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ABSTRACT

This dissertation investigates the dynamics of some second-order difference

equations and systems of difference equations whose defining functions satisfy cer-

tain monotonicity properties. In each study we utilize the theory for specific classes

of monotone difference equations to establish local and global dynamics.

Manuscript 1 is an introduction that provides fundamental definitions and

important results for difference equations that are used throughout the rest of the

thesis.

Manuscript 2 presents some potential global dynamic scenarios for competitive

systems of difference equations in the plane. These results are extended to apply

to the class of second-order difference equations whose transition functions are

decreasing in the first variable and increasing in the second. In particular, these

results are applied to investigate the following equation as a case study:

xn+1 =
Cx2n−1 + Exn−1
ax2n + dxn + f

, n = 0, 1, . . . , (1)

where the initial conditions x−1 and x0 are arbitrary nonnegative numbers such

that the solution is defined and the parameters satisfy C,E, a, d, f ≥ 0, C+E > 0,

a+ C > 0, and a+ d > 0. A rich collection of additional dynamical behaviors for

Equation (1) are established to provide a nearly complete characterization of its

global dynamics with the basins of attraction of equilibria and periodic solutions.

Manuscript 3 considers the following second-order generalization of the clas-

sical Beverton-Holt equation:

xn+1 =
af(xn, xn−1)

1 + f(xn, xn−1)
, n = 0, 1, . . . . (2)

Here f is a continuous function nondecreasing in both arguments, the parameter

a is a positive real number, and the initial conditions x−1 and x0 are arbitrary

nonnegative numbers such that the solution is defined. Local and global dynamics



of Equation (2) are presented in the event f is chosen to be a certain type of

linear or quadratic polynomial. Particular consideration is given to the existence

problem of period-two solutions.

Manuscript 4 presents an order-k generalization of Equation (2),

xn+1 =
af(xn, xn−1, . . . , xn+1−k)

1 + f(xn, xn−1, . . . , xn+1−k)
, n = 0, 1, . . . , k ≥ 1, (3)

where f remains a function nondecreasing in all of its arguments, a > 0, and

x0, x−1, . . . , x1−k ≥ 0. We examine several interesting examples in which f is

a transcendental function. This manuscript establishes conditions under which

Equation (3) possesses a unique positive equilibrium that is a global attractor of

all solutions with positive initial conditions. In particular, results are presented

for the special case in which f(x, . . . , x) is chosen to be a concave function.
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PREFACE

This thesis has been prepared in manuscript form. The main content of the

thesis is made up of three research papers: Manuscripts 2, 3, and 4. Manuscript

2 was submitted for publication on March 25, 2018 to Advances in Difference

Equations, and Manuscripts 3 and 4 will be submitted for publication in the near

future.
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MANUSCRIPT 1

Introduction

1.1 Second-Order Difference Equations

Discrete dynamical systems describe the evolution of a quantity or population

whose changes are measured over discrete time intervals. Difference equations

may be thought of more specifically as recurrence relations that describe a discrete

dynamical system by relating the size of the next state (or generation), often

denoted xn+1, to some function of the sizes of several past states xn, xn−1, . . . . For

example, a second-order autonomous difference equation may take the form

xn+1 = f(xn, xn−1), n = 0, 1, . . . , (1)

where f : I × I → I with I ⊆ R, and the initial conditions x0 and x−1 are

arbitrary elements from I. For each choice of initial conditions, Equation (1) has

a unique solution {xn}∞n=−1. Much initial investigation in this field of research

focuses on describing the local dynamics of such difference equations by examining

the short-term trajectory of solutions for different choices of initial conditions.

The paramount goal is to determine the global dynamics of a difference equation

by analytically characterizing the end behavior of all solutions as n→∞.

1.2 Local Stability Analysis

To develop the necessary vocabulary we will utilize to study second-order dif-

ference equations, we will first reference some fundamental definitions provided in

[5]. All definitions will accommodate the second-order Equation (1), but analo-

gous statements will hold for equations of higher order or systems of difference

equations. In particular, related preliminary material may be found in [6].

Definition 1 A number x ∈ I satisfying x = f(x, x) is called an equilibrium, or
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fixed point, of Equation (1).

Definition 2 Let x be an equilibrium of Equation (1).

(i) x is called locally stable if for every ε > 0, there exists δ > 0 such that for all

x0, x−1 ∈ I with |x0 − x|+ |x−1 − x| < δ, we have

|xn − x| < ε for all n ≥ −1.

(ii) x is called locally asymptotically stable if it is locally stable and if there

exists γ > 0 such that for all x0, x−1 ∈ I with |x0 − x|+ |x−1 − x| < γ, we have

lim
n→∞

xn = x.

(iii) x is called a global attractor if for every x0, x−1 ∈ I we have

lim
n→∞

xn = x.

(iv) x is called globally asymptotically stable if it is locally stable and a global

attractor.

(v) x is called unstable if it is not stable.

(vi) x is called a repeller if there exists r > 0 such that for all x0, x−1 ∈ I with

0 < |x0 − x|+ |x−1 − x| < r, there exists N ≥ 1 such that

|xN − x| ≥ r.

A repeller is an unstable equilibrium.

Let

P =
∂f

∂u
(x, x) and Q =

∂f

∂v
(x, x)

denote the partial derivatives of the function f(u, v) used in Equation (1) evaluated

at an equilibrium x. The equation

yn+1 = Pyn +Qyn−1, n = 0, 1, . . . (2)

2



is called the linearized equation associated with Equation (1) about x. The

quadratic equation

λ2 − Pλ−Q = 0 (3)

is called the characteristic equation of the linearized equation (2) associated with

Equation (1). The nature of the solutions of Equation (3) provide a classification

of the local character of an equilibrium x. The following result (Theorem 2.13 of

[6] or Theorem 1.1.1 of [5]) summarizes the potential cases that will be used to

classify the local stability of equilibria.

Theorem 1 Consider an equilibrium x of Equation (1).

(i) x is locally asymptotically stable if and only if every solution of Equation

(3) lies inside the unit circle, which is true if and only if

|P | < 1−Q < 2.

(ii) x is a repeller if and only if every solution of Equation (3) lies outside the

unit circle, which is true if and only if

|P | < |1−Q| and |Q| > 1.

(iii) x is a saddle point if and only if Equation (3) has one root that lies inside

the unit circle and one root that lies outside the unit circle, which is true if and

only if

|P | > |1−Q|.

(iv) x is nonhyperbolic if and only if Equation (3) has at least one root that lies

on the unit circle, which is true if and only if

|P | = |1−Q| or (Q = −1 and |P | ≤ 2) .

Much of our work will investigate the existence of periodic solutions of prime period

two. The general definition of a periodic solution is given below.
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Definition 3 A solution {xn} of Equation (1) is said to be periodic with period

p if

xn+p = xn for all n ≥ −1. (4)

A solution {xn} is said to be periodic with prime period p, or a minimal

period-p solution, if it is periodic with period p and p is the least positive integer

for which Equation (4) holds.

1.3 Monotone Systems of Difference Equations

One can also consider systems of difference equations of the form

{
xn+1 = g(xn, yn)
yn+1 = h(xn, yn)

, n = 0, 1, . . . , (5)

where g and h are given functions and the initial condition (x0, y0) comes from

some considered set in the intersection of the domains of g and h. A great deal

of theory has been established for such systems in the event the defining functions

obey certain monotonicity restrictions.

Definition 4 Let R be a subset of R2 with nonempty interior, and let T : R→ R

be a continuous map. Set T (x, y) = (g(x, y), h(x, y)). The map T is competitive

if g(x, y) is nondecreasing in x and nonincreasing in y while h(x, y) is nonincreasing

in x and nondecreasing in y. If both g and h are nondecreasing in x and y, we

say that T is cooperative. If T is competitive (resp. cooperative), the associated

system of difference equations (5) is said to be competitive (resp. cooperative). The

map T and the associated system of difference equations are said to be strongly

competitive (resp. strongly cooperative) if the adjectives nondecreasing and

nonincreasing are replaced by increasing and decreasing, respectively.

Competitive and cooperative systems have been widely studied, largely due to

their applicability to biological modeling. These monotone systems rank among the
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most important classes of systems that model interspecies relationships. Relevant

research in evolutionary biology may be found in [2, 4]. The theory developed

for such systems provides useful insight into the global dynamics of difference

equations such as Equation (1) above.

Difference equations defined by Equation (1) are of particular interest when

the function f is monotone in each of its variables. Such difference equations

have direct applications to the study of two-generation population dynamics. In

particular, this dissertation examines two main classes of difference equations that

satisfy prescribed monotonicity characteristics, and we may now elucidate their

connection to competitive and cooperative systems. In general, Equation (1) may

always be transformed via a suitable change of coordinates to a corresponding

system of difference equations. Set xn−1 = un and xn = vn to obtain the equivalent

system

un+1 = vn
vn+1 = f(vn, un)

, n = 0, 1, . . . .

Let T (u, v) = (v, f(v, u)). The second iterate T 2 is given by

T 2(u, v) = (f(v, u), f(f(v, u), v)) .

If f is a function nonincreasing in the first argument and nondecreasing in the sec-

ond, the second iterate of its corresponding map, T 2, is competitive; see [8]. Gen-

eral dynamic scenarios for Equation (1) when f exhibits this monotonic character

(and, more generally, for competitive systems) will be presented in Manuscript 2.

If f is a function nondecreasing in both arguments, then T 2 is cooperative. Indeed,

Manuscripts 3 and 4 will investigate Equation (1) for a class of functions that are

always nondecreasing in both arguments.

We now present some general results discussed in [3, 8] for order-preserving

maps that provide an essential foundation for many consequential results estab-

lished for competitive and cooperative systems. More specific background material
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is presented in Manuscript 2 that is tailored to competitive systems.

Let � be a partial order on Rn with nonnegative cone P . For ~x, ~y ∈ Rn the

order interval J~x, ~yK is the set of all ~z such that ~x � ~z � ~y. We say ~x ≺ ~y if

~x � ~y and ~x 6= ~y, and ~x � ~y if ~y − ~x ∈ int P . A map T on a subset of Rn is

order-preserving if T (~x) � T (~y) whenever ~x ≺ ~y, strictly order-preserving

if T (~x) ≺ T (~y) whenever ~x ≺ ~y, and strongly order-preserving if T (~x)� T (~y)

whenever ~x ≺ ~y. The next result is stated for order-preserving maps on Rn.

Theorem 2 For a nonempty set R ⊆ Rn and a partial order � on Rn, let T : R→

R be an order-preserving map, and let ~a,~b ∈ R be such that ~a ≺ ~b and J~a,~bK ⊆ R.

If ~a � T (~a) and T (~b) � ~b, then J~a,~bK is invariant and:

(i) There exists a fixed point of T in J~a,~bK.

(ii) If T is strongly order-preserving, then there exists a fixed point in J~a,~bK which

is stable relative to J~a,~bK.

(iii) If there is only one fixed point in J~a,~bK, then it is a global attractor in J~a,~bK

and therefore asymptotically stable relative to J~a,~bK.

We say that {~xn}n∈Z is an entire orbit of a map T : A → A, A ⊆ Rn if

~xn+1 = T (~xn) for all n ∈ Z. This orbit is said to join ~u1 to ~u2 if ~xn → ~u1 as

n → −∞ and ~xn → ~u2 as n → ∞. The following result is for strictly order-

preserving maps.

Theorem 3 (Order Interval Trichotomy of Dancer and Hess) Let ~u1 �

~u2 be distinct fixed points of a strictly order-preserving map T : A → A, where

A ⊆ Rn, and let I = J~u1, ~u2K ⊆ A. Then at least one of the following holds.

(a) T has a fixed point in I distinct from ~u1 and ~u2.

(b) There exists an entire orbit {~xn}n∈Z of T in I joining ~u1 to ~u2 and satisfying

~xn � ~xn+1.

6



(c) There exists an entire orbit {~xn}n∈Z of T in I joining ~u2 to ~u1 and satisfying

~xn+1 � ~xn.

We also have the following powerful corollaries.

Corollary 1 If ~a and ~b are stable fixed points, then there exists a third fixed point

in J~a,~bK.

Corollary 2 If the nonnegative cone of � is a generalized quadrant in Rn, and if

T has no fixed points in J~u1, ~u2K other than ~u1 and ~u2, then the interior of J~u1, ~u2K is

either a subset of the basin of attraction of ~u1 or a subset of the basin of attraction

of ~u2.

These results have been utilized in papers such as [1] to determine the basins of

attraction of certain fixed points; moreover, they provide a theoretical foundation

for the investigation of the dynamics of competitive and cooperative systems. In

particular, Kulenović and Merino have proven general results for monotone systems

in [7, 8, 9, 10] that establish the existence of certain invariant curves that may

separate regions of different dynamical behaviors for special cases of System (5).

In many cases such curves will be classified as the stable or unstable manifolds for

saddle-point equilibria. We will utilize such results to establish the global dynamics

of several monotone difference equations in Manuscripts 2 and 3.
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Abstract

In this paper we present some global dynamic scenarios for general competitive

maps in the plane. We apply these results to the class of second-order autonomous

difference equations whose transition functions are decreasing in the variable xn

and increasing in the variable xn−1. We illustrate our results with the application

to the difference equation

xn+1 =
Cx2n−1 + Exn−1
ax2n + dxn + f

, n = 0, 1, . . . ,

where the initial conditions x−1 and x0 are arbitrary nonnegative numbers such

that the solution is defined and the parameters satisfy C,E, a, d, f ≥ 0, C+E > 0,

a + C > 0, and a + d > 0. We characterize the global dynamics of this equation

with the basins of attraction of its equilibria and periodic solutions.

2.1 Introduction

Consider the second-order quadratic-fractional difference equation

xn+1 =
Cx2n−1 + Exn−1
ax2n + dxn + f

, n = 0, 1, . . . , (1)

where the parameters satisfy C,E, a, d, f ≥ 0, C + E > 0, and a + C > 0, and

the initial conditions x−1 and x0 are arbitrary nonnegative numbers such that

x−1x0 > 0 when f = 0. We also stipulate that a+ d > 0 to avoid overlap with the

study of quadratic difference equations in [1]. Notice that Equation (1) is a special

case of the equation

xn+1 =
Cx2n−1 + Exn−1 + F

ax2n + dxn + f
, n = 0, 1, . . . , (2)

where F = 0. For Equation (1) we will precisely define the basins of attraction of

all attractors, which consist of the equilibrium points, period-two solutions, and

points at infinity. Our investigation of the global character of Equation (1) will be

based on the theory of competitive systems.
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The special case of Equation (1) where C = a = 0 is one of the semi-implicit

discretizations of the logistic differential equation

dy

dt
= ry(t)

(
1− y(t)

K

)
,

where r andK are positive constants that represent the growth rate and sustainable

population level, respectively. The more general logistic differential equation

dy

dt
= ry(t)

(
1− y(t)

K
− y(t)2

M

)
,

where r,K,M are positive constants, will have Equation (1) as one of its discretiza-

tions. Thus Equation (1) has potential applications in population dynamics. In

particular, the special case of Equation (2) with C = a = 0 and d = 1, or

xn+1 =
Exn−1 + F

xn + f
, n = 0, 1, . . . ,

was thoroughly studied in [12] and led to the formulation of the global period-

doubling bifurcation result in [18]. We thus exclude the case when both C and a

are zero to avoid overlap with previously studied results.

Both Equations (1) and (2) are special cases of the general second-order

quadratic-fractional difference equation

xn+1 =
Ax2n +Bxnxn−1 + Cx2n−1 +Dxn + Exn−1 + F

ax2n + bxnxn−1 + cx2n−1 + dxn + exn−1 + f
, n = 0, 1, . . . , (3)

where all parameters are nonnegative numbers and the initial conditions x−1 and

x0 are arbitrary nonnegative numbers such that the solution is defined. A great

deal of special cases of Equation (3) have been studied in [2, 11, 13, 14, 21, 22] that

may engender various different dynamical phenomena. For example, the equation

xn+1 =
x2n−1

ax2n + bxnxn−1 + cx2n−1
, n = 0, 1, . . . ,
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was studied in [11] and also uses the theory of monotone maps given in [18, 19].

However, the global dynamics of this equation is vastly dissimilar to that of

Equation (1). Indeed, the authors in [11] reveal the coexistence of a sole locally

asymptotically stable equilibrium point and a locally asymptotically stable

minimal period-two solution. Equation (1), on the other hand, can have as

many as three isolated fixed points with a saddle-point period-two solution. The

possible dynamic scenarios for Equation (1) will provide motivation for obtaining

corresponding results for general second-order difference equations in Section 2.3.

Many other interesting special cases of Equation (3) have been studied in

[13, 21, 22, 23] and exhibit rich dynamical behaviors that include the Allee effect,

period-doubling bifurcation, Neimark-Sacker bifurcation, and chaos. More special

cases in which the numerator of Equation (3) is quadratic and the denominator is

linear are treated in [7, 8, 14].

The following theorem from [5] applies to Equation (1):

Theorem 1 Let I be a set of real numbers and f : I×I → I be a function which is

nonincreasing in the first variable and nondecreasing in the second variable. Then,

for every solution {xn}∞n=−1 of the equation

xn+1 = f (xn, xn−1) , x−1, x0 ∈ I, n = 0, 1, . . . , (4)

the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 of even and odd terms of the solution

are eventually monotonic.

The consequence of Theorem 1 is that every bounded solution of Equation (4)

converges to either an equilibrium, a period-two solution, or a singular point on
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the boundary, as in the case of the difference equation

xn+1 =
ax2n−1

xn + xn−1
, n = 0, 1, . . . , a ∈ (0, 1),

where x−1, x0 > 0 and all solutions converge to 0. Thus we aim to determine the

basins of attraction for both bounded and unbounded solutions. Herein lies the

utility of the theory of monotone systems, of which several important results are

introduced in the Preliminaries.

This paper is organized as follows. Section 2.2 gives some preliminary results

about monotone maps in the plane which will be used in Section 2.3 to give some

global dynamic scenarios for such maps and for Equation (4), where the transition

function f is nonincreasing in the first variable and nondecreasing in the second

variable. Section 2.4 will apply the results of Section 2.3 to the study of the global

dynamics of Equation (1). The global dynamics of Equation (1) is interesting and

includes five major dynamic scenarios described in Theorem 9 as well as several

additional scenarios that include the existence of an infinite number of equilibrium

solutions in Theorem 10, an infinite number of period-two solutions in Theorem

11, and a case when the solution is explicitly exhibited in Theorem 10.

2.2 Preliminaries

In this section we provide some basic facts about competitive maps and sys-

tems of difference equations in the plane from [18, 19, 20].

Definition 1 Let R be a subset of R2 with nonempty interior, and let T : R→ R

be a continuous map. Set T (x, y) = (f(x, y), g(x, y)). The map T is competitive if

f(x, y) is nondecreasing in x and nonincreasing in y while g(x, y) is nonincreasing

in x and nondecreasing in y. If both f and g are nondecreasing in x and y, we

say that T is cooperative. If T is competitive (resp. cooperative), the associated
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system of difference equations{
xn+1 = f(xn, yn)
yn+1 = g(xn, yn)

, n = 0, 1, . . . , (x−1, x0) ∈ R (5)

is said to be competitive (resp. cooperative). The map T and the associated system

of difference equations are said to be strongly competitive (resp. strongly coopera-

tive) if the adjectives nondecreasing and nonincreasing are replaced by increasing

and decreasing, respectively.

Definition 2 A fixed point x̄ of the map T is hyperbolic if no root of the char-

acteristic equation evaluated at x̄ is on the unit circle. A fixed point x̄ of T is

nonhyperbolic of stable (resp. unstable) type if one root of the characteristic equa-

tion evaluated at x̄ is on the unit circle and the other one is inside (resp. outside)

the unit circle. Finally the fixed point x̄ of the map T is nonhyperbolic of resonant

type if both roots of the characteristic equation evaluated at x̄ are on the unit

circle.

Definition 3 The southeast partial order on R2 is defined such that (x1, y1) �se

(x2, y2) if x1 ≤ x2 and y1 ≥ y2. A strict inequality between points may be defined

such that (x1, y1) ≺se (x2, y2) if (x1, y1) �se (x2, y2) and (x1, y1) 6= (x2, y2). An

even stronger inequality may be defined such that (x1, y1) �se (x2, y2) if x1 < x2

and y1 > y2. (Similar orderings may be defined for the northeast partial order

defined such that (x1, y1) �ne (x2, y2) if x1 ≤ x2 and y1 ≤ y2.)

Remark 1 A competitive map T : R → R is monotone with respect to the

southeast order; that is, ~x �se ~y implies that T (~x) �se T (~y) for all ~x and ~y in R.

A strongly competitive map T satisfies the property that, for all ~x and ~y in R, if

~x ≺se ~y, then T (~x)�se T (~y).

The following definition comes from [25].
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Definition 4 A competitive map T : R → R is said to satisfy condition (O+) if

for every ~x, ~y ∈ R, T (~x) �ne T (~y) implies ~x �ne ~y.

A result of deMottoni-Schiaffino [9] generalized by Smith [25] yields that all

bounded solutions of a competitive map satisfying condition (O+) must converge.

Now we provide some theorems from [18, 19, 20] that will be of particular

importance in our investigation of the global dynamics of Equation (1). The first

two results hold for any kind of unstable fixed points of competitive maps; see [20].

Theorem 2 Let R = (a1, a2)× (b1, b2), and let T : R → R be a strongly compet-

itive map with a unique fixed point x̄ ∈ R, and such that T is twice continuously

differentiable in a neighborhood of x̄. Assume further that at the point x̄ the map

T has associated characteristic values µ and ν satisfying 1 < µ and −µ < ν < µ,

with ν 6= 0, and that no standard basis vector is an eigenvector associated to one

of the characteristic values.

Then there exist curves C1, C2 in R and there exist p1, p2 ∈ ∂R with p1 <<se x̄ <

<se p2 such that

(i) For ` = 1, 2, C` is invariant, north-east strongly linearly ordered, such that

x̄ ∈ C` and C` ⊂ Q3(x̄) ∪ Q1(x̄); the endpoints q`, r` of C`, where q` �ne r`,

belong to the boundary of R. For `, j ∈ {1, 2} with ` 6= j, C` is a subset of

the closure of one of the components of R\Cj. Both C1 and C2 are tangential

at x̄ to the eigenspace associated with ν.

(ii) For ` = 1, 2, let B` be the component of R \ C` whose closure contains p`.

Then B` is invariant. Also, for x ∈ B1, T n(x) accumulates on Q2(p1) ∩ ∂R,

and for x ∈ B2, T n(x) accumulates on Q4(p2) ∩ ∂R.
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(iii) Let D1 := Q1(x̄) ∩R \ (B1 ∪ B2) and D2 := Q3(x̄) ∩R \ (B1 ∪ B2).

Then D1 ∪ D2 is invariant.

Corollary 1 Let a map T with fixed point x̄ be as in Theorem 2. Let D1, D2 be

the sets as in Theorem 2. If T satisfies (O+), then for ` = 1, 2, D` is invariant,

and for every x ∈ D`, the iterates T n(x) converge to x̄ or to a point of ∂R. If T

satisfies (O−), then T (D1) ⊂ D2 and T (D2) ⊂ D1. For every x ∈ D1 ∪ D2, the

iterates T n(x) either converge to x̄, or converge to a period-two point, or to a point

of ∂R.

In the case of a saddle point or nonhyperbolic fixed point of stable type we

have more precise results given in [18, 19].

Theorem 3 Let T be a competitive map on a rectangular region R ⊂ R2. Let

x̄ ∈ R be a fixed point of T such that ∆ := R ∩ int (Q1(x̄) ∪ Q3(x̄)) is nonempty

(i.e., x̄ is not the NW or SE vertex of R), and T is strongly competitive on ∆.

Suppose that the following statements are true.

a. The map T has a C1 extension to a neighborhood of x.

b. The Jacobian JT (x̄) of T at x has real eigenvalues λ, µ such that 0 < |λ| <

µ, where |λ| < 1, and the eigenspace Eλ associated with λ is not a coordinate axis.

Then there exists a curve C ⊂ R through x̄ that is invariant and a subset of

the basin of attraction of x̄, such that C is tangential to the eigenspace Eλ at x̄, and

C is the graph of a strictly increasing continuous function of the first coordinate

on an interval. Any endpoints of C in the interior of R are either fixed points or

minimal period-two points. In the latter case, the set of endpoints of C is a minimal

period-two orbit of T .

We shall see in Theorem 5 that the situation where the endpoints of C are

boundary points of R is of interest. The following result gives a sufficient condition

for this case.
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Theorem 4 For the curve C of Theorem 3 to have endpoints in ∂R, it is sufficient

that at least one of the following conditions is satisfied.

i. The map T has no fixed points nor periodic points of minimal period two

in ∆.

ii. The map T has no fixed points in ∆, det JT (x) > 0, and T (x) = x̄ has no

solutions x ∈ ∆.

iii. The map T has no points of minimal period-two in ∆, det JT (x̄) < 0, and

T (x) = x̄ has no solutions x ∈ ∆.

For maps that are strongly competitive near the fixed point, hypothesis b. of

Theorem 3 reduces just to |λ| < 1. This follows from a change of variables that

allows the Perron-Frobenius Theorem to be applied. Also, one can show that in

such case no associated eigenvector is aligned with a coordinate axis. The next

result is useful for determining basins of attraction of fixed points of competitive

maps.

Theorem 5 (A) Assume the hypotheses of Theorem 3, and let C be the curve

whose existence is guaranteed by Theorem 3. If the endpoints of C belong to ∂R,

then C separates R into two connected components, namely

W− := {x ∈ R \ C : ∃y ∈ C with x �se y} and

W+ := {x ∈ R \ C : ∃y ∈ C with y �se x} ,

such that the following statements are true.

(i)W− is invariant, and dist(T n(x), Q2(x̄))→ 0 as n→∞ for every x ∈ W−.

(ii)W+ is invariant, and dist(T n(x), Q4(x̄))→ 0 as n→∞ for every x ∈ W+.

(B) If, in addition to the hypotheses of part (A), x̄ is an interior point of R

and T is C2 and strongly competitive in a neighborhood of x̄, then T has no periodic

17



points in the boundary of Q1(x̄)∪Q3(x̄) except for x̄, and the following statements

are true.

(iii) For every x ∈ W− there exists n0 ∈ N such that T n(x) ∈ intQ2(x̄) for

n ≥ n0.

(iv) For every x ∈ W+ there exists n0 ∈ N such that T n(x) ∈ intQ4(x̄) for

n ≥ n0.

If T is a map on a set R and if x̄ is a fixed point of T , the stable set Ws(x̄)

of x̄ is the set {x ∈ R : T n(x)→ x̄} and the unstable set Wu(x̄) of x̄ is the set{
x ∈ R : ∃{xn}0n=−∞ ⊂ R s.t. T (xn) = xn+1, x0 = x, and lim

n→−∞
xn = x̄

}
When T is non-invertible, the set Ws(x̄) may not be connected and be made up

of infinitely many curves, or Wu(x̄) may not be a manifold. The following result

gives a description of the stable and unstable sets of a saddle point of a competitive

map. If the map is a diffeomorphism on R, the sets Ws(x̄) and Wu(x) are the

stable and unstable manifolds of x̄.

Theorem 6 In addition to the hypotheses of part (B) of Theorem 5, suppose that

µ > 1 and that the eigenspace Eµ associated with µ is not a coordinate axis. If the

curve C of Theorem 3 has endpoints in ∂R, then C is the stable set Ws(x̄) of x̄,

and the unstable set Wu(x̄) of x̄ is a curve in R that is tangential to Eµ at x̄ and

such that it is the graph of a strictly decreasing function of the first coordinate on

an interval. Any endpoints of Wu(x̄) in R are fixed points of T .

Remark 2 We say that f(u, v) is strongly decreasing in the first argument and

strongly increasing in the second argument if it is differentiable and has first partial

derivative D1f negative and second partial derivative D2f positive in a considered

set. The connection between the theory of monotone maps and the asymptotic
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behavior of Equation (4) follows from the fact that if f is strongly decreasing in

the first argument and strongly increasing in the second argument, then the second

iterate of a map associated to Equation (4) is a strongly competitive map on I×I.

Set xn−1 = un and xn = vn in Equation (4) to obtain the equivalent system

un+1 = vn
vn+1 = f(vn, un)

, n = 0, 1, . . . .

Let T (u, v) = (v, f(v, u)). The second iterate T 2 is given by

T 2(u, v) = (f(v, u), f(f(v, u), v)) ,

which is strongly competitive on I × I; see [18, 19].

Remark 3 The characteristic equation of Equation (4) at an equilibrium point

(x, x),

λ2 −D1f(x, x)λ−D2f(x, x) = 0,

has two real roots λ, µ which satisfy µ < 0 < λ and |λ| < µ whenever f is strongly

decreasing in the first variable and strongly increasing in the second variable. Thus

the applicability of Theorems 3-6 depends on the existence and nonexistence of a

minimal period-two solution.

2.3 Main Results

In this section we present some global dynamic scenarios for competitive maps

which are motivated by some dynamic scenarios for Equation (1). Thus different

global dynamic scenarios for Equation (1) will be examples of general global results

for competitive maps.

Theorem 7 Consider the competitive map T generated by system (5) on a rectan-

gular region R. Suppose T has no minimal period-two solutions in R, is strongly

competitive on intR, and is C2 in a neighborhood of any fixed point.
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(a) Assume T has a saddle fixed point E2 and either a singular point or another

fixed point E1, E1 �ne E2, where E1 is the southwest corner of the region

R. If E1 is a fixed point, assume it is a repeller or nonhyperbolic. Then

every nonconstant solution which starts off the stable manifold Ws(E2) will

approach the boundary of the region R. See Figure 1 for visual illustration.

In Cases (b)–(e), assume T has at least three fixed points E1, E2, E3, where

E1 ≺se E2 ≺se E3, E1, E3 are saddle points, and E2 is locally asymptotically

stable and is the southwest corner of the region R. Assume that the Jacobian

JT (x̄) of T evaluated at both E1 and E3 has real eigenvalues λ, µ such that

0 < |λ| < 1 < µ and the eigenspace Eλ associated with λ is not a coordinate

axis. Finally, suppose that the left vertical (resp. bottom horizontal) boundary

of R without E2 is Wu(E1) (resp. Wu(E3)).

(b) In addition to the hypotheses listed above, suppose T has two additional fixed

points E4 and E5 such that Ei �ne E4 �ne E5 for i = 1, 2, 3, E4 is a

repeller, and E5 is a saddle point. Then every solution which starts below

(resp. above) the union of the stable manifolds Ws(E3) ∪ Ws(E5) (resp.

Ws(E1)∪Ws(E5)) will approach the boundary of the region R. Every solution

which starts between the stable manifolds Ws(E1) and Ws(E3) converges to

E2. See Figure 2 for visual illustration.

(c) Assume exactly the hypotheses listed above. Then every solution which starts

below (resp. above) the manifold Ws(E3) (resp. Ws(E1)) will approach the

boundary of the region R. Every solution which starts between the stable

manifolds Ws(E1) and Ws(E3) converges to E2. See Figure 3 for visual

illustration.

(d) In addition to the hypotheses listed above, suppose T has an additional fixed
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point E4 such that Ei �ne E4 for i = 1, 2, 3 and E4 is nonhyperbolic of

unstable type. Assume that no standard basis vector is an eigenvector associ-

ated to either of the characteristic values of E4. Then there exist continuous,

nondecreasing, and invariant curves C1, C2 (with C1 above C2) which emanate

from E4 such that the region between the curves is invariant. The region below

(resp. above) the union of invariant curvesWs(E3) ∪ C2 (resp. Ws(E1) ∪ C1)

is invariant, and every solution which starts in either region will approach

the boundary of R. If T satisfies condition (O+), for every initial point

(x0, y0) between C1 and C2 the corresponding solution either converges to E4

or approaches the boundary of R. See Figure 4 for visual illustration.

(e) In addition to the hypotheses listed above, suppose T has an additional fixed

point E4 such that Ei �ne E4 for i = 1, 2, 3 and E4 is a repeller. Assume

that no standard basis vector is an eigenvector associated to either of the

characteristic values of E4. Then there exist continuous, nondecreasing, and

invariant curves C1, C2 (with C1 above C2) which emanate from E4 such that

the region between the curves is invariant. The region below (resp. above)

the union of invariant curvesWs(E3) ∪ C2 (resp. Ws(E1) ∪ C1) is invariant,

and every solution which starts in either region will approach the boundary

of R. If T satisfies condition (O+), for every initial point (x0, y0) between C1

and C2 the corresponding solution approaches the boundary of R. See Figure

5 for visual illustration.

Proof.

(a) The existence of the global stable and unstable manifolds of the saddle point

equilibrium is guaranteed by Theorems 3-6. In any case Ws(E2) has end-

points on the boundary of R. In view of Theorem 5 every solution which

starts in W− eventually enters intQ2(E2) and every solution which starts in
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W+ eventually enters intQ4(E2). If ~x0 = (x0, y0) ∈ W+, then there exists

m ∈ N such that ~z = Tm(~x0) ∈ intQ4(E2). Regardless of whether ~z is above

or below Wu(E2), one can find ~u ∈ Wu(E2) such that ~u �se ~z. By mono-

tonicity of the map T , this implies that T n(~u) �se T n(~z) for all n ∈ N, and

so

lim
n→∞

T n(~u) �se lim
n→∞

T n(~z).

In a similar way the case when the initial point ~x0 ∈ W− can be handled.

(b) The existence of the global stable manifolds of E1, E3, E5 and the global

unstable manifold of E5 is guaranteed by Theorems 3-6; see also [24]. Indeed,

by Theorems 3 and 4, both Ws(E1) and Ws(E3) have endpoints at E4, and

Ws(E5) has endpoints at E4 and some point on the boundary of R. Since

no other equilibria exist in Q2(E5) ∪ Q4(E5), Wu(E5) has endpoints on the

boundary of R. Furthermore, the left vertical boundary of the region R with

the exception of E2 is the unstable manifold of E1 and the bottom horizontal

boundary of the region R with the exception of E2 is the unstable manifold

of E3.

Let J~a,~bK be the order interval consisting of all ~c ∈ R2 such that ~a �ne ~c �ne
~b. Consider an arbitrary initial point ~x0 = (x0, y0) ∈ int JE1, E3K. Then there

exist some projections onto the unstable manifolds Wu(E1) and Wu(E3), Py

and Px, respectively, such that Py �se ~x0 �se Px, which implies that

T n(Py) �se T n(~x0) �se T n(Px)

for each n ∈ N. Since lim
n→∞

T n(Py) = lim
n→∞

T n(Px) = E2 we obtain that

lim
n→∞

T n(~x0) = E2. If ~x0 ∈ ∂ (JE1, E3K) \ (Wu(E1) ∪Wu(E3) ∪ E2) then

T (~x0) ∈ int JE1, E3K and the result follows.
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Now suppose ~x0 ∈ B\JE1, E3K, where B denotes the region between the

stable manifolds Ws(E1) and Ws(E3). Then there must exist ~sl ∈ Ws(E1)

and ~su ∈ Ws(E3) such that ~sl �se ~x0 �se ~su. But then

T n (~sl) �se T n ( ~x0) �se T n (~su) ,

and thus T n ( ~x0) ∈ JE1, E3K for n sufficiently large, which implies that

lim
n→∞

T n( ~x0) = E2.

Now suppose ~x0 ∈ intQ4(E5). Then there exists ~u ∈ Wu(E5) so that ~u �se

~x0, which implies

T n (~u) �se T n (~x0) ,

and thus the solution approaches the boundary of the region R. The treat-

ment is similar for ~x0 ∈ intQ2(E5).

Suppose ~x0 ∈ Q1(E5). Without loss of generality suppose ~x0 is to the right

of Ws(E5) (otherwise the treatment is analogous) so that there exists some

~p ∈ Ws(E5) such that ~p �se ~x0. We claim that there exists some n such

that T n(~x0) ∈ intQ4(E5). Certainly for any n it is the case that T n(~p) �se

T n(~x0). For a contradiction suppose T n(~x0) → E5 as n → ∞. But then

for some n, T n(~x0) ∈ Ws
loc(E5), the local stable manifold tangential to the

eigenspace Eλ. Since in a small neighborhood of E5 we have thatWs
loc(E5) ⊆

Ws(E5), we now have the relation T n(~p) �se T n(~x0), but any points on this

invariant curve are not comparable with respect to the southeast ordering.

By continuity of T the only finite points to which any solution may converge

are fixed points, and therefore it must be the case that eventually the solution

enters intQ4(E5).

Suppose ~x0 ∈ JE2, E5K\JE2, E4K. In any case we can compare ~x0 to a point
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on Ws(E5) and show using a similar argument as that used above that the

corresponding solution must enter either intQ4(E5) or intQ2(E5) (in which

case we can apply the previous results to establish the long-term behavior of

the solution).

Finally suppose ~x0 ∈ JE2, E4K\B. By comparing ~x0 to some point on either

Ws(E3) or Ws(E1) as appropriate, we may utilize a similar argument as

before to deduce that the corresponding solution cannot converge to E3 or E1.

Thus there exists some n ∈ N such that T n(~x0) ∈ intQ4(E5) (or T n(~x0) ∈

intQ2(E5)), and we can apply the results of the previous case to complete

the proof.

(c) The proofs used to show that the region between the stable manifoldsWs(E1)

and Ws(E3) is the basin of attraction of E2 and that solutions with initial

conditions starting outside this region will approach the boundary of the

region are similar to those provided in case (b) and will be omitted.

(d) The proof used to show that the region between the stable manifoldsWs(E1)

and Ws(E3) is the basin of attraction of E2 is the same as in case (b) and

will be omitted. In view of the main result in [24] there exists a most unsta-

ble manifold Wu
max(E4), which is the graph of a decreasing function passing

through E4, which at E4 is tangent to the eigenspace that corresponds to

the largest (in absolute value) eigenvalue. The existence of the invariant

curves C1, C2 is guaranteed by Theorem 2 applied to the open rectangular

region R′ = intR, in which T has only the interior fixed point E4. The

endpoints q1 and q2 of the full curves C1 and C2, respectively, should coin-

cide with the fixed points E1 and E3 on the boundary. The proofs that nth

iterates of points which start in the invariant region below Ws(E3) ∪ C2

(resp. above Ws(E1) ∪ C1) are approaching the boundary of the region R
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are similar to those provided in case (b); also, see Theorem 2 (ii). If an

initial point ~x0 = (x0, y0) ∈ Q1(E4) is between C1 and C2, then there exist

points ~ci ∈ Ci, i = 1, 2, such that ~c1 �se ~x0 �se ~c2. In view of Corollary 1,

if T additionally satisfies condition (O+) then the solution approaches the

boundary of the region or T n (~x0)→ E4 as n→∞.

(e) The proof for this case is analogous to that provided in case (d) and will be

omitted. Note that if T satisfies condition (O+) then every solution with

initial point ~x0 = (x0, y0) ∈ Q1(E4) between the curves C1 and C2 must

approach the boundary of the region since in this case E4 is a repeller and

has trivial basin of attraction.

2

Figure 1. Visual illustration of part (a) of Theorem 7.

In the case of Equation (4) we have the following results which are direct applica-

tions of Theorem 7. See [10] for similar results.

Theorem 8 Consider Equation (4) on a rectangular region R = [a, b) × [a, b),

where b ≤ ∞. Assume that f is decreasing in the first variable and increasing in

the second variable on (a, b)2 such that f is C2 in a neighborhood of any fixed point.
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Figure 2. Visual illustration of part (b) of Theorem 7.

Figure 3. Visual illustration of part (c) of Theorem 7.

Figure 4. Visual illustration of part (d) of Theorem 7.
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Figure 5. Visual illustration of part (e) of Theorem 7.

(a) Assume that Equation (4) has one saddle equilibrium point x > a and that a

is either a repelling (or nonhyperbolic) equilibrium point or a singular point of

R. If Equation (4) has no minimal period-two solutions, then every noncon-

stant solution which starts off the stable manifold Ws((x, x)) will approach

the boundary of the region R.

In Cases (b)–(e), assume that Equation (4) has a locally asymptotically

stable equilibrium point a and the unique minimal period-two solution

{a, p, a, p, . . .}, with p > a, such that P1 = (a, p) and P2 = (p, a) are saddle

points. Assume further that the Jacobian JT 2(x̄) of T 2, where T is the map

corresponding to Equation (4), evaluated at both P1 and P2 has real eigenval-

ues λ, µ such that 0 < |λ| < 1 < µ and the eigenspace Eλ associated with λ is

not a coordinate axis. Finally, suppose thatWu(P1) = {(x, y) : x = a, y 6= a}

and Wu(P2) = {(x, y) : y = a, x 6= a}.

(b) In addition to the hypotheses listed above, assume that Equation (4) has two

additional equilibrium points x2, x1 such that x2 > x1 > a, x1 is a repeller,

and x2 is a saddle point. Then every solution which starts between the stable

manifolds Ws(P1) and Ws(P2) converges to (a, a) while every solution which
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starts below Ws((x2, x2)) ∪ Ws(P2) (resp. above Ws((x2, x2)) ∪ Ws(P1)) is

approaching the boundary of the region R.

(c) Assume exactly the hypotheses listed above. Then every solution which starts

between the stable manifoldsWs(P1) andWs(P2) converges to (a, a) while ev-

ery solution which starts below Ws(P2) (resp. above Ws(P1)) is approaching

the boundary of the region R.

(d) In addition to the hypotheses listed above, assume that Equation (4) has

an additional equilibrium point x such that x > a and x is nonhyperbolic

of unstable type. Assume that no standard basis vector is an eigenvector

associated to either of the eigenvalues of the Jacobian JT 2(x̄) evaluated at

(x, x). Then there exist two continuous and nondecreasing curves C1 and

C2 (with C1 above C2) which start at (x, x) and serve as the boundary of the

region containing the basin of attraction of (x, x). Every solution which starts

between the stable manifolds Ws(P1) and Ws(P2) converges to (a, a), while

every solution which starts below Ws(P2) ∪ C2 (resp. above Ws(P1) ∪ C1)

is approaching the boundary of the region R. Every solution which starts

between C1 and C2 converges to (x, x) or approaches the boundary of the

region.

(e) In addition to the hypotheses listed above, assume that Equation (4) has an

additional equilibrium point x such that x > a and x is a repeller. As-

sume that no standard basis vector is an eigenvector associated to either of

the eigenvalues of the Jacobian JT 2(x̄) evaluated at (x, x). Then there ex-

ist two continuous and nondecreasing curves C1 and C2 (with C1 above C2)

which start at (x, x). Every solution which starts between the stable man-

ifolds Ws(P1) and Ws(P2) converges to (a, a), while every solution which
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starts below Ws(P2) ∪ C2 (resp. above Ws(P1) ∪ C1) is approaching the

boundary of the region R. Every solution which starts between C1 and C2

approaches the boundary of the region.

Proof.

In all cases recall that the applicability of Theorem 7 to a map T requires

the nonexistence of minimal period-two solutions. Since we seek to apply the

results of this theorem to T 2, where T is the map corresponding to Equation

(4), we must rule out the possibility of minimal period-four solutions for

Equation (4). However, realize that Theorem 1 specifically precludes the

existence of periodic solutions of prime period greater than two.

(a) In view of Remark 2 the second iterate T 2 of the map T associated with

Equation (4) is strongly competitive on (a, b)2. Applying Theorem 7 part (a)

to T 2 we complete the proof.

(b) In view of Remark 2 the second iterate T 2 of the map T associated with

Equation (4) is strongly competitive and has five equilibrium points E1 =

P1, E2 = (a, a), E3 = P2, E4 = (x1, x1), and E5 = (x2, x2). Applying Theo-

rem 7 part (b) to T 2 we conclude that

lim
n→∞

T 2n((x0, y0)) = E2

for every (x0, y0) between the stable manifolds Ws(P1) and Ws(P2) . Fur-

thermore, we also have that

lim
n→∞

T 2n+1((x0, y0)) = lim
n→∞

T
(
T 2n ((x0, y0))

)
= T

(
lim
n→∞

T 2n ((x0, y0))
)

= T (E2) = E2,
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where we utilize continuity of the map T . Consequently lim
n→∞

T n((x0, y0)) =

E2. The remaining conclusions follow from Theorem 7 part (b).

(c)–(e) The proofs of parts (c), (d), and (e) follow in a similar way by using the same

reasoning as in parts (a) and (b). For parts (d) and (e), make the observation

that condition (O+) is automatically satisfied for the second iterate of the

map T corresponding to Equation (4); see [18, 19].

2

Remark 4 As shown in [20], the curves C1 and C2 may coincide on one or both

sides of the fixed point. Different global dynamic scenarios for competitive or

cooperative maps and corresponding difference equations were established in the

cases when these maps have a finite or infinite number of period-two solutions in

[2, 4, 20].

Remark 5 Some special cases of Theorems 7 and 8 have appeared in a number

of papers. For example, the global dynamics of the system

xn+1 =
xn

a+ yn
, yn+1 =

yn
b+ xn

, n = 0, 1, . . . ,

where a, b ∈ (0, 1) and x0, y0 ∈ [0,∞), as studied in [6], follows from Theorem 7

case (a). Furthermore, several cases of the global dynamics of the system

xn+1 =
ax2n

1 + x2n + cyn
, yn+1 =

by2n
1 + dxn + y2n

, n = 0, 1, . . . ,

where a, b, c, d ∈ (0,∞) and x0, y0 ∈ [0,∞), as studied in [3], follow from Theorem

7 cases (a)–(d).

The global dynamics of the difference equations

xn+1 =
xn−1(xn + γ)

xn(xn +Bxn−1)
, n = 0, 1, . . . ,
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where B, γ > 0 and B < 4γ + 1, and

xn+1 =
x2n + βxnxn−1 + γxn−1

x2n
, n = 0, 1, . . . ,

where β, γ > 0, β + γ ≥ 1, 4γ + 2β + β2 > 3, is described by Theorem 8 case (a).

The global dynamics of the difference equation

xn+1 =
x2n−1

bxnxn + cx2n−1 + f
, n = 0, 1, . . . ,

where b, c, f ≥ 0 and b + c + f > 0, is described by Theorem 8 cases (a)–(d) for

several regions of parameters.

Finally, the global dynamics of the well-known difference equations

xn+1 = a+
xn−1
xn

, n = 0, 1, . . . ,

where a ∈ (0, 1), and

xn+1 =
p+ qxn−1

1 + xn
, n = 0, 1, . . . ,

where p > 0, q > 1, is described by Theorem 8 case (a). See [12] as well as [15],

pp. 60-64 and pp. 89-91, and references therein.

It is worth noticing that case (e) in both Theorems 7 and 8 has been identified

for the first time in the case of Equation (1).

2.4 Case Study: Equation (1)

In this section we apply the results of Theorem 8 to the study of the global

dynamics of Equation (1). We begin by investigating the existence and local

stability of equilibria and periodic solutions.

2.4.1 Equilibrium Solutions of Equation (1)

An equilibrium point x of Equation (1) satisfies

ax3 + (d− C)x2 + (f − E)x = 0. (6)
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In the case when f > 0, it is clear that Equation (1) always has the zero equilib-

rium. The following cases will investigate the existence of any remaining positive

equilibrium points.

Case 1 (af > 0):

When f > 0 and a > 0, denote by x+ and x− the two possibly remaining positive

equilibria:

x± =
(C − d)±

√
(C − d)2 − 4a(f − E)

2a
. (7)

Let R = (C−d)2−4a(f−E). A routine checking will find the parametric conditions

under which the above solutions x+ and x− are both real and nonnegative. Tables

1 and 2 summarize the values of parameters for which Equation (1) has one, two, or

three equilibrium points and possibly period-two solutions (the existence of which

we will investigate in Section 2.4.3).

C > 0

C, d f, E Equilibria Period-two solutions

C ≤ d
f = E x0 = 0 none
f > E x0 = 0 one

C > d f = E x0 = 0, x+ > 0 none
arbitrary f < E x0 = 0, x+ > 0 none

C > d f > E
R < 0 x0 = 0 one
R = 0 x0 = 0, x± > 0 one
R > 0 x0 = 0, x−, x+ > 0 one

Table 1. Existence of equilibria and period-two solutions for a > 0, f > 0, C > 0.

C = 0

d f, E Equilibria Period-two solutions
d > 0 f = E x0 = 0 infinitely many
d = 0 f = E x0 = 0 infinitely many

d ≥ 0
f > E x0 = 0 none
f < E x0 = 0, x+ > 0 none

Table 2. Existence of equilibria and period-two solutions for a > 0, f > 0, C = 0.
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Case 2 (af = 0):

When f > 0 but a = 0 notice that Equation (6) reduces to

x ((d− C)x+ (f − E)) = 0,

which has the isolated solutions x0 = 0 and possibly x+ =
f − E
C − d

. Existence of

equilibria is summarized in Table 3.

C, d f, E Equilibria Period-two solutions
C ≤ d f > E x0 = 0 one
C ≥ d f < E x0 = 0 none
C 6= d f = E x0 = 0 none
C < d f < E x0 = 0, x+ > 0 none
C > d f > E x0 = 0, x+ > 0 one
C = d f = E Any x ≥ 0 is a fixed point. none

Table 3. Existence of equilibria and period-two solutions for a = 0, f > 0.

When a > 0 and f = 0, Equation (6) becomes

x
(
ax2 + (d− C)x− E

)
= 0,

and since necessarily x 6= 0 in this case, Descartes’ Rule of Signs yields that there

may exist at most one positive fixed point x+ > 0. See Table 4 for a summary of

the parametric conditions under which an equilibrium point exists.

C, d E Equilibria
C ≤ d E = 0 No equilibria
C > d E = 0 x+ > 0

arbitrary E > 0 x+ > 0

Table 4. Existence of equilibria for a > 0, f = 0.

In the case a = f = 0 the solutions of Equation (6) must satisfy

x ((d− C)x− E) = 0.

Since we must have x > 0, this equation has the isolated solution x+ =
E

d− C
only

when d > C and E > 0. All remaining subcases may be summarized in Table 5.
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C, d E Equilibria
C ≥ d E > 0 No equilibria
C 6= d E = 0 No equilibria
C < d E > 0 x+ > 0
C = d E = 0 Any x > 0 is a fixed point.

Table 5. Existence of equilibria for a = 0, f = 0.

2.4.2 Local Stability Analysis of the Equilibrium Solutions

Define the function g such that

g(u, v) =
Cv2 + Ev

au2 + du+ f

so that Equation (1) becomes xn+1 = g(xn, xn−1). The partial derivatives of g are

given by

gu(u, v) =
−(Cv2 + Ev)(2au+ d)

(au2 + du+ f)2
and gv(u, v) =

2Cv + E

au2 + du+ f
.

The characteristic equation of the linearization of Equation (1) about x is λ2 =

Pλ+Q, where P = gu(x, x) and Q = gv(x, x). Using Equation (6), this becomes

λ2 =
−x(2ax+ d)

ax2 + dx+ f
λ+

2Cx+ E

ax2 + dx+ f
. (8)

Lemma 1 The zero equilibrium x0 = 0, which exists whenever f > 0, has the

following stability:

x0 = 0 is


locally asymptotically stable if E < f
a repeller if E > f
nonhyperbolic (resonant (1,−1) type) if E = f

.

Proof. Notice that, evaluated at (x0, x0), P = 0 and Q = E
f

. Using Theorem 2.13

of [16], the first two results of the claim are immediate by checking the necessary

inequalities. If E = f , then the characteristic equation of the linearized equation

of Equation (1) (given in Equation (8)) is λ2 = 1 and hence λ1 = 1, λ2 = −1 so

that x0 is nonhyperbolic of resonant type (1,−1). 2
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Case 1 (af > 0):

Lemma 2 Assume that af > 0.

(a) If C > d, f > E, and (C−d)2 = 4a(f−E), then x± = C−d
2a

is a nonhyperbolic

equilibrium point of unstable type.

(b) Suppose one of the following conditions holds:

1. f < E

2. C > d, f = E

3. C > d, f > E, (C − d)2 > 4a(f − E).

Then the positive equilibrium x+ is a saddle point.

(c) If C > d, f > E, and (C − d)2 > 4a(f − E), then x− is a repeller.

Proof.

(a) Notice that, for x 6= 0, we have the following:

|P | − 1 +Q =
x(2ax+ d)− (ax2 + dx+ f) + 2Cx+ E

ax2 + dx+ f

=
2ax2 + dx− (ax2 + (d− C)x+ (f − E)) + Cx

ax2 + dx+ f

=
2ax2 + dx+ Cx

ax2 + dx+ f
> 0, (9)

and

|P |+ 1−Q =
x(2ax+ d) + (ax2 + dx+ f)− (2Cx+ E)

ax2 + dx+ f

=
2ax2 + dx+ (ax2 + (d− C)x+ (f − E))− Cx

ax2 + dx+ f

=
x(2ax+ (d− C))

ax2 + dx+ f
. (10)

From Equation (10) it is clear that, for x± = C−d
2a

, |P |+1−Q = 0, and hence

this equilibrium is indeed nonhyperbolic. Using the equilibrium equation
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and the fact that 2ax± + d = C, notice that the characteristic equation (8)

becomes

λ2 =
−x(2ax+ d)

ax2 + dx+ f
λ+

2Cx+ E

ax2 + dx+ f
⇐⇒ λ2 +

Cx

Cx+ E
λ− 2Cx+ E

Cx+ E
= 0

⇐⇒ (λ− 1)

(
λ+

2Cx+ E

Cx+ E

)
= 0.

Since λ1 = 1 and λ2 = −2Cx+ E

Cx+ E
< −1, this nonhyperbolic equilibrium

point is of the unstable type.

(b) Note that in all but the last case x+ is the unique positive equilibrium. It is

clear from Equation (10) that |P | + 1 − Q > 0 if and only if 2ax > C − d.

However, by definition in Equation (7) we have that

2ax+ = (C − d) +
√

(C − d)2 − 4a(f − E) > (C − d).

Therefore |P | > 1 − Q > −|P | ⇐⇒ |1 − Q| < |P |, and thus by Theorem

2.13 of [16], x+ is a saddle point for all values of parameters for which it

exists.

(c) Since

2ax− = (C − d)−
√

(C − d)2 − 4a(f − E) < C − d,

by Equation (10) we have that |P | + 1 − Q < 0 and hence |P | < |1 − Q|.

Now

|Q| > 1 ⇐⇒ 2Cx− + E > ax2− + dx− + f

⇐⇒ Cx− > ax2− + (d− C)x− + (f − E)

⇐⇒ Cx2− > 0,

after we use Equation (6). Thus by Theorem 2.13 of [16], x− is indeed a

repeller.

2
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Case 2 (af = 0):

Lemma 3 (a) Suppose a = 0 and f > 0.

1. If C < d and f < E, then x+ is a saddle point.

2. If C > d and f > E, then x+ is a repeller.

3. If C = d and f = E, then every point x > 0 is a nonhyperbolic equilibrium

of unstable type.

(b) If a > 0, f = 0, and either E > 0 or (C > d and E = 0), then x+ is a saddle

point.

(c) Suppose a = f = 0.

1. If C < d and E > 0, then x+ is a saddle point.

2. If C = d and E = 0, then any x > 0 is a nonhyperbolic equilibrium of

unstable type.

Proof.

(a) By Equation (10), we have that

|P |+ 1−Q =
x(d− C)

dx+ f
=
E − f
dx+ f

 > 0, E > f
< 0, E < f
= 0, E = f.

By Equation (9) we have that |P | − 1 + Q > 0. In the case when C > d,

we can also check immediately that |Q| > 1. Thus when E > f and C < d,

x+ is a saddle point, and when E < f and C > d, x+ is a repeller, which

establishes Cases 1 and 2. In the nonhyperbolic case when E = f and C = d,

each point x > 0 is an equilibrium point and the characteristic equation (8)

reduces to

λ2 +
dx

dx+ f
λ− 2dx+ f

dx+ f
= 0 ⇐⇒ (λ− 1)

(
λ+

2dx+ f

dx+ f

)
= 0.
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But then λ1 = 1 and λ2 < −1 so that each nonhyperbolic equilibrium is of

the unstable type.

Thus we have verified Case 3, and the proof is complete.

(b) The result immediately follows from Equations (9) and (10).

(c) 1. When d > C and E > 0, Equation (10) reduces to

|P |+ 1−Q =
E

dx
> 0,

and coupling this result with Equation (9) shows that x+ is a saddle point.

2. If d = C and E = 0, Equation (10) implies that any x > 0 is nonhyper-

bolic. Equation (8) reduces to

λ2 + λ− 2 = 0,

whence we deduce that λ1 = 1 and λ2 = −2, so a nonhyperbolic equilibrium

x > 0 is of the unstable type in this case.

2

2.4.3 Periodic Solutions

Lemma 4 Consider Equation (1).

(a) There exists no strictly positive minimal period-two solution to Equation (1).

(b) If f > E and C > 0, Equation (1) possesses the minimal period-two solution

{0, f−E
C
, 0, f−E

C
, . . .}. If C = 0 and f = E, then every point on the positive

x- or y-axis is a period-two point.

Proof.
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(a) Suppose on the contrary that there exists a strictly positive periodic solution

{φ, ψ, φ, ψ, . . .} with φ 6= ψ. Now φ and ψ satisfy:

φ = g(ψ, φ) =
Cφ2 + Eφ

aψ2 + dψ + f

ψ = g(φ, ψ) =
Cψ2 + Eψ

aφ2 + dφ+ f
,

which together imply

(Cψ + E)(aψ2 + dψ + f)− (Cφ+ E)(aφ2 + dφ+ f) = 0,

⇐⇒ (ψ − φ)[aC(ψ2 + ψφ+ φ2) + (Cd+ aE)(ψ + φ) + (Cf + dE)] = 0.

(11)

Since a + d > 0, a + C > 0, and C + E > 0, it is clear that the latter

factor of Equation (11) is strictly positive in any case, so we deduce that

ψ = φ, a contradiction. Thus no positive minimal period-two solution exists

to Equation (1).

(b) In light of (a) there exists no interior period-two solution of Equation (1).

Therefore, suppose there exists a periodic solution {φ, ψ, φ, ψ, . . .} with φ 6= ψ

and φ+ ψ > 0. Without loss of generality, we may set φ = 0. Now

ψ = g(0, ψ) =
Cψ2 + Eψ

f
⇐⇒ f − E = Cψ,

whence the result follows. Notice that if C = 0 and f = E, then any ψ > 0

will satisfy the above equation, establishing the second claim.

2

The following result gives the relation between the equilibria and period-two

solutions.

Lemma 5 (a) If af > 0, C > d, f > E, and (C − d)2 ≥ 4a(f −E), x− (or x±)

is defined as in Equation (7), and ψ = f−E
C

, then ψ < x− (or ψ < x±).
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(b) If a = 0, f > 0, C > d, and f > E, then ψ < x+.

Proof.

(a) We need the check the following inequality:

f − E
C

<
(C − d)−

√
(C − d)2 − 4a(f − E)

2a

⇐⇒
√

(C − d)2 − 4a(f − E) < (C − d)− 2a(f − E)

C
. (12)

Notice that the right-hand side of Inequality (12) is positive since a > 0:

C(C − d)− 2a(f − E)

C
>

(C − d)2 − 4a(f − E)

C
≥ 0.

If (C−d)2 = 4a(f−E) the result immediately follows. If (C−d)2 > 4a(f−E),

we may square both sides of Inequality (12) to obtain

(C − d)2 − 4a(f − E) <

(
(C − d)− 2a(f − E)

C

)2

⇐⇒ 0 < C2 − C(C − d) + a(f − E) = dC + a(f − E),

which is always true by assumption. Thus indeed ψ < x−.

(b) In this case x+ = f−E
C−d , so ψ < x+ by definition since necessarily d > 0.

2

2.4.4 Local Stability Analysis of the Period-Two Solution

Lemma 6 Consider Equation (1).

(a) If f > E and C > 0, the period-two points (f−E
C
, 0) and (0, f−E

C
) are saddle

points.

(b) If C = 0 and f = E, then each point on the positive x- or y-axis is a

nonhyperbolic period-two point of stable type.
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Proof. Using the substitution xn−1 = un, xn = vn, Equation (1) becomes

un+1 = vn

vn+1 =
Cu2n + Eun
av2n + dvn + f

.

The corresponding map T is thus given by

T

(
u
v

)
=

(
v

g(v, u)

)
.

The second iteration T 2 of the map is given by

T 2

(
u
v

)
= T

(
v

g(v, u)

)
=

(
g(v, u)

g(g(v, u), v)

)
set
=

(
F (u, v)
G(u, v)

)
,

where

F (u, v) = g(v, u) =
Cu2 + Eu

av2 + dv + f
, G(u, v) =

Cv2 + Ev

aF 2(u, v) + dF (u, v) + f
.

Notice that the map T 2 is strongly competitive. The Jacobian of T 2 is given by ∂F
∂u

∂F
∂v

∂G
∂u

∂G
∂v

 ,

where

∂F

∂u
=

2Cu+ E

av2 + dv + f
,

∂F

∂v
=
−(Cu2 + Eu)(2av + d)

(av2 + dv + f)2
,

∂G

∂u
=
−(Cv2 + Ev)(2aF (u, v) + d) · ∂F

∂u

(aF 2(u, v) + dF (u, v) + f)2
,

∂G

∂v
=

(2Cv + E)(aF 2(u, v) + dF (u, v) + f)− (2aF (u, v) + d) · ∂F
∂v
· (Cv2 + Ev)

(aF 2(u, v) + dF (u, v) + f)2
.

Notice that if Equation (1) has the period-two solution {0, ψ, 0, ψ, . . .} for ψ > 0,

then (0, ψ) and (ψ, 0) are both fixed points of T 2. The Jacobian of T 2 at the point

(0, ψ) has the following form:

JacT 2

(
0
ψ

)
=

(
E

aψ2+dψ+f
0

− Edψ
f(aψ2+dψ+f)

2Cψ+E
f

)
,

which has eigenvalues λ1 = E
aψ2+dψ+f

and λ2 = 2Cψ+E
f

.
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(a) If f > E and C > 0, then ψ = f−E
C

. Therefore

|λ1| < 1 ⇐⇒ E < aψ2 + dψ + f, and

|λ2| > 1 ⇐⇒ 2Cψ + E > f ⇐⇒ 2f − 2E + E > f ⇐⇒ f > E.

Moreover, one can check that no eigenvector corresponding to λ1 is aligned

with a coordinate axis if E > 0 and d > 0. A similar calculation will hold

for (f−E
C
, 0). Thus the minimal period-two points are indeed saddle points.

(b) The eigenvalues of the Jacobian of T 2 evaluated at the point (0, ψ) are given

above for an arbitrary ψ > 0. But since λ2 = 2Cψ+E
f

, by our hypothesis

λ2 = 1 and λ1 = E
aψ2+dψ+f

< 1. Thus each minimal period-two solution is

nonhyperbolic of stable type.

2

2.4.5 Global Dynamics of Equation (1)

The following result will establish the axes as the unstable manifolds for the isolated

period-two points on the axes and will establish the axes as a repelling set when

the period-two solution does not exist.

Lemma 7 Consider Equation (1).

(a) Suppose fC > 0.

If f > E, then every solution with initial conditions x−1x0 = 0 and x−1 +

x0 > 0 will break into two subsequences of odd- and even-indexed terms.

One subsequence will be identically zero, and the other will converge to 0 if

xi <
f − E
C

= ψ and will be monotonically increasing (and hence unbounded)

if xi > ψ for i = −1 or i = 0.

If f ≤ E, as above, one subsequence will be identically zero and the other

will be unbounded.
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(b) Suppose f > 0 and C = 0.

Then every solution with initial conditions x−1x0 = 0 and x−1 + x0 > 0 will

break into two subsequences of odd- and even-indexed terms. One subsequence

will be identically zero, and the other will converge to 0 if E < f and will be

monotonically increasing (and hence unbounded) if E > f . Every point on

the axes will be a period-two point if E = f .

Proof.

(a) Suppose fC > 0. Without loss of generality suppose x−1 = 0 and x0 > 0.

Then

x1 = 0, and x2 =
Cx20 + Ex0

f


< x0 if x0 <

f − E
C

= x0 if x0 =
f − E
C

> x0 if x0 >
f − E
C

.

Since x3 = 0, we may show a similar inequality as above for x4 and x2. By

induction we may establish the claim.

(b) Now suppose f > 0 and C = 0. Again without loss of generality we may

assume x−1 = 0 and x0 > 0. Now

x1 = 0 and x2 =
Ex0
f


< x0 if E < f
= x0 if E = f
> x0 if E > f,

and we again use induction to establish the claim.

2

If T is the map corresponding to Equation (1), then the strongly competitive

map T 2 inherits as equilibria all corresponding fixed points and period-two points

of Equation (1). With this in mind, the map T 2 may have as many as five isolated

fixed points, listed below:

E0 = (0, 0), E1 = (x−, x−), E2 = (x+, x+), P1 =

(
f − E
C

, 0

)
, P2 =

(
0,
f − E
C

)
.
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One can verify that no eigenvector associated with either characteristic value of

(x+, x+) (or (x±, x±)) is aligned with a coordinate axis. Using Lemmas 1-7 and

Theorem 8, we may now deduce the global dynamics of Equation (1). Again,

assume C + E > 0, a+ C > 0, and a+ d > 0.

Theorem 9 Consider Equation (1).

(a) Suppose one of the following conditions holds:

1. f > 0, a > 0, C > d, f = E

2. f > 0, a > 0, f < E

3. f > 0, a = 0, C < d, f < E

4. f = 0, a > 0, C > d, E = 0

5. f = 0, a > 0, E > 0

6. f = 0, a = 0, C < d, E > 0.

In Cases 1-3, Equation (1) possesses the equilibrium point 0, which is non-

hyperbolic of resonant type in Case 1 and a repeller in Cases 2 and 3. In

Cases 4-6, 0 is an isolated point. In all cases, Equation (1) also possesses the

saddle-point equilibrium x+. The global dynamics of Equation (1) is described

by Theorem 8 part (a).

In the following cases, assume E > 0 and d > 0.

(b) Suppose f > 0, a > 0, C > d, f > E, and (C − d)2 > 4a(f − E).

Then Equation (1) has three equilibrium points: 0, which is locally asymp-

totically stable, x−, which is a repeller, and x+, which is a saddle point.

Equation (1) also has the minimal period-two solution {0, f−E
C
, 0, f−E

C
, . . .},

which is a saddle point. The global dynamics of Equation (1) is described by

Theorem 8 part (b).

(c) Suppose either f > 0, a > 0, C > 0, and one of the following conditions
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holds:

1. C ≤ d, f > E

2. C > d, f > E, (C − d)2 < 4a(f − E),

or suppose f > 0, a = 0, C ≤ d, and f > E. Equation (1) possesses

the equilibrium point 0, which is locally asymptotically stable, and a saddle-

point minimal period-two solution. The global dynamics of Equation (1) is

described by Theorem 8 part (c).

(d) Suppose f > 0, a > 0, C > d, f > E, and (C − d)2 = 4a(f − E).

Equation (1) possesses the equilibrium point 0, which is locally asymptotically

stable, x±, which is nonhyperbolic of unstable type, and a saddle-point min-

imal period-two solution. The global dynamics of Equation (1) is described

by Theorem 8 part (d).

(e) Suppose f > 0, a = 0, C > d, and f > E.

Equation (1) possesses the equilibrium point 0, which is locally asymptotically

stable, and x+, which is a repeller. There also exists a saddle-point period-

two solution. The global dynamics of Equation (1) is described by Theorem

8 part (e).

The following results are not covered by the more general dynamic scenarios

from Theorem 8 and require separate consideration.

Theorem 10 Consider Equation (1).

(a) Suppose f > 0, a = 0, C ≥ d, and f < E.

Then Equation (1) possesses only the zero equilibrium, and it is a repeller.

All nonzero solutions are unbounded.

(b) Suppose a = 0 and one of the following conditions holds:

1. f > 0, C = d, f = E
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2. f = 0, C = d, f = E.

In either case Equation (1) possesses every positive number as an equilibrium.

(In the first case, 0 is also an equilibrium.) All non-equilibrium solutions are

unbounded and will oscillate between approaching 0 and ∞.

(c) Suppose f = a = 0, C ≥ d, and E > 0. Then Equation (1) has no equilibrium

points, and all solutions are unbounded.

(d) Suppose f = a = E = 0 and C 6= d. Equation (1) is solvable in closed form.

All solutions are unbounded and oscillate between approaching 0 and ∞.

Proof.

(a) By Theorem 1 any bounded solution must converge to an equilibrium, a

period-two solution, or a singular point on the boundary. Since the only

member of the aforementioned set is a repelling fixed point, all solutions in

this case must be unbounded.

(b) The strongly competitive map T 2 possesses an infinity of equilibria along the

bisector in the first quadrant, where each equilibrium with positive coordi-

nates is nonhyperbolic of unstable type. Through each fixed point E there

exists a strictly decreasing curveWu(E) that serves as its unstable manifold,

and the union of these manifolds foliate the first quadrant. (In the first case

the union of the axes serve as the unstable manifold for the origin.) See

[18, 24] for the necessary results.

(c) By Theorem 1 any bounded solution must converge to an equilibrium, a

period-two solution, or a singular point on the boundary. Since in this case

no equilibria or period-two solutions exist, either the sequence is unbounded

or it converges to a point on the boundary.
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First suppose lim
n→∞

xn = 0. Then subsequences of even- and odd-indexed

terms are monotonically decreasing, so there must exist some k ∈ N such

that for all n > k, both xn+1 < xn−1 and xn+2 < xn. Since C ≥ d, we may

use the first inequality to show that

xn−1(dxn−1 + E)

dxn
≤
Cx2n−1 + Exn−1

dxn
< xn−1 =⇒ dxn−1 + E < dxn.

In a similar way, our second assumed inequality implies that dxn+E < dxn+1.

But then

xn+1 < xn−1 < xn −
E

d
< xn+1 −

2E

d
,

and this is a contradiction. Thus no sequence may converge to the isolated

point at the origin.

Now suppose there exists a sequence {xn} such that, without loss of gener-

ality, the subsequence {x2n} converges to some positive limit. If lim
n→∞

x2n =

L > 0, then

lim
n→∞

x2n+1 = lim
n→∞

(
Cx22n + Ex2n

dx2n+2

)
=

CL2 + EL

d lim
n→∞

x2n+2

=
CL+ E

d
> 0.

However, this contradicts the fact that Equation (1) has no minimal period-

two solution. Consequently, every solution has an unbounded subsequence.

(d) Notice that Equation (1) reduces to

xn+1 =
Cx2n−1
dxn

. (13)

After taking the logarithm of both sides and seting un = ln(xn) and K =

ln
(
C
d

)
we obtain the linear, second-order, nonhomogeneous equation

un+1 + un − 2un−1 = K ⇐⇒ (un+1 − un) + 2(un − un−1) = K

which, after the substitution vn = un − un−1, reduces to

vn+1 + 2vn = K. (14)
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Equation (14) is of first order and has the general solution

vn = (−2)n
(
v0 −

K

3

)
+
K

3
,

and hence

un − un−1 = (−2)n
(

(u0 − u−1)−
K

3

)
+
K

3
.

This first-order nonautonomous equation now has solution

un = u−1 +
n∑
i=0

(
(−2)i

(
u0 − u−1 −

K

3

)
+
K

3

)
= u−1 +

1− (−2)n+1

3

(
u0 − u−1 −

K

3

)
+

(n+ 1)K

3
.

Finally, Equation (13) has solution

xn = x−1

(
C

d

)n+1
3

 x0
x−1

(
d

C

)1
3

(1−(−2)n+1)/3

.

Thus we see that, as n → ∞, every solution {xn} will oscillate between

approaching 0 and∞. We should remark that the above solution is valid for

Equation (13) for all C, d > 0, even when C = d, the condition treated in

part (b). If C = d the solution reduces to

xn = x−1

(
x0
x−1

)(1−(−2)n+1)/3

.

2

Theorem 11 Assume C = 0.

(a) Suppose f > 0, a > 0, d > C = 0, and f = E.

Then Equation (1) possesses the zero equilibrium, which is nonhyperbolic of

resonant type, and an infinity of minimal period-two solutions of the form

{0, s, 0, s, . . .} for s > 0, which are nonhyperbolic of stable type. All solutions

converge to a (not necessarily prime) period-two solution on the axes.
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(b) Suppose f > 0, a > 0, d ≥ C = 0, and f > E.

Then Equation (1) possesses only the zero equilibrium and it is globally

asymptotically stable.

Proof.

(a) In view of Lemma 6 the strongly competitive map T 2 possesses the non-

hyperbolic zero equilibrium as well as infinitely many equilibria along the

continuum of the x- and y-axes (where each equilibrium is nonhyperbolic of

stable type). Through each fixed point E there exists a strictly increasing

curve Ws(E) that serves as its stable manifold and is the basin of attraction

of E. The result follows from an application of Theorems 1-4 or Theorems

3.2 and 3.6 in [4].

(b) Suppose C = 0. In view of E < f , Equation (1) implies:

xn+1 =
Cx2n−1 + Exn−1
ax2n + dxn + f

<
E

f
xn−1 < xn−1. (15)

By Inequality (15) it is clear that the susbsequences of even- and odd-indexed

terms of Equation (1) are monotonically decreasing, which is consistent with

Theorem 1. Since Equation (1) is bounded below, all solutions must converge

to x0.

2

We leave the following conjectures for a few parametric situations not covered

by the theorems above. First, we leave conjectures for the values of parameters for

which zero is the sole equilibrium of Equation (1) and is nonhyperbolic of resonant

type or for which no equilibria exist. We conjecture in these cases that all solutions

remain unbounded, but it remains to be seen if there exist any bounded solutions

converging to either the sole fixed point or to a point on the boundary.
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Conjecture 1 Suppose f > 0, a > 0, 0 < C ≤ d, and f = E, or suppose f > 0,

a = 0, C 6= d, and f = E.

Equation (1) possesses only the zero equilibrium, which is nonhyperbolic of resonant

type. All solutions are unbounded.

Conjecture 2 Suppose f = E = 0, a > 0, and C ≤ d.

Equation (1) has no equilibrium points, and all solutions are unbounded.

Further, we have added the stipulation Ed > 0 in parts (b) through (e)

of Theorem 9 to ensure the applicability of Theorem 3, which requires that the

eigenspace associated with the eigenvalue λ1 does not align with a coordinate axis.

We believe the established results for Ed > 0 in which the period-two solution

exists will still hold for Ed = 0, and thus we leave the following conjecture.

Conjecture 3 (a) Suppose Ed = 0. Then the results of Theorem 9 still hold in

parts (b)–(e).

(b) Suppose f > 0, a > 0, d = C = 0, and f = E. The global dynamics of

Equation (1) is described by the conclusions of Theorem 11 (a).
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Abstract

We investigate second-order generalized Beverton-Holt difference equations of the

form

xn+1 =
af(xn, xn−1)

1 + f(xn, xn−1)
, n = 0, 1, . . . ,

where f is a function nondecreasing in both arguments, the parameter a is a

positive constant, and the initial conditions x−1 and x0 are arbitrary nonnega-

tive numbers. We will discuss several interesting examples of such equations and

present some general theory. In particular, we will investigate the local and global

dynamics in the event f is a certain type of linear or quadratic polynomial, and

we explore the existence problem of period-two solutions.

3.1 Introduction and Preliminaries

Consider the following second-order difference equation:

xn+1 =
af(xn, xn−1)

1 + f(xn, xn−1)
, n = 0, 1, . . . . (1)

Here f is a continuous function nondecreasing in both arguments, the parameter

a is a positive real number, and the initial conditions x−1 and x0 are arbitrary

nonnegative numbers. Equation (1) is a generalization of the first-order Beverton-

Holt equation

xn+1 =
axn

1 + xn
, n = 0, 1, . . . , (2)

where a > 0 and x0 ≥ 0. The global dynamics of Equation (2) may be summarized

as follows:

lim
n→∞

xn =

{
0 if a ≤ 1

a− 1 if a > 1 and x0 > 0.
(3)

Many variations of Equation (2) have been studied. German biochemist Leonor

Michaelis and Canadian physician Maud Menten used the model in their study

of enzyme kinetics in 1913; see [18]. Additionally, Jacques Monod, a French

biochemist, happened upon the model empirically in his study of microorganism
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growth around 1942; see [18]. It was not until 1957 that fisheries scientists Ray

Beverton and Sidney Holt used the model in their study of population dynamics.

The so-called Monod differential equation is given by

1

N
· dN
dt

=
rS

a+ S
, (4)

where N(t) is the concentration of bacteria at time t, dN
dt

is the growth rate of the

bacteria, S(t) is the concentration of the nutrient, r is the maximum growth rate of

the bacteria, and a is a half-saturation constant (when S = a, the right-hand side

of Equation (4) equals r/2). Based on experimental data, the following system of

two differential equations for the nutrient S and bacteria N , as presented in [18],

is given by

dS

dt
= −1

γ
N

rS

a+ S
,

dN

dt
= N

rS

a+ S
, (5)

where the constant γ is called the growth yield. Both Equation (4) and System

(5) contain the function f(x) = rx/(a + x) known as the Monod function,

Michaelis-Menten function, Beverton-Holt function, or Holling function of the

first kind; see [4, 9].

One possible two-generation population model based on Equation (2),

xn+1 =
a1xn

1 + xn
+

a2xn−1
1 + xn−1

, n = 0, 1, . . . , (6)

where ai > 0 for i = 1, 2 and x−1, x0 ≥ 0, was considered in [16]. The global

dynamics of Equation (6) may be summarized as follows:

lim
n→∞

xn =

{
0 if a1 + a2 ≤ 1

a1 + a2 − 1 if a1 + a2 > 1 and x0 + x−1 > 0.

This result was extended in [4] to the case of a k-generation population model

based on Equation (2) of the form

xn+1 =
k−1∑
i=0

aixn−i
1 + xn−i

, n = 0, 1, . . . , (7)
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where ai ≥ 0 for i = 0, 1, . . . , k − 1,
∑k−1

i=0 ai > 0, and x1−k, . . . , x0 ≥ 0. It was

shown that the global dynamics of Equation (7) is given precisely by (3), where

a =
∑k−1

i=0 ai and we consider all initial conditions positive.

The simplest model of Beverton-Holt type which exhibits two coexisting at-

tractors and the Allee effect is the sigmoid Beverton-Holt or (second-type Holling)

difference equation

xn+1 =
ax2n

1 + x2n
, n = 0, 1, . . . , (8)

where a > 0 and x0 ≥ 0. The dynamics of Equation (8) may be concisely summa-

rized as follows:

lim
n→∞

xn =

{
0 if a < 2 or (a ≥ 2 and x0 < x−)
x+ if a ≥ 2 and x0 > x−,

(9)

where x− and x+ are the two positive equilibria when a ≥ 2; see [1, 4]. One

possible two-generation population model based on Equation (8),

xn+1 =
a1x

2
n

1 + x2n
+

a2x
2
n−1

1 + x2n−1
, n = 0, 1, . . . , (10)

where ai > 0 for i = 1, 2 and x−1, x0 ≥ 0, was considered in [3]. However, the

summary of the global dynamics of Equation (10) is not an immediate extension

of the global dynamics of Equation (8) as given in (9); see [3]. Equation (10) can

have up to three equilibrium solutions and up to three period-two solutions. In

the case when Equation (10) has three equilibrium solutions and three period-two

solutions, the zero equilibrium, the larger positive equilibrium, and one period-

two solution are attractors with substantial basins of attraction, which together

with the remaining equilibrium and the global stable manifolds of the saddle-point

period-two solutions exhaust the first quadrant of initial conditions. This behavior

happens when the coefficient a2 is in some sense dominant to a1; see [3]. Such
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behavior is typical for other models in population dynamics such as

xn+1 =
a1xn

1 + xn
+

a2x
2
n−1

1 + x2n−1
, n = 0, 1, . . .

and

xn+1 = a1xn +
a2x

2
n−1

1 + x2n−1
, n = 0, 1, . . . ,

which were also investigated in [3]. In the case of a k-generation population

model based on the sigmoid Beverton-Holt difference equation with k > 2, one

can expect to have attractive period-k solutions as well as chaos.

The first model of the form given in Equation (1), where f is a linear function

in both variables (that is, f(u, v) = cu + dv for c, d, u, v ≥ 0) was considered in

[17] and some global dynamics were described in part of the parametric space.

Here we will extend the results from [17] to the whole parametric space. In

this paper we will then restrict ourselves to the case when f(u, v) is a quadratic

polynomial, which will give similar global dynamics to that presented for Equation

(10). The corresponding dynamic scenarios will be essentially the same for any

polynomial function of the type f(u, v) = cuk + dum where c, d ≥ 0 and m, k are

positive integers. Higher values of m and k may only create additional equilibria

and period-two solutions but should replicate the global dynamics seen in the

quadratic case presented in this paper.

Let the function F : [0,∞)2 → [0, a) be defined as follows:

F (u, v) =
af(u, v)

1 + f(u, v)
. (11)

Then Equation (1) becomes xn+1 = F (xn, xn−1) for all n = 0, 1, . . . , where F (u, v)

is nondecreasing in both of its arguments.
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The following theorem from [2] immediately applies to Equation (1).

Theorem 1 Let I be a set of real numbers and F : I×I → I be a function which is

nondecreasing in the first variable and nondecreasing in the second variable. Then,

for every solution {xn}∞n=−1 of the equation

xn+1 = F (xn, xn−1) , x−1, x0 ∈ I, n = 0, 1, . . . , (12)

the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 of even and odd terms of the solution

are eventually monotonic.

The consequence of Theorem 1 is that every bounded solution of Equation (12)

converges to either an equilibrium, a period-two solution, or to a singular point

on the boundary. It should be noticed that Theorem 1 is specific for second-

order difference equations and does not extend to difference equations of order

higher than two. Furthermore, the powerful theory of monotone maps in the plane

[14, 15] can be applied to Equation (1) to determine the boundaries of the basins

of attraction of the equilibrium solutions and period-two solutions. Finally, when

f(u, v) is a polynomial function, all computation needed to determine the local

stability of all equilibrium solutions and period-two solutions is reduced to the

theory of counting the number of zeros of polynomials in a given interval, as given

in [10]. This theory will give more precise results than the global attractivity and

global asymptotic stability results in [6, 7]. However, in the case of difference

equations of the form

xn+1 =
ag(xn, xn−1, . . . , xn+1−k)

1 + g(xn, xn−1, . . . , xn+1−k)
, n = 0, 1, . . . , k ≥ 1,

where a > 0 and g is nondecreasing in all its arguments, Theorem 1 does not

apply for k > 2, but the results from [6, 7, 11] can give global dynamics in some

regions of the parametric space.
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The following theorem from [8] is often useful in determining the global at-

tractivity of a unique positive equilibrium.

Theorem 2 Let I ⊆ [0,∞) be some open interval and assume that F ∈ C[I ×

I, (0,∞)] satisfies the following conditions:

(i) F (x, y) is nondecreasing in each of its arguments;

(ii) Equation (12) has a unique positive equilibrium point x ∈ I and the func-

tion F (x, x) satisfies the negative feedback condition:

(x− x)(F (x, x)− x) < 0 for every x ∈ I\{x}.

Then every positive solution of Equation (12) with initial conditions in I con-

verges to x.

3.2 Local Stability

In this section we provide general conditions to determine the local stability

of equilibrium solutions and period-two solutions.

It is clear that xn ≤ a for all n ≥ 1. In light of Theorem 1, since all solutions

are bounded, if there are no singular points on the boundary of the domain of F , it

immediately follows that all solutions to Equation (1) converge to an equilibrium

or period-two solution.

An equilibrium x of Equation (1) satisfies

x(1 + f(x, x)) = af(x, x). (13)

Clearly x0 = 0 is an equilibrium point if and only if (0, 0) is in the domain of f

and f(0, 0) = 0.
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The linearized equation of Equation (1) about an equilibrium x is

zn+1 = Fu(x, x)zn + Fv(x, x)zn−1, n = 0, 1, . . . .

Since f is a nondecreasing function, it follows that Fu(x, x), Fv(x, x) ≥ 0. There-

fore, if

λ(x) = Fu(x, x) + Fv(x, x) =
a(fu(x, x) + fv(x, x))

(1 + f(x, x))2
, (14)

then in view of Corollary 2 of [11] we may conclude that

x is

 locally asymptotically stable if λ(x) < 1
nonhyperbolic if λ(x) = 1
unstable if λ(x) > 1.

Further, Theorem 2.13 of [13] implies that if x is unstable, then

x is


a repeller if δ(x) > 1
nonhyperbolic if δ(x) = 1
a saddle point if δ(x) < 1,

where

δ(x) = Fv(x, x)− Fu(x, x) =
a(fv(x, x)− fu(x, x))

(1 + f(x, x))2
. (15)

Let (φ, ψ) be a period-two solution of Equation (1). The Jacobian matrix of

the corresponding map T = G2, where G(u, v) = (v, F (v, u)) and F is given by

Equation (11), is given in Theorem 12 of [5]. The linearized equation evaluated at

(φ, ψ) is

λ2 − TrJT (φ, ψ)λ+DetJT (φ, ψ) = 0,

where

TrJT (φ, ψ) = D2F (ψ, φ) +D1F (F (ψ, φ), ψ) ·D1F (ψ, φ) +D2F (F (ψ, φ), ψ)

and

DetJT (φ, ψ) = D2F (F (ψ, φ), ψ) ·D2F (ψ, φ).
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3.3 Examples
3.3.1 Linear-Linear: f(u, v) = cu+ dv

We consider the difference equation

xn+1 =
a(cxn + dxn−1)

1 + cxn + dxn−1
, n = 0, 1, . . . , (16)

where c ≥ 0 and d > 0. If d = 0, then Equation (16) becomes Equation (2) after a

reduction of parameters. Notice that fu(u, v) = c and fv(u, v) = d. By Equation

(13) we know that x0 = 0 is always a fixed point and x+ = a(c+d)−1
c+d

is a unique

positive fixed point for a(c+ d) > 1.

Since λ(x0) = a(c+ d), we have that

x0 is


locally asymptotically stable if a(c+ d) < 1
nonhyperbolic if a(c+ d) = 1
unstable if a(c+ d) > 1.

Further, notice that

λ(x+) =
a(c+ d)(

1 +
(
a(c+d)−1
c+d

)
· (c+ d)

)2 =
1

a(c+ d)
< 1

for all values of parameters for which x+ exists. Therefore

x+ =
a(c+ d)− 1

c+ d
is always locally asymptotically stable.

Note that there is an exchange in stability from x0 to x+ as the parametric value

a(c+ d) passes through 1.

We next search for period-two solutions. Suppose there exists such a solution

{ψ, φ, ψ, φ, . . .} with φ 6= ψ. We must solve the following system:
ψ =

af(φ, ψ)

1 + f(φ, ψ)
=

a(cφ+ dψ)

1 + cφ+ dψ

φ =
af(ψ, φ)

1 + f(ψ, φ)
=

a(cψ + dφ)

1 + cψ + dφ

. (17)
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Notice that

ψ − φ =
a(d− c)(ψ − φ)

(1 + cφ+ dψ)(1 + cψ + dφ)
,

whence we deduce that d > c and (1 + cφ+ dψ)(1 + dψ + dφ) = a(d− c). Now

ψ + φ =
a ((c+ d)(ψ + φ) + 2(cφ+ dψ)(cψ + dφ))

a(d− c)
,

or equivalently,

2c(ψ + φ) + 2(cφ+ dψ)(cψ + dφ) = 0.

Since ψ + φ > 0, it must be the case that c = 0, and then 2d2ψφ = 0 so that one

of either φ or ψ equals zero. Without loss of generality assume φ = 0. But then

ψ = adψ
1+dψ

, and hence ψ = ad−1
d

= x+. Thus the only non-equilibrium solution of

System (17) is the period-two solution {x+, 0, x+, 0, . . .}, which exists for ad > 1

and c = 0.

Theorem 3 (a) If a(c+ d) ≤ 1, x0 = 0 is a global attractor of all solutions.

(b) If c = 0 and ad > 1, then there exists a minimal period-two solution{
ad−1
d
, 0, ad−1

d
, 0, . . .

}
. x+ is a global attractor of all solutions with positive ini-

tial conditions. Any solution with exactly one initial condition equal to zero will

converge to the period-two solution.

(c) If c > 0 and a(c+ d) > 1, x+ is a global attractor of all nonzero solutions.

Proof. (a) If a(c + d) ≤ 1, x0 = 0 is the only equilibrium, and no period-two

solutions exist. By Theorem 1 all solutions must converge to zero.

(b) Suppose c = 0 and ad > 1, and consider I = (0,∞). Notice that

F (x, x) =
adx

1 + dx
≷ x ⇐⇒ x+ ≷ x,

and therefore by Theorem 2 we have that all solutions with initial conditions in I

converge to x+.

62



Now suppose one initial condition is zero, so without loss of generality assume

x−1 = 0 and x0 > 0. Then x1 = 0 and

x2 =
adx0

1 + dx0
≷ x0 ⇐⇒

ad− 1

d
= x+ ≷ x0.

Further, one can show x2 ≶ x+ ⇐⇒ x0 ≶ x+. By induction, lim
k→∞

x2k = x+ and

x2k−1 = 0 for all k = 0, 1, . . .. Thus all solutions with exactly one initial condition

equal to zero will converge to the period-two solution {x+, 0, x+, 0, . . .}.

(c) When c > 0 and a(c + d) > 1, x+ is locally asymptotically stable while x0

is unstable. As in the proof of (b) we can employ Theorem 2 to show that all

solutions with positive initial conditions must converge to x+. Since c > 0 and

d > 0, if x0 + x−1 > 0, then x1 = F (x0, x−1) > 0 (and also x2 > 0), so the solution

eventually has consecutive positive terms and must converge to x+. 2

3.3.2 Translated Linear-Linear: f(u, v) = cu+ dv + k

We briefly consider the difference equation

xn+1 =
a(cxn + dxn−1 + k)

1 + cxn + dxn−1 + k
, n = 0, 1, . . . , (18)

where c ≥ 0, d ≥ 0, c+d > 0, and k > 0. (It is clear that Equation (18) reduces to

Equation (16) in the event k = 0.) We notice in this example f(0, 0) = k > 0, so

the origin cannot be an equilibrium. More specifically, an equilibrium of Equation

(18) must satisfy

(c+ d)x2 + (k + 1− a(c+ d))x− ak = 0

Since c + d > 0 and ak > 0 by Descartes’ Rule of Signs it must be the case that

there exists a unique positive equilibrium x+.

Theorem 4 Consider Equation (18) such that c + d > 0 and k > 0. The unique

positive equilibrium x+ is a global attractor.

Proof. The result follows from an application of Theorem 1.4.8 of [12]. 2
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3.3.3 Quadratic-Linear: f(u, v) = cu2 + dv

We consider the difference equation

xn+1 =
a(cx2n + dxn−1)

1 + cx2n + dxn−1
, n = 0, 1, . . . . (19)

Remark 1 For the analysis that follows, we will consider Equation (19) with c > 0

and d > 0. Notice that when c = 0 Equation (19) is a special case of Equation

(16), and the global dynamics for this case is discussed in Theorem 3. When d = 0,

Equation (19) is essentially Equation (8), the dynamics of which may be seen in

(9).

An equilibrium of (19) satisfies

cx3 + dx2 + x = acx2 + adx

so that all nonzero equilibria satisfy

cx2 + (d− ac)x+ (1− ad) = 0, (20)

whence we easily deduce the possible solutions

x± =
ac− d±

√
(d− ac)2 + 4c(ad− 1)

2c
,

which are real if and only if R = (d− ac)2 + 4c(ad− 1) satisfies R ≥ 0.

Notice that

R ≥ 0 ⇐⇒ d2 − 2acd+ a2c2 + 4acd− 4c ≥ 0 ⇐⇒ (ac+ d)2 ≥ 4c. (21)

Here we have that

λ(x) =
a(2cx+ d)

(1 + cx2 + dx)2
.
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Lemma 1 Equation (19) always has the zero equilibrium x0 = 0, and

x0 is


locally asymptotically stable if ad < 1
nonhyperbolic if ad = 1
a repeller if ad > 1.

Proof. The proof follows from the fact that λ(x0) = δ(x0) = ad. 2

Lemma 2 Assume c > 0 and d > 0.

(1) Suppose either

(a) d ≥ ac and 1 ≥ ad, or

(b) d < ac, 1 > ad, and R < 0.

Then Equation (19) has no positive equilibria.

(2) Suppose either

(a) 1 < ad, or

(b) d < ac and 1 = ad.

Then Equation (19) has the positive equilibrium x+, and it is locally asymptotically

stable.

(3) Suppose d < ac, 1 > ad, and R = 0. Then Equation (19) has the positive

equilibrium x±, and it is nonhyperbolic of stable type.

(4) Suppose d < ac, 1 > ad, and R > 0. Then Equation (19) has the two positive

equilibria x+, which is locally asymptotically stable, and x−, which is a saddle point.

Proof. The positivity of solutions of Equation (20) follows from Descartes’ Rule

of Signs. Using Equation (14), notice that

λ(x) =
a(2cx+ d)

(1 + cx2 + dx)2
=

a(2cx+ d)

(a(cx+ d))2
=

2cx+ d

a(cx+ d)2
=

1

a(cx+ d)
+

cx

a(cx+ d)2
.
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Further, for the parametric values for which x+ exists,

λ(x+) ≤ 1 ⇐⇒ cx+
a(cx+ + d)2

≤ a(cx+ + d)− 1

a(cx+ + d)

⇐⇒ cx+ ≤ (cx+ + d) (a(cx+ + d)− 1) = (cx+ + d)(cx2+ + dx+)

⇐⇒ c ≤ (cx+ + d)2

⇐⇒ 4c ≤ (2cx+ + 2d)2 = (ac+ d+
√
R)2,

which is immediately true by Inequality (21). Thus if R > 0, x+ is lo-

cally asymptotically stable, and if R = 0, x± is nonhyperbolic. In the latter

case the characteristic equation of the linearization of Equation (19) about x±,

y2 = Fu(x±, x±)y + Fv(x±, x±), reduces to acy2 − (ac − d)y − d = 0, which has

characteristic values y1 = 1 and y2 = − d
ac

, where −1 < y2 < 0 since ac > d. Thus

in this case x± is nonhyperbolic of stable type.

When x− exists,

λ(x−) > 1 ⇐⇒ 4c > (ac+ d−
√
R)2

⇐⇒ 4c+ (ac+ d)
√
R > (ac+ d)2

⇐⇒ (ac+ d)
√
R > (ac+ d)2 − 4c = R

⇐⇒ (ac+ d)2 > R = (ac+ d)2 − 4c,

which is of course true since c > 0. To show more specifically that x− is a saddle

point when R > 0, we must show that δ(x−) < 1, where δ is defined by Equation

(15). Notice

δ(x−) =
a(d− 2cx−)

(1 + cx2− + dx−)2
=

a(d− 2cx−)

(a(cx− + d))2
=

4(d− 2cx−)

a(2cx− + 2d)2
=

4
(

2d− ac+
√
R
)

a(ac+ d−
√
R)2

,

and so we have that

δ(x−) < 1 ⇐⇒ 4
(

2d− ac+
√
R
)
< a

(
ac+ d−

√
R
)2

⇐⇒ (2 + a(ac+ d))
√
R < a(ac+ d)2 − 4d.
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The right-hand side of the latter inequality is positive since a(ac + d)2 − 4d >

4ac− 4d = 4(ac− d) > 0 by assumption. But then

δ(x−) < 1 ⇐⇒ (2 + a(ac+ d))2
(
(ac+ d)2 − 4c

)
<
(
a(ac+ d)2 − 4d

)2
⇐⇒ 3a3c2d+ 6a2cd2 + 3ad3 − 3a2c2 − 2acd− 3d2 − 4c < 0

⇐⇒ (ad− 1)
(
3d2 + 3a2c2 + 2c(3ad+ 2)

)
< 0,

which is automatically true since the latter factor is strictly positive and ad < 1.

Thus indeed x− is a saddle point when it exists for R > 0. 2

Lemma 3 There exist no minimal period-two solutions to Equation (19) if c > 0

and d > 0.

Proof. Suppose there exist φ, ψ > 0 with φ 6= ψ such that
ψ =

af(φ, ψ)

1 + f(φ, ψ)
=

a(cφ2 + dψ)

1 + cφ2 + dψ

φ =
af(ψ, φ)

1 + f(ψ, φ)
=

a(cψ2 + dφ)

1 + cψ2 + dφ

. (22)

From System (22) we notice that

ψ − φ =
a(cφ2 + dψ)(1 + cψ2 + dφ)− a(cψ2 + dφ)(1 + cφ2 + dψ)

(1 + cφ2 + dψ)(1 + cψ2 + dφ)

=
a(ψ − φ)(d− c(ψ + φ))

(1 + cφ2 + dψ)(1 + cψ2 + dφ)
,

whence it immediately follows that (1 + cφ2 +dψ)(1 + cψ2 +dφ) = a(d− c(ψ+φ)).

But then

ψ + φ =
a(cφ2 + dψ)(1 + cψ2 + dφ) + a(cψ2 + dφ)(1 + cφ2 + dψ)

(1 + cφ2 + dψ)(1 + cψ2 + dφ)

=
2(cφ2 + dψ)(cψ2 + dφ) + c(ψ2 + φ2) + d(ψ + φ)

d− c(ψ + φ)
.

Thus we have that necessarily

2φψ =
2a2(cφ2 + dψ)(cψ2 + dφ)

a(d− c(ψ + φ))
= a

(
(ψ + φ)− c(ψ2 + φ2) + d(ψ + φ)

d− c(ψ + φ)

)
> 0
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since both ψ, φ > 0. But this implies that

(ψ + φ)(d− c(ψ + φ)) > c(ψ2 + φ2) + d(ψ + φ)

⇐⇒ d(ψ + φ)− c(ψ + φ)2 > c(ψ2 + φ2) + d(ψ + φ)

⇐⇒ 0 > c(ψ2 + φ2) + c(ψ + φ)2,

a clear contradiction since c > 0.

Now suppose there exists a period-two solution {φ, ψ, φ, ψ, . . .} with φ 6= ψ

but φψ = 0. Suppose without loss of generality that φ = 0. Now
ψ =

af(0, ψ)

1 + f(0, ψ)
=

adψ

1 + dψ

0 =
af(ψ, 0)

1 + f(ψ, 0)
=

acψ2

1 + cψ2

,

which immediately leads to the contradiction ψ = φ = 0 for c > 0. Thus Equation

(19) has no minimal period-two solutions. 2

Theorem 5 Assume c > 0 and d > 0.

(1) Suppose either

(a) d ≥ ac and 1 ≥ ad, or

(b) d < ac, 1 > ad, and R < 0.

Then x0 is a global attractor of all solutions.

(2) Suppose either

(a) 1 < ad, or

(b) d < ac and 1 = ad.

Then x+ is a global attractor of all nonzero solutions.

(3) Suppose d < ac, 1 > ad, and R = 0. Then the system corresponding to

Equation (19) has the equilibria E0 = (0, 0), which is locally asymptotically stable,

and E = (x±, x±), which is nonhyperbolic of stable type. Then there exists a

68



continuous curve C passing through E such that C is the graph of a decreasing

function. The set of initial conditions Q1 = {(x−1, x0) : x−1 ≥ 0, x0 ≥ 0} is the

union of two disjoint basins of attraction, namely Q1 = B(E0) ∪ B(E), where

B(E0) = {(x−1, x0) : (x−1, x0) ≺ne (x, y) for some (x, y) ∈ C},

B(E) = {(x−1, x0) : (x, y) ≺ne (x−1, x0) for some (x, y) ∈ C} ∪ C.

(4) Suppose d < ac, 1 > ad, and R > 0. Then the system corresponding to

Equation (19) has the equilibria E0 = (0, 0), which is locally asymptotically stable,

E1 = (x−, x−), which is a saddle point, and E2 = (x+, x+), which is locally asymp-

totically stable. Then there exist two continuous curves Ws(E1) and Wu(E1),

both passing through E1, such that Ws(E1) is the graph of a decreasing function

and Wu(E1) is the graph of an increasing function. The set of initial conditions

Q1 = {(x−1, x0) : x−1 ≥ 0, x0 ≥ 0} is the union of three disjoint basins of attrac-

tion, namely Q1 = B(E0) ∪ B(E1) ∪ B(E2), where B(E1) =Ws(E1),

B(E0) = {(x−1, x0) : (x−1, x0) ≺ne (x, y) for some (x, y) ∈ Ws(E1)}, and

B(E2) = {(x−1, x0) : (x, y) ≺ne (x−1, x0) for some (x, y) ∈ Ws(E1)}.

Proof. (1) The proof in this case follows from Theorem 1 as well as Lemmas 1,

2, and 3 since x0 = 0 is the sole equilibrium of Equation (19).

(2) The proof used to show that all solutions with positive initial conditions

converge to x+ follows from an application of Theorem 2 (as used above in the

proof of Theorem 3). Notice that x1 = F (x0, x−1) > 0 if either x0 > 0 or x−1 > 0

(and similar for x2), so I = (0,∞) is an attracting and invariant interval. Thus

all nonzero solutions must converge to x+.
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(3) The proof follows from an application of Theorems 1-4 of [15] applied to

the cooperative second iterate of the map corresponding to Equation (19). The

proof is completely analogous to the proof of Theorem 5 in [3], so we omit the

details.

(4) The proof follows from an immediate application of Theorem 5 in [3]. 2

3.3.4 Linear-Quadratic: f(u, v) = cu+ dv2

We consider the difference equation

xn+1 =
a(cxn + dx2n−1)

1 + cxn + dx2n−1
, n = 0, 1, . . . . (23)

Remark 2 For the analysis that follows, we will consider Equation (23) with c > 0

and d > 0. Notice that when d = 0 Equation (23) becomes Equation (2) after a

reduction of parameters. When c = 0, Equation (23) is a two-parameter version

of Equation (8) with delay.

An equilibrium of (23) satisfies

dx3 + cx2 + x = acx+ adx2

so that all nonzero equilibria satisfy

dx2 + (c− ad)x+ (1− ac) = 0, (24)

whence we easily deduce the possible solutions

x± =
ad− c±

√
(c− ad)2 + 4d(ac− 1)

2d
,

which are real if and only if R = (c− ad)2 + 4d(ac− 1) ≥ 0.

Notice that

R ≥ 0 ⇐⇒ c2 − 2acd+ a2d2 + 4acd− 4d ≥ 0 ⇐⇒ (ad+ c)2 ≥ 4d. (25)
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Here we have that

λ(x) =
a(c+ 2dx)

(1 + cx+ dx2)2
.

Lemma 4 Equation (23) always has the zero equilibrium x0 = 0, and

x0 is


locally asymptotically stable if ac < 1
nonhyperbolic if ac = 1
unstable if ac > 1.

Proof. The proof follows from the fact that λ(x0) = ac. 2

Lemma 5 Assume c > 0 and d > 0.

(1) Suppose either

(a) c ≥ ad and 1 ≥ ac, or

(b) c < ad, 1 > ac, and R < 0.

Then Equation (23) has no positive equilibria.

(2) Suppose either

(a) 1 < ac, or

(b) c < ad and 1 = ac.

Then Equation (23) has the positive equilibrium x+, and it is locally asymptotically

stable.

(3) Suppose c < ad, 1 > ac, and R = 0. Then Equation (23) has the positive

equilibrium x±, and it is nonhyperbolic of stable type.

(4) Suppose c < ad, 1 > ac, and R > 0. Then Equation (19) has the two positive

equilibria x+, which is locally asymptotically stable, and x−, which is unstable.

Let K = a2d2 + 14acd− 3c2 − 3a3cd2 − 6a2c2d− 3ac3 − 4d.

(i) If K < 0, then x− is a saddle point.

(ii) If K > 0, then x− is a repeller.

(iii) If K = 0, then x− is nonhyperbolic of unstable type.
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Proof. The positivity of solutions of Equation (24) follows from Descartes’

Rule of Signs. Much of the local stability analysis is symmetric to the considera-

tions in the proof of Lemma 2. Notice that

λ(x) =
a(c+ 2dx)

(1 + cx+ dx2)2
=

a(c+ 2dx)

(a(c+ dx))2
=

c+ 2dx

a(c+ dx)2
=

1

a(c+ dx)
+

dx

a(c+ dx)2
.

For the parametric values for which x+ exists,

λ(x+) ≤ 1 ⇐⇒ dx+
a(c+ dx+)2

≤ a(c+ dx+)− 1

a(c+ dx+)

⇐⇒ dx+ ≤ (c+ dx+) (a(c+ dx+)− 1) = (c+ dx+)(cx+ + dx2+)

⇐⇒ d ≤ (c+ dx+)2

⇐⇒ 4d ≤ (2c+ 2dx+)2 = (ad+ c+
√
R)2,

which is immediately true by Inequality (25). Thus if R > 0, x+ is lo-

cally asymptotically stable, and if R = 0, x± is nonhyperbolic. In the latter

case the characteristic equation of the linearization of Equation (19) about x±,

y2 = Fu(x±, x±)y + Fv(x±, x±), reduces to ady2 − cy + c − ad = 0, which has

characteristic values y1 = 1 and y2 = c−ad
ad

, where −1 < y2 < 0 since ad > c. Thus

in this case x± is nonhyperbolic of stable type.

When x− exists,

λ(x−) > 1 ⇐⇒ 4d > (ad+ c−
√
R)2

⇐⇒ 4d+ (ad+ c)
√
R > (ad+ c)2

⇐⇒ (ad+ c)
√
R > (ad+ c)2 − 4d = R

⇐⇒ (ad+ c)2 > R = (ad+ c)2 − 4d

which is of course true since d > 0. To more specifically classify x−, we must

calculate δ(x−). Notice

δ(x−) =
a(2dx− − c)

(1 + cx− + dx2−)2
=

a(2dx− − c)
(a(c+ dx−))2

=
4(2dx− − c)
a(2c+ 2dx−)2

=
4
(
ad− 2c−

√
R
)

a(ad+ c−
√
R)2

,
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and so we have that

δ(x−) ≷ 1 ⇐⇒ 4
(
ad− 2c−

√
R
)
≷ a

(
ad+ c−

√
R
)2

⇐⇒ (a(ad+ c)− 2)
√
R ≷ a(ad+ c)2 − 4ad+ 4c = aR + 4c.

Notice that R > 0 automatically implies a(ad+ c) > 2, as

0 < (ad+ c)2 − 4d

= a2d2 + 2acd+ c2 − 4d

< a2d2 + 2acd+ a2d2 − 4d

= 2d (a(ad+ c)− 2)

since c < ad. Therefore we may square both sides to obtain

δ(x−) ≷ 1 ⇐⇒ (a(ad+ c)− 2)2R ≷ (aR + 4c)2

⇐⇒ R
(
a2(ad+ c)2 − 4a(ad+ c) + 4

)
≷ a2R2 + 8acR + 16c2

⇐⇒ R
(
a2R− 4ac+ 4

)
≷ a2R2 + 8acR + 16c2

⇐⇒ R(1− 3ac)− 4c2 ≷ 0

⇐⇒ a2d2 + 14acd− 3c2 − 3a3cd2 − 6a2c2d− 3ac3 − 4d ≷ 0.

Thus if

K = a2d2 + 14acd− 3c2 − 3a3cd2 − 6a2c2d− 3ac3 − 4d, (26)

K < 0 implies x− is a saddle point and K > 0 implies it is a repeller. If K = 0,

x− is nonhyperbolic, and we expect in such case it to be nonhyperbolic of unstable

type. Indeed one can show that in the event K = 0, the characteristic equation of

the linearization of Equation (23) about x−, y2 = Fu(x−, x−)y + Fv(x−, x−), has

roots y1 = −1 and y2 = Fu(x−, x−) + 1 > 1, which immediately shows the desired

result. 2
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The investigation of the existence of periodic solutions of Equation (23) is an

interesting one that involves a thorough analysis of potential parametric cases.

This analysis will reveal the potential for the existence of several nonzero periodic

solutions. The juxtaposition of Equation (19) with Equation (23) illustrates an

interesting phenomenon in which, loosely speaking, the dominance of the delay

term x2n−1 contributes to the possibility of periodic solutions arising.

A minimal period-two solution {φ, ψ, φ, ψ, . . .} with φ, ψ > 0 and φ 6= ψ must

satisfy 
ψ =

af(φ, ψ)

1 + f(φ, ψ)
=

a(cφ+ dψ2)

1 + cφ+ dψ2

φ =
af(ψ, φ)

1 + f(ψ, φ)
=

a(cψ + dφ2)

1 + cψ + dφ2

. (27)

Eliminating either ψ or φ from System (27) we obtain

(
dφ2 + (c− ad)φ+ (1− ac)

)
h(φ) = 0,

or (
dψ2 + (c− ad)ψ + (1− ac)

)
h(ψ) = 0,

where

h(x) = −d3x6 + d2(c+ 2ad)x5 − d(c2 + 2d+ 3acd+ a2d2)x4 (28)

+ d(c+ 3ac2 + 2ad+ 3a2cd)x3 − (c2 + ac3 + d+ 2acd+ 3a2c2d+ a3cd2)x2

+ ac(1 + ac)(2c+ ad)x− a2c2(1 + ac).

Since dx2+(c−ad)x+(1−ac) 6= 0 for any x that is not a solution of the equilibrium

equation (24), minimal period-two solutions must be the solutions of the equation

h(x) = 0. (29)
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Lemma 6 Any real solutions of Equation (29) are positive numbers for c, d > 0,

and there exist up to 3 minimal period-two solutions of Equation (23). Further-

more, let K be as defined in Equation (26), and define the following expressions:

J = 4a5cd4 − 8a4c2d3 + 12a3c3d2 − 24a3cd3 − 8a2c4d+ 28a2c2d2 − a2d3 + 4ac5

+ 4ac3d+ 32acd2 + 4c4 + 8c2d+ 4d2

∆1 = 6d6

∆2 = d10
(
8a2d2 − 16acd− 7c2 − 24d

)
∆3 = −2d12

(
8a5cd5 + 13a4c2d4 + 10a3c3d3 − 44a3cd4 + 4a2c4d2 − 34a2c2d3

−4a2d4 − 19ac5d+ 14ac3d2 + 44acd3 + 6c6 + 7c4d+ 5c2d2 + 16d3
)

∆4 = c2d13
(
−16a9cd8 − 12a8c2d7 + 24a7c3d6 + 152a7cd7 − 68a6c4d5 + 80a6c2d6

+ 8a6d7 + 48a5c5d4 − 164a5c3d5 − 464a5cd6 − 60a4c6d3 + 20a4c4d4 − 180a4c2d5

− 64a4d6 + 56a3c7d2 − 332a3c5d3 + 388a3c3d4 + 488a3cd5 − 48a2c8d

+ 272a2c6d2 + 255a2c4d3 + 152a2c2d4 + 136a2d5 + 24ac9 + 8ac7d+ 124ac5d2

+180ac3d3 − 152acd4 + 24c8 + 68c6d+ 32c4d2 − 44c2d3 − 32d4
)

∆5 = 2c4d13J
(
3a8c2d6 + 2a7cd6 − 18a6c2d5 − a6d6 + 6a5c5d3 + 10a5c3d4 − 8a5cd5

− 10a4c4d3 + 44a4c2d4 + 6a4d5 + 54a3c5d2 − 25a3c3d3 − 6a3cd4 + 3a2c8

− 8a2c6d+ 35a2c4d2 − 39a2c2d3 − 9a2d4 + 6ac7 + 2ac5d+ 4ac3d2 + 14acd3

+3c6 + 10c4d+ 11c2d2 + 4d3
)

∆6 = a2c6d14(ac+ 1)KJ2.

(1) If ∆i > 0 for all 2 ≤ i ≤ 6 then Equation (29) has six real roots. Consequently,

Equation (23) has three minimal period-two solutions.

(2) If ∆j ≤ 0 for some 2 ≤ j ≤ 5 and ∆i > 0 for i 6= j, then Equation (29) has

two distinct real roots and two pairs of conjugate imaginary roots. Consequently,
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Equation (23) has one minimal period-two solution.

(3) If ∆i ≤ 0, ∆i+1 ≥ 0 (such that at least one of these is strict) for some 2 ≤ i ≤ 4,

and if ∆6 < 0, then Equation (29) has three pairs of conjugate imaginary roots.

Consequently, Equation (23) has no minimal period-two solutions.

Proof. The proof of the first statement follows from Descartes’ Rule of Signs.

Let disc(h) denote the 12× 12 discrimination matrix as defined in [10]:

disc(h) =



a6 a5 a4 a3 a2 a1 a0 0 0 0 0 0
0 6a6 5a5 4a4 3a3 2a2 a1 0 0 0 0 0
0 a6 a5 a4 a3 a2 a1 a0 0 0 0 0
0 0 6a6 5a5 4a4 3a3 2a2 a1 0 0 0 0
0 0 a6 a5 a4 a3 a2 a1 a0 0 0 0
0 0 0 6a6 5a5 4a4 3a3 2a2 a1 0 0 0
0 0 0 a6 a5 a4 a3 a2 a1 a0 0 0
0 0 0 0 6a6 5a5 4a4 3a3 2a2 a1 0 0
0 0 0 0 a6 a5 a4 a3 a2 a1 a0 0
0 0 0 0 0 6a6 5a5 4a4 3a3 2a2 a1 0
0 0 0 0 0 a6 a5 a4 a3 a2 a1 a0
0 0 0 0 0 0 6a6 5a5 4a4 3a3 2a2 a1



.

Here ak equals the coefficient of the degree-k term of h as defined in Equation

(28); that is, a6 = −d3, a5 = d2(c + 2ad), a4 = −d(c2 + 2d + 3acd + a2d2),

a3 = d(c+ 3ac2 + 2ad+ 3a2cd), a2 = −(c2 + ac3 + d+ 2acd+ 3a2c2d+ a3cd2), a1 =

ac(1 +ac)(2c+ad), and a0 = −a2c2(1 +ac). Let ∆k denote the determinant of the

submatrix of disc(h) formed by its first 2k rows and 2k columns for k = 1, 2, . . . , 6.

Then the values of ∆k are listed above, and the veracity of the statements above

may now be verified by employing Theorem 1 of [10]. Notice that ∆1 > 0 for all

d > 0. 2

Remark 3 The parametric conditions discussed above do not exhaust all of the

parametric space but cover a substantial region of parameters for which Equation

(23) possesses hyperbolic dynamics.

We will use the sufficient conditions provided in Lemmas 4, 5, and 6 to re-

alize some global dynamic scenarios provided in [3]. We will not investigate the
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dynamics of Equation (23) when it has one or no positive fixed point since in such

cases the dynamics should be similar to the dynamics of Equation (19) discussed

in Theorem 5. The following theorem relies on results from [3] and summarizes

potential hyperbolic dynamic scenarios for Equation (23) in the event it possesses

three fixed points and zero, one, or three pairs of hyperbolic period-two points.

See also the statement and proof of Theorem 11 in [3].

Theorem 6 Assume 0 < c < ad and ac < 1 such that R > 0.

(i) If ∆i > 0 for all 2 ≤ i ≤ 6 then Eq. (23) has three equilibria

x0 < x− < x+, where x0 and x+ are locally asymptotically stable and x− is a

repeller, and three minimal period-two solutions {φ1, ψ1}, {φ2, ψ2}, and {φ3, ψ3}.

Here (φ1, ψ1) ≺ne (φ2, ψ2) ≺ne (φ3, ψ3), {φ1, ψ1} and {φ3, ψ3} are saddle points,

and {φ2, ψ2} is locally asymptotically stable. The global behavior of Eq. (23) is

described by Theorem 8 of [3]. For example, this happens for a = 1, c = 389
2176

, and

d = 249
64

.

(ii) If ∆j ≤ 0 for some 2 ≤ j ≤ 5 and ∆i > 0 for i 6= j, then Eq. (23) has

three equilibria x0 < x− < x+, where x0 and x+ are locally asymptotically stable

and x− is a repeller, and one period-two solution {φ1, ψ1}, which is a saddle point.

The global behavior of Eq. (23) is described by Theorem 7 of [3]. For example,

this happens for a = 1, c = 1
5
, and d = 237

64
.

(iii) If ∆i ≤ 0 and ∆i+1 ≥ 0 (such that at least one of these is strict) for

some 2 ≤ i ≤ 4, and if ∆6 < 0, then Eq. (23) has three equilibria x0 < x− < x+,

where x0 and x+ are locally asymptotically stable and x− is a saddle point, and no

period-two solution. The global behavior of Eq. (23) is described by Theorem 5 of
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[3]. For example, this happens for a = 1, c = 493
1024

, and d = 157
48

.

Equation (23) exhibits global dynamics similar to that of Equation (10), which

was investigated in [3]. Therefore, we pose the following conjecture.

Conjecture 1 There exists a topological conjugation between the maps in Equa-

tions (10) and (23).
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Abstract

We investigate generalized Beverton-Holt difference equations of order k of the

form

xn+1 =
af(xn, xn−1, . . . , xn+1−k)

1 + f(xn, xn−1, . . . , xn+1−k)
, n = 0, 1, . . . , k ≥ 1,

where f is a function nondecreasing in all arguments, a > 0, and

x0, x−1, . . . , x1−k ≥ 0 such that the solution is defined. We will discuss several inter-

esting examples of such equations involving transcendental functions and present

some general theory. In particular, we will analyze the global dynamics of the class

of difference equations for which f(x, . . . , x) is chosen to be a concave function.

Moreover, we give sufficient conditions to guarantee this equation has a unique

positive and globally attracting fixed point.

4.1 Introduction and Preliminaries

Consider the following order-k difference equation:

xn+1 =
af(xn, xn−1, . . . , xn+1−k)

1 + f(xn, xn−1, . . . , xn+1−k)
, n = 0, 1, . . . , k ≥ 1, (1)

where f is a continuous function nondecreasing in all arguments, the parameter a

is a positive real number, and the initial conditions x0, x−1, . . . , x1−k are arbitrary

nonnegative numbers such that the solution is defined. We assume f is never

identically equal to the zero function.

Equation (1) is a generalization of the first-order Beverton-Holt equation

xn+1 =
axn

1 + xn
, (2)

where a > 0 and x−1, x0 ≥ 0. Global dynamics are known and may be summarized

as follows:

lim
n→∞

xn =

{
0 if a ≤ 1

a− 1 if a > 1 and x0 > 0.
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Many variations of Equation (2) have been studied. The form of the model

actually predates its use by Beverton and Holt; see [12]. German biochemist

Leonor Michaelis and Canadian physician Maud Menten used the model in

their study of enzyme kinetics in 1913. Additionally, Jacques Monod, a French

biochemist, happened upon the model empirically in his study of microorganism

growth around 1942. It was not until 1957 that fisheries scientists Ray Beverton

and Sidney Holt used the model in their study of population dynamics.

For instance, the so-called Monod system of differential equations is given by

dS

dt
= −1

γ
N

rS

a+ S
,

dN

dt
= N

rS

a+ S
, (3)

where N(t) is the concentration of bacteria at time t, dN
dt

is the growth rate of the

bacteria, S(t) is the concentration of the nutrient, r is the maximum growth rate

of the bacteria, k is a half-saturation constant, and the constant γ is called the

growth yield; see [12]. Both Equation (2) and System (3) contain the function

f(x) = rx/(a + x) known as the Monod function, Michaelis-Menten function,

Beverton-Holt function, or Holling function of the first kind; see [3, 9]. Some

global dynamic scenarios of several two-generation models using this function

were investigated in [2].

The Beverton-Holt function is an increasing and concave function and we

will prove some global attractivity results for general difference equations with

a transition function that is increasing and concave along the diagonal. More

precisely, we will prove some global attractivity results for Equation (1), where

f(x, . . . , x) is an increasing and concave function.

The following theorem from [1] applies to Equation (1) when k = 2.
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Theorem 1 Let I be a set of real numbers and F : I × I → I be a function

which is nondecreasing in both variables. Then, for every solution {xn}∞n=−1 of the

equation

xn+1 = F (xn, xn−1) , x−1, x0 ∈ I, n = 0, 1, . . . , (4)

the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 of even and odd terms of the solution

are eventually monotonic.

The consequence of Theorem 1 is that every bounded solution of Equation (4)

converges to either an equilibrium, a period-two solution, or to a singular point

on the boundary. Notice that Theorem 1 does not apply if k > 2, but the results

from [5, 7, 10] can give global dynamics in some regions of the parametric space.

In the case k > 2, Equation (1) may have periodic solutions of different periods

and even chaos; see [6].

The following theorem from [8] applies to the kth-order Equation (1) and will

be instrumental in establishing our main result.

Theorem 2 Consider the equation

xn+1 = F (xn, xn−1, . . . , xn+1−k), x0, x−1, . . . , x1−k ∈ I, n = 0, 1, . . . , (5)

where I ⊆ [0,∞) is some open interval, and assume that F ∈ C[Ik, (0,∞)]

satisfies the following conditions:

(i) F is nondecreasing in each of its arguments;

(ii) Equation (5) has a unique positive equilibrium point x ∈ I and the function

F satisfies the negative feedback condition:

(x− x)(F (x, . . . , x)− x) < 0 for every x ∈ I\{x}.

Then every positive solution of Equation (5) with initial conditions

x0, x−1, . . . , x1−k in I converges to x.
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4.2 General Stability Results and Global Attractivity

Let the function F : [0,∞)k → [0, a) be defined as follows:

F (u1, . . . , uk) =
af(u1, . . . , uk)

1 + f(u1, . . . , uk)
. (6)

Using Equation (6), Equation (1) may be rewritten as xn+1 =

F (xn, xn−1, . . . , xn+1−k) for all n = 0, 1, . . . , where F is a nondecreasing

function in all its variables. It is clear that 0 ≤ xn < a for all n ≥ 1.

It will be useful to examine the multivariable functions f and F along the

diagonal. For convenience, make the following definitions:

g(x) = f(x, . . . , x) (7)

G(x) = F (x, . . . , x). (8)

An equilibrium x of Equation (1) satisfies

x (1 + g(x)) = ag(x). (9)

Clearly x0 = 0 is an equilibrium point if and only if g(0) = f(0, . . . , 0) = 0.

4.2.1 Local Stability of an Equilibrium

The linearized equation of Equation (1) about an equilibrium x is

zn+1 = Fu1(x, . . . , x)zn + . . .+ Fuk(x, . . . , x)zn+1−k, n = 0, 1, . . . .

Set

λ(x)k =
k∑
i=1

Fui(x, . . . , x) =
a
∑k

i=1 fui(x, . . . , x)

(1 + f(x, . . . , x))2
. (10)

In view of Corollary 2 in [10] we have the following result:

Theorem 3 Let x be an equilibrium of Equation (1). Then

x is


locally asymptotically stable if λ(x)k < 1
nonhyperbolic if λ(x)k = 1
unstable if λ(x)k > 1.
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4.2.2 Existence and Global Attractivity of a Unique Positive Equilib-
rium

We will now establish several sufficient conditions under which Equation (1)

will have a unique positive fixed point. Recall the definitions of G and g given in

Equations (7) and (8).

Lemma 1 Suppose G is twice differentiable and satisfies the following three con-

ditions:

(i) G(0) = 0,

(ii) G′(0) > 1, and

(iii) G′′(x) < 0 for all x ∈ (0, a).

Then Equation (1) has a unique positive equilibrium.

Remark 1 Notice that G(0) = 0 if and only if g(0) = 0. If indeed G(0) = g(0) = 0

then G′(0) = ag′(0). Further, since x ≥ 0, we interpret derivatives at zero in the

right-handed sense.

Proof. First we will show that there exists a positive equilibrium for Equation

(1). First, let H(x) = G(x)− x. Notice that H(0) = 0 and H(a) < 0, as

H(a) = G(a)− a = F (a, . . . , a)− a =
af(a, . . . , a)

1 + f(a, . . . , a)
− a < a− a = 0.

Also, H ′(0) = G′(0) − 1 > 0 by assumption (ii) and hence H is increasing at

x = 0; by continuity of H ′, for any sufficiently small δ > 0 it must be the case that

H(δ) > 0. But since H(δ) > 0 and H(a) < 0, by the Intermediate Value Theorem

there exists some point p ∈ (δ, a) such that H(p) = 0. But this immediately

implies that G(p) = p, and hence p is a fixed point of Equation (1), as required.

Next we will show this fixed point is unique. Suppose there are two fixed

points p1, p2 > 0 of Equation (1) such that p1 < p2. Since G′′(x) < 0 for all
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x ∈ (0, a), the function is strictly concave on this interval; that is, for all t ∈ (0, 1)

and all x, y ∈ (0,∞) with x 6= y,

G(tx+ (1− t)y) > tG(x) + (1− t)G(y). (11)

Let b ∈ (0, p1) be arbitrary and set t = p2−p1
p2−b . Notice that t ∈ (0, 1) since 0 < b <

p1 < p2. By Inequality (11), if x = b and y = p2, we obtain the following:

G (t b+ (1− t)p2) > tG (b) + (1− t)G(p2)

⇐⇒ G

((
p2 − p1
p2 − b

)
b+

(
1− p2 − p1

p2 − b

)
p2

)
>

(
p2 − p1
p2 − b

)
G(b) +

(
1− p2 − p1

p2 − b

)
p2

⇐⇒ p1 = G(p1) >
G(b) (p2 − p1) + p2 (p1 − b)

p2 − b

⇐⇒ p1(p2 − b)− p2(p1 − b) > G(b)(p2 − p1)

⇐⇒ b > G(b).

Therefore for each b ∈ (0, p1), H(b) = G(b) − b < 0. However, this contradicts

our initial claim that H(δ) > 0 for δ > 0 small enough and hence we have a

contradiction. 2

Figure 6. Illustration of Lemma 1, where G′(0) > 1.

Lemma 2 Suppose G is twice differentiable and satisfies the following three con-

ditions:

86



(i) G(0) = 0,

(ii) G′(0) ≤ 1, and

(iii) G′′(x) < 0 for all x ∈ (0, a).

Then there exists no positive fixed point for Equation (1).

Proof. If H(x) = G(x) − x, then H ′(x) = G′(x) − 1 and H ′′(x) = G′′(x), so in

particular H ′′(x) < 0 for all x ∈ (0, a). For any x ∈ (0, a] we may apply the Mean

Value Theorem to H ′ over [0, x] to conclude that there exists some c ∈ (0, x) such

that

H ′(x)−H ′(0)

x− 0
= H ′′(c).

But since H ′′(c) < 0, we have that H ′(x) < H ′(0) ≤ 0 and hence H is strictly

decreasing for all x ∈ (0, a). But since H(0) = 0, we have that H(x) < 0 (and

hence G(x) < x) for all x ∈ (0, a), and therefore in this case there exist no positive

fixed points for G. 2

Figure 7. Illustration of Lemma 2, where G′(0) ≤ 1.

Theorem 4 Under the hypotheses of Lemma 1, the unique positive equilibrium of

(1) is a global attractor of all solutions with positive initial conditions.

Proof. By Lemma 1, Equation (1) has a unique positive fixed point p. Now

H(x) = G(x)−x is continuous and has only one positive root (at x = p) such that
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it does not change sign on (0, p) or (p, a); in particular, H(x) > 0 for x ∈ (0, p)

and H(x) < 0 for x ∈ (p, a). If I = (0, a), we have that indeed (x−p)(G(x)−x) <

0 for all x ∈ I\{p}. By Theorem 2, we have that every positive solution with initial

conditions in I converges to p. Since (0, a) is an attracting, invariant interval for

all solutions with positive initial conditions, the proof is complete. 2

Remark 2 If (0, a) is an attracting interval for all nonzero solutions, including

those with initial conditions that are not all necessarily positive, then the results

of Theorem 4 (and later Corollary 1) will give a complete classification of global

dynamics for any choice of initial conditions.

Theorem 5 Under the hypotheses of Lemma 2, the zero equilibrium is a global

attractor of all solutions.

Proof. By Lemma 2, Equation (1) has only the zero equilibrium in the invariant

interval [0, a]. But then the kth-order extension of Theorems 1.4.8 and A.0.1 of

[11] will apply to this equation. Since this interval is attracting, all solutions must

converge to the zero equilibrium. 2

Corollary 1 Suppose g(x) is a strictly concave function on (0, a).

(1) Under hypotheses (i) and (ii) of Lemma 1, the unique positive equilibrium

of Equation (1) is a global attractor of all solutions with positive initial conditions.

(2) Under hypotheses (i) and (ii) of Lemma 2, the zero equilibrium is a global

attractor of all solutions.

Proof. Since g(x) = f(x, . . . , x) is strictly concave for 0 < x < a, g′′(x) < 0. An

immediate computation yields

G′′(x) =
a
[
g′′(x) (1 + g(x))− 2 (g(x))2

]
(1 + g(x))3

< 0.

Thus condition (iii) is satisfied for Lemmas 1 and 2, and the proof follows from an

application of Theorems 4 and 5. 2
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Remark 3 Corollary 1 shows that g(x) being concave is a sufficient but not

necessary condition for G(x) to be concave. For the case k = 2, consider

f(u, v) = pu2 + qv. If a = 1, p = 1, q = 2, then

g′′(x) =
d2

dx2
(f(x, x)) = 2 > 0 yet G′′(x) =

d2

dx2
(F (x, x)) =

−6

(1 + x)4
< 0,

so for these values G(x) is concave even though g(x) is convex.

Despite the utility of the above results, there certainly exist scenarios in which nei-

ther the function g(x) nor G(x) is concave on the interval (0, a). In such situations

it is useful to have the following theorem, which provides a sufficient condition to

guarantee the existence (or nonexistence) of a unique positive fixed point that is

a global attractor of positive solutions..

Theorem 6 Let g(x) > 0 for all x > 0. If

xg′(x) < g(x) (g(x) + 1) (12)

for all x ∈ (0, a), then Equation (1) has at most one positive fixed point.

(1) If G(0) = g(0) = 0 and G′(0) = ag′(0) > 1, then Equation (1) has precisely

one positive fixed point, and it is a global attractor of all solutions with positive

initial conditions.

(2) If G(0) = g(0) = 0 and G′(0) = ag′(0) ≤ 1, then Equation (1) has only the

zero equilibrium, and it is a global attractor of all solutions.

Proof. Solve Equation (9) for a to find that

a =
x

g(x)
+ x.

Set u(x) = x
g(x)

+ x. If u(x) is an injective (or monotone) function, then it

intersects the line y = a at most once. Setting u′(x) > 0 and rearranging will
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establish the main claim.

To prove the remaining claims, suppose u′(x) > 0. By l’Hôpital’s Rule,

lim
x→0+

u(x) = lim
x→0+

x

g(x)
+ x = lim

x→0+

1

g′(x)
=

1

g′(0)
. (13)

Now lim
x→0+

u(x) < a implies there exists exactly one positive fixed point of

Equation (1), so Equation (13) establishes the hypothesis of (1). As in the proof

of Theorem 4, the global attractivity of the unique fixed point will again follow

from Theorem 2.

If lim
x→0+

u(x) ≥ a, then Equation (1) has only the zero equilibrium since u is

increasing, and Equation (13) establishes the hypothesis of (2). Again we may

employ the order-k generalization of Theorems 1.4.8 and A.0.1 of [11] to obtain

the global attractivity of the zero equilibrium, and the proof is complete. 2

Remark 4 In some cases the veracity of Inequality (12) of Theorem 6 may im-

ply the concavity condition required by Theorems 4 or 5 or Corollary 1, but the

hypotheses of the latter results may be easier to verify.

4.3 Examples

In most of the provided examples we will focus on equations of second order

for concision. However, all results can be generalized to corresponding equations

of any order.

4.3.1 Exponential: f(u, v) = p(1− e−u) + q(1− e−v)

We consider the equation

xn+1 =
a (p(1− e−xn) + q(1− e−xn−1))

1 + p(1− e−xn) + q(1− e−xn−1)
, n = 0, 1, . . . , (14)
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where p, q > 0. An equilibrium x of Equation (14) satisfies the following:

x =
a(p+ q)(1− e−x)

1 + (p+ q)(1− e−x)
.

In particular, x0 = 0 has λ(x0) = a(p+ q), so

x0 is

 locally asymptotically stable if a(p+ q) < 1
nonhyperbolic if a(p+ q) = 1
unstable if a(p+ q) > 1.

The following results give the global dynamics of Equation (14).

Theorem 7 (1) If a(p + q) > 1, then there exists a unique positive equilibrium

x+, and it is a global attractor of all nonzero solutions.

(2) If a(p+ q) ≤ 1, then x0 = 0 is a global attractor of all solutions.

Proof. Notice G(0) = 0, G′(0) = ag′(0) = a(p + q), and g′′(x) = d2

dx2
(f(x, x)) =

−e−x(p+q) < 0. Moreover, if x−1+x0 > 0, then x1 = F (x0, x−1) > 0 since p, q > 0,

and so also must x2 be positive. Thus all solutions enter the attracting, invariant

interval (0, a). In view of Remark 2, the result follows by a direct application of

Corollary 1. 2

We may also consider the kth-order equation

xn+1 =

a
k−1∑
i=0

pi(1− e−xn−i)

1 +
k−1∑
i=0

pi(1− e−xn−i)

, n = 0, 1, . . . , (15)

where pi ≥ 0 for i = 0, . . . , k−1. We can establish global results for Equation (15)

by immediately applying Corollary 1.

Theorem 8 (1) If a
k−1∑
i=0

pi > 1, then there exists a unique positive equilibrium x+,

and it is a global attractor of all solutions with positive initial conditions.

(2) If a
k−1∑
i=0

pi ≤ 1, then x0 = 0 is a global attractor of all solutions.
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However, notice that we cannot necessarily establish global dynamics for all

values of the nonnegative parameters and initial conditions. Equation (15) may

have a variety of periodic solutions in which some of the entries in the periodic cycle

equal zero. However, the above result captures the substantial global dynamics for

all solutions with positive initial conditions.

4.3.2 Inverse Tangent: f(u, v) = p arctan(u) + q arctan(v)

We next consider the equation

xn+1 =
a (p arctan(xn) + q arctan(xn−1))

1 + p arctan(xn) + q arctan(xn−1)
, n = 0, 1, . . . , (16)

where p, q > 0. An equilibrium x of Equation (16) satisfies the following:

x =
a(p+ q) arctan(x)

1 + (p+ q) arctan(x)
.

Again x0 = 0 has λ(x0) = a(p+ q), so

x0 is

 locally asymptotically stable if a(p+ q) < 1
nonhyperbolic if a(p+ q) = 1
unstable if a(p+ q) > 1.

Notice that, as in the previous second-order example, G(0) = 0, G′(0) =

a(p + q), and g′′(x) = d2

dx2
(f(x, x)) = −2x(p+q)

(1+x2)2
< 0. It is clear that the global

dynamics of Equation (16) are described exactly by Theorem 7.

Remark 5 There are a wealth of other functions f such that g(x) is concave and

Corollary 1 applies to Equation (1). Second-order examples include the logarithmic

function f1(u, v) = log ((1 + u)p(1 + v)q) as well as the shifted sigmoid function

f2(u, v) = p
1+e−u + q

1+e−v − p+q
2

= p
2

tanh(u
2
) + q

2
tanh(v

2
).

4.3.3 Trigonometric: f(u, v) = p (u+ sin(u)) + q (v + sin(v))

Consider the equation

xn+1 =
a (p (xn + sin(xn)) + q (xn−1 + sin(xn−1)))

1 + p (xn + sin(xn)) + q (xn−1 + sin(xn−1))
, n = 0, 1, . . . , (17)

92



where p, q > 0. Notice that fu(u, v) = p(1 + cos(u)) ≥ 0 and

fv(u, v) = q(1 + cos(v)) ≥ 0. The second-order difference equation

xn+1 = 1
2
f(xn, xn−1) for p = q = 1 was investigated in Example 1 of [4].

The applicability of Corollary 1 is limited by the fact that g(x) = (p +

q)(sin(x) +x) is strictly concave only when sin(x) > 0, and therefore global results

can only be obtained for a ≤ π. Using the full strength of Theorems 4 and 5 will

also have limitations for any choice of a > 0; the interval [0, a] is always invariant

for Equation (17), but a larger value of a would prescribe the need for a larger

interval over which G(x) should be concave. Instead we may consider applying

Theorem 6.

Theorem 9 Suppose that, for all x ∈ (0, a),

x cos(x) < (p+ q)(sin(x) + x)2 + sin(x). (18)

(1) If 2a(p+ q) > 1, then Equation (17) has precisely one positive fixed point, and

it is a global attractor of all solutions with positive initial conditions.

(2) If 2a(p+ q) ≤ 1, then Equation (17) has only the zero equilibrium, and it is a

global attractor of all solutions.

Remark 6 Verifying Inequality (18) in general appears to be difficult, although

for specific values of p and q this hypothesis should be able to be easily checked. For

example, if p = q = 1, this condition is immediately satisfied and leads to a global

exchange of stability result as a passes through the critical value 1
4
. In general,

Mathematica verifies this inequality should hold for all x > 0 when approximately

p+ q > 0.2015. For p and q smaller than this threshold, multiple equilibria or even

interior periodic solutions may exist.
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4.3.4 Order-k Linear

Consider the equation

xn+1 =

a
k−1∑
i=0

cixn−i

1 +
k−1∑
i=0

cixn−i

, n = 0, 1, . . . , (19)

where ci ≥ 0 for i = 1, . . . , k − 1. An equilibrium x of Equation (19) satisfies the

following:

x =

a
k−1∑
i=0

cix

1 +
k−1∑
i=0

cix

.

Using Equation (10) we see that x0 = 0 has λ(x0)k = a
k−1∑
i=0

ci, so

x0 is



locally asymptotically stable if a
k−1∑
i=0

ci < 1

nonhyperbolic if a
k−1∑
i=0

ci = 1

unstable if a
k−1∑
i=0

ci > 1.

If a
k−1∑
i=0

ci > 1, then Equation (19) has the unique positive equilibrium

x+ =

a

(
k−1∑
i=0

ci

)
− 1

k−1∑
i=0

ci

.

Since

λ(x+)k =
1

a
k−1∑
i=0

ci

< 1,

we have that x+ is locally asymptotically stable whenever it exists.

Theorem 10 (1) If a
k−1∑
i=0

ci ≤ 1, then x0 is a global attractor of all solutions.

(2) If a
k−1∑
i=0

ci > 1, then x+ is a global attractor of all solutions with positive initial

conditions.
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Proof. (1) The proof is the same as that of Theorem 5.

(2) Notice that

xn+1 − x+ =

a
k−1∑
i=0

cixn−i

1 +
k−1∑
i=0

cixn−i

−
a
k−1∑
j=0

cj − 1

k−1∑
j=0

cj

=

a
k−1∑
j=0

cj
k−1∑
i=0

cixn−i −
(

1 +
k−1∑
i=0

cixn−i

)(
a
k−1∑
j=0

cj − 1

)
(

1 +
k−1∑
i=0

cixn−i

)
k−1∑
j=0

cj

=

k−1∑
i=0

cixn−i −

(
a
k−1∑
j=0

cj − 1

)
(

1 +
k−1∑
i=0

cixn−i

)
k−1∑
j=0

cj

=

k−1∑
i=0

ci (xn−i − x+) +
k−1∑
j=0

cj (x+ − a) + 1(
1 +

k−1∑
i=0

cixn−i

)
k−1∑
j=0

cj

=

k−1∑
i=0

ci (xn−i − x+)(
1 +

k−1∑
i=0

cixn−i

)
k−1∑
j=0

cj

.

Make the substitution yn = xn − x+ to obtain

yn+1 =
k−1∑
l=0

 cl(
1 +

k−1∑
i=0

cixn−i

)
k−1∑
j=0

cj

· yn−l

 .

Let

gl =
cl(

1 +
k−1∑
i=0

cixn−i

)
k−1∑
j=0

cj

to see that
k−1∑
l=0

|gl| =
1

1 +
k−1∑
i=0

cixn−i

≤ 1

1 +M
< 1
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for some M > 0 so long as
k−1∑
i=0

cixn−i > 0. The latter is true by assumption

since ci > 0 for at least one i and the initial conditions satisfy x1−j > 0 for each

j = 1, . . . , k. By Theorem 1 of [10], lim
n→∞

yn = 0, and hence lim
n→∞

xn = x+. 2

Remark 7 Theorem 10 is proven using the powerful linearization technique dis-

cussed in [10]. However, we could also use Theorems 4 and 5 to arrive at the same

result.
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