
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

2018 

Understanding Confined Fluids in Shale Gas Systems Understanding Confined Fluids in Shale Gas Systems 

Edward Alan Thomas 
University of Rhode Island, edward_thomas@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Recommended Citation Recommended Citation 
Thomas, Edward Alan, "Understanding Confined Fluids in Shale Gas Systems" (2018). Open Access 
Dissertations. Paper 744. 
https://digitalcommons.uri.edu/oa_diss/744 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/744?utm_source=digitalcommons.uri.edu%2Foa_diss%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


UNDERSTANDING CONFINED FLUIDS IN SHALE GAS 

SYSTEMS 

BY 

EDWARD ALAN THOMAS 

 

 

 

 

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN 

CHEMICAL ENGINEERING 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2018 



 

DOCTOR OF PHILOSOPHY DISSERTATION 

 

OF 

 

EDWARD THOMAS 

 

 

 

 

 

 

 

 

 

 

 

 

APPROVED:  

 

Dissertation Committee: 

 

Major Professor Angelo Lucia 

 

   Michael Greenfield 

 

   Joan Peckham 

    

      Nasser H. Zawia 

  DEAN OF THE GRADUATE SCHOOL 

 

 

UNIVERSITY OF RHODE ISLAND 

2018 



 

 

 

ABSTRACT 

Given the complexity of shale gas at high pressures, researchers aim to characterize 

the thermodynamic properties of confined fluids using a mixture of experimental, 

modeling, and simulation techniques. In this work we frequently use the predictive 

capabilities of simulation to couple the property results to models. The overall results 

are then compared to experimental data for verification purposes.  

We employ a Monte Carlo simulation technique to ensure that a simple linear mixing 

rule for internal energies of departure holds thereby allowing pure component data to 

extend to mixtures. The results are coupled to the Gibbs-Helmholtz Constrained 

equation of state allowing for bulk-scale bubble point reduction predictions. In 

addition, the sensitivity of the results is determined.  

Adsorption of n-alkanes at high pressure conditions are studied as a function of carbon 

chain length, temperature, and pore throat size (14.2 Å to 19.88 Å) to give an overall 

picture of shale gas behavior at reservoir conditions. A simple model is shown to 

provide a reasonable estimate of the isotherms at high pressures up to 500 bar and a 

temperature range of 300 K to 550 K. Under the assumption of ideal site-site 

interactions, mixtures are predicted for methane/ethane and methane/ethane/propane 

systems and compared to work in the literature.   

An important aspect of this work is the verification to experimental data; we expand 

on recent work by characterizing the experimental to simulation data in a robust 

manner. Quantitative agreement is achieved when estimating the surface area and void 

volume of the porous material.
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PREFACE 

This thesis is prepared in a manuscript format and is organized by chapters that contain 

accepted, submitted, or prepared publications.  

Chapter 1 presents a brief overview of the literature in context of confined fluids as well 

as motivation for this work.  

Chapter 2 is published within a special issue in the journal Computers & Chemical 

Engineering. This work describes fluid properties of five binary mixtures relevant to 

shale gas and light tight oil applications. A linear mixing rule is employed to relate pure 

fluid information to describe the fluid properties of mixtures. In addition, the sensitivity 

of the energy parameter for the Gibbs-Helmholtz constrained equation of state is 

described. Overall, the results show that this approach can provide meaningful estimates 

of reductions in bubble point pressure for light tight oils.  

Chapter 3 has been submitted to the Journal of Petroleum Science and Engineering. This 

article represents an extension of the work prepared in chapter 2. In this paper, the 

adsorption isotherms of shale and light oil related n-alkanes are presented. The results 

show that there is an impact of pore throat upon the adsorption isotherms and internal 

energies of departure. Fitting parameters are applied to the data using a Langmuir 

adsorption model, which allows the thermodynamics community to easily reproduce the 

adsorption isotherms for their applications. Finally, an Ideal Adsorbed Solution Theory 

calculation is provided for a ternary mixture which gives a general description of the 

gas uptake in the Marcellus and Barnett wells.   

Chapter 4 is prepared for submission to the Journal of Petroleum Science and 

Engineering. Absolute adsorption simulation data is compared to experimental excess 
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and net adsorption data for various adsorption processes. A conversion technique that 

uses the Gibbs dividing surface derivation to define the upper and lower limits of 

adsorption phenomena is used. Results of shale gas adsorption over-prediction are 

normalized using both excess and net adsorption data. A new direct conversion 

approach in the Canonical ensemble is proposed by considering the virial pressure of 

the bulk fluids in equilibrium with the adsorbants inside the nanochannel slit pore at 

high pressures. Finally, the conversion adsorption results are compared to existing 

methods and experimental data with exceptional agreement when compared to 

traditional methods. 

Chapter 5 summarizes the conclusions of this work in context to its contributions to the 

thermodynamic community.   
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1 INTRODUCTION 

Shale gas and light tight oils will play an important role in the United States and 

Global unconventional energy resource portfolios in the future due to their great 

potential as an abundant energy resource. Shale gases are contained within solids that 

are a type of porous media with pore spaces in the nanoscale range (i.e., < 50 

nanometers) and low permeabilities < 0.1 milliDarcies. Due to the nature and scale of 

nanoporous materials, obtaining adsorption data at reservoir conditions is challenging 

and dependent on core samples [1]. In turn, this has spurred a great effort from the 

simulation and modeling communities to build understanding of shale gas adsorption 

at high-pressures [1]. The effort contained in this thesis consists of using numerical 

simulation to understand confinement and characterize shale gas in the high-pressure 

regime. However, both experimental and simulation results have been stymied by the 

widely varying physical characteristics of shale reservoirs (e.g. rock, pore throat, 

chemical composition, size, shape). On the contrary, the majority of current models 

reported in the literature have been regressed to a limited amount of high pressure 

data, are correlative, and thus do not have predictive capabilities. One of the objectives 

of the work in this thesis aims to simulate shale gas adsorption at high pressures and 

upscale the results to the bulk fluid length scale using the Gibbs-Helmholtz 

constrained (GHC) equation of state, providing a predictive tool which uses internal 

energies or adsorption data for modeling adsorption of n-alkanes at high pressures. 

Finally, it is the author’s hope that this research will be used in future studies by the 

research community as a whole as part of a larger effort to provide forecasting tools 
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(e.g. equation of state, reservoir simulation, etc.) for the understanding of shale gas 

and light tight oil production. 

1.1 Justification and Significance of the Problem 

It is important to reiterate the scope of the role that shale gas will play in the future. In 

2008, the World Energy Council estimated that the total world resources of shale oil 

was 689 gigatons, which could yield 4.8 trillion barrels of oil, with the United States 

providing around 3.7 trillion barrels [2]. In 2013 the United States Energy Information 

Administration (EIA) projected that the total unproven technically recoverable shale 

gas reserves across the globe [3] will play a major role in the world energy portfolio. 

Some major producers include the U.S. (622.5 trillion ft3), Canada (572.9 trillion ft3), 

Mexico (545.2 trillion ft3), Australia (429.3 trillion ft3), Argentina (801.5 trillion ft3), 

and Russia (284.5 trillion ft3). Finally, a staggering 1115.2 trillion ft3 of shale gas 

reserves is estimated to exist in China. Though the U.S. Energy Information 

Administration (EIA) predicts a minor downturn through 2017, once oil prices recover 

by 2019, shale and light tight oil projections are expected to increase to 1.3 million 

barrels per day [4]. In this case, Shale gas could play a major role as forecasts predict 

an increase of 70 billion cubic feet per day from 2015 to 2040. It is important to note 

that projections from the EIA are just that, projections, and are not definitive 

statements about what will occur in shale gas markets. Since markets are 

unpredictable, in the event of a continued oil price downturn throughout 2040, shale 

gas production will still remain relevant with an annual production of 40 billion cubic 

feet per day [4].  Depending on the amount extracted, this could lead to 20 - 40 years 
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of global energy, which could be used to offset the depleting conventional oil 

resources. Technological increases are leading to a reduction in drilling costs and an 

increased drilling efficiency in major reservoirs such as the Bakken, Marcellus, and 

Eagle Ford formations. For example, in China great progress has been achieved with 

the first commercial horizontal well to recover 16.7x104 m3/day after 15 stages of 

fracturing [5].  As a result, shale gas has the potential to remain a top energy resource 

for the near future as conventional supplies diminish. However, this success has been 

stymied by the complex nature of adsorbed shale gas not limited to size, shape, 

surface, chemical characteristics of individual pores. Finally, shale gas production 

could be limited by regulatory policies that limit of CO2 emissions.   

1.2 Brief Adsorption Literature Background 

In order to develop a theoretical model for the amount of gas adsorbed into the shale 

(adsorption) we must first look at available experimental investigations and theoretical 

models currently available in the literature  (see Fig. 1.1).  
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Figure 1.1: Example of methane and carbon dioxide adsorption data from Heller & 

Zoback (adsorbed methane (circles) and carbon dioxide (triangles)) [1] 

Starting with recent experimental findings in Fig 1.1 we observe results from the 

lower Silurian marine shale of the Longmaxi Formation (Upper Yangtze Platform, 

China) for methane adsorption up to 109.4 bar [6]. In addition, adsorption profiles for 

methane and carbon dioxide were experimentally determined for the Barnett 31, 

Marcellus, Eagle Ford 127, and Montney formations up to approximately 117.2 bar 

[1]. Additional data can be found for methane, nitrogen, and carbon dioxide for 

Woodford shale from the Payne, Hancok, and Caney county formations up to 125 bar 

[7]. At higher pressures than experimentally available, the results have been difficult 

to obtain due to the complexity of the interactions (pore throat size, chemical 

composition, fluid-fluid interactions, etc.) of adsorbed gases inside shale rock [8]. To 

circumvent this, models have been developed to account for these interactions at high 

pressures. These models are not limited by varying pore throat sizes and shape 

distribution in the nanometer regime, chemical composition, surface area profile, etc. 

but they typically rely on empirical methods for adsorption modeling.  

Since the adsorption literature is vast, we only highlight methods relevant to this 

thesis.  

1) Traditional Adsorption Models 

Traditional adsorption models are used to describe shale gas in the low-pressure 

regime by fitting the model to available data (less than 1 bar). The following well-

known Langmuir equation   

ni = M 
KP

1+KP
                       1.1 
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can be fit to adsorption data where ni is the pure component adsorbate isotherm, M 

represents a unique adsorption site, P is the pressure of the adsorbed molecule, and K 

is a parameter with units of inverse pressure. Recent work has reviewed traditional 

models such as the Henry, Freundlich, Langmuir, Dubinin-Radushkevich, Radke-

Prausnitz, Toth, Langmuir-Freundlich models applied to shale gas adsorption for 

methane and carbon dioxide up to 140 bar [9]. While these models provide excellent 

agreement with experimental data in the low-pressure regime, the authors note that 

they typically do not predict high-pressure adsorption due to large interactive forces 

between shale gas molecules, pore-filling geometry, and complex gas-rock 

interactions. In addition, they are not suited for extrapolation at high pressures if they 

are not properly fitted or no data is present. These models can be extended to describe 

mixtures with ideal adsorption solution theory (IAST) [10].  As with all models, there 

are assumptions and limitations, the adsorbed molecule in IAST is assumed to be well 

mixed and each molecule has access to the same surface area. 

2) Equation of states (EOS) 

There are numerous equations of state developed for the description of adsorption 

phenomena applied to shale gas reservoirs. These equations describe the pressure, 

temperature, volume, and compositions relationship of fluid mixtures and can be 

applied at high pressures. For example, a modified Peng Robinson equation was used 

to describe meso-porous materials MCM-41 and 13X for methane and carbon dioxide 

up to 1.2 bar by using a 16-constant expression fitted to simulated bulk fluid densities 

in thermodynamic equilibrium with confined media [11]. 
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Again, most of these equations are regressed to experimental data in order to describe 

low-pressure adsorption (less than 100 bar). Myers [12] used a rigorous approach 

involving desorption functions and provides an example for ethylene adsorbed on NaX 

zeolite up to 1.4 bar. Earlier, more empirical work by Myers was based on the use of 

solution theory by treating the adsorbent as the solvent and small molecules at low 

concentrations as the solute [13] for adsorption pressures up to 1000 bar. The Elliott-

Suresh-Donohue (ESD) equation has been applied to gas adsorption on activated 

carbon for a number of components including acetylene, propylene, and ethylene for 

pressures up to 2 bar by incorporating a simplified local density model gas adsorption 

[14]. Finally, the Bender EOS also uses empirical relationships to describe adsorption 

up to 500 bar for nitrogen and methane [15].  

3) Molecular simulation  

In this thesis, adsorption is studied using molecular simulation [16] in order to 

estimate thermodynamic properties where experimental data are not available and/or 

not easily obtained. Simulations have been used to model diffusion processes in 

porous materials (e.g. water diffusing through graphene-based nanopores) and aid in 

coarse grained reservoir simulations, which require transport phenomena parameters 

[17].  For example, recent work has been used to describe the selectivity (i.e., the 

extent of preferred adsorption onto a framework) of CO2/CH4 onto an organic-rich 

shale framework [18]. Similar recently published work shows the interplay between 

CO2 and CH4 adsorption observed in experimental samples for Barnett 26-Ha, 

Haynesville GU1-2, and Haynesville TWG3-1 rock [19].     
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To be fair, traditional numerical adsorption techniques in the literature were developed 

for zeolite and metal-organic framework applications in the low-pressure regime used 

for describing gas dehydration, small molecule separation, oxygen generation, etc 

[20]. However, with the recent interest in shale gas, high-pressures applications of the 

traditional model geometries of adsorption (e.g. slit pore) have led to a range of results 

from over-predictions to negative adsorption [21]. In addition, the use of inaccurate 

density calculations by equations of state have led to overcorrections when attempting 

to link simulation to experimental results [22]. Another objective of this thesis was to 

correct these limitations in the literature by using the GHC equation of state 

framework.  

1.3 Advancement of Knowledge  

Yet another goal of this thesis is to provide the research community at large with shale 

gas adsorption data at high pressures over a wide range of temperatures and pore 

throat diameters. These simulation efforts will focus on areas where experimental data 

is not available. The main contribution of this thesis is the study of internal energies of 

departure at the nano-scale and the subsequent up-scaling of this molecular 

information to the bulk scale using the GHC EOS. This work will, in the author's 

opinion, be quite useful and focuses specifically on molecular simulation to describe 

shale gas phenomena coupled with applicable examples from the multi-scale Gibbs-

Helmholtz constrained equation of state (GHC).  

The GHC EOS is unique in the sense that it is thermodynamically rigorous, avoids the 

need for empirical correlations, and uses information (internal energies of departure) 
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directly from Monte Carlo simulation to account for interactions on the molecular 

scale [23]. The GHC EOS uses a simple linear mixing rule for mixtures which is 

defined by 𝑈𝑀
𝐷 = ∑ 𝑥𝑖

𝐶
𝑖=1 𝑈𝑖

𝐷  where 𝑥𝑖 denotes the mole fraction of the ith component, 

𝑈𝑖
𝐷 is the pure component internal energy of departure for component i, 𝐶 is the 

number of components in the mixture, and the superscript 𝐷 denotes departure [23]. 

This mixing rule has been shown to save computational time and easily allow for 

property and phase equilibrium computations for mixtures. For example, for a mixture 

of water and methane, molecular simulation would be used to generate 𝑈𝑖
𝐷 

information for pure water and for methane, and then the mixture rule would be 

applied to estimate water/methane mixture 𝑈𝑀
𝐷 at any composition.  

Therefore, the components of this research are: 

1) Validate the linear mixing rule for confined fluids. Pure component internal 

energy of departure data for methane, carbon dioxide and n-alkanes and mixtures of 

methane/n-alkane & CO2/n-alkane in confined spaces are gathered using molecular 

simulation. The linear mixing rule will be applied and compared to results for 

mixtures. Corresponding percent errors as well as internal energies of departure 

sensitivities are reported.  

2) In the context of adsorption, molecular information is difficult to compute at 

high pressures. In this work, isothermal adsorption behavior at high-pressure is 

simulated for mixtures over a wide range of pressures and temperatures. This work 

investigates the impact of confinement with varying pore throat diameters and 

hydrocarbon chain length leading to a discussion on their impact on fluid internal 

energies of departure. 
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3) Where available, recent adsorption methods [22] are applied and compared to 

experimental data. This method uses a probing molecule to estimate the accessible 

pore volume and surface area in order to normalize simulation data for comparison to 

experimental data. This aspect of the work provides much needed insight for the 

thermodynamic community.  
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2 EQUATION OF STATE COMPUTATIONS FOR CONFINED FLUIDS 

The following manuscript is published as a special issue in Computers and Chemical 

Engineering. 

 Thomas, Edward, and Angelo Lucia. “Multi-Scale Equation of State 

Computations for Confined Fluids.” Computers & Chemical Engineering, 

2017, 1–10. doi:10.1016/j.compchemeng.2017.05.028. 
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2.1 Abstract 

Fluid properties of five binary mixtures relevant to shale gas and light tight oil in 

confined nano- channels are studied. Canonical (NVT) Monte Carlo simulations are 

used to determine internal energies of departure of pure fluids using the RASPA 

software system Dubbeldam et al. [1]. The linear mixing rule proposed by Lucia et al.. 

[2], is used to determine internal energies of departure for mixtures, 𝑈𝑀
𝐷, in confined 

spaces and compared to 𝑈𝑀
𝐷 from direct NVT Monte Carlo simulation. The sensitivity 

of the mixture energy parameter, 𝑎𝑀, for the Gibbs-Helmholtz constrained (GHC) 

equation, confined fluid molar volume, 𝑉𝑀, and bubble point pressure are studied as a 

function of uncertainty in 𝑈𝑀
𝐷. Results show that the sensitivity of confined fluid molar 

volume to 5% uncertainty in 𝑈𝑀
𝐷 is less than 1% and that the GHC equation predicts 

physically meaningful reductions in bubble point pressure for light tight oils. 
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2.2  Introduction 

Shale gases and light tight oils (LTO) are important unconventional resources with 

enormous potential as clean and abundant energy sources. Shales are 'tight' porous 

media with pore radii < 50 nanometer and permeability < 0.1 milliDarcies. Recent 

improvements in shale gas and LTO economics are the result of hydraulic fracturing 

('fracking') and horizontal well completion; thus shale gas and LTO production is, and 

will remain, an important part of the US energy portfolio for years to come.  

One of the many open challenges in developing consistent models that couple fluid 

phase behavior in tight porous media (i.e., confined spaces) with models for multi-

phase flow and transport is the accurate description of rigorous phase behavior in tight 

porous media. The Gibbs-Helmholtz Constrained (GHC) equation is a predictive, 

multi-scale equation of state (EOS) that up-scales molecular information in the form 

of internal energies of departure, 𝑈𝑀
𝐷, which is solely determined from Monte Carlo 

simulations, to the bulk length scale to build estimates of the well known cubic 

equation energy parameter,𝑎𝑀. The energy parameter is then used to determine molar 

volume and, in turn, pressure. Details of the derivation of the GHC equation can be 

found in Lucia et al. [2]. In a recent paper, Kelly and Lucia [3] have validated the 

linear mixing 

  

𝑈𝑀
𝐷 = ∑ 𝑥𝑖

𝐶
𝑖=1 𝑈𝑖

𝐷             2.1  

 



 

 

15 

 

for internal energies of departure for mixtures,𝑈𝑀
𝐷, in unconfined spaces in the NPT 

ensemble. In Eq. 2.1 𝑥𝑖 denotes the mole fraction of the ith component, 𝑈𝑖
𝐷 is the pure 

component internal energy of departure for component i, 𝐶 is the number of 

components in the mixture, and the superscript 𝐷 denotes departure. The fact that Eq. 

2.1 is valid for mixtures is important because only pure component internal energies, 

𝑈𝑖
𝐷, as functions of temperature, T, and pressure, p, are needed to model mixtures. The 

internal energy of departure, 𝑈𝐷 = 𝑈 − 𝑈𝑖𝑔, is negative of the residual internal energy 

(e.g., see p.128 in Walas [4])  

 

This paper focuses on the computation and accuracy of using Eq. 2.1 to model mixture 

internal energies of departure in confined spaces and the resulting sensitivity of the 

energy parameter, molar density, and bubble point pressure to uncertainty in 𝑈𝑀
𝐷. The 

open literature is surveyed in Section 2.3. Section 2.4 describes the methodology used 

to compute internal energies of departure in confined spaces. Section 2.5 presents the 

main computation results, which compare  𝑈𝑀
𝐷 in confined spaces computed using the 

linear mixing rule to those from direct Monte Carlo simulation. Sensitivity analyses 

are presented in Section 2.6 and conclusions are drawn in Section 2.7. Appendices 

6.1.1-6.1.5 contain details for the computational results in Section 2.4.  
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2.3  Literature Survey 

Interest in physical properties and phase behavior of shale gas and LTO is relatively 

recent and the literature on the subject is somewhat sparse. Early studies in reservoir 

and petroleum engineering from the 1940's to 2000 [5] suggested that capillary effects 

on phase behavior were negligible. However, all recent studies, which are largely 

numerical in nature, include interfacial tension between immiscible phases as part of 

the model. See [6]–[9]. 

The current approach to modeling fluid properties and phase equilibrium in tight pores 

in reservoir simulation consists of  

1) An equation of state, e.g., [10]–[12] 

2) A correlation (e.g., the parachor equation [8] or MacLeod-Sugden correlation 

[13] to calculate interfacial tension, s. 

3) An estimate of capillary pressure,  𝑝𝑐𝑎𝑝 =
2𝜎

𝑟
 (e.g., using the Young-Laplace 

equation or Leverett J functions) [14]. 

4) A difference in phase pressures for each immiscible phase given by pcap = 

𝑝𝑉 − 𝑝𝐿. 

For example, Tan and Piri [12] use the PC-SAFT and Young-Laplace equations and a 

surface tension correlation to model light gas/oil phase behavior in nanopores. 

However, all current methods for fluid properties and phase behavior in confined 

spaces (1) rely heavily on empirical relationships such as correlations for interfacial 

phenomena (or capillary pressure) that require accurate phase densities and/or 
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regression to experimental data and (2), are correlative, not predictive, and (3) can be 

inaccurate (i.e., give poor estimates of phase properties and equilibrium in pores). 

2.4  Computational Procedure for Internal Energies of Departure 

The material in this section describes the Monte Carlo simulation methodologies used 

to model physical properties of unconfined and confined fluids.  

2.4.1 The Unconfined NPT Ensemble.  

Kelly and Lucia [3] have clearly demonstrated that the linear mixing rule given by Eq. 

2.1 can be used to estimate internal energies of departure of mixtures in the 

unconfined NPT ensemble and that uncertainties in any pure component 𝑈𝑖
𝐷 introduce 

very little error in the resulting computation of fluid density. See Kelly and Lucia [3] 

for the details used in computing internal energies of departure in the NPT ensemble 

using the MCCCS Towhee software system, version 7.10 [15].  

 

However, in this work, the more recent RASPA software was used for all Monte Carlo 

simulations [1]. Therefore, the first issue to be resolved is to show that the same 

statistical results for unconfined NTP Monte Carlo simulations can be obtained for 

mixtures studied by Kelly and Lucia [3] using RASPA. Table 2.1 shows a comparison 

of NPT Monte Carlo simulation using MCCCS Towhee and RASPA for pure 

components while Tables 2.2 and 2.3 compare mixtures. The numbers in parentheses 

in Tables 2.1, 2.2 and 2.3 represent standard deviations. 
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Table 2.1: Comparison of Unconfined NPT UD
i  Using Towhee and RASPA 

Species 
Force 

field 
N T (K) 

P 

(bar) 
𝑼𝒊

𝑫(cm3bar/mol) % diff 

     
Kelly & 

Lucia [3]*  
This work**  

methane 
TraPPE-

UA 
64 300 200 

-2.365×104 

(1.73×102) 

-2.300×104 

(7.2×101) 
2.79 

CO2 TraPPE 128 273.15 100 
-1.1293×105 

(6.71×102) 

-1.1563×105 

(3.26×102) 
2.36 

hexane 
TraPPE-

UA 
32 290 150 

-2.8005×105 

(6.98×102) 

-2.8103×105 

(5.13×102) 
0.35 

octane 
TraPPE-

UA 
64 300 200 

-3.697×105 

(7.04×102) 

-3.695×105 

(5.85×103) 
0.054 

water 
TIP4P-

Ew 
128 290 150 

-4.7000×105 

(2.99×102) 

-4.7103×105 

(7.61×102) 
0.22 

*   MCCCS Towhee version 7.10 [15] 

** RASPA version 2.0 [1] 

Table 2.2: Comparison of Methane/Octane NPT UD
M Using Towhee and RASPAa 

𝒙𝑪𝑯𝟒 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 〈𝑼𝑴

𝑫 (𝑻, 𝑷)〉 
% 

difference 

 Kelly & Lucia [3]* This work**  

0.20 -2.9727×105 
-3.1063×105 

(3.8×103) 
4.40 

0.50 -1.9512×105 
-1.9879×105 

(2.30×103) 
1.86 

0.70 -1.2468×105 
-1.2433×105 

(8.90×102) 
2.81 

  ADD 2.18 

a      N = 100, T= 300K, p =200 bar    

*   MCCCS Towhee version 7.10 [15] 

** RASPA version 2.0 [1] 
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Table 2.3: Comparison of Water/Hexane NPT UD
M Using Towhee and RASPAa 

𝒙𝑯𝟐𝑶 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 〈𝑼𝑴

𝑫 (𝑻, 𝑷)〉 
% 

difference 

 Kelly & Lucia [3]* This work**  

0.25 -3.8646×105 
-3.8435×105 

(1.6×103) 
0.54 

0.50 -3.3872×105 
-3.4261×105 

(5.20×103) 
1.14 

0.75 -3.0103×105 
-3.1361×105 

(3.3×102) 
4.09 

  ADD 1.93 

a      N = 100, T= 290K, p =150 bar 

*   MCCCS Towhee version 7.10 [15] 

** RASPA version 2.0 [1] 

 

For these unconfined NPT simulations, volume, translation, and rotation move 

frequencies were set to 2.48%, 48.78%, and 48.78% respectively while radial cutoff 

distances were adjusted to include all interactions in the system. For electrostatic 

forces, Coulomb interactions were calculated using Ewald summations as defined in 

Dubbeldam (p. 81, [16]). 

 

For larger alkane molecules, Configurations Bias Monte Carlo (CBMC) summations 

are needed and the corresponding volume, translation, rotation, and CBMC 

frequencies were set to 1.23%, 24.69%, 24.69%, and 24.69% respectively. Larger 

molecules also have torsion and have an ideal gas contribution to the internal energy 

of departure. For this, additional simulations were performed using a single molecule 
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in the canonical (NVT) ensemble with CMBC moves. The pressure in the NPT 

ensemble was measured by computing the negative of the stress tensor as defined in 

Dubbeldam et al. ([1], [17]) For mixtures, an identity switch move was used with a 

frequency of 5% to ensure higher mixing probability. Finally, all unconfined 

simulations were also performed without analytical tail cutoff corrections, and at the 

same temperature and pressure for the NPT ensemble, for the purpose of comparing 

confined and unconfined simulation results. 

2.4.2 The Confined Canonical Ensemble.  

Confined canonical (NVT) ensemble Monte Carlo simulations in this study were 

performed using the screening study of Dubbeldam [18] and the more recent energy 

slope method of Poursaeidesfahani et al. [19] using version 2.0 of the RASPA 

software [1]. These confined simulations used a range of N adsorbate particles, a fixed 

temperature, and a system volume dictated by a 1 x 1 x 1 rigid unit cell of graphite 

nano-channels, the latter of which is provided in version 2.0 of the RASPA. Periodic 

boundary conditions were used in only the longitudinal (x) direction with a cutoff 

distance of 12 Angstroms (Å). The flexible TraPPE force field model was used for all 

molecules while the TIP5P force field model was used for water. Translation and 

rotation moves were used for all molecules with additional CBMC moves for long 

chain alkanes and Ewald summations for all charged interactions. No analytical tail 

cutoff corrections were applied in the confined systems since it is assumed that these 

corrections are not valid when graphite walls are present. In order to compute pressure 
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in the confined case, a hybrid Monte Carlo move using a Molecular Dynamics move 

in the micro-canonical (NVE) ensemble was used on every fifth Monte Carlo cycle to 

compute the negative of the stress tensor, as defined in Dubbeldam et al. ([1], [17]). 

Moreover, only the configuration of molecules inside the graphite nano-channel was 

changed when an NVE move was accepted. As in the unconfined case, additional 

NVT simulations were performed to calculate the ideal gas contribution to quantify 

torsion effects.  

 

The flowchart shown in Fig. 2.1 gives an overview of the procedure for computing 

mixture internal energies of departure. For all ensembles, 100,000 equilibration cycles 

and 100,000 production cycles were used while the number of particles in the system 

varied with pressure as shown in Appendices 6.1.1 & 6.1.3. 
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Figure 2.1: Flowchart for Computing Mixture UD
M 

The system volume was dictated by intersecting graphite sheets to form a graphite 

nano-channel. Specific values of N, V, and T can be found in Appendices 6.1.1 and 

6.1.4.  A snapshot of an example is shown in Fig. 2.2.  
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Figure 2.2: Snapshot of NVT Mixture of Water/Hexane (75/25) at 290 K  

The framework specifications used in creating a confined nano-channel were as 

follows:  

1. Cell size with a = 39.36 Å, b =25.56 Å , c = 25.56 Å, volume = 25714.42 Å 3  

2. Framework density = 893.50 kg/m3. 

3. Sheet-sheet distance = 8.52 Å. 

4. Free spacing = 5.047 Å.  

Framework information can be found in supporting information (S178) of Dubbeldam 

et al. [18]. Also, while the energies of the graphite walls and inter- and intramolecular 

energies of the molecules in the nano-channel were computed, the 𝑈𝑖
𝐷and 𝑈𝑀

𝐷 results 

reported for the confined cases only include the energies of the molecules inside the 

graphite square channels.    
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2.5 Main Computational Results 

Unconfined NPT and confined canonical Monte Carlo simulations were performed for 

the following five binary mixtures:  (1) methane/octane, (2) water/hexane, (3) 

methane/propane, (4) CO2/n-hexane, and (5) CO2/propane. All simulations were run 

on two custom built computers with AMD 1090T 3.2 GHz and AMD FX8300 

processors in double precision arithmetic using the GNU compiler. The main 

numerical results contained in this section include (1) the determination of confined 

mixture internal energies of departure and (2) comparisons of confined and unconfined 

𝑈𝑀
𝐷 from the linear mixing rule with direct Monte Carlo simulation. Details of all pure 

component 𝑈𝑖
𝐷, pure component critical properties, and additional comparisons of 𝑈𝑀

𝐷 

from the linear mixing rule with direct Monte Carlo simulation can be found in 

Appendices 6.1.1-2, Appendix 6.1.3 and Appendices 6.1.4-6 respectively. 

 

Table 2.4 summarizes the comparison of the average absolute deviations (ADD) % 

errors for 𝑈𝑀
𝐷  given by Eq. 2.1 with 𝑈𝑀

𝐷  computed from direct Monte Carlo simulations 

for the confined canonical ensemble as well as unconfined NPT ensemble without 

analytical tail corrections. Note that the ADD % errors shown in Table 2.4 are smaller 

for unconfined fluids than confined fluids with the exception of methane/propane. 

There may be several reasons for this. First, mixing within nano-channels can be 

problematic due to restricted particle movement and the presence of the nano-channel 

walls, especially for larger molecules. 
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Table 2.4: Comparisons of UD
M the Linear Mixing Rule with Direct Simulation 

Mixture Confined NVT Unconfined NPT* 

methane/octane 4.39 1.33 

water/hexane 10.48 3.46 

methane/propane 3.08 3.69 

CO2/hexane 10.78 2.7 

CO2/propane 5.48 2.68 

* no tail corrections 

To help reduce errors associated with mixing in confined spaces an identity switch 

move was used, which randomly swapped the positions of two different molecules 

upon acceptance. Second, we did not consider the interaction the molecules of the 

nano-channel wall in this study.  

Tables 2.5 and 2.6, on the other hand, compare confined and unconfined 𝑈𝑀
𝐷 for 

methane/octane at 300 K and 200 bar with direct Monte Carlo simulation. 

Note that the linear mixing rule (Eq. 2.1) gives a reasonably good match to direct 

Monte Carlo simulation in both the confined and unconfined cases with somewhat 

higher errors for the confined simulations. However, note that the linear mixing rule 

does capture the correct physics since the values of 𝑈𝑀
𝐷 for the confined simulations 

are more negative than those for the unconfined simulations. 
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Table 2.5:  Confined UD
M for Methane/Octane at 300 K and 200 bar 

 𝑼𝑴
𝑫  (𝒄𝒎𝟑𝒃𝒂𝒓 𝒎𝒐𝒍)⁄   

𝒙𝑪𝑯𝟒 Direct Simulation 
Linear Mixing 

Rule 
% Error 

0.20 -2.3160 ×105 (1.89×102) -2.2510×105 2.81 

0.50 -1.5856×105 (5.09×102) -1.5102×105 4.75 

0.70 -1.0770×104 (3.01×102) -1.0164×104 5.62 

  ADD% 4.39 

 

Table 2.6: Unconfined UD
M for Methane/Octane at 300 K and 200 bar 

 𝑼𝑴
𝑫  (𝒄𝒎𝟑𝒃𝒂𝒓 𝒎𝒐𝒍)⁄   

𝒙𝑪𝑯𝟒 Direct Simulation 
Linear Mixing 

Rule 
% Error 

0.20 -1.4105×105 (4.06×103) -1.3944×105 1.1543 

0.50 -9.0564×104 (2.14×103) -9.1730×104 1.2704 

0.70 -6.0867×104 (6.68×102) -5.9921×104 1.5782 

  ADD% 1.33 

* no tail corrections 

More specifically, for methane-octane at 300 K and 200 bar, confined values of 𝑈𝑀
𝐷 

are approximately 48-56% more negative than unconfined 𝑈𝑀
𝐷 at the same temperature 

and pressure. This is an important fact because more negative values of 𝑈𝑀
𝐷 result in 

higher light gas solubility in oil, which has been observed in light tight oils. 

 



 

 

27 

 

2.6 Sensitivity Analysis 

In this section, we study the sensitivity of the energy parameter, 𝑎𝑀, and molar 

volume, 𝑉𝑀, for the GHC equation of state with respect to uncertainties in pure 

component internal energies of departure. A sensitivity analysis of bubble point 

pressure to changes in 𝑈𝑀
𝐷 due to confinement is also presented and shows that 

confinement results in a reduction in gas-oil bubble point pressure. All pure 

component fluid properties used in these sensitivity analyses can be found in 

Appendix 6.1.3.  

2.6.1 Energy Parameter and Molar Density 

Kelly and Lucia ([2]) give the following equations for the sensitivity of 𝑎𝑀 with 

respect to 𝑈𝑀
𝐷 in the GHC equation of state  

 

(
𝜕𝑎𝑀

𝜕𝑈𝑀
𝐷) = [

𝑇

𝑇𝑐𝑀
− 1] (

𝑏𝑀

𝑙𝑛2
)           2.2 

  

∆𝑎𝑀 =  [
𝑇

𝑇𝑐𝑀
− 1] (

𝑏𝑀

𝑙𝑛2
) ∆𝑈𝑀

𝐷 = [
𝑇

𝑇𝑐𝑀
− 1] (

𝑏𝑀

𝑙𝑛2
) ∑ 𝑥𝑖∆𝑈𝑖

𝐷𝐶
𝑖=1        2.3 

 

The sensitivity of molar volume to changes in 𝑈𝑖
𝐷must be computed by directly 

solving the equation of state for its volume or density roots. In Kelly and Lucia [3], the 

corresponding relative sensitivities of 𝑎𝑀 and molar volume (or density) to 5% 

uncertainty in 𝑈𝑀
𝐷 were less than 4% and 1.5% respectively for unconfined fluids with 

tail corrections. Figure 2.3 summarizes the sensitivity of 𝑎𝑀 in the GHC equation to 

5% uncertainties in 𝑈𝑀
𝐷 for the confined case.  
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Figure 2.4, on the other hand, shows the sensitivity of 𝑉𝑀 in the GHC equation to 5% 

uncertainty in 𝑈𝑀
𝐷 for the confined case is less than 1% for all five mixtures studied. 

Figure 2.3: Sensitivity of aM to 5% Uncertainty in Confined UD
M  
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Figure 2.5: Comparison of aM to 5% Uncertainty in Confined and Unconfined UD
M 

 

 

Figure 2.4: Sensitivity of VM to 5% Uncertainty in Confined UD
M 

Confined 

Unconfined 
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Figure 2.6: Comparison of VM to 5% Uncertainty in Confined and Unconfined 

Note that the maximum sensitivity of 𝑎𝑀 to 5% uncertainty in 𝑈𝑀
𝐷 does not exceed 

3.2% for both the unconfined and confined cases. With the exception of the water-

hexane mixture, the sensitivity in 𝑎𝑀 in the unconfined and confined cases is less than 

0.5%. For water/n-hexane in unconfined and confined space the sensitivity of 𝑎𝑀 is 

approximately 2.5% and 3.2% respectively.  

 

Figure 2.6 shows that the relative sensitivity of 𝑉𝑀 for confined fluids is generally 

higher than that for the unconfined fluids with no tail corrections. Here the exception 
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is the CO2-propane mixture, where the trend is reversed and the confined and 

unconfined fluid sensitivities of fluid molar volume are 0.06% and 0.3% respectively.  

In addition, the mixture water-hexane exhibits the greatest difference in relative 

sensitivity (~ 0.4%) while all relative sensitivities of 𝑉𝑀 to a 5% uncertainty in 𝑈𝑀
𝐷 for 

both the confined and unconfined mixtures is less than 1%.  

2.6.2 Bubble Point 

It is straightforward to estimate the sensitivity of bubble point pressure to changes in 

𝑈𝑀
𝐷 and illustrate that confinement results in a decrease in bubble point pressure. 

 

Let 𝑝 be any bubble point pressure at fixed 𝑥 and 𝑇. The pressure expression for the 

GHC equation is  

 

𝑝 =
𝑅𝑇

𝑉𝑀−𝑏𝑀
−

𝑎𝑀

𝑉𝑀(𝑉𝑀+𝑏𝑀)
          2.4 

 

We assume that 𝑉𝑀 is insensitive to 𝑈𝑀
𝐷 for liquids since previous numerical 

experiments clearly show it is less than 1%. See also Lucia et al. (Fig. 7, p. 85,[2]). 

Therefore the partial derivative of pressure with respect to 𝑎𝑀 is given by 

 

(
𝜕𝑝

𝜕𝑎𝑀
) =

−1

𝑉𝑀(𝑉𝑀+𝑏𝑀)
           2.5 

 

Using the chain rule we have that 

 

(
𝜕𝑝

𝜕𝑈𝑀
𝐷) = (

𝜕𝑝

𝜕𝑎𝑀
) (

𝜕𝑎𝑀

𝜕𝑈𝑀
𝐷) = − [

1

𝑉𝑀(𝑉𝑀+𝑏𝑀)
] [

𝑇

𝑇𝑐𝑀
− 1] (

𝑏𝑀

𝑙𝑛2
)      2.6 
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Note that for the existence of a bubble point requires that 𝑇 < 𝑇𝑐𝑀 and therefore the 

quantity [
𝑇

𝑇𝑐𝑀
− 1] < 1. Moreover, (

𝑏𝑀

𝑙𝑛2
) > 0 and [

1

𝑉𝑀(𝑉𝑀+𝑏𝑀)
] > 0. These facts taken 

together show that 

 

(
𝜕𝑝

𝜕𝑈𝑀
𝐷) > 0            2.7 

 

Therefore the change in bubble point pressure due to confinement is given by 

 

∆𝑝 = (
𝜕𝑝

𝜕𝑈𝑀
𝐷) ∆𝑈𝑀

𝐷 = [
1

𝑉𝑀(𝑉𝑀+𝑏𝑀)
] [1 −

𝑇

𝑇𝑐𝑀
] (

𝑏𝑀

𝑙𝑛2
)∆𝑈𝑀

𝐷        2.8 

 

where ∆𝑈𝑀
𝐷 represents the change in internal energy of departure of a fluid mixture in 

confined space minus that in unconfined space at the same x and T. That is, ∆𝑈𝑀
𝐷 in 

Eq. 2.8 is defined as  

∆𝑈𝑀
𝐷 = ∑ 𝑥𝑖[𝑈𝑖

𝐷,𝑐 − 𝑈𝑖
𝐷,𝑢]𝐶

𝑖=1             2.9 

Where 𝑈𝑖
𝐷,𝑐 and 𝑈𝑖

𝐷,𝑢
 are the confined and unconfined pure component internal 

energies of departure respectively. Substituting Eq. 2.9 into Eq. 2.8 gives.  

∆𝑝 = [
1

𝑉𝑀(𝑉𝑀+𝑏𝑀)
] [1 −

𝑇

𝑇𝑐𝑀
] (

𝑏𝑀

𝑙𝑛2
)(∑ 𝑥𝑖[𝑈𝑖

𝐷,𝑐 − 𝑈𝑖
𝐷,𝑢]𝐶

𝑖=1 )      2.10 
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Equation 2.10 clearly shows that bubble point reduction is a complex function of 

composition, temperature, and pore radius because all pure component 𝑈𝑖
𝐷,𝑐

 are 

functions of temperature and pore radius. 

All of the confined 𝑈𝐷  data presented in this article thus far corresponds to a pore 

radius of 0.25 nm which, while valid, is quite small. However, in order to provide 

bubble point reduction estimates that are more representative of pore sizes 

encountered in practice, confined NVT simulations were run for a number of pore 

radii. Table 2.7 shows that the GHC-predicted reduction in bubble point for mixtures 

of methane and octane confined in pores with a radius of 10 nm, where confined 𝑈𝐶𝐻4
𝐷  

and  𝑈𝐶8𝐻18
𝐷  at 300 K have values of -2.6180×104 and -1.94674×105 cm3bar/mol 

respectively.  

Note that the bubble point reductions predicted by the GHC equation are quite 

reasonable and show the correct composition dependence because confinement 

generally has a smaller impact on smaller molecules than larger ones. Thus as the 

methane concentration in the fluid increases, the impact due to confinement decreases, 

as shown in Table 2.7. 

Table 2.7: GHC-Predicted Bubble Point Reduction for Confined CH4/C8H18 at 300K 

𝒙𝑪𝑯𝟒 (𝑽𝑴)∗  (𝒃𝑴)∗  𝑻𝒄𝑴(𝑲)  (𝑼𝑴
𝑫 ) (𝑼𝑴

𝑫 ) ∆𝒑 (𝒃𝒂𝒓)𝒄 

0.2 143.734 124.4388 493.146 -1.6907×105 -1.3994×105 -90.454 

0.5 124.543 96.3795 379.665 -1.10427×105 -9.1730×104 -45.651 

0.7 123.552 77.6733 304.011 -7.6728×104 -5.9921×104 -2.301 
a Confined 𝑈𝑀

𝐷  from linear mixing rule for 10 nm pore radius in units of cm3bar/mol 
b Unconfined 𝑈𝑀

𝐷 from Table 6.1.5; c from Eq. 2.10.; * units of cm3bar/mol 
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As pore radius increases, confined mixture internal energies of departure should 

increase and approach the unconfined 𝑈𝑀
𝐷 in the limit. Table 2.8 shows this effect of 

pore radius on the reduction in bubble point pressure for a 50-50 mol% mixture of 

methane and octane at 300 K.  

Table 2.8: GHC-Predicted Bubble Point Reduction for Confined 50 mol % CH4/50 

mol% C8H18 at 300K 

pore radius (nm) 𝑼𝑴
𝑫  𝒄𝒐𝒏𝒇𝒊𝒏𝒆𝒅∗  𝑼𝑴

𝑫  𝒖𝒏𝒄𝒐𝒏𝒇𝒊𝒏𝒆𝒅∗  𝑻𝒄𝑴(𝑲)  

10 -1.10427×105 -9.1730×104 -45.651 

20 -1.07576×105 -9.1730×104 -38.690 

40 -1.04405×105 -9.1730×104 -30.948 
a From Eq. 2.10.; * units of cm3bar/mol 

 

The results in Table 2.8 are qualitatively similar to those reported in Tables 2.5 and 

2.6 in Wang et al. (2012) for Bakken oil with 36.7 mol% methane at 240 ⁰F using a 

Leverret J function. In that paper, the change in bubble point pressure for pore radii of 

10, 20, and 40 nm are 81.63, 43.74, and 22.99 bar respectively. The primary difference 

is that the GHC equation framework predicts bubble point reduction without the need 

for data regression or empirical correlations. 

2.7 Conclusions 

Monte Carlo simulations in unconfined and confined NVT cases were used to 

compare computed 𝑈𝑀
𝐷 by the linear mixing rule compared to direct simulation. The 

overall ADD % errors found in Table 2.4 clearly show that the linear mixing rule is in 

agreement with 𝑈𝑀
𝐷 computed by direct simulations. Sensitivity analysis were 
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performed for the mixture energy parameter, molar volume, and bubble point as a 

function of 𝑈𝑀
𝐷. The results from this analysis show that the uncertainty in 𝑈𝑀

𝐷 

estimated by the linear mixing rule has a small impact on 𝑎𝑀
𝐷  and fluid molar volume 

𝑣𝑚 for the GHC EOS in both unconfined and confined cases and that the GHC 

equation correctly predicts physically meaningful bubble point reductions for gas-oil 

mixtures as a function of composition and/or pore radius.  
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2.9 Nomenclature  

𝑎, 𝑎𝑀                                                                                                            
pure component liquid energy parameter, mixture liquid 

energy parameter 

𝑏, 𝑏𝑀                                         
pure component molecular co-volume, mixture molecular co-

volume 

𝐶 component 

𝐸 total energy in system 

𝐿 liquid 

𝑁 number of molecules 

𝑃 pressure 

𝑅 gas constant, radius 

𝑇, 𝑇𝑀, 𝑇𝑐𝑀                                         
absolute temperature, critical temperature, mixture critical 

temperature  

𝑈𝑖
𝐷,𝑈𝑀

𝐷 
pure component internal energy of departure, mixture internal 

energy of departure 

𝑉, 𝑉𝑖 , 𝑉𝑀                                         
volume, pure component molar volume, mixture molar 

volume 

𝑥 
 

Greek symbols 

𝜎 
 

Subscripts/superscripts 

𝐷 
 

mole fraction 

 

 

interfacial tension 

 

 

departure function 

 

𝑀 
 

mixture 
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3 UNDERSTANDING PORE-LEVEL PHENOMENA OF N-ALKANES AT 

HIGH PRESSURES 

The following manuscript is submitted to the Journal of Petroleum Science and 

Engineering. 

 Thomas, E. & Lucia. A. (2017). “Understanding Pore-Level Phenomena of N-

Alkanes at High Pressures”, Submitted to the Journal of Petroleum Science and 

Engineering.  
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3.1 Abstract 

Adsorption of shale related n-alkane fluids in graphite nano-channels is studied. Pure 

component canonical (NVT) ensemble simulations are performed over a range of 

isotherms and pore widths. Results for n-hexane are used to validate our approach by 

comparing them with experimental data in the open literature. The impact of pore 

throat diameter on adsorption and internal energies of departure is also reported and 

further demonstrate that there is a carbon chain length dependence on adsorption. All 

pure component results reported in this work are fit to a Langmuir adsorption model, 

which provides easy re-use in future studies. Numerical adsorption results for pure 

component methane adsorption are compared to experimental reservoir conditions. 

Finally, Ideal Adsorbed Solution Theory (IAST) is applied to the resulting Langmuir 

isotherms in order to provide some insight into the phase equilibria for applicable 

shale gas mixtures.  

3.2 Introduction 

Fluids in confinement generally have different properties than traditional bulk fluid 

properties [1]. These unique properties include (1) highly structured geometry [2], (2) 

decreased mobility in confined directions, which strongly effects sampling pressures 

[3], and (3) order-disorder transformations in slit-like pores [4]. Applying 

computational modeling to characterize n-alkanes in confinement has the potential to 

build fundamental understanding of Light Tight Oil (LTO) and Shale system [5] 

properties and phase behavior.  
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3.3 Literature Survey 

The recent boom in shale gas technology has led to an increase in global production 

efforts [6]. In 2013 the United States Energy Information Administration (EIA) 

estimated the total unproven technically recoverable shale gas reserves across the 

globe [7] and clearly show that shale gas will play a major role in the world energy 

portfolio. Some major producers include the U.S. (622.5 trillion ft3), Canada (572.9 

trillion ft3), Mexico (545.2 trillion ft3), Australia (429.3 trillion ft3), Argentina (801.5 

trillion ft3), and Russia (284.5 trillion ft3). Finally, a staggering 1115.2 trillion ft3 of 

shale gas reserves is estimated to exist in China, where great progress has been 

achieved with the first commercial horizontal well to recover 16.7x104 m3/day after 15 

stages of fracturing [8].  

There are also a number of experimental investigations across the globe. Here we 

review methods and data applicable to the work in this paper. Recent findings in the 

lower Silurian marine shale of the Longmaxi Formation (Upper Yangtze Platform, 

China) has yielded data for methane adsorption up to 109.4 bar [6]. In addition, 

adsorption profiles for methane and carbon dioxide were experimentally determined 

for the Barnett 31, Marcellus, Eagle Ford 127, and Montney formations up to 

approximately 117.2 bar [9]. Additional data can be found for methane, nitrogen, and 

carbon dioxide on Woodford shale from the Payne, Hancok, and Caney county 

formations up to 125 bar [10]. At higher pressures, the results have been difficult to 

obtain due to the complexity of the interactions of adsorbed gases inside confined 

pores such as nanoporous (< 50 nm) shale rock [3]. To circumvent this, models have 
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been developed to account for these interactions at high pressures. These models are 

not limited by varying pore throat sizes and shape distribution in the nanometer 

regime, chemical composition, surface area profile, etc. and typically rely on empirical 

methods for adsorption modeling. In this work, we propose a methodology for 

predicting adsorption isotherms of shale gas molecules at high pressures using a slit 

pore model. Finally, since the adsorption literature is vast, we only highlight methods 

relevant to our study.  

3.3.1 Adsorption Models:  

Recent work has reviewed the Henry, Freundlich, Langmuir, Dubinin-Radushkevich, 

Radke-Prausnitz, Toth, Langmuir-Freundlich models applied to shale gas adsorption 

for methane and carbon dioxide up to 140 bar [11]. While these models provide 

excellent agreement with experimental data in the low-pressure regime, the authors 

note that they typically do not predict high-pressure adsorption due to large interactive 

forces between adsorbates, pore-filling geometry, and complex adsorbate- wall 

interactions.  Pure component adsorption results have been extended to multi-

component systems [e.g. Ideal Adsorption Solution Theory (IAST)] using fitting 

models [12], [13]. Well-fitted pure component models are essential for predicting 

multi-component adsorption.  

3.3.2 Equation of states (EOS):  

There are numerous equations of state derived for the description of adsorption onto a 

carbon framework that may be used for shale gases. However, most of these equations 

are regressed to experimental data in order to describe low-pressure adsorption (less 
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than 100 bar). Myers [14] used a rigorous approach involving desorption functions to 

derived explicit expressions for G(T,P), in which the author gives an example for 

ethylene adsorbed on NaX zeolite up to 1.4 bar. Earlier, more empirical work by 

Myers was based on the use of solution theory by treating the adsorbent as the solvent 

and small molecules at low concentrations as the solute [15] for  adsorption pressures 

up to 1000 bar. The Elliott-Suresh-Donohue (ESD) equation has been applied to gas 

adsorption on activated carbon for a number of components including acetylene, 

propylene, and ethylene for pressures up to 2 bar by incorporating a simplified local 

density model gas adsorption [16]. A modified Peng-Robinson EOS was used to 

describe meso-porous materials MCM-41 and 13X for methane and carbon dioxide up 

to 1.2 bar by using a 16-constant expression [17] fitted to simulated bulk fluid 

densities in thermodynamic equilibrium with confined media. Finally, the Bender EOS 

also uses empirical relationships to describe adsorption. In this work, high-pressure 

adsorption up to 500 bar experimental data is described for nitrogen and methane [18].   

Molecular simulation:  

Adsorption can be modeled by molecular simulation (Monte Carlo or molecular 

dynamics) and used to estimate thermodynamic and transport properties where 

experimental data is not available. Molecular dynamic simulations have been used to 

obtain diffusion processes in porous materials (e.g. water diffusing through graphene-

based nanopores) and aid in coarse grain reservoir simulators which require transport 

phenomena parameters [19].  Adsorption processes can also be described using Monte 

Carlo simulations in the grand canonical ensemble. For example, recent work has been 

used to describe the selectivity (i.e., the extent of preferred adsorption onto the 
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framework) of CO2/CH4 onto an organic-rich shale framework [20]. Similar recently 

published work shows the interplay between CO2 and CH4 adsorption observed in 

experimental samples for Barnett 26-Ha, Haynesville GU1-2, and Haynesville TWG3-

1 rock [21].     

There are clearly a limited number of adsorption models applicable to shale gas at 

high pressures over a wide range of temperatures and pore throat diameters. One novel 

aspect of this work is the development of a framework based on the Canonical (NVT) 

Ensemble to compute gas adsorption in regions of high pressures for n-alkanes 

ranging from methane to hexadecane. The primary goal of this study is to provide a 

library of adsorption and internal energy of departure data for n-alkanes typically 

found in the shale gases and light tight oils. In our opinion, this data would be very 

useful for all research communities that employ multi-adsorption models such as 

revised multi-component Langmuir models, IAST, and EOS. Furthermore, other 

recent work from our group has used results for internal energies of departure in 

confined spaces and a simple EOS linear mixing rule for mixture internal energies of 

departure to predict bubble point reduction using the Gibbs-Helmholtz constrained 

(GHC) equation [22]. The proposed work is quite useful for reservoir simulators that 

desire a predictive and multi-scale thermodynamic approach for the description of 

shale gas phenomena.  

In this work the choice of ensemble is the Canonical approach. It widely known that 

high-pressure adsorption in the Grand Canonical Monte Carlo (GCMC) ensemble is 

challenging  [23]–[25] and often leads to inaccurate estimates of pore pressure. 

Difficulties arise when the system becomes denser and, as a result, the acceptance of 
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insertion moves diminishes, which in turn effects convergence. Low acceptance rates 

can be computational challenging to resolve, requiring grid interpolation techniques in 

the GCMC ensemble [12]. In contrast, in the NVT ensemble the pressure can be 

estimated using the negative of the stress tensor and general fluctuation expressions 

[26], both of which are implemented in the RASPA software system [27] for both 

Monte Carlo and Molecular Dynamics applications. However, it is important to note 

that computing pressure in this manner often requires that the adsorbed fluid be in full 

contact with the framework [28], which essentially means that there cannot be any 

void space inaccessible to the fluid. In this work, this requirement is satisfied by 

choosing a graphite nano-channel where there are no void spaces (see, Fig. 2.2). 

The main focus of this paper is to define and quantify the impact of confinement on 

the properties of n-alkanes, specifically adsorption profiles and internal energies of 

departure (UD), in spaces that have a range of pore throat diameter. Previous work 

focused on validating a UD mixing rule and  prediction of bubble point reduction in a 

confined 50 % molar mixture of methane/octane for the multi-scale Gibbs-Helmholtz 

(GHC) EOS [22].  As a result, a subsequent goal of this work is to determine the 

impact of adsorption on computed UD in confinement within the GHC EOS 

framework [22], [29].  

3.4 Computational Methodology  

In this work the nano-channel framework shown in Fig. 3.1 and computational 

methods developed by Dubbeldam [30] and Poursaeidesfahani et al. [25] were used 

[i.e.,  version 2.0 of the RASPA software [27]. All simulations were performed in the 
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canonical ensemble, where the number of particles, N, was varied for a fixed 

framework of volume, V, and temperature, T. Periodic boundary conditions were used 

with a fixed cut off distance of 12 Angstroms and no tail cut off corrections were 

applied because they are invalid in confinement. Default parameters for the flexible 

TraPPE force field were used for all molecules with Configurational-Bias Monte Carlo 

(CBMC) moves for long chain n-alkanes (i.e., carbon number ≥ 4 ). Hybrid NVE 

molecular dynamic simulation was also used every 25 moves to adjust the adsorbate 

configuration and aid in internal mixing. Equilibration and production cycles ranged 

from 100,000-200,000, each depending on the rate of acceptance of CBMC moves.  

 

Figure 3.1: Framework and example snapshot of confined hexadecane NVT 

simulations 

The frequencies translation and rotation moves without CBMC moves were set at 50% 

each. For longer n-alkane chains, starting with butane, the corresponding frequencies 

for translation, rotation, and CBMC moves were 33.33% each. Reported averages are 
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the result of using a 5-block average during the production phase of the simulations. 

Simulations were run on three custom built computers with AMD 1090T 3.2 GHz and 

AMD FX8300 processors in double precision arithmetic using the GNU compiler. An 

example snapshot of the simulation is shown in Fig. 3.1 for n-hexadecane. Additional 

nano-channel framework specifications can be found in the supporting information of 

Dubbeldam et al. [30], in the nano-channel framework section, and have been 

reproduced here for convenience. Also, while the energies between the graphite walls 

and adsorbates were included, UD results only include energies between adsorbates. 

Table 3.1: Nanochannel Framework Specifications 

Pore Throat (Å) 
Free Dimension 

(Å) 

Sheet-sheet distance 

(Å) 
Volume (Å3) 

2.523 5.047  8.52 25,714.42 

5.363 10.727 14.2 71,428.95 

8.203 16.407 19.88 140,000.75 

*specifications taken from the supporting information of Dubbeldam et al. [30] in 

nano-channel specifications  

 

An overview of the steps needed to compute adsorption isotherms is given in Fig. 3.2. 

The general procedure consists of performing a set of simulations in the Cannoical 

(NVT) ensemble by varying the number of particles, N, at constant V and T. 

Corresponding energies are computed for each simulation by reporting the block 

average for a confidence interval of 95%. Pressures are estimated, as noted earlier, by 

using the negative of the stress tensor and general fluctuation expressions [26]. The 

stress tensor is only placed upon the molecules in equilibrium on the outside of the slit 

pore representing a bulk fluid. Adsorption isotherms are then fit to a Langmuir 
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adsorption model. Ideal Adsorption Solution Theory (IAST) calculations are 

performed by using the pure component Langmuir adsorption model parameters to 

predict adsorption for ternary mixtures [13]. The computational procedure is repeated 

in confined space for a range of pore throat diameters for each n-alkane. 

 

Figure 3.2: Flowchart for Computational Procedure 

3.4.1 Benchmark Simulations  

Benchmark simulations were used to establish a comparison between the methodology 

proposed in Fig. 3.2 and the procedure in Dubbeldam et al. [30]. Results of this 

comparison for UD are given in Table 3.2 for the NVT and GCMC ensembles. The 

corresponding pressures for each ensemble can be found in columns 2 and 3 with the 

standard deviation for the NVT ensemble computed pressures shown in parentheses. It 

is important to note that the same graphite nano-channel framework (i.e., in supporting 

information of Dubbeldam et al. [30]) was used for both ensembles. Also, the 



 

 

49 

computation of UD is a required component for determining ∆Hi,ads
, which is 

described in Dubbeldam et al. [30].   

 

From Table 3.2, it is clear that the results are in very good agreement with a percent 

error ranging from 1.15 to 3.51%. With the exception of 25 bar, the standard 

deviations are higher for Dubbeldam et al. [30] than in this work.  

Table 3.2: Comparison of GCMC and NVT results for n-Hexane in a 14.2 Å graphite 

framework 

T (K) 
GCMC 

P (bar) 

NVT 

P (bar)** 
𝑼𝒊

𝑫(cm3bar/mol)** % error 

   GCMC*  This work  

433 5 5 (1.91) 
-3.291E+05 

(8.51E+03) 

-3.176E+05 

(1.56E+03) 
3.51 

433 10 10 (3.16) 
-3.266E+05 

(1.06E+04) 

-3.178E+05 

(6.00E+03) 
2.69 

433 15 15 (2.15) 
-3.236E+05 

(9.13E+03) 

-3.181E+05 

(7.29E+03) 
1.70 

433 20 20 (4.69) 
-3.257E+05 

(9.77E+03) 

-3.184E+05 

(8.99E+03) 
2.23 

433 25 25 (5.15) 
-3.250E+05 

(1.08E+03) 

-3.187E+05 

(9.18E+03) 
1.93 

433 30 30 (3.94) 
-3.246E+05 

(7.79E+3) 

-3.190E+05 

(1.06E+03) 
1.72 

433 35 35 (4.59) 
-3.230E+05 

(8.06E+03) 

-3.193E+05 

(1.69E+03) 
1.15 

*   supporting information of Dubbeldam et al. [30] for 14.2 Å nano-channel system 

** standard deviations in parentheses  

In our opinion, the higher standard deviations in the GCMC ensemble are most likely 

due to the difficulty of performing effective CBMC insertion moves in confined space. 

Furthermore, Poursaeidesfahani et al. [25] have shown in great detail that computed 
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properties using the GCMC ensemble are generally higher than those for NVT Monte 

Carlo simulations in confined spaces. 

 

3.4.2 Langmuir Equation & Ideal Adsorbed Solution Theory  

In this portion of the work, the python package, pyIAST, was used to perform Ideal 

Adsorbed Solution Theory (IAST) calculations for applicable shale gas mixtures [13]. 

As with all models, there are assumptions and limitations. In this case, a ridged 

uniform framework was used in the Canonical ensemble, which is valid for IAST. 

However, a rigid framework implies that thermodynamic properties are independent of 

volume during sampling because volume is constant [13]. Finally, shale gas in the 

pore is assumed to be well mixed and each adsorbate has access to the same surface 

area.  Given these assumptions, the following well-known Langmuir equation was 

used to fit the pure component absolute adsorption data reported in this study  

 
ni = M 

KP

1 + KP
 

 

 3.1 

where ni is the pure component adsorbate isotherm, M represents a unique adsorption 

site, P is the pressure of the adsorbed molecule, and K is a parameter with units of 

inverse pressure. IAST computations require pure component Langmuir adsorption 

isotherm parameters to predict mixture compositions of adsorbed molecules in a nano-

porous material. A thorough review and validation study of the RASPA package can 

be found in Section 3.4.1 and in the supplemental materials of Simon et al. [13].   
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3.5 Simulation Results  

Adsorption results for methane, ethane, propane, butane, octane, and hexadecane over 

wide ranges of temperature, pressure, and pore throat diameter are given in Figs. 3.3-

3.14. Results are reported as adsorption isotherms and values of UD.  

3.5.1 Adsorption of n-Alkanes in Graphite Nano-channel System  

Fitted Langmuir adsorption isotherms for methane, ethane, propane, butane, octane, 

and hexadecane are presented in Figs. 3.3-3.14 for the pore throat diameters specified 

in Table 3.2. These figures plot n-alkane adsorption in moles of adsorbate/kg 

framework as a function of pore throat diameter ranging from 14.2 to 19.88 Å, 

temperatures from 300 to 550 K, and pressure up to 550 bar. The dashed lines shown 

in all adsorption plots represent fits of Monte Carlo simulation data, which are shown 

as filled symbols, regressed to Eq. 3.1. The results shown in Figs. 3.3-3.14 are 

discussed in Section 3.5.1 along with key metrics related to confinement. The resulting 

Langmuir parameters, K and M, can be found in Tables 6.19-24 in Appendix 6.2.  
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Figure 3.3: Adsorption Isotherms of Methane 

 

Figure 3.4: Internal Energies of Departure for Methane 
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Figure 3.5: Adsorption Isotherms of Ethane 

 

Figure 3.6: Internal Energies of Departure for Ethane 
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Figure 3.7: Adsorption Isotherms of Propane 

 

Figure 3.8: Internal Energies of Departure for Propane 
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Figure 3.9: Adsorption Isotherms of Butane 

 

Figure 3.10: Internal Energies of Departure for Butane 
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Figure 3.11: Adsorption Isotherms of Octane 

 

Figure 3.12: Internal Energies of Departure for Octane 
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Figure 3.13: Adsorption Isotherms of Hexadecane 

 

Figure 3.14: Internal Energies of Departure for Hexadecane 
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3.6 The Impact of Confinement 

In this section, the impact of (1) pore throat diameter and (2) chain length (or carbon 

number) on the internal energy of departure is presented. 

3.6.1 Impact of Confinement on UD  

Understanding the impact of confinement on UD and the adsorption isotherms shown 

in Figs. 3.3 – 3.14 can be challenging. Summaries of n-alkane fluid behavior induced 

by confinement are shown in Figs. 3.15 – 3.17. For example, the rate of loading 

appears to be dependent on carbon number in Fig. 3.15. In general, the smaller 

alkanes, up to butane, have a greater potential to occupy more pore volume; larger 

molecules like octane and hexadecane molecules rapidly achieve near maximum 

loading.  However, things are not that simple. Carbon number functionality does not 

completely describe adsorption phenomenon. Note the difference in the shapes of the 

curves for methane, ethane, propane and butane compare to those for absolute loading 

of the larger alkanes octane and hexadecane. The pressure functionality of absolute 

loading for the smaller n-alkanes has an exponential shape while those for octane and 

hexadecane are flatter and quickly reach near maximum occupancy between 100 - 200 

bar. 
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Figure 3.15: Adsorption Isotherms for increasing n-alkane chain length at 14.2 Å and 

450 K 

This is because the transition to near maximum loading depends, in part, on the 

interaction between the adsorbate and the nano-channel material. To illustrate 

absorbate-wall interactions, consider the absorbate-wall interactions for propane, 

butane, and octane at 300 K for 14.2 Å, which are plotted in the form of a histogram in 

Fig. 3.16. Note the transition of peaks from left to right in Fig. 3.16 with increasing 

carbon number. Initially, propane has one peak at 2.5 Å which is expected since it is 

the center of only three united atom carbon units. However, for butane there are two 

distinct peaks. The first peak has a lower probability of 0.83 at approximately 3 Å and 

the second one at 4 Å has a higher probability of 1.0. Finally, there are also two peaks 

for octane, the first near 8 Å with a 0.55 probability and the second peak at 9 Å with a 

probability of 1.0. It is clear from Fig. 3.16 that as the number of n-alkane carbons 
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increases, the molecules tend to favor being ‘spread out’ along the wall. This well 

known phenomena, where a layer of adsorbates forms (or condenses) on the walls is a 

complex function of adsorbate geometry and adsorbate-wall interactions, all of which 

are influenced by temperature, pressure and pore throat size (see [2], [31],[32]). 

Moreover, the extent of ordering generally depends on the specific adsorbate and 

adsorption material under consideration.  

 

Figure 3.16: Normalized End-to-End Distance Histogram for Propane, Butane, and 

Octane at 300 K & 14.2 Å 

Fig. 3.17 shows that UD  becomes more negative with increasing carbon chain length, 

which is an indication of stronger non-ideal behavior. With the exception of 

hexadecane, there is a very weak dependence of UD with respect to pressure. This, in 

turn, implies that UD is a weak function of adsorption and something that could 

perhaps be exploited when up-scaling confined UD to the bulk fluid length scale (e.g., 

for use in an equation of state). 
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Figure 3.17: UD of increasing n-alkanes chain length at 14.2 Å and 450 K 

3.7 Pore Throat Effects  

As noted in section 3.4, an open source python package was recently made available 

to the thermodynamic community [13] and the IAST portion of this open source code 

was used to produce the adsorption results in section 3.7.  

Case 1: Comparison of simulated methane adsorption as a function of pore throat to 

experimental data from Heller and Zoback [9]. 

Experimental data used for comparison is taken from Heller and Zoback [9] who 

report methane and carbon dioxide adsorption on shale gas samples taken from the 

Barnett 31, Marcellus, Eagle Ford 127, and Montney shale reservoirs and is shown in 

Fig. 3.18. Comparisons of the simulated adsorption results presented in Fig. 3.3 from 

300 to 450 K for pore throat sizes 14.2 – 19.88 Å to this experimental data were 

performed by interpolating the simulated results to experimental conditions at 313 K 
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using the isotherm interpolation technique outlined in [14]. Note that the experimental 

results compared in this work are for methane at relatively low pressure and extend up 

to approximately 120 bars while simulation results go up to 450 bar. Also note the 

proposed simulation methodology provides results that are in qualitative agreement 

with the experimental data. Again, it is important to stress that our simulation 

methodology is predictive and not fitted to any adsorption data whatsoever.  

The results in Fig. 3.18 clearly demonstrate that a simple slit pore model may be used 

to predict shale gas adsorption.  

 

 

Figure 3.18: Comparison of simulated methane adsorption with the experimental data 

in Heller and Zoback [9] 
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Case 2:  A recent study [33] used GCMC simulations with the TraPPE force fields for 

methane and ethane in montmorillonite (MMT) to describe the experimental reservoir 

composition data shown in Table 3.3. 

Table 3.3: Composition of Marcellus and Barnett Shale Wells 

Components Marcellus well (%) Barnett well (%) 

Methane 79.4 81.2 

Ethane 16.1 11.8 

Propane 4.0 5.2 

Carbon dioxide 0.1 0.3 

Nitrogen 0.4 1.5 

*data taken from page 2 Table 1 in [33]  

In that work, the authors obtained the data by fixing the temperature at 298.15K and 

varying pressure up to 60 bar. The data in Table 3.3 does not include the temperature 

or pressure range of the Marcellus and Barnett Shale wells.  Unfortunately Sharma et 

al. [33] chose temperature and pressure conditions not consistent with average shale 

reservoir conditions. Therefore we have made conservative comparisons by showing 

IAST results for the experimental temperature of 313 K and a higher reported 

experimental pressure at 200 bar described in case 1 [9]. Since Fig. 3.18 in Case 1 

demonstrated that a slit pore model has the potential to predict shale gas adsorption, 

the next step is to fit Langmuir isotherms to all adsorption data in this work (found in 

Appendix 6.2).  IAST calculations can then extend our simulation work to mixtures by 

using the Langmuir parameters as an input.   

IAST calculations were generated to describe the Marcellus and Barnett Shale data in 

Table 3.3 for the binary mixture 80/20 mol% methane/ethane respectively. The results 

plotted in Fig. 3.19 show uptake of methane and ethane for pore throat diameters of 

14.2 - 19.88 Å up to 70 bar. Since confinement data is dependent on the adsorbate, 
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nano-porous material, and pore throat diameter, it is difficult to make a direct 

comparison with the results in Sharma et al. [33] and thus we only provide those 

results as a reference point. Note that our results and those of Sharma et al. [33] seem 

to be inconsistent. Our results show higher adsorption of methane than ethane for pore 

throat diameters of 10 and 20 Å while those of Sharma et al. [33] show the reverse 

trend (i.e., a higher uptake of ethane than methane).  However, the results in Sharma et 

al. [33] are due to the MMT nano-porous material used to describe the shale 

framework. In their work, ethane had a higher affinity for MMT than methane, which 

decreases with increasing pressure and pore size.  
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Figure 3.19: IAST results of methane/ethane mixture (A. this work, B. Sharma et al. 

2015)  

 

Finally, we used a rigid framework for the nanoporous material (see section 3.4). This 

makes it possible to use IAST calculations to study the behavior of any multi-

component mixtures using the pure component n-alkane Langmuir parameters given 

in Appendix 6.2, provided we invoke the assumptions given in Simon et al. [13].  

Sharma et al. [33] assumed that the 4-5 mol% propane given in Table 3.3 was 

negligible. Here we extend their approach by adding propane to the methane/ethane 

mixture and generating IAST calculations for a 79/16/5 mol% mixture of 

methane/ethane/propane at 313K and 200 bar. The results of uptake for each gas are 

shown in Figs. 3.20-3.22. 

B. A. 
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Figure 3.20: IAST Uptake for Methane at 313K & 200 bar for 14.2 Å Sheet-Sheet 

Distance 

 

Figure 3.21: IAST Uptake for Ethane at 313K & 200 bar for 14.2 Å Sheet-Sheet 

Distance 
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Figure 3.22: IAST Uptake for Propane at 313K & 200 bar for 14.2 Å Sheet-Sheet 

Distance 

A comparison of the ternary mixture in Fig. 3.22 to the binary mixture given in Fig. 

3.19 A clearly shows that there is a relatively large amount of propane uptake of 

approximately 1.6 mmol/g for the given methane/ethane/propane mixture at 313K and  

200 bar. What is important to emphasize here is that our adsorption isotherms can be 

used to provide quick mixture estimations in cases where the composition of propane 

cannot be neglected. On a broader note, the use of IAST coupled with the Langmuir 

parameters given in Appendix 6.2 provides a means of quantifying mixing effects of 

n-alkanes up to hexadecane, which in turn, allows for estimations and references of 

adsorption conditions.   

3.8 Conclusion 

In this work adsorption isotherms and UD of n-alkanes in a graphite nano-channel 

were studied over a range of pressures in the high adsorption regime. Results clearly 

showed that differences in n-alkane adsorption isotherms decrease overall as the 
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carbon chain length increases at any given pore throat diameter. This behavior was 

attributed to occupancy limitations for larger n-alkanes. In addition, adsorption data 

was fit to Langmuir isotherms and corresponding parameters were determined. Pure 

component simulation results exhibit similar trends to experimental data (Heller and 

Zoback [9]) for methane adsorption on shale gas samples taken from the Barnett 31, 

Marcellus, Eagle Ford 127, and Montney shale reservoirs. The Langmuir parameters 

for n-alkanes determined in this work can be used within the IAST framework, 

enabling the larger thermodynamic community to estimate mixture adsorption 

properties at desired high-pressure conditions. Finally, IAST calculations were used to 

predict the uptake of n-alkanes at reservoir conditions for the Marcellus and Barnett 

formations. Results for these studies showed that the affinity of methane decreased for 

an 80/20 mol% mixture of methane/ethane with an increase in pore throat diameter. 

The opposite trend was true for ethane in the mixture, which showed a higher affinity 

with an increase in pore throat diameter. The use of IAST was extended to a ternary 

mixture of methane/ethane/propane over the entire composition range.  
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3.11 Nomenclature  

H Enthalpy 

K Langmuir parameter with units of pressure-1 

M                            unique adsorption site in Langmuir model 

n pure component adsorbate isotherm 

N number of particles 

P Pressure 

T temperature 

U internal energy 
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V volume 

Subscripts/Superscript

s 
 

abs denotes an adsorption function 

D denotes a departure function 

i ith component 

 

 

 

  



 

 

73 

4 CONNECTING CANONICAL SHALE GAS SIMULATIONS TO 

EXPERIMENTAL DATA AT HIGH PRESSURES 

The following manuscript is prepared for submission to The Journal of Petroleum 

Science and Engineering. 

 Thomas, E. & Lucia. A. (2017). “Connecting Canonical Shale Gas Simulations 

to Experimental Data at High Pressure”, Prepared for submission to the Journal 

of Petroleum Science and Engineering.  
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4.1 Abstract 

In order to compare absolute adsorption simulation data to experimental excess and 

net adsorption data for various adsorption processes, a conversion technique that uses 

the Gibbs dividing surface derivation  to define the upper and lower limits of 

adsorption phenomena is used [1]. In the context of shale gas adsorption over 

prediction, a more recent conversion technique has been suggested to normalize both 

excess and net adsorption data by using the framework surface area to volume ratio 

[2], which when combined with the Gibbs dividing surface has been shown to be 

effective when linking simulation to experimental data [2]. The surface area to volume 

ratio framework has only been employed in the Grand Canonical (GCMC) ensemble. 

Thus, a new direct conversion approach in the Canonical ensemble is proposed by 

considering the virial pressure of the bulk fluids in equilibrium with the adsorbants 

inside the nanochannel slit pore at high pressures. The proposed approach is validated 

indirectly by Monte Carlo isothermal-isobaric (NPT) simulations and equation of state 

(EOS) calculations. This validation step defines the accuracy of the bulk fluid 

properties in the absence of experimental data by establishing a benchmark conversion 

in the super-critical region. It is shown that using the specific adsorbate molecule for 

probing the slit pore free volume has a minimal impact on excess and net adsorption. 

Finally, the conversion adsorption results are compared to existing methods and 

experimental data with exceptional agreement when compared to traditional methods. 
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4.2 Introduction 

Production of non-conventional hydrocarbon resources is expected to increase 

throughout 2050 in order to compensate for diminishing conventional reservoir 

supplies [3]. This has led to an increase in interest in non-conventional reservoirs such 

as shale gas and light tight oil (LTO) worldwide. Coupled with this effort is the 

reduction in costs due to technological advances like fracking for major reservoir 

locations such as the Bakken, Marcellus, and Eagle Ford reservoirs.  

The United States remains the world’s top producer of natural gas and is in a position 

to continue to grow the shale gas market [3]. Outside of the United States, production 

of shale gas in China and Canada are expected to grow from 0.5 to 22 billion and 5 to 

8 billion cubic feet per day respectively [3]. It is important to recognize that the 

growth of shale gas will depend on the market conditions for natural gas that, in turn, 

are dependent on many other economic factors such as the price of oil. Short term 

forecasting by the U.S. Energy Information Administration (EIA) predicts oil prices 

will recover around 2019. However, shale and LTO projections are predicted to 

increase 1.3 million barrels per day. In the event of a continued oil price downturn, 

shale gas production will still increase by 35 billion cubic feet per day from 2015 to 

2017 [4].  In the long term, shale gas will play a major role in the world energy 

portfolio and is predicted to increase 70 billion cubic feet per day from 2015 to 2040 

[4]. This it is clear that regardless of market conditions, Shale gas will remain a top 

energy resource in the near future as conventional supplies diminish.  
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To maximize the efficiency of shale gas production, a comprehensive understanding 

of the multi-scale problem ranging from the nano-scale to bulk scale is needed. In this 

work, the focus is on understanding the impact of the nano-scale since it has been 

demonstrated that the potential maximum efficiency has been hindered by the complex 

nature of fluid-pore interactions involving pore size, shape, chemical, and surface area 

distribution of individual pore frameworks [5].  

In the nano-scale shale media (< 50 nm), the pore is occupied by a heterogeneous 

mixture of hydrocarbons and usually the main component is methane ranging in 

composition from  60 to 80% [6]. The general approach to understanding fluid 

behavior in nano-porous shale rock is to study the amount of molecules adsorbed, 

which is intended to provide an estimate of the amount of potentially recoverable gas 

inside the rock. Since there is a clear absence of experimentally verified mechanisms 

of adsorption at this scale, the community has used numerical simulations to 

understand the interactions between the molecules and model porous materials 

resembling shale rock. These interactions are then up-scaled to the micro- and bulk 

fluid length scales (e.g., natural gas reservoir simulation). To increase the robustness 

of the larger scale simulations, a pure component adsorption isotherm database and 

mixing rules for describing the behavior of multi-component adsorption mixtures. 

However, it is unclear whether existing numerical simulation results provide accurate 

estimates of pure component isotherms since many of the studies involve zeolite and 

metal-organic framework applications in the low-pressure regime used (e.g., gas 

dehydration, small molecule separation, oxygen generation, etc.).  See  ([7], [8]). The 

key problem stems from the fact that modeling of pure component adsorption 
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isotherms over predict the adsorption by as much as an order of magnitude when 

compared with experimental data [2].  

Therefore the focus of this paper is to construct a robust methodology for linking 

numerical simulations of adsorption to experimental data in the Canonical ensemble 

(NVT). Accordingly, the remainder of this article is organized in the following way. A 

survey of the literature describing community established conversion methods is 

described in section 4.3. The proposed procedure for adsorption in the NVT ensemble 

and NPT bulk fluid computations are given in section 4.4. Results are presented in 

section 4.5 and conclusions of the work are discussed in section 4.6.  

4.3 Literature Survey 

It is important to emphasize that there are many different computational approaches to 

studying adsorption using Monte Carlo methods. It is also equally important to 

highlight that these techniques all have their own advantages and disadvantages. Since 

the adsorption literature is vast and encompasses many different computational 

approaches, only a brief overview of pitfalls of Monte Carlo ensemble techniques will 

be provided in this manuscript.  

The classic approach using Monte Carlo to model adsorption is to employ either the 

Grand Canonical (GCMC) or the Isobaric-Isothermal Gibbs ensemble (NPT GEMC). 

The choice of the GCMC is convenient because the chemical potential is constant and 

adsorption is studied over a range of chemical potentials requiring multiple 

simulations. The bulk pressure from a GCMC ensemble can be obtained by relating 

chemical potential to an equation of state such as the Peng-Robinson equation [9]. 
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However, adsorption at high pressure conditions in the GCMC ensemble is 

challenging when the fluid densities is high ([10], [11]. If an EOS is used to relate 

chemical potential to bulk pressure, there can also be inaccurate estimates of the bulk 

pressures and densities due to the accuracy of the EOS. Finally, low acceptance rates 

are reported at high pressures in the GCMC ensemble due to limited particle transfer 

moves in dense regions ([7]). 

Isobaric-isothermal Gibbs ensemble Monte Carlo (NPT GEMC) simulations, on the 

other hand, are computationally prohibitive because it is difficult to particle transfer 

moves at constant temperature and pressure. While these simulations are able to 

provide direct estimates of VLE phenomena and while there is no need to relate the 

adsorbed chemical potential to the bulk pressure since EOS pressure is explicit in most 

cases, the Gibbs ensemble transfer moves still impose computational difficulties at 

high pressures for long chain molecules. Moreover the Gibbs ensemble requires many 

molecules since there are multiple simulation boxes.  

Therefore, following recent work of Thomas and Lucia [12] the canonical ensemble 

will be used in this work since high-pressure adsorption does not rely on particle 

transfer moves. The overall approach is described in Thomas and Lucia [12]; here 

only a brief overview is given in section 6.1.  

Once adsorption is obtained through a given Monte Carlo ensemble, the results must 

be compared to experimental data. This work focuses on relating NVT simulation 

results to experimental data. In the next sub-section three different methods used for 

converting absolute adsorption results to excess, net, and surface area adsorption are 

discussed and compared. Subsequently, these conversion methods are combined and 
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applied to a canonical (NVT) system and then compared to experimental data for a 

high-pressure shale gas system. 

4.3.1 Excess Adsorption:  

Excess adsorption is described by Eq. 4.1 where nex represents excess adsorption, N is 

the absolute adsorption from simulation, Na is Avogadro’s number, ρg is the bulk fluid 

density, Vp is the free volume accessible by the adsorbate molecules, and ms is the 

mass of the framework. Although the expression for 𝑛𝑒𝑥 is a simple equation for 

comparing absolute adsorption to experimental results, there is still great debate in the 

adsorption literature over the values of Vp and 𝜌𝑔 at high pressures for shale gas 

applications [7]. 

𝑛𝑒𝑥 =
1

𝑚𝑠
(

〈𝑁〉

𝑁𝑎
− 𝑉𝑝𝜌𝑔) 

4.1 

 

The determination of 𝜌𝑔 for high pressure shale gas adsorption must be carefully 

considered when using an equation of state  [13] since recent work has clearly shown 

that the Peng-Robinson  (PR) equation of state (EOS) over predicts 𝜌𝑔 at high 

pressures. This, in turn, can lead to negative nex (see Fig. 5 of Chen et al. [2].  

Because nex is sensitive to values of 𝜌𝑔 NPT simulations are used to determine gas 

density at high pressure. In the case of methane there have been many studies that use 

the PR EOS to convert absolute to excess adsorptions but none of these studies 

discusses the impact of the accuracy of PR at high pressures [9] on adsorption. 
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Additional simulations are required to calculate V𝑝  (cm3/mol), which is typically 

referred to as the helium void (or dead space) volume as described in Myers and 

Monson [14]. In this context, helium simulation acts as the reference state for V𝑝  

when determining the pore space that is not occupied by the framework. Gumma and 

Talu [1] demonstrate that this reference volume can be calculated in simulation by use 

of a configurational integral for helium where ɸ is the collision diameter describing 

the helium-solid interactions, 𝑚𝑠 is the mass of the framework, and Boltzmann 

constant k.   

V𝑝 =
1

𝑚𝑠
∫ 𝑒−ɸ/kT𝑑𝑉

𝑉𝑏𝑜𝑥

 
4.2 

There remains debate in the adsorption community over the correct values of ɸ for 

helium as any perturbation in ɸ will result in a different value of V𝑝 thereby affecting 

the 𝑛𝑒𝑥. In fact, some recent work has suggested that the adsorbing molecule be used 

as the reference molecule [2]. This approach showed a small change in accessible pore 

volume found in Table 1 of [2] for a Na-Montmorillonite (Na-MMT) simulation cell 

probed by methane and helium yielding a volume of 40.80 nm3 and 40.94 nm3 

respectively. Nonetheless, even this small difference in accessible pore volume can 

lead to noticeable differences in excess adsorption as shown in Fig. 4 of Chen et al. 

[2]. However, this difference can be attributed to geometric interactions between the 

framework and the probing molecules because helium is a smaller molecule, than 

methane and tends to occupy spaces between the surface molecules [2]. An illustrative 

diagram of the geometric considerations of probing molecules is given in Fig. 6 of 

Chen et al. [2]. 
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In section 4.5.4, the method of using the adsorbing molecule as the reference molecule 

for a graphite-nanochannel system is explored further and the effects of helium and 

methane probing molecules for the determination of V𝑝 are studied. More specifically, 

for shale gas applications of interest in this work, methane is used as the probing 

molecule because methane only occupies space on top of the adsorbent surface and not 

interstitially, thereby occupying less space.    

4.3.2 Net Adsorption: 

Although the adsorption community typically uses 𝑛𝑒𝑥 Eq. 4.1 to convert 𝑛𝑎𝑏𝑠 for  

comparisons with experimental results, there are other methods such as the net 

adsorption approach. Net adsorption (𝑛𝑛𝑒𝑡) results have shown promise for high 

pressure applications [1]. Equation 4.3 provides an expression for 𝑛𝑛𝑒𝑡, where the 

major difference from Eq. 4.1 is that the 𝑉𝑏𝑜𝑥 represents the volume of the simulation 

box or adsorption reservoir instead of free volume. Thus, with this method, there is no 

need to use probing molecules to determine V𝑝. For a rigorous derivation of Eq. 4.3 

the reader is referred to Gumma and Talu [1].  

𝑛𝑛𝑒𝑡 =
1

𝑚𝑠
(

〈𝑁〉

𝑁𝑎
− 𝑉𝑏𝑜𝑥𝜌𝑔) 

4.3 

𝑛𝑛𝑒𝑡 is better suited for framework materials that have an explicit volume such as slit 

pores and is not suitable for flat surfaces without an explicitly defined volume. 

Previous applications of the net adsorption approach involve more complex structures 

such as the metal-organic framework HKUST-1 [1]. As mentioned earlier, great care 

must be taken for the determination of 𝜌𝑔 with an EOS.  
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In Fig. 5 of Gumma and Talu [1] the absolute, excess, and net adsorption isotherms 

are given for methane on Norit R1 extra at 298 K. At high pressures, negative values 

of adsorption are predicted by Eq. (4.3) from approximately 220 to 500 bar. Also, 

inspection of Figs. 5 and 6 in Gumma and Talu [1] clearly show that Eq. 4.3 yields a 

lower amount of adsobant, most likely because of the higher value of 𝑉𝑏𝑜𝑥. Moreover, 

over prediction of 𝜌𝑔 can exacerbate this, especially in comparison to experimental 

data. In the next section, the effects of 𝜌𝑔 on Eq. 4.3 using density computations 

through the PR EOS and NPT simulations are studied.           

4.3.3 Surface Area Comparison: 

Key findings by Chen et al. [2] attempt to link results of GCMC simulations to 

experimental data by converting absolute to excess adsorption isotherms. In this work, 

the authors showed that while bulk fluid densities (ρb) and accessible pore volume 

(Vfree) are important variables that influence adsorption conversion, the specific 

surface area (SSA) of the framework is key and demonstrated this for a Na-

Montmorillonite system and qualitatively matched experimental results. However, one 

potential drawback of this method is that it is strongly dependent on the availability of 

experimental framework SSA data. Furthermore, the SSA approach is also heavily 

dependent on the type and location of the reservoir. For example, Ji et al. [5] 

performed an analysis with a Beckman Coulter SA3100 SSA analyzer from a number 

of shale gas reservoirs. They reported SSAs for monmorillonite (76.4 m2/g), I-S mixed 

layer clay (30.8 m2/g), kaolinite (15.3 m2/g), chlorite (11.7 m2/g), and illite (7.1 m2/g). 

Fan et al. [15] studied the adsorption of a highly matured sample in Longmaxi (China) 
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of shale gas system and cited a SSA of 15.10 m2/g. In this work the surface area of 

Silurian Longmaxi Formation shales is used, which have areas that range from 17.83 

to 29.49 m2/g [16].  

4.4 Overview of proposed work 

In this work, NVT simulations are performed for multiple isotherms corresponding to 

existing experimental data in the open literature [15]. Building on the work of Fan et 

al., the impact of calculated bulk fluid densities using the conversion of absolute to 

excess adsorption are compared to results in Setzmann and Wagner [17] as well as 

isothermal-isobaric (NPT) Monte Carlo, and the Peng-Robinson (PR) equation of state 

(EOS). Also the impact of Vfree by probing the framework with helium and methane 

molecules is studied for use in converting excess adsorption. Applications of these 

adsorption conversion methods in the NVT and NPT ensembles demonstrate their 

utility for a model graphite nano-channel systems for shale gas. 

4.4.1 Computational Procedure 

Figure 4.1 gives a summary of the computational procedure used to determine 

absolute adsorption isotherms using NVT Monte Carlo simulation and the subsequent 

conversion of absolute adsorption isotherms to net/excess adsorption curves by a 

variety of different methods. Simulation temperatures are set to the experimental oil 

bath temperature in the sample holder given in Fan et al. [15]. 

The objective of the proposed numerical procedure is to compare simulation results to 

the experimental results reported by Chen et al. [2]. The proposed computational 
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methodology addresses the current limitations in the literature that lead to large 

differences between computationally determined and experimental adsorption profiles. 

It is important to emphasize that this limitation has been resolved for the grand 

canonical ensemble but not for the canonical ensemble [2]. Here adsorption in the  

Canonical ensemble is addressed and direct (virial pressure) and indirect (NPT & 

EOS) methods are used to compute bulk pressure, as described in section 4.5. Bulk 

pressure combined with the excess adsorption (Eq. 4.1), net adsorption (Eq. 4.3), and 

the surface area conversion ([2]) provide the key link to connect results from 

simulation to experimental data in the canonical ensemble for shale gas adsorption at 

high pressures. 

Figure 4.1: Flowchart for Computational Procedure 
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4.4.2 Adsorption Monte Carlo Simulations 

Confined NVT simulations using version 2 of the Monte Carlo and Molecular 

Dynamics software (RASPA) by Dubbeldam et al. [9] were used to determine absolute 

adsorption curves at the same temperatures (i.e., 35.4, 50.4, 60.0, and 65.4 ˚C) 

reported in the experimental work of Fan et al. [15] at increasing pressures. All Monte 

Carlo computations were performed on three custom-built computers with AMD 

1090T 3.2 GHz and AMD FX8300 processors in double precision arithmetic using the 

GNU compiler. Periodic boundary conditions were employed with a cut off radius of 

12 Å.   

The framework used for the NVT simulations is shown in Fig. 4.2 and is a graphite 

nanochannel used to represent the adsorbent material consisting of 3776 atoms.  

Specifications for the absorbent can be found in Table 4.1 [18].  

Table 4.1: Framework Specifications 

Pore Throat (Å) 
Free Dimension 

(Å) 
Sheet-sheet distance (Å) Volume (Å3) 

5.363 10.727 14.2 71,428.95 

*specifications taken from the supporting information of Dubbeldam et al. [18]  

 

The United Atom TraPPE force field was used for methane. The Lennard-Jones 

United Atom TraPPE force field was used to model methane [19]. Helium reference 

state simulations Lennard-Jones parameters from Bolboli Nojini et al. [20]. Parameters 

for the adsorbates are given in Table 4.2. Framework parameters can be found in 

Dubbeldam et al. [18]. 
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Table 4.2: Forcefield Parameters 

# type ε/kB [K] σ [Å] 

1 CH4 148.0 3.730 

2 He 19.38 2.67 

 

Tail cut off corrections are generally used to estimate molecular interactions at very 

large distances with no walls; however they are not applicable for confinement. 

Simulations were started with two unit cells: one containing an empty framework and 

the other containing a number of methane molecules on the outside of the slit pore on 

the outside of the pore throat. Since the United Atom TraPPE force field was used for 

methane, there was no need for rotation moves. Instead, a short Monte Carlo pre-

equilibration step was run for 10,000 steps with 100 % translation frequency and a 

Molecular Dynamics step every 10 steps was employed to promote equilibration (see 

[21]). Only Monte Carlo translation moves were performed for 400,000 equilibration 

and production Monte Carlo cycles. The reported number of particles (N) was 

determined using a five block average thereby giving a 95% confidence interval. Once 

equilibrium (and adsorption) was achieved between the outer methane particles and 

those in the slit pore space, the bulk pressure was determined by using the standard 

virial pressure applied only to the bulk methane particles outside the framework [22], 

[23].  
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Figure 4.2: Example snapshot of methane in equilibrium with graphite slit pore (2.7 

bar, 303.15 K) 

Thermodynamic equilibrium in the NVT ensemble was satisfied by using periodic 

boundary conditions in the directions of the pore throat and by placing additional 

atoms on the outside of the framework to provide equilibrium between the particle in 

the bulk and in the confined space.  Since flexibility is not a strict requirement for 

thermodynamic equilibrium [24], a rigid framework was used to simulate small nano-

pores representing conditions in a shale gas reservoir. 

4.4.3 Isothermal-Isobaric Ensemble (NPT)  

In order to compute the bulk density of methane, NPT simulations were performed 

with 500 methane particles and runs were set to 400,000 equilibration and production 

Monte Carlo cycles. A radial cut off distance of 12 Å was used with tail cut off 

corrections applied. The frequencies for translation and volume moves were each set 

to 50%. Further simulation details can be found in Allen and Tildesley [23] and 



 

 

88 

previously applied for different systems (e.g. water, hexane, CO2) [25]. Forcefield 

information can be found in Table 4.2.  

4.4.4 Density Computations 

Since the conversion of absolute to excess adsorption in Eq. 4.1 requires accurate bulk 

fluid densities (ρb), a very brief background of the Peng Robinson equation of state is 

warranted for readers’ not familiar with equations of states [13]. Furthermore, in this 

work, PR EOS predicted methane densities are compared to the Setzmann & Wagner 

[17], NVT, and NPT bulk densities that help define a benchmark for bulk methane 

densities at high pressures. The PR EOS is a semi empirical EOS that expresses 

pressure as the summation of a repulsion (𝑃𝑅 =
𝑅𝑇

𝑣−𝑏
) and attraction (𝑃𝐴 = −

𝑎(𝑇)

𝑔(𝑣)
) term 

where g(v) is function of a molar volume (v), b is the molecular co-volume 

representing the closest packed structure, and a(T) is a measurement of the 

intermolecular attraction forces. The PR expression for  𝑃 =  𝑃𝑅 + 𝑃𝐴 can be found in 

Eq. 4.4.     

𝑃 =
𝑅𝑇

𝑣 − 𝑏
−

𝛼𝑎(𝑇)

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)
 4.4 

Z3 − (1 − 𝐵)𝑍2 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0 4.5 

Eq. 4.4 can be rewritten in terms of the compressibility factor 𝑍 = 𝑃𝑉/(𝑅𝑇) with 

Eqns. 4.6-4.8:   

𝐴 =
𝑎𝑃

𝑅2𝑇2
 4.6 

𝐵 =
𝑏𝑃

𝑅𝑇
 4.7 
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𝑍 =
𝑃𝑣

𝑅𝑇
 4.8 

Eqns. 4.9 and 4.10 can then be obtained by applying Eqn. 4.4 at the critical point.  

𝑎 =
0.45724𝑅2𝑇𝐶

2

𝑝𝑐
 4.9 

𝑏 =
0.07780𝑅𝑇𝑐

𝑝𝐶
 4.10 

The remaining Eqns. 4.11-4.13 are used at temperatures other than the critical 

temperature for the desired molecule.  

𝛼 = (1 + 𝜅(1 − 𝑇𝑟
0.5))

2
 4.11 

𝜅 = 0.37464 + 1.54226ѡ − 0.26992ѡ2 

4.12 

 

𝑇𝑟 =
𝑇

𝑇𝑐
 4.13 

A complete derivation that includes fugacity, mixture expressions, and enthalpy 

departure functions can be found in Peng and Robinson [13]. The methane parameters 

used in this work are ѡ = 0.0115, 𝑇𝑐= 191.15 K, 𝑃𝑐 = 4.641 MPa. Finally, PR EOS 

predicted methane densities were compared to the empirical EOS by Setzmann 

& Wagner [17] reported in the NIST Chemistry Web Book, densities corresponding to 

the virial pressure, and NPT bulk densities.  

4.4.5 Free Volume and Surface Area Computations 

The free volume of the graphite nano-channel was determined using Eq. 4.2 which 

requires only particle insertion moves with the desired probing molecule to estimate 

the second virial coefficient [1]. Since the free volume is dependent on the geometry 

http://webbook.nist.gov/cgi/cbook.cgi?Author=Setzmann%2C+U.
http://webbook.nist.gov/cgi/cbook.cgi?Author=Wagner%2C+W.
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of the pore structure, it is not a function of pressure. However, the procedure must be 

performed at experimental temperature conditions to maintain a consistent reference 

point. Free volumes for methane and helium at a reference temperature of 298 K were 

determined. The void fraction of the slit pore (i.e., the empty space divided by the total 

volume) was estimated by particle insertions [21].   

Surface area was computed using an auxiliary method provided by Dubbeldam [21]. 

The surface area computation consisted of rolling a probing molecules (e.g. nitrogen, 

helium, argon, etc) over the desired framework.  Each framework atom location was 

assigned atom points that generate a sphere around individual framework atoms where 

the amount of overlap is computed. The probing atom was then rolled onto the surface 

of the framework atoms and the corresponding overlap was computed for the 

framework – probing molecule interactions. Finally, the fraction of overlap was 

multiplied by the area of the sphere resulting in the geometric surface area. Since the 

focus of this paper is on current methods for comparing simulation adsorption results 

to experimental data, the reader is referred to Connolly [26] for a rigorous description 

of this method for determining surface area. 

4.5 Results and Discussion 

In this section, the presented results demonstrate the estimations of bulk methane 

densities in 4.6. Use of a bulk fluid reference is described in section 4.6.1. An over 

estimation is shown when only considering the volume of the adsorbent in section 

4.6.2. This result can be normalized leading to a more reasonable comparison when 

compared to experimental data as shown in section 4.6.3.  Lastly, the impact of pore 
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free volume dependent on probing molecules is presented in section 4.6.4. Part of the 

discussion will address potential pitfalls and tradeoffs when using conventional 

techniques as well as methods that are more modern.  Finally, we discuss the 

implications of using a new direct approach in the in the NVT ensemble which can be 

used with similar success upon comparison to experimental data. 

4.5.1 Accurate bulk fluid methane densities in the shale gas high pressure regime 

In order to compute adsorption at high-pressures, excess (Eq. 4.1) and net (Eq. 4.3) 

adsorption are used to convert simulation to experimental data requiring accurate bulk 

fluid densities (ρb). The excess and net adsorption in the proposed NVT ensemble in 

section 4.5 requires accurate methane densities that can be computed by indirect 

computations (1) NPT simulations, (2) Peng-Robinson EOS or direct computation (1) 

using the virial pressure places on the molecules outside of the slit pore as shown in 

this work.  

 

Figure 4.3: Comparison of indirect methods for methane bulk densities to reported 

data [17] 
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In Fig. 4.3, we can see that there is an excellent match for the NPT Monte Carlo 

simulations when compared to data from Setzmann and Wagner [17] for three 

adsorption isotherms (303.15, 333.15, 363.15 K) found at experimental conditions of 

Fan et al. [15]. The bulk NIST methane densities data are considered the benchmark 

results in this study with uncertainties of 0.03% below 12 MPa and up to 0.07 % for 

pressures less than 50 MPa [17] Again, accurate bulk fluid methane densities are 

crucial for Eq. 4.1 and 4.3 when converting to the respective excess and net adsorption 

thermodynamic frameworks. 

  

Figure 4.4: Comparison of direct method for methane bulk densities to NIST 

The remaining EOS density computations results were run over the same isotherms 

and pressure range (1 – 500 bar). It is clear from Fig. 4.3. that the computed NPT 

methane densities have an excellent agreement with NIST densities with overall 

standard deviations of less than 0.5 %. Not surprisingly, the PR EOS over predicts 𝜌𝑔 

at high pressures with an average percent error of 3.31, 3.11, and 3.57 % for isotherms 



 

 

93 

at 303.15, 333.15, 363.15 K, respectively. While an indirect PR approach is 

computational faster, care must be taken to ensure the results are accurate at high 

pressures.  

We have demonstrated the ability to indirectly compute the bulk fluid densities using a 

Monte Carlo and EOS approach as seen in Fig. 4.3. If a direct approach is desired in 

order to avoid the need for additional simulations, the virial pressure approach can be 

used on molecules in equilibrium with the slit pore. The results of the direct approach 

are demonstrated in Fig. 4.4. The takeaway from this section is that this density 

coupled the bulk viral pressure can be used as a means of direct measurement of bulk 

density for Eqns. 4.1 & 4.3. To the author’s knowledge, this method of direct 

computation is sparsely reported in the literature [27]. Now as with all techniques, 

there are advantages and disadvantages. The advantage is that the density can be 

directly estimated which saves computational time, this approach can be quite useful 

as geometric complexity of the framework is increased. However, the drawback is that 

the virial pressure that corresponds to the bulk pressure has error associated with it. 

Fortunately, our previous work shows that if a multi-scale approach is desired, we can 

use the Gibbs-Helmholtz constrained EOS in this case. Specifically, if bubble point 

reduction estimations are desired, a sensitivity to a 5% uncertainty of confined fluid 

molar volume is less than 1% [12]. Since this drawback has been previous investigated 

and quantified, we focus on the adsorption aspect of confined fluids. In this work, we 

focus on the direct and indirect methods to compute bulk densities in the NVT 

ensemble and compare their impact on excess and net adsorption to experimental data 

(e.g. PR EOS, NPT ensemble, etc). 
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4.5.2 Comparison of excess and net adsorption to experimental data using 

conventional approach with NPT computed densities 

Since simulation work employs smaller pore wall thickness than experimental 

conditions there will most likely be a larger specific surface area up to a few orders of 

magnitude at high pressures ([2], [28]). The same key concept holds true for this work 

and provides an explanation for the large differences between the simulation and 

experimental conditions found in Fig. 4.5. The excess and net NPT adsorption curves 

in Fig. 4.5 are the benchmark for comparison purposes due to the accuracy of the NPT 

Monte Carlo methane densities as observed in Fig 4.3. Also, it should be noted that the 

net adsorption should be markedly lower than excess adsorption because the entire 

volume of the system is subtracted from the absolution adsorption contribution (see 

Eq. 4.3). On the contrast, the excess adsorption is typically higher than net adsorption 

at very high pressures in the supercritical region for light gases [14]. This is due to the 

lower amount of slit pore volume that is considered for excess adsorption (see Eq. 

4.1). The reference pore volumes for the net and excess conversions can be found in 

Table 4.3.   
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Figure 4.5: Excess and Net adsorption isotherms compared to experimental data [15] 

There is also debate in the literature concerning the negative adsorption for net 

adsorption conversion. As made clear in the literature the net adsorption terminology 

in the adsorption conversion literature lead to considerable confusion on the subject 

[1]. They further state that several thermodynamic properties such as departure 
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functions are negative and still considered rigorous. Therefore, the assertion that the 

net adsorption should never be negative is incorrect [1]. An example of a negative net 

adsorption can be seen in Fig. 5 of Gumma and Talu [1] which compares absolute, 

excess, and net adsorption for methane on Norit R1 Extra at 298 K.  

4.5.3 Surface area approach for linking excess and net adsorption curves 

The intent here is to consider the surface area of both the simulation unit cell and 

experimental sample. Coupling the surface area information provides the 

thermodynamic community a link between the two methods in the NVT ensemble. 

Fig. 4.5 demonstrates that there is a mismatch between current simulation techniques 

and experimental data. Here in this section, we demonstrate that by normalizing the 

data of Fan et al. [15] using the SSA technique proposed by Chen et al. [2] for the 

Grand Canonical ensemble a more reasonable comparison can be drawn. We reiterate 

that this technique has already been employed in the literature for a GCMC ensemble 

in a similar manner. To the author’s knowledge, it has not been performed for the 

NVT ensemble or for a slit pore model. Once the SSA is taken into account, the 

simulation and experimental data can then be compared. The direct and indirect 

approaches in Figs. 4.6 & 4.7 show variability between the application adsorption due 

to the viral pressure, NPT, and PR estimated densities. While the SSA method greatly 

helps when comparing the results, a disadvantage is the lack of SSA data provided by 

the experimentalist and the inability to characterize the SSA uniformity throughout the 

reservoir. In the case of Fan et al. [15], the SSA is not explicitly provided which is 

troublesome as now experimental SSA values must be obtained elsewhere. To further 
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complicate the issue, if Fig. 5d is inspected in Tian et al. [29] it should be apparent 

that there is a distribution of SSA for a given sample and it depends where the pore 

throats are located. As such we reference Cao et al. [16] who state that the surface area 

of Silurian Longmaxi Formation shales is in the range of 17.83-29.49 m2/g. This range 

for the experimental data is reflected in Figs. 4.6 -4.10 with a minimum and maximum 

range for the excess and net adsorption isotherms. The simulation results for Figs. 4.6 

& 4.7 are given up to 550 bar far beyond the maximum reported pressure given by Fan 

et al. [15] reported up to 200 bar. The simulation results show a qualitative agreement 

corresponding to the maximum Longmaxi SSA and are more acceptable than results 

reported in Fig. 4.5 that only consider the pore volume. Since there is a non-uniform 

SSA distribution for field conditions, the agreement with simulation results can be 

found in the upper and lower SSA range for the 363.15 K adsorption curves [15]. 

From inspection, there is better agreement with NPT excess adsorption curves with 

experimental data [15]. On the contrary, the PR EOS over predicts bulk methane 

densities at high pressures a further decrease in adsorption as expected. Furthermore, 

the excess adsorption curves capture a reasonable trend beyond the experimental 

pressure range. 
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Figure 4.6: Comparison of excess adsorption isotherms to experimental data with NPT 

and PR EOS computed methane densities [15] 

  

Figure 4.7: Comparison of net adsorption isotherms to experimental data with NPT 

and PR EOS computed methane densities [15]  

The net adsorption NPT results in Fig. 4.7 are in better agreement with the 

experimental data than excess results in Fig. 4.6 since adsorbed methane is in the 
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supercritical regime. This is of course due to the reference state in Eq. 4.3 that 

subtracts off the entire system volume. While negative net adsorption results at high 

pressures are valid experimental results do not appear to become negative when 

extrapolated. The experimental adsorption curves can be converted by utilizing the 

entire volume of the sample crucible when occupied by helium. In this work the 

volume of the crucible for the Gravimetric Sorption Analyzer (ISOSORP – GAS SC) 

identical to the instrument used in Fan et al. [15] is referenced.  

It is interesting to observe that the simulation estimates tend to favor the upper range 

of SSA for Silurian Longmaxi type shales. This may be due to the maturity of the 

shale sample, extent of kerogen content, or the composition of clay minerals such as 

quartz, pyrite, dolomite, feldspar, etc. Another possibility is the inability for 

simulation to capture defects found at field conditions since periodic boundary 

conditions ensure a repeated unit cell granular defects.  
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Figure 4.8: Direct computation of excess adsorption using virial pressure on methane 

molecules located outside the slit pore [15]. 

We have defined the benchmark calculations using the net and excess adsorption 

curves for the indirect approaches (PR EOS and NPT ensemble) as shown in Figs. 4.6 

& 4.7. A direct approach can be utilized if the computational resources are limited by 

using the viral pressure. However, it is well known that there is error associated with 

the viral pressure (see Fig. 4.3 for density comparisons). This error in pressure can be 

seen in Fig. 4.4 at high pressures above 300 bar. There is error at lower pressures but 

they are not visible due to the size of the data markers.  
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Figure 4.9: Direct computation of net adsorption using virial pressure on methane 

molecules located outside the slit pore [15]. 

The following can be determined from Figs. 4.8 & 4.9:  

1) The direct estimation of the bulk pressure on the outside portion of the slit pore 

leads to comparable excess and net adsorption profile curves.  

2) Net adsorption appears to provide a more reasonable comparison to 

experimental data in the minimum SSA and lower temperature region.  

3) This method should only be employed if a direct measurement is desired. A 

more precise estimation is the report NPT net adsorption results found in Fig. 

4.7. 

4.5.4 Impact of pore free volume between methane and helium molecules 

In this section, the impact of assessable pore volume methane and helium probe 

molecules is explored. The procedure for determining assessable pore volume is 
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presented in section 4.5.3. Since there is minimal impact of pore volume, we only 

present the benchmark NPT pressure method example thereby avoiding redundancy. 

Pore volume occupancy information at room temperature is given in Table 4.3 where 

the total volume of a unit cell of a 1.42 nm graphite nanochannel pore throat is 71.428 

nm3, methane at 66.31 nm3, and helium at 66.42 nm3. It is expected that helium pore 

volume is greater than methane due to the fact that helium is smaller than methane. 

Another example of the difference in accessible pore volume can be seen in Table 1 of 

Chen et al. [2] which in their case leads to a noticeable difference in adsorption due to 

their choice of framework namely Na-Montmorillonite.   

 

Table 4.3: Volume of pore space occupied by molecules 

Pore Size (nm) Probing Molecule Volume (nm3) 

1.42 Methane 66.31 

1.42 Helium 66.42 

 Total Volume 71.428 

 

The difference between helium and methane probing molecules is observed in Fig. 

4.10. Since there is minimal difference between the two molecules on excess 

adsorption, we recommend using helium as the probing molecule since it is standard 

practice for experimentalist [14].  
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Figure 4.10: Effect of computed accessible methane and helium volume on NVT 

adsorption 

4.6 Conclusion 

In this work, we demonstrated the direct and indirect approaches that connect 

simulation to experimental results. Despite debate in the adsorption community 

between the usefulness between excess and net adsorption, the following should be 

considered when comparing simulation to experimental results in the Canonical 

ensemble:  

 Direct measurement of the bulk densities can be estimated using the virial 

pressure on molecules located on the outside of the slit pore. This area 
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represents a pseudo-bulk pressure that is verified by comparing to the NPT 

ensemble.  

 Indirect estimation of the bulk densities can be obtained using the NPT 

ensemble or PR EOS. NPT simulations must be performed in tandem and 

could be computationally prohibitive for larger molecules or more complicated 

framework interactions. The PR EOS overcomes the computational cost at an 

expensive of providing over-predictions of densities for methane at high 

pressure. If used a high pressures, careful selection and verification of bulk 

fluid parameters are warranted.  

 There is a noticeable difference between excess and net adsorption results 

when only considering the volume of the simulation unit cell and experimental 

sample as seen in Fig. 4.5.  

 A surface area technique by Chen et al. [2] manages to normalize data thereby 

leading to comparisons between simulation and experimental data which are 

noticeably better. However, shale field conditions exhibit a range of SSA sizes 

that should be taken into consideration. Figs. 4.6 – 4.9 demonstrate the impact 

of a range in SSA sizes.   

 In this case, a slit pore model, there is little difference between assessable pore 

volume determined by helium and methane probe moles. Fig. 4.10 

demonstrates that the pore volume differences by probing molecules have 

minimal impact on excess and net adsorption results. This does not imply that 

adsorbate should not be used for the reference for porous media because in 

certain cases the selection of probing molecules must be considered (see the 
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Na-montmorillonite methane uptake case considered in Chen et al. [2]. For a 

different framework, the impact of utilizing the adsorbate for the probing 

molecule should be investigated prior to converting to excess or net adsorption.  
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4.9  Nomenclature 

A represents intermolecular attraction forces 

b  molecular co-volume 

k boltzmann constant 

M mass 

n pure component adsorbate isotherm 

N number of particles 
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Nab Avogadro’s Number 

P pressure 

R universal gas constant 

T temperature 

U internal energy 

v molar mass  

V volume 

Z compressibility factor 

Greek  

α scaling factor 

κ characteristic constant 

ɸ interactions between adsorbate and surface  

ρ bulk fluid density 

ѡ acentric factor 

Subscripts/Superscripts  

A attraction 
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ab denotes an adsorption function 

c critical 

ex excess adsorption 

g denotes gas phase 

i ith component 

net net adsorption 

p pore 

R repulsion 

r reduced property 

s surface of the framework 
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5 CONCLUSION 

Understanding thermodynamic behavior of nanoporous materials using a slit pore 

representation at shale gas reservoir conditions provides meaningful insight for the 

scientific community. While there are limited models in the literature, there are many 

simulations techniques that can be utilized to explore shale gas systems. In this 

dissertation, a hybrid approach that employs a combination of simulation and 

modeling proves to be effective at defining high pressure adsorption behavior.    

 

Pure component information is investigated and then mixed using a simple linear 

mixing rule yielding a computationally tractable framework for the prediction of 

mixture phenomena. The proposed methodology consists of validating the linear 

mixing rule with pure component and mixture simulations. Although the linear mixing 

rule has some inherent error when validated, a sensitivity analysis shows a minimal 

impact upon being up-scaled to the bulk scale.  

 

Since the linear mixing rule held, the adsorption phenomena over typical reservoir 

temperature and pressure ranges were investigated. Internal energies of departure and 

adsorption isotherms for n-alkanes were shown to exhibit dependence on an increase 

of carbon-chain length. To extend the pure component library to mixtures, Ideal 

Adsorption Solution Theory was shown effective at the prediction of mixed-gas 

adsorption. Establishing a benchmark for comparison, a ternary mixture prediction 

was compared to similar simulation results. 
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Key links were investigated between simulation and experimental data through a 

rigorous means. The experimental and simulation data must be converted using a 

combination of simulation and experimental techniques. Once converted, surface area 

data of the nanoporous material is used to normalize the data with exceptional results. 

The estimation of void pockets of the porous material was shown to have a minimal 

dependence on the specific probing molecule used in this work.   

 

A framework for bridging molecular information to the bulk scale is provided through 

simulation and modeling. This work provides a template for further molecular study of 

slit pores as well as meaningful information for research that seeks to capture 

molecular information on the bulk scale.   
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6 APPENDICES 

6.1 Appendix for Equation of State Computations for Confined Fluids 

6.1.1 Pure Component Internal Energy of Departure for Confinement 

All internal energies of departure in Appendices 6.1.1-6 are in units of cm3bar/mol and 

the numbers in parentheses correspond to standard deviations. 

 

Table 6.1: Force field, NVT Ensemble Average, and Reference Internal Energy 

Species Force 

field 

N T(K) p 

(bar) 

+/- p 

(bar) 
〈𝑼𝒊

𝑫(𝑻, 𝑽)〉 〈𝑼𝒊
∘(𝑻, 𝑽)〉 

methane TraPPE-

UA 

64.34 300 200 3.40 -5.0715×103 

(3.01×102) 

n/a 

methane TraPPE-

UA 

61.74 300 100 2.16 -4.7641×103 

(4.86×102) 

n/a 

n-octane TraPPE-

UA 

26.46 300 200 28.28 -2.7448×105 

(1.03×103) 

2.4558×105 

n-octane TraPPE-

UA 

25.21 400 100 12.79 -3.6515×105 

(5.12×103) 

3.3990×105 

water TIP4P-

Ew 

43.10 290 60 2.95 -3.9442×104 

(3.15×102) 

n/a 

n-hexane TraPPE-

UA 

24.57 290 60 5.651 -1.7624×105 

(2.61×103) 

1.6012×105 

n-hexane TraPPE-

UA 

56.79 300 80 7.19 -1.6739×105) 

(3.17×103) 

1.6459×105 

propane TraPPE-

UA 

49.59 300 100 2.58 -5.4332×104 

(2.46×102) 

3.9845×104 

propane TraPPE-

UA 

56.67 300 80 0.76 -5.6981×104 

(3.37×101) 

3.9845×104 

CO2 TraPPE 42.59 300 80 2.58 -5.8 768×103 

(4.15×102) 

n/a 
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6.1.2 Pure Component Unconfined Internal Energy of Departure with and without 

Analytical Tail Cutoff Corrections 

 

Table 6.2: Species, Force field, NPT Ensemble Average, and Reference Internal 

Energy 

Species Force field N p T 〈𝑼𝒊
𝑫(𝑻, 𝑷)〉a 〈𝑼𝒊

𝑫(𝑻, 𝑷)〉b 

methane 
TraPPE-

UA 
64 200 300 

-1.2209×104 

(1.05×102) 

-2.3005×104 

(7.40×101) 

octane 
TraPPE-

UA 
64 200 300 

-1.9125×105 

(1.48×103) 

-3.6957×105 

(5.85×103) 

water TIP4P-Ew 64 60 290 
-3.9816×105 

(7.26×103) 

-4.7103×105 

(9.23×103) 

hexane 
TraPPE-

UA 
64 60 290 

-1.2401×105 

(2.08×103) 

-2.7681×105 

(2.61×103) 

methane 
TraPPE-

UA 
64 100 300 

-6.5428×103 

(6.63×101) 

-1.1606×104 

(2.53×102) 

propane 
TraPPE-

UA 
64 100 300 

-3.7003×104 

(1.16×103) 

-1.3036×105 

(1.97×103) 

propane 
TraPPE-

UA 
64 80 300 

-3.7261×104 

(1.58×103) 

-1.3444×105 

(8.29×102) 

CO2 TraPPE 64 80 300 
-1.8499×104 

(2.57×103) 

-8.3063×104 

(1.05×104) 

hexane 
TraPPE-

UA 
64 80 300 

-1.4418×105 

(4.98×103) 

-2.7016×105 

(1.34×103) 

a no tail cutoff corrections included 
b tail cutoff corrections included 
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6.1.3 Pure component fluid properties  

 

Table 6.3 Pure Component Fluid Properties  

Species Tc (K) Pc (bar) b (cm3/mol) 

methane 190.58 45.92 29.61 

octane 568.83 24.86 143.15 

water 647.37 221.20 16.36 

hexane 507.60 30.20 110.31 

propane 369.82 42.47 60.40 

CO2 304.12 73.77 29.16 

     

 

6.1.4 Comparison of UD
M Using Linear Mixing Rule for Confined Mixtures without 

Analytical Tail Cutoff Corrections  

Table 6.4: Comparison for Confined Mixtures of Methane/Octanea  

𝒙𝑪𝑯𝟒 〈𝑼𝑴
𝑫 (𝑻, 𝑽)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑽)〉

𝒄

𝒊=𝟏

 % Error 

0.20 -2.1488×105 (1.05×102) -2.2037×105 2.49 

0.50 -1.3177×105 (2.49×102) -1.3920×105 5.34 

0.70 -7.4690×104 (3.01×102) -8.5092×104 12.22 

  ADD 6.68 

a N = 100, T= 300K, p =200 bar 
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Table 6.5: Comparison for Confined Mixtures of Water/Hexanea 

𝒙𝑯𝟐𝑶   〈𝑼𝑴
𝑫 (𝑻, 𝑽)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑽)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -1.2962×105 (3.56×103) -1.4204×105 8.75 

0.50 -9.7049×104 (2.41×102) -1.0784×105 10.01 

0.75 -6.4299×104 (1.64×102) -7.3643×104 12.69 

  ADD 10.48 

a N = 100, T= 290K, p =60 bar 
 

 

Table 6.6: Comparison for Confined Mixtures of Methane/Propanea 

𝒙𝑪𝑯𝟒 〈𝑼𝑴
𝑫 (𝑻, 𝑽)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑽)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -3.6458×104 (1.62×102) -4.1940×104 13.07 

0.50 -2.9548×104 (3.91×101) -2.8854×104  2.35 

0.75 -1.7156×104 (7.33×101) -1.6332×104  4.80 

  ADD 6.74 
a N = 100, T= 300K, p =100 bar 
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Table 6.7: Comparison for Confined Mixtures of CO2/Hexanea 

𝒙𝑪𝑶𝟐 〈𝑼𝑴
𝑫 (𝑻, 𝑽)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑽)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -1.33724×105 (1.95×102)  -1.27016×105 5.28 

0.50 -9.64554×104 (1.67×102) -8.66361×104 11.33 

0.75 -5.35288×104 (4.40×102) -4.62565×104 15.72 

  ADD 10.78 
a N = 100, T= 300K, p =80 bar 
 

          

Table 6.8: Comparison for Confined Mixtures of CO2/Propanea 

𝒙𝑪𝑶𝟐 〈𝑼𝑴
𝑫 (𝑻, 𝑽)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑽)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -4.04788×104 (1.52×102) -4.42051×104 8.43 

0.50 -2.97013×104 (2.23×102) -3.14290×104 5.50 

0.75 -1.91238×104 (4.59×102) -1. 86530×104 2.52 

  ADD 5.48 
a N = 100, T= 300K, p = 80 bar 
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6.1.5 Comparison of UD
M Using Linear Mixing Rule with Direct Monte Carlo 

Simulation for Unconfined Mixtures without Analytical Tail Cutoff 

Correctionsa,b 

Table 6.9: Comparison for Unconfined Mixtures of Methane/Octanea 

𝒙𝑪𝑯𝟒 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑷)〉

𝒄

𝒊=𝟏

 % Error 

0.20 -1.4105×105 (4.06×103) -1.3944×105 1.1543 

0.50 -9.0564×104 (2.14×103) -9.1730×104 1.2704 

0.70 -6.0867×104 (6.68×102) -5.9921×104 1.5782 

  ADD 1.33 

a N = 100, T= 300K, p =200 bar 
 

 

Table 6.10: Comparison for Unconfined Mixtures of Water/Hexanea  

𝒙𝑯𝟐𝑶 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑷)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -2.0156×105 (1.35×104) -1.9255×105 4.6806 

0.50 -2.6590×105 (8.71×103) -2.6109×105 1.8441 

0.75 -3.1690×105 (5.45×103) -3.2962×105 3.8599 

  ADD 3.46 

aN = 100, T= 300K, p =60 bar 
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Table 6.11: Comparison for Unconfined Mixtures of Methane/Propanea  

𝒙𝑪𝑯𝟒 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑷)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -2.8778×104 (1.02×103) -2.7122×104 6.1048 

0.50 -1.9644×104 (2.65×102) -2.0262×104 3.0503 

0.75 -1.3146×104 (3.26×102) -1.3402×104 1.9124 

  ADD 3.69 
aN = 100, T= 300K, p =100 bar 

 

Table 6.12: Comparison for Unconfined Mixtures of CO2/Hexanea  

𝒙𝑪𝑶𝟐 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑽)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -1.1632×105 (3.10×103) -1.1276×105 3.1554 

0.50 -8.3918×104 (4.56×103) -8.1340×104 3.1696 

0.75 -4.9039×104 (2.38×103) -4.9920×104 1.7648 

  ADD 2.70 
aN = 100, T= 300K, p =80 bar 

          

Table 6.13: Comparison for Unconfined Mixtures of CO2/Propanea   

𝒙𝑪𝑶𝟐 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑽)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -3.3422×104 (1.01×102) -3.2571×104 2.6129 

0.50 -2.8644×104 (1.09×102) -2.7880×104 2.7377 

0.75 -2.3816×104 (8.60×102) -2.3190×104 2.7016 

  ADD 2.68 
aN = 100, T= 300K, p =80 bar 
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6.1.6 Comparison of UD
M Using Linear Mixing Rule with Direct Monte Carlo 

Simulation for Unconfined Mixtures with Analytical Tail Cutoff Corrections 

Table 6.14: Comparison for Unconfined Mixtures of Methane/Octanea 

𝒙𝑪𝑯𝟒 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑷)〉

𝒄

𝒊=𝟏

 % Error 

0.20 -3.1063×105 (3.8×103) -3.0025×105 3.4571 

0.50 -1.9879×105 (2.30×103) -1.9628×105 1.2787 

0.70 -1.2433×105 (8.90×102) -1.2697×105 2.0792 

  ADD 2.27 

aN = 100, T= 300K, p =200 bar 

 

Table 6.15: Comparison for Unconfined Mixtures of Water/Hexanea  

𝒙𝑯𝟐𝑶 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑷)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -3.3114×105 (4.54×103) -3.2537×105 1.7740 

0.50 -3.9171×105 (1.01×104) -3.7392×105 4.7573 

0.75 -4.3132×105 (9.27×103) -4.2248×105 2.0926 

  ADD 2.87 

aN = 100, T= 290K, p =60 bar 
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Table 6.16: Comparison for Unconfined Mixtures of Methane/Propanea  

𝒙𝑪𝑯𝟒 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑷)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -9.4983×104 (1.77×103) -1.0067×105 5.6478 

0.50 -7.2099×104 (2.78×103) -7.0981×104 1.5758 

0.75 -4.0500×104 (1.27×103) -4.1294×104 1.9220 

  ADD 3.05 
aN = 100, T= 300K, p =100 bar 

 

Table 6.17: Comparison for Unconfined Mixtures of CO2/Hexanea  

𝒙𝑪𝑶𝟐 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑽)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -2.3198×105 (2.21×103) -2.2338×105 3.8479 

0.50 -1.8587×105 (2.16×103) -1.7661×105 5.2444 

0.75 -1.3350×105 (3.98×103) -1.2984×105 2.8184 

  ADD 3.97 
aN = 100, T= 300K, p =80 bar  

 

Table 6.18: Comparison for Unconfined Mixtures of CO2/Propanea  

𝒙𝑪𝑶𝟐 〈𝑼𝑴
𝑫 (𝑻, 𝑷)〉 ∑ 𝒙𝒊〈𝑼𝒊

𝑫(𝑻, 𝑽)〉

𝒄

𝒊=𝟏

 % Error 

0.25 -1.2762×105 (1.35×102) -1.2160×105 4.9508 

0.50 -1.1629×105 (1.36×103) -1.0875×105 6.9325 

0.75 -9.6263×104 (5.16×102) -9.5908×104 0.3706 

  ADD 4.08 
aN = 100, T= 300K, p =80 bar  
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6.2 Langmuir Parameters for Various Hydrocarbons 

Table 6.19: Methane Langmuir Parameters 

T (K) Pore Size K (103) M RMSE 

300 14.2 3.188 15.102 0.0798 

450 14.2 1.831 15.805 0.0483 

550 14.2 1.387 16.220 0.0303 

300 17.04 1.609 28.782 0.0389 

450 17.04 1.134 27.010 0.0363 

550 17.04 1.035 24.533 0.0440 

300 19.88 2.083 25.983 0.00994 

450 19.88 1.126 31.524 0.004693 

550 19.88 0.894 32.225 0.0166 

*RMSE: Root-mean-square deviation 
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Table 6.20: Ethane Langmuir Parameters 

T (K) Pore Size K (103) M RMSE 

300 14.2 10.883 9.063 0.409 

450 14.2 4.513 9.545 0.151 

550 14.2 2.581 10.845 0.0270 

300 17.04 2.881 18.623 0.144 

450 17.04 2.025 17.142 0.0502 

550 17.04 1.593 16.995 0.0752 

300 19.88 2.628 20.622 0.113 

450 19.88 1.846 20.478 0.0568 

550 19.88 1.424 21.390 0.0724 

*RMSE: Root-mean-square deviation 
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Table 6.21: Propane Langmuir Parameters 

T (K) Pore Size K (103) M RMSE 

300 14.2 26.954 7.145 1.183 

350 14.2 15.576 7.330 0.650 

450 14.2 6.593 7.955 0.297 

550 14.2 4.34 7.808 0.183 

300 17.04 5.068 12.237 0.147 

350 17.04 4.317 11.956 0.0625 

450 17.04 3.442 11.222 0.0193 

550 17.04 2.863 10.989 0.0718 

300 19.88 3.831 15.825 0.152 

350 19.88 3.192 16.126 0.107 

450 19.88 2.637 15.580 0.0666 

550 19.88 2.217 14.856 0.0603 

*RMSE: Root-mean-square deviation 
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Table 6.22: Butane Langmuir Parameters 

T (K) Pore Size K (103) M RMSE 

300 14.2 17.494 6.071 0.109 

450 14.2 15.374 5.484 0.113 

550 14.2 6.816 6.079 0.188 

300 17.04 8.888 8.930 0.184 

450 17.04 6.086 8.185 0.0469 

550 17.04 5.117 7.688 0.0377 

300 19.88 4.809 12.877 0.196 

450 19.88 3.637 11.829 0.0731 

550 19.88 2.986 11.600 0.0771 

*RMSE: Root-mean-square deviation 
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Table 6.23: Octane Langmuir Parameters 

T (K) Pore Size K (103) M RMSE 

300 14.2 110.452 3.078 0.0436 

450 14.2 28.054 3.191 0.0324 

550 14.2 31.197 3.085 0.0145 

300 17.04 15.868 5.154 0.266 

450 17.04 11.932 4.618 0.0949 

550 17.04 9.856 4.472 0.0887 

300 19.88 5.341 7.331 0.121 

450 19.88 8.252 5.984 0.0496 

550 19.88 8.454 5.592 0.0268 

*RMSE: Root-mean-square deviation 
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Table 6.24: Hexadecane Langmuir Parameters 

T (K) Pore Size K (103) M RMSE 

300 14.2 110.452 1.358 0.0871 

450 14.2 28.054 1.356 0.0579 

550 14.2 31.197 1.294 0.0540 

300 17.04 15.868 1.774 0.0640 

450 17.04 11.932 1.731 0.0517 

550 17.04 9.856 1.469 0.142 

300 19.88 5.341 3.941 0.155 

450 19.88 8.252 2.480 0.0491 

550 19.88 8.454 2.397 0.0936 

*RMSE: Root-mean-square deviation 
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