samples wit multilayer design (SiO2 - PS - Au) 

 

4.4.1. Fabrication of samples 

The samples are fabricated within three steps as shown in Figure 28. In the first 

step an Au layer with a thickness of 1µm is deposited on a Si substrate by using 

electron beam deposition (EBD). EBD is a inexpensive way to create surfaces and 

coatings of different sizes, which has unique advantages in precision in micron in 

particular in nanoscale applications that enables the application for several research 

fields. However, it is a time-consuming, direct-writing technique, which is not suitable 

for mass fabrication [81]. In order to coat the sample substrate with a thin Au layer, 

the Si substrate is mounted on rotor in the upper side within a vacuum chamber. An 

Au sample, the target, is placed on the other side of the chamber. The applied high-

energy electron beam is focused on the target. Due to the high kinetic energy, which is 

immediately transformed into thermal energy when the electron beam strikes the 

surface. This heat is vaporizing the targets surface. Then, the Au atoms are deposited 

on the Si substrate due to the electronic potential [82] [83] [84]. 

a b c 
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Figure 28 Fabrication process of multilayer samples (SiO2 - PS - Au - Si) 

 

In the second and third step, the thin films of PS and SiO2 are deposited with spin 

coating. Spin coating is a frequently used technique to fabricate high quality thin films 

in small scale and research purposes. It has advantages in process handling, due to its 

easy, fast and reproducible characteristics. Moreover, it enables the preparation of 

uniform and well-integrated nanolayers.  

The spin coating process, is divided into four steps: solution deposition, spin-up, 

spin-off and film drying, which all have an influence on the quality of layer 

deposition. In order to coat the sample with an Au-doped PS layer, a solution of PS 

including Au nanoparticles is dropped onto the Au-coated substrate, which is mounted 
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onto a rotor. Due to the following rotation the solution is distributed equally over the 

surface (spin-up) and with an increasing, ongoing rotation the surplus solution is spun 

off. These spinning steps define the thickness and distribution of the solution in the 

layer. In the last step, the sample is dried and results in the finished sample [85] [86] 

[87]. 

4.4.2. Results FTIR spectroscopy 

FTIR spectroscopy 

After the three samples are fabricated as explained in section 0, their 

hemispherical emissivity is measured using FTIR spectroscopy. This method is taking 

advantage of the fact that each peak in an infrared spectrum depends on a certain 

molecule structure. Thus, it is commonly applied as chemical analysis of different 

molecules and their concentration in samples. These samples can be in various states, 

such as solid, crystal, film etc. [88]. 

They are different way to design these interferometers. However the basic 

principle is the same: Light from an IR source is reflected by a several mirrors, which 

split and recombine the beam in order to finally reflect the beam by the means of a 

parabolic mirror towards the sample. There it interacts with the sample and the 

interferogram is detected. This interferogram is Fourier transformed into an infrared 

spectrum [89].  

There are tow methods, which can be applied in order to obtain the hemispherical 

emissivity using FTIR spectroscopy. The direct method measures the radiation of the 

sample and compares it with the blackbody radiation to generate the emissivity 
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spectrum. The indirect method is measuring the transmission and reflectivity of the 

sample in order to generate the emissivity spectrum [90]. 

In this study, the indirect method is applied to measure the emissivity spectrum of 

the SiC-doped PS layer. Therefore, the Attenuated Total Reflectance (ATR) method is 

applied. In order to conduct the measurement, the sample is mounted onto a 

germanium (Ge) crystal with close contact. The IR beam is coming from below the 

crystal. The high refractive index of Ge leads to an internal reflection, which generates 

an infinitesimal wave. This is interacting with the sample and then reflected back 

towards the detector.  

Analysis of the samples 

The results of the FTIR measurements for the three fabricated selective thermal 

emitters are presented in Figure 29. All three samples show a similar characteristic 

curve in the IR spectra. In the range from 2 microns to 8 microns they show no 

emissivity spectrum. At a wavelength of 8 µm the emissivity strongly increase until it 

reaches a maximum at approx. 8.4 µm for a SiO2 layer of 0.2 µm thickness. This 

maximum is slightly shifting to higher wavelengths with the thicker top layers of SiO2. 

Then the emissivity decreases to a first minimum at around 9.8 µm for 𝑑! = 0.2  µμ𝑚, 

but slightly shifting to smaller wavelength for the other samples. Directly behind that 

minimum a very small increasing emissivity can be noticed for SiO2 layers of 0.2 and 

0.6 µm thickness.  
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Figure 29 Results from the experimental FTIR spectroscopy 

 

In opposite to these samples, the third sample shows a clear difference to the 

foregoing minimum. Again, this small peak is shifting to higher wavelengths. At 

around 10 microns the emissivity significantly drops to the second minimum at 

approx. 11 microns. At 11.8 µm the emissivity increases again an absorption band 

between 12 microns and 14 microns with two significant maxima at 12.2 µm and 13.2 

µm. For all the three layer it can be stated, that a thicker layer of SiO2 leads to higher 

absolute values over the entire spectrum from 2 µm to 14 µm. Moreover, the maxima 

are shifting to higher wavelengths with an increasing thickness.  

In comparison to these measurements, the Figure 30 shows the calculated 

hemispherical emissivities for the same structure. First of all it has to be noticed, that 

the calculated curve for the first sample with a thickness of 0.2 µm is very similar to 
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the hemispherical emissivity of a single thin film of SiO2. So it can be assumed that 

the effect of the PS is neglected in the theoretical model whereas it apparently has 

significant influence in the reality. 

 

Figure 30 Simulated hemispherical emissivity of a multilayer structure consisting of a SiO2 
thin film on a PS thin film 

Furthermore, the curves for samples 1 and 2 look quite different on the first view. 

However, both graphs for 𝑑! = 0.6  µμ𝑚 and 𝑑! = 1.0  µμ𝑚 show some significant 

similarities with the measurements. First of all, it has to be noticed, that these graphs 

cannot be compared quantitatively due to the different absolute values on the y-axes. 

However, the calculated curve for all samples show an increasing emissivity at 8 

microns, which is the same as in the measurements. In difference to the measurements, 

it drops immediately after it reaches a peak at 8 µm before it increase again to the 

sharp peak at 8.4 microns. At the same wavelength (~9.3 µm) as in Figure 29, the 

curves reach a maximum as a part of the absorption band between approx. 9.2 microns 
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and 10.2 microns or 11 microns for sample 2 and 3, respectively. In between 11 

microns and 12 microns the curves in both figure drop to a minimum before they reach 

another emissivity peak at approx.12 µm, which is sharp for the calculation and wide 

for the measurements. 

Although, the obtained results from the samples show a quite different emissivity 

spectrum, which show not such sharp peaks as the calculation predicted. However, the 

significant peaks in the hemispherical emissivity spectrum of SiO2 can be confirmed.  
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5. CHAPTER 5 – CONCLUSION 

In this study, different structures of selective thermal emitter designs and their 

hemispherical emissivity spectrum have been analyzed. The goal was to show that 

selective thermal emitters have the potential to be applied as biosensors in order to 

detect analytes in biological samples due to their unique radiation properties.  

Initially, an insight into the biosensors has been given. This includes the general 

functionality of biosensors as well the different detection principles. Additionally, 

several applications of these principles have been introduced, as well. Moreover, the 

working principle of selective thermal emitters and their application in thermo 

photovoltaic systems has been given.  

Furthermore, a detection method combining both functionalities has been 

introduced. In order to prove this theory, a MATLAB code has been written using the 

physical principles of thermal radiation. Based on these principles the hemispherical 

emissivities of three different material groups: polar materials, PS (polymer), and PS 

doped with Au-nanoparticles have been simulated. 

These materials have been analyzed regarding their influence on the emissivity 

due to variations of layer thicknesses of thin film applications as well as various 

volume fractions of doped materials. It can be stated that the characteristic emissivity 

spectra, for the investigated polar materials SiC and BN, lies in the IR spectrum from 

7.0 µm to 13 mm. In opposite to that, the spectra for Au-doped PS thin layers lies in 

the visible/near-UV range from 0.2 µm to 2.0 µm. In addition, it has been shown that 
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changes in layer thickness as well as in volume fraction of nanoparticles lead to shifts 

and partly increases of emissivity peaks.  

The results of the analysis have been compared to certain molecules and chemical 

compounds, which have their specific absorption spectra either in the IR or in the 

visible/near-UV range. It could be shown that these spectra match with the ones from 

the simulated selective thermal emitters and therefore, their presence could be 

detectable. 

Furthermore, samples consisting of a multilayer have been experimentally 

investigated. The obtained results from FTIR measurement differ from the calculated 

ones regarding the absolute value and the sharpness of the emissivity peaks. However, 

the unique shapes of the curves, which are necessary in order to detect specific 

molecule in a sample, have been confirmed. All in all, this study has shown that a 

detection of biological molecule or chemical compounds by means of selective 

thermal emitters and their unique spectrum of emissivity could be possible. 
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APPENDICES 

A1 Hemispherical emissivity of a PS thin film layer doped with various volume fractions of 
Au nanoparticles. Layer thickness is 0.4 µm on top of a Au coated Si substrate 
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