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ABSTRACT

This thesis deals with ultra cold neutrons, or, more precisely, with beams
of ultra-cold neutrons. ultra-cold neutrons are longwave particles produced in a
reactor from which they are coming to experimental cells through narrow channels.
The beams are collimated so that the distribution of longitudinal and transverse
velocities is narrow. The energies of the neutrons that we consider as ultra cold
are somewhere around 100neV .

Neutrons with such low energies have long wavelengths; A ~ 100nm. Neutral
particles with such large wavelengths exhibit nearly (locally) specular reflection
when reflected by the solid surfaces at almost any angle of incidence.

The number of ultra-cold neutrons available for experiment is extremely small.
Therefore, a major experimental challenge is not to lose any particles while they
travel from the reactor to the lab. Some of the main losses occur in the chan-
nel junctions when the neutrons disappear into the gaps between the overlapping
channels. We explore the possibility of recovering some of these otherwise "lost”
neutrons by making the inside surfaces of the junctions rough: scattering by the
surface roughness can send some of the neutrons back out of the gap. This prac-
tical goal made us to re-examine diffusion of neutrons through rough channels
which is by itself an interesting problem. We assume that the correlation func-
tion of random surface roughness is either Gaussian or exponential and investigate
the dependence of the mean free path on the correlation radius R of the surface
inhomogeneities. My results show that in order to ensure better recovery of the
"lost” neutrons the walls of the junction should be made rough with the exponen-
tial correlation function of surface roughness with as small a correlation radius as
possible. The results also show that the diffusion coefficient and the mean free

path of UCN in rough channels exhibit a noticeable minimum at very small values



of the correlation radius. This minimum sometimes has a complicated structure.

The second goal is the study of UCN in Earth’s gravitational field. One of the
most interesting features of ultra-cold neutrons is a possible quantization of their
vertical motion by the Earth’s gravitational field: the kinetic energies are so low
that they become comparable to the energy of neutrons in Earth’s gravitational
field. This results in quantization of neutron motion in the vertical direction. The
energy discretization occurs on the scale of several peV.

In the first part of my thesis I ignore the presence of the gravitational field
and look at the transport of neutrons through rough waveguides in the absence of
gravity. The effects of gravity are be explored in the last part. To streamline the
transition I use the common notations suitable for both types of problems.

More specifically, I am studying the diffusion of ultra-cold neutrons in the
context of the experiments done at ILL in Grenoble in the frame of the multi-
national GRANIT collaboration. The parameters used in numerical calculations
are the ones most common to ILL experiments. I will be calculating the diffusion
coefficient and the mean-free path (MFP) under the conditions of the quantum
size effect. Specifically I look at the dependence of the diffusion coefficient and the
MFP on the correlation radius of surface inhomogeneities. R. In the second and
third parts of the thesis I include the study of the neutron diffusion accompanied
by slow continuous disappearing of neutrons as a result of penetration into the
channel walls. This includes calculating the number of neutrons N(t = e, h, R),
where 7., is the experimental value of the time of flight in GRANIT experiments
and h is the channel width. I look not only at the square well geometry, but will
also include the effects of the Earth gravitational field. The results show that while
the neutrons in the square well potential disappear almost immediately, the small

perturbation near the bottom of the well caused by the presence of the Earth’s



gravitational field drastically changes the results and is solely responsible for the
observed exit neutron count in GRANIT experiments. The shape of the curves
describing the exit neutron count on the width of the waveguide is extrememly
robust. Out brute force calculations also confirms that the earlier biased diffusion

approximation is quite accurate.
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CHAPTER 1

Introduction

1.1. Preliminary Comments

The main goal of this thesis is to provide a rigorous theoretical description for
the diffusion of ultra cold neutrons (UCN) through narrow rough channels, which
is based on the theory of quantum transport in systems with rough boundaries
formulated by Meyerovich et al.[1]-[12]. We look at two separate problems: dif-
fusion of the neutrons through rough waveguides on the way from the reactor to
the experimental cell and the neutron count for neutrons exiting experimental cell
with absorbing walls.

We use numerical computations to investigate the effect of two types of random
roughness on the diffusion coeffi cient and use numerical methods to evaluate the
neutron count using the experimental values of input parameters. We analyze two
types of potentials inside the cell: one the idealized square well potential (SW)
and the other the SW potential with an addition of the gravitational field. The
experimental parameters were provided for us by our experimental collaborators
at the Institute Laue-Langevin (ILL) in Grenoble, France in the frame of the

GRANIT project.



The purpose of this multinational collaborative experimental and theoretical
work is two-fold: to investigate the quantization of the motion of UCN by the
Earth gravitational field and to create UCN with well-defined energies in the peV
range necessary for studies of fundamental forces in quantum field theory.

Typical UCN coming out of the reactor have large wavelengths, A ~ 100 nm.
Neutral particles with such large wavelengths exhibit nearly (locally) specular re-
flection when reflected by the solid surfaces at almost any angle of incidence. One
of the most interesting features of ultra-cold neutrons is their quantization in the
Earth gravitational field: the particle kinetic energies can be so low (~ 1 peV)
that they become comparable to the gravitational energy of neutrons in Earth’s
gravitational field. This results in quantization of neutron motion in the vertical
direction. This discretization is illustrated in the sketch below showing the discrete
energy levels of neutrons in the Earth gravitational field. The energy discretization
occurs on the scale of several peV. The first experimental observation of such a
quantization was done by Nesvizhevsky et al. Ref.[14]-[24] by using the GRANIT
spectrometer (see below).

Ultra-cold neutrons are longwave particles produced in a reactor from which
they are coming to experimental cells through narrow channels containing various
mirrors and collimators. The UCN beams are collimated so that the distribution
of longitudinal and transverse velocities is narrow. The energies of the neutrons

that we consider as ultra-cold are somewhere around 100 neV, and below.



The particles in the beam that reach the cell have a relatively large horizontal
velocity and much smaller vertical velocities. Still standard collimation and cooling
methods are insufficient to limit the vertical energies to the peV scale comparable
to gravitational energies. The typical UCN beam brought to the experimental cell
contains neutrons in thousands of occupied gravitational states making it virtually
impossible to study the quantization of vertical motion.

The purpose of the GRANIT spectrometer is to eliminate the particles in higher
gravitational states and leave only the ones in the few lowest states. This allows
one to achieve both goals: to study the quantization of neutron motion in the
gravitational field and to produce neutrons with well-defined energies in the peV
range.

The lower surface of the spectrometer is as close as possible to being perfectly
smooth, in order to make it to be a perfect reflector which specularly reflects the
UCN. The upper surface of the GRANIT cell has microscale roughness. This
"rough" ceiling scatters the UCN in higher gravitational states, which can reach
it. The scattered neutrons from the higher gravitational states eventually acquire
large vertical velocities sufficient to trigger penetration through the walls and dis-
appearance from the system. Due to this setup, only the UCN in low gravitational
states, which do not reach the rough ceiling, can continue bouncing along the flat
floor and arrive at the exit neutron detector.

The use of rough mirrors as quantum state selectors is possible because the

very large horizontal velocities in the beam and peculiarities of quantization of the



vertical motion in the gravitational field. This kind of state selector is used or
is planned to be used, in numerous other applications not exclusive to GRANIT
experiments or to UCN beams. Some examples of these potential applications
include: the observation of quantum gravitational states for other ultra-cold par-
ticles and anti-particles in the context of the GBAR project at CERN [[28]-[32]];
the resolution of centrifugal quantum states in UCN in the "whispering gallery"
[[26],[27]]; the search for fundamental forces at extra-short range as predicted by
the grand unification theory [[33]-[41]]; the test of the weak equivalence principle
[[39]-[42]]; the continual extension of understanding of quantum mechanics. Addi-
tionally, these GRANIT-like experiments could potentially be used to measure the
electric dipole moment of a neutron [[46],[47]], if it exists, help to search for the
potential neutron charge [[48],[49]], and make a precise measurement of neutron
lifetime [[50]].

The resolution and the quality of the observed quantum gravitational states of
UCN rely on the quality of the roughness of the upper surface of the GRANIT
cell. Meyerovich et al.. developed a theoretical framework in which they analyzed
the particle diffusion along the random rough walls and linked it to the roughness
parameters of the rough mirror. The theory generally agrees with the experimental
results despite uncertainty in certain parameters.

Additionally, Meyerovich et al. [[52]-[55]] discovered that the shape of the
correlation function of surface inhomogeneities (CF) plays a very important role

in the diffusion of UCN along rough walls. It turns out that the roughness-driven



transition probabilities between the states are directly proportional to the Fourier
image (the so-called power spectrum) of the CF. In previous work, Escobar et al.
[[8]] showed that within the biased diffusion approximation all the information
about the surface imperfections can be accounted for in the neutron count as
a single parameter ®, which is a complicated integral of the power spectrum.
However, in practice, it is impossible to create imperfections with a predetermined
CF on real surfaces, and even if it were possible it would be highly non-trivial to
identify this CF.

In order to increase the resolution of the observed quantum gravitational states
of the UCN in the GRANIT spectrometer, proper identification of the surface
correlator is paramount. If one can establish a superior way to control the necessary
random roughness of the scatterer and absorber mirror, it will contribute greatly
to the optimization of results from the GRANIT experiment.

In the context of the theoretical background and numerical experiments, we
designate the shape of the CF explicitly, and analyze its potential impact on phys-
ical variables. In previous papers, Meyerovich et al. [[9]] have analyzed the gener-
ated rough surface by measuring it with the computational analog of STM needle
(scanning tunneling microscope). Unlike the CF used to generate the surface,
the correlator was extracted by direct computation and analyzed using various
fitting functions. Alternatively, the extracted correlator was fed directly into the
equations for the observables without the fitting functions. The reason for the im-

portance of the numerical experiments with the simulated surfaces lies in showing



how to avoid certain limitations that might stymie the dependable identification
of a surface correlator for a real surface.

There is also a supplementary practical issue. The number of ultra-cold neu-
trons available for experiment is extremely small. Therefore, a major experimental
challenge is not to lose many particles while they travel from the reactor to the
lab. The main losses occur in the channel junctions when the neutrons get into
the gaps between the overlapping channels. Therefore the minimization of losses
in channel junctions becomes an important goal which will also be approached in
this thesis.

This thesis is arranged as follows:

In the remainder of Chapter 1, we will provide a fairly detailed description of
the experiment and its setup used by GRANIT to observe the quantum gravita-
tional states of the ultra cold neutrons. In particular we will describe the GRANIT
cell, and introduce the important parameters that are used to describe the rough-
ness of the surfaces of the GRANIT mirror. In section 2 we will discuss the details
of the mirror used in the newer experiments including the design and providing a
description of how they made the roughness. In section 3 we introduce the main
parameters and dimensionless variables. And, finally, in section 4, we will pro-
vide the main equations and the theoretical framework for the quantum transport
equation and diffusion.

In Chapter 2, we will explore the possibility of recovering these "lost" neutrons

that we discussed above by making the inside surfaces of the junctions rough:



scattering by the surface roughness can turn some of the neutrons back. This
practical goal made us to re-examine diffusion of neutrons through rough channels
which is by itself an interesting general problem. We assume that the correlation
function of surface roughness is either Gaussian or exponential (see below) and
investigate the dependence of the mean free path on the correlation radius R. Our
conclusion is that if ideally we could create the type of roughness we want, it would
be better to use exponential roughness.

In Chapter 3, we will be discussing the exit neutron count in an idealized con-
dition, in the square-well potential without gravity. This involves solving large sets
of equations with complicated coefficients which tie together neutrons in thousands
of quantum states. We first look to investigate the exit neutron count as a function
of matrix size, in order to assess the value of the possible cutoff. The matrix size
here being the number of equations we are solving. In other words, to reduce the
computation time, we deduce what size of the matrix is sufficient for our compu-
tations to be accurate. We then cut off the matrix at the cutoff parameter and
proceed to extract the neutron count and its dependence on the width of well H.
In the case of the square well potential we will see that the neutron count should
go quickly to zero.

In Chapter 4, we will be doing something very similar to Chapter 3, except
this time we take into account the gravitational potential. To simplify the com-
putations, we assume that the matrix of the interstate transition probabilities has

a block structure. The first block contains the transitions between the lowest



(gravitational) states. Since for the higher states there is practically no difference
between the gravitational and square well states, the other three blocks describe
the transitions between the square well states and between the gravitational and
square well states. From this we derive the neutron count.

In the last chapter we will summarize the results presented earlier, and discuss

some suggestions for what can be done looking towards the future.

1.2. GRANIT Experiment
1.2.1. Description of the Actual GRANIT Experiment

Neutrons are elementary particles with no charge and a relatively long lifetime
(~ 900 s) compared to many other elementary particles, such as mesons (~ 10717 — 1078 s).
This makes neutrons quite a good candidate for experimental observation of quan-
tum mechanical bound states in the weak Earth’s gravitational field [[59]]. The
quasi-classical estimation of energy levels of bouncing quantum mechanical parti-
cles on an ideal horizontal surface in the Earth gravitational field gives a spectrum
of a few peV for the lowest energy states of the neutrons [[56]-[58]]. Such low en-
ergies make the observation of gravitational quantum bound states very difficult.
The primary reason for this is the weakness of the gravitational field compared to

the electromagnetic and nuclear forces.
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flat'mirror " floor" detector

Figure 1.1. Sketch of the experimental cell with a neutron beam be-
tween two plates. The neutrons bounce between the "rough" ceiling
and "smooth" floor. The neutrons with low vertical velocity, which
do not reach the ceiling get to the detector.

The first experimental observation of quantum mechanical bound states of neu-
trons in the Earth’s gravitational field was made by Nesvizhevsky et al. in 2002
[[14]-[24]] after a series of experiments in high precision neutron gravitational spec-
trometry (GRANIT). The GRANIT experiment uses the fact that neutrons have
a relatively long lifetime by sending a collimated beam of UCN to the cell through
a long complicated waveguide with reflective walls.

One can visualize in a simple way the observation of gravitationally induced
quantum states of UCN experiment. There is a collimated beam entering an
experimental cell (see Fig.1.1) consisting of a smooth "floor" and a rough "ceiling".
More details of the GRANIT experiment will be discussed below [[14]-[24]].

More explicitly, we have a collimated beam of UCN with a large horizontal

velocity on the order of ~ (5 — 15)m/s and a small vertical velocity of a few cm/s
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propagating between two parallel horizontal sapphire mirrors. The bottom mirror
or "floor" is made as close to perfect as possible. This ensures high probability of
specular reflection for the bouncing neutrons. The upper mirror or "ceiling" has
a rough surface which is made rough by simply scratching the surface [[16],[61]] .
This rough mirror effectively serves as a selector for the vertical component of the
velocity of the neutrons. The scattering by the rough ceiling makes the velocity
vector turn, which increases the vertical component of velocity and, therefore, the
probability of absorption of the neutrons by the wall material. When the vertical
velocity exceeds a certain critical value (~ 4 m/s) as a result of scattering by
roughness, the neutrons penetrate the wall and disappear. Only the neutrons with
a low vertical velocity do not reach the rough ceiling, do not scatter and, therefore,

survive.
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ucn Bear ,

| .\
Connection ~ \ \ Valve '0.2 mm slit Adjustable supports-

X
guide  Beljows
Fig. 6. From the source (left) to the trap (right): UCN guide, UCN valve, intermediate UCN storage, UCN extraction system, UCN storage trap.

Figure 1.2. The GRANIT experiment: a more technical sketch of
the experiment as a whole. The experimental cell is on the right.

The location of the waveguide is in the uppermost part of the spectrometer.
The reason for this is to isolate it from the effects of external vibrations and from
electromagnetic fields. The mirrors in the waveguide can be moved or even in-
terchanged. The positions can be adjusted vertically and horizontally depending
on what is needed in the experiment [[23]-[25]]. The configuration that we use in
this thesis is the one shown in the figure above in which the edges of the mirrors
are perfectly aligned and are of the order of 10cm long. The length represents the
minimum horizontal distance covered by the UCN inside the cell; the estimated
flight time is about 20 ms. Additionally, the vertical separation between the mir-
rors (the width of the waveguide H) can be changed. The minimal width of the
waveguide is ~ 15 pm, which is comparable to the semi-classical amplitude of the

bounces of UCN in the ground state. The quantization of the UCN by the Earth’s
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gravitational field translates into the quantization of the amplitudes of the bounces
from the floor mirror.

Ideally, the neutron count at the location of the detector should be a step
function of the width H of the waveguide. The reason why we should have a
stepwise type function is because of the quantum size effect. The quantum size
effect occurs from a gravity-induced perpendicular quantization of the motion to
the bottom of the mirror, and leads to a split in the energy spectrum into mini-
bands. It is interesting to note that the sharpness of the quantum size effect in
neutron count is related to the increase in roughness of amplitude [ rather than
the correlation radius of roughness R (see below).

The roughness of the imperfections of the ceiling mixes the gravitational states
and broadens the energy levels. Below, we provide a quantitative description of

the roughness parameters governing the surface inhomogeneities.

1.2.2. Experimental Analysis of the Mirror Roughness
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Figure 1.3. "Rough" ceiling mirror. The patches 1-5 represent the
spots where the roughness has been measured using vertical scanning
interferometry.

One of the main goals of the GRANIT project is to continuously refine the
observation of the UCN spectrum. Since the first experiments in 2002, there have
been improvements made to the GRANIT spectrometer in order to reduce uncer-
tainties in the waveguide. Various parameters such as the correlation radius of
roughness R, amplitude of roughness [, and the oscillation frequency for neutrons
in the gravitational well 7o have been adjusted and measured more accurately.
The latest improvement was the installation of a new large rough mirror on the
"ceiling".

The dimensions of the mirror are shown in the Fig.[1.3]. The UCN are propa-

gated along the 90mm long edge. The five square patches in the figure represent

90mm
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the areas where the mirror roughness has been measured. Each patch in the Figure
represents 0.504 x 0.504 mm? and consists of a matrix of ~ 2500 x 2500 experi-
mental data points for which the surface position with respect to a mean reference
plane was measured. The surface roughness was measured using Vertical Scanning
Interferometry (VSI) technique. The surface was scanned using a light source that
splits into two coherent light beams. One of the two beams is sent towards a mirror
which is coupled with a different light beam that has been reflected from a sample
(amplitude of roughness of 0.5 A). The interference patterns are then analyzed
using a CCD camera and provide a surface profile. Unfortunately however, this
technique is not perfect. For example, the measurement fails if some peak is too
sharp and therefore the beam doesn’t reflect back onto the detector. The experi-
mental data on the surface profile were analyzed numerically. It was determined
that the roughness correlation function most likely has an exponential shape. [9]
This technique though is more appropriate then other scanning techniques such
as the Atomic Force Spectroscopy. One of the reasons that VIS is better is that

the scanned surface is considerably larger than the correlation radius.

1.3. Notations and Dimensionless Variables

For the purpose of this work it is useful to introduce some uniform notations
for the calculations in both presence and absence of gravitational field. Some of
the parameters below will be used to make the equations dimensionless. We are

looking at the effects of gravity on the transport of the UCN.
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1. In this case it is useful to measure all lengths is units of:

no\ 3
(1.1) lo = <2m29> ~ 5.87 pm,

This is the amplitude of the particle bouncing in the lowest quantum state in the
presence of the Earth gravitational field.

2. The energy scale is defined by:
(1.2) eo = mgly ~ 0.602 peV,

This is the gravitational energy of the neutron in the ground state.
3. The velocity scale is defined by:

h
(1.3) vo = \/29lp = o 1.1 x 10~ *m/s.

4. The time scale is given by:

1 \Vor h
1.4 — =~ 114957
( ) To 4m Z(Q) S

This is roughly the frequency of bounces in the lowest state.

5.The width of the waveguide H in units of [ is:

H
(1.5) ——
lo
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6.The roughness correlation radius R expressed as a dimensionless variable is:

(1.6) r= E
lo

7. Similarly, the amplitude of roughness [ as a dimensionless variable is ex-

pressed as:

(1.7) n= o

8. The quantized energy levels F; of the ultra-cold neutrons in the gravitational

well are given by:
E.
1.8 = —L.
(18) ==
9. The absorption threshold U, of the mirror material is given by:

Y

U.
1.9 o
(1.9) U o

where U, ~ 100 neV, and, therefore, u. ~ 1.4 x 10°.
10. The flight time for the ultra-cold neutrons through the waveguide of the

length L is given by:

L
1.10 = —
( ) TL Ux,

In experimental conditions 77 &~ 2 x 10~2s. In dimensionless units 71, /7 ~ 26.
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11. The neutron momenta are measured in units of:

h
(1.11) w=7-
0

1.4. Theoretical Background

1.4.1. Quantum Size Effect (QSE)

Ultra-cold neutrons (UCN) are longwave particles. We are looking at UCN in
narrow waveguides in which the width is comparable to the wavelength and the
motion across the waveguide is quantized. This QSE automatically discretizes the
initially continuous equations. This quantization turns out to be very fortuitous as
it helps in numerical calculations: if we were working with a continuous system, we
would need to discretize the problem anyway. QSE leads to a split of the energy
spectrum €(p) into a set of minibands €;(q) such that e(p,,q) —€;(q), where p
is the 3D momentum, and q is the 2D momentum in the plane of the surface.
More explicitly, an initially parabolic spectrum, e(p) = p?/2m becomes

1 . mhj

— () + ¢

(1.12) €;(q)

and the 2D momentum for miniband j becomes

(1.13) i = l2mE—(T2 )
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where E' is the overall kinetic energy of particles, m is the mass of the neutrons,
H is the width of the channel.

In an ideal waveguide, the quantum levels are well defined and the states are
not mixing. Scattering by random surface inhomogeneities leads to inter- and
intraband transitions and eventually mixes and broadens the quantum states.

Sometimes, as in experiments performed at ILL (Grenoble), the waveguides,

or, more precisely, one of the neutron mirrors, are made rough on purpose.

1.4.2. Transport Equation

Studies on the effect of random surface roughness on wave or particle scattering
describe the diffusion flows of UCN along a rough waveguide. Meyerovich et al.
[[1]-[8]] developed a rigorous theoretical framework of quantum transport theory in
system with random rough boundaries. This framework incorporates the boundary
scattering directly into the bulk transport equation. It includes the roughness
of the walls explicitly into the roughness-driven transition probabilities between
quantum states. The transport equation for distribution functions n;(q) in a

miniband j has the form

dn ; d*q’
(1.14) d_tj () = 27?%: / Wijr(nj —nj)o(€jq — Ej'q')W
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where n; (q) is the distribution function of the particles, €;4 is the energy spectrum,
q is the momentum in the plane parallel to the surface, and W;; (q,q’) are the
scattering-driven probabilities of transitions between the states €; (q) and €; (q').

The probabilities of direct transitions from the lowest states to the continuous
spectrum above the threshold U, are negligible and such transitions can be disre-
garded. After integration over the energies, the transport equation acquires the

following form:

(1.15) =S [y - ag (4 - )
I
where N; is the number of neutrons in the state j, and 6 is the angle between q;
and q;.
Our goal is to find the diffusion coefficient and the mean-free path, which is
proportional to the diffusion coefficient. After standard transformations (a more
detailed derivation can be found in the Appendices) the transport equation reduces

to a set of linear equations for v; (¢;):
o vy (g;)
(1.16) Qi=-m)y_

Here ); is the momentum, the transition times 7;;; are given below by Eq.(1.24),

(1)

and v; is the first angular harmonic of the distribution function n;” = v;i(e — €r)
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at ¢ = ¢;, Ref.[[4],[5]]. The equations can be made dimensionless using

/Ij‘/lj
(117) G0 = —m Y L

Tjj/T()

J

which leads to

1.18 g =——— ~_j’
( ) ’ qoTo =~ Tjj
where

Qj ~ Vj ~ T 54t
119 q-:—7y-:_a'nd7-4.,:i_
(119 j= 7= and 7y = A

Finally, the dimensionless transport equation acquires the form:

q; = =
J hTO " Tjj’

J

1.4.3. Transition Probabilities

The roughness-driven transition probabilities between quantized states have the

following form:

(1.21) Wijr = ¢l (h) 2|y (h)[PUZ

if the absorption threshold U, is finite. Alternatively,

]' / /
(1.22) Wijr = =5 CIe5 (P15 ()
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when the absorption threshold U. — oco. Here j and j' are the miniband indices,
¢ is the correlation function of surface homogeneities (see below), ¢;(h) is the
wavefunction at the surface.

In the case of the square well potential this equation becomes the following :

5 NN
(1.23) Wij(a,q) = mgLQC(LL]) <7TL‘7) .

The transitions times in the transport equation are directly related to the angular

harmonics of these transition probabilities as follows:

(121) 23 =)

1.4.3.1. Correlation Function of Roughness. The correlation function of sur-

face roughness (CF) is defined as:

(1.25) ¢ (s]) = (E(s1)E(s1 +9) / E(s1)€(s1 + 8)dsi,

(1.26) ¢(pl) = / PseC (|s]) = 2n / " () o (gs) sds,

where € (|s|) is the exact profile of the wall and A is the area over which the
averaging is done. The mathematical form of the CF cannot be found theoretically

except in very few instances in which we have exactly solvable models of surface
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roughness. It is usually assumed that the CF has the following general form:

(1.27) ¢(z) =P (x/R)

with some function ¢ (z/R), where [ and R are the average amplitude and corre-
lation radius. However, nothing prevents the CF to acquire a more complicated
form, for example, with several correlation scales R.. In calculations we assume
that we know the shape of the CF. The most commonly used correlation functions

have either the Gaussian

(1.28) (s) = P exp(—5*/2R?),

(1.29) ¢ (q) = 271 R* exp (—q2R2/2) ,
or exponential

(1.30) ¢ (s) = *exp(—s/R)

22 R?

(1.31) ¢(q) = 1+ R

forms. Sometimes people also use a CF with a power law shape. Here R is the

correlation radius of surface inhomogeneities., r = R/ly, and the dimensionless
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amplitude is defined as n = [/ly. There are reasons to believe that the correlation
function in Grenoble experiments might be exponential, Ref.[[9]].

The angular harmonics of the Gaussian correlation function are

(1.32) ¢© = 4712 R? [e_qq/'TQIo(qq’ . r2)] e ?/2(a—q')?

(133) C(l) — 47Tl2R2 [G*QQ’.TZIl (qq/ . TZ)] 67r2/2(q7q/)2

This means the transition probabilities W, FEq(1.23), are equal to Ref.[[4]]:

N\ 2 . 2
(134) W(O,) = —ﬁ (ﬂ) <7T_j,) 471'12R2 [e—qq’~r2[o(qql . 7"2)} 6—7“2/2((1—q’)2

JJ m2L2

7 N 2 N 2 , ,
(1_35) m/j(jl’) — 373 (%) (%) 47T12R2 [e—qq .r2jl (qq/ X TZ)} 6—712/2((1—11 )2
m

In dimensionless variables,

smr2 (7i\? [(75"\? o2 RPN
(1.36) wy) = -\ 7 [e‘qq " Io(qq" - r2)] e
Vvarh \ h h
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where the dimensionless roughness parameters and r and n can be used as free
parameters in the identification of surface correlations. These two parameters are
often sufficient to describe the surface roughness.

The dimensionless transition probabilities for exponential roughness can be

written as

/
(1.38) Q=2r “
1+7%(q+¢)

aam) o) SO (Y (Y £@)
‘ 3 orh2 \ h h
2 (1 +r2(¢—¢q)’ \/1 +r2(q + Q’)z)

(1.40)
W _ 32 (W_j)Z (ﬂ>2 1+ (q+))EQ) — (1+r2(¢—¢) K ()
SR <1 +12(q—¢)* \/1 +r2(g+ q’)Q)

h

The diffusion of ultra-cold neutrons displays a strong directional upward bias
in terms of the transitions between j — j’. This bias is due to the rapid growth of
the product of the wavefunctions on the boundary |¢; (h) |2 |40 (h) ‘2. This allows
a growth of roughly as j?j”, see Eq.(1.23). There are two main consequences
of this bias. The first one being that the strong upward bias may allow one to
neglect particles returning back to the lowest states. And the second consequence

is that the time necessary for a neutron in one of the lowest gravitational states to
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diffuse upward towards the absorption barrier is spent almost entirely on the first
transition.
In the next chapter we will examine more closely the process of diffusion, and

expand upon and develop a more detailed theoretical approach.



CHAPTER 2

Diffusion Coefficient and Mean Free Path in a Rough

Waveguide

2.1. Introductory Comments

Let us examine the transition probabilities which for the sake of the numerical
computations need to be made dimensionless. Furthermore, we are going to de-
fine some parameters used in the numerical computations. In the context of our
research, we want to look at both Gaussian and exponential roughness associated
with the correlation functions (, which together with the wavefunctions at the wall
form the transition probabilities, Eq.(1.36)-Eq.(1.37) , and Eq.(1.39)- Eq.(1.40).

The transition probabilities are proportional to the square of the amplitude of
roughness 7. Therefore, the scaling of the results with the roughness amplitude 7
is trivial and in most of the computations we simply assume 17 = 1. The scaling of
the results with the correlation radius » = R/ly is complicated and is not known
beforehand. One of our main goals is to find out the dependence of the diffusion
parameters on r.

In relevant experiments the width of the channels leading to the cell is H = 50
pum, and the particle energy is £ = 150 neV; this makes i = 8.52, and e = 2.49-10°.

The highest occupied quantum level j,., satisfies the inequality,

26
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2.2
(2.1) e—%zo

Solving for jy.x we get

, | eh?
(22) Jmax = F = 1352

which means that the transport equation in this case reduces to a set of 1352

coupled equations.

2.2. The Diffusion Coefficient

The main purpose of this section of the work was to find the diffusion coefficient
and the mean free path for UCN in rough channels. We are trying to examine how
the diffusion coefficient changes under different conditions. More explicitly, we
are interested in its dependence on r. Diffusion is a process that originates from
random motion of particles when there is a net flow from one region to another. As
a result, in our case, in the presence of a concentration gradient Vp the diffusion

equation reduces to

(2.3) Lvpg=-Y Y
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where p is the particle density. Its concentration gradient Vp is a simple scal-
ing parameter, which, in the end, cancels out from the equation for the diffusion

coefficient. After this cancellation, the diffusion coefficient D becomes

1
9.4 D=-—% Quy
(2.4) m - 3'Vj

The dimensionless diffusion coefficient

j/
dj = q;v;,

do =h/m =6.3-10"%m/s>.

The dimensionless distributions v; = v/l are obtained from numerically solving

the transport equation.

2.3. Mean Free Path

We also want to calculate the particle mean-free path (MFP) in a rough
waveguide. The mean free path in very basic terms is the average distance traveled

between collisions. Here we define it with respect to the diffusion coefficient as

(2.5) L =D/,
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where v is the velocity. The dimensionless velocity

~ 1 /2
F= /222 /e
m

Vo

where vy = 1.5 - 107%m/s. The dimensionless mean free path ¢ = L/,

p=2od 2o [m d
N loVO/\7 N lo 260 \/E

As one can clearly see the MFP is intimately related to the diffusion coefficient.

2.4. Numerical Results

Before presenting the results, let us summarize the dimensionless equations
from above. The transport equation ,

mi2 < 7 (q;)
2.6 o 0 JN J ’
( ) Q] hTO Tjj’

j/

contains the transition times

2 0 1
(27) = = mz [(5jj/w](.j,), — 5j'j”w](‘j2:| .
jll

Tjj'

The dimensionless harmonics of the transition probabilities for the exponential and
Gaussian roughness correlators are given in explicit detail in the Appendix A.
For the overall and "partial" diffusion coefficients d and d; the dimensionless

equations are as follows
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j/
dj:CIj;j‘

Finally, the MFP is

2d0 m d
2. (= — | 7——F=.
( 8) lo 260\/6

Using the dimensionless equations for the transition probabilities from the pre-
vious section, we are now able to perform computations to get the diffusion coef-
ficient and MFP. The computations are done in Mathematica, where we use the
function LinearSolve [m,b] which finds an x that solves the matrix equation
m.x==Db. to get the v values. This is the part of the program that is compu-
tationally the longest as it essentially solves a system of 1352 linear equations
with complicated coefficients and varied parameters. After that, we calculate the

dimensionless partial diffusion coefficients,

(2.9) dj = vjq;

and sum them to get the overall diffusion coefficient. We easily get the MFP by

by using Eq. (2.8).
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In our numerical simulations we were using a fixed channel width h = 8.52
(the number given to us by GRANIT experimentalists) and were changing the
correlation radius of surface inhomogeneities . Before we go into the descriptions
of the various curves, it is important to note that all the curves for d(r) are
expected to have the minimum at, approximately, gr ~ 1 for both Gaussian and
exponential surface correlators. The experimental value of the particle energy is
E = 150 neV, i.e., e = 2.5 x 10°, which makes ¢; ~ 500. This means that the
minimum corresponds to very small values of r, r ~ 0.002, and cannot be resolved
on many of the curves below. The explanation for this minimum is rather simple.
The scattering by surface inhomogeneities is most effective at ¢r ~ 1 leading to a
minimum in the diffusion coefficient d (r). There could be several small minima at
q;7 ~ 1 but all corresponding values of r are small. For this reason, below we will
show mostly the results for noticeably larger values of r, i.e., to the right of the
minimum.

Fig.[2.1] presents d (r) around the minimum. The computation was done for
Gaussian inhomogeneities.; the figures for the exponential correlation function look
similar (Fig.[2.2]). Note that the values of the correlation radius close to the

minimum r ~ 0.002 are too small to be studied experimentally.
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Figure 2.1. Minima of the diffusion coefficient d(r) as a function of
the correlation radius for the Gaussian inhomogeneities. The diffu-
sion coefficient starts growing again at larger r.

Fig.[2.3] shows the total diffusion coefficient d as a function of the correlation
radius 7 of Gaussian surface inhomogeneities plotted up to » = 15. The mini-
mum d (r) is barely noticeable on this scale. We see that the diffusion coefficient
rapidly increases as the correlation radius increases. This is understandable: with
increasing r the surface becomes smoother and the effective scattering cross-section

decreases.
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Figure 2.2. Diffusion coefficient d (r) for the Gaussian surface corre-
lator over large range of r. The minima in d () cannot be resolved
on this scale.

Figures [2.5] and [2.6] show the MFP [(r) for Gaussian and exponential corre-
lation functions of surface inhomogeneities. It is hard to plot the results for the
exponential correlator on the same plot with the Gaussian one: [(r) for the expo-
nential correlator increases by orders of magnitude slower than for the Gaussian
correlator due to the fact that the Gaussian function is much sharper than the ex-
ponential function. However [(r) is increasing for both types of surface correlators.
We tested this for several different values of h Fig.[2.8]: the shapes of the curves

and the difference between them remained qualitatively the same.
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Figure 2.3. The next figure (Fig.[2.4]) shows the diffusion coefficient
for the exponential correlation function of surface roughness.

Figure [2.7] compares the MFP for Gaussian and exponential surface correlation

functions for a small range of r.

34
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Figure 2.4. Diffusion for the surface inhomogeneities with the expo-
nential correlation function over large range of r.

Similarly, Figure [2.9] illustrates the fact that the MFP [(r) for the Gaussian
and exponential correlation functions is more or less the same up to r ~ 2. Starting
from this point the result for the Gaussian correlation function increases much
faster than for the exponential function. We think the reason is that the Gaussian
function decays much faster than the exponential which manifests itself at large
values of 7.

The next few curves, Figures.[2.10 — 2.12], illustrate fitting of the MFP curves

for [(r) by the power law functions. If we look at the Gaussian correlation function
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Figure 2.5. Mean free path [ (1) for the surface with Gaussian rough-
ness over wider range of r.

d (1) in the ranges of r from 1 to 20 we get a pretty good fit using the power function

d (r) o< r? with the index p = 2.7.
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Figure 2.6. Mean free path for the surface with exponential rough-
ness over wider range of r.

Looking at d (r) in the range of r ~ 20 — 60, we also get a good fit using the
power law, with the power p = 3.5. Looking at the exponential correlation function
d (r) in the ranges of r from 1 — 40, we see that we get a good fit using the power

law, with the power p = 2.95.

2.5. Conclusions

e We calculated the diffusion coefficient and the mean free path for ultra-

cold neutrons in narrow channels with random rough walls.
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Figure 2.7. Mean-free path [ (r) for both Gaussian and exponential
correlation functions for small r.

e We have concluded that there is a complicated minimum in d (r) and £(r)
for small correlation radius r ~ 2 x 1074,

e We have also concluded that the diffusion coefficient and the MFP rapidly
increase as the correlation radius r increases, though at different rates
depending on the surface correlation function.

e The growth is not monotonic, there is more then one minimum at g; ~ 1/7.

e We compared the behavior of d (r) and £(r) for surfaces with the Gaussian

and the exponential correlation functions of surface roughness.
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Figure 2.8. MFP for Gaussian correlation function for various chan-
nel widths h = 16, 8, 4.

e The function d (r) behaves roughly as 73, though the exponent slightly
drifts with r. This seems to be an important conclusion, though we do
not have an explanation for this functional dependence.

e The computations were done for realistic values of the channel width h =
8.52. At different values of h the results were qualitatively the same.

e The growth of d (r) and L(r) for the Gaussian surface correlation function
is much slower than for the exponential correlation function.

e If one wants to effectively turn back the neutrons which got into the gaps

in the channel junctions, one should make the correlation radius of surface
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l(r)

Figure 2.9. MFP for Gaussian (1) and exponential (2) surface cor-
relation functions over a wide range of r.

roughness as small as possible, and, if possible, to have roughness with an

exponential correlation function.
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Figure 2.10. Power law fitting for the MFP [ (r) surfaces with the
Gaussian correlation function for r from 20 to 40.
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Figure 2.11. The power law fit for MFP [ (r) for Gaussian inhomo-
geneities over the range of r from 40 to 60
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Figure 2.12. Power law fit for d (r) the exponential surface correla-
tion function over a large range of r.



CHAPTER 3

Neutron Beams between Absorbing Rough Walls: Square

Well Approximation

3.1. Description of Problem

In this Chapter we deal with a slightly different UCN diffusion problem which
is more directly related to the GRANIT experiments in the ILL, Grenoble. In
experiments the UCNs travel between rough absorbing walls and the number of
UCNs exiting the cell is measured as a function of the distance between the walls.
We start from discussing the case without gravity because it is simple and will
serve as a good reference point. By comparing numerical results obtained with
and without gravity we will understand what part of the experimental results
should be directly attributed to the Earth’s gravitational field.

The neutrons in the cell are passing between the two mirrors, the perfectly

smooth bottom mirror ("floor"), and the randomly rough upper mirror ("ceiling").
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Figure 3.1. Sketch of neutron beam entering the experimental cell:
the neutrons pass between rough "ceiling" and smooth "floor".

The UCNSs entering the cell have a large horizontal velocity (~ 5 — 15 m/s)
and very small vertical velocities. When the neutrons scatter off the rough ceiling,
the velocity vector with large horizontal component turns thus increasing the ver-
tical component of the velocity. If the vertical velocity exceeds a certain velocity
threshold (the critical velocity is ~ 4 m/s), the neutrons penetrate the wall, are
absorbed, and do not reach the detector. The neutrons which manage to make
it through the cell without reaching the critical vertical velocity are not absorbed
and reach the neutron detector at the end of the cell.

The parameter that can be easily manipulated in experiment (and, of course,
in calculations) is the cell width H. In computations we look at about 1000 values
of dimensionless h = H/ly between 0 and 9. This problem differs from the setup

mentioned in the section above where we are studying the diffusion coefficient d (r)
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and the MFP not only in the fact that we are now measuring the exit neutron
count, but also in the fact that we are now dealing with absorbing walls and
time-dependent numbers of neutrons. Again, the main difference with regard to
the previous chapter on diffusion is that previously we were letting the neutrons
just bounce around without disappearing (they decay naturally at around 900 s).
Now the neutrons disappear forever as the component of the velocity normal to
the wall reaches a threshold value v/2mU, and the number of neutrons becomes
time-dependent as well.

The quantization of restricted motion is a well-known quantum phenomenon.
In the absence of gravity we are dealing with the simplest square well potential

with the energy levels

1 [(7hy 2

If one adds weak gravity, the square well gets distorted by the appearance of a
linear potential near the bottom, mgz (see Fig.[4.1]). With the presence of a linear
potential the problem still remains solvable, though there is no simple analytical

expression for the energy levels.
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n=4

Figure 3.2. Square well levels.

To recap from the experiment briefly, we are dealing with a collimated beam
being sent between two horizontal solid plates (one which is an almost ideal mirror
and the other is rough) that are at a distance of several micrometers apart. We
know that the neutrons hitting the wall with the normal velocity above 4 m/s get
absorbed by the plates. Below this threshold velocity the neutrons get reflected.
The reflection is specular locally.

First, we will neglect the presence of gravity. The effects of gravity will be

introduced later, in the next chapter.
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3.2. Wavefunction for the Square Well

We start by introducing the equation for the wavefunction on the wall in the

square well,

(3.2) W, (H) = \/% sin (%’:‘)

where H is the width of the waveguide. Below we will use the same dimensionless
variables as in the previous chapter.

To determine the roughness-driven transition probabilities, Eq.(3.7), we need
the value of the square of the wavefunction at the upper wall. The equations that
we are using can be written in terms of b; Eq.(3.3) and since it is the quantity that
has been used throughout the years in the papers by Meyerovich et al, Ref.[[1]-[8]]
it is also the notation that we will be using from here on out in this thesis. Hence,

we define the b; in dimensionless units as follows,

(3.3) b; (H) = 105W#.

In the case of the square well this reduces to

)\‘
3.4 b, = 1072
( ) J huc’
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where ); is defined as

(3.5) A = (%)2

The values of b;’s in the gravitational potential we will get from the Airy functions,
which will be discussed more in the next section. The constant 10° is here merely

as a scaling factor to avoid dealing with very small numbers.



50

bj(h)

2500

O 82 it
o000 0ttt S
A i

Figure 3.3. Coefficients b;(h) Ref[3.3] as a function of the width of
the channel h for the square well.

In Fig.[3.3] we see the values of wavefunctions squared on the wall as a function

of the width of the channel h.

3.3. Transition Probabilities and Neutron Count

As mentioned above, we are dealing with the same set of transport equations

as in the previous Chapter of diffusion and mean-free path. Here again, we start



o1

with the transport equation,

(3.6) O = 2 a0 Wy (s — asl) (N~ ).

In this section we are looking only at the exponential correlation function of the
surface inhomogeneities and are not interested in the potential Gaussian correla-
tions. The reason for this is that recent analysis of the surface roughness of the
new "rough" mirror have led us to believe that the surface roughness is exponen-
tial rather than Gaussian Ref.[9] We therefore use the transition probabilities with
the exponential correlation function. Since we previously introduced the transition
probabilities, we will write them directly in dimensionless variables,

(3.7) wil) = %;ZZ <%>2 (%],)2 <1 +r2(g— q/)]jE;?Jr 2 (q+ Q’)2)

(3.8)
wll) = 3’%22 <ﬂ> (m) (147 (t]i i;(ii?z Z/ 51:;(;:1 z))mg)

h

Y

h

where

_ oy qq’
. e \/ (L+r2(g+q))

and F (Q) and K (Q) are elliptical integrals.
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As above we use the transition probabilities to get the dimensionless transition

-1

frequencies 7,

1 0 1
27 4

we can now write the neutron exit count in terms of these relaxation times in a

simple form

(3.11) N(;V(OL) = exp (—%) :

33’

where 77, is the time of flight of the UCN between the mirrors and 7; are the

eigenvalues of Fq. (3.10).

3.4. Numerical Results

Initially, we want to start off by defining and discussing the parameter that we
introduce, S1. The S1 parameter is a cutoff parameter. If we were to numerically
solve the above equations for the whole system, we would be solving more than 103
coupled linear equations with complicated coefficients. Solving a system of that
many equations is computationally very expensive time-wise even with modern
computers, as each value takes approximately 30 min, and we do 900 iterations
over values of h from 9 to 1 for each r. Therefore, we wanted to examine if
there were a reasonable cutoff, which would keep enough equations to not lose

much accuracy in the calculations, while also being much less expensive time-wise
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computationally. To identify the S1 cutoff, we simply run the computations using
more and more equations until we see that there is a saturation in the results. The
saturation point becomes our cutoff point. We define that parameter as S1. In this
section we are presenting some of our numerical results.

As we see in the figures below, Fig.[3.4]-Fig.[3.9], we are plotting the number of
neutrons exiting the waveguide as a function of the size of the matrix S1. As one
can see from all these figures presenting the exit neutron count as a function of S1
for various values of r and h, in all the cases S1 ~ 300 can serve as a good cutoff
parameter. From this point onward, we choose in all computations S1 ~ 300 and
just occasionally check the results for larger matrices.

As a next step, we compute the dependence of the exit neutron count N, on r
and h. The following figures show N, (h) for r = 1;5;10; 30. The data in the figures
show that, in principle, the neutron count is very sensitive to both r and h. The
common feature is that the exit neutron count is always extremely small except for
very small values of h and large values of r. For practical purposes this means that
taking into account the small number of ultra-cold neutrons entering the waveguide,
we should not expect any neutrons exiting at all. The obvious conclusion is that
the existence of neutrons exiting the cell in the Grenoble experiments is due only to
the Earth gravitational field (see the next section). Though this gravitational field
is extremely weak, without it the neutron count would have shown zero neutrons

exiting the cell with rough walls.
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Figure 3.4. N, as a function of the cutoff parameter S1 for h = 8
and r = 0.65. Here we can see the initial increase.

As we can see from the plot, Fig.[3.10], representing the total neutron count as
a function of h for very small r = 0.1, already at large h the number of surviving
neutrons goes to zero almost immediately when we have such a small correlation
radius.

For r = 1, Fig.[3.11], we see that the depletion of the total neutron count to
zero is slightly less rapid, though it also goes to zero very quickly around h = 9.4.
Though again, if one pays attention to the N.(h) axis, we see that the number

starts from what is essentially zero to begin with.
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Figure 3.5. Neutron count as a function of the size of the matrix S1
for h = 8 and r = 0.65. We can see how it saturates nicely, at about
S1 = 300. In this plot we are looking at N, over a larger scale.
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Figure 3.6. N, as a function of the size of the matrix S1 for h =5
and r = 0.65. We are looking at NN, closer scale, so that we can see
the inital increase and gradual saturation.
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Figure 3.7. Saturation of the neutron count as a function of the size
of the matrix S1, for h = 5 and r = 0.65.
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Figure 3.8. N, as a function of the matrix size S1 for h = 3 and
r = 0.65. We are looking at NV, closer scale, so that we can see the
inital increase and gradual saturation.

400

The results for the total neutron count for r = 5, Fig.[3.12] are consistent with

the above results, though now the neutron count goes to zero for the width size of

h=38.7.
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Figure 3.9. Neutron count as a function of the cutoff parameter S1
and r = 0.65 for h = 3.

In the last two plots, we are computing the total neutron count N, (h) over
the full range of h for r = 10 (Fig.[3.13]) and r = 30 (Fig.[3.14]). As with all the
results that we presented previously for varying r, we observe again that as we
increase the radius of roughness the total neutron count goes to zero slower which

here means at a smaller width size h.
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Figure 3.10. N, (h) as a function of h for r = 0.1.

We see in Fig.[3.15] the total neutron count as a function of the radius of rough-
ness r. It’s clear that only as the radius increases and becomes very large, the total
neutron count becomes noticeable. The explanation is relatively simple. At very
large r the walls become essentially flat and reflection is practically specular. Un-
der these conditions the normal component of velocity remains small and neutrons

do not penetrate the walls.
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Figure 3.11. N, (h) as a function of h for r = 1.

Figure [3.16] similarly shows the total neutron count over various r, for h = 5.

Again only for large r does the neutron count become non-zero.
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Figure 3.12. N, (h) as a function of h for r = 5.

The last two figures, Fig.[3.17]. and Fig.[3.18]., show that, as in the previous
ones, the neutron count becomes non-negligible only for large r for h = 7 and
h =9, respectively. This is consistent with the theory that, for large enough r
or in the limit that » — oo we will not have any roughness and therefore all the

neutrons will make it to the detector.

3.5. Conclusions

The main conclusions for this section are as follows.
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Figure 3.13. N, (h) as a function of h for r = 10.

e Irrespective of the well width and the correlation radius, a good cutoff
parameter for all computations is around S1 = 300.

e As we increase the radius of roughness 7, the total neutron count goes to
zero for at a slower rate, meaning for smaller and smaller values of h.

e However, as we can see from the plots, the numbers that we get for N, (h)
are always extremely small, so essentially all the neutrons die almost im-
mediately.

e As we will see in the following section, this is not the case for the gravita-

tional well. Hence, we can say that the square well approximation is very
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Figure 3.14. N, (h) as a function of h for r = 30.

poor for this particular problem: though the weak Earth gravitational
field introduces only a small distortion near the bottom of the potential

well, its effect on the neutron survival rate is very profound.
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Figure 3.15. Total neutron count N, as a function of different corre-
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Figure 3.16. Total neutron count NN, as a function of different corre-
lation radii r for well width h = 5.
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Figure 3.17. Total neutron count NN, as a function of different corre-
lation radii r for well width h = 7.
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Figure 3.18. Total neutron count NN, as a function of different corre-
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CHAPTER 4

Neutrons in the Rough Waveguide in the Presence of
Gravity

4.1. Gravity-Imposed Changes: Similarities and Differences with the

Previous Chapter

In this Chapter we are looking at the same setup as in the previous Chapter but
in the presence of the Earth’s gravitational field. The purpose is twofold: to give an
accurate description of the experiments of the Grenoble group and to understand
what part of the observed anomalies can be attributed to the gravitational field. In
the case of the gravitational well, we are dealing with a slightly different geometry
than the square well. Of course, this change is due to the effect of the gravitational
field. A sketch of this potential well is provided below (Fig.[4.1]). For the sake of
comparison, the next figure (Fig.[4.2]) shows the dependence of the lowest energy

levels on h for both the square well and the gravitational well.

67
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Figure 4.1. Sketch of the gravitational well as a function of z.

As we can see in the Figure below, we are looking at the first three eigenvalues
for both the square well and gravitational potentials as a function of the width h.

It is clear from this figure that for small i there is hardly any difference between
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Figure 4.2. The first three eigenvalues for both the square well and
the gravitational well as a function of the well width h. For better
comparison, the bottom of the square well is chosen in the middle of
the bottom of the gravitational well, mgh/2, and is drifting with h.
The eigenvalues for the gravitational well are the lower curves, for
the SW-the upper.

the lowest eigenvalues of these two potentials; for larger h the differences become
significant.

Formally the transport equations for the rough waveguides with and without
gravity are the same as Eq.(1.14). However, the transition probabilities are dif-
ferent. This difference, though significant, is related mostly to the values of the

wavefunctions on the walls, i.e., to the coefficients b, (h), Eq.(4.2).
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Figure 4.3. A few coefficients b;’s as a function of well width size h
for both the square (lower curves) and the gravitational wells (upper
curves).

4.2. Results from the Preceding Work: the Biased Diffusion

Approximation

The preceding work used what the authors called the biased diffusion approx-
imation. Since the transitions j — j’ show a strong upward bias due to the factor
b;b; in the transition probabilities W;; (essentially the factor j2;" in Eq.(1.23)),
the probabilities for the neutrons to return back to the lower states j after they

jump to a higher state j' appear to be small and can be neglected. Then the
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|j(h)

Figure 4.4. The first nine coefficients b; as a function of the width

of the channel h for the gravitational well. The lowest curve is by
and the highest by.

absorption times 7; are

1
(4.1) —=m
Tj

do
> [ 5 s = s,

Jj>j'
where 6 is the angle between q; and q,/. Note, that since the absorption threshold

u, is very high (~ 10%), direct transitions from the lower levels over the threshold

are negligible.
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What is more, the absorption times for neutrons that initially occupy some of
the lowest minibands j differ from each other mostly by the values of the coefficients
b;,

10°1¢)5 (H)

(4.2) b, 5

and therefore the above equation Eq.(4.1) becomes,

1 b1
(4.3) — ==

Tj bl T1

where 71 is the depletion time for the neutrons in the first (or lowest) gravitational
state. Note that this equation loses its accuracy for large values of j. Here we also
note that the b; are the dimensionless values of @Z)jz (H).

The justification for biased diffusion is that the transition rates (7';]}) between
the states (j and j') rapidly increase with both of these quantum numbers. Since
the rates of the direct absorption processes also rapidly increase as j gets larger,
this means that the neutron lifetimes in the higher states are orders of magnitude
shorter then the lifetimes in the lower states. Therefore the diffusion of a neutron
between energy levels has a strong upward bias. The increase in the jump rate
from j to j' is moderated only by the correlation function, which is determined
by the correlation radius r and starts rapidly decreasing at large |j — j'| r. This is
why w;; acquires a narrow peak centered at j; >> j Fig.[4.5] The bias is so strong

that almost all the time 7; spent for the neutron in a low gravitational state to
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transition up to higher states and over the absorption barrier is spent in the first
transition upwards.
The values of 7; determine the depletion time of each quantum state. The

overall exit neutron count is

(4.4) Ne=> N;=> N;(0)exp(—L/v;7)),

where N; (0) is the number of neutrons in a state j entering the waveguide of
length L. Additionally, for the lowest levels the velocities v; are almost the same,
v; &~ y/evp. The equation above can be rewritten using v; ~ \/evy and we can
directly get all the 7;. Then it is easy for us to get the total neutron count which
is just a sum over all j. In the end, in the biased diffusion approximation all the
pertinent parameters of roughness and the waveguide entering the exit neutron

count collapse into a single variable ® Ref[8] and we get an analytical solution,

N,

(4.5) ;V(Oh) = Z exp (—®b; (h))

where ® is a complicated weighted integral of the correlation function that is

dependent on the correlation radius. If the roughness is two-dimensional,

1
(4.6) ¢ = A27727‘2/ 2, (y1,y (2)) dz
0
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and

9\ 3/2 t
(4.7) Ay = <—> X 107° Zu.e/?,

s To

where 1, (y1,y) is the dimensionless zeroth harmonic of the correlation function

¢ (laj — q;|) over the angle between the vectors q; and q;/, and y; = 7/, y (2) =
nv1—z2

We can write the relaxation time 7, for the lowest gravitational state as

1 do
(48) 7_—1 = mZ/%WM (|q1_qj’

)

where 0 is the angle between the vectors q; and q;. Finally, after replacing the

summation by the integration.

(4.9) 70 _ 9 % 107502 (2)21)1 (h) Fs (r, 1) .

T1

where

2, [!
(4.10) Fy(r,h) ~rty [ = / dz 29, (y1,9) -
™" Jo

When we combine the equations Eq.(4.9) and Eq.(4.10) we get the following equa-

tion,

1
(4.11) & (1,7) = Agrr? / dz 24y (91, )
0
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This concludes the description of the preceding work, which provides the approx-
imate analytical expression to the exit neutron count. We will now describe how
we deal with the same problem computationally without relying on the biased

diffusion approximation.

4.3. Exact Calculation of the Absorption Time

In our case we are not using the biased diffusion approximation, but actually
using the brute force technique to solve the full set of transport equations numer-
ically.

As a result, we do not get a nice analytical solution to the problem. Instead we
use the full matrix, meaning the matrix with transitions upwards and downwards,
for which we can only get a numerical solution. The structure of the diagonal and
off-diagonal elements in the matrix transport equations is different. The diagonal
elements have the structure defined below in Eq.(4.12), where for an element in
row j we are summing over all the elements j'. The off-diagonal elements are
simpler: these are simply w;;;. We rewrite the transition probabilities 1V}, defined
in Eq.(1.22) that represent the diagonal elements of the matrix, in a notation that
is closer to the one that was used in the most recent papers in this field. Therefore

specifically for diagonal elements of our matrices, when j = j', we write,

2
(412) Fj (’I", h) = \/; X 10_57“4bj Z bj/’lﬂz (?/1, yj’) ,

J'#3
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where ), (y1,y;/) here also represents the dimensionless zeroth harmonic of the
correlation function over the angles between the vectors q; and q;. Since we
are not working under the context of biased diffusion, we can only perform our
computations numerically.

We have off-diagonal elements in our matrix for square well are defined in

dimensionless units as

(413)  wjy = %;7; (%)2 (%],)2 <1 +72(q — Q')l:i;zl) et q/)Q) |

where

_ oy qq’
(4.14) Q=2 \/(1 e

Hence our total matrix, which we will call M;; looks like

Fiy wi2 .. - W1smax
Wa1 . C W2s max
(4.15) M;; =
W2s max . . Fs max,s max

More detailed mathematics regarding the Fj;; = F} (r, h) for the discrete case

will be available in Appendix C.
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We do not have a simple analytical description of the gravitational states sim-
ilar to that for the square well states in the previous chapter. However, for the
states with high index j, and especially at small h, the difference between the
gravitational and square well states is negligible. Therefore, for higher states we
can replace the gravitational states by the square well states.

As a result, our square matrix of transition probabilities acquires a block struc-
ture. One block representing the transitions between gravitational states, two of
the blocks represent the transitions between the lower gravitational states and
higher square well states, and the third block represents the transitions between
higher square well states. Once we have the total matrix with all the block compo-
nents, we are numerically computing the eigenvalues and eigenvectors of the total
matrix. We can write the neutron exit count in terms of these absorption times 7,

in quite a simple form,

(4.16) Nj\;(oh) = ; P <_Tjt(Lh)) ’

where t7, is the time of flight of the UCNs between the mirrors. Note that the

above equation was introduced in the previous section and chapter as it is a general

equation that can be used with and without the biased diffusion approximation.
It is interesting to note that the center of the peak of the transition probabilities

W, for transitions from j to j’ is located at some j; >> j, see Fig.[4.5] for example.
27
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Figure 4.5. The transition probabilities Wi; as a function of

j'exhibit the peak around j' = 100.

The peak is very high and relatively narrow.

4.4. Numerical Results

In this section we present the main results of the thesis as pertaining to the
Grenoble experiments. As in the previous section regarding the square well poten-
tial, we are now looking at the exit neutron count in the gravitational potential.
The gravitational potential was introduced in a previous chapter. However, we will
reproduce a schematic figure here. In this figure, the particles on the lowest three

levels "classically" do not reach the rough ceiling, do not scatter, and survive for a
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long time. The particles from the higher levels are actively scattered on the rough
ceiling, go rapidly upwards, and get absorbed by the walls. When the width of
the waveguide h becomes smaller, all the levels are rapidly squeezed up (see Fig.

below).
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Figure 4.6. Potential with Earth’s gravity field.

Though here we do not present a figure to show the saturation of the total
neutron count as a function of the cutoff parameter S1, after doing many numerical
simulations, it was determined from the results that the cutoff parameter was
more or less the same as in the case of the square well potential, meaning that
S1 =300 is a good cutoff size to maintain high accuracy in the calculations, while
simultaneously keeping the computation time sufficiently short.

The series of figures below present the neutron count N, as a function of h for
several values of the correlation radius r. In all figures the roughness correlation

function is assumed to be exponential with the average amplitude n = 1.02. The
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current rough mirror used by the Grenoble group probably has r = 0.65 and
1n = 1.02. As one can see, all the figures are similar, though the curves slowly shift
to the left with increasing r. This is understandable: the surface becomes flatter

with increasing r and the neutrons survive longer.
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Figure 4.7. Neutron exit count as a function of h, for experimental parameters.

Figure [4.6] shows the neutron count N, (h) as a function of the width of the well
h. The results are slightly different when you increase r, though we can see that for
small A the difference is insignificant. Even for large h the difference is not huge,
especially when you consider that the experimental r = 0.65 (Fig.[4.6]) is very
small compared to r = 5 (Fig.[4.9]) or r = 10 (Fig.[4.10]). When we compare the
figures of neutron count as a function of well width, we see one main feature; that is
that as r increases, the curves becomes increasingly smoother. From these figures
we see, much like with the square well potential, when you increased the radius

of roughness r, the neutrons lived longer and they can be detected even for very
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Figure 4.8. Neutron count as a function of h for correlation radius
radius of roughness » = 0.1.

small width A. This is happening as well in the case of the gravitational potential.
We see that as the radius of roughness gets larger and larger, the neutrons survive
for smaller and smaller well width sizes.

For very large r, for example in the figures where r = 500 (Fig.[4.15]) and
r = 1000 (Fig.[4.16]), we see that the curve flattens and we don’t have the well
defined steps that we see at smaller values of r, implying that the discrete energy
levels cannot be detected so easily as with smaller . However, it should be noted
that this flattening happens only for unrealistically large r. In general the steps

on the curves are very robust and the first bump remains detectable even for very
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Figure 4.9. Neutron count as a function of h for correlation radius
of roughness » = 1. This is approximately twice the experimental
value of 7.

large r. This of course is due to the fact that the neutrons are not scattering and
dying but instead can easily make it to the end of the cell and to the detector
since they are not influenced by roughness for large r. The ideal conditions for
scattering are at gr ~ 1. From this condition we know that as r gets larger and
larger and goes to infinity, we will have specular reflection.

The last figures, Fig.[18 — 20] show the neutron exit count for fixed widths
h = 9,5,3 respectively. As we can see for all three widths, the neutron exit

count increases as the correlation radius increases. This is because as we increase
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Figure 4.10. Neutron count as a function of h for correlation radius
of roughness r = 5.

the correlation radius, the ceiling becomes smoother, and therefore there is less

scattering and absorbtion by the rough wall.

4.5. Conclusions

It is interesting to compare these results with the previous results without

gravity in the square well section.

e The dependence of the exit neutron count on r was much more significant
in the case of the square well potential: N, (1) at fixed h changed by many

orders of magnitude.
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Figure 4.11. Neutron count as a function of h for correlation radius
of roughness r = 10.

e It is interesting to note that the ratio of the relaxation times for the
diagonal case (in which we do not take into account the transitions between
the states, meaning the cases where j # j') and the case described in this
section (where we allow all the transitions, and not just the biased ones, to
be taken into account) 7 giqq/7 ru is close to 1. This was rather unexpected.

e It is also interesting to note that the ratio of the results for the matrix in
the square well potential and the matrix in the gravity potential goes to

one as h goes to 0, Tjsqweit/Tjgrav — 1 @8 h — 0 since all the levels are
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Figure 4.12. Neutron count as a function of h for correlation radius
of roughness r = 20.

being squeezed up and the difference in potentials near the bottom of the
well looses its significance.

e The major result of this section is the exit neutron count in the presence
of gravity. It illustrates the total neutron count N.(h) as a function of
the width of the channel h. When comparing this result to the work done
previously using the biased diffusion approximation, we see that the curves
are similar. This means that the biased diffusion approximation is indeed

a very robust approximation.
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Figure 4.13. Neutron count as a function of h for correlation radius

of roughness r = 30.
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38

e In almost all computations the exit neutron count as a function of cell

width N, (h) retained the step-wise nature. This may be considered as a

unequivocal proof of quantization of neutron motion by the Earth gravi-

tational field.
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Figure 4.14. Neutron count as a function of h for correlation radius
of roughness r = 50.
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CHAPTER 5

Summary and Conclusions

5.1. Main Conclusions

In summary, the main goal of this thesis was to provide a rigorous theoretical
description for the diffusion of ultra cold neutrons (UCN) through narrow rough
channels. We used the general transport theory of particles along rough surfaces to
the gravitationally quantized diffusion of UCN in a rough waveguide. We looked at
two separate problems: diffusion of the neutrons through rough waveguides on the
way from the reactor to the experimental cell and the neutron count for neutrons
exiting experimental cell with absorbing walls in the square well potential as well
as the gravitational potential. We used numerical calculations to investigate the
effect of two types of random roughness on the diffusion coefficient, as well as
to evaluate the neutron count using the experimental input parameters in both
potentials.

The main content of Chapter 2 is the calculations of the diffusion coefficient
and the mean free path for ultra-cold neutrons in narrow channels with random
rough walls. We determined that if one wants to effectively turn back the neutrons
which got into the gaps in the channel junctions, one should make the correlation

radius of surface roughness as small as possible. We compared the behavior of d (r)
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and [(r) for surfaces with the Gaussian and the exponential correlation functions
of surface roughness. We found that there is a complicated minimum in d(r)
and [(r) for small correlation radius r ~ 2 x 107*. Additionally we found that
the diffusion coefficient and the MFP rapidly increase as the correlation radius r
increases, though at different rates depending on the surface correlation function.
The growth of the diffusion coefficient and MFP is not monotonic, there is more
then one minimum at ¢; ~ 1/r. We saw that at large r the function d (r) behaves
roughly as 7%, where the exponent slightly drifts with r. The computations were
done for realistic values of the channel width A = 8.52. At different values of h the
results were qualitatively the same. The growth of d (r) and I(r) for the Gaussian
surface correlation function is much faster than for the exponential correlation
function. As a result, it is preferable to have the junction walls with exponential
correlation of inhomogeneities.

The conclusions for Chapter 3 regarding the UCN in the square well potential
are as follows: Irrespective of the well width and the correlation radius, a good
cutoff parameter for all computations is around S1 = 300. We see that as the
radius of roughness r increases, the total neutron count goes to zero for smaller
and smaller values of h. However, as we can see from the plots, the numbers
that we get for N.(h) are always extremely small, so essentially all the neutrons
die almost immediately. As we will see in this Chapter, this is not the case for
the gravitational well. Hence, we can say that the square well approximation is

very poor for this particular problem: though the weak Earth gravitational field
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introduces only a small distortion near the bottom of the potential well, its effect
on the neutron survival rate is very large.

The main conclusion for Chapter 4 is the exit neutron count in the presence
of gravity. It illustrates the total neutron count N.(h) as a function of the width
of the channel h. When comparing this result to the work done previously using
the biased diffusion approximation, we see that the curves are similar. This means
that the biased diffusion approximation is a very robust approximation. This result
was a somewhat surprising result. Other conclusions include the following. The
dependence of the exit neutron count on r was much more significant in the case
of the square well potential where N, (r) at fixed h changed by many orders of
magnitude. It is interesting to note that the ratio of the relaxation times for the
diagonal case (in which we do not take into account the transitions between the
states, meaning the cases where j # j') and the case described in this Chapter
(where we allow all the transitions, and not just the biased ones to be taken
into account) Tgiae/7run is close to 1. This was rather unexpected. It is also
interesting to note that the ratio of the results for the square well potential and
the gravitational potential goes to one as h goes to 0, T;sqweit/Tjgrav — 1 as h — 0
since all the levels are being squeezed up and the difference in potentials near the

bottom of the well loses its significance, see Figure above.
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5.2. Recommendations for Future Work

Using rough mirrors as a quantum state selector can be extended beyond this
series of GRANIT experiments. Some of the more exciting experiments include
the observation of quantum gravitational states for other ultra-cold particles and
anti-particles in the context of the GBAR experiment at CERN.

One of the main goals of the GBAR experiments is to measure the acceleration
in free fall of ultra-cold neutral anti hydrogren atoms in the Earth’s gravitational
field. The experiment entails using anti hydrogen ions, which consist of one an-
tiproton supplied by the ELENA deceleration ring at CERN and two positrons
created by the linac, and cooling them below 10 yK with Beryllium plus ions.
Their positive charge makes them easier to manipulate. Using lasers, their veloc-
ity can be reduced to half a meter per second. Once they are trapped by an electric
field, one of their positrons will be removed with laser, which will make it neutral.
Hence, at this point the Earth’s gravitational field will be the only force acting
upon them, and they will be able to free fall a given distance, and their time of fall
could be measured. The results of this experiment are much anticipated, because
it could potentially mean that gravity might have a different effect on antimatter
then it does on matter.

For the past 60 years, there has also been an ongoing search for the neutron
electric dipole moment (nEDM). Over the course of the decades the accuracy of

(negative) results has been improved by many orders of magnitude. The nEDM
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potentially violates CP symmetry, meaning that it violates the presumption that
if a particle and a respective anti particle are interchanged, while their spatial
coordinates are inverted, then the laws of physics should remain the same. The
goal of these ongoing and future nEDM experiments is to improve the sensitivity
for detection nEDM by orders of magnitude. One of the experiments being done
at Oak Ridge National Laboratory is to create a three-component fluid described
as isotopically purified Helium-4, a trace amount of spin-polarized Helium-3, and
spinpolarized ultra-cold neutrons. Then once that fluid has been created, it should
be exposed to a small but homogeneous magnetic field and a large electric field.
The nEDM could then be measured by looking at the neutron precession frequency
which is linearly dependent on the magnitude of the electric field strength, and
whose sign is dependent on the alignment between the magnetic and electric fields.

Above are just examples of the experiments that are ongoing or planned for the
near future, however, our theoretical work on the use of rough mirrors as quantum

state selectors are well suited for dealing with these and similar applications.



APPENDIX A

Dimensionless Transition Probabilities

In this Appendix we make the equations for the harmonics of the transition
probabilities dimensionless. According to Ref.[[2]], the angular harmonics of the
transition probabilities for surfaces with Gaussian correlations of surface inhomo-

geneities. are

(A1)
N 2 N
Wit = () () Q@) Eon-QQ)Bapl- (@ - @),

5 N2 /N2

where wy = m7g, with 79 = (4mi2)/(v/27h). As a result the dimensionless equa-
tions become

(A.3)

-\ 2 N 2 9
u = () () amite® (2228 ) 1@ Bep(-QQ) Bap(~5(@-@))
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o1 8mn’r?

(A5) wjj, - m
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Therefore, our final equation for the transition probability for the Gaussian

correlator becomes

(A.6)
1 T 2 (7i\? /7mi"\? , , 1 ,
i = 5= (i) (#) (7‘7) 01(QQ) Erpl~QQ) Eap(—5(Q ~ Q')

Note that in computations we assume the scaling parameter n = 1.
Additionally, in the same way, we derive the dimensionless transition probabil-

ities for the exponential roughness,
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APPENDIX B

Asymptotic Expansion for Transition Probabilities for

Surfaces with Exponential Roughness Correlator

Here we present an asymptotic expansion for the transition probabilities for
the surfaces with the exponential roughness correlator.

We need an asymptotic expression for:
(B.1) Bap(—a2) * (Io(2?) — 1 («?))
At large x,

(B.2) Io(2?) ~ %j (1 - (g—;) + (%) — )

since

(B.3) Iy(?) ~ %;;2) (1 + (é))
and,

ma ne)~EED (- () (U )
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(B.5) Ii(a?) ~ %j (1 - (%))

As a result,

(B.6)

8 9 N N 2 1
v’ = 7= (3) (%) (%) 10.1)(QQ) Eap(~QQ) Eap(~5(Q - Q')

If we replace the exact transition probabilities by these asymptotic expansions,
we get almost identical numerical results. We tried using this expansion to see if

we could speed up computation time



APPENDIX C
Diagonal Elements of Transition Probabilities for the
Biased Diffusion Approximation

In this Appendix we try to replace the summation over discrete states in
Eq.(4.12) by integration. Starting from the equation, Eq.(4.12) and using the

following definitions,

s
1 b, = 10°—
(C ) J huc7
7T2j2
2 —5,4
Fy(r,h) = - X 10™°r Zbﬂ/}Q (y1,y;)
§'>1

we can rewrite this expression in the following way

(C.3) Fy(r,h) = th1o%A§:m5 Y1)
j'>1
2 A
(C.4) = V;#;;hi Yir)
2
(C.5) = ;T(MW)E:]wzwﬂﬂ

j'>1
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3
1 2

Now note that A" =22, and y = %, therefore we know that N =2 (%) It

should also be noted that we can write ( ) as follow,

(C.6) (%) = ( 1/2> ( 1/2><h7;2c)
(C.7) - 7rx3/2) h3u? Zi

Wl

(C.8) -

T\3/2

hence we can rewrite Fy (1, h) as,

2 12
(C.9) Fy(r,h) = \/;7«4 u 3/2> e Z] ¥y (Y1, Y1)

j'>1

Now to make this a continuous function we can replace the sum by an integral,

5 2/2 1 (N
(C.10) Fy(r,h) = \/;7“4 (m@’”) e /1 3%s (y1,yy)

) . . 2
where we substitute z = /%/ and dj = dz and then we can write z* = XW The

above equation now becomes,

2., w’\ 1 [, .,
(Cll) F2 (T,h) = ;7“ 7TX3/2 ,/\?/0‘ ZN dZN wg (yl,yj/)

5 Yy 1
4 c 2
(C.12) = \/;r —1p /0 dz 2%y (Y1, yj)

which is Eq.(4.10) in the main text. This equation was used in Ref??.
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