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ABSTRACT 

 

A nanopore—typically defined as a through-hole with dimensions <100 nm in 

all directions that functions as the sole path between two electrolyte reservoirs—is a 

robust single molecule sensor element which has enjoyed a wealth of applications 

spanning genomics and proteomics, with fledgling contributions to glycomics over the 

past two decades. Two classes of nanopores exist—biological and solid state. Biological 

nanopores, for example, α-hemolysin, are highly reproducible and precise—with 

nanopore lengths and critical constriction sizes that are well known and reproducible. 

This is not the case with solid state nanopores. Assuming total nanopore length is equal 

to the nominal thickness of the membrane provided by the manufacturer is a standard 

practice in the nanopore field. However, given fabrication tolerances, there is some 

room for error, in certain instances close to 60% of the provided nominal thickness. Any 

error in nanopore length will couple to errors in the radius calculation. Another two key 

assumptions are:  i) the nanopore has a cylindrical shape unless (and often even if) the 

shape is otherwise known and ii) a single nanopore through the membrane is formed 

when one is intended. These issues were addressed by developing a framework that 

shows errors in harboring such geometric assumptions and eventual consequences for 

nanopore-based sensing experiments.  

The focus of nanopore-based sensing has been predominantly on DNA and 

protein profiling with only fledging contributions to glycomic profiling. Silicon nitride-

based solid state nanopores were used to understand translocation conditions related to 

alginate and then to study source variability associated with alginates. The two alginates 
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used (from two different sources) gave two distinct signal patterns. Heparin, a common 

anticoagulant was contaminated in 2008 with over sulfated chondroitin sulfate 

(OSCS)—a structurally similar adulterant—which lead to ~120 deaths in the United 

States. Nanopores, with sizes ranging from ~8.6 nm- ~13.6 nm were used to test the 

ability to flag the presence of OSCS in a contaminated heparin sample—all four unique 

nanopores used were able to flag the presence of the OSCS contaminant proving the 

diagnostic capability associated with nanopore sensing. 

Surface modification techniques, for example, hydrosilylation, silane chemistry 

and electroless gold plating not only tune the size (minimum radius, 𝑟0, and total 

nanopore length, 𝐿) but also change the intrinsic surface chemistry. Hydrosilylation on 

planar silicon nitride—a less challenging and less volume-constricted environment 

compared to nanopore inner walls—has been shown to be possible photochemically and 

thermally. The photochemically driven hydrosilylation was scaled down to the nanopore 

level—decorating inner nanopore walls in a challenging zeptoliter volume—using a 

range of functional groups to potentially overcome unfavorable conditions such analyte 

“sticking” problem while tuning analyte residence time favorably. Choice of molecule 

plays a significant role—one with a reactive terminal group such as hydroxyl or amine 

allowed for subsequent reactions, through condensation and click reactions, 

respectively, which are fast and facile, thus allowing for further modification of the size 

and surface chemistry of the pore. We observed the residence time of λ-DNA to increase 

with positive charge of the pore surface at pH 7, with bare, hydroxyl terminated, and 

amine terminated functional pores having peak residence times of ~250 μS, ~450 μS 

and ~1000 μS respectively.  
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A carefully configured electroless plating procedure was used to deposit gold 

directly on silicon nitride. Since silicon nitride is an insulator, conventional 

electroplating would be futile—hence electroless plating. The plating was done at both 

3 ⁰C and 10 ⁰C. The mean grain size of the gold grains plated at 3⁰ C were found to be 

~20 nm in radii. These nanostructured plated surfaces were also used to enhance the 

Raman signal of 4-nitrobenzothiol (test-molecule). The same plating method was 

extended to paper, nanocellulose, acrylate polymer grafted silicon nitride, nanoporous 

silicon nitride and Silmeco (a commercial substrate with a pillar like architecture) to 

create low cost surface enhance Raman active substrates. Enhancement values as high 

as ~106 for both acrylate polymer grafted silicon nitride and Silmeco was observed. 

Patterned solution-phase gold depositions have great promise for electronics, 

photonics, and sensors such as nanopores as well—especially considering augmenting 

nanopore function with structures such as transverse electrodes. For nanopores and 

other fragile architectures, mechanical non-contact and cleaning ease (especially by 

simple rinsing) are key elements in designing modification and fabrication methods. 

Hydrosilylation meets these expectations as it can be guided and restricted to specific 

regions by manipulating the exposure of light (UV) to the surface. Hydrosylilated 

alkanes were used as a suppressing layer, for metal deposition in combination with 

electroless deposition to create spatial patterns of gold on silicon nitride. However, key 

modifications to the existing gold plating scheme had to be made. Key washing steps 

and replacement of Sn(II) chemistry with Pd(II) chemistry was done to increase the 

spatial selectivity of the plated patterns. Spatially selective patterns with lateral spacings 

as small as ~30 μm have been fabricated using this method.  
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Chapter 5: ACS Appl. Mater. Interfaces 2014, 6 (14), 10952−10957  

Chapter 6: ACS Appl. Mater. Interfaces 2016, 8 (51), 34964−34969  
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CHAPTER 1: BACKGROUND 

NANOPORE FABRICATION AND CONDUCTANCE MODEL  

(This sub-section is explored in detail in chapters 2, 3 and 4).  

Fabricating nanopores was historically both time- and cost-strained as it required 

either charged-particle microscopes, for example, transmission electron microscopes 

(TEM)19,20, scanning electron microscopes21 (SEM) and helium ion microscopes22 

(HIM), or an accelerator facility, before the emergence of techniques such as dielectric 

breakdown23. Microscopic inspection, for example, TEM, can determine the nanopore 

dimensions. However, from a practical standpoint, scanning every nanopore is not 

feasible and is expensive as well. Other disadvantages such as deposition of 

contaminants in vacuum chambers and fracture of nanopores during handling also exist. 

In the case of dielectric breakdown, fabrication takes place in the native sensing 

environment of a nanopore, mounted separating two electrolyte reservoirs. Such 

solution-based methods are well-complemented by using conductance based models to 

estimate size parameters of a nanopore24,25,  

𝐺 = 𝐺bulk + 𝐺surface         (1) 

These terms can be formulated by using Ohm’s law for a conductor, 

resistance=resistivity · length/area. The first term, 𝐺bulk = 𝐾 ∙ (∫
𝑑𝑧

𝜋(𝑟(𝑧))
2

𝐿

0
)
−1

= 𝐾 ∙ 𝐴, 

uses the solution conductivity, 𝐾, to determine the passage of ions through the bulk of 

the nanopore. Radius along the z axis (vertical dotted lines along each nanopore profile 

in figure 3.1) of the nanopore is denoted by 𝑟(𝑧) with its initial minimum value being 



2 

 

𝑟0. The second term, 𝐺surface = 𝜇|𝜎| ∙ (∫
𝑑𝑧

2𝜋𝑟(𝑧)

𝐿

0
)
−1

= 𝜇|𝜎| ∙ 𝐵, uses the surface charge 

density, 𝜎, and the counterion mobility, 𝜇, to determine the passage of ions along the 

surface of the nanopore. This model has the potential to allow for the real-time 

monitoring of the nanopore growth so that by setting a predetermined current threshold 

during the voltage-controlled dielectric breakdown, a nanopore with the size of interest 

could be fabricated23. 

NANOPORE CHARACTERIZATION 

i) TOTAL NANOPORE LENGTH 

(This sub-section is explored in detail in chapters 3 and 4).  

  

In integral solved form of equation 124,25, there are two unknowns—𝑟0 and 𝐿—for a 

given nanopore shape and well-characterized surface chemistry and solution 

composition. From a single point measurement standpoint, to eliminate 𝐿 as an unknown 

parameter, it is a customary practice to set it equal to the manufacturer provided nominal 

membrane thickness. However, manufacturing tolerances mean that there is some room 

for error, in certain instances close to 60% of the stated nominal thickness. For example, 

for an observed conductance of 200 nS (𝐿 = 10 nm, 1M KCl solution at pH 7), 𝑟0~6.7 

nm. However, if the actual 𝐿 is 16 nm (Norcada Inc, NT-005Z, Lot #15)—a 60% error 

with respect to the assumed 10 nm nominal thickness—the calculated 𝑟0 would be 

~8.6 nm. Therefore, we let {𝑟0, 𝐿 } to be free parameters—so that an infinite number of 

{𝑟0, 𝐿} probable combinations exist from a single conductance measurement 

standpoint25. One approach to gain additional conductance data points to solve for the 

true {𝑟0, 𝐿} combination would be to surface-modify the nanopore, for example by 
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electroless plating, hydrosilylation or silane chemistry—so that a minimum of two 

conductance data points can be generated24. Another possible method would be to 

monitor pore formation with time—an array of real-time pore data would be generated. 

Since real-time/step-wise conductance data acquisition is experimentally possible, a 

framework that would simulate a set of conductance data to deduce the initial geometric 

parameters, {𝑟0, 𝐿} was developed. This framework holds promise to be extended to 

experimentally observed conductance data.  

ii) NANOPORE SHAPE 

(This sub-section is explored in detail in chapters 3 and 4).  

  

The values of the two integrals of equation 1, A (volume integral) and B (surface 

integral), are shape-dependent. It has also become a standard practice to assume the 

shape of the nanopore to be cylindrical (𝐴 =
𝜋𝑟0

2

𝐿
, 𝐵 =

2𝜋𝑟0

𝐿
) unless the shape is clearly 

known, and even then the cylindrical approximation remains popular. Other nanopore 

shapes exist—double-conical, conical-cylindrical and hyperbolic are a few examples25–

29—which are both material and fabrication method dependent. For example, 

anisotropic etching of track-damaged silicon nitride produces conical or double-conical 

pores depending on whether the etching is done from a single side (conical) or from 

both the sides (double-conical) of the damaged track26. In some instances, the possibility 

for conversion of one shape to another exists, if fabrication conditions are not controlled 

properly29. If the initial conductance is assumed to be 200 nS (𝐿 = 10 nm,1M KCl 

electrolyte at pH 7) for a silicon nitride nanopore, the calculated 𝑟0 for cylindrical, 

double-conical, conical-cylindrical (assuming the inner cylindrical length to be 0.6𝐿) 
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and hyperbolic shapes would be ~6.4, 3.1, 5.5, and 4.0 nm respectively. There is, for 

example, an error greater than 50% in calculated 𝑟0, if a double-conical nanopore is 

wrongly assumed as a cylindrical nanopore or visa-versa. A need to deduce the shape 

of a nanopore therefore exists. Shape introduces another variable in addition to the two 

free geometric parameters, {𝑟0, 𝐿}. The same framework that was developed to solve for 

{𝑟0, 𝐿} was used with critical modifications in the form of having additional simulated 

data points for robustness of the method and to solve the additional unknown, nanopore 

shape. 

iii) NUMBER OF NANOPORES 

(This sub-section is explored in detail in chapters 3 and 4).  

As an added complexity to nanopore characterization, it is assumed that only one 

nanopore is formed when one was intended. However, recent work showed that this is 

not always the case:  an unoptimized multilevel pulse voltage injection (MPVI) method 

yielded multiple pores when one was intended30. A simple example yields valuable 

insight:  a comparison of a single pore and two identical pores (double pores). For an 

initial conductance of 200 nS (𝐿 = 10 nm,1M KCl electrolyte at pH 7) each profile gives 

the corresponding 𝑟0:  cylindrical—6.4 vs. 4.5 nm; double-conical—3.1 vs. 1.7 nm; 

conical-cylindrical—5.5 vs. 3.8 nm; and hyperbolic—4.0 vs. 2.3 nm for single and 

double pore cases, respectively. If the number of pores is wrongly assumed to be one, a 

given molecule, depending on the actual size of the nanopore, would not translocate 

through the nanopore despite calculations (based on the wrong assumptions) saying 

otherwise. Hence, there exists a need to differentiate between a double pore and a single 
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pore case before precious analyte is spent/wasted in an incorrectly configured nanopore 

device. One of the methods to distinguish a single pore from its double pore counterpart 

is to use λ-DNA as a gauging molecule. That is to use, 
(〈𝐺〉−〈𝐺𝑏〉)

〈𝐺〉
≅ (

𝑟λ-DNA

𝑟0
)
2

with 〈𝐺〉, 

〈𝐺𝑏〉 and 𝑟λ-DNA the time-averaged conductances of open, and analyte-filled, nanopore 

and radius of λ-DNA respectively23. 

NANOPORE SURFACE MODIFICATIONS 

 

(This sub-section is not explored in detail due to intellectual property filing). 

 

In addition to analyte sticking, the charge of the pore sometimes decreases the 

translocation frequency by opposing the translocation by having electro-osmotic 

movement (in addition to electrostatic repulsion31) opposite to the direction in which 

the analyte is moving. This would require the experiment to be done over an extended 

period to collect an appreciable amount of data, or done at higher voltages risking 

voltage-driven electrode reactions. Switching the charge of the pore is possible through 

pH tuning if the surface contains an isoelectric point, which is the case for silicon nitride 

rich in hydroxy, amine and other nitrogen-based moieties32. However, the pH at which 

this switching occurs would sometimes be at a regime which can cause degradation of 

the analyte. A gentler approach would be to modify the nanopore surface with a surface 

terminal group that would produce the nanopore surface charge of interest at the desired 

experimental pH. Such changes would lead to changes in the direction of electro-

osmotic flow. Careful attention, however, must be paid to the translocation velocity as 

it must be within the bandwidth limitation of the data acquisition electronics. Some of 

the recent surface modification efforts involve silane chemistry where an organosilane 
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molecule is initially reacted with a pristine silicon nitride nanopore surface33. This 

requires the nanopore to be treated with piranha solution so that the nanopore surface 

would be clean and rich in hydroxyl groups. We carried out hydrosilylation on freshly 

fabricated nanopores to avoid such harsh surface treatments (e.g. piranha). Once the 

initial monolayer of molecules is photochemically laid, subsequent reactions, for 

example, condensation and even click, were carried out to further modify the nanopore 

surface. Such modification steps also provide the ability to tune the size of a nanopore—

fabricating nanopores with diameters <5 nm is a challenging task and these 

modifications can allow one to shrink a pore that is initially made larger than expected 

back to the challenging <5 nm size regime. 

ELECTROLESS GOLD PLATING, SPATIAL PATTERNING AND SERS 

 

(This sub-section is explored in detail in chapters 5, 6 and 7). 

 

Fabricating conductive patterns on nanofabrication compatible material such as 

silicon nitride could serve as, for example, recognition elements (electrode), signal 

amplifiers (hot spots for surface enhanced Raman) and circuitry elements. A mask to 

restrict conductive material to regions of interest is essential. Non-contact methods are 

preferred for fragile (ultra-thin) architectures. Photochemically driven hydrosilylation 

could be well-suited for such situations and area-selective exposure of UV light could 

lead to grafting of alkane molecules in a user-defined pattern. This step is followed by 

electroless plating and we anticipate this (alkane) molecular layer to arrest metal ion 

deposition on them and on the underlying silicon nitride. Thus, patterned metal 

formation is expected to prevail provided that non-specific adsorption does not lead to 
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plating, and that degradation of the alkane layer does not happen during the metallic 

structure fabrication process—modifications to the electroless method would be needed 

if these adverse effects take place. The density of Si-H sites—governed by the 

stoichiometric excess of Si in the silicon nitride—would determine how densely alkanes 

would be packed on the silicon nitride surface. One would desire a high coverage as 

these alkanes are expected to become an umbrella to the underlying silicon nitride—

protecting it from the reactive elements of electroless baths. 

The electroless gold plating method, with substrate specific modifications, can 

be extended to paper, nanocellulose, acrylate polymer grafted silicon nitride, 

nanoporous silicon nitride and Silmeco (a commercial substrate with a pillar like 

architecture) to create low cost surface enhance Raman (SER) active substrates. Coinage 

metals enhance the otherwise weak Raman signal. The presence of hot spots—a 

nanoscale region of especially high enhancement accessible by the analyte molecule—

further contribute to signal enhancement. Silmeco and polymer grafted silicon nitride, 

due to their surface structure, are expected to have higher enhancement factors than 

other substrates. A distinct advantage of the cellulose based substrates is the ease of 

disposing. 

POLYSACCHARIDE PROFILING 

 

(This sub-section is explored in detail in chapter 8). 

 

Polysaccharides have key roles in a multitude of biological functions, and they 

can be harnessed for therapeutic roles, with the clinically ubiquitous anticoagulant 

heparin being a standout example. Their complexity—e.g. >100 naturally occurring 
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monosaccharides with variety in linkage and branching structure—significantly 

complicates their analysis in comparison to other biopolymers such as DNA and 

proteins. More, and improved, analysis tools have been called for, and solid-state silicon 

nitride nanopore sensors and tuned sensing conditions can be used to reliably detect 

native polysaccharides and enzymatic digestion products, to differentiate between 

different polysaccharides in straightforward assays, to provide new experimental 

insights into nanopore electrokinetics, and to uncover polysaccharide properties. 

Nanopore sensing allows to easily differentiate between a clinical heparin sample and 

one spiked with the contaminant that caused deaths in 2008 when its presence went 

undetected by conventional assays. The work reported here lays the foundation to 

further explore polysaccharide characterization and develop assays using thin-film 

solid-state nanopore sensors. 
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Cameron M. Frament, Nuwan Bandara and Jason R. Dwyer* 
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Rhode Island, 02881, United States 

ABSTRACT 

 

The performance of nanopore single-molecule sensing elements depends 

intimately on their physical dimensions and surface chemical properties. These factors 

underpin the dependence of the nanopore ionic conductance on electrolyte 

concentration, yet the measured, or modeled, dependence only partially illuminates the 

details of geometry and surface chemistry. Using the electrolyte-dependent conductance 

data before and after selective surface functionalization of solid-state nanopores, 

however, introduces more degrees of freedom and improves the performance of 

conductance-based nanopore characterizations. Sets of representative nanopore profiles 

were used to generate conductance data, and the nanopore shape and exact dimensions 

were identified, through conductance alone, by orders-of-magnitude reductions in the 

geometry optimization metrics. The optimization framework could similarly be used to 

evaluate the nanopore surface coating thickness. 

INTRODUCTION 

 

Nanopores are the core element of a powerful new class of methods and devices 

for single-molecule sensing and manipulation1-9. A nanopore, at its most basic level, is 



14 

 

a nanometer-diameter through-hole in an insulating membrane. When such a membrane 

is used to divide an electrolyte-filled cell, and a transmembrane potential is applied, the 

flow of electrolyte ions through the nanopore can be readily measured. The presence of 

a single molecule in the nanopore can then be detected and identified if it perturbs the 

electrolyte-only, open pore current in a characteristic way. Experimental measurements 

of nanopore conductance in the absence of analyte show a rich behavior dependent upon 

the intricate interplay between nanopore geometry, nanopore surface chemistry, 

electrolyte composition and potential drop across the nanopore. This behavior is 

captured by theoretical treatments and simulations employing varying levels of 

sophistication10-16. 

There are three broad classes of nanopores in routine use:  proteinaceous pores 

such as -hemolysin and MSPA, solid-state pores such as those fabricated in silicon 

nitride and silicon oxide using direct electron- and ion-beam milling, and solid-state 

pores formed by solution processing of ion-tracked polymer and silicon nitride films1-4, 

7, 17. These pore classes and fabrication conditions present quite different geometries and 

surface chemistries, and quite different challenges and opportunities. Protein pores offer 

self-assembly of reproducible pore structures with rich surface chemistries determined 

by the functional groups—amino acids in native pore structures, modifiable through 

complex formation and biochemical manipulation—lining the nanopore interior. Solid-

state nanopores crafted in micro-and nanofabrication-compatible materials such as 

silicon nitride and silicon dioxide offer the prospect of streamlined fabrication of robust, 

complex nanopore devices for single molecule measurement and manipulation. The 

ability to create solid-state nanopores with a variety of sizes and shapes to accommodate 
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a wide range of target applications is also driving their increasing popularity. The 

surface chemistry of native solid-state nanopores is relatively simple, with silicon oxide 

nanopore surface chemistry, for instance, typically treated as being governed by the 

single chemical equilibrium10-11 

SiOH ⇌ SiO
-
 + H+  (1) 

Advances in the surface chemical modification of nanopores, however, are 

dramatically blurring the boundaries between the rich surface chemistry of protein pores 

and the relatively straightforward chemistry of native solid-state pores. A variety of 

methods exists to tune nanopore surface chemistry, from direct covalent attachment to 

the use of physi- and chemisorbed layers 18-22. Such surface modifications can be used 

to alter the nanopore surface chemistry and they can also be used to appreciably change 

the physical dimensions of the nanopore. Thus, what emerges is a design framework in 

which physical and molecular approaches can be used to tune the solid-state nanopore 

size and properties to suit applications as diverse as the fundamental investigation of 

receptor-ligand interactions23 and rapid, low-cost DNA sequencing24. The consequent 

challenge is the characterization of the resulting nanopore on a length scale that is 

challenging to access experimentally. Characterization approaches that rely on charged 

particle imaging place substantial demands on the user, and require access to facilities 

and expertise in methods beyond those required for nanopore use10, 25-26. The 

development of characterization methods requiring routine nanopore operation, alone, 

thus continues, with the improved accessibility and efficiency of nanopore methods an 

attractive target10, 27. Such methods would additionally promise benefits for advancing 

the foundations of nanopore technology by permitting, for example, nanopore size and 
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shape to be monitored and used for feedback during solution-based nanopore fabrication 

approaches19, 28-30. 

Given the central role of the nanopore ionic conductance in many nanopore 

experiments, and given that the conductance is determined by factors including the 

nanopore size and surface chemistry, it is common to use the ionic conductance to 

characterize the nanopore. Using a simple but experimentally supported model for 

nanopore conductance10-11, 19, we have previously shown that the electrolyte-

dependence of the conductance offers, in general, only a limited view of nanopore 

structure27. In particular, the ability to determine at most two nanopore geometry 

parameters does not necessarily permit unambiguous identification, by conductance, of 

nanopore shape. Independent knowledge of some elements of the size or shape, though, 

can be used within that framework to allow the evaluation of conductance-derived 

parameters, or to impose constraints that allow the partial recovery of more geometric 

information from nanopores described by more than two geometric parameters27. In this 

work, we show that by using the electrolyte-dependence of nanopore conductance 

before and after surface coating, we can more completely characterize nanopore size 

and shape without the need for independent geometry inputs. In particular, for 

experimentally realistic three-parameter pores, the augmented approach allows 

nanopore size and shape to be completely recovered from the conductance. 

THEORY 

 

We adopt a widely-used theoretical model for the nanopore conductance that has 

been successfully used to model experimental results10-11, 19. We focus on nanopores 
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less than 20nm in diameter, for which the access resistance is a negligible contribution31, 

leaving two contributions to the nanopore conductance, 𝐺10, 27 

𝐺total = 𝐺bulk + 𝐺surface      (2) 

  

The bulk term, 𝐺bulk arises from the flow of ions through the pore, treated here as a 

uniform flow32 

𝐺bulk = 𝐾 (∫
𝑑𝑧

𝜋(𝑟(𝑧))
2)
−1

= 𝐾 ∙ 𝐴  (3) 

where K is the solution conductivity and r(z) is the radius of the pore as a function of 

the distance into the pore, in a cylindrical coordinate system. The surface term, 𝐺surface, 

accounts for the flow of counterions along the charged surface of the pore, which is 

especially significant in low bulk ionic strength solutions10-11 

𝐺surface = 𝜇|𝜎| (∫
𝑑𝑧

2𝜋𝑟(𝑧)
)
−1

= 𝜇|𝜎| ∙ 𝐵  (4) 

where σ is the surface charge concentration, and μ is the mobility of the counter ions 

proximal to the surface. This surface term thus augments the conductance with 

additional information involving the geometry and the surface chemistry. For a 

nanopore with surface chemistry governed by the chemical equilibrium in equation 1, 

the surface charge will arise from the charged SiO- groups on the surface, and the mobile 

counterions will be cations. By solving for the equilibrium concentration of H+ ions at 

the surface, [H+]0, and applying the Nernst equation33 

[H+]0 = [H
+]bulk exp(−𝑒𝛽𝜓0)  (5) 
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where [H+]bulk = 10
−pH, one can obtain an expression for the diffuse layer potential 

proximal to a negatively charged surface33 

𝜓𝐷(𝜎) =
1

𝛽e
ln

−σ

eΓ+𝜎
− (pH− pKa)

ln10

𝛽e
−
𝜎

𝐶
   (6) 

where e is the elementary charge, 1/β is the thermal energy (at 298K for all calculations), 

Γ is the total surface density of surface chargeable groups, pKa is the acid dissociation 

constant for equation 1, pH is the bulk solution pH, C is the Stern layer capacitance, and 

σ is the surface charge density. Surface functionalization likely changes the pKa, and if 

the surface becomes cationic, the argument of the first logarithm becomes (𝑒𝛤 − 𝜎) 𝜎⁄ , 

and the mobile surface counterions are anions. Coupling the appropriate expression for 

the diffuse layer potential with the Grahame equation33 

𝜎(𝜓D) =
2𝜖𝜖0𝜅

𝛽𝑒
sinh (

𝛽𝑒 𝜓D

2
)  (7) 

where 𝜖𝜖0 is the permittivity of the solution and к-1 is the Debye screening length, 

calculated from 𝜅2 = 𝛽𝑒2𝑛KCl 𝜖𝜖0⁄  where nKCl is the numerical concentration of the 

potassium chloride electrolyte, allows one to find a solution for the surface charge 

concentration of the pore10-11, 33.  

The nanopore conductance in equation 2 can be expressed in a form that clarifies 

its geometrical and surface chemical underpinnings27 

𝐺total = 𝐴 𝐾 + 𝐵 𝜇|𝜎|                               (8) 

where A and B are the volume and surface integrals, respectively, in equations 3 and 4. 

When a continuous coating of thickness 𝛿 is applied to the nanopore surface, the new 

conductance of the nanopore can be expressed as 
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𝐺′total(𝛿) = 𝐴
′(𝛿) 𝐾 + 𝐵′(𝛿) 𝜇′|𝜎′|                               (9) 

where the prime denotes the parameter value after surface coating. Measurement of the 

nanopore conductance at a minimum of two electrolyte concentrations, each, before and 

after changing the surface coating (a dimension change, 𝛿 ≠ 0, is required, and a surface 

charge density change from 𝜎 to 𝜎′ is likely), formally allows for the unique 

determination of the geometry parameters 𝐴, 𝐴′(𝛿), 𝐵 and 𝐵′(𝛿). These parameters can 

then be used to determine the values of the underlying geometric parameters such as the 

nanopore limiting radius. 

The implementation of this approach is not restricted to experiments in which 

only changes in the solution electrolyte concentration are used to predictably change the 

solution conductivity, 𝐾, and the surface conductivities 𝜇|𝜎| and 𝜇′|𝜎′|. Chemical and 

physical parameters both implicit and explicit in Equations (6) and (7) can be used 

instead, including:  a direct change of solution pH, a change of solvent to drive changes 

in ion mobility or surface acid dissociation constants, or a change in temperature to 

affect the surface acid dissociations and ion mobilities. The method is quite general and 

relies only upon the explicit functional dependence of the conductance shown in 

Equations (8) and (9). It does not rely upon the particular chemical or physical parameter 

used experimentally to deliver the underlying functional dependence of 𝐾,  𝜇|𝜎| and 

𝜇′|𝜎′|. 

METHODS 

 

In all calculations where the parameters appear, the bulk solution pH was fixed 

at 7.5 and the nanopore membrane thickness, L, was held fixed at 30nm. The aqueous 
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electrolyte solution was composed of potassium chloride, so that the solution 

conductivity was calculated from 

𝐾 = e 𝑛KCl(𝜇K + 𝜇Cl)  (10) 

where 𝜇K = 7.6 × 10
−8m2/(V ∙ s) and 𝜇Cl = 7.9 × 10

−8m2/(V ∙ s) are the mobilities 

of the potassium and chloride ions, respectively11. The solution permittivity was 

approximated as 𝜖𝜖0 = 77.75𝜖0 throughout. Native, uncoated nanopores had their 

surface chemistry described by the equilibrium in Equation 1, with a constant pKa=7.934. 

The surface charge density, 𝜎, of the uncoated nanopores was calculated as the 

simultaneous solution to equations 6 and 7, where Γ and C were held constant at 

8 × 1018 m−2, and 0.3 F ∙ m−2, respectively, and were not changed after surface 

coating33-34. 

We selected a number of common nanopore radial profiles, listed in Table 1.1, to 

describe the shape of the nanopores. We chose to model an amine-terminated, 

covalently modified nanopore surface to give a surface coating involving the acid-base 

equilibrium  

−NH2H+⇌ − NH2 + H+  (11) 

and described by pKa = 10.8. The 1.7nm-thick coating was assumed to smoothly and 

uniformly coat the surface without changing the nanopore shape and with the monolayer 

chains orthogonal to the surface at the point of attachment. The surface coating did, 

however, change the sign of the charge on the nanopore surface and the identity of the 

mobile surface counterions, from cations in the native pore to anions in the coated pore. 



21 

 

To investigate the ability of the proposed method to recover the nanopore size 

and shape for nanopores with limiting radii, 𝑟0, between 2.5 and 10nm, we computed 

the integrals 𝐴, 𝐴′(𝛿), 𝐵 and 𝐵′(𝛿), using 𝛿 = 1.7nm to account for the length of the 

silane-coupled monolayer, for each nanopore radial profile listed in Table 1.1. The 

lower limit was chosen to prevent the monolayer from sterically closing the pore, but 

must in practice be responsive to the onset of overlapping Debye layers. To generate the 

set of reference (ref) values, we varied the limiting radii, 𝑟0,ref, and fixed the inner 

cylinder lengths, 𝑙ref of the exponential-cylindrical and conical cylindrical models at 

11nm, the slope parameter 𝑏ref of the exponential-cylindrical model at 0.19nm-1, and the 

outer radii, 𝑅ref of the hyperbolic, conical and conical-cylindrical models at 𝑟0,ref +

10nm10, 27, 31. We then used these reference calculations to geometry-optimize all of the 

radial profiles at each limiting radius. For example, an 𝑟0,ref = 3nm exponential-

cylindrical nanopore was used to geometry-optimize cylindrical, conical, hyperbolic, 

conical-cylindrical and exponential-cylindrical profiles, and an 𝑟0,ref = 7𝑛𝑚 cylindrical 

nanopore was used to geometry-optimize cylindrical, conical, hyperbolic, conical-

cylindrical and exponential-cylindrical profiles. All native geometry parameters, except 

for L, were varied during the geometry optimizations. The geometry optimizations were 

first performed with fixed monolayer thickness, 𝛿 = 1.7nm, and then repeated in a 

separate trial with 𝛿 as a free parameter, in an attempt to recover the layer thickness. 

The optimization used the Nelder-Mead minimization algorithm, and involved varying 

the underlying geometry parameters (e.g. 𝑟0, 𝑙, etc.) of the radial profiles to minimize  
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RMSEAB

= √
1

4
((
𝐴fit − 𝐴ref
𝐴ref

)
2

+ (
𝐵fit − 𝐵ref
𝐵ref

)
2

+ (
𝐴′fit − 𝐴′ref
𝐴′ref

)

2

+ (
𝐵′fit − 𝐵′ref
𝐵′ref

)

2

)  
 (12) 

where the subscript “ref” denotes the known, reference, parameter value, and the 

subscript “fit” denotes the corresponding value calculated using the trial values. Given 

the form of the conductance (equations 8 and 9), minimization of RMSEAB delivers a 

weighted conductance-based geometry optimization. An error threshold of 10-12 was 

used in the optimization runs, and the optimized structure was the result of the trial with 

the lowest RMSEAB. A similar metric expressed directly in terms of conductance 

requires an average across N potassium chloride concentrations  

𝐑𝐌𝐒𝐄𝐆 = √
𝟏

𝐍
∑

𝟏

𝟐
((
𝐆𝐟𝐢𝐭([𝐊𝐂𝐥])−𝐆𝐫𝐞𝐟([𝐊𝐂𝐥])

𝐆𝐫𝐞𝐟([𝐊𝐂𝐥])
)
𝟐
+ (

𝐆𝐟𝐢𝐭
′ ([𝐊𝐂𝐥])−𝐆𝐫𝐞𝐟

′ ([𝐊𝐂𝐥])

𝐆𝐫𝐞𝐟
′ ([𝐊𝐂𝐥])

)
𝟐

)[𝐊𝐂𝐥]                               (13) 
 

The potassium chloride concentrations used here ranged from 0.01M to 1M, with the i-

th concentration calculated from 10−2+(𝑖−1)0.01M. 

RESULTS AND DISCUSSION 

 

In the most common implementation of conductance-based nanopore sizing, the 

nanopore conductance at a single electrolyte concentration is used to extract a radius, 

and nanopore surface charges may be either included or neglected in the calculation. 

We explore this canonical single-point approach as a prelude to the consideration of the 

more involved process outlined in the Methods section. The use of a single conductance 

value for geometry optimization permits only the use of single-parameter profiles—

either those that are inherently single-parameter, such as the cylindrical profile, or those 

in which all parameters but one are fixed to particular values or fixed by functional 
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relationships that are either known or are assumed reasonable. In addition to this strictly 

geometric limitation, the use of a single conductance value, 𝑮𝐭𝐨𝐭𝐚𝐥, does not allow the 

separation of bulk and surface contributions to the conductance. Measurement in high 

ionic strength solutions, though, can minimize the effect of the surface term, albeit at 

the cost of information about the surface chemistry. Geometry optimization of a 

particular nanopore profile can produce dramatically different nanopore sizes when 

geometry parameters that satisfy Equation 8 are determined by either including or 

neglecting the surface charge. These single-point geometry optimizations produce exact 

agreement with the reference conductance, so that no error metrics exist to evaluate the 

suitability of the assumed nanopore shape. Figure 2.1 and the discussion that follows 

put the necessity to consider size, shape, surface chemistry and electrolyte composition 

in concert into relief. 

 

Figure 2. 1. The conductance of an uncoated, surface-charged exponential cylindrical 

reference pore (r0,ref = 4.9 nm, lref=11nm, and bref=0.19nm-1) was calculated at a number 

of different electrolyte concentrations. All of the plotted radii were calculated by using 
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the single reference conductance at each electrolyte concentration to geometry optimize 

either the known reference radial profile (with fixed l=11nm, and b=0.19nm-)1, or the 

canonical cylindrical approximation. For each nanopore shape, the radial optimization 

was performed with the surface charge included and then neglected. 

To generate Figure 2.1, the conductance of the uncoated reference nanopore was 

calculated using a realistic radial profile with three tunable geometric parameters 

(exponential-cylindrical, see Supplemental Table S1)10 and accounting for the surface 

charge established by the equilibrium described in Equation 1. At each electrolyte 

concentration considered, the single conductance value was used to determine the radius 

of a particular single-free-parameter nanopore profile—here, either the original 

reference profile with fixed l=11nm, and b=0.19nm-1, or a cylindrical profile—by 

including or neglecting the surface charge. In solutions with high bulk conductivity and 

high ionic strength, omission of the surface charge had little effect on the best-fit 

nanopore radii. There was, however, a clear difference in the nanopore radii determined 

via assumption of the nanopore shape—a difference that persisted across solution 

electrolyte concentrations. At lower electrolyte concentrations, the profile-specific 

errors in best-fit radii were dramatically superseded by the errors arising from the 

neglect of surface charges in the geometry optimization. This tremendous sensitivity to 

the surface chemistry points both to the potential to profile the surface chemistry via 

conductance and to the necessity to consider it10-11, 14, 35. It is moreover essential to 

emphasize that in addition to the visible differences in cylindrical and exponential-

cylindrical best-fit radii shown in Figure 2.1, the two optimized versions of the same 

nanopore have dramatically different shapes—one has a cylindrical restriction of 11nm 
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in length that then opens towards the membrane surfaces, the other a cylindrical 

restriction that spans the entire 30nm membrane thickness. These observations 

underscore the importance—and difficulty—of using conductance to determine 

nanopore shape and surface chemistry, together:  a single conductance value can be 

exactly satisfied by nanopores of a host of different sizes and shapes. Extension of this 

basic, single-point optimization to use the electrolyte-dependence of the conductance—

at minimum a two-point optimization, but more practically requiring more than two data 

points to improve the fit statistics—offers the possibility of determining the bulk and 

surface contributions. In addition, the extension delivers an additional degree of 

freedom for nanopore geometry optimizations:  it permits the optimization of radial 

profiles with up to two free geometry parameters27. Given that transmission electron 

microscope (TEM)-fabricated nanopore profiles can require description by no less than 

three free parameters, such a geometry optimization requires parameter constraints or 

reductions. This has the consequence of compromising the nanopore size determination 

and moreover prevents even the shape of pores from being determined without 

additional information27. One of the substantial and myriad benefits conferred by 

coating nanopores with overlayers, then, is the additional degrees of freedom provided 

for conductance-based geometry optimizations. 

Nanopores and nanopore surface functionalization are frequently characterized 

using a conductance-based method that does not involve variation of the electrolyte 

concentration, however. The approach is analogous to the single-point optimization of 

Figure 2.1 and uses the nanopore conductance at a single electrolyte concentration, 

before and after surface coating. The use of two conductance values provides a much-
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needed additional degree of freedom compared to the single-point measurement, but the 

available information is still limited. In particular, one would perform a single 

measurement of the conductance before and after (′) coating, 𝐺1 = 𝐴 𝐾1 + 𝐵 𝜇1|𝜎1| and 

𝐺′1(𝛿) = A(𝛿) 𝐾1 + B(𝛿) 𝜇1′|𝜎1′|, respectively, where the subscript “1” denotes the 

particular value of the parameter. Rewriting A(𝛿) = α(δ)𝐴 and B(𝛿) = β(δ)𝐵 (with 

different values of α(δ) and β(δ) for each nanopore size and shape), and defining 

effective (eff) values α(𝛿)𝐾1 = K1,eff and β(𝛿)𝜇1′|𝜎1′| = (𝜇1′|𝜎1′|)eff yields two 

equations 𝐺1 = 𝐴 𝐾1 + 𝐵 𝜇1|𝜎1| and 𝐺′1(𝛿) = A K1,eff + B (𝜇1′|𝜎1′|)eff that makes this 

approach formally equivalent to the two-point nanopore geometry optimization that had 

previously been explored in detail27. While delivering generally superior performance 

to a single-point optimization, it nevertheless has well-characterized performance 

limitations in comparison to the optimization method introduced here. For example, 

such a two-point approach cannot be used to uniquely geometry optimize nanopores 

requiring more than two free geometry parameters27. 

We now consider the nanopore optimization method outlined in the Theory and 

Methods sections, a method that requires knowledge of the nanopore conductance at a 

minimum of two electrolyte concentrations, before and after surface coating. The 

method therefore requires a minimum of four conductance values (a four-point 

optimization), but in practice more than these four conductance values would be used 

in order to improve the fit statistics, at least the first time that a pore was to be 

characterized. Equation (13) could be used to guide the geometry optimization using the 

conductance directly. In the conductance equations, Equations (8) and (9), however, the 
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physical pore dimensions and the surface chemical properties are separable 

contributions to the conductance. To highlight the performance of the optimization 

method in recovering nanopore size and shape, we used Equation (12) to perform the 

geometry optimizations, guided by the known values of 𝐴ref, 𝐴ref
′ (𝛿), 𝐵ref and 𝐵ref

′ (𝛿). 

The optimization results presented here using Equation (12) deal with geometry only, 

and are completely independent of the surface chemistry, which need not be specified. 

Experimentally, this geometry-based approach would have great utility if a two-step 

optimization were adopted. In the first step, the conductance versus electrolyte 

concentration curves (Equations 8 and 9) would be fit to extract best-fit values for 𝐴, 

𝐴′(𝛿), 𝐵 and 𝐵′(𝛿)—parameters that would be, at this stage, devoid of physical 

meaning because the core geometry parameters underlying their values would not yet 

be considered. Within the framework of the conductance model described by Equations 

(8) and (9), this first step would thus require no knowledge of nanopore geometry, but 

would require only knowledge of its surface chemistry. Minimization of RMSEG to 

achievable ~10-12 levels (cf. Figure 2.2) may require slight fine-tuning of surface 

parameters to optimize the fit to the conductance. The best-fit 𝐴, 𝐴′(𝛿), 𝐵 and 𝐵′(𝛿) 

would then serve as the reference values to govern the subsequent determination of 

nanopore size and shape using Equation (12)—a geometry-only optimization. 

Figure 2.2 summarizes geometry optimizations, using Equation (12), selected 

from the full set performed. In Figure 2.2A, exponential-cylindrical nanopores 

described by three underlying geometry parameters (r0,ref, l=11nm, and b=0.19nm-1)10 

were used to calculate the reference 𝐴, 𝐴′(𝛿), 𝐵 and 𝐵′(𝛿). Geometry optimizations of 

all the radial profiles listed in Table 1 were performed, without constraints on the values 
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of the geometry parameters (other than L=30nm and 𝛿 = 1.7nm, as outlined in 

Methods). The lowest values of the optimization metric RMSEAB were for the 

exponential-cylindrical profile—the shape matching the reference nanopore shape—

and were orders of magnitude lower, for all nanopore sizes considered, than the 

RMSEAB for all of the other candidate nanopore shapes. The RMSEAB metric was 

therefore clearly able to correctly identify the nanopore shape. The errors in 

conductance, RMSEG, corresponding to all of the RMSEAB-best-fit geometries, were 

also calculated, although they were not used for the optimization. While the RMSEG are 

scaled by the solution and surface physicochemical parameters, they still showed the 

same relative trends and magnitudes as the RSMEAB and the same performance in 

correctly identifying the nanopore shape from amongst the candidates. An examination 

of the best-fit limiting radii, 𝒓𝟎, for each trial shape further emphasizes the merits of this 

conductance-based characterization approach. The cylindrical, conical and hyperbolic 

profiles rejected by the RMSEAB metric yielded radii whose deviations from the 

reference radii were significant on the length scale of nanopore-based single-molecule 

sensing and manipulation. In spite of broad structural similarities (inner cylinders that 

widen towards the membrane surfaces) and limiting radii in very close agreement, the 

RMSEAB metric was able to clearly differentiate between conical-cylindrical and 

exponential-cylindrical pore shapes. This inability of the conical-cylindrical pore to 

match the exponential-cylindrical nanopore conductance occurred in spite of the 

variation of 𝑅 − 𝑟0 from ~3.5nm to ~7nm with increasing 𝑟0,ref, and 𝑙 varying from 9.8 

to 11nm versus the constant 11nm in the reference nanopores (not shown). This ability 

to distinguish between even structurally similar three-parameter (or fewer) nanopore 
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shapes using the present four-point method is in marked contrast to earlier reports using 

two-point conductance optimizations27. 

Figure 2.2B presents the results of the geometry optimizations of conical 

reference nanopores. Comparison of the RMSEAB and RMSEG for all best-fit trial 

profiles indicated, by several orders of magnitude difference in errors, that the reference 

nanopores were conical, and the best-fit radii 𝑟0 and 𝑅 for the conical trial profile 

matched the known reference values. Reassuringly, the greater parameter flexibility of 

the exponential-cylindrical and conical-cylindrical profiles (three parameters versus the 

two parameters of the conical model) could not overcome the large gap in RMSEAB. 

The inability of the conical-cylindrical trial profile to match the conical reference 

conductances arises from its limiting behavior as 𝑙 → 0:  the uncoated pore profile 

reduces to a conical profile, but the coated profile remains conical-cylindrical. 

Nevertheless, the optimized values of the conical-cylindrical profiles indicated strong 

conical character:  limiting radii essentially matching conical reference limiting radii, 

and values of 𝒍 nearing zero (not shown).  

Four-point optimizations of hyperbolic and conical-cylindrical reference 

nanopores similarly allowed the correct determination of the reference nanopore shapes 

and their geometry parameters. A particularly interesting case of the ability of the four-

point optimization to correctly determine the shape of reference nanopores with three 

free parameters or less occurred when using a cylindrical reference nanopore. All of the 

trial profiles listed in Table 1 and Supplemental Table S1 will reduce to a cylinder as a 

limiting case. It is therefore possible to fit a cylindrical reference pore with a conical-
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cylindrical profile, for example, by satisfying either 𝑹 = 𝒓𝟎, and 𝒍 = 𝑳. It is necessary, 

therefore, to examine not only the RMSEAB or RMSEG for a particular trial profile, but 

also the resulting best-fit geometry parameters that could indicate a cylindrical reference 

nanopore even when using a conical-cylindrical trial, for example. 

 

Figure 2. 2 (A) The electrolyte-dependence of the conductance of uncoated and 

amine-surface-decorated exponential-cylindrical nanopores (𝑟0,ref, 𝑙 = 11nm, and 

𝑏 = 0.19nm-1
, 𝛿 = 1.7nm) was used to geometry optimize, with fixed 𝛿 = 1.7nm, 

the nanopore profiles in Table 1 using Equation 12. Upper panels denote the error in 



31 

 

the conductance calculated after optimization using RMSEAB, shown in the middle 

panel. The lower panels denote the final limiting radius of the pore for each trial 

profile. (B) The reference nanopore was conical with 𝑅ref = 𝑟0,ref + 10nm, and also 

had 𝛿 = 1.7nm. 

The trial nanopore profiles span a range of experimentally representative 

nanopore shapes and, with a maximum of only three free geometry parameters, can 

nevertheless reproduce experimental conductance measurements10, 27. The ease with 

which RMSEAB and RMSEG, when coupled with examination of the resulting best-fit 

parameters, determined the optimal radial profiles with fixed-𝜹 hinged on the number 

of free parameters in the trial shapes compared to the degrees of freedom delivered by 

the functional form of the conductance. The four-point method should also be able to 

uniquely geometry-optimize four-parameter models, thereby allowing the nanopore 

surface coating thickness, 𝜹, to be an additional free parameter of the optimization. 

Figure 2.3 shows the outcome of these free-𝜹 geometry optimizations for an 

exponential-cylindrical reference nanopore. The RMSE metrics excluded the 

cylindrical, conical and hyperbolic trial profiles, identical to the behavior seen for the 

fixed-𝜹 exponential-cylindrical reference nanopores characterization. The fit quality of 

exponential-cylindrical and conical-cylindrical profiles to the reference conductances, 

however, could not be distinguished on the basis of the RMSE metrics. In the four-point 

framework, the optimization of profiles with four free parameters is no longer 

overdetermined by the available conductance data, and such ambiguity can emerge. A 

conical profile artificially given four free parameters (𝒓𝟎, 𝑹, 𝜹 and the membrane 

thickness, 𝑳), for example, could also fit the conductance data with similarly low RMSE 
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values. Compared to prior two-point work in which the conductance could not 

distinguish between a variety of reasonable two-parameter nanopore profiles, however, 

the current uncertainty is rather benign and can be compensated for by judicious choice 

of trial profiles, careful examination of the optimized parameters or additional 

information27. Best-fit parameters 𝒓𝟎, 𝒍, and 𝒃 from optimization of the exponential-

cylindrical trial profiles exactly matched the reference native pore parameters, and the 

optimizations also yielded the correct surface coating thickness, 𝜹. The radii of the 

conical-cylindrical pores were an excellent match to the reference radii, but the inner 

cylinder lengths, l, could be as much as 8nm larger than the 11nm reference value. The 

conical-cylindrical best-fit 𝜹 in Figure 2.3 consistently underestimated the 1.7nm 

reference value, but not unreasonably so. In general, though, the use of well-defined 

surface functionalization moieties allows the optimized values of 𝜹 to be used as an 

independent check on the nanopore conductance characterization. The best-fit 𝜹 values 

for the hyperbolic profiles, for example, exceeded the possible length of the monolayer, 

and can therefore be ruled out or, possibly, could motivate independent additional 

characterization of the surface decoration. 
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Figure 2. 3. The geometry optimizations of exponential-cylindrical reference 

nanopores in Figure 2.2 were repeated, but with 𝜹 as a free parameter of the 

optimization. The top three panels show the metrics and best-fit radii, while the 

bottom panel shows the corresponding values of the surface coating thickness, 𝜹. 

CONCLUSIONS 

 

Surface-coated nanopores are receiving increasing attention for the ability of 

surface coatings to tune nanopore dimensions and surface chemistry, and to confer 

powerful performance capabilities on a host of nanopore single molecule sensing and 

manipulation schemes. Knowledge of a nanopore’s size, shape and surface chemistry 

thus bears on nanopore creation, modification and application. While nanopore 

conductance is governed by the nanopore geometry and surface chemistry in concert 

with experimental parameters such as electrolyte composition and temperature, careful 
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design is necessary if the measured conductance is to be used to reveal the underlying 

nanopore properties. The use of experimentally realistic trial nanopore profiles, coupled 

with consideration of the resulting best-fit parameters in the context of nanopore 

fabrication and surface functionalization details, is naturally essential to the success of 

this method. This is especially true when optimizing models with the full four degrees 

of freedom permitted by the method. The geometry optimization results were achieved 

using an experimentally-supported nanopore conductance model10-11 that allows the 

effects of nanopore geometry on the conductance to be clearly separated from the effects 

of surface chemistry. In this context, the conclusions drawn regarding the quality of the 

geometry optimization results presented here are general and, so long as the surface 

modification changes the nanopore dimensions, are not restricted to a particular choice 

of surface chemical modification. 

The four-point conductance framework introduced here was able to correctly identify 

nanopore shapes and to determine the correct magnitudes of all key geometry 

descriptors of realistic nanopores with greater structural complexity than had previously 

been possible by conductance, alone. This capability included the complete 

characterization of an elegant, experimentally-determined nanopore profile 

representative of TEM-manufactured nanopores10 without requiring constraint of its 

parameters27. The performance capabilities thus dramatically exceed those of the more 

usual single-point conductance approach based on a cylindrical nanopore 

approximation, and of the more sophisticated two-point conductance approaches. 

Beyond recovering the native nanopore structure, the four-point method was able to also 

probe the thickness of the surface coating, 𝜹. With the use of approaches that yield well-
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defined surface coatings, the best-fit values for the coating thickness emerge as an 

additional metric for evaluating the conductance-based nanopore characterization. 

Straightforward measurements of the electrolyte-concentration-dependent conductance 

of nanopores can thus serve as a simple yet powerful foothold for peering into these 

bioinspired nanoscale environments. 

Table 2. 1. Listing of nanopore radial profiles with the corresponding transformation of 

nanopore parameters after coating with a monolayer of thickness 𝜹 

Exponential-

cylindrical 

 

 

Hyperbolic 

 

Exponential-cylindrical 

𝑟0
′ = 𝑟0 − 𝛿 

𝑏′ = 
2 tan 𝜃𝐸

𝐿 − 𝑙 + 2𝛿(1 − cos 𝜃𝐸)
 

𝑙′

= 𝐿 + 2𝛿 − (𝐿 − 𝑙
+ 2𝛿(1

− cos 𝜃𝐸)) exp {
2𝛿 tan 𝜃𝐸 (1 − sin 𝜃𝐸)

𝐿 − 𝑙 + 2𝛿(1 − cos 𝜃𝐸)
} 

tan 𝜃𝐸 =
𝐿 − 𝑙

2
𝑏 

 

Conical 

Cylindrical 

 

Conical 

 

Hyperbolic 

𝑟0
′ = 𝑟0 − 𝛿 

(𝑅′)2 = (𝑟0 − 𝛿)
2

+ (
𝐿 + 2𝛿

𝐿 + 2𝛿 cos 𝜃𝐻
)
2

[(𝑅

− 𝛿 sin 𝜃𝐻)
2 − (𝑟0 − 𝛿)

2] 

tan 𝜃𝐻 =
𝑅𝐿/2

𝑅2 − 𝑟02
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Cylindrical 

 

All 

𝐿′ = 𝐿 + 2𝛿 

Conical Cylindrical 

𝑟0
′ = 𝑟0 − 𝛿 

𝑅′

=  𝑅
+ 𝛿(cot 𝜃𝐶𝐶 − csc 𝜃𝐶𝐶) 

𝑙′

= 𝑙
+ 2𝛿(sec 𝜃𝐶𝐶 − tan 𝜃𝐶𝐶) 

tan 𝜃𝐶𝐶 =
(𝐿 − 𝑙)/2

𝑅 − 𝑟0
 

Conical 

𝑟0
′ = 𝑟0 − 𝛿 csc 𝜃𝐶  

𝑅′

=  𝑅
+ 𝛿(cot 𝜃𝐶
− csc 𝜃𝐶) 

tan 𝜃𝐶 =
𝐿/2

𝑅 − 𝑟0
 

Cylindrical 

𝑟0
′ = 𝑟0 − 𝛿 

 

Supporting Information. Table S1 listing nanopore radial profiles with the 

corresponding volume (A) and surface (B) integrals. This material is available free of 

charge via the Internet at http://pubs.acs.org. 
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ABSTRACT 

 

 We describe a method for simply characterizing the size and shape of a 

nanopore during solution-based fabrication and surface modification, using only low-

overhead approaches native to conventional nanopore measurements. Solution-based 

nanopore fabrication methods are democratizing nanopore science by supplanting the 

traditional use of charged-particle microscopes for fabrication, but nanopore profiling 

has customarily depended on microscopic examination. Our approach exploits the 

dependence of nanopore conductance in solution on nanopore size, shape, and surface 

chemistry in order to characterize nanopores. Measurements of the changing nanopore 

conductance during formation by etching or deposition can be analyzed using our 

method to characterize the nascent nanopore size and shape—beyond the typical 

cylindrical approximation—in real-time. Our approach thus accords with ongoing 

efforts to broaden the accessibility of nanopore science from fabrication through use:  it 

is compatible with conventional instrumentation and offers straightforward nanoscale 

characterization of the core tool of the field. 
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INTRODUCTION 

 

A nanopore is a nanofluidic channel, with dimensions in all directions generally 

less than 100 nm, that can be used to deliver a host of capabilities for single-molecule 

sensing.1-10 High-profile nanopore sensing efforts have targeted sequencing single 

strands of DNA and RNA; protein conformational analysis; and characterization of 

other biomolecules, molecular complexes, and nanoparticles. In the most 

straightforward implementation of nanopore sensing, the nanopore is the sole path 

connecting two reservoirs containing electrolyte solutions. Electrodes in each reservoir 

establish a potential difference across the nanopore that drives ions through the 

nanopore:  passage of a target molecule, nanoparticle, or complex through the nanopore 

perturbs that ionic current and provides molecular-level information. That information 

naturally depends on the target’s dimensions and physicochemical properties and the 

ionic solution composition, but it is also profoundly affected by the size, shape, and 

surface chemistry of the nanopore. In the case of a (cylinder-like) double-stranded DNA 

polymer that fills the entire length of a cylindrical nanopore as it transits through, a 

simple geometric treatment considering only the displacement of bulk ions by the 

polymer gives a straightforward expression for the macromolecule-induced 

conductance change11 

𝛘𝐁 ≡
(〈𝑮〉−〈𝑮𝒃〉)

〈𝑮〉
≅ (

𝒓DNA

𝒓𝟎
)
𝟐

             (1) 

with 〈𝑮〉 and 〈𝑮𝒃〉 the time-averaged conductance through an unobstructed and DNA-

containing nanopore, respectively, and 𝒓DNA and 𝒓𝟎 the cross-sectional radii of the 

molecule and nanopore. The expression does not capture the panoply of complex 
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phenomena giving rise to conductance perturbations in nanopore sensing,12-13 but does, 

in convenient closed form, appropriately underscore the importance of nanopore 

dimension. This geometric basis of the conductance change has been used to infer 

biopolymer conformation, for example:  a folded-over polymer presents a larger 

effective cross-section than a linear one.14 The more elusive dependence of current 

change on single-stranded DNA base sequence, for example, underpins efforts to 

sequence single strands of DNA using nanopores.2, 8 In a powerful implementation of 

nanopore force spectroscopy, details of interaction energetics can be revealed if, and 

only if, a nanopore size is properly engineered to sterically force the linearization of a 

folded moiety during passage, or rupture of an intermolecular complex by barring 

passage of one of the partners.15-17 

The ionic conductance (𝑮), alone, of a nanopore with a charged surface can be expressed 

as the sum of a bulk and surface conductance term18-21 

𝐺 =  𝐺bulk + 𝐺surface = 𝐾 ∙ 𝐴 + 𝜇|𝜎| ∙ 𝐵      (2) 

when access resistance is negligible.22 Overlapping Debye layers require a more 

sophisticated treatment, but need not be considered over a broad useful range of 

nanopore sizes and solution ionic strengths.23-24 This simple formulation for 𝑮 has been 

supported by experimental measurements in which nanopore conductance was 

measured for nanopores that had size and shape interrogated by combinations of 

transmission electron microscopy and electron energy loss spectroscopy.13, 18 The bulk 

conductance is determined by the solution conductivity, K, and a volume integral, 𝐴, 

over the unique nanopore shape:  𝐺bulk = 𝐾 (∫
𝑑𝑧

𝜋(𝑟(𝑧))
2)
−1

= 𝐾 ∙ 𝐴 (with z-axis along 
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the length of the pore). The surface conductance is determined by the mobility of 

counterions proximal to the pore surface, 𝜇, the density of surface chargeable groups, 

𝜎, and an integral, 𝐵, over the surface of the nanopore:  𝐺surface = 𝜇|𝜎| (∫
𝑑𝑧

2𝜋𝑟(𝑧)
)
−1

=

𝜇|𝜎| ∙ 𝐵. The two defined quantities 𝐴 and 𝐵 therefore contain information about the 

size and shape of the nanopore, determined by the collection of geometric parameters, 

𝑞𝑗, relevant for a particular shape:  𝐴 = 𝐴({𝑞𝑗(𝑡)}) and 𝐵 = 𝐵({𝑞𝑗(𝑡)}). Nanopore 

materials are usually chosen with mechanical and physicochemical properties to 

minimize the change in size and shape in time, 𝑡, absent deliberate action. Commonly 

reported parameter values, which may be only a subset of those needed to fully 

characterize a given nanopore profile, include the limiting radius (the minimum radius 

along the profile), 𝑟0, and total nanopore length, 𝐿, that can in some cases be equated 

with the supporting membrane thickness. The experimentally-supported13, 18 treatment 

of the nanopore conductance here assumes axially and cylindrically symmetric 

nanopores in a size regime where access resistance is negligible,22 and that any surface 

charge emerges from a singly ionizable surface species described by a characteristic pKa 

−𝐴 − 𝐻 ⇌ −𝐴− + 𝐻+        (3) 

Native or engineered nanopore surface chemistry is an important element in nanopore 

performance, and contributor to nanopore conductance. The conductance can be 

naturally exploited for nanopore characterizations in conjunction with solution-based 

nanopore fabrication methods, and is especially useful when more complex methods 

present barriers to use. Charged-particle milling is an established, but challenging and 

burdensome, approach for formation of the smallest, <10 nm nanopores in thin 
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membranes.25-28 The use of (scanning) transmission electron microscopes ((S)TEM), 

helium ion microscopes, and scanning electron microscopes (SEM) for fabrication 

imposes time and instrumentation costs; can expose the nanopore to possible surface 

contamination within the instrument and to risk of damage during handling, transfer, 

and charged particle beam exposure; and reveals little of the nanopore surface 

chemistry. In a purely imaging capacity, these microscopes are limited in their ability 

to characterize organic surface coatings, and without more involved measurements or 

image analysis,18, 29-34 yield only a nanopore limiting radius—not a fully characterized 

size and shape. Beyond the greater ease and technical benefits of a low-overhead, 

solution-based nanopore characterization, such an approach can more directly probe 

nanopore surface chemistry. The capabilities of solution-based nanopore fabrication 

make a strong case alone, however, for complementary solution-based characterization 

methods. The benefits and prospects of solution-based nanopore fabrication were 

demonstrated early-on in the field through the development and use of track-etched 

polymer nanopores.9 Formation of the etchant-susceptible ion-track requires a large-

scale heavy ion accelerator facility which naturally imposes a barrier to widespread use 

of the fabrication method, although accessibility is improved by the ability to perform 

the solution-based chemical etching step in a standard chemistry lab well after the ion-

track formation. Conformal metal coating of these often tortuous polymer nanopores by 

(solution-based) electroless plating was a vital development in the use of these polymer 

nanopores:  the material deposition allows the nanopore dimensions to be fine-tuned 

after chemical etching, and the metal film provides a platform for subsequent chemical 

modification of the nanopore interior surface. Both etching and deposition steps 
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developed for polymer membrane nanopores have been extended to silicon nitride 

membranes which offer benefits such as the fabrication of smooth nanopores with 

lengths <100 nm.32, 35 More recently, dielectric breakdown (followed by voltage-

assisted etching) of an impervious, insulating membrane, has emerged as a powerful 

new technique for nanopore fabrication.36 It is an entirely solution-based approach, 

using essentially the same equipment required for conductance-based nanopore 

measurements, and quite readily produces nanopores in a wide range of sizes, including 

in the coveted <5 nm diameter range. The nanopore conductance can be measured 

during fabrication, providing an indication of the nanopore size at a given point in time. 

The dielectric breakdown approach allows nanopores to be fabricated in their native 

environment, in the same holder where they will be used for experiments, and without 

the contamination and damage risks associated with charged particle techniques. A 

conductance-based characterization will not damage a molecular surface coating 

suitable for conductance-based sensing, and can harness the natural and direct 

connection to the nanopore surface chemistry that makes it a valuable method for 

characterizing chemically-tailored nanopores.9, 23, 34, 37 The conductance model is 

equally useful when a pore is formed and enlarged, and when an initially large pore is 

resized by solution-based deposition, including film growth.9, 19, 35, 38 Etching and 

deposition may be used in concert, with a pore being initially etched larger than desired 

to accommodate an electroless gold film, for example, that may ease nanopore surface 

chemical modification. In this work we wanted to understand how the measured 

conductance during nanopore fabrication—by deliberate expansion, closure, or both in 

consort—could be used to profile the nascent nanochannel. Simulations will focus, for 
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expediency, on nanopores fabricated via deposition of surface coatings:  the principles, 

however, are general. 

THEORY 

 

The algebraic structure of 𝐺 = 𝐾 ∙ 𝐴 + 𝜇|𝜎| ∙ 𝐵, and its underlying 

dependencies, means that a single-point conductance measurement can provide enough 

information to size a nanopore only when the shape is known and the fitting involves 

only a single geometric degree of freedom. Measurement of 𝐺 versus 𝐾—by changing 

the electrolyte solution conductivity—for a given nanopore can provide greater insight 

into the nanopore size, shape, and surface chemistry.18, 21-23 The conductance change 

after adding a monolayer of known thickness, for example, can provide similar 

information to what is provided after a solution conductivity change, and measuring 𝐺 

versus 𝐾 for the nanopore before and after monolayer formation provides the richest 

description of the nanopore within this framework.23 Changes of electrolyte solution are 

tedious, however, and disruptive to a solution-based nanopore fabrication approach. A 

simple ongoing measurement of the nanopore conductance during nanopore formation, 

however, can be done as part of the fabrication process, and is in fact performed 

routinely on a single-point measurement basis. Each fixed-time conductance is of course 

connected through Equation (2) to the instantaneous nanopore size and shape, where the 

applicability of the conductance model has been independently verified by electron-

based imaging and spectroscopy.13, 18 A single conductance value, however, offers a 

limited ability to characterize a nanopore described by more than one free geometric 

parameter. Measurement and use of a series of conductance values at times 𝑡𝑖:  
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𝐺(𝑡0, {𝑞𝑗(𝑡0)}), 𝐺(𝑡1, {𝑞𝑗(𝑡1)}),…  𝐺(𝑡n, {𝑞𝑗(𝑡n)}), can provide more information than 

the conductance at a single time-point since the changes in conductance are caused by 

underlying changes in the initial nanopore dimensions, {𝑞𝑗(𝑡0)}, in time. We perform 

simulations consistent with the following conditions to demonstrate how to extract this 

information content. Nanometer-scale deposition or etching should not appreciably 

change the electrolyte solution conductivity, nor should the nanopore surface chemistry 

change (except through deliberate action) throughout either type of fabrication process. 

We make the reasonable assumption that material transfer will be uniform across the 

surface, so that the nanopore shape will remain unchanged. Silicon nitride, the most 

common membrane material in which to form nanopores, is amorphous, and so will not 

inherently be prone to anisotropic etching.39 Electroless plating, a surface deposition 

method that has been used with great success in resizing nanopores,9 conformally coats 

even rough surfaces,40 and film growth by polymer chain extension, for example, should 

be another effective route to reliably tune nanopore size.41 We can then write  

𝑑𝐺

𝑑𝑡
= 𝐾

𝑑𝐴({𝑞𝑗(𝑡)})

𝑑𝑡
+ 𝜇|𝜎|

𝑑𝐵({𝑞𝑗(𝑡)})

𝑑𝑡
= 𝐾∑ (

𝜕𝐴

𝜕𝑞𝑗
)
𝑑𝑞𝑗

𝑑𝑡𝑗 + 𝜇|𝜎|∑ (
𝜕𝐵

𝜕𝑞𝑗
)
𝑑𝑞𝑗

𝑑𝑡𝑗 =

𝐾∑ 𝑓({𝑞𝑗}, 𝜈𝑚𝑡, 𝑡)𝑗 + 𝜇|𝜎|∑ 𝑔({𝑞𝑗}, 𝜈𝑚𝑡 , 𝑡)𝑗                                                    (4) 

where the (
𝝏𝑨

𝝏𝒒𝒋
) and (

𝝏𝑩

𝝏𝒒𝒋
) depend on the nanopore profile, and the 

𝒅𝒒𝒋

𝒅𝒕
 depend on the 

profile and the material transfer rate, 𝝂𝒎𝒕, whether by nanopore etching or coating by 

deposition. The material transfer rate is conveniently measured as the change in 

nanopore radius over time. While two nanopores with different shapes and sizes may 

have the same initial conductance, 𝑮(𝒕𝟎, {𝒒𝒋(𝒕𝟎)})= 𝑮(𝒕𝟎, {𝒒𝒋
′(𝒕𝟎)}), the rates of change 
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of the conductances will be different, and determined by the individual nanopore sizes 

and shapes (and identical material transfer rates). Measurement of several values of the 

experimental 𝐺(𝑡𝑖 , {𝑞𝑗(𝑡𝑖)}) can use this dependence to enhance real-time conductance-

based nanopore characterization during fabrication. To present concrete examples of the 

general framework, we selected four representative nanopore profiles:  cylindrical, 

double-conical, conical-cylindrical, and hyperbolic (Figure 3.1).18, 21-22, 29, 32 For all 

profiles, we limited the {𝑞𝑗} to two free parameters per shape:  (𝑟0, 𝐿)—the limiting 

(minimum) radius and total nanopore length (see Tables S-1 and S-2 for notation and 

equations). Independent experimental studies of nanopore profiles18, 22 were used to 

guide the constraints and to make reasonable parameter value assignments to allow for 

numerical examples; the nanopore characterization method is general, however, and 

does not depend upon these particular numerical values.21, 23 We restricted the initial 

outer radius to be 10 nm greater than the initial limiting radius (not applicable to the 

cylindrical profile),21-22 and fixed the initial cylinder length of the conical-cylindrical 

pore to be 0.6 times its initial total length. The deposited coating was piecewise curved 

to maintain a uniform coating thickness across the entire nanopore surface (Figure 3.1 

and Table S-2). Equation (4) then becomes 

𝑑𝐺

𝑑𝑡
= 𝐾((

𝜕𝐴

𝜕𝑟0
)
𝑑𝑟0

𝑑𝑡
+ (

𝜕𝐴

𝜕𝐿
)
𝑑𝐿

𝑑𝑡
) + 𝜇|𝜎| ((

𝜕𝐵

𝜕𝑟0
)
𝑑𝑟0

𝑑𝑡
+ (

𝜕𝐵

𝜕𝐿
)
𝑑𝐿

𝑑𝑡
) = 𝜈𝑚𝑡 [𝐾 ((

𝜕𝐴

𝜕𝑟0
) +

2 (
𝜕𝐴

𝜕𝐿
)) + 𝜇|𝜎| ((

𝜕𝐵

𝜕𝑟0
) + 2 (

𝜕𝐵

𝜕𝐿
))]       (5)  

Parameter values used in calculations were typical of experiments and consistent with 

those in prior work with silicon nitride nanopores:21  for example, 1 M potassium 
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chloride electrolyte solution in water, K=14.95 S·m-1 (calculated using ion mobilities), 

pH=7.0, and surface pKa=7.9. The material transfer rate was kept constant, 𝝂𝒎𝒕 =

𝑑𝑟0 𝑑𝑡⁄ = 0.6 nm/h. More important than the particular parameter values, though, it is 

the form of equation (2) and its functional dependencies that are significant in this work. 

Figure 3. 1. (a) Cylindrical, (b) double-conical, (c) conical-cylindrical, and (d) 

hyperbolic nanopore half-profile cross-sections cylindrically symmetric about the 

vertical z-axis (dotted line) of the pore. Profiles are shown before (black line) and after 

(blue line) material deposition to decrease the limiting nanopore radius, 𝒓𝟎, by an 

amount 𝚫𝒓𝒊 determined by the deposition time and material transfer rate. 

RESULTS AND DISCUSSION 

 

The ability to characterize a nanopore in real-time, during its formation, using 

only its conductance, is an incredibly compelling goal. Its pursuit relies on the 

connection between the conductance of a nanopore and its size, shape, and surface 

chemistry, and its attainment hinges on properly exploiting the functional form of that 

connection. We will focus on nanopores fabricated by deposition of a coating onto the 

outer membrane surface and inner surface of an existing, larger pore, but similar 

arguments hold for a nanopore formed by etching of a smaller pore to create a larger 

pore. Figure 3.2 highlights a primary challenge of nanopore conductance-based 
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characterizations. The curves show the set of nanopore limiting radii and length, for 

each chosen nanopore shape, {𝒓𝟎,𝐬𝐡𝐚𝐩𝐞, 𝑳shape}, that generate a 200 nS conductance:  

there is not a unique solution. To use a single-point conductance value to characterize a 

nanopore by more than a broad range of possible shapes and sizes, or to provide better 

than an approximate size given an assumed profile, additional information is required.21, 

23 Most commonly, knowledge of the particular fabrication method and conditions is 

used to choose an expected nanopore profile, and can often be used to constrain the 

nanopore length to an experimental parameter such as the thickness of the membrane in 

which it is formed. Measurement of the conductance of a nanopore in time, in an 

essentially single-point sense, has demonstrated utility as a monitor of nanopore 

evolution even if it cannot provide an unambiguous characterization. Yet the time-

dependence provides a set of experimental data points that we seek to mine to more 

fully characterize the nanopore than is possible using a single-point measurement of the 

conductance 

Figure 3. 2. The plotted lines denote the pairings of limiting nanopore radius, 𝒓𝟎, and 

nanopore length, 𝑳, for each nanopore profile, that will produce a 200 nS conductance.  
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The most immediately striking consequence of a real-time measurement of the 

conductance is that, as shown in Figure 3.3, it reveals a clear distinction between 

different nanopore profiles. When different candidate profiles are used to fit 

experimental nanopore conductance data, the conductance versus time provides a means 

to determine nanopore shape and size. To produce the data plotted in Figure 3.3, we 

used the four representative nanopore profiles all with an initial 200 nS conductance 

and 10 nm total nanopore length. The initial nanopore limiting radii were ~6.4, 3.1, 5.5, 

and 4.0 nm, respectively, for the cylindrical, double-conical, conical-cylindrical, and 

hyperbolic nanopore profiles. We calculated the conductance for each profile as the radii 

were reduced at the same rate, 𝝂𝒎𝒕 = 𝟎. 𝟔 nm/h, during a simulated, deposition-based 

fabrication process. As shown below, the radius change after a given time must be 

known, but the method does not require a constant material transfer rate. We chose a 

constant rate, commonly observed in micromachining processing,39 however, because 

it affords straightforward insights into the functional dependencies beyond what is 

revealed by the numerical results. Given the form of equation (5), it is perhaps 

unsurprising that even with constant 𝝂𝒎𝒕 (and therefore identical absolute rates of 

change of the radii across profile type), 
𝒅𝑮

𝒅𝒕
 is not linear and depends on profile type 

(inset of Figure 3.3). The quantitative details of this behavior provide a means of 

extracting nanopore size and shape information from the measured conductance 

changes. Figure S-3.2 reinforces the geometrical underpinnings of this profiling method, 

in plots of the geometry integrals, A and B, versus time. 
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Figure 3. 3. Nanopores with an initial 200 nS conductance (𝑳(𝒕𝟎) = 𝟏𝟎 nm, 𝒓𝟎(𝒕𝟎) 

from Figure 3.2) show a shape-dependent decrease in conductance due to material 

deposition at a constant rate, 𝝂𝒎𝒕. The inset plots the rate of conductance change, 

calculated using nearest-neighbor differences, 
𝒅𝑮

𝒅𝒕
≅
𝑮(𝒕𝐢+𝟏)−𝑮(𝒕𝐢)

𝒕𝐢+𝟏−𝒕𝐢
. 

Figure 3.4 illustrates the general approach we have adopted for extracting 

quantitative nanopore geometric parameters from 𝐺(𝑡)—an approach allowing for a 

nanopore characterization with the full geometric parameter flexibility outlined in 

Figure 3.2, and that emphasizes the minimal number of conductance values required. 

We chose to simulate the deposition-based fabrication of nanopores with an initial 

conductance, 𝐺shape

expt (𝑡0) = 200 𝑛𝑆, and initial radius, 𝑟0,shape

expt (𝑡0) = 3.5 nm (both values 

the same for all simulated experimental shapes); Figure 3.2 gives the corresponding 

initial nanopore lengths, 𝐿shape

expt (𝑡0), for each nanopore profile. For each nanopore 

profile, we set the initial nanopore size, (𝑟0,shape

expt (𝑡0), 𝐿shape

expt (𝑡0)), and used the 

progression of dimensions, (𝑟0,shape

expt (𝑡0) − Δ𝑟𝑖(𝑡0, 𝑡𝑖), 𝐿shape

expt (𝑡0) + 2Δri(𝑡0, 𝑡𝑖)), to 

simulate the post-deposition conductances 𝐺shape

expt (𝑡1) and 𝐺shape

expt (𝑡2). For a constant 
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material transfer rate, 𝜈𝑚𝑡, Δ𝑟𝑖 = (𝑡𝑖 − 𝑡0)𝜈𝑚𝑡. While more generally Δ𝑟𝑖 =

Δ𝑟𝑖(𝑡𝑖, 𝑡0, 𝜈𝑚𝑡(𝑡)), the procedure implemented here relies on knowledge of this radius 

change only, not whether the material transfer rate is constant in time or not. We outline 

the conceptual framework for the characterization and provide a detailed step-by-step 

tutorial in the SI. The initial conductance, 𝐺shape

expt (𝑡0), was used in conjunction with 

Figure 3.2 to establish the set of candidate {(𝑟0,shape(𝑡0), 𝐿shape(𝑡0))}, for each 

nanopore profile, whose members all have the initial conductance 𝐺𝑠ℎ𝑎𝑝𝑒(𝑡0) =

𝐺shape

expt (𝑡0). The range of candidate sizes, for each candidate shape, is represented by the 

dotted lines in Figure 3.4a-d. Given 𝐺shape

expt (𝑡0), alone, neither size nor shape can yet be 

determined. Each of these possible candidate geometries (size and shape) was then 

modified by the deposition of material to provide sets of nanopore dimensions given by 

{(𝑟0,shape(𝑡0) − Δ𝑟𝑖, 𝐿shape(𝑡0) + 2Δ𝑟𝑖)} for times 𝑡1, 𝑡2, and 𝑡3, with corresponding sets 

of conductances {𝐺shape(𝑡1)}, {𝐺shape(𝑡2)}, and {𝐺shape(𝑡1)} (solid curves in Figure 3.4a-

d). We then used the post-deposition 𝐺shape

expt (𝑡i) to determine the nanopore size and 

shape. We found the initial limiting radius, 𝑟0,shape(𝑡0), for each nanopore shape, that 

gave a conductance 𝐺𝑠ℎ𝑎𝑝𝑒(𝑡1) = 𝐺shape

expt (𝑡1). That is, when the experimental nanopore 

was cylindrical, we found the 𝑟0,shape(𝑡0) for cylindrical, double-conical, conical-

cylindrical, and hyperbolic profiles that allowed the candidate pore conductance to 

match the experimental value, and plotted the radii in Figure 3.4e. Figure 3.4f-h are 

plots of the 𝑟0,shape(𝑡0) when the conductances of double-conical, conical-cylindrical, 

and hyperbolic experimental nanopores were equated to the conductances of the same 
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four candidate shapes. No matter the experimental profile, after two conductance values, 

all four candidate shapes—with different sizes—were equally viable conductance-based 

matches. By repeating this process by finding 𝑟0,shape(𝑡0) to satisfy 𝐺shape(𝑡2) =

𝐺shape

expt (𝑡2), the experimental nanopore size and shape both emerge. When the candidate 

nanopore profile matches the simulated experimental profile, all extracted 𝑟0,shape(𝑡0) 

have the same value for all 𝑡𝑖, which essentially delivers a simultaneous solution of 

𝐺shape(𝑡𝑖, {𝑞𝑗(𝑡𝑖)}) = 𝐺shape

expt
(𝑡𝑖, {𝑞𝑗(𝑡𝑖)}) for all time-points. The curves in Figure 3.4e-

h illustrate this successful characterization; the agreement is shown in terms of 

𝑟0,shape(𝑡0), but 𝐿shape(𝑡0) has the same behavior. Figure 3.4e plots the 𝑟0,shape(𝑡0) when 

the simulated 𝐺cylindrical

expt (𝑡𝑖) values were fit using cylindrical, double-conical, conical-

cylindrical, and hyperbolic profiles:  only the cylindrical candidate nanopore returns the 

same 𝑟0,shape(𝑡0) for different 𝑡𝑖. Figures 3.4f-h show, by the constancy of the correct  

𝑟0,shape(𝑡0), the same successful capture of size and shape of double-conical, conical-

cylindrical, and hyperbolic simulated experimental nanopores, respectively. 

Measurement of more conductance points does not provide more information, given the 

framework presented here, but can add numerical robustness to this approach. 

Alternatively, the formal need for only three conductance values allows one to 

piecewise repeat the shape-and size-profiling on independent sets of three conductance 

values throughout the duration of the fabrication, allowing for the possibility to extend 

this method to anisotropically-etching or -depositing materials. An extreme departure 

from the usual progression of conductance in time may signal the need for a more 

involved steady-state solution-based characterization of a pore after fabrication,21 
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although even in this case the present time-dependent method should provide bounds 

on the evolving nanopore size. We note again, for generality, that while we used a 

constant 𝝂𝒎𝒕, the plating rate must be known, but need not be constant. Fitting 

conductance values in time leverages the form of equation (2) to reveal the nanopore 

shape and extract dimensions from a solution-based nanopore fabrication method. 

Figure 3. 4. The conductance of initially 200 nS (a) cylindrical, (b) double-conical, (c) 

conical-cylindrical, and (d) hyperbolic nanopores can be satisfied by a range of radii 

(dotted vertical lines). Fixed decreases of each possible radius (in time) generate 

characteristic conductance progressions that depend on the nanopore shape and initial 

size (conductance curves labelled with their particular Δ𝑟𝑖). Simulated experimental 

conductance data versus time for 𝐺shape

expt (𝑡0) = 200 nS, 𝑟0,shape(𝑡0) =3.5 nm pores of 

each shape were compared to the plots in (a-d) to reveal the (e) cylindrical (red), (f) 

double-conical (blue), (g) conical-cylindrical (black), and (h) hyperbolic (magenta) 

experimental nanopore size and shapes by the constancy of the fitting 𝑟0,shape(𝑡0). The 

relevant experimental profiles for each column are inset in the top row. 
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CONCLUSIONS 

 

The charged-particle, complex instrumentation approaches that dominated early 

nanopore fabrication methods allowed, in principle, for high-resolution nanopore 

characterizations, although such capability was rarely employed beyond determining a 

limiting radius. These instrumental approaches face limitations such as high likelihood 

of surface contamination and inability to probe soft (e.g. organic) nanopore coatings, 

and they add workflow steps that could be costly in time and instrumentation. Even so, 

since the nanopores were formed in these instruments, it was expedient to follow 

fabrication with the chosen degree of characterization in the same instrument. The 

ongoing development of completely solution-based methods—including the advent of 

new techniques—to fabricate nanopores has ushered in an exciting new area for 

nanofluidics, generally, and nanopore science in particular. Nanopores can now be 

formed in their native liquid environment, and without the instrument and workflow 

cost of charged-particle methods. We have modelled the nanopore conductance with a 

simple framework that nevertheless includes an explicit surface chemistry term and has 

demonstrated concordance with independent experimental characterizations of 

nanopore sizes and shapes of most importance for routine use in single molecule 

science.13, 18 We have presented theoretical examples that describe the creation of small 

nanopores by coating larger nanopores, so that fabrication involves a decrease in the 

nanopore radius and conductance. The results, however, are equally applicable to 

nanopore fabrication methods such as dielectric breakdown followed by voltage-

assisted etching, or the chemical etching of ion-tracked membranes. The nanopore 

conductance is routinely measured during dielectric breakdown as a diagnostic, and 
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such a measurement can be readily implemented during nanopore fabrication by 

material deposition. We have shown here that by analyzing a series of conductance 

measurements in time, rather than only an instantaneous measurement, we are able to 

extract information on nanopore size and shape, and thereby enrich the execution and 

interpretation of nanopore experiments without increasing the experimental burden. 

ASSOCIATED CONTENT 

Supporting Information. Detailed descriptions of nanopore profiles and a step-by-step 

tutorial detailing the numerical nanopore characterization. This material is available free 

of charge via the Internet at http://pubs.acs.org. 

AUTHOR INFORMATION 

Corresponding Author 

*E-mail:  jdwyer@chm.uri.edu 

AUTHOR CONTRIBUTIONS 

The manuscript was written through contributions of all authors. All authors have given 

approval to the final version of the manuscript.  

FUNDING SOURCES 

This research has been supported by NSF CAREER award CBET-1150085, and by the 

University of Rhode Island, including 2015 University of Rhode Island Graduate School 

Fellowships for YMNB and BIK. 

ABBREVIATIONS: min., minutes; h, hours. 



59 

 

REFERENCES 

 

1. Haywood, D. G.; Saha-Shah, A.; Baker, L. A.; Jacobson, S. C., Fundamental 

Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Anal. Chem. 2015, 

87, 172-187. 

2. Taniguchi, M., Selective Multidetection Using Nanopores. Anal. Chem. 2015, 

87, 188-199. 

3. Reiner, J. E.; Balijepalli, A.; Robertson, J. W. F.; Campbell, J.; Suehle, J.; 

Kasianowicz, J. J., Disease Detection and Management Via Single Nanopore-Based 

Sensors. Chem. Rev. 2012, 112, 6431-6451. 

4. Howorka, S.; Siwy, Z., Nanopore Analytics: Sensing of Single Molecules. 

Chem. Soc. Rev. 2009, 38, 2360-2384. 

5. Miles, B. N.; Ivanov, A. P.; Wilson, K. A.; Dogan, F.; Japrung, D.; Edel, J. B., 

Single Molecule Sensing with Solid-State Nanopores: Novel Materials, Methods, and 

Applications. Chem. Soc. Rev. 2013, 42, 15-28. 

6. Kudr, J.; Skalickova, S.; Nejdl, L.; Moulick, A.; Ruttkay–Nedecky, B.; Adam, 

V.; Kizek, R., Fabrication of Solid-State Nanopores and Its Perspectives. 

ELECTROPHORESIS 2015, 36, 2367-2379. 

7. Oukhaled, A.; Bacri, L.; Pastoriza-Gallego, M.; Betton, J.-M.; Pelta, J., Sensing 

Proteins through Nanopores: Fundamental to Applications. ACS Chemical Biology 

2012, 7, 1935-1949. 

8. Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; 

Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X. H.; Jovanovich, S. B.; Krstic, P. S.; 

Lindsay, S.; Ling, X. S. S.; Mastrangelo, C. H.; Meller, A.; Oliver, J. S.; Pershin, Y. V.; 

Ramsey, J. M.; Riehn, R.; Soni, G. V.; Tabard-Cossa, V.; Wanunu, M.; Wiggin, M.; 

Schloss, J. A., The Potential and Challenges of Nanopore Sequencing. Nat. Biotechnol. 

2008, 26, 1146-1153. 

9. Sexton, L. T.; Horne, L. P.; Martin, C. R., Developing Synthetic Conical 

Nanopores for Biosensing Applications. Molecular BioSystems 2007, 3, 667-685. 

10. Bayley, H.; Martin, C. R., Resistive-Pulse Sensing-from Microbes to Molecules. 

Chem. Rev. 2000, 100, 2575-2594. 

11. Wanunu, M.; Sutin, J.; McNally, B.; Chow, A.; Meller, A., DNA Translocation 

Governed by Interactions with Solid-State Nanopores. Biophys. J. 2008, 95, 4716-4725. 

12. Aksimentiev, A., Deciphering Ionic Current Signatures of DNA Transport 

through a Nanopore. Nanoscale 2010, 2, 468-483. 

13. Smeets, R. M. M.; Keyser, U. F.; Krapf, D.; Wu, M.-Y.; Dekker, N. H.; Dekker, 

C., Salt Dependence of Ion Transport and DNA Translocation through Solid-State 

Nanopores. Nano Lett. 2006, 6, 89-95. 



60 

 

14. Tabard-Cossa, V.; Trivedi, D.; Wiggin, M.; Jetha, N. N.; Marziali, A., Noise 

Analysis and Reduction in Solid-State Nanopores. Nanotechnology 2007, 18. 

15. Tabard-Cossa, V.; Wiggin, M.; Trivedi, D.; Jetha, N. N.; Dwyer, J. R.; Marziali, 

A., Single-Molecule Bonds Characterized by Solid-State Nanopore Force Spectroscopy. 

ACS Nano 2009, 3, 3009-3014. 

16. McNally, B.; Wanunu, M.; Meller, A., Electromechanical Unzipping of 

Individual DNA Molecules Using Synthetic Sub-2 Nm Pores. Nano Lett. 2008, 8, 3418-

3422. 

17. Zhao, Q.; Sigalov, G.; Dimitrov, V.; Dorvel, B.; Mirsaidov, U.; Sligar, S.; 

Aksimentiev, A.; Timp, G., Detecting Snps Using a Synthetic Nanopore. Nano Lett. 

2007, 7, 1680-1685. 

18. Liebes, Y.; Drozdov, M.; Avital, Y. Y.; Kauffmann, Y.; Rapaport, H.; Kaplan, 

W. D.; Ashkenasy, N., Reconstructing Solid State Nanopore Shape from Electrical 

Measurements. Appl. Phys. Lett. 2010, 97, 223105. 

19. Ayub, M.; Ivanov, A.; Instuli, E.; Cecchini, M.; Chansin, G.; McGilvery, C.; 

Hong, J.; Baldwin, G.; McComb, D.; Edel, J. B.; Albrecht, T., Nanopore/Electrode 

Structures for Single-Molecule Biosensing. Electrochim. Acta 2010, 55, 8237-8243. 

20. Stein, D.; Kruithof, M.; Dekker, C., Surface-Charge-Governed Ion Transport in 

Nanofluidic Channels. Phys. Rev. Lett. 2004, 93, 035901. 

21. Frament, C. M.; Dwyer, J. R., Conductance-Based Determination of Solid-State 

Nanopore Size and Shape: An Exploration of Performance Limits. J. Phys. Chem. C 

2012, 116, 23315-23321. 

22. Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y.; Dekker, C., Modeling the 

Conductance and DNA Blockade of Solid-State Nanopores. Nanotechnology 2011, 22, 

315101. 

23. Frament, C. M.; Bandara, N.; Dwyer, J. R., Nanopore Surface Coating Delivers 

Nanopore Size and Shape through Conductance-Based Sizing. ACS Appl. Mater. 

Interfaces 2013, 5, 9330-9337. 

24. Makra, I.; Jágerszki, G.; Bitter, I.; Gyurcsányi, R. E., Nernst–Planck/Poisson 

Model for the Potential Response of Permselective Gold Nanopores. Electrochim. Acta 

2012, 73, 70-77. 

25. Yang, J.; Ferranti, D. C.; Stern, L. A.; Sanford, C. A.; Huang, J.; Ren, Z.; Qin, 

L.-C.; Hall, A. R., Rapid and Precise Scanning Helium Ion Microscope Milling of Solid-

State Nanopores for Biomolecule Detection. Nanotechnology 2011, 22, 285310. 

26. Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M. J.; Golovchenko, J. A., 

Ion-Beam Sculpting at Nanometre Length Scales. Nature 2001, 412, 166-169. 



61 

 

27. Storm, A. J.; Chen, J. H.; Ling, X. S.; Zandbergen, H. W.; Dekker, C., 

Fabrication of Solid-State Nanopores with Single-Nanometre Precision. Nature 

Materials 2003, 2, 537-540. 

28. Spinney, P. S.; Howitt, D. G.; Smith, R. L.; Collins, S. D., Nanopore Formation 

by Low-Energy Focused Electron Beam Machining. Nanotechnology 2010, 21, 375301. 

29. Kim, M. J.; McNally, B.; Murata, K.; Meller, A., Characteristics of Solid-State 

Nanometre Pores Fabricated Using a Transmission Electron Microscope. 

Nanotechnology 2007, 18. 

30. Kuan, A. T.; Golovchenko, J. A., Nanometer-Thin Solid-State Nanopores by 

Cold Ion Beam Sculpting. Appl. Phys. Lett. 2012, 100, 213104-213104. 

31. Wu, M.-Y.; Smeets, R. M. M.; Zandbergen, M.; Ziese, U.; Krapf, D.; Batson, P. 

E.; Dekker, N. H.; Dekker, C.; Zandbergen, H. W., Control of Shape and Material 

Composition of Solid-State Nanopores. Nano Lett. 2009, 9, 479-484. 

32. Vlassiouk, I.; Apel, P. Y.; Dmitriev, S. N.; Healy, K.; Siwy, Z. S., Versatile 

Ultrathin Nanoporous Silicon Nitride Membranes. Proceedings of the National 

Academy of Sciences of the United States of America 2009, 106, 21039-21044. 

33. Freedman, K. J.; Ahn, C. W.; Kim, M. J., Detection of Long and Short DNA 

Using Nanopores with Graphitic Polyhedral Edges. ACS Nano 2013, 7, 5008-5016. 

34. Wei, R.; Pedone, D.; Zürner, A.; Döblinger, M.; Rant, U., Fabrication of 

Metallized Nanopores in Silicon Nitride Membranes for Single-Molecule Sensing. 

Small 2010, 6, 1406-1414. 

35. Whelan, J. C.; Karawdeniya, B. I.; Bandara, Y. M. N. D. Y.; Velleco, B. D.; 

Masterson, C. M.; Dwyer, J. R., Electroless Plating of Thin Gold Films Directly onto 

Silicon Nitride Thin Films and into Micropores. ACS Appl. Mater. Interfaces 2014, 6, 

10952-10957. 

36. Kwok, H.; Briggs, K.; Tabard-Cossa, V., Nanopore Fabrication by Controlled 

Dielectric Breakdown. PLoS ONE 2014, 9, e92880. 

37. Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R. C.; Li, J.; 

Yang, J.; Mayer, M., Controlling Protein Translocation through Nanopores with Bio-

Inspired Fluid Walls. Nature Nanotechnology 2011, 6, 253-260. 

38. Wanunu, M.; Meller, A., Chemically Modified Solid-State Nanopores. Nano 

Lett. 2007, 7, 1580-1585. 

39. Williams, K. R.; Muller, R. S., Etch Rates for Micromachining Processing. J. 

Microelectromech. Syst. 1996, 5, 256-269. 

40. Møller, P.; Nielsen, L. P., Advanced Surface Technology. Møller & Nielsen 

APS: Denmark, 2013; Vol. 1, p 594. 

41. de Groot, G. W.; Santonicola, M. G.; Sugihara, K.; Zambelli, T.; Reimhult, E.; 

Vörös, J.; Vancso, G. J., Switching Transport through Nanopores with Ph-Responsive 



62 

 

Polymer Brushes for Controlled Ion Permeability. ACS Appl. Mater. Interfaces 2013, 5, 

1400-1407. 

 

  



63 

 

CHAPTER 4: PREFACE 

 

 

Published: Electrophoresis 2018, 39, 626-634. 

CHAPTER 4: CONDUCTANCE-BASED PROFILING OF NANOPORES:  

ACCOMMODATING FABRICATION IRREGULARITIES 

 

Y.M. Nuwan D.Y. Bandara, Jonathan W. Nichols, Buddini Iroshika Karawdeniya, and 

Jason R. Dwyer. 

Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 

02881, United States. 

 

 

Reprinted with permission from: 

CHAPTER 4: CONDUCTANCE-BASED PROFILING OF NANOPORES:  

ACCOMMODATING FABRICATION IRREGULARITIES. Y.M. Nuwan D.Y. 

Bandara, Buddini Iroshika Karawdeniya, and Jason R. Dwyer. Electrophoresis 2018, 

39, 626-634.  

Copyright 2016 Electrophoresis. 

  



64 

 

CHAPTER 4: CONDUCTANCE-BASED PROFILING OF NANOPORES:  

ACCOMMODATING FABRICATION IRREGULARITIES 

 

Y.M. Nuwan D.Y. Bandara, Jonathan W. Nichols, Buddini Iroshika Karawdeniya, and 

Jason R. Dwyer. 

Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 

02881, United States.  

E-mail:  jason_dwyer@uri.edu. Phone 1-401-874-4648. Fax 1-401-874-5072. 

KEYWORDS:  dielectric breakdown; nanopore; nanopore conductance; nanopore 

defect; pore density; silicon nitride nanopore. 

ABBREVIATIONS: TEM-transmission electron microscopy; STEM-scanning 

transmission electron microscopy; EM-electron microscopy; MPVI-multilevel pulse-

voltage injection 

ABSTRACT 

 

Solid-state nanopores are nanoscale channels through otherwise impermeable 

membranes. Single molecules or particles can be passed through electrolyte-filled 

nanopores by, e.g. electrophoresis, and then detected through the resulting physical 

displacement of ions within the nanopore. Nanopore size, shape, and surface chemistry 

must be carefully controlled, and on extremely challenging <10 nm-length scales. We 

previously developed a framework to characterize nanopores from the time-dependent 

changes in their conductance as they are being formed through solution-phase 

nanofabrication processes with the appeal of ease and accessibility. We revisited this 
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simulation work, confirmed the suitability of the basic conductance equation using the 

results of a time-dependent experimental conductance measurement during nanopore 

fabrication by Yanagi et al., and then deliberately relaxed the model constraints to allow 

for (1) the presence of defects; and (2) the formation of two small pores instead of one 

larger one. Our simulations demonstrated that the time-dependent conductance 

formalism supports the detection and characterization of defects, as well as the 

determination of pore number, but with implementation performance depending on the 

measurement context and results. In some cases, the ability to discriminate numerically 

between the correct and incorrect nanopore profiles was slight, but with accompanying 

differences in candidate nanopore dimensions that could yield to post-fabrication 

conductance profiling, or be used as convenient uncertainty bounds. Time-dependent 

nanopore conductance thus offers insight into nanopore structure and function, even in 

the presence of fabrication defects. 

INTRODUCTION 

 

Nanopores are a rising tool for single-molecule science, featuring prominently 

in DNA sequencing efforts, but with broader reach into biophysics, and bioanalytical 

and materials chemistry.[1-12] The nanopore heart of these techniques is a nanofluidic 

channel generally less than 100 nm in all dimensions, formed through a membrane or 

support, with the particular dimensions dictated by the analyte and method. The 

essential determinants of nanopore performance include the elements of three general 

nanopore-specific parameter groupings:  nanopore size, shape, and surface 

chemistry.[13-19] Even the most basic nanopore operating configuration illustrates the 
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importance of these parameters, and also provides a means for assaying them. A 

nanopore is positioned as the sole fluid path between two wells of electrolyte solution. 

Application of suitable voltages, typically ≤200 mV, across the impermeable support 

membrane drives ion passage through the nanopore. The resulting open-pore ionic 

conductance, 𝐺, is determined by the bulk solution conductivity, 𝐾, by the size and 

shape of the nanopore (here captured in volume and surface integrals, 𝐴 =

(∫
𝑑𝑧

𝜋(𝑟(𝑧))
2)
−1

 and 𝐵 = (∫
𝑑𝑧

2𝜋𝑟(𝑧)
)
−1

, respectively), and by properties of the nanopore-

solution interface[13, 16, 18, 20-23] 

𝐺 = 𝐾 ∙ 𝐴(𝑟, 𝐿) + 𝜇|𝜎| ∙ 𝐵(𝑟, 𝐿) = 𝐺bulk + 𝐺surface     (1) 

where 𝝈 is the nanopore surface charge density that attract counterions of mobility, 𝝁. 

The pore has a radius, r(z) , that can vary along length, L, of the pore (aligned with the 

z-axis as shown in Figure S4.1). More complex theoretical approaches exist—a 

formulation including the access resistance term (neglected here for simplicity) is 

discussed in the supporting information (see Equation S1, Figure S4.2 and associated 

discussion)—but this straightforward conductance model provides a tractable and useful 

framework with good agreement with the measured conductance of nanopores across a 

range of experimentally determined sizes and shapes.[13, 16, 18, 20, 21, 24] As a 

species of interest passes through the nanopore, or is entrained therein, it perturbs the 

open-pore flow of ions, and frequently generates an analyte-specific current blockage 

(or enhancement)[4, 10, 13, 17, 23]. A simple analytical model for the conductance 

blockage wrought by the extension of an analyte such as DNA, of radius 𝒓analyte, through 
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the length of a uniformly cylindrical nanopore of radius 𝒓𝟎, illustrates more directly the 

importance of nanopore dimensions: 

𝜒𝐵 ≡
(〈𝐺〉−〈𝐺𝑏〉)

〈𝐺〉
≅ (

𝑟analyte

𝑟0
)
2

        (2) 

with 〈𝐺〉 and 〈𝐺𝑏〉 the time-averaged conductances of open, and analyte-filled, 

nanopore.[25] The more complex set of phenomena and parameters underpinning the 

current blockage explains the experimentally demonstrated ability to extract meaningful 

molecular information, such as detecting nucleotide sequence in such a strand of 

DNA.[2, 4, 8, 10, 17, 19, 26, 27] The details of nanopore surface charges are not only 

important in the context of conductance as in Equation 1, but extend to augmenting 

electrophoretic control over analyte motion through the nanopore with electroosmosis, 

and to allowing nanopores to analyte-select not only based on size, but also by charge.[9, 

28-31] Conductance-based nanopore characterization is, in fact, uniquely positioned to 

provide geometric and chemical insights into nanopore properties. It is also exceedingly 

important in the context of solution-phase nanopore fabrication methods where post-

fabrication microscopic characterizations are undesirable. The prevailing approach has 

been to assume formation of a single nanopore when one is intended, and to overlook 

possible structural defects. Inaccurate nanopore models will affect the quality of 

conductance characterizations, and other work has shown (and taken advantage of) the 

influence of internal nanopore structural irregularities on analyte current blockages.[32] 

While it is essential to control the size of isolated nanopores for single-molecule 

characterization and sensing applications; the use of arrays of nanopores as filters for 
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physical and chemical separations multiplies the challenges and underscores the need 

to detail the formation of even single nanochannels.[11] 

 The extreme, ~10 nm feature size has historically been challenging to nanopore 

fabrication (and characterization) efforts. Methods have tended to be instrumentation-

intensive, using charged-particle microscopes such as scanning and (scanning) 

transmission electron microscopes (SEM and (S)TEM), and helium ion microscopes, or 

ion accelerator facilities to prepare membranes for subsequent chemical etching 

steps.[33-37] More recently, ~20 V potentials applied across thin membranes immersed 

in electrolytes conventionally used for nanopore experiments resulted in (controlled) 

dielectric breakdown of the films, and could produce size-tuned nanopores following 

voltage-assisted etching.[38] This truly low-overhead approach can yield <10 nm 

diameter nanopores, and produces them reliably wetted for use, without the risks of 

drying and surface contamination from steps such as TEM-based fabrication (or 

examination). A similarly all-solution-based approach uses deposition of largely 

conformal films to shrink suitable pores to the desired final dimension.[9, 39] By 

deliberately and beneficially removing high-magnification charged-particle 

microscopes from the fabrication workflow, however, the opportunity to immediately 

image the fabricated pores is lost. We therefore explored existing nanopore conductance 

formalisms[13, 18] and developed a framework to use conductance to characterize 

nanopore size, shape, and surface chemistry.[14-16] We most recently showed that the 

method could yield real-time insight into these nanopore properties during solution-

phase fabrication processes such as those outlined above.[14] In all instances, however, 

the simulations assumed perfectly formed single nanopores. Here we (1) deliberately 
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introduce defects into the pore models, and we moreover (2) allow for the possibility 

that a measured conductance arises from two separate nanopores forming in the same 

membrane (denoted a double pore). The latter allowance arises from TEM observations, 

post-pore fabrication, showing that dielectric breakdown formation of nanopores using 

unoptimized multilevel pulse-voltage injection could yield more than one pore.[40] 

Conductance-based measurements should allow for these realities, at least through the 

setting of reasonable uncertainty levels. We focus here on nanopores formed in thin, 

free-standing silicon nitride membranes, so that our numerical simulations use 

parameter values from the most commonly used nanopore material platform. The films 

are amorphous and thus not inherently prone to anisotropic etching,[41] and silicon 

nitride is notably resistant to structural and chemical modification absent deliberate 

action. 

METHODS 

 

The form of Equation 1 means that a single measured conductance does not yield 

a single unique solution for the nanopore size and shape.[14-16] One can gain more 

degrees of freedom by measuring the conductances at two different solution 

conductivities, 𝐾,[15, 16] or after (or during) controlled structural modifications.[14, 

15] A time-dependent framework was developed and examined conventionally in 

earlier work—without considering either defects or multiple pores.[14] During 

nanopore formation—by dissolution or deposition of material—the nanopore 

conductance is a function of time because the dimensions of the nanopore, {𝑞𝑗(𝑧, 𝑡)}, 

are changing in time, t: 
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𝑑𝐺

𝑑𝑡
= 𝐾∑ (

𝜕𝐴

𝜕𝑞𝑗
)
𝑑𝑞𝑗

𝑑𝑡𝑗 + 𝜇|𝜎|∑ (
𝜕𝐵

𝜕𝑞𝑗
)
𝑑𝑞𝑗

𝑑𝑡𝑗 .      (3) 

This particular implementation can determine geometries with two free 

parameters, and we chose the limiting (minimum) radius, 𝑟0(𝑧, 𝑡), and the total nanopore 

length, 𝐿(𝑡).[14] The presence of a defect disrupts the usual cylindrical symmetry. For 

a membrane with more than one nanopore, the nanopores are conductors in parallel 

(with identical surface chemistries and electrolyte contents) so that their conductances 

would be added directly, 𝐺 = ∑ 𝐺𝑛𝑛 . Using a single measurement of the conductance at 

a single time 𝑡𝑖, it is not possible to distinguish between a single large pore and two 

smaller pores, or between a pore with or without a defect, when 

𝐺(𝑡i, {𝑞𝑗(𝑡i)})= 𝐺(𝑡i, {𝑞𝑗
′(𝑡i)}).[14] The size- and geometry-dependence of the 

conductance change in time, however, 

𝑑𝐺

𝑑𝑡
= ∑ (𝐾∑ (

𝜕𝐴𝑛

𝜕𝑞𝑗
)
𝑑𝑞𝑗

𝑑𝑡𝑗 + 𝜇|𝜎|∑ (
𝜕𝐵𝑛

𝜕𝑞𝑗
)
𝑑𝑞𝑗

𝑑𝑡𝑗 )𝑛      (4) 

provides a much-needed degree of freedom to possibly differentiate between such 

configurations. The characterization method then has a very simple implementation:  

measurements of several sequential experimental conductance values at times {𝑡𝑖, … }, 

{𝐺(𝑡𝑖, {𝑞𝑗(𝑡𝑖)}),… }, are the inputs to the geometry optimization of candidate nanopore 

profiles. We simulated the experimental conductances using the experimentally 

supported Equation 1 in conjunction with experimentally supported nanopore profiles, 

and then fit the data using candidate nanopore profiles.[16, 18] The focus was whether 

including either defects or double pores would negatively affect the feasibility of the 

approach augured by the formalism. To allow this emphasis, the effect of measurement 
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noise on the conductance was neglected. The change in nanopore radius in time, 
𝒅𝒓

𝒅𝒕
=

𝒗mt, occupies a privileged role as the material transfer rate (with opposite signs for 

etching and deposition). We used a constant |𝜈mt| = 0.6 nm/h to highlight the nonlinear 

dependence of conductance on geometry in Equations 1, 3, and 4, and in keeping with 

the linear etch rates common to micromachining, but the method does not depend on 

that particular magnitude or time-dependence.[14, 41] We chose four nanopore profiles 

finding widespread use:  cylindrical, double-conical, conical-cylindrical, and hyperbolic 

(Figure S4.1), but the method does not hinge on these particular choices.[13, 16, 18, 37, 

42] The label 𝑟0 is used here to denote the radius of the cylindrical pores, and the 

minimum radius (at any given time) of the pores with radii varying with 𝑧; “pinch” and 

“outline” labels will be introduced for the 𝑟0 of cylindrical nanopores with defects. All 

profiles were conventionally restricted to two free parameters, each, (𝑟0 and 𝐿) with the 

outer radius of the three tapered profiles fixed to be 10 nm greater than their 

corresponding 𝑟0, and the initial length of the inner cylinder of the conical-cylindrical 

pore restricted to 0.6 times its overall length, 𝐿(𝑡0), where 𝑡0 is the starting time. To 

model the double pore case, the two pores were set to be identical. Parameter values and 

calculations were consistent with previous work:[14-16, 22] 1 M potassium chloride 

electrolyte solution in water, K=14.95 S·m-1, pH 7.0, and silicon nitride surface 

pKa=7.9, with 𝜎 calculated in the usual way.[16, 22] The influence of solution pH is 

outlined in Figure S4.3 and the discussion immediately preceding it. For the defect-free 

pores, surface-deposited films were treated in a piecewise curved manner to maintain a 

uniform surface coating thickness (Figure S4.1) across the entire nanopore surface.[14] 

For the case of the pores with defects (Figure 4.1a) the half-cylinder protrusions running 
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along the full length of the pore interior were centered on the pore outline, opposite each 

other. Simulations of 𝐺(𝑡𝑖) were performed using 0.01 nm step sizes in the nanopore 

radius (or 1 minute increments given 𝑣mt), and fits to 𝑟0(𝑡0) versus t were plotted using 

0.05 nm increments. 

RESULTS AND DISCUSSION 

 

Post-fabrication comparisons of electron microscopic and steady-state 

conductance measurements support the independent use of Equation 1 for nanopore 

characterization.[13, 16, 18, 20, 21, 24] Conductance measurements recorded during a 

fabrication process such as dielectric breakdown, however, occur in a different context 

than post-fabrication measurements.[38, 43] In Figure 4.2, we used experimental 

multilevel pulse-voltage injection (MPVI) nanopore formation measurements—both 

steady-state and time-dependent—by Yanagi et al.[43] to test whether a formalism such 

as Equation 1 would yield reasonable real-time size determinations using the time-

dependent conductance of a forming nanopore. Yanagi et al.[43] measured the steady-

state conductances, 𝐺, of post-fabrication pores and then used TEM imaging to 

determine their mean 𝑟0. With appropriate consideration of the usual caveats of EM 

nanopore characterization[14, 16], along with possible consequences of nanopore 

dewetting and handling, post-fabrication electron microscopy provides a valuable, albeit 

instrumentation- and expertise-intensive, measure of nanopore size. Unsurprisingly, we 

obtained good fits to post-fabrication data using Equation 1 (Figure 4.2a)—in particular 

with a conical-cylindrical profile with conventional constraints (see above)—and using 

Equation S1 (Equation 1 with an access resistance term—see discussion below) with 



73 

 

cylindrical models with effective or adjustable fitting parameters. To correlate Yanagi 

et al.’s[43] measured 𝑮 and mean 𝒓𝟎 without biasing the fit with an explicit choice of 

nanopore shape, we modified the cylindrical model of Equation S1 by replacing 𝑮bulk 

with 𝛼𝐺bulk, and 𝐺surface with 𝛽𝐺surface. We optimized the parameters 𝛼 and 𝛽 using the 

fit to the experimental data (with known 𝑟0, 𝐿, and 𝐺) in Figure 4.2a to correlate 

experimental post-fabrication nanopore conductances and mean nanopore radii by 

TEM, 𝑟0,TEM

𝛼,𝛽 (𝐺). We then used 𝑟0,TEM

𝛼,𝛽 (𝐺) to convert Yanagi et al.’s[43] time-dependent 

measurements of the conductance into nanopore size as a function of time, 𝑟0,TEM

𝛼,𝛽 (𝑡𝑖) 

(Figure 4.2b). In this context, the function 𝑟0,TEM

𝛼,𝛽 (𝐺) is thus better thought of as simply 

a fit function relating nanopore conductance and TEM-based size, rather than 

representing a particular model choice for the nanopore conductance. Finally, for each 

𝐺(𝑡𝑖) data point of Figure 4.2b, we calculated 𝑟0,candidate(𝑡𝑖), with all other parameters 

fixed, for each of the candidate nanopore profiles, and compared the results with 

𝑟0,TEM

𝛼,𝛽 (𝐺) (Figure 4.2c). The experimental 𝐺(𝑡𝑖) of Yanagi et al.[43] was fit best, using 

Equation 1, by a conical-cylindrical model with overall length equal to the nominal 

membrane thickness. The cylindrical model using Equation S1 and with an effective 

length equal to a fraction of the nominal membrane thickness[43] did not fit as well as 

the conical-cylindrical model, but outperformed the remaining candidates. Overall, 

Equations 1 and S1 produce reasonable nanopore sizes when applied to conductance 

data recorded during nanopore fabrication. As discussed in earlier work[14], a time-

dependent material-transfer rate, 𝜈mt(𝑡), is no impediment to the time-dependent 

conductance profiling framework.[14] 
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As the first application of Equation 1 to more complex nanopore configurations, 

we investigated the effect of defects on our ability to extract reasonable geometric 

descriptions of nanopore sizes. Figure 4.1a shows a top-down view of defects in 

cylindrical nanopores (𝐿(𝑡0) = 10 nm). Figure 1a also shows one of the key challenges 

of conductance-based nanopore characterizations:  all of the different profiles shown 

have, by Equation 1, the same 200 nS conductance. With larger initial defect size, the 

initial radius of the cylindrical outline of the nanopore (the “outline radius”, 𝑟0
outline(𝑡0)) 

must also be larger to compensate for the internal volume lost for ionic transport. 

Defects distort the circular symmetry of the nanopore and introduce “pinch points” (as 

illustrated in Figure 4.3, characterized by the radius of a cylinder just fitting between 

the two protrusions—the “pinch radius”, 𝑟0
pinch(𝑡0)) that could preclude analyte passage 

where a defect-free pore of equivalent conductance could allow passage. Such a failure, 

of course, is diagnostic, but would require the addition of gauging molecules or particles 

(compatible with the fabrication conditions) if it were to be used for real-time 

monitoring of the fabrication. Such adjuncts could naturally be used post-

fabrication.[44, 45] Figure 4.1b shows the evolution of a cylindrical nanopore with 

1 nm-radius defects:  as more material is added to the surface with time, the nanopore 

interior becomes increasingly anisotropic. Depending on defect size, shape, and 

position, depositing material onto the surface of a pore with defects could readily lead 

to overlapping Debye layers followed by physical scission of a single pore into two 

distinct pores. The comparison of single and double pore systems thus also overlaps 

with the consideration of fabrication defects. Figure 4.1c illustrates the heart of the 

method motivated by the form of Equations 1 and 3:  it shows the time evolution, with 
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identical material transfer rates, of the nanopore profiles shown in Figure 4.1a. For small 

nanopore sizes where Debye layers overlap, more sophisticated treatments than 

Equation 1 are required, but as a guide to the eye we plotted the conductance until 

𝑟0
pinch

= 0.[15, 46] From their identical initial value, the conductances of the different 

profiles differentiate in time, in spite of the constant material transfer rate changing all 

outline and pinch radii at the same rate. 

When nanopore dimensions are changed during fabrication, the change in 

conductance with time is measured without knowledge of the presence or absence of 

defects. The question is whether the time-trace of the conductance can reveal the 

presence of defects or not—and if not, how serious the error in the resulting nanopore 

characterizations might be. To explore this, we chose to simulate (abbreviated to “sim” 

in labels) the time-dependent conductances, 𝐺case
sim(𝑡𝑖) (case denotes defect size), for two 

cylindrical nanopores with 𝐺case
sim(𝑡0) = 200 nS and 𝑟0

pinch(𝑡0) = 4 nm:  one with two 

0.1 nm-radius defects, and the other with two 1.0 nm-radius defects (and lengths 𝐿(𝑡0) 

~4.1 and ~5.9 nm, respectively, dictated by the conductance and radii). We attempted 

to fit these data by using the (known) material transfer rate and varying the dimensions 

of three candidate nanopore profiles:  a defect-free cylindrical nanopore, and profiles 

with 0.1 and 1.0 nm-radii defects. The question was whether fitting to the 𝐺case
sim(𝑡𝑖) 

would reveal the existence and size of defects. A step-by-step tutorial for this process is 

provided in earlier work,[14] which we abbreviate here to allow a suitable focus on 

fabrication irregularities. The initial conductance, 𝐺case
sim(𝑡0), was used to determine the 

(infinite) set of {(𝑟0,candidate(𝑡0), 𝐿candidate(𝑡0))} for which 𝐺candidate(𝑡0) = 𝐺case
sim(𝑡0). 
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After the dimension changes from depositing material at the known rate (outline and 

pinch radii diminish at 𝜈mt, whereas the cylinder length increases at 2𝜈mt), only one 

pairing (𝑟0,candidate(𝑡0), 𝐿candidate(𝑡0)) for each candidate also satisfied 𝐺candidate(𝑡1) =

𝐺case
sim(𝑡1). This answer gave the unique initial nanopore size for each candidate with its 

specified defect size, but could not be used to identify the simulated defect size. That is, 

all three candidate profiles could exactly reproduce the two simulated conductances. 

After propagating the deposition one more time from the three different 

(𝑟0,candidate(𝑡0), 𝐿candidate(𝑡0)), only one pair of initial nanopore dimensions gave 

𝐺candidate(𝑡3) = 𝐺case
sim(𝑡3). Figure 4.3 summarizes this behavior:  the ordinate is the initial 

nanopore radius, 𝑟0,candidate(𝑡0), that, after deposition until time 𝑡𝑖, would give 

𝐺candidate(𝑡𝑖) = 𝐺case
sim(𝑡𝑖) (the dimensions at time 𝑡𝑖 are readily calculated from the initial 

dimensions and the known material transfer rate). When the candidate profile (here, 

defect size) matches the simulated profile, then all the 𝑟0,candidate(𝑡0) from each 𝑡𝑖 are 

equal to each other, and equal to 𝑟0,case
sim (𝑡0), and the line connecting the data is horizontal. 

When the candidate profile is incorrect, then the plotted data is no longer horizontal. 

Thus, in Figure 4.3a, when the simulated data is generated using a cylindrical pore with 

a 0.1 nm-radius defect, only the fit data using the 0.1 nm-defect candidate pore is 

perfectly horizontal. The defect-free nanopore fit data is close to horizontal and overlaps 

substantially with the outline radius of the simulated pore, but the 1 nm-defect fit data 

has a larger nonzero slope and is therefore the incorrect candidate. While 𝑟0
outline(𝑡0) of 

the 1 nm-defect candidate was not substantially larger than the true 𝑟0
outline(𝑡0), its small 

𝑟0
pinch(𝑡𝑖) would suggest an incorrect threshold for analyte size-exclusion. Figure 4.3b 
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shows that a 1 nm-defect simulated pore is successfully fit only with a 1 nm-defect 

candidate pore, and that radii for the remaining two candidates lie between limits set by 

the pore with the larger defect. In both fitting examples, the slopes of the fit data provide 

an indication of the correct defect magnitude, being positive when the candidate defect 

is too large, and negative when the candidate defect is too small. One might thus imagine 

a strategy in which a wider range of candidate defect sizes were used to more readily 

indicate the presence and provide bounds for the size of a defect. The feasibility of the 

method thus extends from the formalism to successful numerical examples, but these 

model calculations portend limitations in experimental implementation:  

Δ𝑟0,candidate(𝑡0)~0.1nm for incorrect candidates, compared to the full 2 nm deposition 

thickness. In the presence of measurement noise, or with an unfavorable combination 

of defect size, 𝜈mt, fabrication time, and number of conductance measurements, for 

example, even detection of defects may elude real-time analysis. 

We extended this exploration of the effect of defects by considering the effect 

of candidate nanopore shape on the conductance-based geometry optimization. Figure 

4.4a illustrates the underlying premise. At 𝑡0, the six listed nanopore profiles have 

identical 200 nS conductances and 𝐿(𝑡0) = 10 nm, generated by different 𝑟0(𝑡0). As 

material deposition narrows the nanopore constrictions at a constant linear rate (inset), 

all of the conductances diverge from each other in time. This occurs in spite of, for 

example, the 𝑟0
pinch

 of the 1.0 nm-defect cylindrical pore and the 𝑟0 of the conical-

cylindrical pore having essentially identical values over time. Figures 4.4b and c use 

this behavior quantitatively. The same procedure used for Figure 4.3 was used to fit the 
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simulated conductances of cylindrical nanopores with 𝑟0
𝑝𝑖𝑛𝑐ℎ(𝑡0) = 5.0 nm, and two 

defects of either 0.1 or 1.0 nm radius, with defect-free pores representing typical 

nanopore shapes. Even the smaller, 0.1 nm defects caused the defect-free cylindrical 

nanopore to be unable to fit the simulated conductance. The correct candidate profile—

0.1 nm defects inside a cylindrical profile—gave a perfectly horizontal line when fit to 

the simulated 0.1 nm-defect data. Fitting with the conical-cylindrical nanopore, 

however, generated nearly horizontal data, likely because the distinct narrow and wide 

sections of the profile (including constraints) were able to approximate the defect-

bearing cylinder’s balance of pinch and outline radii. The radius of the opening through 

the inner cylinder (𝑟0,conical-cylindrical(𝑡)), however, was smaller than for the simulated 

profile. For the simulated cylindrical pore with the larger, 1.0 nm defect, the fitting 

procedure again returned the correct profile and defect size. Once again, the conical-

cylindrical profile fit data was almost horizontal with the wrong radius, although lying 

between the pinch and outline radii of the defect model. Depending on the size, 

distribution, number of defects, and current noise, it may be difficult to use this 

conductance model to distinguish, in real-time during formation, between an ideal pore 

of a given shape, and a pore of a different shape, but with defects. It may be necessary 

to then resort to more involved post-fabrication approaches.[15, 16, 44, 45] Indeed, one 

may be forced to adopt a strategy of repeated cycles of incomplete fabrication—with 

real-time profiling—followed by more in-depth characterization. In such a case it is 

important to understand the inherent uncertainties—such as the error in 𝑟0—of these 

real-time characterization procedures to ensure that the fabrication cycles do not pass 

by the desired final size. 
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A second complication for nanopore formation is the formation of more than 

one pore when only one is intended. Microscopy can be used to directly enumerate the 

pore number, but at the cost of instrumentation and user burdens, and possible nanopore 

surface contamination, among other drawbacks. We wanted to determine if conductance 

could provide any insight into this possible problem of multipore formation. We 

explored the case of double pores of matching size and shape. Figure S4.4 illustrates 

that the conductance change in time provides the prospect of differentiating between 

single and double pore systems, just as it did for single pores of different shapes.[14] 

To explore whether the conductance time trace could reliably determine the size 

and number of the pores during their fabrication, we simulated conductances for single 

and double pore configurations of the four profiles in Figure S4.1, choosing 200 nS as 

a convenient initial conductance. Double pores for each shape were identical in size to 

each other. The conductance fitting in Figure 4.5 mirrors that of Figure 4.3 and 4.4b,c. 

For each column, a given profile with a single (a-d) or double (e-h) pore was chosen 

and used to calculate a minimum of three simulated conductance values in time:  

𝐺case
sim(𝑡0), 𝐺case

sim(𝑡1), and 𝐺case
sim(𝑡2), with additional 𝐺case

sim(𝑡𝑖) providing added robustness 

(case here denotes profile and pore number). The broad outlines of the results detailed 

in Fig. 5a-d and e-h are that one-pore simulated conductances were fit by the one-pore 

candidate profiles of the correct shape (as revealed by the constancy of the 

corresponding 𝑟0(𝑡0)), and double pore conductances were fit by the matching double 

pore candidate profiles. Interestingly from these examples, double pore cylindrical and 

conical-cylindrical profiles did a reasonable job of fitting single pore hyperbolic and 

double-conical conductance data, and single hyperbolic and double-conical candidates 
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did a reasonable job of fitting double pore cylindrical and conical-cylindrical 

conductance data. Exact agreement still only occurs for correct shape and pore number, 

but the wrong profile doesn’t inherently produce a terribly inaccurate radius. While they 

returned the incorrect shapes, the nevertheless fairly accurate 𝑟0 means the expectations 

of which sizes of molecules would fit through the candidate pores are unlikely to differ 

appreciably, although the double pore case would allow for twice the number of 

channels and have different analyte-induced current blockages. Sufficient attention 

should therefore be obtained to optimizing the nanopore fabrication conditions,[40] and 

more involved post-fabrication characterizations should be considered if analyte-

induced blockages do not fall within the range expected for the relative sizes of analyte 

and pore.[15, 16, 44, 45] 

CONCLUDING REMARKS 

 

The performance of a nanopore used for applications such as single-molecule 

sensing, separations, and manipulations is dictated in large part by its size, shape, and 

surface chemistry. These three parameter groupings underpin the nanopore conductance 

and allow a suitable analysis framework to use straightforward measurements of the 

conductance as a means to gain insight into these nanopore properties. Nanopore 

conductance is routinely used to coarsely gauge nanopore size during use, typically with 

at least the assumption of a cylindrical shape, and then often with deliberately incorrect 

parameter constraints to ensure that reasonable numerical estimates of the radius are 

nevertheless produced. More sophisticated conductance formalisms have been 

developed and validated for use with more complicated nanopore shapes and to account 
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for additional considerations such as access resistance. Simple, analytical expressions 

allow for wider adoption of a characterization method that can easily accommodate a 

range of nanopore profiles, thereby providing both application flexibility and the 

possibility for using different model assumptions to explore the uncertainties in the 

extracted nanopore dimensions.[15, 16] New solution-based nanopore fabrication 

techniques have increased the importance of methods to characterize nanopores from 

their conductance. We tested the ability of a recently-developed method to characterize 

nanopores in real-time during fabrication by allowing for the possible formation of 

multiple pores or pores with defects. The simulations determined the correct nanopore 

number, size, and shape alongside the presence and size of any defects, but the 

numerical examples revealed challenges that await experimental applications of the 

approach. While the basic equations showed good agreement with experimental time-

dependent conductance measurements, example characterizations that explicitly 

considered the possibility of nanofabrication defects yielded only very slight differences 

in the key metrics designed to identify nanopore profiles and determine their 

dimensions. Inadequate measurement statistics may therefore impede the ability to 

uniquely or correctly determine the correct nanopore shape, number, and size. In 

challenging cases, a selection of analyses using different assumptions could produce a 

set of parameter values whose spread could offer a measure of the uncertainty of the 

characterization. Such real-time estimates could be followed by post-fabrication 

characterizations where larger conductance changes than those accompanying 

nanoscale changes of nanopore dimension would be wrought by changes of solution 

concentration, thereby easing the conductance analysis.[16] Thus, in spite of the 
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limitations discussed here, the time-dependence of the nanopore conductance during 

fabrication remains a useful tool, given sufficient circumspection in application, for 

gaining insight into the evolving nanopore structure and for characterizing nanopores 

even without the usual assumptions of ideal formation. 
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Figure Captions 

 

Figure 4. 1. a) Top view of 𝐿(𝑡0) = 10 nm cylindrical nanopores that yield a 200 nS 

conductance with the radii of the two inward-pointing defects given in the legend. b) 

Top view of the initially 1 nm-radius defect nanopore from (a), closing at 𝑣mt =

0.6 nm/h with deposition time indicated. c) Progression of conductance (and 𝑟0
pinch

 in 

inset ) with time for the cylindrical nanopores from (a). 

 

Figure 4. 2. (a) Experimental post-fabrication measurements of nanopore conductance 

and their corresponding TEM-based mean 𝑟0,TEM

expt
 (green stars)[43] were plotted versus 

several models:  Equation 1 (solid markers) – cylindrical (red circles), double-conical 

(blue triangles), conical-cylindrical with an inner cylinder length of 0.6𝐿 (black 

squares), and hyperbolic (magenta diamonds); and with an added access resistance term, 

by Equation S1 (hollow markers) – cylindrical with length 𝐿 (small circles) and 
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cylindrical with a 0.37𝐿 effective length [43] (large circles). To not bias further analysis 

with an explicit choice of nanopore profile, the 𝑟0,TEM

expt
 were fit to Equation S1 with 𝐺bulk 

and 𝐺surface from the cylindrical model weighted by fit parameters:  𝛼𝐺bulk and 𝛽𝐺surface 

(orange triangles—𝑟0,TEM

𝛼,𝛽 (𝐺)). (b) Time-dependent conductance measurements were 

taken from the experimental work of Yanagi et al.[43] and were used with 𝑟0,TEM

𝛼,𝛽 (𝐺) to 

determine 𝑟0,TEM

α,β (𝑡𝑖). (c) Candidate profiles matching those in (a) were used at each 

discrete value of 𝐺(𝑡𝑖) to calculate an 𝑟0,candidate(𝑡𝑖). The figure compares the fit and 

experimentally-derived radii where the correct candidate size should result in a straight 

line at a ratio of 1. Selected data markers are shown for clarity. 
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Figure 4. 3. Conductances during simulated material deposition onto nanopores with 

initial conductances of 200 nS, and 𝑟0
pinch(𝑡0) = 4 nm, were fit with candidate 

cylindrical nanopores:  a defect-free pore, and pores with 0.1 and 1.0 nm-radius defects. 

Dotted and solid lines denote the pinch and outline radii, respectively. a) 0.1 nm defect 

pore and b) 1.0 nm defect pore profiles were used to furnish the simulated conductance 

data. The correct candidate profile in each case was indicated by the horizontal slope of 

the fit data; the defect-free 𝑟0(𝑡0) nearly completely overlaps with 𝑟0
pinch(𝑡0) for the 

0.1 nm defect pores. Selected data markers are shown for clarity. 
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Figure 4. 4. a) Conductances and (inset) radii as a function of profile and time when 

simulating deposition onto surfaces of initially 200 nS, 𝐿(𝑡0) = 10 nm nanopores. 

Dotted curves in the conductance plots belong to the cylindrical pores with defects, and 

denote the corresponding 𝑟0
pinch

 in the inset (solid line-𝑟0
outline) and in (b)-

(c).Conductance versus time for b) 0.1 nm-defect and c) 1.0 nm-defect cylindrical pores 

were fit with each candidate profile in the legend; horizontal fit lines for each case 

indicated the correct simulated profile. Selected data markers are shown for clarity. 
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Figure 4. 5. Single (solid lines) and double (dotted lines)—left to right matching the 

half-profile sketches—cylindrical (red circles), double-conical (blue triangles), conical-

cylindrical (black squares), and hyperbolic (magenta diamonds) profiles were used to 

simulate nanopore conductance values versus time. Eight candidate profiles (4 shapes, 

single and double) were used to fit (a-d) single pore simulated data and (e-h) double 

pore data from the 4 shapes. All experimental pores were initially 200 nS conductance. 

The correct nanopore shape was indicated by the constancy of the fit to 𝑟0(𝑡0) in time, 

and is labelled with the corresponding shape and number of pores. Selected data markers 

are shown for clarity. 
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ABSTRACT 

 

A method to directly electrolessly plate silicon-rich silicon nitride with thin gold 

films was developed and characterized. Films with thicknesses less than 100nm were 

grown at 3 and 10°C between 0.5 and 3 hours, with mean grain sizes between ~20-

30nm. The method is compatible with plating free-standing ultrathin silicon nitride 

membranes, and we successfully plated the interior walls of micropore arrays in 200nm-

thick silicon nitride membranes. The method is thus amenable to coating planar, curved, 

and line-of-sight-obscured silicon nitride surfaces. 

KEYWORDS:  Electroless plating; thin gold films; silicon nitride; micropores; surface 

enhanced Raman spectroscopy (SERS); tin sensitization. 

INTRODUCTION 

 

Thin gold films have widespread technological utility, from forming conductive 

elements and overlayers, to serving as a platform for chemical surface modification by 

molecular self-assembly1. For gold films incorporated into conventional micro- and 

nanofabricated devices, silicon nitride is an appealing choice for a substrate. It is a 
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standard nanofabrication material, offering, in addition, favorable inherent properties 

such as mechanical strength2-3, chemical resistance, and dielectric strength4-5. Silicon 

nitride is thus ubiquitous as a structural and functional element in nanofabricated 

devices where it plays a variety of roles2, 5-8. Its surface chemistry, however, presents 

especial challenges given the complex mixture of silicon-, oxygen-, and nitrogen-

bearing surface species5. The nominal surface modification of silicon nitride is 

frequently carried out in practice using silane-based modification of a silica layer that 

may itself not be well-defined9. Thus, there remains both a need and opportunity to 

expand the suite of approaches useful for surface functionalizing silicon nitride directly. 

Electroless deposition is a particularly compelling approach to film formation:  

deposition proceeds from solution allowing the coating of three-dimensional surfaces, 

including surfaces hidden from line-of-sight deposition methods; no electrochemical 

instrumentation is required; no electrical power must be supplied nor must the substrate 

be conductive; there is no need for expensive vacuum deposition equipment; and a 

variety of classical physicochemical parameters such as reagent composition, solution 

properties such as pH and viscosity, and temperature, are available to tune the film 

properties10-11. There is a wealth of familiar approaches for the electroless plating of 

substrates such as polymers, for example, but no established prior art for the direct 

metal-cation-mediated electroless plating of gold onto silicon nitride12-13. A particularly 

compelling sequence exists for the electroless gold plating of poly(vinylpyrrolidone)-

coated polycarbonate substrates (Au/PVP)13:  direct sensitization of the PVP surface 

with Sn2+, activation by immersion in ammoniacal silver nitrate to oxidize the surface 

Sn2+ to Sn4+ by reducing Ag+ to elemental silver (producing, also, a small amount of 
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silver oxide), and finally gold plating by galvanic displacement of the silver with 

reduction of Au(I) to Au(0) accompanied by the oxidation of formaldehyde. Amine and 

carbonyl groups in the PVP layer were proposed to complex the tin cation during 

sensitization13. Extending this approach, Sn2+ has been reported to complex effectively 

with oxygen-rich polymer surfaces12 and with quartz and silica substrates10, 14-16. Tin(II) 

sensitization has also been reported on NaOH-roughened surfaces17, suggesting that a 

specific chemical interaction may not be essential18, and underscoring the utility of 

electroless plating for rough and high-surface-area surfaces where physical deposition 

is challenged19. In principle, though, a smooth silicon nitride substrate with a well-

defined silica surface layer should be amenable to direct tin sensitization. Yet, 

electroless deposition of gold on planar silicon nitride has been limited to routes 

requiring the use of a silica layer with organic linkers and metal layers between the 

silicon nitride and gold overlayer18. In the first case, covalent attachment of an organic 

monolayer using silane chemistry can be beneficial for film adhesion, but adds 

operational complexity18 and can constrain downstream processing conditions. In the 

second case, the intervening layers may lend beneficial properties, or may similarly 

introduce compositional constraints on applications, or morphological constraints on the 

final gold film nanostructure. Regardless of the ability to carry out a silica-based 

modification, it does not eliminate the benefits of a direct functionalization of silicon 

nitride. We present a dramatically simplified electroless gold deposition method in 

which we eliminate the initial covalent attachment of an organic monolayer to the 

substrate, and in which we do not need to initially mask the silicon nitride surface 

chemistry with a silica overlayer. Our method directly sensitizes the silicon nitride 
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substrate with a Sn2+ solution, followed by a series of metal ion treatments in which we 

exert control over the gold film thickness using process time and temperature. Film 

thicknesses ranged from 30 to 100nm for deposition times from 0.5-3h, and 

temperatures of 3 and 10°C. 

Full details of materials and preparation are provided in the Supporting Information. In 

brief, polished silicon-rich low-pressure chemical vapor deposited (LPCVD) silicon 

nitride-coated silicon wafers were cleaved into ~1cm2 chips. The chips were then 

electrolessly plated with gold deposited from solution as outlined in Scheme 5.1. 

Ultrasonic cleaning of the substrate20 was strictly avoided so that straightforward 

extension of the scheme to ultrathin silicon nitride windows would not cause window 

fracture2-3. Each chip was plasma-cleaned and then briefly etched in a dilute 

hydrofluoric acid (HF) solution to remove unwanted native silicon oxide and expose the 

silicon nitride surface4, 20. The prepared chips were immersed in a tin(II) chloride 

sensitizing solution, followed by a soak in ammoniacal silver nitrate solution10, 13. The 

chips were carefully rinsed between each step of the process. Electroless gold plating 

was carried out by immersing chips in ~1.5-3mL (0.75mL for micropores) of sodium 

gold sulfite plating solution21, with gentle rocking, in a refrigerator (3°C plating) or 

thermoelectric cooler (10°C plating). After plating for the desired time at the desired 

temperature, the chips were carefully rinsed, dried and then characterized. Gold film 

thicknesses were obtained by atomic force microscopy (AFM) measurements across an 

edge from the film to the substrate. Film morphology was examined by field-emission 

scanning electron microscopy (FE-SEM) and analyzed using a watershed analysis. 

Elemental analysis of the gold film was carried out by energy-dispersive x-ray 
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spectroscopy (EDS) and by x-ray photoelectron spectroscopy (XPS). Characterization 

details are provided in the Supporting Information. 

Scheme 5. 1. Electroless plating of silicon nitride. The silicon nitride–coated substrates 

are plasma-cleaned of organics and HF-etched before the surface is exposed to Sn2+ ions 

which are oxidized during the redox-driven deposition of an elemental silver layer. Gold 

plating begins with galvanic displacement of the elemental silver. 

 

Figure 5.1 shows photographs of an array of silicon nitride-coated substrates 

subjected either strictly to the steps in Scheme 5.1, or to control experiment variations. 

Adherence to Scheme 5.1 produced gold films, evaluated by visual inspection, with 

good quality and excellent macroscopic surface coverage, and delivered these results 

reliably over many months of repeated trials. More detailed characterization of these 

films is provided below. Departures from the scheme, however, yielded generally poor 

or inconsistent results. We focused our attention on varying the surface preparation 

steps, specifically testing surface preparations that did not involve HF etching designed 

to remove the oxygen-containing overlayer. Tin(II) sensitization after sodium hydroxide 

surface roughening had been reported on silicon nitride powders of unknown 
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stoichiometry5, 17. Indeed, surface roughening to improve film adhesion is a familiar 

preliminary process in electroless plating11. Substituting 1, 4.5, or 9M NaOH treatments 

for the HF etching of Scheme 5.1, however, generated only gold smudges after 3 hours 

of plating at 3°C. The silicon-rich nature of our LPCVD films is a possible contributing 

factor to the poor plating quality after NaOH treatment in comparison to the published 

results17, given the general challenge that silicon nitride stoichiometry and available 

surface species—and thus functionalization opportunities20—depend on the details of 

the silicon nitride synthesis5. Our use of large-area, planar substrates introduces another 

likely explanation:  it provides a stringent test of film deposition quality, and easily 

reveals defects that may be more difficult to discern on a film coating a powder. 

Traditional silicon nitride surface modification schemes rely frequently on modification 

of a silica layer on the silicon nitride surface22-23 rather than of the silicon nitride, itself. 

Careful attention to the quality of the oxygen-containing surface layer can circumvent 

difficulties that stem from a lack of definition of this silica layer22. Holtzman and Richter 

used nitric acid to enrich the number of surface hydroxyl groups on silicon nitride so 

that they could use silane chemistry to provide an organic monolayer foundation for an 

overlying electrolessly deposited gold film18. While successful, the approach must 

contend with the acknowledged challenges of silane chemistry18 and with the 

persistence of the organic linker layer. Given the affinity of Sn2+ for such an oxygen-

enriched silicon nitride surface, and given prior demonstrations of electroless gold 

plating on silica surfaces10, we replaced the HF etch in Scheme 5.1 with a 20 minute 

treatment in 10% (v/v) nitric acid at 80°C. The results, shown in Figure 5.1, were 

promising, with repeated, although not consistent, deposition of (visually inspected) 
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high-quality gold films. It is likely feasible to optimize this route to routinely deposit 

high-quality, uniform gold films, but our goal was to develop a simple route to 

electrolessly plate gold directly onto silicon nitride. Treatment of silicon-rich LPCVD 

silicon nitride surfaces with dilute hydrofluoric acid eliminates the native oxide4, 23 and 

leaves a H-terminated surface with Si-H, NH and NH2 moieties22. Given the appeal of 

this surface for surface functionalizations20, 22, we tested its compatibility with tin(II)-

based sensitization. Scheme 5.1 thus follows the plasma-based cleaning steps with an 

HF etch step that removes oxide and H-terminates the surface22, and ends with the gold 

plating treatments13. We note that in the absence of the HF-etching step, chips would 

sporadically be coated with patchy gold layers, but no uniform high-quality gold films 

were observed on these chips even after 3 hours in the gold plating solution.  

Figure 5. 1. (a) Photograph array of plating results at 3°C. Top row, left-to-right – HF 

etch omitted, 1 h plating after HNO3 preparation, HNO3 step replicate, plasma-cleaned 
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only (subsequent steps omitted). Bottom row, left-to-right, Scheme 5.1 followed for 

plating times of 30 minutes, 1 hour, 2 hours, and 3 hours. The scratches in the film arose 

during handling of the chips. (b) Adhesive tape could lift most of the gold film to give 

an edge for (c) AFM measurements of electroless gold deposition film thickness as a 

function of time and temperature. 

The row of visually high quality, high coverage gold films shown in Figure 5.1 

were electrolessly plated at 3°C for increasing lengths of time, with strict adherence to 

Scheme 5.1. The gold films survived extensive handling including prolonged immersion 

in liquids interspersed with repeated rinsing and pressurized argon-drying steps, and 

moreover adhered well to free-standing films that we broke deliberately for imaging 

(Figure 5.4b). Certainly, in applications using gold-coated, freestanding silicon nitride 

membranes, consideration of membrane robustness will supersede gold adhesion in 

importance. The films could, however, be scratched with tweezers and mostly removed 

with adhesive tape (Figure 5.1b), and this afforded us the ability to perform AFM film 

thickness measurements. A swath of the gold film was removed and the mean difference 

in height between the film and the bare substrate was averaged across several 

representative line profiles and several independently plated chips for each plating time 

and temperature (see Supporting Information for details). Figure 5.1 plots the step height 

from plated film to bare substrate as a function of time:  at 3°C a step height of ~30nm 

after 30 minutes with a linear fit yielding a ~20nm/h deposition rate thereafter, and at 

10°C a step height of ~35nm after 30 minutes with a linear fit yielding a deposition rate 

of ~40nm/h thereafter. The intercept likely arises from residual silver nanoislands 

scattered across the substrate. Shorter plating times than those shown in Figure 5.1 
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typically produced chips with a purple-blue hue. Four-point film resistivities were 

measured for the films plated at 3°C for all the time points listed, and were in the range 

~3 − 5 × 10−6Ω∙cm; thin film resistivities higher than the known bulk gold resistivity 

(2.2 × 10−6Ω∙cm)11 are not surprising18. SEM micrographs afford a further detailed 

view of the film structure (Figure 5.2). Microscopic substrate coverage was high, but 

not complete, after 30 minutes of plating at 3°C, but was on par, after 30 minutes at 

10°C and 1 hour at 3°C, with the coverage shown in the SEM micrograph shown in 

Figure 5.2. Micrographs for both temperatures and all plating times were subjected to 

watershed analysis (see Supporting Information for details) and yielded area-equivalent 

mean grain radii from 20-30nm. It is clear from the SEM images, however, that the film 

structure is more complex than can be represented in a single equivalent grain size. 

There were large agglomerates on the film surface, seen also in AFM line profiles, with 

radii of several hundred nanometers. EDS analysis of these larger features showed them 

to be gold (see Supporting Information, Figure S5.1). Many of these outcroppings had 

quite convoluted shapes; there is the potential for quite compelling applications arising 

from both the regular and irregular film grain structures24-25. Indeed, the films are useful 

as a platform for surface-enhanced Raman spectroscopy (SERS). Figure 5.3 shows a 

demonstration spectrum of 4-nitrothiophenol (NBT) taken from an electrolessly gold-

coated silicon nitride substrate. Annealing of these films caused an attendant decrease 

in the SERS signal, and after annealing for 24 hours at 280°C, the mean grain size had 

increased to nearly 50nm. 
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Figure 5. 2.  SEM images of a film after 2h of gold plating at 3°C. The inset is of the 

same film at lower magnification. 

 

Figure 5. 3. Measured spectra from 1cm2 silicon nitride substrates soaked in 0.01M NBT 

for 5 minutes:  from a substrate electrolessly gold-plated at 3°C for 3 hours (red), from 

the same chip plasma cleaned, annealed at 280°C for 20 minutes, and plasma cleaned 

again before NBT exposure (blue), and from a sputtered (30s) gold film (black). 

While the electroless gold plating was strongly sensitive to the surface 

preparation of the silicon nitride, we note, for completeness, that the exposed silicon at 
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the edges of the chips was consistently gold-plated, regardless of whether the wafer was 

treated with HF, HNO3 or NaOH. Polished ~1cm2 silicon chips treated according to 

Scheme 5.1 developed uniform, high-quality gold films across the surface. This result 

suggests that the silicon-rich nature of our silicon nitride films may contribute to the 

electroless plating process in Scheme 5.1. Candidate mechanisms for tin-sensitizing 

silicon nitride thus extend beyond those involving nitrogen-containing surface species13. 

The prospect of definitive elucidation of the mechanism, however, must be weighed in 

the context of clear precedent in the literature that the complexity of silicon nitride 

surface chemistry makes it difficult to unravel surface attachment mechanisms20. The 

chemical complexity of the reagents and supporting media involved in electroless 

plating further compounds the challenges, compared to physical deposition in vacuum 

or covalent attachment chemistry in solution. Nevertheless, the steps of various 

electroless plating approaches have a sound electrochemical basis and the method has a 

demonstrable outcome11. XPS spectra were recorded from silicon nitride chips after 

each major step of Scheme 5.1. Selected spectra and details of the analysis are provided 

in the Supporting Information (Figure S5.2). XPS spectra were also recorded from 

silicon chips for use as a guide to unravelling the overlapping contributions to the Si2p 

region of the silicon nitride spectra, especially. HF treatment of the oxygen-plasma-

cleaned silicon and silicon nitride caused a significant diminution of oxygen-related 

peaks at ~104eV (Si2p) and ~533eV (O1s), with the first component no longer evident. 

These spectral features—including the residual O1s peak that could indicate surface 

reoxidation generating a small number of surface hydroxyl groups, but has been 

principally attributed to presumably surface-inaccessible bulk oxygen—are consonant 
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with those recorded from silicon nitride substrates prepared for direct covalent chemical 

modification9, 20, 22. The tin(II) treatment steps caused an appreciable widening of the 

residual, post-HF-etch O1s peaks of silicon and silicon nitride. We subjected silicon and 

silicon nitride substrates to two control treatments at this stage of Scheme 5.1:  in the 

first, we omitted the hydrofluoric acid step prior to the introduction of the tin solution, 

and in the second, we prepared the tin sensitizing solution without adding tin. In none 

of the cases was the appreciable widening of the O1s peak observed. The broad, low-

amplitude 102.5eV Si2p peak that appeared after Scheme 5.1 tin-sensitization of silicon 

also appeared after tin-free control processing, and it suggests submonolayer oxygen 

coverage that can arise from aqueous processing23, 26. The analogous formation of 

silicon oxynitride27-28 on the silicon nitride substrate would be more difficult to discern 

from the main Si2p peak due to spectral overlap. Tin oxidation states can be difficult to 

definitively identify by XPS measurement16, 29, but the shifts of the best-fit ~487eV 

Sn3d5/2 peak to lower binding energy after the addition of silver(I) ions to both 

substrates (by ~0.5eV for SiNx and ~0.15eV for Si), would be consistent in direction 

with the oxidation of tin(II). The Sn3d5/2 peaks were affected by the substrate 

preparation, with ~0.2eV greater width on silicon and silicon nitride substrates that had 

not been treated with hydrofluoric acid, with an accompanying ~0.4eV shift to higher 

binding energy on the silicon substrate. Overall, the XPS spectra suggest complex roles 

for oxygen and tin in the surface sensitization steps and, while the detailed mechanism 

of sensitization remains unresolved, adherence to Scheme 5.1 exposed the silicon-rich 

LPCVD silicon nitride surface for direct surface modification and yielded high-quality 

gold films. 
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In fact, in spite of complex and challenging surface chemistry, the choice of 

silicon nitride as a substrate opens a panoply of possible applications for consideration, 

and the use of a solution-based gold plating method allows us to coat surfaces that are 

difficult or impossible to reach by line-of-sight metal coating methods. We paid special 

attention in our development to be able to coat free-standing thin silicon nitride 

membranes. As a final demonstration of the capabilities of this method, we electrolessly 

gold plated micropore arrays fabricated in thin (200nm) silicon nitride membranes. 

Figure 5.4 shows two representative gold-coated 2µm micropores, with the first plated 

into a free-standing portion of the membrane, and the second plated in a region of the 

silicon nitride pores overlapped with the underlying silicon support frame. Gold plating 

of the pore walls allows for the straightforward subsequent use of thiol chemistry for 

surface chemical functionalization. By choosing complementary pore dimensions and 

gold film thickness, either by fabricating pores with smaller initial sizes, or by 

increasing the plating time, this electroless plating process can also be used to physically 

tune the pore dimensions. This method thus provides access to surfaces that may not be 

accessible to line-of-sight methods, and it moreover provides control over both surface 

physicochemical properties and physical dimensions of surface and internal pores7. In 

addition, the method is well-suited for tuning and enhancing the properties and 

performance of thin film and pore-based devices. 
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Figure 5. 4. Gold coating can be seen to cover (a) the planar membrane and curved inner 

pore surface of the free-standing membrane area, with its uncoated equivalent shown in 

(c). A purposefully fractured membrane in (b) shows the gold coating on the micropore 

surface and the silicon nitride membrane (dark line) with intact gold coating. In image 

(d), plating also occurred on the bottom of the 200nm-deep well where it intersects with 

the silicon substrate. 
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ABSTRACT 

 

Silicon nitride fabricated by low-pressure chemical vapor deposition (LPCVD) 

to be silicon-rich (SiNx), is a ubiquitous insulating thin film in the microelectronics 

industry, and an exceptional structural material for nanofabrication. Free-standing 

<100 nm-thick SiNx membranes are especially compelling, particularly when used to 

deliver forefront molecular sensing capabilities in nanofluidic devices. We developed 

an accessible, gentle, and solution-based photo-directed surface metallization approach 

well-suited to forming patterned metal films as integral structural and functional 

features in thin-membrane-based SiNx devices—for use as electrodes or surface 

chemical functionalization platforms, for example—augmenting existing device 

capabilities and properties for a wide range of applications. 

KEYWORDS: Patterned metallization; Photocontrolled metallization; Silicon nitride 

covalent photomasking; Silicon nitride surface functionalization; Silicon nitride 

membrane; Thin gold films; Electroless plating; Hydrosilylation. 
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INTRODUCTION 

 

Thin, silicon-rich silicon nitride films prepared by low pressure chemical vapor 

deposition (LPCVD SiNx) are a prevalent element of micro- and nanofabricated devices 

and they can be used to confer mechanical and chemical robustness, diffusion inhibition, 

and dielectric strength.1-3 Devices and applications exploiting these beneficial native 

features can be augmented and improved using designer metal overlayers that fulfill 

structural roles, serve as electrodes, and provide alternative surface chemistry options, 

including as a platform for subsequent thiol monolayer self-assembly. The field of 

nanopore single-molecule sensing offers compelling examples of the prospects of 

merging SiNx thin films and designer metal layers into devices, and does this within a 

nanofluidic context where the need for versatile metallizing approaches is clear.3-7 The 

most common solid-state nanopores are <100 nm-diameter nanofluidic channels formed 

through <100 nm-thick, free-standing SiNx films, and nanopore-integrated metal films 

can enhance sensing capabilities by serving as optical elements such as light shields and 

plasmonic films, as electrodes for tunneling and other molecular control and sensing 

functions, and as a means to tune nanopore size and surface chemistry.3-8 The nanoscale 

dimensions of the SiNx film and pore can be significant barriers to efforts to incorporate 

such functional metal films, particularly when the interior of the pore must be 

metallized. Solution-based metallization routes offer an appealing route with natural 

compatibility with nanofluidic devices. Surface capture of nanoparticles—by specific 

and nonspecific attachment mechanisms—is a possible solution-based route to surface 

metallization.9-12 Electroless plating is a compelling alternative:  a solution-based 

process useful for metallizing a wide variety of materials, including nonconductive and 
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irregularly shaped materials.7, 13-14 Solution access, rather than line-of-sight as in 

physical vapor deposition, dictates where surface plating will occur, so that electroless 

plating is an appealing choice for fashioning nanofluidic devices where even irregular 

and concealed surfaces may require metallization. To fully exploit solution-based 

metallization as a tool for micro- and nanofabrication, however, requires control not just 

over the plated film composition, thickness, and grain size, but also over its spatial 

disposition, which must be at least partly independent of underlying substrate 

patterning.15 We wanted a patterning approach that did not need mechanical access to 

target surfaces, both to improve the generality of the approach, and to minimize the risk 

of damage that can accompany repeated handling of thin films—especially of free-

standing thin-films. We sought to develop a gentle, solution-based patterned 

metallization approach16-17 capable of plating a range of even structured substrates, 

including inside existing (nano)fluidic channels.3, 7, 14-15, 18 The horizons of single-

molecule science have recently been dramatically expanded by the development of 

simple methods for fabricating nanopores:  entirely solution-based processes requiring 

only uncomplicated instrumentation are removing barriers to the widespread use of 

nanopore methods.19 To conserve the benefits of simple pore formation methods, our 

focus also included developing similarly widely-accessible, straightfoward solution-

based approaches to patterned metallization. We therefore wanted to avoid the 

instrumentation and processing overhead associated with traditional photoresist-based 

approaches and more exotic analogues and alternatives.11, 20-23 Instead, we chose to 

photo-pattern the covalent attachment of an organic monolayer to SiNx,
24 and to 

investigate its ability to then template the substrate metallization. By only attaching the 
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protective layer where it was desired, rather than removing portions of a patterned 

photoresist film, for example, we sought to simplify the processing compared to 

conventional approaches. With the use of an initially liquid patterning precursor (here, 

1-octene), we sought to gain greater tolerance to irregularities—including the presence 

of engineered structures such as nanofluidic channels—of the SiNx surface. For 

metallization, we initially adopted an electroless plating approach that had been 

specifically developed for gold-plating SiNx.
7, 25 

The approach is outlined in Scheme 6.1, and full details of materials, 

instrumentation, and safety precautions are provided in the Supporting Information (SI). 

We had previously developed a gold electroless plating approach for SiNx that required 

a hydrofluoric acid (HF) etching step prior to surface metallization7, 25. The HF etching 

step offered a natural point to incorporate patterned monolayer formation in an effort to 

guide the spatial extent of the substrate metallization. An alkane monolayer could be 

covalently linked to HF-etched SiNx through the photochemically-driven 

hydrosilylation of a 1-alkene.24 Tremendous care must be exercised in the use of HF, 

and we detail the precautions—including additional protective equipment and 

monitored work—in the SI. The UV (254 nm) photoirradiation was through copper 

transmission electron microscopy (TEM) grid masks, with different bar sizes and 

spacings (see SI for specifications), that had been placed directly on the wafer (without 

securing them or preventing liquid access underneath), with both wafer and mask then 

immersed in the 1-alkene. Plating selectivity depended on rigid adherence to the rinsing 

steps detailed in the SI, and, as in prior work, we ensured compatibility of the process 

with free-standing ultrathin SiNx membranes by avoiding ultrasonic cleaning steps.20 
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Scheme 6. 1: A SiNx substrate is (a) plasma treated and hydrofluoric-acid etched, then 

(b) immersed in 1-octene for photopatterning (254 nm) through a TEM grid. The 

patterned substrate is then (c) immersed in a series of metallizing solutions to yield (d) 

a patterned gold film. A detailed description of solution compositions and process flow 

is provided in the SI. 

We proposed to spatially pattern LPCVD SiNx metallization by forming a 

physical barrier on the surface to control where the metal plating could take place. The 

first step of patterned plating thus involved the formation of this patterned protective 

layer. In our prior work to develop an electroless gold plating procedure for SiNx, we 

found it was essential to first etch the SiNx surface with dilute HF.7 This same initial 

etching step forms the starting point for the covalent attachment of 1-alkenes (or 

1-alkynes) by photochemical (or thermal) hydrosilylation on silicon-rich SiNx
2, 24 to 

form alkane monolayers that could potentially function as a barriers for electroless 

plating. Photoirradiation using a UV lamp (254 nm) proved convenient in transferring 

the spatial patterning offered by a selection of copper transmission electron microscopy 

(TEM) grids (Figure 6.1a) to the SiNx surface. Figure 6.1b is a photograph of a 

representative substrate after patterned irradiation through a thin (<2 mm) layer of neat 

1-octene held under a quartz plate in a specially constructed holder. This optical 

micrograph taken during the evaporation of a dichloromethane drop placed on the 
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surface reveals the transfer of the TEM grid pattern to the surface-functionalized 

substrate. Such patterned substrates were then electrolessly gold-plated, using the three-

solution—Sn (II)/Ag (I)/Au (I)—process beginning with Sn (II) sensitization that had 

been proven successful for HF-etched SiNx (see SI for complete details of metallization 

solutions and process flow).7, 25 While gold replicas of the TEM grid masks can be seen 

in Figure 6.1c, it is also apparent that the plating spatial selectivity was quite poor 

compared to its Pd (II)-initiated counterpart, Pd (II)/Ag (I)/Au (I) (vide infra, and 

calculation details in SI). Substrate tolerance of electroless plating, via substrate 

tolerance of the Sn (II) sensitization step, is one of the benefits of electroless plating:13, 

23  it is clearly—in this instance, at least—detrimental to patterned metallization. Figure 

6.1d provides a magnified view, by field emission scanning electron microscopy (FE-

SEM), of a Sn (II)/Ag (I)/Au (I)-metallized substrate. We did not explore using 

ultrasonic cleaning steps to improve the plating selectivity,20, 26 because we wanted to 

remain compatible with plating free-standing SiNx films that are a compelling structural 

element, especially for nanofluidic devices.3-7 
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Figure 6. 1:  (a) 50 and 100 mesh copper TEM grids on a SiNx-coated silicon chip; (b) 

50 mesh 1-octene replica during the evaporation of a dichloromethane drop from a 

photopatterned chip, with image contrast, gamma, and brightness adjusted for image 

clarity; (c) gold replicas after Sn (II) surface sensitization followed by 5 minutes of 

Ag (I) and 30 minutes of Au (I) at ∽3˚C, with corresponding (d) FE-SEM image of a 

100 mesh pattern; (e) gold replica after Pd (II) surface treatment followed 5 minutes of 

Ag (I) and 30 minutes of Au (I) at ~3°C, with corresponding (f) FE-SEM, (g) DHM (5× 

magnification) images of a 100 mesh pattern, with color intensity legend denoting film 

thickness (nm), and (h) histogram giving the film thickness distribution measured inside 

the bars of the micrograph in (g). 
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We abandoned Sn (II)-sensitized electroless plating when efforts to improve the 

spatial selectivity by using different rinsing steps, for example, proved ineffective. We 

tested, instead, a palladium-based treatment27 in place of the Sn (II) sensitization step to 

give an overall process flow of Pd (II)/Ag (I)/Au (I). The use of this Pd (II) surface 

treatment solution delivered extremely high pattern fidelity, as seen in Figures 6.1e and 

6.1f. The rich chemistry of the native SiNx surface, and of the palladium species, 

complicates the determination of the mechanism, and indeed may allow for multiple 

mechanisms to be simultaneously operational.3, 13, 23, 28 Figure S-6.1 shows the results 

of several process chemistry variations, all displaying lower metallized pattern quality 

than seen in Figures 6.1e and 6.1f. For example, substrate photopatterning through an 

air layer—likely through a photochemical oxidation route similar to that seen on 

silicon29—instead of 1-octene (Figure S-6.1) yielded spatial selectivity degraded by 

smudges of gold across the surface. The patterned monolayer-templated route offers 

benefits beyond preserving pattern quality. Photohydrosilylation offers lower process 

overhead and better compatibility with fluidic channels than conventional photoresist-

based approaches, and a suitable hydrosilylated monolayer confers some resistance to 

any subsequent HF etching, but can be readily removed if necessary (Figure S-6.2).2, 18, 

24 The metal plating selectivity when using 1-octene with Pd (II) surface treatment as 

the first step was easily reproducible across scores of patterned gold depositions when 

scrupulous adherence to the rinsing steps was maintained. The results shown in Figures 

6.1e and 6.1f are thus representative and reproducible. 

We focus in this work on characterizing the spatial selectivity and the physical 

structure of the gold layers resulting from this successful initial Pd (II) surface 
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treatment. We present analyses of gold replicas produced after ~30 minute immersions 

in the Au (I) bath. This duration provides a balanced perspective of film nascence and 

degree of spatial selectivity. Examination of gold replicas using digital holographic 

microscopy (DHM; Figure 6.1g) allowed us to determine that the gold films were 

~23±1.5 nm thick. Higher magnification scanning electron micrographs in Figure 6.2 

upheld the quality of selectivity demonstrated in Figures 6.1e and f. There was only 

sparse gold coverage where the photoirradiation had installed the protective layer, 

between the mask grid lines. The gold grid lines, themselves, could be resolved into 

gold features with 28±5 nm mean diameters providing ~83% surface area coverage 

(across 15 different grids, with a 13% standard deviation) after the 30 minutes of 

immersion in the gold plating bath at ~3°C. This degree of infilling is high in the context 

of low-process-overhead patterned metallization steps,30 and particularly when targeting 

suitability for use with structured surfaces incompatible with more involved 

conventional patterning, such as in enclosed nanofluidic channels. 

Figure 6. 2:  FESEM image of a subsection of a 100 mesh pattern on a SiNx chip 

processed with Pd (II), Ag (I), and then Au (I) baths, as detailed in the SI. Vertical and 

horizontal bars composed of lighter pixels correspond to gold-replicated grid lines on 

the chip. Zooming into regions outside the bars (b) reveals very little presence of gold 

grains, confirming the visually observed spatial selectivity as seen in Figure 6.1d. 
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Zooming into these bars at the same magnification (c) reveals the clear grain structure, 

and high infilling after only 30 minutes of gold plating. 

To explore the spatial patterning in further detail, we focus on gold replicas of 

100 mesh copper grids. The copper bars of these grid masks were 54.4±1.3 𝜇m wide 

(measured by FE-SEM with analysis details in the SI), and they were placed on the SiNx 

surfaces under 1-octene without securing them or attempting to prevent liquid access 

underneath. The spatial selectivity, defined in a classical signal-to-noise sense (details 

in the SI), was ~10.1 for the 1-octene-patterned Pd (II)/Ag (I)/Au (I) route that we focus 

on here, in contrast to ~2.7 for the 1-octene-patterned, Sn (II)-sensitized route, and ~3.2 

for the former solution steps with air-patterning in place of 1-octene. In addition to FE-

SEM micrographs, we collected elemental maps from representative gold replicas using 

energy-dispersive x-ray spectroscopy (EDS; also commonly abbreviated EDX). The 

maps and electron micrographs in Figure 6.3a,b are consistent with a thin gold overlayer 

on SiNx that possesses a high degree of infilling and spatial selectivity. We used FE-

SEM and EDS line profiles across the open spaces and grid lines to characterize the 

gold replica lines and the edge resolution, with procedural details provided in the SI. 

The mean line widths of the gold bars in the FE-SEM images of the gold replicas was 

44.8±3.3 µm, measured from more than 300 lines from each of 9 chips. To extract the 

edge resolution, we fit the Au-channel EDS intensity versus linear position to 

Boltzmann functions and recovered sub-micrometer (0.92±0.24 µm; 15 EDS line 

profiles) transition widths from metal-free to metallized segments. 
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Figure 6. 3: (a) A composite of an electron image (top) and three EDS maps (descending 

from nitrogen to silicon to gold). (b) FESEM image of a patterned SiNx chip (left) and 

pixel intensity (right) taken from the micrograph along the green line. (c) Electron image 

of a subsection of a 100 mesh pattern on a SiNx chip. (d) Pixel intensity along each 

colored line in (c), along with line profiles of spatially-registered EDS maps 

corresponding to (e) silicon and (f) gold channels (Boltzmann fit is shown in green, with 

corresponding edge slopes, 𝒅𝒙 =0.81, 0.59, and 0.87 µm from top to bottom). 

We developed a solution-based method to form spatially patterned metal 

features on silicon-rich SiNx thin films. This approach leverages the benefits of 

electroless plating and establishes a low-overhead surface-patterning approach suitable 

for SiNx thin films. We ensured that spatial selectivity could be achieved without using 

ultrasonic excitation or other mechanically disruptive manipulations so that the 
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patterning approach would be compatible with free-standing thin SiNx membranes 

useful in a host of other applications, particularly for nanofluidics. Photochemical 

hydrosilylation linkage of organic monolayers to SiNx is a flexible and appealing route 

to surface-functionalize SiNx, especially in conjunction with spatial patterning. The 

templating monolayer may serve as a permanent or removable coating, protecting the 

underlying SiNx or being removed to expose it after metallization. The ability to readily 

modify the surface functional groups of these high quality monolayers using standard 

chemical transformations2 dramatically widens the prospects of this simple patterned 

metallization approach. The already-excellent metallization selectivity could 

conceivably be further improved and prolonged by tuning the monolayer electrostatics 

and hydrophobicity, for example. Similarly, the monolayer surface chemistry could be 

tuned to promote metal layer adhesion if application needs permit the metal layer to rest 

on the monolayer, itself.9-12, 23 More tantalizingly, a base monolayer may be used as a 

platform for further chemical tuning of the surface, in which demonstrated properties 

and function2 can be installed around the patterned gold layer. Thus, we contend that 

the patterned metallization strategy introduced here is promising and useful not only for 

delivering a spatially-selective solution-derived metal film, but one primed for further 

development. 

AUTHOR INFORMATION 

Corresponding Author: 

* E-mail:  jdwyer@chm.uri.edu.  

mailto:jdwyer@chm.uri.edu


123 

 

§Present address:  Chemistry, D62 Hildebrand Hall, UC Berkeley, Berkeley, CA, USA 

94720 

AUTHOR CONTRIBUTIONS 

All authors have given approval to the final version of the manuscript. 

FUNDING SOURCES 

NSF CAREER award CBET-1150085, in part by NSF EPSCoR Cooperative Agreement 

#IIA-1330406, and by the University of Rhode Island.  

ACKNOWLEDGMENT 

 

This research has been supported by NSF CAREER award CBET-1150085, in part by 

NSF EPSCoR Cooperative Agreement #IIA-1330406 and by the University of Rhode 

Island. YMNB received support from a 2015 University of Rhode Island Graduate 

School Fellowship. We are grateful to Lyncée Tec SA (Lausanne, Switzerland) for 

graciously providing DHM analyses of our patterned gold films. 

ABBREVIATIONS 

SEM, Scanning Electron Microscopy; FE-SEM, Field-Emission SEM; EDS, Energy-

Dispersive X-Ray Spectroscopy; LPCVD, Low-Pressure Chemical Vapor Deposition; 

SiNx, (Silicon-rich) Silicon Nitride; XPS, X-Ray Photoelectron Spectroscopy; DHM, 

Digital Holographic Microscopy. 

  



124 

 

REFERENCES 

 

1. Mueller, C.; Harb, M.; Dwyer, J. R.; Miller, R. J. D., Nanofluidic Cells with 

Controlled Pathlength and Liquid Flow for Rapid, High-Resolution in Situ Imaging with 

Electrons. J. Phys. Chem. Lett. 2013, 4, 2339-2347. 

2. Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E. J. R.; Schroën, K.; White, R. 

G.; Yang, L.; Linford, M. R.; Zuilhof, H., Covalent Biofunctionalization of Silicon 

Nitride Surfaces. Langmuir 2007, 23, 6233-6244. 

3. Dwyer, J. R.; Bandara, Y. M. N. D. Y.; Whelan, J. C.; Karawdeniya, B. I.; 

Nichols, J. W., Silicon Nitride Thin Films for Nanofluidic Device Fabrication. In 

Nanofluidics, 2nd Edition, 2 ed.; Edel, J.; Ivanov, A.; Kim, M., Eds. Royal Society for 

Chemistry: 2017; Chapter 7. 

4. Haywood, D. G.; Saha-Shah, A.; Baker, L. A.; Jacobson, S. C., Fundamental 

Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Anal. Chem. 2015, 

87, 172-187. 

5. Taniguchi, M., Selective Multidetection Using Nanopores. Anal. Chem. 2015, 

87, 188-199. 

6. Kudr, J.; Skalickova, S.; Nejdl, L.; Moulick, A.; Ruttkay–Nedecky, B.; Adam, 

V.; Kizek, R., Fabrication of Solid-State Nanopores and Its Perspectives. 

ELECTROPHORESIS 2015, 36, 2367-2379. 

7. Whelan, J. C.; Karawdeniya, B. I.; Bandara, Y. M. N. D. Y.; Velleco, B. D.; 

Masterson, C. M.; Dwyer, J. R., Electroless Plating of Thin Gold Films Directly onto 

Silicon Nitride Thin Films and into Micropores. ACS Appl. Mater. Interfaces 2014, 6, 

10952-10957. 

8. Dahlin, A. B., Sensing Applications Based on Plasmonic Nanopores: The Hole 

Story. Analyst 2015, 140, 4748-4759. 

9. Jin, Y.; Kang, X.; Song, Y.; Zhang, B.; Cheng, G.; Dong, S., Controlled 

Nucleation and Growth of Surface-Confined Gold Nanoparticles on a (3-

Aminopropyl)Trimethoxysilane-Modified Glass Slide:  A Strategy for SPR Substrates. 

Anal. Chem. 2001, 73, 2843-2849. 

10. Asher, T.; Inberg, A.; Glickman, E.; Fishelson, N.; Shacham-Diamand, Y., 

Formation and Characterization of Low Resistivity Sub-100 nm Copper Films 

Deposited by Electroless on SAM. Electrochim. Acta 2009, 54, 6053-6057. 

11. Flavel, B. S.; Yu, J.; Ellis, A. V.; Quinton, J. S.; Shapter, J. G., Solution 

Chemistry Approach to Fabricate Vertically Aligned Carbon Nanotubes on Gold Wires: 

Towards Vertically Integrated Electronics. Nanotechnology 2008, 19, 445301. 

12. Vossmeyer, T.; DeIonno, E.; Heath, J. R., Light-Directed Assembly of 

Nanoparticles. Angew. Chem., Int. Ed. Engl. 1997, 36, 1080-1083. 



125 

 

13. Møller, P.; Nielsen, L. P., Advanced Surface Technology. Møller & Nielsen 

APS: Denmark, 2013; Vol. 1, p 594. 

14. Menon, V. P.; Martin, C. R., Fabrication and Evaluation of Nanoelectrode 

Ensembles. Anal. Chem. 1995, 67, 1920-1928. 

15. Hulteen, J. C.; Martin, C. R., A General Template-Based Method for the 

Preparation of Nanomaterials. J. Mater. Chem. 1997, 7, 1075-1087. 

16. McCarley, R. L.; Vaidya, B.; Wei, S.; Smith, A. F.; Patel, A. B.; Feng, J.; 

Murphy, M. C.; Soper, S. A., Resist-Free Patterning of Surface Architectures in 

Polymer-Based Microanalytical Devices. J. Am. Chem. Soc. 2005, 127, 842-843. 

17. Henry, A. C.; McCarley, R. L., Selective Deposition of Metals on Plastics Used 

in the Construction of Microanalytical Devices: Photo-Directed Formation of Metal 

Features on PMMA†. J. Phys. Chem. B 2001, 105, 8755-8761. 

18. Carvalho, R. R.; Pujari, S. P.; Lange, S. C.; Sen, R.; Vrouwe, E. X.; Zuilhof, H., 

Local Light-Induced Modification of the inside of Microfluidic Glass Chips. Langmuir 

2016, 32, 2389-2398. 

19. Kwok, H.; Briggs, K.; Tabard-Cossa, V., Nanopore Fabrication by Controlled 

Dielectric Breakdown. PLoS ONE 2014, 9, e92880. 

20. Han, A.; Kuan, A.; Golovchenko, J.; Branton, D., Nanopatterning on Nonplanar 

and Fragile Substrates with Ice Resists. Nano Lett. 2012, 12, 1018-1021. 

21. Santinacci, L.; Djenizian, T.; Hildebrand, H.; Ecoffey, S.; Mokdad, H.; 

Campanella, T.; Schmuki, P., Selective Palladium Electrochemical Deposition onto 

AFM-Scratched Silicon Surfaces. Electrochim. Acta 2003, 48, 3123-3130. 

22. Guan, F.; Chen, M.; Yang, W.; Wang, J.; Yong, S.; Xue, Q., Fabrication of 

Patterned Gold Microstructure by Selective Electroless Plating. Appl. Surf. Sci. 2005, 

240, 24-27. 

23. Zabetakis, D.; Dressick, W. J., Selective Electroless Metallization of Patterned 

Polymeric Films for Lithography Applications. ACS Appl. Mater. Interfaces 2009, 1, 4-

25. 

24. Rosso, M.; Giesbers, M.; Arafat, A.; Schroën, K.; Zuilhof, H., Covalently 

Attached Organic Monolayers on SiC and SixN4 Surfaces: Formation Using UV Light 

at Room Temperature. Langmuir 2009, 25, 2172-2180. 

25. Whelan, J. C.; Karawdeniya, B. I.; Bandara, Y. M. N. D. Y.; Velleco, B. D.; 

Masterson, C. M.; Dwyer, J. R., Correction to Electroless Plating of Thin Gold Films 

Directly onto Silicon Nitride Thin Films and into Micropores. ACS Appl. Mater. 

Interfaces 2015, 7, 26004-26004. 

26. Kong, Y.; Chen, H.; Wang, Y.; Soper, S. A., Fabrication of a Gold 

Microelectrode for Amperometric Detection on a Polycarbonate Electrophoresis Chip 

by Photodirected Electroless Plating. ELECTROPHORESIS 2006, 27, 2940-2950. 



126 

 

27. Ko, J. W.; Koo, H. C.; Kim, D. W.; Seo, S. M.; Kang, T. J.; Kwon, Y.; Yoon, J. 

L.; Cheon, J. H.; Kim, Y. H.; Kim, J. J.; Park, Y. J., Electroless Gold Plating on 

Aluminum Patterned Chips for CMOS-Based Sensor Applications. J. Electrochem. Soc. 

2010, 157, D46-D49. 

28. Porter, L. A.; Choi, H. C.; Ribbe, A. E.; Buriak, J. M., Controlled Electroless 

Deposition of Noble Metal Nanoparticle Films on Germanium Surfaces. Nano Lett. 

2002, 2, 1067-1071. 

29. Fabre, B.; Hennous, L.; Ababou-Girard, S.; Meriadec, C., Electroless Patterned 

Assembly of Metal Nanoparticles on Hydrogen-Terminated Silicon Surfaces for 

Applications in Photoelectrocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 338-343. 

30. Chen, S.-T.; Chen, G.-S., Nanoseeding Via Dual Surface Modification of Alkyl 

Monolayer for Site-Controlled Electroless Metallization. Langmuir 2011, 27, 12143-

12148. 

 

  



127 

 

CHAPTER 7: PREFACE 

 

Published: ACS Appl. Nano Mater., 2018, 1 (2), pp 960–968 

A GENERAL STRATEGY TO MAKE AN ON-DEMAND LIBRARY OF 

STRUCTURALLY AND FUNCTIONALLY DIVERSE SERS SUBSTRATES 

 

Buddini Iroshika Karawdeniya, Y. M. Nuwan D. Y. Bandara, Julie C. Whelan, and 

Jason R. Dwyer*. 

Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 

02881, United States. 

 

 

Reprinted with permission from: 

A GENERAL STRATEGY TO MAKE AN ON-DEMAND LIBRARY OF 

STRUCTURALLY AND FUNCTIONALLY DIVERSE SERS SUBSTRATES. 

Buddini Iroshika Karawdeniya, Y. M. Nuwan D. Y. Bandara, Julie C. Whelan, and 

Jason R. Dwyer. ACS Appl. Nano Mater., 2018, 1 (2), pp 960–968.  

Copyright 2018 American Chemical Society. 

  



128 

 

CHAPTER 7: A GENERAL STRATEGY TO MAKE AN ON-DEMAND 

LIBRARY OF STRUCTURALLY AND FUNCTIONALLY DIVERSE SERS 

SUBSTRATES 

 

Buddini Iroshika Karawdeniya, Y. M. Nuwan D. Y. Bandara, Julie C. Whelan, and 

Jason R. Dwyer*. 

Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 

02881, United States. 

KEYWORDS: Surface enhanced Raman spectroscopy; SERS; electroless plating; 

metallization.  

ABSTRACT 

 

Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for 

sensing molecules proximal to suitable coinage metal surfaces. The physical structure 

of the SERS-active metal layer and its support is a key design parameter inspiring 

considerable, and frequently specialized, efforts in substrate fabrication. The necessary 

gold film structure can arise from both the metallization process and the underlying 

support structure, and the structure of the support can deliver additional functions 

including analytical capabilities such as physical filtering. We used electroless plating 

as a general approach to create a library of SERS substrates:  SERS-active gold films 

on a range of supports made from a variety of materials, made with a mixture of simple 

and complex fabrication histories, and offering a selection of structurally-derived 

functions. The result was that supports with existing functions had their capabilities 

enhanced by the addition of SERS sensing. Electroless plating thus offers a host of 

beneficial characteristics for nanofabricating multifunctional SERS substrates, 
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including:  tolerance to substrate composition and form factor; low equipment overhead 

requirements; process chemistry flexibility—including compatibility with conventional 

top-down nanofabrication; and a lengthy history of commercial application as a simple 

metallization technique. We gold-plated standard nanofabrication-compatible silicon 

nitride support surfaces with planar and porous architectures, and with native and 

polymer-grafted surface chemistries. We used the same plating chemistry to form 

SERS-active gold films on cellulose fibers arrayed in commercial filter paper and 

formed into nanocellulose paper. In a functional sense, we used electroless plating to 

augment nanoporous filters, chromatography platforms, and nanofabrication building 

blocks with SERS capability. 

INTRODUCTION 

 

Surface-enhanced Raman spectroscopy (SERS) is a tool at the forefront of 

chemical analysis for analytes ranging from single molecules to bacterial cells.1-5 

Raman enhancement is engineered by tuning SERS substrate design parameters such as 

elemental composition; the size and shape of nanoscale elements; close-range 

interparticle spacing responsible for hot spots; and patterning of solid substrates that can 

include ordered and random hierarchies across short, long, and multiple length scales.1, 

3, 6-10 Physical structure of the SERS-active metal layer—either its inherent structure or 

the structure imposed upon it by an underlying support layer—is a critical and 

performance-determining factor. Considerable effort has been devoted to crafting a host 

of solid-supported SERS substrates, with results that inspire further efforts to improve 

and expand fabrication options, sensing capabilities, and sensing performance.1, 3, 7-26 
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Top-down nanofabrication using conventional and unorthodox approaches can produce 

exquisitely structured substrates, but can require substantial practitioner expertise along 

with expensive, specialized, and complicated instrumentation, and can moreover 

substantially limit the palette of fabrication materials. SERS substrates developed 

outside the material and processing constraints of conventional micro- and 

nanofabrication have been compelling. Both approaches and material sets hold promise. 

We sought, therefore, to develop a general route for nanofabricating SERS substrates 

that would bridge both paradigms—to draw on the strengths of each, and to be useful 

for both. Conventional micro- and nanofabrication approaches offer well-established, 

highly optimized, large-scale manufacturing capabilities for reproducibly fabricating 

nanoscale structures. A less conventional fabrication material such as paper offers a 

myriad of advantages that have driven its adoption as a material of choice for low-cost 

diagnostics for use in resource-limited settings.23, 27-28 The genesis for the present work 

was the discovery that gold films we had electrolessly plated onto silicon nitride as part 

of a nanofabrication effort were also capable, easily and without optimization, of 

generating reproducible SER spectra.29 We wanted to take a variety of interesting and 

functional support materials and structures, and determine if a simple electroless plating 

process could make them SERS-active—thereby augmenting their core functions by 

creating multifunctional SERS substrates. This goal of multifunction does not exclude 

the conventional quest for maximum signal enhancement, but does require that SERS 

substrate evaluation be application-context dependent. Paper, for example, can support 

a SERS-active metal component, offers obvious advantages such as low-cost and 
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ubiquity, and has a pore structure that could improve sensing selectivity through 

separations by chromatography or by physical filtering.18-21, 23-26, 28, 30-42 

Electroless plating is a robust technique for surface metallization, well-

established in commercial manufacturing applications for forming decorative, 

electrical, and optical elements, and with excellent substrate tolerance.17, 24, 29, 33, 41, 43-52 

Objects are immersed in liquid baths, with solution access and homogeneity dictating 

the uniformity of the plating:  rough and large-area surfaces can be coated without the 

geometric—including line-of-sight—constraints of physical vapor deposition. 

Equipment overhead is minimal, the surface being plated need not be conductive—

allowing for support material tolerance—and the plating occurs without the need for 

external electrical power. Electroless plating is inherently different than the capture, by 

nonspecific or specific attachment protocols, of pre-formed, frequently ligand-coated 

solution-phase nanoparticles onto a surface:11-12, 15-16, 18, 30-32, 36-38, 40 the electrolessly 

plated metal film structure, properties, and composition can be controlled through 

surface pretreatment, plating bath formulation, and process conditions, and can occur 

on a timescale that can be measured in minutes. Vitally important for our pursuit of a 

library of multifunctional SERS substrates, electroless plating is, in principle, 

compatible with coating sophisticated top-down nanofabricated, and low-cost bottom-

up assembled structures and surfaces. 

The term “electroless deposition” is used to describe a number of different 

plating mechanisms, including autocatalytic, substrate-catalyzed, and galvanic-

displacement processes.50 We adopted a single electroless plating process that had been 



132 

 

optimized for coating nonconductive porous plastic membranes.49 In brief, a Sn (II) 

solution is used to sensitize the surface which, when treated with an ammoniacal silver 

nitrate solution, undergoes a redox reaction to produce a nanoscopic metallic silver 

layer. Gold plating is then accomplished by immersing this surface in a Au (I)-

containing plating bath:  the aurous ions galvanically displace silver, giving gold 

particles that catalyze the reduction of aurous ions by formaldehyde also present in the 

bath. Tin-based sensitizers provide fairly indiscriminate surface sensitization, which is 

beneficial since tolerance to surface composition is a desired goal of our SERS substrate 

fabrication explorations. There is also much flexibility in plating chemistry after 

sensitization, allowing full access to the metals typically used for SERS. While silver 

coatings can be produced through electroless plating, the chemical stability of gold 

motivates our testing of gold-coated substrates for SERS activity. The use of a 

conventional electroless plating protocol, with only minor material-specific 

modifications in washing steps, allowed us to focus on support material composition 

and physical structure—and thereby, function—in our exploration of whether 

electroless plating could be a general tool for incorporating SERS sensing capabilities 

into already functional and structured materials and platforms. 

We selected a range of support structures and material compositions to explore 

the generality of using electroless plating to form a library of SERS substrates. Silicon-

rich LPCVD silicon nitride (SiNx) films on silicon were chosen for their ability to 

support a variety of nanofabricated structures and roles.53-55 Polished SiNx films 

ensured the nanoscale gold grain structure would be the dominant substrate structural 

feature. Silicon nitride films with nanoscale through-channels introduced key structural 



133 

 

features (the individual nanochannels and the nanochannel array) underpinning designer 

filters and multifunctional chemical analysis platforms using plasmonic nanopores.56-57 

Surface-grafting of an acrylate-based polymer generated a more subtle structural 

modification of the planar SiNx thin film, and was intended to increase the number of 

possible sensitizer interaction sites on the film. Our next selection was standard filter 

paper, a frequent actor in paper-based low-cost diagnostics.23, 27 We explored the effect 

of fiber dimensions and spacing, by electrolessly plating and attempting to record SER 

spectra from standard filter paper and nanocellulose fiber paper—the fourth and fifth 

choices of material and structure. We characterized a commercial substrate (Silmeco) 

based on a gold-coated nanopillar array architecture9 and etched away its gold coating 

to expose the sixth surface for examining electroless plating for SERS:  a nanopillar 

array. Given the vastly different SERS substrate configurations, and the often severe 

approximations necessary to calculate enhancement factors,46 we used a comparison 

framework designed to compare SERS performance across disparate substrates. The 

method yields a SERS enhancement value (SEV), which is defined as the ratio of the 

analyte concentrations that produce the same instrument response by normal Raman and 

SER measurements.58 While spectral acquisition was formalized to allow comparisons 

between substrates, it nevertheless cannot account for the performance benefits of 

matching substrate function to a particular application.  

EXPERIMENTAL 

 

A detailed listing of materials and exposition of methods is provided in the 

Supporting Information. All substrates were electrolessly gold-plated by sequential 
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immersion in the same series of tin (II) chloride-, ammoniacal silver nitrate-, and 

sodium gold sulfite-containing solutions (Scheme S7.1), with appropriate rinsing steps 

in between immersions. The solutions were prepared as previously reported.29, 59 

Immediately prior to direct plating of bare silicon or silicon nitride surfaces, they were 

oxygen-plasma-treated and then etched with dilute hydrofluoric acid. The severe 

chemical hazards presented by hydrofluoric acid require special precautions such as 

those detailed in the Supporting Information. A subset of cleaned and etched planar 

silicon nitride supports was polymer-coated by formation of a covalently-linked sodium 

polyacrylate film before electroless plating, and once polymer-coated, was treated 

neither with plasma nor hydrofluoric acid. Silmeco gold-coated nanopillar SERS 

substrates were used, as-supplied, for comparison measurements. These silicon 

nanopillar substrates were also immersed in iodide-based gold etchant and then, after 

plasma treatment and HF etching, electrolessly gold-plated. Whatman 1 filter paper was 

plated without modification. Nanocellulose fibers were formed between two glass slides 

into a crude paper-like mat ~1 mm thick (referred to as “nanocellulose paper”) before 

plating. Surface characterization of the plated metal films was performed by field 

emission scanning electron microscopy (FE-SEM), x-ray photoelectron spectroscopy 

(XPS), and surface enhanced Raman spectroscopy (SERS). 

SER spectra were acquired at an excitation wavelength of 785 nm, with a 

~100 µm diameter (full-width-half-maximum) beam, and at an excitation power of 

∽57 mW for cellulose and as-provided Silmeco, and ∽250 mW for all other substrates. 

Standard solutions of 4-nitrobenzenethiol (NBT) in ethanol were prepared, covering a 

concentration range from 5×10-9 to 1×10-4 M. All measurements (save for replated 
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Silmeco) were performed with the substrates immersed in the standard solutions. 

Substrates were immersed in standard NBT solutions and SERS spectra were recorded 

every 2 minutes until saturation of the signal level. Following piecewise linear 

background subtraction (details provided in the SI), the data was analyzed according to 

a framework using receiver operating characteristic (ROC) curves and kinetic analysis 

to calculate the SEV.58 

RESULTS AND DISCUSSION 

 

Figure 7.1a shows photographs of the complete set of materials before and after 

electroless gold plating:  we use the term “support” to denote a material prior to gold 

plating, and the term “substrate” to denote a gold-plated support. All supports were 

successfully gold-plated by the series of baths of Scheme S7.1, as confirmed by visual 

inspection and XPS analysis (Figure S7.1). All plated substrates could be used to record 

SER spectra of 4-nitrobenzenethiol (NBT). The support composition, however, placed 

restrictions on the experimental parameters. Lower excitation power was required to 

avoid signal saturation using the as-supplied Silmeco substrates, and substrate damage 

using the cellulose-based substrates. The higher excitation power left a through-hole in 

the paper substrate, as shown in Figure 7.1b, and a hollow in the thicker nanocellulose 

substrate after 10 exposures (~60 s each) when both were irradiated when dry; fume 

evolution was observed when immersed in ethanol. No damage was apparent when 

unplated paper that had been soaked in NBT was irradiated, so that the damage 

mechanism is reasonably ascribed to photothermal transduction by the gold film. This 

susceptibility of paper to burning is a noted benefit of using paper diagnostics in 
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resource-limited settings where safe disposal options for biocontaminated devices may 

be limited.23, 27 

Figure 7. 1. a) Representative substrates before (supports, top row) and after (bottom 

row) electroless gold plating. Left to right: Silicon nitride, polymer-grafted silicon 

nitride, paper, nanocellulose paper, nanopillar silicon (Silmeco etched of its as-supplied 

gold coating), silicon nanoporous substrates. b) Laser-induced damage at 250 mW sets 

an excitation power limit for paper (top, showing a through-hole) and nanocellulose 

paper (bottom, showing a hollow in the thicker substrate). 

None of the (gold-free) supports produced detectable Raman spectra of NBT at a drop-

cast ~10-4 M test dose, and the (gold-plated) substrate analyte-free background spectra 

were, excepting a small ~1340 cm-1 peak in paper, flat and featureless in the key spectral 

regions used to benchmark the substrate performance (Figure S7.2). Figure 7.2 shows a 

representative background-subtracted SER spectrum from each substrate type using a 

10-5 M NBT solution. The principal spectral features are consistent across substrate 

type, including the most intense signal from the NO2 symmetric stretch, centered at 

~1330 cm-1 in all spectra. The intensity ratio of this peak to the 880 cm-1 ethanol peak, 

𝑹NBT EtOH⁄ , was used to construct the response versus concentration curve for each 

substrate type in Figure S7.3 in the Supporting Information. These response curves had 
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profiles typical for this class of experiment.58, 60 The Raman spectral intensity at a given 

analyte concentration was strongly dependent upon the support material and 

preparation, with a substantial penalty in signal strength imposed by the excitation 

power limitations required by the cellulose substrates. The use of polymer-grafted 

silicon nitride substrates resulted in the highest signal at all concentrations compared to 

all other electrolessly plated substrates, most notably when compared at low analyte 

concentrations. To quantify the SERS performance, representative ROC curves were 

constructed to calculate the SEV for each substrate:  0.646×103
 (paper), 0.694×104

 

(porous silicon nitride), 2.34×105 (nanocellulose), and 5.91×105 (silicon nitride), and at 

least 9.33×105 for both polymer and Silmeco substrates. Following low signal intensities 

in the test measurement for replated Silmeco substrates in Figure 7.2, we pursued 

structural characterization (vide infra)—instead of further spectral characterization—in 

an effort to understand this lower response compared to as-supplied Silmeco substrates. 

For the Silmeco and polymer substrates, even the measurement at the lowest 

concentration demonstrated a better than 90% probability of detection for a 10% 

probability of false alarm and due to this, we can report only a minimum SEV.58 

These results emerged from proof-of-principle experiments of the general utility 

of electroless plating for SERS substrate creation rather than from longer-term 

substrate-specific optimizations. They are thus useful, when paired with the demands of 

a particular application, for indicating where efforts to gain additional enhancement 

might be warranted. The polymer-grafted silicon nitride is of note not simply for 

providing the largest SEV of our electrolessly plated substrates, but as an example of 

the benefits of nanoscale tailoring of SERS substrates, and for serving as a bridge 
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between substrates based on traditional, silicon-containing nanofabrication materials, 

and those based on larger organic polymer fibers. More broadly, the design of a SERS 

substrate type should balance, in an application-specific way, the SEV and any special 

capabilities, such as filtering, offered by a given substrate. For example, gold films 

electrolessly plated onto and into these membrane filters can be used to physically 

optimize filter performance by tuning pore dimensions; to chemically optimize filter 

performance by serving as a first step in surface functionalization; and to augment filter 

performance by adding SERS-sensing capabilities in addition to separation.29, 61 

Ultrathin, nanofabricated membrane filters, such as nanoporous silicon and silicon 

nitride, offer significant advantages over conventional polymer ultrafiltration 

membranes.54, 62-70 Mechanically robust, unsupported ultrathin filters allow for high 

hydraulic and diffusive permeabilities. The material properties and ultrathin dimensions 

allow for the straightforward fabrication of smooth pores in controllable, well-defined 

sizes with narrow size distributions, and with high areal densities. The short, smooth 

walls do not suffer the drawbacks of flow resistance and sample losses due to the 

tortuosity and large surface area of conventional, thicker (polycarbonate) track-etched 

membranes. Such high-throughput, low-loss nanoporous membranes can be custom-

fabricated with pore dimensions and characteristics optimized to filter micrometer-scale 

organisms such as bacteria, or even to separate macromolecules. Sensitivity might be 

enhanced by optimizing pore dimensions and distributions to form a nanoplasmonic 

array,56 but at the cost of filtration performance (and selectivity).57 A different example 

of the need to balance SEV and other application demands is illustrated in Figure S7.4:  

electrolessly gold-coated paper was used for the SERS readout of a crude paper-based 
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assay that performed physical filtration and chromatographic separation. This 

multifunction capability augments the spectral selectivity of SERS for greater ease of 

analysis of multicomponent samples, but by no means circumscribes the utility of 

SERS-active paper. Indeed, the development of paper-based diagnostics has been 

characterized by the incorporation—by a variety of approaches, sophisticated and 

simple—of ever-greater function into paper-based supports.23, 27-28, 42 

One means to create useful multifunctional SERS substrates—or even highly 

optimized SERS-only substrates—is through the deliberate incorporation of carefully 

selected structural features in the supports. The presence of pores, or voids, in a support 

has a number of consequences for SERS substrates:  the available surface area for 

sensing can be diminished; the likelihood of hot spot formation can be affected, 

depending on the spatial extent and distribution of the voids; signal collection can be 

affected by scattering, line-of-sight access, and focal depth for three-dimensional and 

structured substrates; mismatches between the excitation volume and the surfaces 

bearing analyte can limit reproducibility or signal magnitude; plasmonic nanopores, 

especially in arrays, introduce new optical considerations; and if analyte is delivered by 

drop-casting, the open area can profoundly affect the spatial distribution of analyte 

during solvent evaporation. For SERS substrates fabricated using an electroless plating 

step, the pores can affect the electroless deposition nucleation and growth (by imposing 

boundaries, for example). These factors include effects that can be much stronger than 

simple geometric coverage, allowing for considerable parameter space for optimizing 

performance through the support geometry and through the electroless plating 

parameters. We recorded scanning electron micrographs, with representative examples 
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shown in Figures 7.3, 7.4, and 7.5, to gain preliminary structural insights, particularly 

with respect to the diversity of support structures that could be electrolessly plated. The 

set of micrographs showed consistently high coverage across the different replicates and 

substrate types. 

Figure 7. 2. Representative baseline-corrected spectra of each substrate at 10-5 M NBT 

in ethanol (~57 mW for cellulose and as-supplied Silmeco; ~250 mW for all others). 

The dotted spectrum in the bottom panel shows the signal (scaled 𝟐𝟎 ×) at 250 mW 

from 5 µL of 1.6×10-5 M NBT in acetonitrile drop-cast onto the electrolessly-replated 

Silmeco. The vertical dotted lines denote the integration range for the NBT peak of 

interest. 

Figure 7.3 provides a set of comparative micrographs of representative gold 

coatings on the silicon nitride-containing substrates. The uniform through-holes in the 
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nanoporous membrane are a captivating structural feature compatible with compelling 

functions,56-57 and the nanoporous membrane was moreover free-standing between 

support bars (not shown) so that it was electrolessly gold-plated within the pores and on 

both sides of the membrane. We avoided any ultrasonic cleaning steps that might cause 

rupture of this thin porous membrane, and we were consistent in this purposeful 

omission across all substrates. The three substrates were composed of nanostructured 

gold films with low- and high-aspect ratio grains, but the preponderance and character 

of the high-aspect ratio structures differed dramatically between the substrate types. The 

polymer-grafted silicon nitride gold film bore the greatest number of integral high-

aspect ratio features, and with a unique grain structure characterized by the prevalence 

of larger, sharper, and more finely substructured gold flakes that projected from the 

surface. These flakes provide an increase in surface area for chemisorption of the NBT, 

and more significantly, are nanostructured on a length scale favorable for the existence 

of hot spots, and with an aspect ratio amenable to signal enhancement by the lightning 

rod effect.4 The nanoporous substrate imposed gaps between gold grains, although on 

length scales optimized, in this substrate, for filtering rather than hot spot formation.57 

The loss of planar substrate area might be compensated for by plating sufficiently long 

pores, but the nanochannel surface is normal to the conventional substrate surface, and 

longer pores would affect through-pore flow rates. Overall, detrimental decreases in 

sensitivity from surface area losses to pores may be quickly outpaced by beneficial gains 

to analytical performance through the selectivity and throughput that emerges from 

careful tuning of the pore geometry to support rapid and tuned sample filtering. 
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Figure 7. 3. SEM images of, from left-to-right by column, gold-plated silicon nitride, 

polymer-grafted silicon nitride, and nanoporous silicon nitride. The top two rows show 

top-down images while the bottom row shows an angled view of gold film cross-

sections. The inset in the center micrograph more clearly shows a representative highly-

structured flake. 

Figure 7.4 shows scanning electron micrographs from electrolessly-plated paper 

and nanocellulose samples. The paper substrate was distinguished by voids between 

large fibers constructed of bundled nanoscale fibers. The presence of void spaces in a 

given layer of the paper is partially compensated by overlap with fibers in underlying 

layers. The pore, or void space, size distribution in paper can be controlled during its 

manufacture, and is an important metric when selecting commercial filter paper, for 
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example. The hand-fabricated nanocellulose substrate was highly textured and 

convoluted, without the fiber bundling, alignment, and low packing density that 

produced obvious microscale voids in the paper substrate. The ability of electroless 

plating to coat rough, nonplanar surfaces—beyond what was seen in the plating of the 

curved pore walls orthogonal to the planar upper surface of the porous silicon nitride 

film—is dramatically illustrated by the impressive surface coverage. Thick, porous 

supports such as the nanocellulose paper have a large surface area for plating—

distributed throughout their interior—and require a greater minimum plating solution 

volume than a planar support. Similarly, most of the plated gold surfaces will be able to 

bind analyte but will be optically inaccessible, and must be considered when aliquoting 

samples. Even after addressing these issues, the available signal strength using the 

cellulose-supported substrates was limited by the lower allowable excitation intensity. 

The fiber-based construction of the cellulose substrates, however, is an intriguing 

structural design feature that can provide additional analytical capabilities such as swab 

sampling and chromatographic separation.35, 44, 71 The cellulose substrates are evocative 

of other fiber-mat platforms used for SERS,11-12, 14-22 with paper supports being available 

at scale and at low cost using well-established manufacturing methods. When the ability 

to filter or chromatographically separate a sample using a SERS-active porous substrate 

is desired in addition to SERS sensing, one must consider the effect of the pore size on 

each capability—and on the interplay between each capability. Pore size is tunable 

through support fabrication or through the plating time-dependent thickness—within 

the limits of cost and available gold in the plating bath—of the plated gold layer. The 

flexibility, simplicity, and ease-of-handling of these nanofiber-based substrates stand in 
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stark contrast to the more delicately engineered Silmeco nanopillar arrays, particularly 

for applications in resource-challenged settings. 

Figure 7. 4. SEM images of gold-plated paper substrates (top row) and gold-plated 

nanocellulose paper substrates (bottom row). 

The superb Raman enhancement that the nanopillar substrates provided when 

used as-supplied, without modification, reinforces the utility of rationally patterning 

traditional micro- and nanofabrication materials to create SERS substrates. One must, 

however, be careful during handling and solution processing to prevent unwanted 

damage or modification of such high-aspect ratio features:9  the gold-etched surface 

shows some broken nanopillars. SEM images in Figure 7.5 show that our general 

process chemistry was able to successfully electrolessly gold-plate a nanopillar array. 

The figure shows a section of electrolessly plated gold film that had peeled back from 

the nanopillar array surface:  the surface of the gold film formerly in contact with the 

nanopillar array clearly shows dark areas that are consistent with electroless gold plating 

around extant nanopillars of the array. The dominant structural motifs of as-supplied 
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Silmeco substrates—recognizable individual gold-encrusted nanopillars with limited 

numbers of contact points between nanopillars to yield likely hot spots—were not 

conspicuous in our top-down micrographs of the electrolessly plated substrates. This 

absence of a key SERS-associated (nano)structure is the most significant contributor to 

the dramatic loss of spectral intensity when using replated Silmeco. While several of 

the dark areas of the underside of the gold film are evocative of plating around 

nanopillars likely already leaning together9, optimization of the electroless plating for 

this nanopillar support would be necessary to deliver the engineered hot spots of the as-

supplied substrate. The most reasonable starting point for such an optimization would 

be to plate pristine gold-free nanoarrays so that the distance between the gold regions 

of adjacent nanopillars could be controlled by the plating kinetics and time, and any 

post-plating drying-induced pillar leaning. Producing a nanoarray surface by etching 

gold from the as-supplied Silmeco handicaps the subsequent replating with the initial 

structural modification of hot spot formation and the likely damage to the nanoarray of 

the gold etching step. Nevertheless, the robust gold film formed around nanopillars in 

this particular micrograph is a compelling reminder of the ability of electroless plating 

to plate nanoscale structures, and its ability to create, without substantial equipment 

overhead, SERS substrates from highly engineered supports. 

Figure 7. 5. SEM image of a nanopillar substrate after gold etch (left), and with an 

electrolessly plated gold film peeled off of the underlying nanopillar support (right). 
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CONCLUSIONS 

 

Electroless plating is a robust method for fashioning a variety of materials, 

exhibiting a range of structural features and capabilities, into SERS-active substrates. 

The general electroless plating procedure we employed was able to successfully plate 

gold onto planar, porous, nanopillar, and fibrous surfaces; into well-defined 

nanochannels and variably-sized void volumes; onto traditional nanofabrication-

compatible materials; and onto less conventional device platform materials such as 

paper that are important in the domain of low-cost diagnostics. All resulting substrates 

in our library were capable of generating SER spectra. This electroless plating approach 

produced nanostructured films where the size, shape, and position of the gold grains 

could be tuned by the particular material and form factor of the support material being 

plated, and this tuneability was evident from both microscopic imaging and SERS 

intensities. The underlying support structure for the gold plating did more than imprint 

structure on the gold film, though. Electroless plating of already functional structured 

supports created multifunctional SERS substrates. The force of the work presented here 

is thus both foundational and prospective:  there is much promise in exploring 

electroless plating—including extensions such as patterned electroless plating51, 55—as 

a straightforward, robust, and low-overhead method to create custom SERS-active 

substrates that augment the compelling material properties, structures, and capabilities 

of their supports. Multifunctional SERS substrates require a rich, and application-

specific, context and framework for design and performance evaluation. The substrate 

must, of course, generate a useful Raman spectrum, but the particular implementation—

from design and fabrication to end-use—dictates the balance between Raman 
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enhancement and other capabilities such as integral sample processing. This balance 

dictates how to tune the electroless plating process chemistry, and the support structure, 

to optimize the SERS substrate. We believe that electroless plating has great potential 

in the creation of multifunctional SERS substrates useful for answering a host of design 

and sensing challenges. 
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ABSTRACT 

 

Polysaccharides have key roles in a multitude of biological functions, and they 

can be harnessed for therapeutic roles, with the clinically ubiquitous anticoagulant 

heparin being a standout example. Their complexity—e.g. >100 naturally occurring 

monosaccharides with variety in linkage and branching structure—significantly 

complicates their analysis in comparison to other biopolymers such as DNA and 

proteins. More, and improved, analysis tools have been called for, and we demonstrate 

that solid-state silicon nitride nanopore sensors and tuned sensing conditions can be 

used to reliably detect native polysaccharides and enzymatic digestion products, to 

differentiate between different polysaccharides in straightforward assays, to provide 

new experimental insights into nanopore electrokinetics, and to uncover polysaccharide 

properties. Nanopore sensing allowed us to easily differentiate between a clinical 

heparin sample and one spiked with the contaminant that caused deaths in 2008 when 

its presence went undetected by conventional assays. The work reported here lays the 

foundation to further explore polysaccharide characterization and develop assays using 

thin-film solid-state nanopore sensors. 
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INTRODUCTION 

 

Oligo- and polysaccharides are ubiquitous in nature, with a broad spectrum of 

roles that includes energy-storage and provision (including as a foodstuff), structural 

building block (e.g. cellulose), therapeutic function (e.g. the anticoagulant heparin), and 

a vital part in biological recognition processes.1-11 Conventional chemical analysis tools 

are frequently challenged by the daunting complexity of polysaccharide analysis:12, 13 

identification of monomer composition (~120 naturally occurring monomers!) and 

sequence, monomer linkage types, stereochemistry, polymer length, and degree of 

polymer branching.13 These challenges were tragically driven home in 2008 when 

undetected contamination of the common anticoagulant heparin by a structurally similar 

adulterant, oversulfated chondroitin sulfate (OSCS), resulted in profoundly adverse 

clinical consequences in the United States, including ~100 deaths—underscoring the 

need for more sensitive sensing methods for contaminant flagging.14-19 Glycan samples 

can be challenged by heterogeneity and low abundance in addition to chemical and 

structural diversity, so while new analysis tools have been broadly called for,12, 13, 20 

single-molecule-sensitive methods are a particularly compelling goal for glycomics—

more so given the absence of sample amplification techniques analogous to PCR for 

DNA sequencing21.  

Nanopore single-molecule methods have emerged as a powerful tool for 

characterizing DNA and proteins including aspects of sequence, structure, and 

interactions.22-28 Monomer-resolved length determinations of more prosaic 
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polyethylene glycol samples further buttress the potential of suitably configured 

nanopore assays for the analysis of polymers with biological utility.29 The simplest 

implementation for nanopore measurements places the nanopore—a <100 nm-long 

nanofluidic channel through an insulating membrane—between two electrolyte 

solutions (Figure 8.1). Ion passage through the nanopore in response to a voltage applied 

across the pore gives the baseline “open pore” current, 𝒊𝟎; passage of a molecule into, 

across, or through the nanopore disrupts this ion flow to give a blocked-pore current, 𝒊𝒃. 

A discernible current perturbation reveals the presence of an analyte, and the sign, 

magnitude, and temporal structure of 𝒊𝒃 depend strongly on size and shape of the 

analyte—and of the nanopore—and on the applied voltage and bulk and interfacial 

charge distributions. It thus provides insight into analyte presence, identity, and 

properties, including interactions between the analyte and pore interior or surface.29-32 

Analysis of the resistive-pulse characteristics of a sample offers the potential to glean 

molecular-level insights, but the 𝒊𝒃 characteristics can also be used more simply as 

benchmarks in quality assurance assays where atypical 𝒊𝒃 signal sample impurities. 

Much groundwork must be laid, including proof-of-principle experiments, if 

nanopore methods are to emerge as a tool for glycan profiling—and by extension as a 

tool for –omics writ-large (spanning genomics, proteomics, and glycomics). Protein 

nanopores, polymer, and glass-supported nanopores have been used to detect sugar-pore 

binding, polysaccharides, and enzyme-digested oligosaccharides.33-42 While solid-state 

nanopores in thin (~10 nm) membranes have been often portrayed as the preeminent 

nanopore platform, their use to profile classes of molecules beyond DNA and proteins 

is in its infancy. These nanopores can be size-tuned43 to match analyte dimensions 
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(especially relevant for branched polysaccharides), and when fabricated from 

conventional nanofabrication materials such as silicon nitride (SiNx),
44, 45 offer 

resistance to chemical and mechanical insult alongside low barriers to large-scale 

manufacturing and device integration. The potential for integration of additional 

instrumentation components, such as control and readout electrodes, around the thin-

film nanopore core, is especially compelling.28, 44, 45 Recent (nanopore-free) work on 

recognition electron tunneling measurements on polysaccharides, for example, has 

reaffirmed the importance of a nanopore development path that values augmented 

nanopore sensing capabilities.46  

A key question concerning the use of SiNx nanopores for polysaccharide sensing 

is whether this fabrication material is compatible with sensing glycans. The often 

challenging surface chemistry of SiNx (giving rise to a complex surface charge 

distribution)44, 45, 47 may lead to analyte-pore interactions that hinder or prevent its use. 

Variability in polysaccharide electrokinetic mobility arising from differences in 

molecular structures may exacerbate the effect of these interactions. These issues 

become particularly important when analyte translocation through a constricted pore is 

required, such as in transverse electron tunneling measurements.28, 46  

The aims of the present work were threefold: (1) to introduce and test the 

feasibility of SiNx nanopores for sensing polysaccharides; (2) to explore the preliminary 

performance of this class of nanopores in this implementation; and (3) to gauge the 

prospects of a clinically relevant assay to detect a toxic impurity in the anticoagulant 

heparin. The broader implications of the successful use of SiNx—a readily 

nanofabrication-compatible material—to form the nanopores would be to conceivably 



160 

 

smooth the path to large-scale production and to provide a platform amenable to 

modification for nanopore sensing configurations beyond resistive pulse sensing. We 

chose a set of polysaccharides with varied compositions to both gauge performance and 

challenge the SiNx nanopores. Naturally occurring sodium alginate, with applications in 

biomedical and food industries, presents an overall negative, but unexceptional, formal 

charge in neutral pH aqueous solutions. We used samples from two different suppliers—

A1 (Alfa Aesar; 𝑀𝑛~74 kDa based on viscosity measurements) and A2 (FMC 

Corporation; 𝑀𝑛~18 kDa based on viscosity measurements)—to explore the sourcing 

variability for a sample extracted from seaweed.48 This variability can be as prosaic as 

molecular weight to more enticing changes in the relative abundances of alginate’s 

constituent mannuronate (M) and guluronate (G) residues.48 In contrast to alginate, 

heparin, the prevalent anticoagulant drug, is the most highly negative charge-dense 

biological molecule known.49 This exceptional charge density couples with the 

demonstrated difficulty, by other methods, of detecting the negatively charged 

oversulfated chondroitin sulfate (OSCS; contaminant molecular weight ~17 kDa50) in a 

heparin sample14-17 to make the analysis of heparin (~16 kDa) and OSCS by nanopore 

a compelling experimental test with clinical relevance. 
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Figure 8. 1: Schematic of the nanopore setup. Analyte was added to the headstage side 

(“cis-” side, according to nanopore convention) unless otherwise noted, and applied 

voltages were referenced to the ground electrode (“trans-” side) on the other side. 

RESULTS 

Introduction of anionic alginate A1 (Mn~74 kDa) into the headstage sample 

well failed to generate detectable transient current changes when a negative headstage 

voltage (the polarity consistent with purely electrophoretic motion for an anionic 

analyte) was applied with the analyte in the same well (Figure 8.1). Application of a 

positive potential, instead, generated transient current changes (here denoted “events”) 

that could be readily differentiated from the open current noise with ~60:1 event-to-

noise frequency compared to analyte-free scans. Figure 8.2 shows a representative time 

trace of A1-induced events, with a characteristic event magnified. The frequency of 

discrete current blockages associated with the addition of A1 could be fit linearly over 

a reasonable range of analyte concentration (Supplementary Figure 8.1), so that 

regardless of mechanism, with appropriate measurement conditions, the event 

frequency can be used to determine the analyte concentration.  

The mechanism of A1-induced signal generation was investigated in a series of 

experiments. Using a setup (Supplementary Figure 8.2) that physically separated 
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electrodes and nanopore, events were only detected when A1 was injected into the well 

proximal to the nanopore, thus supporting a signal generation mechanism involving 

interaction with the nanopore and not with the electrodes. This result did not, however, 

distinguish between passage-free collision with the nanopore opening (“bumping” or 

“blocking”) or translocation through the pore.32 Either mechanism (including extending 

the idea of “bumping” or “blocking” to allow for transient interactions of the analyte 

with the pore mouth), though, has the potential to deliver analytically useful sensing 

performance.  

Low analyte concentrations challenge the direct investigation of polysaccharide 

translocation through small, single nanopores. In one experiment to investigate this, a 

solution of A1 was added to the headstage side of a ~22 nm-diameter nanopore and was 

left overnight with a +200 mV applied voltage. The initially analyte-free contents of the 

ground-stage side were then transferred to the headstage side of a fresh ~17 nm-

diameter pore, and an appreciable number of A1-characteristic events (182 in 1 h) were 

detected again at +200 mV. Acid digestion was used as a signal generation and 

amplification technique (complete details in the Supplementary Information) to convert 

A1 polymers to many smaller fragment-derived species absorbing at ~270 nm.51, 52 This 

spectrophotometric assay (Supplementary Figure 8.3) was used to confirm translocation 

of polysaccharide through a ~9 nm SiNx nanopore.  

The analyte-induced translocation blockage current, 𝑖𝑏, is expected to be 

determined by the properties of the analyte and its size relative to the nanopore, among 

other experimental factors (including interfacial phenomena).30, 32 For each individual 
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current blockage, we calculated the blockage duration, 𝜏, and the fractional blockage 

current magnitude, 𝑓𝑏 = 〈𝑖𝑏〉 〈𝑖0〉⁄ , where 〈⋯ 〉 denotes a time-average, and 𝑖0 is the 

current through the pore when unobstructed by analyte. Plots of number of events as a 

function of 𝜏 and 𝑓𝑏 (Figure 8.3) provide an overarching summary of the total current 

trace. Given detectable differences as a function of analyte, such plots and other 

representations have the potential to function as analyte fingerprints in quality assurance 

assays. Fingerprints for A1 are shown in Figure 8.3, acquired in 1 M KCl, pH ~7 

solutions using a +200 mV applied voltage. Supplementary Figures 8.4 and 8.5 provide 

alternative presentations of the experimental measurements. The (most frequent) 𝑓𝑏 

increased in magnitude with increasing nanopore radius, 𝑟pore (that is, the relative 

magnitude of the current perturbations due to the analyte were reduced). This parallels 

the behaviour observed in studies of DNA translocation that could be described using a 

simple volume-exclusion framework:  𝑟analyte
2  /𝑟pore

2   = 1 − 𝑓𝑏. 

 

Figure 8. 2.  Representative nanopore current trace and events from sodium alginate 

samples from two different sources. a) A representative segment of an A1-induced 

current trace using a ~22 nm-diameter pore; the solid blue line marks the most frequent 

event level, 〈𝑖𝑏〉, and the blue dashed line is its mean across all events. The magnified 
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current event is from the same trace. b) A2- and c) enzyme-digested-A2-associated 

single events through a ~22 nm-diameter pore. All currents were measured in response 

to a 200 mV applied voltage. 

For example, reducing the ion concentration from 1 to 0.1 M KCl increases the 

Debye layer thickness changing the electrostatic size of the pore with consequences for 

electrokinetic phenomena, and electroosmosis especially. Comparing Figures 8.3a and 

8.3e, this change of concentration did not affect the voltage polarity needed to generate 

events, but decreased the 𝒇𝒃 for the same experimental configuration, and appreciably 

lengthened the (most frequent) blockage duration. More profoundly, the 10-fold salt 

concentration decrease reduced the frequency of events 6-fold in the same size 

~18 nm-diameter pore. We found, and exploited in a more general context for the 

sensing of heparin and OSCS (below), that such a simple change of electrolyte 

concentration is a powerful parameter for tuning our ability to sense polysaccharides. 

Changing the electrolyte pH offers a similar parameter for tuning the sensing 

performance of nanopores with ionizable surface groups. The surface charge of SiNx 

nanopores can be tuned from negative through its isoelectric point (~4.3±0.3) to 

positive,44, 53 and the consequence of this pH change is seen in Supplementary Figure 

8.6:  the voltage polarity for signal generation is opposite at pH 3 and 5 (and opposite 

to the electrophoretic direction for all pH values), and the event frequency is at its 

minimum nearest the isoelectric point and increases with increase and decrease in pH 

from this point. 
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After the initial exploratory and proof-of-principle experiments using A1, we 

turned to the second sodium alginate sample, A2, obtained from a separate supplier. In 

general, the interplay between analyte charge density, monomer chemical nature and 

polymer linkages, and electrolyte composition, is expected to influence nanopore 

sensing. Experiments showing the polarity-dependence of event occurrence, and its 

frequency, as a function of pH showed the same qualitative behaviour as for A1 in 

Supplementary Figure 8.6, but with lower event frequencies overall. Both alginate 

samples were readily digested by alginate lyase (Supplementary Figure 8.3),54 but 

infrared spectroscopy showed that A2 contained a dramatically greater proportion of 

carboxylate groups than A1 (Supplementary Figure 8.7), so that the overall charge 

density of this molecule was expected to be higher than A1. Further analysis was 

consistent with alginate A1 having a ratio of guluoronic (G) to mannuronic (M) residues 

exceeding that of A2, with values from IR spectroscopy of ~63%G/37%M and 

~57%G/43%M, respectively.48 Nanopore profiling of A2 showed differences compared 

to A1. Using the same electrolyte for A2 as for A1, measurements generated a ~7-fold 

lower event frequency with longer durations for A2 compared to A1, despite  the 75-

fold higher A2 concentrations required for reasonable measurement times. Enzymatic 

digestion of A2 produced events at a higher frequency than for undigested A2, but still 

at lower frequency than for A1. The events for the digested sample of A2 were ten-fold 

shorter-lived than for the A2 polymer, but not appreciably different in terms of blockage 

depth (Figure 8.3).  
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Figure 8. 3: Combination heat map-scatter plots of alginate-induced events. Event 

counts (plotted as log10 on the colour axis) of a) 4 µL 0.2% (w/v) A1 using a ~19 nm 

diameter pore (~0.321 events/s), b) 20 µL of 3% (w/v) A2 using a ~22 nm 

(~0.046 events/s) and c) 20 µL of 10-minute enzyme digested 3% (w/v) A2 using a 

~23 nm diameter pore (~0.112 events/s), all in pH ~7 buffered 1 M KCl. The 

experiment in (a) was repeated d) using a ~5 nm nanopore (~0.403 events/s), and e) 

an ~18 nm-diameter pore, but in 0.1 M KCl (vs. 1M KCl in (a)) electrolyte buffered 

at pH ~7 (~0.0527 events/s). 

These initial survey experiments showed measurement outcomes with strong 

sensitivity to analyte identity, with the number of anionic carboxylate moieties being a 

compelling differentiator between A1 and A2. We then turned to the pressing specific 

challenge of (anionic) heparin sensing and (anionic) OSCS impurity detection. The first 

change, from the earlier work, was that the signal generation voltage polarity now 

corresponded with the conventional electrophoretic direction for an anionic species. 
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Acid digestion experiments akin to those in Supplementary Figure 8.3 confirmed that 

heparin could translocate through the pore in response to an applied voltage. As with 

A1, heparin could be detected in 1 M KCl electrolyte, but the heparin event blockage 

magnitude and event frequency were both greater in 4 M KCl, and so measurements 

were performed at this higher salt concentration (see Supplementary Figure 8.8 for 

representative events and a heat map). Plots of event frequency versus heparin 

concentration were linear (Figure 8.4), with a limit of detection of 0.379 USP heparin 

units/mL (in a 500 µL well). In comparison, clinical dosage levels of ~104 units/day 

using ~103 units/mL stock solutions are not uncommon. Heparin and alginate 

fingerprints differed in appearance from each other, but also through the profoundly 

different measurement configuration—opposite applied voltage polarity and fourfold 

higher electrolyte concentration for heparin—used to acquire them. We were more 

keenly interested, though, in whether an OSCS impurity in heparin could be detected. 

We performed measurements on unadulterated USP samples of either heparin or OSCS 

under identical experimental conditions. On the level of individual events, heparin and 

OSCS differed in their apparent interaction with the nanopore, with OSCS having a 

greater propensity to permanently block the pore unless a ~1.3 V (“zap”) pulse—a 

common approach leveraging the electrokinetic basis of analyte motion—was quickly 

applied when indications suggesting an impending permanent blockage arose. In 

addition, events associated with the heparin and OSCS samples differed appreciably in 

the current fluctuations during individual current blockages:  OSCS current blockages 

exhibited ~2–3× greater current noise, 𝜎(𝑓𝑏), than heparin-induced events. Overall, in 

spite of considerable overlap in the most frequent event 𝑓𝑏 and 𝜏, the distribution of 
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event characteristics revealed a key difference between heparin and OSCS samples 

(Figure 8.5 and Supplementary Figure 8.9). Namely, events measured using heparin 

samples exhibited a longer duration tail in the total event duration distribution, while 

events measured using OSCS samples exhibited a longer tail in 𝑓𝑏. Measurements of 

mixtures of heparin and OSCS (16 ppm each) yielded event distributions showing both 

tails, consistent with the presence of both the heparin therapeutic and its contaminant. 

We developed an automatic thresholding procedure based on event distribution statistics 

in 𝑓𝑏 and 𝜏 (details in the Supplementary Information) to collapse the event distribution 

fingerprints into recognition flags denoting the presence or absence of each component. 

In brief, OSCS was declared present when events occurred with 𝑓𝑏,sample ≲

mode(𝑓𝑏,USP heparin
binned )  − 3𝜎(𝑓𝑏,USP heparin

binned ), and heparin was declared present when events 

occurred with 𝜏sample ≳  mode((log10 𝜏USP OSCS)
binned) − 3𝜎((log10 𝜏USP OSCS)

binned). 

Figure 8.5 shows the correct recognition of USP heparin, USP OSCS, and a mixture of 

both, across four trials using nanopores of slightly different sizes. The OSCS 

contaminant levels detected here were fourfold lower (without efforts to explore a lower 

bound) than the OSCS detection limit reported in the work that examined and quantified 

the contaminant in suspect heparin lots.18 
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Figure 8. 4: Heparin calibration curve. Three trials were performed, with at least 500 

events per run extracted from 900 s-long measurements in a ~9 nm pore at -200 mV 

applied voltage after consecutive addition of 1 µL aliquots to the head-stage side of the 

same nanopore. Error bars are the standard deviation for the three trials. 

Figure 8. 5: Nanopore resistive-pulse analysis of heparin, OSCS, and their mixture. a) 

Superimposed scatter plots of 4 µL heparin, OSCS and OSCS-contaminated heparin 

added to 4 M potassium chloride at -200 mV and measured using a ~14 nm pore. The 

colours in the legend correspond to the listed sample, and are blended (using 

transparency) in the plot where events from different samples overlap. b) Recognition 



170 

 

flags of heparin, OSCS and their mixture from four independent trials accurately 

identify the presence of the OSCS aliquot in the mixture. 

DISCUSSION 

We demonstrated the feasibility of using SiNx nanopores to characterize glycans 

exhibiting a variety of chemical compositions, including a prevalent therapeutic, 

heparin. The extremely high charge density carried by heparin poses a particular 

challenge to a nanoscale sensor element that can, itself, be charged. More generally, 

unwanted interactions between analyte and nanopore—and the ease and feasibility of 

ameliorative steps—can imperil nanopore-based experiments:  that none of the diverse 

polysaccharides considered here catastrophically clogged the nanopore—even when 

subjected to the stringent test of translocation through the pore–was salutary.47 Indeed, 

nanopore sensing was successful over a number of electrolyte concentration ranges, 

from 0.1 to 4 M KCl, for which shielding of the charged nanopore surface would be 

quite different in degree. With translocation possible through SiNx nanopores, even with 

their charged surface, a rich set of nanopore-based sensing configurations should be 

within reach.  

In this work, we used a straightforward resistive-pulse sensing paradigm to 

readily detect and differentiate between different polysaccharides, including enzymatic 

digestion products and two separate alginate samples differing in relative monomer 

composition. We used voltage polarity and electrolyte composition alongside the 

distribution of events as a function of 𝑓𝑏 and 𝜏 to construct fingerprints and recognition 

flags characteristic of each sample. Linear calibration curves show that these 
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measurements easily support concentration determinations in addition to analyte 

recognition. 

From a fundamental perspective, nanopores can be a powerful tool for exploring 

molecular, interfacial, and intermolecular phenomena, often arising from only simple 

changes of experimental conditions. Electrolyte-dependent interfacial interactions—at 

nanopore and molecule surfaces—are complex, and treatments of widely varying levels 

of sophistication have emerged from decades of experimental and theoretical studies of 

the canonical nanopore-DNA system, in particular.32 For example, changes of 

electrolyte concentration have been observed to reverse the sign of the current 

perturbation in DNA translocations through solid-state nanopores, and to decrease 

dextran sulfate blockage frequencies while increasing their durations using ~1.3 nm-

diameter pores where the Debye length was comparable to the pore dimensions.42, 55 

With the larger pores used here, overlapping Debye layers would not be expected in 

0.1 M KCl solutions, leaving three expected principal effects of lowering the electrolyte 

concentration from 1 M KCl:  a lowering of the potential across the pore and thus of the 

overall electrophoretic force on an analyte near the pore; a reduction in the available 

number of bulk ions displaced by the analyte volume; and a change in the ion 

distribution around charged interfaces—the nanopore and analyte surfaces—that 

influences the nanopore signal through a complex overall mechanism within a given 

experimental configuration. 

Blockage magnitudes measured here in the more conventional 1 M KCl would 

be consistent with, in a simple volume exclusion sense (𝑟analyte
2  /𝑟pore

2   = 1 − 𝑓𝑏), 

translocation of linearized polysaccharides. Deeper blockages would be expected from 



172 

 

the polysaccharides here with hydrodynamic radii on par with the nanopore diameters. 

Polysaccharide translocation was independently confirmed and signals were generated 

only when the analytes had access to the nanopores, so these events either arose from 

analyte interactions with the pore mouth rather than from complete translocation, or the 

blockage magnitude analysis must include additional factors such as charge density 

carried by the analyte, itself, and mobile charge at the analyte-solution and solution-

nanopore interfaces.55, 56 The effects of these and more complex interfacial phenomena 

emerged in one of the more startling observations in this work:  that the voltage polarity 

for signal generation with both alginate samples was opposite to that expected for 

electrophoretic motion of an anionic polymer, whereas for heparin the voltage polarity 

was consistent with electrophoresis.  

In addition, when comparing the two alginates, the more charge-rich A2 was 

detected at a lower event frequency than A1. Nanopore–based studies with polyethylene 

glycol polymers point to a change of effective analyte charge by sorption of electrolyte 

ions (K+ for those studies) with the resultant analyte motion then being electrophoretic 

for the voltage polarity and the sign of the sorbed charge.29 The results of Supplementary 

Figure 8.6, however, point to pH-dependent changes in the voltage polarity required for 

sensing alginates, with the polarity having opposite signs on either side of the isoelectric 

point of SiNx. Mirroring this change in the voltage polarity is the SiNx surface charge 

that is positive at lower pH and negative at higher pH. This change in surface charge 

sign causes a reversal in the direction of electroosmotic motion for a fixed voltage 

polarity (and thus fixed electrophoretic direction).44, 45  
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The apparent mobility of an analyte in response to electrolyte flow through the 

surface-charged nanochannel is the sum of its electrophoretic and electroosmotic 

mobilities. Changes of solution pH can then tune the apparent analyte mobility and even 

overall direction of analyte motion. Changes of solution pH can also affect the charge 

density and sign of analytes (and thus the voltage polarity required for electrophoresis 

in a given direction) containing at least one acidic or basic functional group as 

determined by the balance of acid-base equilibria (determined by functional group 

abundance and pKa). Given the acidic functional groups in the analytes here, the changes 

in nanopore surface chemistry should dominate the effective mobility and its voltage 

polarity dependence.  

The event frequency and voltage polarity behaviours are consistent with the 

distinct physicochemical properties of each analyte in a signal generation method in 

which both electrophoresis and electroosmosis occur simultaneously. Alginate A1 has 

the lowest charge density, and thus its electrophoretic response is dominated by 

electroosmosis with the electrophoretic and electroosmotic driving forces being in 

opposition in the negatively charged SiNx pores at pH ~7. Alginate A2 is more 

negatively charged and so one would anticipate a stronger electrophoretic driving force; 

the direction of signal generation is still consistent with electroosmosis. The lower event 

frequency compared to A1 can be understood as arising from opposing electrophoretic 

and electroosmotic driving forces, but with the electrophoretic force on A2 being greater 

than on A1. More detailed exploration of the differences between A1 and A2 must also 

contend with their different molecular weights and their different chain flexibilities 

arising from their different M/G ratios. In the case of heparin, the charge density is 
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sufficiently high so that events are detected using a voltage polarity that would drive the 

anionic polymer towards the nanopore.  

The experimental investigations including and beyond the ones presented here, 

exploring the underpinnings of the nanopore-generated signal using (polysaccharide) 

biopolymers with greater chemical and structural complexity than the canonical 

nanopore test molecule, DNA, or than homopolymers such as polyethylene glycol, 

should also provide fertile ground for high-level simulations. Interfacial effects will 

require additional study in the context of polysaccharides, but hold possibilities for 

tuning sensing selectivity and sensitivity. Indeed, explicit consideration of sensing 

conditions—including nanopore size, electrolyte composition, and voltage polarity—

already augments the ability to compare nanopore molecular fingerprints as shown in 

Figure 8.3.  

The failure in 2008 to detect an OSCS contaminant in clinical heparin samples 

had previously led to patient morbidity and mortality—stressing the need for more 

sensitive sensing methods for contaminant flagging,14-18 so that our ability to use a 

simple nanopore-based assay to quantify heparin levels and detect OSCS at clinically 

meaningful contamination levels, is itself significant. In a broader sense, we expect that 

these initial results exploring polysaccharide structure can, by analogy with earlier 

nanopore DNA and protein sensing supporting genomics and proteomics, spotlight the 

potential of using nanopores as a tool for glycomics. The demonstration of 

polysaccharide translocation through nanofabrication-compatible SiNx nanopores 

portends the development of more sophisticated sensing schemes as seen in the use of 

nanopores for genomics. Similarly, the successful use of chemical tuning—of 
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electrolyte composition and by enzyme addition—to alter the nanopore signal generated 

by diverse polysaccharides suggests that nanopore glycomics might borrow from and 

extend upon similar approaches developed for nanopore genomics. There is an ongoing 

need in glycomics for new tools to cope with the analytical challenges caused by the 

structural and physicochemical complexity of polysaccharides, and by the often 

inherently heterogenous nature of naturally derived carbohydrates. The demonstrations 

of nanopore sensing here provide a beachhead for ongoing efforts to develop solid-state 

nanopores as a promising platform technology for glycomics. 

METHODS 

A full listing of the experimental details is available in the Supplementary 

Information. Nanopores were formed via dielectric breakdown43 in nominally 10 nm-

thick silicon nitride (SiNx) membranes. Nanopore sizes were inferred from their 

conductance, G, determined from Ohmic current-voltage data. Nanopores used for 

measurements produced stable open-pore (analyte-free) currents in the electrolyte 

solutions used. Polysaccharides were commercially obtained:  sodium alginate samples 

from two different sources - A1 (Alfa Aesar, Ward Hill, MA) and A2 (FMC Corporation 

Health and Nutrition, PA, USA); USP heparin sodium salt; and USP OSCS. For routine 

measurements, sample aliquots were added to the headstage side (Figure 8.1), leaving 

the ground side free of initially added analyte. Current blockages were extracted using 

a current-threshold analysis. All applied voltages are stated with the polarity of the 

electrode on the headstage side relative to ground on the ground side of the sample cell. 

Code Availability. Labview source code to view the current event files can be supplied 

upon request. 
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Data Availability. The datasets generated during the current study are available from 

the corresponding author on reasonable request. 
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SUPPORTING INFORMATION  

 

SUPPORTING INFORMATION FOR CHAPTER 2: NANOPORE SURFACE 

COATING DELIVERS NANOPORE SIZE AND SHAPE THROUGH 

CONDUCTANCE-BASED SIZING 

 

Cameron M. Frament, Nuwan Bandara and Jason R. Dwyer* 

Department of Chemistry, University of Rhode Island, 51 Lower College Rd., Kingston, 

Rhode Island, 02881, United States 

Table S2. 1. Listing of nanopore radial profiles with the corresponding volume (𝐴) and 

surface (𝐵) integrals from equations (3) and (4). 

Nanopore 

radial 

profile 

A B 

Exponenti

al-

cylindrical 

π 𝑟0
2

𝐿

1

𝑦 + 𝑏 𝑟0(1 − 𝑦)(1 − 𝑏 𝑟0𝑒𝑏 𝑟0Γ(0, 𝑏 𝑟0))
 

2π 𝑟0
𝐿

1

𝑦 + 𝑏 𝑟0(1 − 𝑦)𝑒
𝑏 𝑟0Γ(0, 𝑏 𝑟0)

 

Conical-

cylindrical 
π 𝑟0

2

𝐿

𝑥

𝑦 (𝑥 − 1) + 1
 

2π 𝑟0
𝐿

𝑥 − 1

𝑦(𝑥 − 1) + (1 − 𝑦) ln 𝑥
 

Cylindrica

l 
π 𝑟0

2

𝐿
 

2π 𝑟0
𝐿

 

Conical π 𝑟0
2

𝐿
𝑥 

2π 𝑟0
𝐿

𝑥 − 1

ln 𝑥
 

Hyperboli

c 
π 𝑟0

2

𝐿

√𝑥2 − 1

tan−1 √𝑥2 − 1
 

2π 𝑟0
𝐿

√𝑥2 − 1

ln(√𝑥2 − 1 + 𝑥)
 

where Γ(𝑎, 𝑠) ≡ ∫ 𝑡𝑎−1𝑒−𝑡
∞

𝑠
𝑑𝑡, the incomplete gamma function, 𝑥 =  𝑅 𝑟0⁄ , and 𝑦 =

 𝑙 𝐿⁄ . Rearranging the expressions above after substitution of 𝑥 and 𝑦 reproduces the 

equations in Ref. 27, save the absorption of the constants 2 and 𝜋 into 𝐴 and 𝐵 in 

equation (8). 
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SUPPORTING INFORMATION FOR CHAPTER 3: REAL-TIME PROFILING 

OF SOLID-STATE NANOPORES DURING SOLUTION-PHASE 

NANOFABRICATION 

 

Y.M. Nuwan D.Y. Bandara, Buddini Iroshika Karawdeniya, and Jason R. Dwyer*. 

Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 

02881, United States. 

Notation Definition 

𝒓𝟎 limiting nanopore radius 

𝑹 pore opening radius (𝑹 = 𝒓𝟎 + 𝟏𝟎 nm, except for the cylindrical 

profile)1-2 z-axis principal rotation axis of the nanopore along its length 

𝒓(𝒛) radius of the pore at a given location along the z axis of the nanopore 

𝑳𝒂−𝒃, 𝑳𝒃−𝒄… length of a region of the nanopore surface along the z-axis of the 
nanopore between the subscripted points 

L total nanopore length 

l inner nanopore length of conical-cylindrical profile 

𝜶 and 𝜷 angles defining the curved sections of the coating deposited onto the 

nanopore surface 𝚫𝒓𝒊 thickness of the deposited nanopore coating 
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Table S3. 1. Definitions of notation used in describing the nanopore profiles.  

Figure S3. 1. 2D cross-sections of pristine (black lines) (a) cylindrical, (b) double 

conical, (c) conical-cylindrical and (d) hyperbolic nanopore profiles modified uniformly 

across their surfaces by a thickness of Δ𝑟𝑖 (blue lines). 

Region Cylindrical Double conical Conical cylindrical Hyperbolic 

 Profil

es 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

𝛽 =  
𝜋

2
 

 

 

 

 
 
 

𝑅 = 𝑟0 + 10 nm 
 

𝛽

= tan−1 (
𝐿

2 ⋅ (𝑅 − 𝑟0)
) 

 

𝛼 = 𝜋 − 2𝛽 

 

 
 

𝑅 = 𝑟0 + 10 nm 
 

𝛽

= tan−1 (
𝐿 − 𝑙

2 ⋅ (𝑅 − 𝑟0)
) 

 

𝛼 =
𝜋

2
− 𝛽 

 

  

𝑅 = 𝑟0 + 10 nm 
 

𝛽 = tan−1 (
𝑅 ⋅ 𝐿

2 ⋅ (𝑅2 − 𝑟0
2)
) 

𝑏 =  √(
𝐿

2
)
2

⋅
𝑟0
2

𝑅2 − 𝑟0
2 

 

a-b 

 

 

𝑟(𝑧) = 𝑟0 

 

𝑟(𝑧) = 𝑅 

 

𝑟(𝑧) = R 

 

𝑟(𝑧) = R 

 

b-c 

 

 

 

𝑟(𝑧)

= 𝑟0 − Δ𝑟𝑖 ⋅ cos 𝜃 

𝜃 →  𝛽 𝑡𝑜 0 

𝐿𝑏−𝑐 = Δ𝑟𝑖 

 

𝑟(𝑧) = R − Δ𝑟𝑖 ⋅ sin 𝜃 

𝜃 → 0 𝑡𝑜 𝛽 

𝐿𝑏−𝑐
= Δ𝑟𝑖 ⋅ (1 − sin 𝛽) 

 

 

𝑟(𝑧) = R − Δ𝑟𝑖 ⋅ sin 𝜃 

𝜃 → 0 𝑡𝑜 𝛽 

𝐿𝑏−𝑐
= Δ𝑟𝑖 ⋅ (1

− sin 𝛽) 

 

𝑟(𝑧) = R − Δ𝑟𝑖 ⋅ sin 𝜃 

𝜃 → 0 𝑡𝑜 𝛽 

𝐿𝑏−𝑐 = Δ𝑟𝑖 ⋅ (1 − sin 𝛽) 
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c-d 

 

 

 

 

 

 

 

 

𝑟(𝑧)

= 𝑟0 − Δ𝑟𝑖 

𝐿𝑐−𝑑 = 𝐿 

 

 

 

 

 

 

 

 

  𝑟(𝑧) =

(R − Δ𝑟𝑖 ⋅ sin 𝛽) −

 𝑦 ⋅ tan𝛽 

𝑦 →  0 𝑡𝑜 
𝐿

2
 

𝐿𝑐−𝑑 =
𝐿

2
 

 

 

 

 

 

𝑟(𝑧)

= (R − Δ𝑟𝑖 ⋅ sin 𝛽)

−  𝑦 ⋅ tan 𝛽 

𝑦 →  0 𝑡𝑜
(𝐿 − 𝑙)

2
 

𝐿𝑐−𝑑 =
(𝐿 − 𝑙)

2
 

 

 

 

 

 

 

𝑟(𝑧)

= 𝑟0 ⋅ √(1 +
𝑦2

𝑏2
) +  Δ𝑟𝑖

⋅ sin

(

 tan−1

(

 
𝑟0 ⋅ √(1 +

𝑦2

𝑏2
) ⋅ 𝑏2

𝑦 ⋅ 𝑟0
2

)

 

)

  

𝑦 → −
𝐿

2
𝑡𝑜 0 

𝐿𝑐−𝑑 =
𝐿

2
 

d-e 

 

 

 

 

 

 

 

𝑟(𝑧)

= 𝑟0 − Δ𝑟𝑖 ⋅ cos 𝜃 

𝜃 →  0 𝑡𝑜 𝛽 

𝐿𝑑−𝑒 = Δ𝑟𝑖 

 

 

 

 

 

𝑟(𝑧)

= 𝑟0 − Δ𝑟𝑖

⋅ cos (
𝛼

2
− 𝜖) 

𝜖 → 0 𝑡𝑜 𝛼 

𝐿𝑑−𝑒 = 2 ⋅ Δ𝑟𝑖 ⋅ sin
𝛼

2
 

 

 

 

 

 

 𝑟(𝑧) = 𝑟0 − cos 𝜃 

𝜃 → 𝛼 𝑡𝑜 0 

𝐿𝑑−𝑒
= Δ𝑟𝑖(1 − sin 𝛼) 

 

 

 

 

 

 

𝑟(𝑧)

= 𝑟0 ⋅ √(1 +
𝑦2

𝑏2
) −  Δ𝑟𝑖

⋅ sin

(

 tan−1

(

 
𝑟0 ⋅ √(1 +

𝑦2

𝑏2
) ⋅ 𝑏2

𝑦 ⋅ 𝑟0
2

)

 

)

  

𝑦 → 0 𝑡𝑜 
𝐿

2
 

𝐿𝑑−𝑒 =
𝐿

2
 

e-f 

 

 

𝑟(𝑧) =  𝑟0 

 

 

 

 

𝑟(𝑧) = (R − Δ𝑟𝑖 ⋅ sin 𝛽) −

 𝑦 ⋅ tan𝛽 

 

𝑦 →
𝐿

2
𝑡𝑜 0 

𝐿𝑒−𝑓 =
𝐿

2
 

 

𝑟(𝑧) = 𝑟0 − Δ𝑟𝑖 

𝐿𝑒−𝑓 = 𝑙 

 

𝑟(𝑧) = R − Δ𝑟𝑖 ⋅ sin 𝜃 

𝜃 → 𝛾 𝑡𝑜 0 

𝐿𝑒−𝑓 = Δ𝑟𝑖(1 − sin 𝛽) 

f-g 

 

 

- 

 

 

 

𝑟(𝑧) = R − Δ𝑟𝑖 ⋅ sin 𝜃 

𝜃 → 𝛽 𝑡𝑜 0 

𝐿𝑓−𝑔
= Δ𝑟𝑖 ⋅ (1 − sin 𝛽) 

 

  𝑟(𝑧) = 𝑟0 −

cos 𝜃 

𝜃 → 0 𝑡𝑜 𝛼 

𝐿𝑓−𝑔
=  Δ𝑟𝑖 ⋅ (1

− sin 𝛼) 

 

𝑟(𝑧) = R 

 

 

g-h 

 

- 

 

 

 𝑟(𝑧) = 𝑅 

 

 

 

 

𝑟(𝑧)

= (R − Δ𝑟𝑖 ⋅ sin 𝛽)

−  𝑦 ⋅ tan 𝛽 

𝑦 →  0 𝑡𝑜 
(𝐿 − 𝑙)

2
 

𝐿𝑔−ℎ =
(𝐿 − 𝑙)

2
 

- 
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h-i 

 

 

- 

 

- 

 

𝑟(𝑧) = R − Δ𝑟𝑖 ⋅ sin 𝜃 

𝜃 → 𝛽 𝑡𝑜 0 

𝐿ℎ−𝑖
= Δ𝑟𝑖(1 − sin 𝛽) 

 

- 

 

i-j - - 𝑟(𝑧) = 𝑅 - 

     

 

Table S3. 2. Geometric profiles and equations describing nanopore shapes before (black 

line) and after (blue line) a uniform surface modification of thickness of Δ𝑟𝑖 over the 

entire pore surface. We provide the equations that determine the nanopore profile, 𝑟(𝑧), 

for the piecewise integration, between points labelled with undercase letters, of volume 

(A) and surface (B) integrals. 

METHOD OF CALCULATING VOLUME (A) AND SURFACE (B) 

INTEGRALS 

 

Integrals were calculated using Mathematica 10.3.1 (Wolfram Research, Champaign, 

IL) in the following manner, 

𝐴 = (∫
𝑑𝑧

𝜋(𝑟(𝑧))2

𝑧final

𝑧initial
)
−1

≅ (∫
𝑑𝑧

𝜋(𝑟int(𝑧))
2

𝑧final

𝑧initial
 𝑑𝑧)

−1

  

𝐵 = (∫
𝑑𝑧

2𝜋⋅𝑟(𝑧)

𝑧final

𝑧initial
)
−1

≅ (∫
𝑑𝑧

2𝜋⋅𝑟int(𝑧)

𝑧final

𝑧initial
 𝑑𝑧)

−1

  

where 𝑟int(𝑧) is a 3rd-order polynomial interpolation of 𝑟(𝑧) sampled with a step height, 

Δ𝑧 = 0.0001 nm, along the z-axis from 𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to 𝑧𝑓𝑖𝑛𝑎𝑙. Here, 𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑧𝑓𝑖𝑛𝑎𝑙 are 0 

and L for all profiles except the hyperbolic profile for which they are set to −𝐿 2⁄  and 

𝐿 2⁄ , respectively. 
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Figure S3. 2:  As 10 nm-long nanopores of different shapes, all with initial conductances 

of 200 nS are progressively reduced in size due to material deposition, the profile-

dependent decreases in the conductances are caused by profile-dependent changes in 

the underlying geometry integrals, A and B. 

TUTORIAL:  Stepwise Construction of Figure 3.4. 

Generating the experimental data for a cylindrical experimental nanopore. 

An experimental first conductance, 𝐺cylindrical

expt (𝑡0) = 200 nS is simulated using a 

cylindrical model with (𝑟0,cylindrical

expt (𝑡0), 𝐿cylindrical

expt (𝑡0)) = (3.5 nm, 3.8 nm). We 

calculate 𝐺cylindrical

expt (𝑡1) = ∽ 114.5 𝑛𝑆 after a Δ𝑟1 = 0.5 nm decrease in the pore radius. 

Similarly, 𝐺cylindrical

expt (𝑡2) = ∽ 67.3 𝑛𝑆 is calculated after a Δ𝑟2 = 1.0 nm change in the 

pore radius. 

Step 1:  First conductance value, 𝐺cylindrical

expt (𝑡0) = 200 nS 

This conductance could be generated equally well by any appropriate combination of 

nanopore shape and geometric parameters, (𝑟0,shape(𝑡0), 𝐿shape(𝑡0)), plotted in Figure 
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3.2. The dotted lines in Panels a-d below show the range of possible 𝑟0shape
(𝑡0) for each 

shape given the 200 nS initial conductance. 

 

Step 1 in construction of Figure 3.4: Plots of 𝑟0(𝑡0) versus conductance for (a) 

cylindrical, (b) double-conical, (c) conical-cylindrical, and (d) hyperbolic nanopore 

shapes for an initial conductance of 200 nS. 

Step 2:  Second conductance value, 𝐺cylindrical

expt (𝑡1) = ∽ 114.5 nS 

Knowing the change in radius, Δ𝑟1 = 0.5 nm, we take each possible 

(𝑟0,shape(𝑡0), 𝐿shape(𝑡0)) from Step 1 and calculate the conductance for each profile 

given (𝑟0,shape(𝑡0) − Δ𝑟1, 𝐿shape(𝑡0) + 2Δ𝑟1). The ordinate of the 𝐺shape(𝑡1) point shows 

that the initially (but now smaller) 200 nS conductance pore must have had an initial 

limiting radius, 𝑟0,shape(𝑡0), of 3.5 nm (if cylindrical); ~2.7 nm (if double-conical); 

~3.3 nm (if conical-cylindrical); and ~2.7 nm (if hyperbolic), plotted in panel e, below. 

Figure 2 gives us the corresponding 𝐿shape(𝑡0): ~3.8 nm (if cylindrical); ~8.3 nm (if 

double-conical); ∽3.8 nm (if conical-cylindrical); and ~6 nm (if hyperbolic). 
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Step 2 in construction of Figure 3.4: Plots of 𝑟0(𝑡0) with conductance for (a) cylindrical, 

(b) double-conical, (c) conical-cylindrical and (d) hyperbolic nanopore profiles with 

Δ𝑟1 = 0.5 nm, and (e) the corresponding 𝑟0(𝑡0) for each candidate profile. 

Step 3:  Third conductance value, 𝐺cylindrical

expt (𝑡2)  = ∽ 67.3 nS 

Knowing the change in radius, Δ𝑟2 = 1.0 nm, we take each possible 

(𝑟0,shape(𝑡0), 𝐿shape(𝑡0)) from Step 1 and calculate the conductance for each profile 

given (𝑟0,shape(𝑡0) − Δ𝑟2, 𝐿shape(𝑡0) + 2Δ𝑟2). The ordinate of the 𝐺shape(𝑡2) point shows 

that the pore must have had an initial limiting radius, 𝑟0(𝑡0), of 3.5 nm (if cylindrical); 

~2.8 nm (if double-conical), ~3.4 nm (if conical-cylindrical), and ~2.8 nm (if 

hyperbolic), plotted in panel e below. Figure 2 gives us the corresponding 𝐿(𝑡0): 

∽3.8 nm (if cylindrical); ∽8.6 nm (if double-conical); ~4 nm (if conical-cylindrical); 

and ~6.3 nm (if hyperbolic). 
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The consistent value of 𝑟0(𝑡0) in panel e (and of the 𝐿(𝑡0) that we don’t show) for the 

cylindrical trial profile tells us that the simulated pore was cylindrical, and that its initial 

size was (𝑟0,cylindrical

expt (𝑡0), 𝐿cylindrical

expt (𝑡0)) = (3.5 nm, 3.8 nm). 

 

Step 3 in construction of Figure 3.4: Plots of 𝑟0(𝑡0) with conductance for (a) cylindrical, 

(b) double-conical, (c) conical-cylindrical and (d) hyperbolic nanopore profiles with 

Δ𝑟2 = 1.0 nm, and (e) the corresponding 𝑟0(𝑡0) for each candidate profile. 

Step 4:  Additional conductance values, 𝑮cylindrical

expt (𝒕𝒊) 

Additional conductance values can be collected and used to, for example, improve the 

robustness of the 𝒓𝟎(𝒕𝟎) determinations. 
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Step 4 in construction of Figure 3.4: 𝒓𝟎(𝒕𝟎) with time for a large pool of 𝚫𝒓𝒊 (only 4 

shown for clarity) for (a) cylindrical, (b) double-conical, (c) conical-cylindrical and (d) 

hyperbolic nanopore profiles. Only for the experimental model (cylindrical profile), is 

𝒓𝟎(𝒕𝟎) constant for all time-dependent conductance values, as plotted in (e). 

To generate Fig. 4f-h, we repeated this process by respectively simulating the 

experimental conductances as double-conical, conical-cylindrical, and hyperbolic 

profiles. 

REFERENCES 

1. Frament, C. M.; Dwyer, J. R., Conductance-Based Determination of Solid-State 

Nanopore Size and Shape: An Exploration of Performance Limits. J. Phys. Chem. C 

2012, 116, 23315-23321. 

2. Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y.; Dekker, C., Modeling the 

Conductance and DNA Blockade of Solid-State Nanopores. Nanotechnology 2011, 22, 

315101. 
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SUPPORTING INFORMATION FOR CHAPTER 4: CONDUCTANCE-BASED 

PROFILING OF NANOPORES:  ACCOMMODATING FABRICATION 

IRREGULARITIES 

 

Y.M. Nuwan D.Y. Bandara, Jonathan W. Nichols, Buddini Iroshika Karawdeniya, and 

Jason R. Dwyer. 

Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 

02881, United States.  

E-mail:  jason_dwyer@uri.edu. Phone 1-401-874-4648. Fax 1-401-874-5072. 

SUPPORTING INFORMATION. 

 

Figure S4. 1. (a) Cylindrical, (b) double-conical, (c) conical-cylindrical, and (d) 

hyperbolic nanopore half-profile cross-sections cylindrically symmetric about the 

vertical z-axis (dotted vertical line) of the pore. Profiles are shown before (black line) 

and after (blue line) material deposition to decrease the limiting nanopore radius, 𝒓𝟎, 

by an amount 𝚫𝒓𝒊 determined by the deposition time and material transfer rate. 

Reprinted with permission from [1]. Copyright 2016 American Chemical Society. 
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Nanopore Access Resistance. Departures from the cylindrical profile, or from 

bulk-only access resistance formulations, can make arriving at closed-form solutions for 

the access resistance of a nanopore difficult or intractable.[2-6] A conventional 

formulation for the access resistance of a cylindrical nanopore, here with a surface 

conductance term included in parallel with the bulk conductance, gives  

𝑮 = 𝑲(
𝟏

𝝅𝒓𝟎
𝟐

𝑳
+
𝝁|𝝈|

𝑲
∙
𝟐𝝅𝒓𝟎
𝑳
 

+
𝟏

𝟐𝒓𝟎
 )

−𝟏

                                                                                        (S1) 

where the second fraction arises from a common formulation of the nanopore access 

resistance, 2 𝐺access⁄  (where there is a 1 𝐺access⁄  contribution from each open side of the 

nanopore).[2-6] More complex treatments exist that also include a surface term in the 

access resistance, and others have noted the difficulty of treating the access resistance 

of other nanopore shapes.[2, 3] To investigate the effect of including the access 

resistance into the conductance modelling, we used equation (S1) to calculate the 

conductances of nanopores with selected aspect ratios, 𝐿(𝑡0)/𝑟0(𝑡0), and then fit the 

results to the cylindrical conductance model of equations (1) and (S1), where access 

resistance is neglected in equation (1). Simulation results are shown in Figure S4.2. 

If one rewrites equation (S1) more generally, 𝐺 = (
1

𝐺bulk+𝐺surface
+

1

𝐺access
total )

−1

, it can 

then be rearranged to  

𝑮 = (𝑮bulk + 𝑮surface) (𝟏 +
𝑮bulk + 𝑮surface

𝑮access
total

)
−𝟏

 (S2) 

that is, to equation (1) multiplied by a term containing the total contribution (i.e. from 

both openings of the pore) to the nanopore conductance provided by the access 
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resistance:  𝐺 = 𝐺eqn1𝐺access
scaled. In the limit of low access resistance when 

𝐺bulk+𝐺surface

𝐺access
total ≪ 1, 

a first-order expansion gives 𝐺 ≅ (𝐺bulk + 𝐺surface) (1 −
𝐺bulk+𝐺surface

𝐺access
total ), so that for 

sufficiently low access resistance, equation (1) is recovered from equation (S2). 

Constructing a more general analytic formulation of 
2

𝐺access
, beyond that shown in 

equation (S1) for a cylindrical nanopore, remains challenging, especially if nanopore 

surface contributions are to be included.[2, 6] Scaling arguments and earlier work,[2] 

however, offer a possible approach in which setting 𝐺access = 𝛼𝐾𝑟0 is followed by 

numerical calculations of 𝛼, a parameter dependent on nanopore shape. 

 

Figure S4. 2. Simulations of conductance versus time for initially 200 nS pores with 

𝑳(𝒕𝟎)/𝒓𝟎(𝒕𝟎) ratios of 0.5 (blue), 1.0 (magenta), and 1.5 (red) for (a) single and (c) 

double pores, with (dotted lines) and without (solid-lines) the access resistance term 
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in Equation S1. In (b) and (d), we fit candidate pore models with and without access 

resistance using the conductance data in (a) and (c) that included the access resistance. 

There are three correct fits in (b) and (d)—one for each 𝑳(𝒕𝟎)/𝒓𝟎(𝒕𝟎)—that are 

indicated by the horizontal slope of the fit 𝒓𝟎(𝒕𝟎) versus t data. Neglecting the access 

resistance when fitting the conductance-versus-time simulations results in a ~2 nm 

overestimate of the nanopore dimensions and a nonzero slope that indicates the 

incorrect fit. The simulations used step sizes in the nanopore radius of 0.01 nm to 

calculate G versus t, and 0.05 nm to determine 𝒓𝟎(𝒕𝟎). 

The dependence of nanopore conductance show in Equation (1) is explicitly on 

solution conductivity, 𝐾, and implicitly on solution pH through its effect on the surface 

charge density, 𝜎 (and, where a surface can carry a solution-pH-dependent charge of 

either polarity, through the mobility of the counterion, 𝜇). Here we take the reasonable 

step of treating the case where the solution conductivity is not itself dependent on pH. 

Thus, without change of either nanopore dimension or solution conductivity, a change 

of solution pH can change the nanopore conductance—especially at lower solution 

conductivities.[7, 8] This behavior is shown in Figure S4.3, and can be expressed by 

rewriting Equation (1) as 

𝑮(pH) = 𝑲 ∙ 𝑨(𝒓, 𝑳) + 𝝁|𝝈(pH)| ∙ 𝑩(𝒓, 𝑳) = 𝑲 ∙ 𝑨(𝒓, 𝑳) + 𝝌(pH) ∙

𝝁|𝝈(pHref)| ∙ 𝑩(𝒓, 𝑳)  

(S3) 

where the parameter 𝜒(pH) is used to explicitly carry the pH-dependence of the 

nanopore conductance (calculated relative to a particular chosen reference pH). In this 

form, with 𝜇|𝜎(pHref)| and 𝜒(pH) constant in time for a given fixed solution 

composition as for Equation (1), the consequence of solution pH is simply a reweighting 
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of the surface contribution to the conductance, relative to the behavior at the reference 

pH. Figure S4.3 shows the time-dependence of the conductance of the nanopore 

conductance at several pH values, and their successful use to correctly recover the 

nanopore size. 

 

Figure S4. 3. Plots of nanopore (L=10 nm, r0=6.45 nm) conductance in time at pH 4 

(red), 7 (black), and 10 (blue), showing the effect of pH on initial conductance (200 nS 

at pH 7) and on the time-evolution of the nanopore conductance, (a) with and (e) without 

access resistance. The influence of the solution pH is through the nanopore surface 

charge density, 𝜎 (equation (1)), and so pores of identical shape and size immersed in 

solutions of different pH may have different conductances. The inset shows the 

difference between the curves at all pH values, relative to the curve at pH 7. Geometry 

determinations (b-d) with and (f-h) without access resistance included in the candidate 

cylindrical profile were performed using the data in (a) and (e), using values of 4, 7, and 

10 for the solution pH, respectively. 

Figure S4.4a reinforces that for a given experimental conductance value and 

even a given candidate nanopore profile, unless the nanopore length is known, then one 
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must contend with an infinite set of {(𝑟0,candidate, 𝐿candidate)} that deliver that single 

conductance value through Equation 1. This figure furthermore illustrates that the 

presence of multiple pores further expands the combinations of the possible nanopore 

dimensions delivering that single conductance value. Figure S4.4a gives single vs. 

double pore values of 𝑟0 for a 200 nS pore. Choosing a 10 nm-long nanopore for each 

profile gives the corresponding 𝑟0:  cylindrical—6.4 vs. 4.5 nm; double-conical—3.1 

vs. 1.7 nm; conical-cylindrical—5.5 vs. 3.8 nm; and hyperbolic—4.0 vs. 2.3 nm. For 

translocation-based experiments, this physical pore size is vital:  the 200 nS single pore 

double-conical profile could allow intact passage of a species too large to fit through 

the smaller pores of its 200 nS double pore equivalent. Figure S4.4b shows that, as 

established for single pores,[1] the conductance change in time provides the prospect of 

differentiating between single and double pore systems. As an example of the 

complexity introduced by more than one nanopore, the double pore conductance of the 

cylindrical pore here lies close to the single pore conductance of the hyperbolic profile. 

Such time traces thus reveal insights into the type and number of pores, but also suggest 

practical challenges. 
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Figure S4. 4. a) Pairings of 𝑟0 and L for a given nanopore shape and number (solid line-

single pore; dotted line-double pore) giving a nanopore with 200 nS conductance. b) 

Change in conductance with time for 10 nm-long profiles with single and double pore 

configurations. The simulations used step sizes in the nanopore radius of 0.01 nm to 

calculate G versus t. 
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SUPPORTING INFORMATION FOR CHAPTER 5: ELECTROLESS 

PLATING OF THIN GOLD FILMS DIRECTLY ONTO SILICON NITRIDE 

THIN FILMS AND INTO MICROPORES 

 

Julie C. Whelan, Buddini Iroshika Karawdeniya†, Y.M. Nuwan D.Y. Bandara†, Brian 

D. Velleco, Caitlin M. Masterson and Jason R. Dwyer*. 

Department of Chemistry, University of Rhode Island, 51 Lower College Road, 

Kingston, RI, 02881, United States. * E-mail:  jdwyer@chm.uri.edu. 

MATERIALS 

 

The following chemicals were purchased from Sigma-Aldrich Corp. (St. Louis, MO, 

USA), identified by (product number, specifications), and used as-supplied:  methanol 

(34860, CHROMASOLV® for HPLC ≥99.9%), tin(II) chloride (208256, Reagent 

Grade 98%), trifluoroacetic acid (6508, ReagentPlus® 99%), silver nitrate (S6506, 

ReagentPlus® ≥99.0%), ammonium hydroxide solution (320145, ACS Reagent 28.0-

30.0% NH3 basis), sodium tetrachloroaurate(III) dihydrate (298174, 99%), barium 

hydroxide octahydrate (B2507, ≥98%), sodium hydroxide (S5881, reagent grade 

≥98%), sodium sulfite (S0505, ≥98%), and formaldehyde (252549, ACS reagent, 37 

wt% in water, methanol-stabilized). A 5% solution of hydrofluoric acid (C4354) was 

purchased from Science Lab Supplies (St. Augustine, FL) and diluted prior to use. All 

aqueous dilutions and washes were performed using 18MΩ·cm ultrapure water 

(Millipore Synergy UV, Billerica, MA). Silicon nitride-coated wafers were purchased 

from Rogue Valley Microdevices, Inc. (Medford, OR), and consisted of 200nm-thick, 

low-stress (<250 MPa Tensile; silicon-rich), LPCVD silicon nitride films deposited on 
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3” diameter, <100> polished silicon wafers. A diamond scribe was used to create ~1cm2 

sample chips. The silicon nitride micropore arrays had 2µm diameter pores in 200nm-

thick membranes and were purchased from Protochips (DTM-25231, Raleigh, NC). The 

efficacy of Scheme 1 for electrolessly plating gold onto silicon was examined using 

polished <111> silicon wafers (University Wafer, product number 1080). 

ELECTROLESS PLATING 

 

Each chip was plasma-cleaned prior to use in a Glow Research (Phoenix, AZ) 

Autoglow plasma cleaner with 10 minutes of 50W air plasma (0.8-1.2Torr pressure) 

followed by 5 minutes of 50W O2 plasma (0.8-1.2Torr pressure). Each chip was then 

etched for 10 minutes in 2mL of a 2.5% aqueous HF solution to remove unwanted 

silicon oxide from the silicon nitride surface1-2, followed by 3 immersion rinses in water 

and then drying under an argon stream. The prepared chips were immersed for 45 

minutes in 2mL of a 50/50 methanol/water solution that was 0.025M tin(II) chloride and 

0.07M trifluoroacetic acid, followed by a methanol rinse and 5 minute methanol soak, 

a 5 minute soak in 2mL of ammoniacal silver nitrate solution3, 5 minutes in methanol 

and finally 5 minutes in water3. Electroless gold plating involved submersing the chips 

in aqueous plating baths comprised of 7.9×10-3M sodium gold sulfite4, 0.127M sodium 

sulfite and 0.625M formaldehyde5. The chips were plated in 1.5-3mL of plating solution 

in small plastic beakers with gentle rocking in a refrigerator (3°C plating) or 

thermoelectric cooler (10°C plating). After plating for the desired time at the desired 

temperature, the chips were thrice rinsed in alternating methanol and water, and dried 

in an argon stream (Airgas PP300). For comparison, we additionally sputter-coated 
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(Denton Vacuum Desk II, Moorestown, NJ) a plasma-cleaned silicon nitride-coated 

wafer with gold. 

Even dilute hydrofluoric acid presents significant chemical hazards upon 

operator exposure, requiring special working precautions. All beakers for HF 

containment were polypropylene, instead of glass which can be etched and rendered 

permeable. Dilute (5%) stock solutions were purchased to avoid handling concentrated 

solutions and Calgonate (Port St. Lucie, FL) 2.5% calcium gluconate gel was kept at 

hand in case of accidental skin exposure. To minimize exposure risk, all personnel wore 

a full faceshield, a disposable polypropylene apron and thick neoprene long-sleeved 

gloves over standard chemical safety glasses, laboratory coat and long-sleeved nitrile 

gloves, respectively. Finally, we employed a “buddy system” so that one researcher 

monitored the other’s work with HF. All labware and gloves were thoroughly rinsed 

with water after use. 

PREPARATION OF AMMONIACAL SILVER NITRATE3 

 

This solution was prepared by adding 4 drops of 1M sodium hydroxide solution to 

0.010g of silver nitrate. Ammonium hydroxide was slowly added, dropwise, until all 

traces of dark precipitate had dissolved. The solution was then diluted to a final volume 

of 10mL using ultrapure water. 

Ammoniacal silver nitrate solution can form explosives if allowed to dry. This 

solution should be prepared on only a scale sufficient for immediate use, and should 

preferably be deactivated by precipitation by the addition of dilute hydrochloric acid or 

sodium chloride prior to disposal6. 
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PREPARATION OF SODIUM GOLD SULFITE4, 7 

 

The synthesis of the gold plating solution was in accordance with the Abys et al. 

patent4 modified by the addition of a drying step7, as described here. 0.275g sodium 

tetrachloroaurate dihydrate was added to approximately 15 mL ultrapure water at 80°C 

with stirring. To this solution were added 1.500g barium hydroxide octahydrate and 

54μL of 50% w/w sodium hydroxide to yield an orange-yellow precipitate. The solution 

was boiled until all visible water had evaporated, and then allowed to cool to room 

temperature. The precipitate was slurried with approximately 10mL of ultrapure water 

and filtered through a medium porosity Buchner funnel. The precipitate was slurried 

with approximately 10mL of ultrapure water, heated to 60-65°C with stirring, cooled, 

and then filtered (bis). The precipitate was then slurried with approximately 20mL of 

ultrapure water, and 0.500g sodium sulfite was added to the solution. The solution was 

heated to 60-65°C with stirring until the precipitate turned blue-purple. This solution 

was filtered while still warm, and the resulting filtrate was diluted to a final volume of 

25mL. The pH was adjusted with 1M sodium hydroxide to a final pH above 10.  

CHARACTERIZATION 

 

Gold film depositions were carried out in triplicate at each temperature and time 

point, and the 3°C trial was repeated so that each film thickness was based on deposition 

and measurements from between 3-6 different silicon nitride chips (allowing for 

occasional chip breakage). A step edge from gold film to exposed silicon nitride 

substrate was created by selectively removing gold film with adhesive tape (Scotch® 

810 Magic™ tape) or, when film adhesion to the substrate was stronger, with a gentle 
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pass of plastic tweezers across the substrate. AFM measurements of gold film thickness 

were performed in tapping mode at 0.1Hz across 10μm × 10μm segments of the step 

edge with an AFM Workshop (Signal Hill, CA) TT-AFM (equipped with 

SensaProbesTM190-A-15, 190kHz, aluminum-coated probes with tip radius <10 nm). 

Line profiles at several points across the step edge were analyzed, using the planar 

silicon nitride surface as a reference for quadratic background subtractions. For each 

background-subtracted profile, the means of the coated and uncoated sides were 

calculated (omitting large particle outliers from the statistics), and averaged for each 

chip over several profiles. These mean step heights were then averaged over each 

deposition time and temperature point, propagating the standard deviation as an 

uncertainty to yield the final reported step heights (Figure 5.1). 

 Gold film morphology was examined using a Zeiss Sigma VP FE-SEM at an 

electron energy of 8keV (Oberkochen, Germany), and elemental analysis by EDS was 

performed on the same instrument equipped with an Oxford Instruments X-MaxN 

50mm2 silicon drift detector (Concord, MA). Custom code was written in Mathematica 

9 (Wolfram Research, Champaign, IL) to yield gold film grain size estimates via 

watershed analysis. X-ray photoelectron spectroscopy was used for the majority of the 

elemental analysis. XPS spectra were acquired using a PHI 5500 system (Physical 

Electronics, Inc., Chanhassen, MN) using unmonochromatized Al Kα radiation (1486.6 

eV) and an aperture size of 600 × 600μm2. Survey scans were performed with 0.8eV 

step sizes and 20ms per step, with a pass energy of 187.85eV and 10 scans per spectrum. 

High resolution spectra were recorded with 50 scans per spectrum, 0.1eV step sizes, 

40ms per step and a pass energy of 23.50eV. Spectra were analyzed initially with 
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Multipak 6.1 (Physical Electronics). All curve fitting was performed using XPSPeak 

4.18 using linear baselines and the minimum meaningful number of fixed 90% 

Gaussian-10% Lorentzian peak profiles per peak, with all other peak parameters free. 

To compensate for substrate charging, we aligned the N1s peak from silicon nitride 

substrates to 398.00eV, and the lower binding energy Si2p peak from silicon substrates 

to 99.25eV9, shifting spectra by up to 0.49eV. The particular choice of reference 

precludes analysis based on the binding energy, alone, of that component of the XPS 

spectrum. We chose these peaks, rather than the commonly used C1s peak10, because 

they had better signal-to-noise ratios; the peak fitting reliability would be less frequently 

compromised by the presence of multiple contributing features; and the C1s binding 

energy, itself, has been shown to be variable, notably in response to the particular 

surface treatment of silicon9, 11. To gain a measure of the binding energy uncertainties 

useful for guiding the interpretation of binding energy shifts, and of the consistency of 

the reference alignment, we fit the main, shifted, C1s peak centers, yielding a range of 

values between 284.61 and 285.49eV that arises from a combination of the 

shortcomings of multicomponent peak fitting and any real shifts in binding energy. As 

an additional check on the silicon nitride alignment, we also aligned the spectra using 

the Si2p region by fixing its principal component at 102.5eV. For silicon-rich silicon 

nitride, the Si2p peaks include overlapping contributions from hydrogen-, oxygen-, 

silicon- and nitrogen-bound silicon, with magnitudes weighted by the substrate 

processing conditions; the N1s binding energies, referenced to the 102.5eV components 

of fits of the Si2p peaks, were 398.35, 398.48, 398.53 and 398.43eV after plasma, HF, 

tin and silver treatments, respectively. These results of these referencing sensitivity 
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studies helped to guide the interpretation of Si2p-referenced silicon XPS spectra and 

N1s-referenced silicon nitride XPS spectra. 

 Gold film conductivity was measured using an Alessi 4-point probe head with 

spring-loaded contacts, mounted on a translation stage. Voltages of ~3-6mV were 

applied with an HP 6115a precision power supply and measured with a Keithley 196 

DMM (Cleveland, OH); the current was measured using a Hewlett-Packard 973a 

multimeter. 

SERS measurements were performed on an R3000QE Raman Systems 

spectrometer using 290mW laser excitation at 785 nm. Substrates were submerged in a 

0.01M solution of NBT for 5 minutes before 3× rinsing in acetonitrile and argon drying. 

Spectra were collected at three random locations for each substrate and averaged 

together after correcting to a zero baseline at ~494cm-1. 

Figure S5. 1. Elemental analysis of gold films. At left, XPS scans comparing a sputtered 

gold film with an electrolessly plated gold film. The curves are vertically offset for 

clarity. At right, EDS profiling confirms the gold composition of one of the larger 

surface particles. 
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Figure S5. 2. XPS spectra at key steps in the application of Scheme 1, and after selected 

control experiments. The label given to each spectrum indicates the terminal steps of 

Scheme 1 (or control experiment variation) that were performed on the substrate. The 

control data center on the effect of HF etching (performed or omitted) and tin 

sensitization (with standard solution or tin-free control). The scattered points are 

experimental data, and solid lines are used for the fit to the data (individual components 

and their sum). Each plot includes the center value and (width) of each component used 

to fit the experimental spectrum. 
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SUPPORTING INFORMATION 

MATERIALS AND EQUIPMENT 

To photoprotect the LPCVD SiNx films, we purchased 1-octene (O4806, 98%) 

and 11-bromo-1-undecene (467642, 95%) from Sigma-Aldrich (St. Louis, MO, USA), 

and the following 3.05 mm diameter, 0.8 mil thick copper Veco Specimen Grids from 

Electron Microscopy Sciences (Hatfield, PA, USA): 

Type Catalog # Pitch (µm) Hole (µm) Bar (µm) 

50 mesh 0050-Cu 500 450 50 

100 mesh 0100-Cu 250 200 50 

 

The general framework for metallization follows that of earlier electroless 

plating work,1-2 and is fully detailed here, for completeness, alongside the new 

procedures necessary to achieve spatial selectivity. The following chemicals were 

purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA), identified by (product 

number, specifications), and used as-supplied:  methanol (34860, CHROMASOLV® 

for HPLC ≥99.9%), tin (II) chloride (208256, Reagent Grade 98%), palladium (II) 

chloride (205885, ReagentPlus®, 99%), trifluoroacetic acid (6508, ReagentPlus® 
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99%), silver nitrate (S6506, ReagentPlus® ≥99.0%), ammonium hydroxide solution 

(320145, ACS Reagent 28.0–30.0% NH3 basis), sodium tetrachloroaurate (III) 

dihydrate (298174, 99%), barium hydroxide octahydrate (B2507, ≥98%), sodium 

hydroxide (S5881, reagent grade ≥98%), sodium sulfite (S0505, ≥98%), 

dichloromethane (270997, anhydrous, ≥99.8%, contains 50–150 ppm amylene as 

stabilizer), isopropanol (W292907, ≥99.7%, FCC, FG), 3,4,5-trihdroxy benzoate 

(274194, 98%), polyethylene glycol (81227, BioUltra, 3,000; Mr 2700–3300), 

phosphoric acid (695017, ACS reagent, ≥85 wt % in H2O), hydrochloric acid (320331, 

ACS reagent, 37%), and formaldehyde (252549, ACS reagent, methanol-stabilized). A 

5% solution of hydrofluoric acid (C4354) was purchased from Science Lab Supplies 

(St. Augustine, FL) and was diluted with water by 50% prior to use. All aqueous 

dilutions and washes were performed using 18 MΩ·cm ultrapure water (Millipore 

Synergy UV, Billerica, MA). Silicon nitride-coated wafers were purchased from Rogue 

Valley Microdevices, Inc. (Medford, OR), and consisted of 200 nm-thick, low-stress 

(<250 MPa Tensile; silicon-rich), LPCVD SiNx films deposited on 3” diameter, <100> 

polished silicon wafers. A diamond scribe was used to create ~(1 cm)2 sample chips. 

PRECAUTIONS FOR WORKING WITH HYDROFLUORIC ACID 

Even dilute hydrofluoric acid (HF) presents significant chemical hazards upon 

operator exposure, requiring special working precautions. All beakers for HF 

containment were polypropylene, instead of glass which can be etched and rendered 

leaky. Dilute (5%) stock solutions were purchased to avoid handling concentrated 

solutions and Calgonate (Port St. Lucie, FL)—2.5% calcium gluconate gel—was kept 

at hand in case of accidental skin exposure. To minimize exposure risk, all personnel 
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wore a full faceshield over standard chemical safety glasses, a disposable 

polypropylene apron, thick neoprene long-sleeved gloves over extended cuff nitrile 

gloves, and a laboratory coat. Finally, we employed a “buddy system” so that one 

researcher actively monitored the other’s work with HF. All labware and gloves were 

thoroughly rinsed with water after use. 

PREPARATION OF REAGENTS 

 

PALLADIUM SOLUTIONS3 

 

0.014 M PALLADIUM (II) STOCK SOLUTION 

0.050 g of palladium (II) chloride was added to a solution consisting of 1.50 mL 

of 0.9 M hydrochloric acid and 18.50 mL of water. The solution was shaken well, and, 

to prevent possible degradation, was covered with aluminum foil and stored overnight 

at 3°C so that all solids dissolved. 

PALLADIUM SURFACE TREATMENT SOLUTION 

To 1120 µL of water were added:  80 µL of 0.014 M palladium (II) stock 

solution, 600 µL of 0.014 M 3,4,5-trimethylbenzoate, 100 µL of phosphoric acid and 

100 µL of 43 wt % polyethylene glycol. 

0.014 M 3,4,5-TRIMETHYLBENZOATE STOCK SOLUTION 

To 0.10 g of 3,4,5-trimethylbenzoate, 40.00 mL of water was added and shaken 

well for about 10–15 minutes until all solids dissolved. The vial containing the solution 

was covered with aluminum foil and stored in a dark and cool place. 
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43 WEIGHT % POLYETHYLENE GLYCOL STOCK SOLUTION 

To 15.00 g of polyethylene glycol, 20.00 ml of water was added and stirred 

vigorously until all solids dissolved. The solution vial was covered with aluminum foil 

and stored at 3°C. 

AMMONIACAL SILVER NITRATE4 

This solution was prepared by adding 4 drops of 1 M sodium hydroxide solution 

to 0.010 g of silver nitrate. Ammonium hydroxide was slowly added, dropwise, until all 

traces of dark brown precipitate had dissolved. The solution was then diluted to a final 

volume of 10 mL with water. 

HAZARD NOTIFICATION 

Ammoniacal silver nitrate solution can form explosives if allowed to dry. This 

solution should be prepared only on a scale sufficient for immediate use, and should 

preferably be deactivated by precipitation by the addition of dilute hydrochloric acid or 

sodium chloride prior to disposal5. 

SODIUM GOLD (I) SULFITE6-7 

The synthesis of the gold plating solution was in accordance with the Abys et al. 

patent7 modified by the addition of a drying step6, as described here. 0.275 g sodium 

tetrachloroaurate (III) dihydrate was added to approximately 15 mL water at 80°C with 

stirring. To this solution, 0.15 g barium hydroxide octahydrate and 54 μL of 50% w/w 

sodium hydroxide were added to yield an orange-yellow precipitate. The solution was 

boiled until all visible water had evaporated, and then allowed to cool to room 

temperature. The precipitate was slurried with approximately 10 mL of water and 

filtered through a medium porosity Büchner funnel. The precipitate was slurried with 



216 

 

approximately 10 mL of water, heated to 60–65°C with stirring, cooled, and then 

filtered. The precipitate was then slurried with approximately 20 mL of water, and 

0.500 g sodium sulfite was added to the solution. The solution was heated to 60–65°C 

with stirring until the precipitate turned blue-purple. This solution was filtered while 

still warm, and the resulting filtrate was diluted to a final volume of 25 mL. If necessary, 

the pH was adjusted with 1 M sodium hydroxide to a final pH above 10. 

METALLIZATION 

Each chip was plasma-cleaned at least one day prior to the subsequent 

hydrosilylation and metallization steps using a Glow Research (Phoenix, AZ) Autoglow 

plasma cleaner with 10 minutes of 50 W N2 plasma (0.8–1.2 Torr pressure) followed by 

5 minutes of 50 W O2 plasma (0.8–1.2 Torr pressure). Each chip was then etched for 10 

minutes in 2.5% aqueous HF solution, followed by 3 immersion rinses in water and then 

drying under an argon stream. The chips were placed in a custom holder under <2 mm 

of 1-octene, sealed under a quartz plate (Fisher, CGQ-0620-09), and irradiated for 

24 hours by a 15 W UV lamp operating at 254 nm (Model XX-15S, Part # 95-0042-05; 

UVP, LLC, Upland, CA, USA). The chips were rinsed with dichloromethane, allowed 

to dry, rinsed by isopropanol, and then processed in the metal-ion-containing solutions. 

SN (II) / AG (I) / AU (I):  ELECTROLESS GOLD PLATING PROCESS FLOW FOR 

LPCVD SINX
1-2 

The patterned (HF-etched, then patterned) chips were immersed in a series of 

custom electroless plating bath solutions4 that had been successfully used to gold-plate 

suitably prepared SiNx.
1-2 The first immersion was for 45 minutes in 2 mL of a 50/50 

methanol/water solution that was 0.025 M tin (II) chloride and 0.07 M trifluoroacetic 
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acid, followed by a methanol rinse and 5 minute methanol soak. The next step was a 5 

minute soak in 2 mL of ammoniacal silver nitrate solution, with a methanol rinse, and 

5 minute soak in methanol and then 5 minutes in water. The chips were then submerged 

in aqueous plating baths comprised of 7.9×10-3 M sodium gold (I) sulfite,7 0.127 M 

sodium sulfite and 0.625 M formaldehyde.2-3 The chips were plated in 1.5 mL of plating 

solution in small plastic beakers with gentle rocking in a refrigerator (3°C plating) for 

30 minutes. The chips were then thrice-rinsed in alternating methanol and water, and 

dried in an argon stream. 

PD (II) / AG (I) / AU (I) 

Similar to the previous procedure, but with the Sn (II) step replaced with a 

Pd (II)-based treatment. The patterned chips were immersed in 1 M hydrochloric acid 

for 5 minutes, washed with isopropanol, and then immersed for 1 hour in 2 mL of the 

palladium surface treatment solution, followed by 3 rinses, each, of 1 M hydrochloric 

and water, a 5 minute soak in 2 mL of ammoniacal silver nitrate solution, one rinse with 

methanol and three rinses with water. The chips were then submerged in the Au (I) bath 

as described in the previous section. 

AG (I) / AU (I) 

The patterned SiNx chips were immersed in 1 M hydrochloric acid for 5 minutes, 

washed with isopropanol, and then immersed for 5 minutes in 2 mL of ammoniacal 

silver nitrate solution followed by one rinse with methanol and three rinses with water. 

The chips were then submerged in the Au (I) bath as described in the two previous 

sections. 
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CHARACTERIZATION 

Optical micrographs of SiNx patterning were taken with a Digiscope DS-300 

(Motic, Hong Kong; controlled with Motic Educator, 2004 ed. software). Gold film 

morphology was examined using a Zeiss Sigma VP FE-SEM at an electron energy of 

8 keV (Oberkochen, Germany), elemental analysis by EDS was performed on the same 

instrument equipped with an Oxford Instruments X-MaxN 50 mm2 silicon drift detector 

(Concord MA). XPS (Phi 5500 Al Kα) was used for additional elemental analyses. A 

DHM-R 2200 (Lyncée Tec SA, Lausanne, Switzerland) operating at 666 nm, 680 nm, 

and 794 nm, was used to extract gold film thicknesses; all DHM measurements were 

courtesy of Lyncée Tec SA staff. Custom codes were written in Mathematica 10.3.1 

(Wolfram Research, Champaign, IL) to analyze gold film properties. 

GRID RECOGNITION 

To distinguish between grid and grid-free zones of an FE-SEM or DHM contour 

image, each image was first filtered using a median filter with an appropriate pixel value 

threshold (usually 5), followed by image binarization (with automatic thresholding) and 

color-negation. 

THICKNESS OF DEPOSITED GOLD 

ImageJ8 was used to extract raw gold film thickness data from a DHM image at 

5× magnification, provided by Lyncée Tec, of a gold replica of a 100 mesh grid. The 

grid recognition algorithm was used to distinguish between grid and grid-free zones of 

a given contour plot. The mean film thickness with standard deviation (~23±1.5 nm) 

was calculated by averaging across 10 such grid images each with metal-plated grid 

lines containing at least 35,000 pixels. 
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WIDTH OF GOLD AND COPPER (TEM) GRID LINES 

Regions of interest of grid-recognized FE-SEM micrographs were chosen so that 

the grid lines we analyzed were distant from the curved sections (from the as-supplied 

Cu mesh) at grid line intersections. At least 300 line profiles were sampled from each 

micrograph, and used to calculate a mean grid line width and standard deviation 

(54.4±1.3 𝜇m for copper grids provided by the supplier and 44.8±3.3 µm for the gold 

plated mesh grids on SiNx). 

SURFACE AREA COVERAGE 

FE-SEM micrographs of grid lines were taken at 25,000× magnification and the 

grid recognition algorithm was used to subdivide the image into regions with and 

without metal particle coverage. This delineated image was then binarized using the 

“Automatic” thresholding setting in Mathematica. The surface area coverage was 

calculated using the following equation, 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

=  
(# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠) − (# 𝑜𝑓 𝑧𝑒𝑟𝑜 𝑣𝑎𝑙𝑢𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠)

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
100% 

and the mean surface area coverage across micrographs of 15 gold replica grids, with 

standard deviation, was ∽83±13%. 

BOLTZMANN FIT TO EDS LINE PROFILES 

EDS line profiles of the gold thin-film grid replicas were made by acquiring data 

for ∽7.5 minutes per line with readings taken every 59 nm, and 15 lines from each of 5 

chips were used in the analysis. Each line profile was then fit to a Boltzmann function 

to quantify the transition from open-area to gold-filled lines 
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𝑓(𝑥) =
𝐴𝑚𝑖𝑛 − 𝐴𝑚𝑎𝑥

1 + 𝑒(𝑥−𝑥0)/𝑑𝑥
+ 𝐴𝑚𝑎𝑥 

where 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 are the initial and final values, and 𝑥0 and 𝑑𝑥 are the center and 

slope (spatial resolution) of the edge transition. These were set as free parameters for 

fitting the EDS line profiles using the “Automatic” setting of the nonlinear-model-fit in 

Mathematica. The mean spatial resolution (as the mean 𝑑𝑥, with standard deviation) 

from the EDS line profiles was 0.92±0.24 µm. 

SELECTIVITY 

Pixel values corresponding to grid and grid-free regions of grid-recognized FE-

SEM images were used to build histograms for each region. A single Gaussian fit was 

made to each of the histograms using the following equation, 

𝑔(𝑥) = 𝐴2 ∙ 𝑒
(
𝑥−𝜇

√2𝜎
)
2

 

where 𝐴2, 𝜇, 𝜎, and 𝑥 are the amplitude coefficient, mean, standard deviation, and pixel 

intensity, respectively. All parameters were left free during the fit to the histogram, 

using Mathematica’s nonlinear-model-fit method with “Automatic” setting. The 

selectivity was then defined, in a classical signal-to-noise sense, as 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝜇𝑔𝑟𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛−𝜇𝑔𝑟𝑖𝑑−𝑓𝑟𝑒𝑒 𝑟𝑒𝑔𝑖𝑜𝑛

𝜎𝑔𝑟𝑖𝑑−𝑓𝑟𝑒𝑒 𝑟𝑒𝑔𝑖𝑜𝑛
    

so that 0 is the lower bound and larger values represent superior selectivity. Figure S-

6.1 shows photographs of the results of various spatially selective metallization 

approaches. The selectivity using photopatterned 1-octene masking was ~2.7 using 

Sn (II) (single chip), and ~10.1 (8 chips) when begun with Pd (II). With air-based 
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photopatterning followed by Pd (II) as the first metallization step, the selectivity was 

~3.2 (2 chips). 
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Figure S6. 1: (a) Use of the standard Pd (II) surface treatment solution produced 

excellent spatial selectivity and pattern quality for the process flow 

Pd (II)/Ag (I)/Au (I). The pattern quality was sensitive to the solution preparation, as 

shown by the example in (b) for which we omitted phosphoric acid from the Pd (II) 

solution. (c) Metallization begun with the Ag (I) solution, as a Ag (I)/Au (I) process 

flow, produced marginal pattern quality, (d) as did replacing 1-octene with an air layer 

during the patterning step. 

INSTALLATION AND REMOVAL OF 1-ALKENE-DERIVED MONOLAYER 

A bromine-terminated 1-alkene, 11-bromo-1-undecene, was photolinked to an HF-

etched SiNx surface. The bromine label allowed straightforward examination of XPS 

spectra (Figure S-6.2) to confirm (a) surface attachment (black spectrum), and (b) 

successful intentional removal after 18 hours of UV irradiation in air (red spectrum). 
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Figure S6. 2: XPS peaks corresponding to Br 3d region. (a) Photo-attachment of 

11-bromo-1-undecene to the surface (black spectra) was followed by (b) removal of the 

alkane monolayer through prolonged exposure (18 hours) to UV in air (red spectra). 
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SUPPORTING INFORMATION FOR CHAPTER 7: A GENERAL STRATEGY 

TO MAKE AN ON-DEMAND LIBRARY OF STRUCTURALLY AND 

FUNCTIONALLY DIVERSE SERS SUBSTRATES 

 

Buddini Iroshika Karawdeniya, Y. M. Nuwan D. Y. Bandara, Julie C. Whelan, and 

Jason R. Dwyer*. 

Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 

02881, United States. 

*E-mail:  jason_dwyer@uri.edu 

MATERIALS 

 

The following materials, identified by their product number and specification, 

were obtained from Sigma-Aldrich Corporation (St. Louis, MO, USA):  allyl 2-bromo-

2-methylpropionate (381756, 98%); sodium acrylate (408220, 97%); copper (I) 

bromide (254185, 99.999% trace metals basis); copper (II) bromide (221775, 99%); 

2,2-bipyridyl (D216305, ReagentPlus®, ≥99%); methanol (34860, CHROMASOLV®, 

for HPLC, ≥99.9%); ethanol (34852, CHROMASOLV®, for HPLC, absolute, ≥99.8%); 

gold etchant (651818, “standard gold etchant”: iodine and potassium iodide basis); 

4-nitrobenzenethiol (NBT; N27209, technical grade, 80 %); acetonitrile (34998, 

CHROMASOLV® Plus, for HPLC, ≥99.9%). Ethanol (200CSPTP, 200 proof ACS/USP 

grade) was purchased from Ultra-Pure LLC (CT, USA). A 5% solution of hydrofluoric 

acid (C4354) was purchased from Science Lab Supplies (St. Augustine, FL) and diluted 

to 2.5% with water. Dichloromethane (390700010, 99.5%); chloroform (326820010, 

99.9%, Extra Dry, stabilized, AcroSeal®); and 4-aminothiophenol (ATP; 104680, 96%) 
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were purchased from Acros Organics (NJ, USA). Planar, 200 nm-thick, low-stress 

(<250 MPa tensile) LPCVD silicon nitride thin films on 356±25 µm-thick polished 

<100> silicon wafers (P/Boron doped, 1-20 Ω·cm resistivity) were purchased from 

Rogue Valley Microdevices, Inc. (Medford, OR). The following materials, identified by 

their product number and specification, were purchased from Fisher Scientific 

(Pittsburgh, PA, USA): 2×2×¼-thick quartz plate (CGQ062009); acetone (A16P, 

histological grade, ≥99.5%); hexane (H303, Optima™); ethyl acetate (E145, certified 

ACS,  ≥99.5% ); Whatman Grade 1 qualitative filter paper (1001-055 and 1001-110, 

GE Healthcare Bio-Sciences, Pittsburgh, PA); Whatman™ Grade 1 Chr Cellulose 

Chromatography Paper (3001-672); vacuum filtration system (SCVPU11RE, Stericup-

VP, 0.10 µm pore size in polyethersulfone membrane) from EMD Millipore 

Corporation (MA,USA). Nitrogen (NI HP200), oxygen (OX UHP300), and argon (AR 

PP300) were purchased from Airgas Inc. (PA, USA). A UV lamp (Model XX-15S, Part 

# 95-0042-05) was acquired from UVP, LLC (CA, USA). Nanoporous silicon nitride 

substrates with 450 nm-diameter pores in 100 nm-thick membranes were purchased 

from Innosieve Diagnostics (custom-provided, reference number ID12200; 

Wageningen, Netherland). Commercial silicon nanopillar substrates (item ID 15G, gold 

on nanostructured Si with a SERS active area of 5×5 mm2) were purchased from 

Silmeco ApS (Copenhagen, Denmark). For easier handling for the drop-casting spectral 

acquisition, nanopillar substrates were mounted at the center of a 1 cm×1 cm plain 

silicon nitride chip with carbon tape (16084-6; Ted Pella, Inc., Redding, CA) after 

electroless plating. Nanocellulose fibers of (declared) nominal 50 nm diameter and 

hundreds of micrometers length, were obtained as a slurry (University of Maine:  The 
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Process Development Center Nanocellulose Facility, Orono, Maine). No special 

precautions were taken during processing to avoid potentially breaking nanocellulose 

fibers. All aqueous dilutions and washes were performed using 18 MΩ·cm ultrapure 

water (Millipore Synergy UV, Billerica, MA). For the laser power measurements, an 

842-R-USB power meter with 919P-040-50 thermopile sensor was used (Newport 

Corporation, CA, USA). 

ELECTROLESS PLATING  

Electroless plating baths were prepared as previously reported1 (note:  a mass of 

0.1500 g of barium hydroxide octahydrate was incorrectly reported previously2 as 

1.500 g). Material-specific preliminary processing steps preceding the electroless 

plating method are detailed below, before a more general discussion of the electroless 

plating steps outlined in Scheme S1. 

MATERIAL-SPECIFIC SURFACE PREPARATION 

Hydrofluoric acid presents significant chemical hazards, so that we adopted 

special operating procedures when working with it. All containers used were 

polypropylene because HF can etch glass containers and render them porous and at 

risk of leaking. To reduce the risk of handing concentrated HF, dilute (5%) stock 

solutions were purchased and Calgonate (Port St. Lucie, FL) 2.5% calcium gluconate 

gel was kept at hand in case of accidental skin exposure. To minimize the risk of 

exposure, all personnel wore a full face shield over chemical safety glasses, a 

disposable polypropylene apron over a standard laboratory coat, and thick neoprene 

long gloves over extended-cuff nitrile gloves. We also used a “buddy system” so that 
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one researcher supervised the other’s work with HF. All labware, gloves, and working 

areas were thoroughly rinsed with water after use. 

POLYMER-GRAFTED SILICON NITRIDE 

A subset of purchased planar silicon nitride films (with films on silicon supports 

cut to 1 cm×1 cm) was polymer-grafted, as described briefly here, before electroless 

plating. The as-supplied silicon nitride-coated substrates were exposed first to 10 

minutes of a nitrogen plasma, and then to 5 minutes of an oxygen plasma, using a Glow 

Research Autoglow plasma cleaner (Phoenix, AZ) set to 50 W and with operating 

pressures held between 0.8-1.2 Torr during the flow of each process gas. The chips were 

then etched in 2.5% hydrofluoric acid for 10 minutes, rinsed 3 times in water, argon-

dried, and submerged in 50 µL of allyl 2-bromo-2-methylpropionate to a depth of 

~100 µm in a custom holder, and therein irradiated with UV light through a ¼-thick 

quartz plate, for 5 hours using a 15 W, 254 nm UV lamp.3 Post-irradiation, they were 

rinsed at least three times with alternating washes of dichloromethane and acetone 

before being dried under an argon stream. In a glass vial, 1.88 g of sodium acrylate; 

57.4 mg of copper (I) bromide; 9.0 mg of copper (II) bromide; and 137.4 mg of 2,2-

bipyridyl were dissolved in 4 mL of argon-purged methanol and stirred (1000 rpm) 

under argon for 10 minutes at 30°C, followed by filtering into a Schlenk flask containing 

four of the silicon nitride substrates that had been pretreated with allyl 2-bromo-2-

methylpropionate. The wafers were gently stirred (300 rpm) in this solution at 30°C, 

under argon, for 2 hours.4 After this polymerization step, the substrates were alternately 

washed with water and ethanol at least three times, then dried under an argon stream. 
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SILICON NANOPILLAR ARRAY (GOLD-ETCHED SILMECO) 

A number of the commercial gold-coated silicon nanopillar SERS substrates 

were immersed in gold etchant under vacuum (to remove any initial air layer and any 

generated bubbles preventing full etching solution access between the pillars) for 

30 minutes and then washed with copious amounts of water. A gold coating was no 

longer visible, and while x-ray photoelectron spectroscopy (XPS) analysis showed low 

residual amounts of gold, there was no measurable SERS response from the gold-etched 

Silmeco substrates before they were electrolessly plated according to Scheme S1. 

CELLULOSE 

Whatman 1 filter paper substrates were used without modification. 

Nanocellulose fibers were formed into a crude paper-like mat by filtering the as-

supplied slurry of nanocellulose in water with a polyethersulfone membrane with 

0.1 μm pores. When most of the water had filtered through, the resulting paper-like mat 

(hereafter referred to as “nanocellulose paper”) was compressed to ~1 mm thickness 

(thickness chosen for fabrication convenience) between two glass slides in a custom-

designed, 3D printed holder and left to dry under vacuum in a desiccator for two days 

before plating. 

SILICON- AND SILICON NITRIDE SURFACES 

Prior to plating, the planar and nanoporous silicon nitride chips, and the gold-

etched silicon nanopillar array, were subjected to cleaning and etch steps. Nitrogen and 

oxygen plasma treatment were used to remove organic contaminants and hydrofluoric 

acid etching was used to remove surface oxide layers, as described above and also in 
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reference 1. Plasma-based surface pretreatments were not performed for the surfaces 

bearing organic moieties. 

ELECTROLESS PLATING SCHEME 

 

Scheme S1 illustrates the general electroless plating process which followed the 

previous material-specific surface preparation steps, and consisted of sequential plating 

bath immersions interleaved with rinsing steps. Electroless plating of planar and porous 

silicon nitride, polymer-grafted silicon nitride, and gold-etched Silmeco was carried out 

for 2 hours at ~3°C with gentle rocking of the plating baths. Whatman 1 filter paper 

substrates and nanocellulose paper were electrolessly plated at room temperature for 

2 hours with gentle rocking using a BenchRocker 3D (Benchmark Scientific, Edison, 

NJ, USA), and then vacuum dried (~15 minutes) as the final step. Plating bath volumes 

were 2 mL, 2 mL, and 1.5 mL for tin-, silver-, and gold-containing solutions for all 

substrates except for nanocellulose paper for which the volumes were tripled. Solvent 

washes between metal ion baths were identical for all plated materials:  after tin, rinsing 

and 5 minutes of soaking in methanol followed by drying; after silver, soaking in 

methanol for 5 minutes and in water for 5 minutes; and after gold, alternate rinses with 

methanol and then water at least three times. 
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Scheme S7. 1. Process flow for the electroless plating steps common to the plating of 

each support type. 

 

SURFACE CHARACTERIZATION OF ELECTROLESSLY PLATED FILMS 

 

Gold film morphology was examined using a Zeiss Sigma VP FE-SEM at an 

electron energy of 3-8 keV (Oberkochen, Germany). Elemental analysis was performed 

using a Thermo Scientific K-Alpha-X-ray Photoelectron Spectrometer System used 

with monochromator micro-focused Al Kα x-rays with a spot size of 400 µm and source 

energy of 486.6 eV. The energy step was 0.050 eV, dwell time was 50 ms, and pass 

energy was 20.000 eV, with a charge-neutralizing flood gun used during each 

acquisition. The number of scans varied from 5-30 depending on the sensitivity factor 

for each element. 



232 

 

 

Figure S7. 1. Au4f peaks of X-ray photoelectron spectroscopy data confirm gold 

deposition on the surface of each substrate. Photographs of gold-coated substrates are 

shown as insets. 
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Figure S7. 2. As-acquired spectra of support materials, substrates, and analyte. Spectra 

are displayed at full vertical range at left, and scaled at right to more clearly reveal the 

details of the baseline. (a) 1.67×10-4 M NBT in acetonitrile was added to each element 

(drop-casting followed by 5 minutes of air-drying:  20 µL aliquots for silicon- and 

silicon-nitride-containing elements; 5 µL aliquots for commercial silicon nanopillar and 

nanoporous silicon nitride; and by soaking for 5 minutes followed by 5 minutes of 
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vacuum drying:  1 mL for paper and 10 mL for nanocellulose paper), with the solvent 

allowed to dry before spectral acquisition. (b) Elements were immersed in 10-4 M 

solutions of NBT in ethanol and spectra were recorded after signal level saturation in 

time. 

SURFACE ENHANCED RAMAN SPECTROSCOPY 

 

SPECTRAL ACQUISITION 

 

Standard solutions of 4-nitrobenzenethiol (NBT) in ethanol were prepared by 

serial dilution, covering a concentration range from 5 × 10−9-1 × 10−4 M. Solutions 

were covered in aluminum foil to minimize any photodamage and stored around 3°C in 

the refrigerator when not in use. Solutions were allowed to reach room temperature 

before use. An R3000QE Raman Systems spectrometer was used for all SERS 

measurements, with an excitation laser wavelength of 785 nm set to a power of 57 mW 

on cellulose and as-provided Silmeco substrates, and 250 mW power on all other 

substrates. The full-width-half-maximum excitation spot size was ~100 µm, measured 

at the substrate surface with the reader head placed at a slight stand-off of ~2.0 mm from 

the substrate. Each substrate was placed in a glass beaker and a spectrum was acquired 

at this point to ensure that the substrate was not contaminated. The substrate was then 

immersed in ethanol and spectra were collected every 2 minutes for about 20 minutes. 

Once this ethanol-only blank experiment was done, the substrate was removed from 

solution and dried under nitrogen before being immersed in the standard NBT solution. 

A spectrum was recorded every 2 minutes until equilibrium was reached, and then the 

rinsing, drying, immersion, and signal acquisition were repeated for all NBT standard 
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solution from lowest to highest concentration. To provide (unenhanced) Raman spectra 

for the SEV analysis,5 the same procedure was repeated using a gold-free silicon nitride 

substrate, using NBT concentrations in the range of 2 × 10−4 M to 2.5 × 10−3 M. 

SPECTRAL ACQUISITION FOR DRIED SAMPLES 

A 1.67×10-5 M solution of NBT in acetonitrile was prepared and a 5 µL aliquot 

was pipetted onto the Silmeco substrate. The substrate was allowed to air-dry for about 

5 minutes before spectral acquisition, and the Raman spectrometer read head was 

aligned with the center where the pipette tip had been for drop-casting. There was a 

slight ~1.2 mm stand-off between the SERS substrate and the pipette tip and read head 

to prevent mechanical damage to the SERS substrate (the nanopillar substrates were 

especially susceptible to scratches). Excitation power was 250 mW. This alignment of 

pipette tip and read head was repeated for the other drop-cast spectra in Figure S7.2a, 

and additional details specific to each substrate are provided in the figure caption. 

SPECTRAL ANALYSIS 

All spectra were analyzed by custom programs written in Mathematica 11.2 (Wolfram 

Research, Champaign, IL). Acquired spectra were background-subtracted using 

piecewise linear fitting between local minima that were selected using a relative 

thresholding approach to bracket known spectral peaks. To obtain the SEV for all 

substrates, the remainder of the analysis was performed according to Guicheteau et al.5 

For each spectrum we calculated the ratio of the area of the ~1330 cm-1 peak of NBT to 

the area of the ~880 cm-1 peak of ethanol, 𝑅NBT EtOH⁄ . For a given substrate and 

concentration, the plot of 𝑅NBT EtOH⁄  versus time, t, was fit to the equation 𝑅NBT EtOH⁄ =

𝑅NBT EtOH⁄  
max 𝐴t (1 + 𝐴t)⁄ , with 𝐴 and 𝑅NBT EtOH⁄  

max  as free parameters, using the Levenberg-
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Marquardt method implemented in Mathematica. The standard error of the fit, 

𝜎([NBT]), used for subsequent calculation of the SEV for each substrate, was 

determined in this step. The best-fit value for 𝑅NBT EtOH⁄  
max (here, representing the surface 

adsorption equilibrium value) for each concentration was then plotted against [NBT] for 

each substrate, as shown in Figure S7.3. For each substrate and analyte concentration, 

we used 𝑅NBT EtOH⁄  
max ([NBT]) and 𝜎([NBT]) as the mean and standard deviation of a 

Gaussian distribution, 𝜌(𝑟, [NBT]) = exp (− (𝑟 − 𝑅NBT EtOH⁄  
max )

2
(2𝜎2)⁄ ), to calculate 

detection thresholds. Using the ethanol-only (NBT-free) samples, we calculated 

𝑟90%,blank, the limit of integration capturing 90% of the distribution’s area, 

∫ 𝜌(𝑟,0)𝑑𝑟
𝑟90%,blank
−∞

= 0.9 ∫ 𝜌(𝑟,0)𝑑𝑟
∞

−∞
, for each substrate. For each analyte-containing 

sample for each substrate, we then calculated PD([NBT]) =

∫ 𝜌(𝑟, [NBT])𝑑𝑟
∞

𝑟90%,blank
∫ 𝜌(𝑟, [NBT])𝑑𝑟
∞

−∞
⁄ , where PD is the probability of detection 

with a 10% probability of false alarm (PFA). Subsequently, receiver-operator 

characteristic (ROC) curves were constructed for each substrate by plotting PD versus 

[NBT]. The concentration, 𝐶SER, at which PD=0.9 was found for each substrate by 

linearly extrapolating between the two experimental concentration values bracketing the 

PD threshold:  CSER=7.89×10-9 M for SiNx, 6.72×10-7 M for porous silicon nitride, 

7.23×10-6 M for paper, and 2×10-8 M for nanocellulose. For the commercial Silmeco 

and custom polymer-coated SiNx substrates, even the lowest concentration measured 

better than 90% PD for a 10% PFA, and so the lowest concentration we used provides 

an upper bound for CSER (and a lower bound for the SEV, below). The same procedure 

was repeated for Raman spectra (in the absence of substrate) to get CRS=0.00467 M, the 
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concentration at which the PD became 0.9. The SERS enhancement value, 𝑆𝐸𝑉 =

𝐶RS SER⁄ , was developed by Guicheteau et al.,5 to provide a representative metric for 

comparing Raman enhancement between often widely different SERS substrate types. 

 

 

Figure S7. 3. Peak area ratio as a function of concentration for a) SERS and b) normal 

Raman measurements, with solid lines to aid the eye. Spectra were acquired using 

250 mW excitation, except as noted:  for cellulose substrates and commercial substrate, 

excitation was limited to 57 mW. Limits of detection (LOD = 3𝑠blank sensitivity⁄ ) were 

estimated by fitting the first 3–4 data points of each response curve to a straight line. 

The sensitivity was equated to the linear slope and the standard deviation of the blank, 
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𝑠blank, was calculated from experimental measurements. The LOD, in matching order to 

the substrates, were 2.58×10-10, 2.7×10-10, 2.13×10-10, 1.08×10-9, 1.16×10-8 and 

3.62×10-11 M, but these should be understood, along with the data below, as providing 

a benchmark for optimizing the application-specific substrate preparation. 

 

 

Figure S7. 4. We constructed a crude paper-based assembly to demonstrate the prospects 

of using electrolessly gold-plated supports as multifunction SERS substrates. This 

assembly incorporated physical filtration of a heterogeneous sample, chromatographic 

separation of a multicomponent mixture, and SERS readout. The sample was 

constructed from NBT in acetonitrile and 4-aminothiophenol (ATP) in ethanol, with dirt 

added to the mixture. The mixture was spotted onto chromatography paper 

(7.5 cm×2.5 cm), which physically filtered the dirt (a view of the back shows the dirt 

did not fully penetrate through the paper). A separation was run in 4% (v/v) ethyl acetate 

in hexane. Iodine staining allowed visual determination of the ATP retention time 

(photograph shown as an inset), but SERS was needed to localize the NBT spot. After 
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sampling then separation, squares of electrolessly gold-coated paper were placed on a 

glass slide underneath the two individual analyte spots. Transfer of the separated 

analytes was achieved using 10–40 µL drops of ethanol and SER spectra were then 

recorded from each piece of electrolessly gold-plated readout paper. 
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OR TOXIC?  GAUGING THIN-FILM SOLID-STATE NANOPORES FOR 

POLYSACCHARIDE SENSING 

 

Buddini Iroshika Karawdeniya, Y.M. Nuwan D.Y. Bandara, Jonathan W. Nichols, 

Robert B. Chevalier, and Jason R. Dwyer 

Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, 

02881, USA.  

REAGENTS AND MATERIALS 

 

The following materials, identified by their product number and specification, 

were obtained from Sigma-Aldrich Corporation (St. Louis, MO, USA): potassium 

chloride (60130, puriss. p.a., ≥99.5% (AT)); sodium chloride (S7653, BioXtra, ≥99.5% 

(AT)); HEPES potassium salt (H0527, ≥99.5% (titration)); sulphuric acid (339741, 

99.999%); alginate lyase (A1603, ≥10,000 units/g); and hydrochloric acid (320331, 

ACS reagent, 37%). Polysaccharides were commercially obtained:  sodium alginate A1-

B25266 (~75-120 kDa, 40-90 centipoise (1% solution); Alfa Aesar [Ward Hill, MA, 

USA]) and A2- PROTANAL® LFR5/60 (120kDa, 300-700 centipoise (10% solution); 

FMC Corporation Health and Nutrition, PA, USA); heparin sodium salt (USP, 1304038, 

Rockville, MD; mol. wt. ~16 kDa by lot certificate) and over sulfated chondroitin 

sulfate (OSCS) (USP, 1133580; est. mol. wt. ~17 kDa by porcine origin1; from Sigma 

Aldrich Corporation (St. Louis, MO, USA)). The potency of the USP heparin samples 

was 180 USP heparin units according to Pharmacopeial Forum Vol. 35(5) [Sept.–Oct. 

2009]. 
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Silicon-rich LPCVD silicon nitride (nominally) 10 nm-thick membranes on 

200 µm-thick silicon frame (NT001Z and NT005Z; with reported membrane 

thicknesses for Lot # L8 10.5±0.3 nm, L15 16±2 nm, L31 14±2 nm, L68 12±2 nm) were 

purchased from Norcada, Inc. (Alberta, Canada). All aqueous solutions were prepared 

using Type I water (~18 MΩ·cm resistivity from either a Millipore Synergy UV 

[Billerica, MA], or American Aqua Maxicab system [Narragansett, RI, USA]); all 

dilutions and washes also used this water. Stericup-VP vacuum filtration systems were 

used to filter electrolyte solutions after preparation, and water to prepare alginate 

solutions (SCVPU11RE 0.10 µm pore size in polyethersulfone membrane; EMD 

Millipore Corporation [MA, USA]). 

Ag/AgCl electrodes were made from 1.0 mm-diameter silver wire (Alfa Aesar 

11434, annealed, 99.9% (metals basis)) by soaking overnight in sodium hypochlorite 

(Alfa Aesar 33369, 11-15% available chlorine). Electrodes were insulated using shrink-

wrap PTFE tubing (McMaster-Carr, 7960K21, high-temperature harsh environment 

tubing, moisture seal, heat-shrink, 0.07" ID before; and 7564K67, high-temperature 

harsh environment tubing, heat-shrink, 0.08" ID before, 0.05" ID after) and connected 

to electronics using pins (Connectivity TE Connectivity / AMP  205090-1 D sub circular 

connector contact, AMPLIMITE 109 Series, Socket, Crimp, 20-24 AWG). Nanopore 

chips were compressed between silicone gaskets (McMaster-Carr, 86435K43, high-

temperature silicone rubber sheet, ultra-thin, 12" x 12", 0.015" thick, 35A durometer) 

in custom-machined PTFE holders with ~500 µL sample wells.2 Silicone tubing with 

ID 1.0 mm x OD 3.0 mm was obtained from Nanion Technologies GmbH, Munich, 

Germany. 
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INSTRUMENTAL DETAILS 

 

Measurements of solution pH and conductivity were with an Orion Star™ pH 

meter and Orion™ ROSS Ultra™ Refillable pH/ATC Triode™ Combination Electrodes 

and Orion™ DuraProbe™ 4-Electrode Conductivity Cells (Thermo Fisher Scientific 

Inc, MA, USA). Nanopore formation by dielectric breakdown was performed using 

programmable DC power supplies (Model 9121A, B&K Precision Corporation, CA, 

USA) interfaced to a home-built circuit;3 real-time current measurements were by a 428-

Programmable Current Amplifier (Keithley Instruments, Cleveland, OH, USA) 

interfaced to NI USB 6351 DAQ card using custom LabView-based (National 

Instruments Corp., TX, USA) software to control the applied voltage. All nanopore 

measurements were performed using an Axopatch 200B amplifier (Axon Instruments, 

Foster City, CA, USA) in voltage clamp mode. The amplifier was interfaced to a 

computer system using a data acquisition card (779512-01 NI PCIE-6251 M Series with 

777960-01 NI BNC-2120 shielded connector block) and control software written in 

LabView. Current-versus-time measurements were typically acquired for 1 h (3× 

20 min) at 100 kHz acquisition rates with the 4-pole low pass Bessel filter built-in to 

the Axopatch 200B set to 10 kHz. Measurements of nanopore conductance were 

acquired at a rate of 10 kHz, with the filter set to 1 kHz. 

Infrared spectra of the powder were acquired by FTIR-ATR (Bruker Tensor 27 

equipped with a Ge crystal) averaged over 256 scans with 4 cm-1 spectral resolution. All 

measurements done inside a nitrogen filled glovebox. 

UV/Vis spectra were collected using a Varian Cary 50 Bio UV/Visible 

Spectrophotometer with a quartz cuvette with a 1 cm pathlength. Single run 
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measurements were taken from 200 to 400 nm at a scan rate of 300 nm/min and 0.50 nm 

intervals. 

All 3D printed components were designed in Solid Works 2014 Professional 

Edition (Dassault Systems SolidWorks Corporation, Waltham, MA) and printed by 

Makerbot Replicator (MakerBot Industries, Brooklyn, NY) using PLA plastic 

(MP06103, MakerBot Industries, Brooklyn, NY). 

 

GENERAL NANOPORE SENSING PROCEDURE 

 

Nanopores in the ~10 nm-thick silicon nitride membranes were fabricated by 

controlled dielectric breakdown using 11-15.5 V DC applied potentials.3 The nanopore 

formation was carried out in 1 M KCl electrolyte, HEPES-buffered to pH ~7, and the 

membranes and pores were secured in custom-machined PTFE holders with ~500 µL 

sample wells. Nanopore conductances, G, were the slope of the linear fit to the 

experimental Ohmic current-voltage data, measured in 1 M KCl electrolyte buffered 

with HEPES at pH ~7. The corresponding nominal nanopore diameters were calculated 

using a conductance model (including bulk, surface, and access resistance terms) and 

cylindrical nanopore shape suitable for this salt concentration and fabrication method, 

𝐺 = (
1

𝐺bulk+𝐺surface 
+

1

𝐺access
 )
−1

.3-6 Nanopores used for measurements produced stable 

open-pore (analyte-free) currents at the salt concentrations used. 

All electrolyte solutions were HEPES-buffered (10 mM) to pH ~7 unless 

otherwise noted (adjusted with dropwise addition of concentrated hydrochloric acid), 

and measurements were carried out using filtered solutions with 0.1, 1.0, and 4.0 M KCl 
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concentrations. Solutions of 0.2% (w/v) sodium alginate, 0.2% (w/v) heparin, and 

0.2% (w/v) OSCS were made by dissolving the solids in filtered Type I water. For 

routine measurements and unless otherwise specified, 4 µL aliquots were added to the 

headstage side (Figure 8.1), leaving the ground side free of initially added analyte. 

Calibration curves for each nanopore were constructed by repeated cycles of 

measurement followed by the addition of another analyte aliquot. Current blockages 

were extracted using a current-threshold analysis. Any current blockages exceeding 

100 s (≲ 0.1%) were not included in analyses. 

 

POLYSACCHARIDE VISCOSITY MEASUREMENTS 

 

Apparent viscosity measurements were carried out on aqueous sodium alginate 

solutions (0.15-1.0 g/dL) in 0.1 M sodium chloride solutions using a capillary 

viscometer (SI Analytics Ubbelohde Viscometer, Thermo Fisher Scientific, Inc., MA, 

USA) immersed in a water bath at ~23°C. Triplicate measurements of the apparent 

viscosity were made at each solution concentration to yield the intrinsic viscosity, [𝜂], 

from a plot of7 

𝜂sp

𝐶
= [𝜂] + 𝑘[𝜂]2𝐶 

where C is the macromolecule’s concentration in g/dL, k is a constant characteristic of 

the solute-solvent system, 𝜂sp =
𝜂solution

𝜂solvent
− 1 is the specific viscosity calculated from the 

apparent viscosities. The weight- and number-average molecular masses, 𝑀w and 𝑀n, 

of the polymers in kDa were calculated according to8 

[𝜂] = 0.023(𝑀w)
0.984 
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[𝜂] = 0.095(𝑀n)
0.963. 

The respective molecular masses of the two alginate samples were determined 

by this method to be ~286 kDa and ~74 kDa for A1, and ~71 kDa and ~18 kDa for A2. 

Using a polymer’s molecular weight, 𝑀, we can calculate the hydrodynamic radius (𝑁A 

is Avogadro’s number)9 

𝑅h = (
3[𝜂]𝑀

10𝜋𝑁A

)

1 3⁄

 

to be ~19 nm for A1 and ~8 nm for A2 (using 𝑴n as the molecular weight). The 

corresponding root-mean-squared end-to-end distance, 〈𝒓𝟐̅̅ ̅〉𝟏 𝟐⁄  for each sample is 

equal to 𝟑. 𝟏𝑹h.  

Figure S8. 1: Calibration curve of sodium alginate event frequency versus 

concentration of A1. Three trials were performed, with each data point including at 

least 1000 events extracted from at least 1 h long measurements at 200 mV applied 

voltage after consecutive additions of 4 µL aliquots to the headstage side of the same 

nanopore. Error bars represent the standard deviation across the trials. 
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Figure S8. 2:  A special nanopore configuration in which the electrolyte wells 

proximal to the electrodes and to the nanopore were physically separated. The purpose 

of this configuration was to determine if the current blockages arose from analyte 

interaction with the electrodes, or with the nanopore, itself. The electrolyte wells in 

the lower PTFE cell held the electrodes and were separated by an intact SiNx 

membrane that did not allow ionic flow. These wells were connected through 

electrolyte-filled silicone tubing and an electrolyte-filled beaker (acting as a diffusion 

trap), to a second electrolyte-filled PTFE cell in which the wells were separated by a 

SiNx nanopore. With analyte injected into the bottom cell, the only possible 

mechanism of current blockage was either by direct interaction with the electrodes, 

or by the passage of analyte through the tubing and beaker of solution until it could 

interact with the nanopore. When a 4 µL aliquot of the alginate was added to the head 
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stage side of the lower cell, only 18 appreciable current transients were detected in a 

1 hour measuring period, contrasted with 561 events in 1 hour when the alginate was 

directly injected adjacent to the head stage side of the nanopore. The additional 

electrolyte between electrodes and nanopore reduces the cross-pore applied potential 

compared to the usual single-cell sensing configuration. 

ACID AND ENZYMATIC DIGESTION PROCEDURES 

 

ACID DIGESTION POST-NANOPORE MEASUREMENT 

 

 A ~9 nm nanopore was mounted in the PTFE sample holder. A 200 μL amount 

of 0.2% (w/v) A1 was added to the head stage side in 5 µL aliquots per hour throughout 

the work day during 4 days of application of a +200 mV cross-membrane voltage. For 

overnight voltage applications, the electrode polarity was maintained, but the electrodes 

were placed in the opposite wells. The head-stage and initially analyte-free ground side 

solutions were extracted, individually mixed with 1 mL of 75% sulphuric acid and 

heated overnight (16 h) at 80°C. Samples were diluted with 3 mL of water before 

spectral acquisition. For comparison, 500 µL aliquots of 0.2% (w/v) A1 and A2 were 

each subjected to the same acid digestion and dilution before spectral acquisition. 

ENZYMATIC DIGESTION FOR SPECTROSCOPIC MEASUREMENTS 

 A 2250 µL aliquot of 0.2% (w/v) A1 was added to a 150 µL aliquot of 1 unit/mL 

alginate lyase and heated in a water bath at 37˚C for 30 minutes. The procedure was 

repeated for sample A2, but the sample was diluted with 10 mL H2O before spectral 

acquisition. 
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ENZYMATIC SAMPLE PREPARATION FOR NANOPORE SENSING 

 For enzymatic digestion, samples of 3% (w/v) A2 were mixed with alginate 

lyase (1:1 (v/v) mixture with 1 unit/mL enzyme) for 10 minutes at 37°C. 20 μL of this 

mixture was added to the headstage side and events were detected with the application 

of +200 mV on the head stage side. Measurements in the presence of 20 μL of 1 unit/mL 

of alginate lyase, alone, in the headstage side support that the detected events in the 

presence of analyte originated from enzymatic digestion products. 

 

Figure S8. 3. UV/Vis spectra of acid and enzymatic digestion products. a) Stock A1 

subjected to 16 h of sulphuric acid digestion generated a ~270 nm absorption band 

characteristic of the digested polysaccharide10, 11 that was replicated in the samples 

taken from the headstage and from the groundstage sample wells after 4 days of a 

translocation experiment (200 µL aliquot). The dashed lines denote the UV/Vis 

spectra of the sample before digestion, and the solid lines denote the spectra after 
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digestion. b) Alginate lyase digestion of alginate is expected to introduce 

chromophores with a peak absorption at ~232 nm, consistent with observations 

here.12 

PREPARATION OF HEAT MAPS BY HISTOGRAMMING INDIVIDUAL 

EVENTS 

Heat maps were prepared in Origin (Originlab Corporation, MA) from event 

data sorted into bins by paired 𝑓𝑏 and 𝜏. The bin width along the 𝑓𝑏 axis was set equal 

to 𝑊bin = 3.49𝜎(𝑓𝑏)𝑁
−
1

3, where 𝜎(𝑓𝑏) is the standard deviation across all events, and 

N is the total number of events.13 Bin size along the 𝜏 axis was set to √10. Heat maps 

are plotted using log10 of the number of events in each bin. 

The distributions of event counts by 𝑓𝑏 in Supplementary Figure 8.4 were fit 

using the function 

𝜙𝑓𝑏 =
1

2
(1 + 𝜃)∑ 𝐴𝑖 ∙

𝑀
𝑖=1 exp (−

(𝑓𝑏−𝜇𝑖)
2

2𝜎𝑖
2 )     (S8.1) 

where the parameters of the unmodified Gaussian function are as conventional - 𝐴𝑖, 𝜇𝑖, 

and 𝜎𝑖 are the magnitude scaling, expected value, and standard deviation. The step 

function, (1 + 𝜃), was set to 1 for𝑓𝑏 < 𝑓𝑏
cutoff +𝑊bin, and 0 otherwise, so that the fit 

function covers only the accessible experimental data (𝑓𝑏
cutoff was the threshold for event 

extraction). The fit parameters are outlined in table S8.1 
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Panel 𝑨𝟏 𝝁𝟏 𝝈𝟏 

a 364 

𝑨𝟐 =76 

0.971 

𝝁𝟐 =0.773 

0.0624 

𝝈𝟐 =0.0992 

b 240 0.991 0.00274 

c 150 0.98 0.00558 

d 100 

𝑨𝟐=304 

0.974 

𝝁𝟐 =0.979 

0.0041 

𝝈𝟐 =0.002 

e 312 0.991 0.00635 

f 500 

𝑨𝟐=2120 

0.985 

𝝁𝟐 = 0.989 

0.0077 

𝝈𝟐 =0.0016 

 

Table S8. 1: Fit parameters for fits shown in left column of figures S8.4a-f (red curves) 

using equation S8.1. 

The distributions of the log of event counts by duration were fit to a log-normal 

distribution, 𝜙𝜏 =
𝐴

𝜏
𝑒−(ln𝜏−𝑀)

2 (2𝑆2)⁄        (S8.2) 

where the parameters had conventional meanings, and the event duration was expressed 

in µs. The event duration corresponding to the peak of the event count distribution,𝜏𝑝, 

was found by taking the first derivative of the curve. 
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Panel 𝑨 𝑴 𝑺 𝝉𝒑 (µs) 

a 5.49 1.01 0.57 98.91 

b 5.93 1.07 0.55 143.98 

c 6.95 1.38 0.51 1102.32 

d 5.43 1.11 0.67 89.31 

e 6.62 1.15 0.55 218.69 

f 6.85 0.81 0.50 57.27 

 

Table S8. 2: Fit parameters for fits shown in right column of figures S8.4a-f (red curves) 

using equation S8.2. 
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Figure S8. 4:  Histograms of (left column) <ib>/<i0> (right column) duration in log10 

of A1 alginate in (a) ~5 nm and (b) ~19 nm pore, A2 in (c) ~22 nm, (d) 10-min enzyme 

digested A2 in ~23 nm pore, (e) heparin and (f) OSCS in the same ~14 nm pore with 

the bin size set automatically by the measurement statistics as described above. 
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Figure S8. 5:  Plots of log10 of event duration (τ) versus area under each event for 

alginate A1 in a) ~5 nm and b) ~19 nm diameter pores and c) for alginate A2 in a 

~22 nm diameter pore recorded for 1 hour in 1 M KCl at pH ~7. Two distinct event 

distribution tails are visible corresponding to short-lived spike-like pulses and longer-

lived rectangular blockages. The longer-lived tail for A2 is more prominent as a 
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percentage of total events than for A1, consistent with the appearance of the combined 

heat and scatter plots in Figure 8.3. The shorter events could be attributed to either 

“bumps” or fast translocations, and longer-lived events could be attributed to slower 

translocations or longer-lived interactions with the pore (in both cases, 

complementary measurements independently confirmed alginate translocation). The 

low molecular weight and high M/G ratio (more G is attributed to stiffness) of A2 

meant, it has a greater probability of translocating through a given pore hence tails 

seen in the figure above are not surprising. Area under each event was calculated by 

integrating the interpolation function (interpolation order of 1) of each event in 

Mathematica. 

 

 

Figure S8. 6. Representative current events of A1 alginate at pH 3,5 and 7 at negative 

and positive 200 mV applied on the head stage side for 1-hour each in the same ~8 

nm diameter pore at 1M KCl. 
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Figure S8. 7. Infrared spectra of alginate samples. The intensity of the peaks near 1400 

and 1600 cm-1, relative to the remainder of the spectrum, are consistent with a lesser 

proportion of carboxylic acid salt residues in (a) A1 than in (b) A2. Comparison of the 

intensity of the guluronic (G) unit absorption at ~1025 cm-1 to the mannuronic (M) unit 

absorption at ~1100 cm-1 allows calculation of the M/G ratio that varies with particular 

alginate source.14 Using this approach, alginate A1 was determined to be ~63%G/37%M, 

and alginate A2 was  ~57%G/43%M. These relative proportions were supported by 

additional analysis:  in Supplementary Figure 8.3b, the particular alginate lyase was a 

mannuronic lyase, so that the greater absorption from the digestion of A2 than A1 was 

consistent with a greater proportion of M in A2. 

 



257 

 

 

 

Figure S8. 8. Heparin and OSCS events. A representative a) i) segment of a heparin 

induced-current trace using a ~10 nm-diameter pore with a magnified current event 

from the same trace, and from ii) OSCS through the same pore in response to a -

200 mV applied voltage in 4 M KCl at pH ~7. b) Contour+scatter plots of i) heparin, 

ii) OSCS and iii) heparin contaminated with OSCS through a ~14 nm diameter pore. 

 

RECOGNITION FLAG GENERATION 

 

Recognition flag generation was done using custom codes written in 

Mathematica 11.0.1.0 (Wolfram, Champaign, IL). (1) A histogram of all individual 

events were created with respect to 𝑓𝑏 using a bin width of 0.0025 (using nanopores 

with diameters from ~8-14 nm, and determined using the USP heparin data). (2) Any 

bin with counts below 0.5% of the maximum bin count were removed, and all counts 

were then normalized. (3) The OSCS identification threshold was taken to be at the 

nearest bin at the distance of three standard deviations (after the 0.5% filter) from the 
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bin with the maximum number of counts. (4) When events had been detected at 𝑓𝑏 below 

this threshold, the recognition flag was set to red to signal the presence of OSCS; it was 

otherwise left white. (5) A histogram of all individual events were created with respect 

to the logarithm (log10) of the event duration (𝜏) using a bin width of 0.25 (here, 

determined using the USP OSCS data). (6) The same 0.5% filter was applied to these 

histograms, which then had their counts normalized. (7) The event duration threshold 

was taken to be the nearest bin at the distance of three standard deviations (after the 

0.5% filter) from the bin with the maximum number of counts. (8) When events had 

been detected at log10 𝜏 above this threshold, the recognition flag was set to red to signal 

the presence of heparin; it was otherwise left white. 

 

 

Figure S8. 9. Hue plots of show the outcomes of recognition flag generation (and 

measurement statistics—see procedure detailed above) after steps 3 (top) and 7 

(bottom), based on 𝒇𝒃 = 〈𝒊𝒃〉 〈𝒊𝟎〉⁄  and 𝐥𝐨𝐠𝟏𝟎 𝝉 of the individual events. The 
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identification threshold, determined by the measurement statistics of each run, is 

given by the blue line. The corresponding final recognition flags, showing successful 

detection of the toxic OSCS impurity across four independent trials in ~8.6, 9.8, 9.9, 

and 13.6 nm (left to right), are shown in Figure 8.5. 
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