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ABSTRACT 

Due to the shift towards sustainable energy, lithium ion batteries (LIB) have 

amassed significant interest from the automobile industry.  In order to power the large 

format batteries required for electric vehicles (EV), higher energy density materials 

are being developed, however challenges such as interfacial resistance of the anode 

materials and undesirable reactions of the electrolyte with the surface of both electrode 

materials threatens the power, safety, and lifetime of batteries containing these 

materials.  While there are numerous research efforts dedicated to improving the 

materials themselves, this work focuses on the in-situ surface modification of the 

electrode materials by incorporating electrolyte additives, which get sacrificially 

reduced or oxidized to form stable surface films. The novel organophosphorous 

additive, lithium dimethyl phosphate (LiDMP), has been investigated as an anode-film 

forming additive, which decreases impedance in LiNi1/3Mn1/3Co1/3O2/graphite cells, 

the fluorinated organophosphorous additive, lithium bis(2,2,2-tifluoroethyl)phosphate 

(LiBFEP), has been investigated as a cathode-film forming additive; which hinders 

manganese dissolution from the cathode and prevents continuous oxidation of the 

electrolyte in LiNi0.5Mn1.5O4/graphite cells; and imides and borates have been 

investigated as anode-film forming additives, which prevent the catalytic reduction of 

the electrolyte, thus hindering gassing in Li4Ti5O12/LiMn2O4 cells. Electrochemical 

impedance spectroscopy, X-ray photoelectron spectroscopy, and ATR-IR 

spectroscopy have been used to gain an understanding of the surface films formed 

with and without the additives while in-situ gas measurements based on Archimedes’  



 

 

principle and gas chromatography have given insight into how the implementation of 

the imides and borates affect gassing.  The knowledge obtained from this work 

enables selective design of LIB with various chemistries to enable performance while 

maintaining full function of materials. 
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PREFACE 

This thesis was written in manuscript format.   Chapter 1 is an introduction to 

lithium ion batteries, Chapter 2 was published in the Journal of the Electrochemical 

Society, and manuscripts for Chapters 3 and 4 are in progress and will be published 

shortly. 
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1 

CHAPTER 1 

 

INTRODUCTION 

 

Background 

Lithium’s high theoretical capacity (3,829 mAh/g) as well as the poor coulombic 

efficiency (ratio the battery stored to the ratio of charge the battery delivered) and 

safety issues associated with lithium anode-containing rechargeable batteries has 

indirectly lead to the success of lithium ion batteries (LIB).  [1]  While the research 

dedicated to developing intercalation compounds as cathode materials (from TiS2 to 

LiCoO2) was the preparation, the demand for an anode material to replace lithium 

metal, opportunity, lead to graphite (also an intercalation compound; LiC6). [1-2]  Due 

to the electrochemical instability (at lower potentials) of the aprotic organic solvents 

used, continuous reduction of the electrolyte on graphite’s surface was a problem until 

the solvent ethylene carbonate (EC) was added to electrolyte formulations.  The 

reduction products of EC form an electrically insulating but ionically conductive solid 

electrolyte interface (SEI), which passivates the surface of graphite in the initial cycles 

and prevents further electrolyte reduction. [1-4] Since their employment as the power 

source for consumer electronics by SONY in 1991, LIB have dominated as the power 

source for consumer electronics, and has drawn great interest from the automotive 

industry.  As far as LIB for electric vehicles, the goal is to increase the power and 

energy density of the battery, making it possible to decrease the pack size, and thus 

decreasing the price per customer. [5] Currently a compromise has to be reached 
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between power and energy density, and this is a function of the design of the battery 

and the materials used. [1]  

 

Working Principle of LIB 

The main components of a LIB are the cathode, anode, and electrolyte.  The 

cathode hosts Li ions within its matrix and is separated from the anode with a 

separator to prevent short circuits.  When charging a battery, voltage is applied and the 

lithium ions are shuttled from the cathode (where oxidation occurs) through the 

electrolyte (accompanied by electrons which travel through the external circuit) and 

inserted into the anode (where reduction occurs). [6] This process occurs reversibly as 

the battery is discharged (spontaneously); the lithium ions are shuttled from the anode, 

through the electrolyte, and back into the cathode.  Representative chemical equations 

are as follows: 

 

Cathode (LiCoO2):                                 LiCoO2   çè Li1-xCoO2 + Li+ + x e- 

Anode (Graphite):                                       C6 + x Li+ + x e-   çè x LiC6 

Net Equation:                                        LiCoO2  + C6   çè Li1-xCoO2 + x LiC6 

 

Cathode 

The positive electrodes (accepts electrons during discharge) in LIB are materials 

with higher working potentials (vs. Li/Li+), which host the lithium ions that get 

shuttled back and forth between the cathode and the anode.  Cathode materials are 

lithiated transition metal oxides with the formula LMO where L = lithium, M = 
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manganese (Mn), nickel (Ni), and/or cobalt (Co), and O = oxygen, which are prepared 

in the lithiated state.  LiCoO2 (LCO) cathodes, which have a specific capacity of 140 

mAh/g and working potential of 3.9 V (vs. Li/Li+) were the cathodes originally used in 

commercialized LIB, however due to LCO’s structural instability upon extracting too 

much (x < ~0.5) lithium as well as the cost and toxicity of Co, Li[Ni1/3Co1/3Mn1/3]O2 

(NMC111) (working potential of 3.8 V (vs. Li/Li+) and theoretical capacity of 160 

mAh/g) become a conventional cathode material. [1]  The need for higher energy 

density has lead to the development of high energy density cathode materials such as 

nickel-rich layered oxides (LiNixMnyCozO2), lithium-rich layered oxides 

(0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2), and high voltage spinel (LiNi0.5Mn1.5O4) 

(LNMO), however structural instability of the materials themselves as well as the 

electrochemical instability of the electrolyte at the potentials required to obtain high 

energy from these materials are the focus of current research. [1, 7-12] 

 

Anode 

The negative electrodes in LIB are materials with low working potentials, which 

are capable of accommodating Li ions via insertion (for layered materials such as 

graphite) or intercalation (for spinel structures such as Li4Ti5O12 (LTO). Due to its low 

working potential (~0.2 V vs. Li/Li+), low cost, and good cycle life (once the SEI is 

formed) graphite is currently the most widely used anode material. [2, 13-14] Capacity 

fading at high C rates is attributed to the slow kinetics involved with lithium 

intercalation into graphite. [15] Due to the lagging kinetics involved in intercalation, 

the higher the rate, the less lithium is inserted into the graphite, resulting in diminished 
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capacity as the rate increases. [16] While graphite material contains conductive carbon 

to improve its conductivity, when a passivation film is formed on the surface of 

graphite, the conductivity of this passivation layer affects charge-transfer as well. [17] 

Cells containing LTO, an anode material of interest for power applications, operates at 

a potential higher than the reduction potential of the electrolyte and doesn’t require a 

passivation film, however this limits the voltage window when paired with 

conventional cathodes such as LCO and NMC111.  LTO also suffers from gassing at 

elevated temperatures. [18] 

 

Electrolyte  

The electrolyte consists of lithium hexafluorophosphate (LiPF6) salt dissolved in 

a mixture of linear (ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), or 

diethyl carbonate (DEC)) and cyclic carbonates (EC).  While LiPF6 is both chemically 

and thermally unstable, it’s currently the only salt that meets all of the necessary 

requirements (fully dissociates in solution, passivates the aluminum current collector, 

and possesses a wide electrochemical stability window) of the electrolyte salt. [3] Due 

to its high dielectric constant and ability to form the SEI, EC is a widely used 

electrolyte solvent. [3] EC is extremely viscous, thus the low viscosity linear 

carbonates are mixed with EC to lower the viscosity of the solvent.  The 

electrochemical stability window (ESW) of the electrolyte is of paramount importance 

to the performance of LIB.  Graphite’s working potential is outside of the ESW of the 

electrolyte solvents, thus the electrolyte would be continuously reduced if not for the 

formation of the SEI during early cycles.  The higher potentials used with high energy 
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cathode materials is also outside the ESW of the electrolyte solvents, thus the 

formation of a cathode electrolyte interface (CEI) is necessary in order to prevent 

continuous oxidation of the electrolyte on the surface of the cathode. 

 

Review of the problem 

The main challenges associated with powering electric vehicles are power, safety, 

operation in various temperature ranges, and lifetime. [5] All of which are dependent 

on both the individual and synergistic function of the anode, cathode, and electrolyte.  

This thesis presents the investigation of electrolyte additives as surface modification 

tools harnessed to overcome challenges of the components of the battery such as 

interfacial resistance of the electrode materials, electrochemical instability of the 

electrolyte, and unwanted reactions of the electrolyte with the surface of the electrode 

materials. 
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Abstract 

The novel electrolyte additive lithium dimethyl phosphate (LiDMP) has been 

synthesized and characterized.  Incorporation of LiDMP (0.1 % wt.) into LiPF6 in 

ethylene carbonate (EC) / ethyl methyl carbonate (EMC) (3:7 wt.) results in improved 

rate performance and reduced impedance for graphite / LiNi1/3Mn1/3Co1/3O2 cells.  Ex-

situ surface analysis of the electrodes suggests that incorporation of LiDMP results in 

a modification of the solid electrolyte interphase (SEI) on the anode.  A decrease in 

the concentration of lithium alkyl carbonates and an increase in the concentration of 

lithium fluoro phosphates are observed.  The change in the anode SEI structure is 

responsible for the increased rate performance and decreased cell impedance. 
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Introduction 

Lithium ion batteries (LIB) are currently the preferred source of power for 

consumer electronics such as mobile phones, computers, and cameras and are of 

interest for large-scale high-powered battery markets including aerospace, military, 

and electric vehicles.  The reaction of non-aqueous electrolytes on the surface of the 

anode during the first few charging cycles results in the generation of a solid 

electrolyte interphase (SEI), which is critical to the performance of LIB. [1] While the 

structure and function of the anode SEI is still poorly understood, lithium ion 

intercalation through the SEI and into the anode is one of the largest limitations for 

high rate performance. [2-5] 

Electrolyte additives have been used to modify the structure of the SEI and 

improve the performance of LIB via decreasing the irreversible capacity during 

formation, lowering SEI resistance, or stabilizing cells against extreme conditions 

such as high temperature and high rate cycling. [1, 6-8]  Vinylene carbonate (VC) is 

one of the most frequently investigated additives and has been used to generate a more 

stable SEI on graphite, but unfortunately the films are typically more resistive. [9] 

Improving the kinetics of lithium ion batteries has been investigated via incorporation 

of alternative co-solvents to improve electrolyte conductivity [10]or incorporation of 

electrolyte additives, such as propane sultone (PS), to reduce the impedance of the 

SEI. [11]  Recently, novel phosphorus additives have been reported to improve the 

interfacial kinetics of the anode SEI. [12] In this manuscript, we report on the 

development of a novel organophosphorous additive, lithium dimethyl phosphate 
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(LiDMP), which has been found to function as an anode film-forming additive, which 

decreases cell impedance. 

 

Experimental 

Materials 

All of the materials for the synthesis of LiDMP were purchased from Sigma 

Aldrich or Acros and used without further purification.  Battery-grade ethylene 

carbonate (EC), ethyl methyl carbonate (EMC), and lithium hexafluorophosphate 

(LiPF6) were provided by BASF, Germany, and used as received.  LiDMP was 

washed and filtered 3 times and its purity was assessed from 1H and 31P NMR 

spectroscopy. 

Synthesis of LiDMP 

Trimethyl phosphate 1.75 mL (14.9 mmol) was added, drop wise, to a solution of 

lithium iodide 2.00 g (14.9 mmol) in 100 mL of acetone and allowed to stir for 2 days 

in a nitrogen-filled glove box resulting in the generation of a precipatate. [13] The 

contents of the flask were filtered through a glass filter frit funnel to collect the 

precipitate.  The precipitate was transferred to a round bottom flask, 15 mL of acetone 

was added, and the solution was allowed to stir for 2 hours to wash the crude product. 

 The method above was repeated twice and the salt was dried over night under 

nitrogen on the schlenk line to yield LiDMP (1.76 g, white solid, 89 % yield).  1H 

NMR (300 MHz, D2O): δ 3.54 (d, 6H, J = 27 Hz).  31P NMR (300 MHz, D2O): δ 2.98 

(sept, J = 27 Hz). 
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Coin Cell Preparation 

Lithium ion coin cells containing an artificial graphite anode and a 

LiNi1/3Mn1/3Co1/3O2 cathode were prepared with 1.2 M LiPF6 in EC: EMC (3:7 by 

volume, standard electrolyte, STD) with and without 0.1% (wt.) added LiDMP.  The 

negative electrodes were composed of 95.7% (wt.) graphite, 3.8% (wt.) carboxymethyl 

cellulose (CMC-SBR) binder, and 0.5% (wt.) conductive carbon (Super P).  The 

positive electrodes were composed of 93% (wt.) LiNi1/3Mn1/3Co1/3O2, 4% (wt.) 

polyvinylidene fluoride (PVDF) binder, and 3% (wt.) conductive carbon.  The coin 

cells were prepared with 105 µL electrolyte, 2 separators (a polyethylene film and a 

glass fiber).  

 

Electrochemical Testing 

Coin cells were cycled with a constant current-constant voltage charge and a 

constant current discharge between 4.2 V and 3.0 V using a battery cycler (BT-2000 

Arbin cycler, College Station, TX).  The cells were cycled with the following 

formation procedure: first cycle at C/20, D/20, second and third cycles at C/10, D/10, 

and the fourth and fifth cycles at C/5, D/5.  After the initial five formation cycles the 

cells were cycled at a C/5, D/5 rate for 15 cycles at room temperature, followed by 3 

cycles each of C/3, D/3, C/2, D/2, C, D, 2C, 2D, 3C, 3D, 5C, 5D, and C/5, D/5, 

respectively.   

All cells were prepared in duplicate to confirm reproducibility of the cycling 

behavior.  Representative cycling data are presented.  After 20 cycles, electrochemical 

impedance spectroscopy (EIS) was measured at a 0% state of charge on a Solartron SI 
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1287 electrochemical interface and SI 1252A frequency response analyzer with an AC 

perturbation of 10 mV and frequency range of 300 kHz - 30 mHz.  Cells were then 

cycled at elevated rates, allowed to rest in order to obtain equilibrium, and EIS 

measurements were repeated.   

In order to measure the impedance of symmetrical graphite and symmetrical 

NCM 111 cells, 4 cells containing the standard electrolyte were assembled using the 

method previously mentioned.  The cells were charged to 4.2V, allowed to rest, and 

opened.  The electrodes were harvested and 2 symmetrical lithiated graphite cells as 

well as 2 symmetrical delithiated NCM111 cells were assembled in the method 

previously mentioned, allowed to rest in order to obtain equilibrium, and analyzed in-

situ via EIS using the parameters previously mentioned.  Symmetric cells were 

prepared from electrodes cycled with standard electrolyte with and without added 

LiDMP. 

 

Ex-situ Surface Analysis 

The cells were disassembled in an argon glove box.  The electrodes were rinsed 

with dimethyl carbonate (DMC) three times to remove residual EC and LiPF6 and 

evacuated overnight prior to surface analysis.  X-ray photoelectron spectroscopy 

(XPS) was acquired with a Thermo K-alpha system using Al Kα radiation (hυ = 

1486.6 eV) under ultra high vacuum and a measured spot size of 400 µm.  Samples 

were transferred into the XPS chamber with a vacuum transfer vessel.  The binding 

energy was corrected based on the C 1s of C-C at 284.3 eV.  The spectra obtained 

were analyzed using Thermo Advantage software (version 5.926).  A mixture of 30% 
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Laurentzian and 70% Gaussian functions was used for the least-squares curves fitting 

procedure. 

 

Results and Discussion 

Electrochemical Testing 

A comparative study of LiNi1/3Mn1/3Co1/3O2/Graphite cells with the standard 

electrolyte and the standard electrolyte with 0.1% (wt.) of added LiDMP was 

conducted in order to assay the effect of the additive on cycling behavior.  Capacity 

retention and rate performance of cells cycled with and without LiDMP are displayed 

in Figure 2.2.  Although both sets of cells display similar capacity retention at low 

rates, cells cycled with LiDMP exhibit a higher first coulombic efficiency (CE) of 

91.5% compared to 87.9% of cells cycled with the standard electrolyte.  The improved 

rate performance of the standard electrolyte with added LiDMP at 2C and 3C suggests 

that there is less resistance, with LiDMP  

The voltage profile of the NCM111/Graphite cells at C/3 and 2C are displayed in 

Figure 2.3.  The cell with added LiDMP has comparable capacity to the cell with the 

standard electrolyte at C/3 and significantly more capacity at 2C.  The larger voltage 

hysteresis observed for the cell cycled with standard electrolyte provides further 

support for reduced cell resistance with added LiDMP.  The passivation film generated 

for the cell cycled with LiDMP is more conductive than that generated without 

LiDMP.  This is demonstrated by the decrease in ohmic potential drop observed in the 

2C discharge curve in Figure 2 of the cell cycled with 0.1% (wt.) LiDMP. 
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Impedance measurements of the NCM111/Graphite cells, which have undergone 

formation at 25oC, with and without LiDMP, are displayed in Figure 2.4a.  The cells 

cycled with added LiDMP have lower impedance than the cells cycled with the 

standard electrolyte, consistent with the rate data.  Again, this is attributed to the 

LiDMP-derived surface film, which improves charge-transfer.  In order to determine 

whether the improved resistance is due to changes with the anode or the cathode, 

symmetrical cells of lithiated graphite and delithiated NCM111 were constructed.  The 

impedance measurements of the symmetrical cells are displayed in Figures 2.4b and 

2.4c, respectively.  The graphite symmetrical cell with added LiDMP has significantly 

less resistance than the graphite symmetrical cell with the standard electrolyte (Figure 

2.4b) while the NCM111 symmetrical cells have similar impedance with and without 

added LiDMP (Figure 2.4c), this demonstrates that the reduced resistance is a function 

of the LiDMP modifying the SEI on the anode. 

 

Surface Characterization 

The relative atomic concentrations of elements detected on the surface of fresh 

graphite electrodes and graphite electrodes extracted from cells which have undergone 

formation cycling at 25oC with the standard electrolyte (STD) and STD with added 

LiDMP are shown in Figure 2.5.   The electrode cycled with the standard electrolyte 

has an increase in the concentration of O, F and P, and a decrease in the concentration 

of C, supporting the generation of an SEI on the surface of the active material.  Similar 

results are observed for the cell cycled with the electrolyte with added LiDMP except 

there is a greater increase in the concentrations of O, F, and P, and a greater decrease 
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in the concentration of C, which suggests a structural modification of the SEI upon 

incorporation of LiDMP. 

The C1s XPS spectra of fresh graphite electrode and the graphite electrodes 

cycled with the standard electrolyte with and without added LiDMP are displayed in 

Figure 2.6.  A decrease in the intensity of the C-C peak (284.3 eV) combined with the 

increases in the intensity of the C-H (285.6 eV), C-O (286.0 eV), CO2 (288.1 eV), and 

CO3 (290.1 eV) peaks indicates that an organic passivation layer generated from the 

reduction of EC covers the graphite electrode. [3] Related peaks associated with C-H, 

C-O, and CO3 are observed on the surface of the electrode cycled with added LiDMP, 

but the intensity of the new absorptions are weaker, consistent with less EC reduction 

on the anode surface. 

The F1s XPS spectra are very similar for both the electrode cycled with the 

standard electrolyte and the electrode cycled with added LiDMP.  Small amounts of 

LixPOyFz (687.2 eV) and larger amounts of LiF (685.0 eV) are present on the surface 

of both electrodes.  The O1s XPS spectra differ in that the electrode cycled with 

LiDMP displays small amounts of Li2O (528.8 eV), significantly less C-O species 

(533.0 eV), and a significantly greater peak at 531.6 eV, which corresponds to the 

binding energy of Li3PO4. [14] 

The P2p XPS spectra of the electrode cycled with the standard electrolyte with 

and without added LiDMP are provided in Figure 2.6.  The electrode cycled with the 

standard electrolyte has a low concentration of residual LiPF6 and/or LixPOyFz at 

138.0 eV and low concentration of phosphates at 134.0 eV.  The electrode cycled with 

electrolyte containing added LiDMP also has a low concentration of LiPF6 and/or 
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LixPOyFz, but the concentration of phosphates are significantly greater, consistent with 

deposition of LiDMP reduction products on the surface of the anode.  The increased 

concentration of phosphates likely correlates with the reduced impedance of the cycled 

anodes.  Similar observations have been observed with other additives that generate 

phosphate or sulfate rich SEIs. [12,15] 

 

Conclusion 

The novel lithium salt, lithium dimethyl phosphate (LiDMP), was synthesized 

and investigated as an anode film forming electrolyte additive.  Incorporation of 

LiDMP into a standard electrolyte formulation results in improved first cycle 

efficiency, improved rate performance and decreased cell impedance on the graphitic 

anode.  Ex-situ surface analysis of the cycled anodes reveals lower concentrations of 

lithium alkyl carbonates, consistent with the improved efficiency, and a higher 

concentration of LixPOyFz on electrodes cycled with added LiDMP.  The presence of 

higher concentrations of LixPOyFz in the anode SEI is likely the source of improved 

first cycle efficiency and reduced impedance.  Similar improvements have been 

reported for additives, which result in the generation of phosphate or sulfate rich SEIs.   
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Figures 
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Figure 2.1:  Synthesis of LiDMP.   
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Figure 2.2 

 

Figure 2.2:  Cycling retention and rate performance of LiNi1/3Co1/3Mn1/3O2/Graphite cells at 

25oC with the baseline electrolyte (STD) and with the baseline + LiDMP.   
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Figure 2.3 

 

Figure 2.3:  Voltage profile of LiNi1/3Co1/3Mn1/3O2/Graphite cells at 25oC (C/3, D/3, 2C, and 

2D between 3.0V and 4.2V) with the baseline electrolyte (STD) and the baseline + LiDMP. 
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Figure 2.4 

 

Figure 2.4:  EIS measurements at OCV of a) LiNi1/3Co1/3Mn1/3O2/Graphite cells 

which have undergone formation cycling at 25oC (0% SOC), b) Symmetrical lithiated 

graphite cells, and c) Symmetrical delithiated NCM111. 
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Figure 2.5 

 

Figure 2.5:  Relative atomic concentrations of elements detected on the surface of the 

fresh anode, the anode which has undergone formation cycling at 25oC with the 

baseline electrolyte, and the anode which has undergone formation cycling with the 

baseline electrolyte + LiDMP.   
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Figure 2.6 

 

Figure 2.6:  C1s core spectra of fresh graphite, graphite which has undergone 

formation at 25oC with the baseline electrolyte, and graphite which has undergone 

formation with the baseline electrolyte + LiDMP (left).  P2p core spectra of graphite, 

which has undergone formation at 25oC 
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APPENDIX 

 

Supplementary figures from the previous chapter are displayed on the following 

pages. 
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Figure a.1 

 

Figure a.1:  1H NMR of LiDMP taken in D2O 
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Figure a.2 

 

Figure a.2:  1H NMR of LiDMP taken in D2O 
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Figure a.3 

 

Figure a.3:  31P NMR taken in D2O 
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Figure a.4 

 

Figure a.4:  31P NMR taken in D2O 
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Abstract 

The fluorinated phosphate lithium bis (2,2,2-trifluoroethyl) phosphate (LiBFEP) 

has been investigated as a film-forming additive employed to passivate the cathode 

and hinder continuous oxidation of the electrolyte. Incorporation of LiBFEP (0.1 and 

0.5 wt %) into LiPF6 in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (3:7 

wt.) results in improved coulombic efficiency and capacity retention for 

LNMO/graphite cells.  Ex-situ surface analysis of the electrodes suggests that 

incorporation of LiBFEP results in the formation of a cathode electrolyte interface 

(CEI) and modification of the solid electrolyte interface (SEI) on the anode.  The 

formation of the CEI mitigates electrolyte oxidation and prevents the decomposition of 

LiPF6, which in turn prevents HF-induced manganese dissolution from the cathode 

and destabilization of the SEI.  The passivation of the cathode and stabilization of the 

SEI is responsible for the increased coulombic efficiency and capacity retention. 
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Introduction 

Since their debut in 1991, commercial lithium ion batteries (LIB) have become the 

universal power source for consumer electronics.[1] Larger format LIB such as those 

needed to power electric vehicles (EV), an important niche market, have amassed 

considerable interest; however higher specific energy densities are required for larger 

format LIB.[1, 2] The practical way to increase energy density is to employ cathode 

materials with increased theoretical capacities and/or high discharge plateaus, and thus 

high energy (HE) or high voltage (HV) cathodes are required in order for LIB to meet 

the demands of the EV market.[3] While both HE and HV cathodes have been 

fabricated, current research efforts are focused on overcoming the caveats associated 

with these materials.  The oxidative instability of carbonate-based electrolytes is a 

central limitation for cells with various cathode chemistries operated above 4.4V.[3-7] 

In addition to the instability of the electrolyte, cathodes such as nickel-rich layered 

oxides (LiNixMnyCozO2), lithium-rich layered oxides (0.6Li2MnO3-

0.4Li(Ni1/3Co1/3Mn1/3)O2), and HV spinel (LiNi0.5Mn1.5O4) all suffer from structural 

instability when operated at high potentials.[5-8] While the layered oxides are capable 

of delivering higher practical energy densities, this work focuses on improving the 

performance of LNMO/Graphite cells.   

The capacity fading observed in LNMO/Graphite cells is due to continuous 

oxidation of the electrolyte and transition metal dissolution.[3, 7] While the former 

results in electron loss and the formation of unstable species on the surface of the 

cathode, the latter results in destruction of the LNMO material (due to loss of 

manganese) and increased resistance of the SEI (due to deposition of manganese).[9, 
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12] Although research focused on altering the individual components (electrolyte 

solvents, electrolyte salts, and cathode material) prior to cell construction have been 

explored extensively, electrolyte additives have also been investigated to stabilize the 

existing electrolyte and/or passivate the cathode in-situ.  The types of additives 

investigated in LNMO/Graphite cells are, but not limited to, borates, sultones, and 

anhydrides. Xu et. al. showed that borates lithium bis(oxolato)borate (LiBOB) and 

lithium tetramethyl borate (LTMB) displayed capacity retentions of 69% and 60%, 

respectively post 30 cycles at 55°C; in-situ gas analysis as well as ex-situ surface 

analysis revealed that LiBOB was sacrificially oxidized to generate a cathode 

passivation film (CEI) which decreased manganese dissolution while the improvement 

observed in the presence of LTMB was attributed to a  borate-rich CEI (evidenced by 

XPS measurements) formed from the sacrificial oxidation of LTMB observed during 

the first cycle. [13-15] Lee et. al. showed that vinylene carbonate (VC) is a poor 

additive for the LNMO/Graphite system due to its poor anodic stability whereas 1,3-

propane sultone (PS) and succinic anhydride (SA) both displayed capacity retentions 

greater than 50% post 200 cycles at 25°C compared to 36% capacity retention post 

200 cycles with the STD; the improved performance was attributed to the formation of 

a stable, non-EC derived SEI. [16]  

 In this work the fluorinated phosphate, lithium bis(2,2,2-trifluoroethyl) 

phosphate Li[O2P(OCH2CF3)2] (LiBFEP), will be evaluated as a film forming additive 

in the LNMO/graphite system.   

Experimental 

General 
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 LiBFEP was synthesized in a two-step procedure as described by Schleep et al. 

[17]. 

 

Electrode preparation, cell assembly, and cycling of LNMO/Graphite full cells 

Lithium ion coin cells containing an artificial graphite anode and LiNi0.5Mn1.5O4 as 

the active cathode material were prepared with 1.2 M LiPF6 in EC: EMC (3:7 by 

volume) with and without 0.1% (wt.) and 0.5% (wt.) added LiBFEP.  The negative 

electrodes were composed of 95.7% (wt.) graphite, 3.8% (wt.) carboxymethyl 

cellulose (CMC) binder, and 0.5% (wt.) conductive carbon (Super P).  The positive 

electrodes were composed of 92% (wt.) LiNi0.5Mn1.5O4, 4% (wt.) polyvinylidene 

fluoride (PVDF) binder, and 4% (wt.) conductive carbon.  The coin cells contained 90 

µL electrolyte, 2 separators (a polyethylene film and a glass fiber), and were used for 

both electrochemical testing of the cells and ex situ analysis of the electrodes.  

Coin cells were cycled with a constant current-constant voltage and a constant 

current discharge between 4.8 V and 3.3 V using a battery cycler (BT-2000 Arbin 

cycler, College Station, TX).  The cells were cycled with the following formation 

procedure: first cycle at C/20, second and third cycles at C/10, and the fourth and fifth 

cycles at C/5.  After the initial five formation cycles the cells were cycled at a C/5, rate 

for 195 cycles at room temperature. 

 

Ex-situ Surface Analysis 

The cells were disassembled in an argon glove box.  The electrodes were rinsed 

with 500µl of dimethyl carbonate (DMC) twice to remove residual EC and LiPF6 and 
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evacuated overnight prior to surface analysis.  X-ray photoelectron spectroscopy 

(XPS) spectra were acquired with a K-alpha, Thermo system using Al Kα radiation 

(hυ = 1486.6 eV) under ultra high vacuum and a measured spot size of 400 µm.  The 

binding energy was corrected based on the C 1s of C-C at 284.8 eV.  The spectra 

obtained were analyzed by and fitted using Thermo Advantage software (version 

5.926).  A mixture of 30% Laurentzian and 70% Gaussian functions was used for the 

least-squares curves fitting procedure. 

IR measurements were conducted on a Thermo Scientific Nicolet iS10 

spectrometer with an attenuated total reflection (ATR) accessory.  The electrodes were 

transferred from the argon glove box to the nitrogen-filled glove box in a sealed 

argon-filled vial.  The spectra were acquired in a nitrogen glove box with a resolution 

of 4 cm-1 and a total of 512 scans. 

 

Results and Discussion 

Cycling of LNMO/Graphite full cells 

Figure 3.1 displays the cycling performance and coulombic efficiency (CE) of 

LNMO/graphite cells cycled with the STD electrolyte, STD + 0.1 wt % LiBFEP, and 

STD + 0.5 wt % LiBFEP at 25 °C. Cells displayed first specific discharge capacities 

of 129.3 ± 0.3 mAh/g irrespective of the electrolyte formulation used.  Cells cycled 

with the STD electrolyte displayed a first CE of 86%, the lowest capacity retention of 

the 3 formulations, and cell death after 196 cycles. Incorporation of 0.1 wt % of 

LiBFEP into the STD electrolyte doesn’t alter the first CE (87%), however a small 

increase in capacity retention is observed, and the cells completed 200 cycles.  
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Increasing the concentration of LiBFEP to 0.5 wt % resulted in similar first CE (87%) 

to cells cycled with both the STD electrolyte and 0.1 wt % LiBFEP, however capacity 

fading decreased.  Cells cycled with the STD displayed 73% capacity retention after 

190 cycles, cells cycled with 0.1 wt % LiBFEP and 0.5 wt % LiBFEP displayed 76% 

and 79% capacity retention after 190 cycles, respectively.  LiPF6 decomposition 

generates HF, which is the root of Mn dissolution (detrimental to both the cathode and 

the anode), thus the improved capacity retention observed in the presence of LiBFEP 

is attributed to the stabilization of the SEI and the formation of a CEI. 

 

Post -mortem analysis of LNMO and graphite electrodes with ATR-IR 
 

In order to gain insight into LiBFEP’s role in surface film formation, ex situ 

surface analysis of both electrodes were performed after formation cycling.  Figure 

3.2a displays ATR-IR spectra of graphite electrodes harvested from cells after 

formation cycling with the STD electrolyte, STD + 0.1 wt % LiBFEP, and STD + 0.5 

wt % LiBFEP at 25 °C.  The surface of graphite after formation cycling with the STD 

electrolyte contains absorptions consistent with the presence of Li2CO3 (1431 cm-1) 

and ROCO2Li (1611 cm-1).[18] While the surface of graphite post formation with 

LiBFEP also displays the Li2CO3 and ROCO2Li peaks, the intensities of these peaks 

are reduced significantly in the presence of LiBFEP.  Additional peaks (1152 and 

1206 cm-1) are observed in the presence of LiBFEP, which are consistent with the 

presence of C-F, C-H, and P-O bonds [19] The intensity of these  bands increase with 

increasing concentration of LiBFEP.  Figure 3.2b displays ATR-IR spectra of LNMO 

electrodes harvested from cells after formation cycling with the STD electrolyte, STD 
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+ 0.1 wt % LiBFEP, and STD + 0.5 wt % LiBFEP at 25 °C.  PVdF and residual EC 

are observed on the surface of LNMO irrespective of the electrolyte formulation used, 

however the 0.5 wt % LiBFEP spectrum has the lowest intensity of these bands.  The 

PVdF binder bands are native to the LNMO cathode material, thus a decrease in the 

intensity of these bands suggests the presence of a surface film. 

 

Post-mortem analysis of graphite and LNMO electrodes with XPS 

In order to gain further understanding of LiBFEP’s effect on the chemical 

composition of the graphite surface film, XPS surface analysis was carried out on 

graphite electrodes extracted from cells after formation cycling with the STD 

electrolyte, STD + 0.1 wt % LiBFEP, and STD + 0.5 wt % LiBFEP at 25 °C.  The 

relative atomic concentrations of a fresh graphite electrode and graphite electrodes 

cycled with the 3 electrolyte formulations are displayed in Figure 3.3.  In comparison 

to fresh graphite, the surface of graphite cycled with the STD electrolyte showed an 

increase in oxygen, a decrease in carbon, and additional fluorine, lithium, 

phosphorous, and Mn.  This suggests the presence of a surface film consisting of 

electrolyte decomposition products (LiF, LixPOyFz, and Li2CO3) as well as Mn from 

the cathode. While the surface of graphite cycled with 0.1 wt % LiBFEP contained 

less carbon, oxygen, phosphorous, and manganese, increases in fluorine and lithium 

were detected. This suggests that the incorporation of 0.1 wt % LiBFEP into the STD 

electrolyte decreases manganese dissolution and results in a fluorine-rich SEI.  The 

surface of graphite extracted from cells cycled with 0.5 wt % LiBFEP displayed the 

same trend in relative atomic concentrations as graphite cycled with 0.1 wt % LiBFEP, 
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however the increase in the concentration of LiBFEP resulted in a larger contribution 

from fluorine and lithium, The most notable difference is the complete absence of 

manganese with 0.5 wt % LiBFEP, demonstrating that LiBFEP is highly effective in 

preventing Mn dissolution. 

Figure 3.4 displays XPS C1s, F1s, and Li1s core spectra of graphite electrodes 

harvested from cells post formation cycling (1: C/20; 2: C/10; and 2: C/5) with the 

STD, STD + 0.1 wt.% LiBFEP, and STD + 0.5 wt.% LiBFEP at 25°C. The surface of 

graphite cycled with the STD contains Li2CO3 (290.0 eV, C1s), ROCO2Li (286.5 and 

288.8 eV, C1s), and LiF (685.0 eV, F1s), while the surface of graphite cycled with 0.1 

wt.% LiBFEP contains ROCO2Li and LiF peaks.  Instead of Li2CO3 and ROCO2Li, 

the surface of graphite cycled with 0.5 wt.% LiBFEP displays CF3 peaks (292.2 and 

689.2eV, C1s and F1s, respectively) and an increase in LiF.  This suggests a LiBFEP-

derived surface film.  The Mn3p (48.5 eV) peak observed in the Li1s spectrum of the 

STD is indicative of transition metal dissolution from the cathode.[20] A significant 

decrease in intensity of these peaks can be observed on the surface of graphite cycled 

with the 0.1 wt.% LiBFEP containing electrolyte, while these peaks are absent in the 

presence of 0.5 wt.% LiBFEP.  This clearly demonstrates that LiBFEP suppresses 

transition metal dissolution.  This can be accomplished in 3 ways: preventing HF 

formation, scavenging HF, or passivating the surface of the cathode. 

In order to verify the presence of a CEI, XPS surface analysis was carried out on 

LNMO electrodes harvested from cells post formation cycling with the STD, STD + 

0.1 wt.% LiBFEP, and STD + 0.5 wt.% LiBFEP at 25°C. The relative atomic 

concentrations of a fresh LNMO electrode and LNMO electrodes cycled with the three 
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electrolyte formulations are displayed in Figure 3.5.  In comparison with fresh LNMO, 

a slight decrease in carbon and the addition of phosphorous was detected on the 

surface of LNMO electrodes cycled with the STD electrolyte.  Less carbon and more 

fluorine was detected on the surface of LNMO electrodes cycled with 0.1 wt % 

LiBFEP than the surface of LNMO electrodes cycled with the STD electrolyte.  The 

surface of LNMO electrodes cycled with 0.5 wt % LiBFEP contained less carbon and 

more fluorine and phosphorous than the surface of LNMO electrodes cycled with 0.1 

wt % LiBFEP.  The carbon detected on the surface of fresh LNMO electrodes is from 

the conductive carbon and the fluorine is from the PVdF binder.  The decrease in 

carbon indicates the presence of a CEI on the surface of LNMO, while the increase in 

fluorine suggests the presence of fluorinated species (in addition to the PVdF binder).  

The combination of the decrease in carbon and increase in both fluorine and 

phosphorous detected with increased LiBFEP concentration suggests the presence of 

an LiBFEP-derived CEI, which increases in thickness as the concentration of the 

additive increases. 

The C1s, O1s, and F1s core spectra of LNMO electrodes cycled with the three 

electrolyte formulations are displayed in Figure 3.6.  While the surface of LNMO post 

formation with all 3 electrolyte formulations display LiF (685 eV, F1s) peaks, CF3 

peaks (292.2 and 689.2 eV, C1s and F1s, respectively) proportional to [LiBFEP] were 

detected on the surface of LNMO cycled with LiBFEP.  This indicates the presence of 

a thin LiBFEP-derived surface film. 
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Conclusion 

The implementation of LiBFEP as an additive in carbonate electrolytes improves 

the capacity retention of LNMO/graphite cells during long term cycling at room 

temperature.  The increased coulombic efficiency of full cells and lack of manganese 

observed on the surface of graphite in the presence of LiBFEP all suggest the presence 

of a CEI.  This was confirmed by XPS measurements of LNMO post formation 

cycling. Both XPS and IR measurements of graphite post formation cycling indicate 

that LiBFEP alters the SEI as well. The improved performance is attributed to a 

LiBFEP-derived CEI, which reduces electrolyte oxidation and prevents manganese 

dissolution from the cathode. 
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Figures 

Figure 3.1 

 

Figure 3.1: Cycling performance and coulombic efficiency of the STD electrolyte, 

STD + 0.1 wt % LiBFEP, and STD + 0.5 wt % LiBFEP in LNMO/graphite cells at 25 

°C. 
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Figure 3.2 

 

Figure 3.2: ATR-IR surface analysis of graphite (a) and LNMO (b) post formation 

cycling with the STD electrolyte, STD + 0.1 wt % LiBFEP, and STD + 0.5 wt % 

LiBFEP 25 °C. 
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Figure 3.3 

 

Figure 3.3: Relative atomic concentrations of a fresh graphite electrode, and graphite 

electrodes extracted after formation cycling with the STD electrolyte, STD + 0.1 wt % 

LiBFEP, and STD + 0.5 wt % LiBFEP at 25 °C. 
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Figure 3.4 

 

Figure. 3.4: XPS surface analysis of graphite post formation cycling with the STD 

electrolyte, STD + 0.1 wt % LiBFEP, and STD + 0.5 wt % LiBFEP at 25 °C. 
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Figure 3.5 

 

Figure. 3.5: Relative atomic concentrations of a fresh LNMO electrode, and LNMO 

electrodes extracted after formation cycling with the STD electrolyte, STD + 0.1 wt.-

% LiBFEP, and STD + 0.5 wt.-% LiBFEP at 25 °C. 
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Figure 3.6 

 

Figure. 3.6: XPS surface analysis of LNMO cathodes post formation cycling with the 

STD electrolyte, STD + 0.1 wt % LiBFEP, and STD + 0.5 wt % LiBFEP at 25 °C. 
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Abstract 

Batteries consisting of Li4Ti5O12 (LTO) anodes do not require the formation of a solid 

electrolyte interface to deliver robust high-rate performance at room temperature, 

however performance suffers at elevated temperatures due to gassing.  Research has 

linked this gassing to the instability of the electrolyte on the surface of charged LTO at 

elevated temperatures. [1-3] If this is the case, a passivation layer, which prevents the 

electrolyte from coming into contact with the charged surface of LTO, should hinder 

gassing.  Several classes of electrolyte additives have been investigated in 

Li4Ti5O12/LiMn2O4 coin cells and pouch cells.  ATR-IR and X-ray photoelectron 

spectroscopy has been used to gain an understanding of the surface films formed with 

different additives while in-situ gas measurements based on Archimedes’ principle 

and gas chromatography have given insight into how the implementation of these 

additives affects gassing.  The results from this study enable the selective design of 

surface films for LTO anodes, which reduces gassing at elevated temperatures without 

sacrificing performance. 
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Introduction 

 Graphite is the most ubiquitous anode material used in lithium ion batteries 

(LIB) when it comes to high energy density applications because of its low operating 

potential, low cost, and reasonable lifetime in standard conditions (moderate rates and 

temperature).[8] When it comes to high power density LIB such as those required for 

power tools, start-stop engines, or regenerative breaking, graphite is not suitable 

because of its limited rate capability and the safety concerns (lithium plating) 

associated with fast charging.[ 2, 9] Intrinsic characteristics of Li4Ti5O12 (LTO) such 

as its high reduction potential (1.55 V vs. Li/Li+) and lack of volume change during 

insertion/extraction (< 1%) coupled with the fact that its synthetic route has been 

optimized to render robust high rate capabilities and cycling stability makes LTO a 

very favorable anode material for high powered LIB.[ 8-10] Because LTO’s high 

working potential narrows the voltage window of cells when paired with conventional 

cathode materials, LTO is currently most suitable for high-power applications. The 

principal challenge associated with the use of LTO anodes is the gassing of cells 

containing LTO both at elevated temperatures and when stored in the charged state. [9, 

11-13]  

 Qin et. al reported that the predominant gas detected was H2, the amount 

increased with temperature, and was only generated in cells containing LTO in the 

charged state.14 Storage experiments of LTO in the charged state with and without 

LiPF6 salt, also performed by Qin et. al., revealed that the amount of H2 generated was 

reduced significantly in the absence of LiPF6. Gassing measurements reported by 

Belharouck et. al. depicted an inverse relationship between H2 generation and alkyl 
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gasses generated from electrolyte decomposition. [15] Since gaseous electrolyte 

decomposition products are likely to be accompanied by insoluble electrolyte 

decomposition products, which passivate the surface of LTO, this suggests that 

passivation of the electrode would decrease gassing.  In addition to confirming more 

gassing at a higher state of charge, Liu et. al also demonstrated that cells stored in the 

presence of PC had less gassing than cells stored in the presence of EC. [11] This was 

attributed to the fact that the PC-based electrolyte formed thicker and denser SEI 

layers on LTO surfaces than EC-based electrolytes.  While the presence of trace 

amounts of water in the electrolyte or the electrode was initially deemed the 

contributing factor to H2 generation, the aforementioned results all suggest that the 

contact of the electrolyte with the charged surface of LTO is the problem.  Various 

techniques such as coating, doping, poisoning, or passivating the surface of LTO to 

reduce gassing have been attempted. [16,14] This work focuses on using 2 classes of 

electrolyte additives (imides and borates) to passivate the surface of LTO and to 

employ both in situ and ex situ gassing measurements as well as ex situ surface 

analysis to gain an understanding of the effects of the additives. 

 

Experimental 

Materials 

 Battery grade ethylene carbonate (EC), propylene carbonate (PC), diethyl 

carbonate (DEC), lithium hexafluorophosphate (LiPF6), LiTFSI, LiFSI, LiBOB, and 

LiDFOB were provided by a commercial supplier and used as received.  TMSB was 

purchased from Sigma Aldrich and used as received. 



 

56 

Cell Preparation 

Pouch cells – 920 mAh multilayer pouch cells were assembled by SKC using 

commercially available BTBM LMO as the cathode material and commercially 

available POSCO LTO as the anode material.  The cells were dried at 55 °C for 12 

hours under vacuum prior to filling.  Once dried, cells were transferred to an argon 

glove box and filled with 9.1 g of electrolyte, baseline electrolyte is 1.0 M LiPF6 in 

EC/PC/DEC (15:20:65), and vacuum sealed.  All cells undergo 12 hours of rest at 25 

°C after sealing to ensure complete wetting.  Cycling data and gas measurements were 

obtained from pouch cells. 

Coin cells – 2032- type coin cells with the same materials as the pouch cells were 

assembled in an argon glove box. While the coin cells cannot be degassed, adequate 

pressure applied by the spring’s forces the gas into the headspace of the cell.  The coin 

cells underwent the following formation procedure: constant current charge to 2.9 V at 

a 0.1C rate, held at a constant voltage for 2 hours at 2.9 V, allowed to rest for 10 

minutes.  Once the rest step was complete, cells were discharged to 2.1 V at a 0.1C 

rate, AC and DC impedance measurements were acquired, and the whole procedure 

was repeated.  The coin cells have undergone the same high temperature storage and 

cycling protocol as the pouch cells.  Surface analysis was carried out on electrodes 

extracted from coin cells. 

 

Electrochemical Testing 

Formation and Ageing – Pouch cells were clamped and cycled with a constant current 

(CC) charge at 0.1C with a 2.7 V cutoff using a MACCOR battery cycler.  Once 
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charged, the cells were unclamped and placed in a 45 °C chamber for 12 hours of 

ageing.  Cells were then degassed and vacuum-sealed in the argon glove box before 

undergoing a second formation step in which the cells were cycled with a constant 

current-constant voltage (CC-CV) charge and CC discharge between 2.8 and 1.7 V 

(vs. Li4Ti5O12/Li7Ti5O11) with the following procedure: 1 cycle at C/10, 1 cycle at C/5, 

and 1 cycle at 1C. 

High Temperature Storage – After completing the formation and ageing procedure 

cells were clamped tightly and underwent the following storage procedure: charged 

with CC-CV to 2.8 V at 0.7C with a cutoff current of 0.02C, discharged with CC to 

1.7 V at 1C, and charged with CC-CV to 2.8 V at 0.7 C with a cutoff current of 0.02C.  

The cells were then stored in the 100% state of charge (SOC) in a 60 °C chamber for 1 

week.  Upon completing the storage procedure cells experienced the following after 

storage procedure: discharged with CC to 1.7 V at 1C, charged with CC-CV to 2.8 V 

and finally discharged to 17 V at 1C. 

Long Term Cycling – After completing the formation and ageing procedure, cells 

undergo rate testing between 2.8 and 1.7 V according to the following procedure: 2 

cycles with C/2, D/2; 1 cycle with C/2, D/5; 1 cycle with C/2, D/2; 1 cycle with C/2, 

1D; 1 cycle with C/2, 2D; and 3 cycles with C/2, D/2 (where C = charge rate and D = 

discharge rate).  Once the rate testing is complete, cells undergo the before storage 

procedure described in the high temperature storage section, stored in the 100% SOC 

for 24 hours, and undergo the after storage procedure described in the high 

temperature storage section.  Cells were transferred to a 45 °C chamber (tightly 

clamped) and cycled between 2.8 and 1.7 V at 1C with a C/10 cycle every 50 cycles. 
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All cells were prepared in duplicate to confirm reproducibility.  Representative data 

are presented. 

 

Gas Analysis 

Gas Volume – Gas volume was measured before formation, before aging, after 

formation, after aging, before storage and/or cycling, and after storage and/or cycling 

according to the procedure first described by Aiken et al. [17] The pouch cells were 

hung from the bottom of a scale and tarred; after reaching a stable zero, the cells were 

submerged completely to a defined level in 25 °C deionized water. The recorded 

weight of the cell while submersed was then used along with the Archimedes’ 

principle to calculate the amount of gas evolved over time 

Gas Composition – To measure the composition of gasses, cells were brought into the 

argon dry box for extraction. A 0.5 mL Vici precision sampling analytical pressure-

lock syringe was used to manually extract the gas sample from the cell under argon 

atmosphere. The sample was then manually injected into a Varian 450 gas 

chromatograph equipped with a 19808 Shin Carbon ST column, thermal conductivity 

detector (TCD), and argon was used as the carrier gas. 

 

Ex-situ Surface Analysis 

X ray Photoelectron Spectroscopy –The cells were disassembled in an argon glove 

box.  The electrodes were rinsed with dimethyl carbonate (DMC) three times to 

remove residual EC and LiPF6 and evacuated overnight prior to surface analysis.  X-

ray photoelectron spectroscopy (XPS) was acquired with a Thermo K-alpha system 
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using Al Kα radiation (hυ = 1486.6 eV) under ultra high vacuum and a measured spot 

size of 400 µm, and a 50.0 eV pass energy for the detector.  Samples were transferred 

into the XPS chamber with a vacuum transfer vessel.  The binding energy was 

corrected based on the C 1s of C-C at 284.3 eV.  The spectra obtained were analyzed 

using Thermo Advantage software (version 5.926).  A mixture of 30% Laurentzian 

and 70% Gaussian functions was used for the least-squares curves fitting procedure. 

 

Results and Discussion 

 Although gasses formed during formation are typically removed from cells, 

gas analysis was carried out after formation and ageing with the various electrolyte 

formulations in order to compare the effects the various additives had on gassing. The 

results are depicted in Figure 4.2.  The average gas volume for each formulation is 

displayed on the left and the gas composition for the corresponding electrolyte 

formulation is displayed on the right.  With the exception of 2.0 wt % LiBOB the 

predominant gas observed is H2.  Pouch cells with 1.0 wt % LiTFSI, 1.0 wt % LiBOB, 

2.0 wt % LiBOB, and 1.0 wt % TMSB all generated less gas than the baseline 

electrolyte, while cells cycled with 1.0 wt % LiFSI and 1.0 wt % LiDFOB generated 

more gas than the baseline electrolyte.  With a 52.3 % reduction in gas, cells with 2.0 

wt % LiBOB had the biggest impact on the volume of gas generated after formation 

and ageing.  With the exception of 2.0 wt % LiBOB, the predominate gas detected 

after formation and ageing was H2 (consistent with what has been reported in 

literature). [8, 12, 18 ]   The amount of CO2 detected increased in the presence of the 

oxalato borates, which are known to generate CO2. [19] 
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 XPS surface analysis was employed to characterize the surface of LTO 

electrodes after formation and ageing with the various electrolyte formulations. Figure 

4.3 displays the relative atomic concentrations of LTO anodes after formation and 

ageing with all of the electrolyte formulations.  Thin surface films (indicated by the 

Ti2p concentration) were detected on the surface of LTO in the presence of the 

baseline electrolyte, 1.0 wt % LiTFSI, and 1.0 wt % LiFSI.  Although thicker boron 

containing surface films were detected on the surface of LTO in the presence of the 

borates, 1.0 wt % TMSB generated the thinnest film of the borates.  In addition to 

thicker surface films on LTO, which underwent formation and ageing with the oxalato 

borates (1.0 wt % LiBOB, 2.0 wt % LiBOB, and 1.0 wt % LiDFOB), all surfaces have 

lower phosphorous and fluorine concentrations.  This indicates less LiPF6 

decomposition in the presence of the borates.  

 Figure 4.4 provides C1s, O1s, and F1s core spectra of LTO electrodes 

extracted from cells after formation and ageing with the baseline electrolyte and the 

baseline + borate additives (1.0 wt % LiBOB, 2.0 wt % LiBOB, 1.0 wt % LiDFOB, 

and 1.0 wt % TMSB).  The surface of LTO anodes cycled with the baseline electrolyte 

displays the thinnest film (based on the metal oxide peak (530.2 eV) in the O1s 

spectrum), which consists of electrolyte decomposition products Li2CO3 and LiF (290 

eV, C1s and 685 eV F1s, respectively).  The thinnest surface film for electrodes cycled 

with electrolytes containing borates was detected with 1.0 wt % TMSB, which 

consists of LiF and TMSB-derived species (based on the B1s concentration, see figure 

4.3).  The thickest surface films consisting of oxalates and LiF were observed in the 

presence of the oxalato borates.  Due to the fact that LiDFOB contributes to the 
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generation of LiF, LTO electrodes cycled with 1.0 wt % LiDFOB contained more LiF 

than those cycled with either concentration of LiBOB. 

Since gassing of cells containing LTO is reported to be a result of the instability 

of the electrolyte on the charged surface of LTO at elevated temperatures, cells which 

have undergone the formation and ageing procedure with the various additive-

containing electrolyte formulations were degassed, resealed and stored in the 100% 

SOC for 1 week at 60 °C.  The gas analysis results are depicted in Figure 4.5. The 

average gas volume is displayed on the left, while the gas composition is displayed on 

the right.  As far as the volume of gas generated, pouch cells with 1.0 wt % TMSB 

were the only electrolyte formulations that reduced gassing after storage.  

Incorporating 1.0 wt % of TMSB into the baseline electrolyte decreased gassing by 

5.22% after 1 week of storage at 60 °C.  As far as gas composition, the predominant 

gas detected irrespective of the electrolyte formulation used was H2.  Cells that were 

stored for 1 week with the oxalato borates generated more CO2 than the others, while 

the hydrocarbon gasses (CH4, C2H4, and C2H6) were only detected in the absence of 

the oxalato borates.  This suggests that while incorporating the oxalato borates into the 

baseline electrolyte contributes to CO2 generation, it also hinders parasitic reactions 

with the electrolyte solvents. 

In order to gain insight into the composition of the surface film on LTO anodes 

after 1 week of storage at 60 °C XPS surface analysis was performed on LTO 

electrodes extracted from cells that have been stored with the various electrolyte 

formulations.  Based on the concentration of titanium, the thinnest surface film was 

detected on the LTO anode stored with 1.0 wt % LiFSI, the thickest surface films were 
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detected on LTO anodes stored with the oxalato borates, and LTO anodes stored with 

1.0 wt % TMSB had the thinnest surface film of all cells stored with the borates.  

Manganese was only detected on the surface of LTO anodes stored in the absence of 

the borate additives.  This suggests that the borate additives prevented manganese 

dissolution from the LMO cathodes during 1 week of storage at 60 °C. 

C1s, O1s, and F1s core spectra of LTO anodes extracted from cells after 1 week 

of storage at 60 °C are displayed in Figure 4.7.  A thin surface film (based on the 

intensity of the metal oxide peak; 530.2 eV, O1s) consisting of LiF (685 eV, F1s) was 

detected on the LTO anode stored with the baseline electrolyte.  LTO anodes stored 

with 1.0 wt % LiFSI had the thinnest surface film, which consisted of LiF.  The 

thickest surface film consisting of oxalates and LiF was detected on the surface of 

LTO anodes stored with 1.0 wt % LiBOB.  LTO anodes stored with 1.0 wt % 

LiDFOB displayed a thick surface film consisting of oxalates and LiF.  Cells stored 

with 1.0 wt % TMSB had the thinnest surface film of the borates, which consisted of 

TMSB-derived species (B1s). 

While the focus of this work was to determine if and how the use of electrolyte 

additives to passivate LTO anodes affects gassing, the impact of the additives on 

cycling stability should not be overlooked.  For this reason LTO/LMO pouch cells 

were assembled with the various electrolyte formulations and cycled at 45 °C for 600 

cycles.  The cells underwent 1 cycle at a 0.1C rate (formation), degassed, and re-

sealed.  The remaining cycles were carried out at a 1C rate, and the resulting cycling 

performance is shown in Figure 8a.  Although cells cycled with 1.0 wt % LiFSI 

displayed the best performance of all the additives, it was on par with the performance 
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observed with the baseline electrolyte.  Cells cycled with 1.0 wt % LiTFSI, 1.0 wt % 

LiBOB, and 1.0 wt % LiDFOB had less capacity than cells cycled with the baseline 

electrolyte prior to 300 cycles, however cells cycled with 1.0 wt % LiBOB and 1.0 wt 

% LiTFSI had similar capacities to cells cycled with the baseline electrolyte after 600 

cycles.  Increasing the concentration of LiBOB by 1.0 wt % resulted in a drop in 

capacity and cells cycled with 1.0 wt % TMSB displayed the worst capacity of all the 

additives.  Capacity retention is plotted in Figure 8b.  While cells cycled with the 

imides had higher initial capacities (see Figure 4.8a), cells cycled with the oxalato 

borates were superior to those cycled with the imides as far as capacity retention is 

concerned.  Cells cycled with the formulations which formed the thinnest surface films 

(1.0 wt % LiFSI, 1.0 wt % LiTFSI, and 1.0 wt % TMSB) displayed the most capacity 

fading, while those cycled with the oxalato borates displayed the least fading.  This 

clearly demonstrates that passivating the surface of LTO is actually beneficial to 

cycling stability.  It should be noted that the spikes observed during cycling at cycle 

300 are a result of the cells being stopped for gassing measurements and resumed 

afterwards.   

The volume of gas evolved during cycling was measured after 300 cycles and 

again after 600 cycles.  The results are displayed in Figure 4.9.  While cells cycled 

with 1.0 wt % LiBOB and 1.0 wt % TMSB both generated less gas than cells cycled 

with the baseline electrolyte after 300 cycles, cells cycled with 1.0 wt % TMSB were 

the only ones that displayed reduced gassing after 600 cycles. 
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Conclusion 

While better cycling performance was observed in the presence of the imides, the 

thinnest surface films and consequently more gassing was observed.  The oxalato 

borates formed the thickest surface films, and less H2 was detected, however the 

oxalato borates are known for generating CO2, thus gassing is not reduced overall.  

Less gassing was detected in the presence of TMSB in all cases, however TMSB 

displays the worst capacity retention of all the additives.  The presence of the 

hydrocarbon gasses, LiF, and LixPOyFz combined with the pronounced fading 

observed with LiTFSI, LiFSI, and TMSB suggests that these additives react with the 

electrolyte.  Nonetheless, less gassing was observed in the presence of TMSB.  

Optimization of additive concentration and further experiments are underway. 
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Figures 

Figure 4.1 

 

Figure 4.1:  Chemical Structures of LiTFSI, LiFSI, LiBOB, TMSB, and LiDFOB. 
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Figure 4.2 

 

Figure 4.2:  Average volume of gas (left) and composition of gas generated after 

formation and ageing with the Base electrolyte, baseline + 1.0 wt % LiTFSI, baseline 

+ 1.0 wt % LiFSI, baseline + 1.0 wt % LiBOB, baseline + 2.0 wt % LiBOB, baseline 

+ 1.0 wt % LiDFOB, and baseline + 1.0 wt % TMSB. 
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Figure 4.3 

 

Figure 4.3:  Relative atomic concentrations of elements detected on the surface of 

LTO electrodes after formation and ageing with the baseline electrolyte, baseline + 1.0 

wt % LiTFSI, baseline + 1.0 wt % LiFSI, baseline + 1.0 wt % LiBOB, baseline + 2.0 

wt % LiBOB, baseline + 1.0 wt % LiDFOB, and baseline + 1.0 wt % TMSB. 
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Figure 4.4 

 

Figure4. 4:  C 1s, O 1s, and F 1s core spectra of LTO electrodes after formation and 

ageing with the Base electrolyte, baseline + 1.0 wt % LiBOB, baseline + 2.0 wt % 

LiBOB, baseline + 1.0 wt % LiDFOB, and baseline + 1.0 wt % TMSB. 
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Figure 4.5 

 

Figure 4.5:  Average volume of gas (left) and composition of gas generated after 

formation, ageing, and 1 week of storage at 60 °C with the baseline electrolyte, 

baseline + 1.0 wt % LiTFSI, baseline + 1.0 wt % LiFSI, baseline + 1.0 wt % LiBOB, 

baseline + 2.0 wt % LiBOB, baseline + 1.0 wt % LiDFOB, and baseline + 1.0 wt % 

TMSB 
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Figure 4.6 

 

Figure 4.6:  Relative atomic concentrations of elements detected on the surface of 

LTO electrodes after formation, ageing, and 1 week of storage at 60 °C with the 

baseline electrolyte, baseline + 1.0 wt % LiTFSI, baseline + 1.0 wt % LiFSI, baseline 

+ 1.0 wt % LiBOB, baseline + 3.0 wt % LiBOB, baseline + 1.0 wt % LiDFOB, and 

baseline + 1.0 wt % TMSB. 

 

 

 

 

 

 

 

 

 

 



 

74 
 

Figure 4.7 

 

Figure 4.7:  C 1s, O 1s, and F 1s core spectra of LTO electrodes after formation, 

ageing, and 1 week of storage at 60 °C with the baseline electrolyte, baseline + 1.0 wt 

% LiFSI, baseline + 3.0 wt % LiBOB, baseline + 1.0 wt % LiDFOB, and baseline + 

1.0 wt % TMSB. 
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Figure 4.8 

 

Figure 4.8:  Capacity retention (a) relative capacity retention (b) of long term cycling 

at 45 °C with the baseline electrolyte, baseline + 1.0 wt % LiTFSI, baseline + 1.0 wt 

% LiFSI, baseline + 1.0 wt % LiBOB, baseline + 2.0 wt % LiBOB, baseline + 1.0 wt 

% LiDFOB, and baseline + 1.0 wt % TMSB. 
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Figure 4.9 

 

Figure 4.9:  Volume of gas generated after 300 and 600 cycles at 45 °C with the 

baseline electrolyte, baseline + 1.0 wt % LiTFSI, baseline + 1.0 wt % LiFSI, baseline 

+ 1.0 wt % LiBOB, baseline + 2.0 wt % LiBOB, baseline + 1.0 wt % LiDFOB, and 

baseline + 1.0 wt % TMSB. 
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