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ABSTRACT 

 The stock market is well known for its volatility and many models are proposed 

to capture the volatility. Volatility is naturally unobservable and the absolute values 

of the returns work as the realized volatility. The Dow Jones Industrial Average is 

the study object and the models used are generalized autoregressive conditional 

heteroskedasticity (GARCH) models with different extensions. The unique 

extension in this study is to add happiness data into the model and check whether it 

helps to better capture the volatility and improve the forecasting accuracy. The 

happiness data is extracted from Twitter and it is an index to show people’s 

happiness level based on their online expressions. The one day lagged happiness 

data is also used as one extension to the models. The leverage effects and the heavy 

tails problems are also addressed in this study, EGARCH models and GJR-GARCH 

models with other error distributions such as student’s T distribution are used to deal 

with these specific problems. The forecasting performance of these models is 

checked and we find out that the happiness data does help to better capture the 

volatility. However, the forecasting accuracy of the models with happiness data is 

not statistically different compared to the models without happiness data. This 

illustrates that the happiness data does not help to improve the forecasting 

performance. 
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CHAPTER 1 

 

INTRODUCTION  

 

A stock of a corporation constitutes the equity stake of its owners. It represents 

the residual assets of the company after the discharge of all the other senior claims. 

The intrinsic value of the stock is the present value of future dividends. A stock 

market is where the price of the stock forms because it is the aggregation of the 

buyers and sellers. It helps companies to raise money and the smooth function of 

this activity contributes to the economic growth.  

The stock market index is created in order to describe the stock market, and it 

is the measurement of the value of a portion of the stock market. It is computed using 

the selected stock values. The stock selected depends on the goal of the index. One 

example is the Dow Jones Industrial Average Index. The Dow Jones Industrial 

Average (DJIA) is the most quoted stock market index in the world (Shoven and 

Sialm, 2000). It was first published on May 26, 1896 by Charles Dow, one of the 

founders of Dow Jones & Co. It included twelve industrial companies listed on the 

New York Stock Exchange at the beginning. In 1916, the number of companies in 

the index increased to twenty and in 1928, the number extended to thirty. The DJIA 

is calculated as a price-weighted measure of these thirty influential companies in the 

United States and it remains as a good indicator of the entire economy. 

There are four main price indicators each day in the stock market index: 
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opening price, high price, low price and closing price. In order to calculate the daily 

return, the closing price is often used reflecting the most up-to-date price. There are 

two ways to calculate the daily return: discrete return and logarithmic return. 

Discrete:     𝑅𝑡 = 
𝑃𝑡− 𝑃𝑡−1

𝑃𝑡
 

Logarithmic:  𝑅𝑡 = log (𝑃𝑡/𝑃𝑡−1) 

Where 𝑃𝑡     =    the closing price at time t; 

   𝑃𝑡−1 =    the closing price at time t-1. 

The logarithmic of the closing price is the discrete return with continuous 

compounding (Fama et al., 1969). In this work, the logarithmic return is preferred to 

use. There are both theoretical and empirical reasons for preferring the logarithmic 

return (Strong, 1992). Theoretically, the logarithmic return is analytically more 

tractable when returns are calculated over longer intervals (simply add up the sub-

period returns). Empirically, the logarithmic return is more likely to be normally 

distributed. 

Volatility of the stock market return is often perceived as a measure of risk. It 

is a statistical measure for variation of the return over time. In finance, the volatility 

is also a core parameter in many models such as the Capital Asset Price Model 

(Sharpe, 1964). 

Volatility is inherently unobservable, and what we know about volatility has 

been learned either by fitting parametric econometric models, or by studying some 

indicators of volatilities such as the absolute returns (Andersen et al., 2001). It is 

often calculated as the standard deviation of the return (Poon and Granger, 2003) 
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denoted by σ.  

Many researchers have studied the movement of stock market volatility, and 

raised the question of why the volatility changes so much over time. Officer (1973) 

relates changes to the macroeconomic variables. There are also attempts to connect 

volatility to changes in expected stock returns, including Merton (1980), French et 

al. (1987). Also, a number of studies have used measure of the variance or “volatility” 

of speculative asset prices to provide evidence against simple models of market 

efficiency (Shiller, 1981).  

1.1 Basic Time Series Concepts 

 Stochastic Process 

 A stochastic process is a sequence of random variables {𝑋𝑡, 𝑡 = 1,2, … } defined 

at fixed sampling intervals, representing the evolution of random values over time. 

The index t represents time, and a stochastic process is also known as a random 

process. 

 Time Series 

 A time series is a sequence of observations on a particular variable, and it can 

be interpreted as a realization of the stochastic process. Examples of time series are 

inflation rates, unemployment rates and market shares. The main features of time 

series include trends, seasonal variations and the observations that are close in time 

are correlated. So time series models are needed to explain this correlation. 
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Autocorrelation  

 A correlation of a variable with itself at different times is known as 

autocorrelation. The number of time steps between the variables is known as the lag. 

The autocorrelation function, or ACF, express the autocorrelation as a function of 

the lag k for k = 1,2…. Let {𝑥𝑡, 𝑡 ∈ 𝑇} be a time series and �̅� is the sample mean. 

The autocorrelation can be estimated by the sample autocorrelation function (ACF), 

or the empirical ACF. The sample autocorrelation function or correlogram is given 

by  

𝜌𝑘 = 
∑ (𝑥𝑡 − �̅�)(𝑥𝑡+1 − �̅�)
𝑇−𝑘
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑇
𝑡=1

 

 White Noise 

White noise is a stochastic process used for many time series models. A time 

series {wt} is white noise if w1, w2, w3,…, wn are independent and identically 

distributed random variables with mean of zero. This means that the variables have 

the same variance and the covariance between them is zero.  

The stock market returns are expected to be white noise under the efficient 

market hypothesis. In an efficient market, asset prices adjust instantaneously to 

reflect new information, which eliminates the possibility to predict future prices 

using only past prices (Logue and Sweeney, 1977). This implies that the current 

price of a security “fully reflects” available information (Fama, 1970). Thus, the 

successive price changes (or returns) are independent and identically distributed, 

which makes them a white noise. However, there are many reasons which may cause 

violations to the efficient market hypothesis. The arbitrage risk, for example, is one 
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of them. Under the efficient market hypothesis, any arbitrage opportunities results 

from mis-pricing will be removed by rational traders’ transactions. In the real world, 

however, arbitrageurs are subject to many constraints, such as transaction fees and 

holding costs (Pontiff, 2006). Therefore, the price may not fully reflects available 

information which violates the efficient market hypothesis. 

Autoregressive (AR) Models 

An AR model is a linear combination of p most recent past values of a random 

variable and the current white noise term.  

The series {xt} is an autoregressive process of order p, if  

x𝑡 = α1𝑥𝑡−1 + α2𝑥𝑡−2 +⋯+ α𝑝𝑥𝑡−𝑝 + 𝑤𝑡 

where {wt} is white noise and αi are the model parameters with αi≠0. 

Moving Average (MA) Models 

A moving Average (MA) Model is also one foundation of other models. A 

moving average (MA) process of order q is a linear combination of the current white 

noise and the q most recent past white noise terms. 

The series {xt} is a moving average (MA) process of order q, if  

x𝑡 = 𝑤𝑡 + 𝛽1𝑤𝑡−1 + 𝛽2𝑤𝑡−2 +⋯+ 𝛽𝑞𝑤𝑞−2 

where {wt} is white noise.  

Autoregressive Moving Average (ARMA) Models 

In the time series analysis, Box-Jenkins method (Box and Jenkins, 1970) 

applies autoregressive moving average (ARMA) models to find more appropriate fit 

of one time series. The ARMA model is the combination of AR and MA model. 

Dependence is very common in time series data, and ARMA models could be used 
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to capture this dependence. 

The time series {xt} is an autoregressive moving average (ARMA) process of 

order (p,q), if  

x𝑡 = α1𝑥𝑡−1 + α2𝑥𝑡−2 +⋯+ α𝑝𝑥𝑡−𝑝 +𝑤𝑡 + 𝛽1𝑤𝑡−1 + 𝛽2𝑤𝑡−2 +⋯+ 𝛽𝑞𝑤𝑞−2 

Where {wt} is white noise. If dth difference of the {xt} series are an ARMA(p,q) 

process, then {xt} follows an autoregressive integrated moving average 

ARIMA(p,d,q).  

1.2 Time Series Models for Financial Data 

In financial area, the random walk is often used to predict the price of the 

financial asset. That means we can use normal distribution to simulate the trend of 

the stock price. It is quite convenient to use this easy model to predict the stock price 

but the shortcoming is also quite obvious. For example, in Figure 1, the return does 

change with time but we can find the volatility clustering happens. That means the 

volatility is higher during one period of time (like in 2009) compared to other periods 

of time. According to Poon and Granger (2003), there are two ways to forecast the 

volatility, one is to use the time series data and the other one is to use the option 

prices. In this study, we will use the time series data and we need to use other models 

to predict the volatility.  
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Figure 1. Dow Jones Return from 9/11/2008 to 10/25/2014. 

 

A lot of volatility forecasting models have been investigated in the previous 

studies, but no consensus has been reached on which model is better than others 

(Poon and Granger, 2003). Therefore, many researchers try to add other external 

variable in the model (like the Investor sentiment index) to better fit the volatility. 

According to (Lee et al., 2002), the shifts in sentiment are negatively correlated with 

the market volatility. In this research, the data used is from Twitter instead of using 

proxy like the turnover ratio from the market (Baker and Wurgler, 2006).  

Engle (1982) introduced Autoregressive conditional heteroskedasticity (ARCH) 

to model the volatility changed with time.  

Autoregressive conditional heteroskedasticity (ARCH) model of order p 

𝑟𝑡 = 𝜀𝑡ℎ𝑡 

Where      

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 +⋯+ 𝛼p𝑟𝑝−1
2  

Bollerslev (1986) proposed Generalized ARCH model as an extension of the 
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ARCH model. It has longer memory and more flexible lag structure by adding 

lagged conditional variance into the model. 

Generalized Autoregressive conditional heteroskedasticity (GARCH) model of 

order (p,q)  

  𝑟𝑡 = 𝜀𝑡 ℎ𝑡,   𝜀𝑡~𝑁(0, ℎ𝑡) 

Where      

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 +⋯+ 𝛼p𝑟𝑝−1
2 + 𝛽1ht−1

2 +⋯+ 𝛽qht−q
2  

Specifically, the GARCH (1,1) model is often used in finance.  

Basic GARCH (1, 1) model: 

𝑟𝑡 = 𝜀𝑡 ℎ𝑡,  𝜀𝑡~𝑁(0, ℎ𝑡) 

Where      

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽1ht−1
2  

In the classic GARCH model, the error is normally distributed 𝜀𝑡 = 𝜎𝑡𝑧𝑡, 𝑧𝑡 is 

standard normal distribution ~ iid (0,1). The density function of normal distribution 

is  

f(x, μ, σ) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2  

Where μ is the mean of the distribution and σ is the standard deviation.  

1.3 Research Goal and Thesis Outline 

Bollen (2011) proposed that with the development of social media, people’s 

emotions can be easily measured through their online expressions. In this study, 

happiness works as the representative of people’s emotions. It is interesting to see 

what the effect of happiness is on the stock market return. Does the happiness data 
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help to fit the return data? Or it may have a lagged impact on the return volatility. In 

the term of forecasting, the happiness data may help to forecast the return volatility. 

That is to check whether there is any improvement of the prediction accuracy when 

adding the happiness data into the model.  

The thesis is organized as follows: Chapter 2 will fit the data with basic 

GARCH models and the result is shown to decide which model has more appropriate 

fitting. Also, some basic features of the dataset will be discussed. In Chapter 3, more 

advanced models are used to deal with asymmetry problems and heavy tails. Chapter 

4 is going to present forecasting based on the advanced models selected and compare 

the estimation power of different models with each other.     
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CHAPTER 2 

 

FITTING BASIC GARCH MODELS 

 

2.1 Data  

Dow Jones Industrial Average (DJIA) Daily Return. The daily closing prices 

of the DJIA, which are downloaded from Yahoo Finance, are used to calculate the 

DJIA daily returns. The time range for the DJIA return is from 9/11/2008 to 

10/25/2014.  

2.2 Data Description  

 

 

 

 

 

 

 

 

 

 

Figure 2. Plot A: time series of the Dow Jones Industrial Average Return; Plot B: the density of 

the DJIA return; Plot C and D: Correlogram and QQ plot of the DJIA return. 

 



11 
 

Plot A in Figure 2 shows that the return is a stationary series in mean averaging 

around zero. However, the volatility is clustered especially during the end of 2009 

when the financial crisis still has its influential impact all over the world. This is the 

reason non-linear models (like GARCH) are needed to fit the data. The correlogram 

plot implies that autocorrelation exists in this series. The auto-correlation means the 

correlation of a variable with itself at different times. It is typically modeled with 

autoregressive moving average model (ARMA). In this study, ARMA component is 

added to GARCH model and I will check whether it is significant as one extension 

to GARCH model. The density and the QQ plot indicate this series has heavy tails 

and potential asymmetric problems. Especially in the QQ plot, the two tails deviated 

from the red line which represents the normal distribution. So in Chapter 3, more 

advanced models which deal with these two problems.   

2.3 Results from Basic Models 

Benchmark Model  

After checking the significance of the parameters, the preferable model in the 

GARCH (p,q) for p from 1 to 5 and q from 1 to 2 was GARCH (1,1). So GARCH 

(1,1) is used as the benchmark model. 

Basic GARCH (1, 1) model: 

𝑟𝑡 = 𝜀𝑡 ℎ𝑡,  𝜀𝑡~𝑁(0, ℎ𝑡) 

Where      

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽1ht−1
2  

The maximum likelihood method is used to estimate the parameters in the 
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GARCH models. In basic GARCH models, the error is normally distributed with 

mean of 𝜇 and standard deviation of 𝜎. So the likelihood function is: 

L(θ|𝑥1, … , 𝑥𝑛) = 𝑓(𝑥1, … , 𝑥𝑛|θ) =  ∏𝑓(𝑥𝑖|𝜃)

𝑛

𝑖=1

 

Where 𝜃 will be the parameters. In practice, it is more convenient to use the 

logarithm of the likelihood function which is: 

lnL(θ|𝑥1, … , 𝑥𝑛) =  ∑ln (
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2 )

𝑛

𝑖=1

 

 

Table 1. Estimates of GARCH(1,1) model. 

Model         μ ω α β 

GARCH(1,1) 
 0.0691*** 

(0.0184) 

 0.0224*** 

(0.0053) 

 0.1256*** 

(0.0239) 

 0.8564*** 

(0.0213) 

 

The mean is modelled for the GARCH(1,1) model, so  μ is the estimated 

mean.  ω is the variance intercept and  α is the ARCH(q) parameter and  β is the 

GARCH(q) parameter. They are all significant.  

So, the estimated benchmark model is 

𝑟𝑡 = 𝜀𝑡ℎ𝑡 + 0.0691 

Where  

ht
2 = 0.0224 + 0.1256𝑟𝑡−1

2 + 0.8564ht−1
2  

GARCH(1,1) is frequently used as the benchmark model because it is a relative 

simple model but with great performance fitting the financial time series data. The 

plots in figure 3 display the performance of GARCH(1,1) model. 
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Figure 3. The plot of fitted values (A) and correlogram (B) of the standardized residuals from 

GARCH(1,1) model. 

 

 Plot A in Figure 3 shows the conditional standard deviation (blue line) which 

indicates the fitted volatility against the absolute value of return (grey line). The 

absolute value of return is used as one proxy of the volatility. The GARCH(1,1) 

model captures a lot of the volatility as displayed in the first plot. The first significant 

value in the correlogram plot is at lag 1, which implies the underlying autocorrelation 

is not all zero. Hence, a GARCH-ARMA model is fitted next.  

GARCH(1,1)-ARMA(p,q) Models 

As indicated in the correlogram of the standardized residuals, one potential 

extension is to add ARMA component into the GARCH model. That is to include 

an ARMA model for the conditional mean of the process. I will specify the mean 

equation with a low order of ARMA process to capture the autocorrelation of the 

return.  
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GARCH (1, 1) - ARMA (p, q) Model: 

𝑟𝑡 = 𝛼 +∑𝜃i𝑟𝑡−i

𝑝

1

+ 𝜀𝑡 +∑𝛿q𝜀𝑡−q

𝑞

1

,  

Where        

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽1ht−1
2  

After checking the AIC and the significance of the parameters, the model 

chosen is GARCH(1,1)-ARMA(1,1).  

 

Table 2. Estimates of GARCH(1,1) -ARMA(1,1) model. 

Model μ ω α β θ δ 

GARCH(1,1)-ARMA(1,1) 
0.0727*** 

(0.0107) 

0.0222*** 

(0.0053) 

0.1264*** 

(0.0241) 

0.8558*** 

(0.0214) 

0.9167*** 

(0.0184) 

-0.9460*** 

(0.0148) 

  

The parameters for the ARMA component is θ for the autoregressive process 

and δ for the moving average. These two parameters are all significant meaning the 

ARMA component is helpful to be added into the GARCH model.  

 The GARCH(1,1)-ARMA(1,1) model is  

𝑟𝑡 = 0.0727 + 0.9167𝑟𝑡−1 + 𝜀𝑡−0.9460𝜀𝑡−1 

Where 

ht
2 = 0.0222 + 0.1264𝑟𝑡−1

2 + 0.8558ht−1
2  
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Figure 4. The plot of fitted values (A) and the correlogram (B) for the standardized residuals 

from GARCH(1,1)-ARMA(1,1) model. 

 

Table 3. AICs for the GARCH(1,1) and GARCH(1,1)-ARMA(1,1) models. 

Model AIC 

GARCH (1,1) 4208.592 

GARCH(1,1)-ARMA(1,1) 4204.822 

 

The difference between the fitting of these two models (GARCH and GARCH-

ARMA) is quite small based on the plot. The autocorrelation at lag 1 for GARCH-

ARMA model is zero indicating that it is reasonable to add ARMA component into 

the mean function of the GARCH model.  

GARCHX-ARMAX Framework 

 The main goal of this study is to check the impact of happiness data on the stock 

market return volatility. The very intrinsic application is to add happiness data as an 

external regressor in the GARCH-ARMA model. 

The happiness data comes from Hedonometer.org, which is based on people’s 

online expressions on Twitter. To quantify happiness, it merged 5,000 most frequent 

words from a collection of: Google Books, New York Times articles, Music Lyrics, 

and Twitter messages, resulting in a composite set of roughly 10,000 unique words. 
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These words scored on a nine point scale of happiness: (1) sad to (9) happy. Based 

on (Bollen et al., 2010), Twitter posts are a sensible way to measure the sentiment 

of people. Hedonometer.org currently measures Twitter’s Gardenhose feed, a 

random sampling of roughly 50 million (10%) of all messages posted to the service. 

Words in messages written in English are thrown into a large bag and the bag is 

assigned a happiness score based on the average happiness score of the words 

contained within. In this study, the time range for happiness data is from 09/11/2008 

to 10/25/2014. There are 13 missing values in the happiness dataset, which are the 

values for dates from 05/14/2009 - 05/19/2009, 08/03/2009 -08/05/2009, 12/18-

12/20/2009 and 04/22/2012. The adjustments made here is to use the linear 

interpolation to create the data for these days. It is fair to use linear interpolation 

because of the relative small amount of the missing values (13) compared to the 

number of observations (1527) in the dataset. Another issues about the dataset is the 

weekend data. The stock market will be closed during weekends, so the happiness 

data during the weekends are not included in the study.  

In the GARCHX-ARMAX model, external regressor can be added into the 

conditional mean equation or the conditional variance equation or both. So I will 

check these different combinations of the models and choose some of them to fit 

more advanced models. The notation for happiness data is 𝐻𝑡. 

Basic GARCHX(1,1)-ARMAX(1,1) model (with happiness in mean and 

variance): 

𝑟𝑡 = 𝛼 + 𝜃1𝑟𝑡−1 + 𝜀𝑡+𝛿1𝜀𝑡−1 + 𝛾𝐻𝑡 



17 
 

Where   

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽1ht−1
2 + 𝜏𝐻𝑡 

The GARCH-ARMA model with happiness in mean or variance equation is 

considered as the same scenario as the basic GARCHX-ARMAX model. 

Also, if happiness data has a lagged influence on the volatility, we can add 

lagged value into the GARCH-ARMA model. Then the model will be: 

𝑟𝑡 = 𝛼 + 𝜃1𝑟𝑡−1 + 𝜀𝑡+𝛿1𝜀𝑡−1 + 𝛾2𝐻𝑡−1 

Where   

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽1ht−1
2 + 𝜏2𝐻𝑡−1 

Again, for the models with lagged happiness data, there are 2 other scenarios 

which are the GARCH-ARMA model lagged happiness in mean or variance function. 

Based on the significance of the parameters and the AIC of different models, 

the GARCH-ARMA model with happiness data in the mean equation and the model 

with lagged happiness in the mean equation are the preferable models.  

 

Table 4. Estimates of GARCH(1,1)-ARMA(1,1) with happiness data in the mean equation and 

GARCH(1,1)-ARMA(1,1) with lagged happiness data in the mean function.  

GARCH(1,1)

-ARMA(1,1)                              
μ ω α β θ δ 𝛾 

𝐻𝑡 in mean 
-2.6155*** 

(0.1359) 

0.0223*** 

(0.0053) 

0.1261*** 

(0.0243) 

0.8561*** 

(0.0216) 

0.9197*** 

(0.0372) 

-0.9494*** 

(0.0289) 

0.4484*** 

(0.0227) 

lag 𝐻𝑡 in 

mean 

-2.0329*** 

(0.5113) 

0.0223*** 

(0.0053) 

0.1253*** 

(0.0241) 

0.8565*** 

(0.0216) 

0.9208*** 

(0.0134) 

-0.9497*** 

(0.00964) 

0.3513*** 

(0.0858) 

Note: the word lag is short for lagged, the word sim is short for simultaneous happiness data 

and 𝐻𝑡 short for happiness data in all the tables.  
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GARCH(1,1)-ARMA(1,1) with happiness data in the mean function: 

𝑟𝑡 = −2.6155+ 0.9197𝑟𝑡−1 + 𝜀𝑡−0.9494𝜀𝑡−1 + 0.4484𝐻𝑡 

Where   

ht
2 = 0.0223+ 0.1261𝑟𝑡−1

2 + 0.8561ht−1
2  

GARCH(1,1)-ARMA(1,1) with lagged happiness data in the mean function: 

𝑟𝑡 = −2.0329 + 0.9208𝑟𝑡−1 + 𝜀𝑡−0.9497𝜀𝑡−1 + 0.3513𝐻𝑡−1 

Where   

ht
2 = 0.0223 + 0.1253𝑟𝑡−1

2 + 0.8565ht−1
2  

The estimated GARCH parameter,  β is close to one and the ARCH 

parameter, α is close to zero. The sum of them is very close to one indicating that 

the conditional variance is covariance stationary. 

 

 

 

 

 

 

 

 

 

Figure 5. Plot A and B: Plot of fitted values and correlogram for the standardized residuals from 

GARCH(1,1)-ARMA(1,1) model with 𝐻𝑡 in the mean function; Plot C and D: Plot of fitted value 

and correlogram for the standardized residuals from GARCH(1,1)-ARMA(1,1) model with 𝐻𝑡 in 

the mean function. 
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These two models are able to capture most of the volatilities based on the two 

plots of the fitted values. The underlying autocorrelations are all zero; the 

statistically significant values at lag 25 and 26 are due to sampling variation and are 

small in magnitude.  

 

Table 5. AICs for the GARCH(1,1) and GARCH(1,1)-ARMA(1,1) models. 

Model AIC 

Garch (1,1) 4208.592 

Garch(1,1)-ARMA(1,1) 4204.822 

Garch(1,1)-ARMA(1,1) with 𝐻𝑡  in the mean equation 4204.350 

Garch(1,1)-ARMA(1,1) with lag 𝐻𝑡  in the mean equation 4202.915 

 

The table 5 provides more information about the fitting of these models. To 

sum up, the GARCH(1,1)-ARMA(1,1) with lagged happiness in the mean equation is 

considered as the model with superior fitting results. Therefore, adding happiness 

in the model does help to capture more features about the DJIA return as the AIC 

becomes smaller.  

Another interesting extension is to keep lagged happiness data and 

simultaneous happiness data both in the model. That is to add lagged happiness data 

in the mean equation and the simultaneous happiness in the variance equation or vice 

versa. The model with lagged happiness in the variance equation and simultaneous 

one in the mean equation will be  

𝑟𝑡 = 𝛼 + 𝜃1𝑟𝑡−1 + 𝜀𝑡+𝛿1𝜀𝑡−1 + 𝛾1𝐻𝑡 

Where   
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ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽1ht−1
2 + 𝜏2𝐻𝑡−1 

The model with lagged happiness in the mean equation and simultaneous one 

in the variance equation will be  

𝑟𝑡 = 𝛼 + 𝜃1𝑟𝑡−1 + 𝜀𝑡+𝛿1𝜀𝑡−1 + 𝛾2𝐻𝑡−1 

 

Where   

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽1ht−1
2 + 𝜏1𝐻𝑡 

Furthermore, simultaneous and lagged happiness can be kept both in the 

mean equation or both in the variance equation. For both of them in the mean 

equation, the model will be  

𝑟𝑡 = 𝛼 + 𝜃1𝑟𝑡−1 + 𝜀𝑡+𝛿1𝜀𝑡−1 + 𝛾𝐻𝑡 + 𝛾2𝐻𝑡−1 

Where   

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽1ht−1
2  

Both of them in the variance equation, the model will be 

𝑟𝑡 = 𝛼 + 𝜃1𝑟𝑡−1 + 𝜀𝑡+𝛿1𝜀𝑡−1 

Where   

ht
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽1ht−1
2 + 𝜏𝐻𝑡 + 𝜏2𝐻𝑡−1 

Based on the significance of the parameters and the AIC of different models, 

the models chosen are:  

GARCH(1,1)-ARMA(1,1) with simultaneous happiness data in the mean 

equation and lagged happiness data in the variance equation 

𝑟𝑡 = −2.5135+ 0.9762𝑟𝑡−1 + 𝜀𝑡−0.9917𝜀𝑡−1 + 0.4293𝐻𝑡 
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Where   

ht
2 = 0.1249𝑟𝑡−1

2 + 0.8569ht−1
2 + 0.0037𝐻𝑡−1 

GARCH(1,1)-ARMA(1,1) with lagged and simultaneous happiness data both in 

the mean equation 

𝑟𝑡 = −2.5222+ 0.919𝑟𝑡−1 + 𝜀𝑡−0.9492𝜀𝑡−1 + 1.2655𝐻𝑡 − 0.8329𝐻𝑡−1 

Where   

ht
2 = 0.0223+ 0.1258𝑟𝑡−1

2 + 0.8559ht−1
2  

2.4 Basic Conclusions 

The table 6 shows the AICs of six basic models. ARMA component does help 

to capture the autocorrelation of the return as the AIC of GARCH(1,1)-ARMA(1,1) 

model is smaller than that of GARCH(1,1) model. When the happiness data is added 

into the model as one external regressor, the AIC becomes smaller. This implies 

happiness data does help to fit the return volatility.  

 

Table 6. AICs for the models chosen in chapter 2. 

Models  AIC 

GARCH (1,1) 4208.592 

GARCH (1,1)-ARMA(1,1) 4204.822 

GARCH (1,1)-ARMA(1,1) with sim. 𝐻𝑡  in mean  4204.35 

GARCH (1,1)-ARMA(1,1) with lag 𝐻𝑡 in mean  4202.915 

GARCH (1,1)-ARMA(1,1) with sim. 𝐻𝑡  in mean and lag 𝐻𝑡 in variance 4202.589 

GARCH (1,1)-ARMA(1,1) with sim. & lag 𝐻𝑡 both in mean 4201.859 
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CHAPTER 3 

 

FITTING ADVANCED GARCH MODELS 

 

3.1 Asymmetric Leverage Effects   

Leverage effect refers to the phenomenon that the volatility tends to be 

negatively correlated with the return (Ait-Sahalia et al., 2013). Specifically, a 

negative shock will cause a larger increase in volatility than a positive shock. That 

is to say an unexpected drop in price (bad news) increases volatility more than an 

unexpected increase in price (good news).  

Diagnostic tests introduced by Engle and Ng (1993) including sign bias test, 

negative sign bias, and positive sign bias. These tests will be used to check whether 

there is leverage effect in the DJIA returns.  

The diagnostic procedure is to test for the significance of 𝛽1 in the regression: 

𝜖�̂�
2 = 𝛽0 + 𝛽1�̂�𝑡−1 + 𝜉𝑡 

Let   𝑆𝑡−1 = {
1,     𝑖𝑓   𝜖𝑡−1 < 0

0,     𝑖𝑓   𝜖𝑡−1  ≥ 0
 

Then �̂�𝑡−1 = 

{
 
 

 
 
𝑆𝑡−1,                                                                   𝑠𝑖𝑔𝑛 𝑏𝑖𝑎𝑠 𝑡𝑒𝑠𝑡

𝑆𝑡−1 𝜖𝑡−1                                𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑖𝑔𝑛 𝑠𝑖𝑧𝑒 𝑏𝑖𝑎𝑠 𝑡𝑒𝑠𝑡 

(1 − 𝑆𝑡−1)𝜖𝑡−1                      𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑖𝑔𝑛 𝑠𝑖𝑧𝑒 𝑏𝑖𝑎𝑠 𝑡𝑒𝑠𝑡

 

The table 3.1 shows the sign bias test result from the model GARCH (1,1)-

ARMA(1,1) with lagged happiness in the mean equation. This model is chosen as 

one representative model out from six basic models from chapter 2.  
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Table 7. T-value and p-value of diagnostic tests for the estimated GARCH (1,1)-ARMA(1,1) 

with lag 𝐻𝑡 in the mean equation.  

Diagnostic Test t-value p-value 

Sign Bias 2.565 0.0104 ** 

Negative Sign Bias 1.372 0.1702 

Positive Sign Bias 1.755 0.0795 * 

 

The sign bias and positive sign bias are significant. These statistics indicate that 

the sign and size of the volatility from last period does influence the current volatility. 

Therefore, there is asymmetric effect in the stock market volatility. The reason is 

quite obvious: in the basic GARCH model, since only squared residuals 𝜀𝑡−𝑖
2  enter 

the conditional variance model. It assumes the squared values of the residuals have 

a symmetric response to shocks. So the asymmetric extensions are often needed.  

EGARCH model is used to deal with the leverage effect. In GARCH model, 

we assume that good and bad news have same effects on the volatility. In the real 

world, however, the volatility usually increased more after bas news compared to 

the good news. Exponential GARCH (EGARCH) model: 

𝑟𝑡 = 𝜀𝑡ℎ𝑡 

Where 

log(ht
2) = 𝛼0 +∑[𝛼𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

+ 𝛾𝑖(|𝑟𝑡−𝑖| − E( |𝑟𝑡−𝑖|))] +∑𝛽𝑗

𝑞

𝑗=1

log (ht−j
2 ) 

The EGARCH(1,1) model will be  

𝑟𝑡 = 𝜀𝑡ℎ𝑡 

log(ht
2) = 𝛼0 + 𝛼1𝑟𝑡−1 + 𝛾1(|𝑟𝑡−1| − E(|𝑟𝑡−1|))] + 𝛽1log(ℎ𝑡−1

2 ) 
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In the EGARCH model, the coefficients 𝛼𝑖 capture the sign effect. If the 

leverage effect does happen, 𝛼𝑖  should be negative numbers. The parameters 𝛾𝑖, on 

the other hand, capture the size effect. The bigger 𝛾𝑖 imply a larger leverage effect, 

so it should be positive numbers. 

Another model for asymmetric GARCH specification is the GJR-GARCH 

model: 

𝑟𝑡 = 𝜀𝑡ℎ𝑡 

ℎ𝑡
2 = 𝛼0 +∑(𝛼𝑖𝑟𝑡−𝑖

2

𝑝

𝑖=1

+ 𝛾𝑖𝑆𝑡−𝑖𝑟𝑡−𝑖
2 ) +∑𝛽𝑗

𝑞

𝑗=1

ℎ𝑡−𝑗
2  

𝑆𝑡−𝑖 = {
1, 𝑖𝑓  𝑋𝑡−𝑖 < 0

 
0, 𝑖𝑓  𝑋𝑡−𝑖 > 0 

 

The GJR-GARCH(1,1) model will be:  

𝑟𝑡 = 𝜀𝑡ℎ𝑡 

ℎ𝑡
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝜔1𝑆𝑡−1𝑟𝑡−1
2 + 𝛽1ℎ𝑡−1

2  

𝑆𝑡−1= {
1, 𝑖𝑓  𝑟𝑡−1 < 0

 
0, 𝑖𝑓  𝑟𝑡−1 > 0 

 

In the GJR-GARCH model, if  𝑟𝑡−𝑖 is positive, the total effects are  𝛼𝑖𝑟𝑡−𝑖
2 . 

When 𝑟𝑡−1 is negative, the total effects are (𝛼𝑖 + 𝛾𝑖)𝑟𝑡−𝑖
2 . Therefore, leverage effect 

implies that 𝛾𝑖 are positive numbers. 
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Comparison Between EGARCH and GJR-GARCH Models 

 The table 8 displays the AIC of EGARCH and GJR-GARCH model. GJR-

GARCH seems to be the right model to choose because it has lower AIC. However, 

when the signbias is tested for the GJR-GARCH, the result is not as good as 

EGARCH. The possible reason for this is the exponential functional form of 

EGARCH. EGARCH model actually creates a ridiculously high variance because 

of the exponential function.  

 

Table 8. Model selection for EGARCH and GJR-GARCH models. 

 

The table 9 provides the results from the diagnostic tests for EGARCH and GJR-

GARCH models. The diagnostic bias test for the GJR-GARCH model with lagged 

happiness in mean could work as one representative table for all the GJR-GARCH 

models. All these six GJR-GARCH models still have the sign bias problem (all the 

results for signbias test is included in the table A.4 in the appendix).  

 

 

 

 

 

 

Model AIC (EGARCH) AIC (GJR-GARCH) 

Basic GARCH  4149.219 4140.023 

Sim 𝐻𝑡 in mean 4145.59 4138.557 

Lag 𝐻𝑡 in mean 4142.426 4136.024 

Sim 𝐻𝑡 in mean and lag 𝐻𝑡 in variance 4135.407 4135.522 

Sim lag 𝐻𝑡 both in mean 4139.209 4132.701 
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Table 9. T-value and p-value of diagnostic tests for the estimated GJR-GARCH (1, 1) with 

lag 𝐻𝑡  in mean equation. 

Diagnostic Test t-value p-value 

Sign Bias 2.121 0.0340  ** 

Negative Sign Bias 2.278 0.0227  ** 

Positive Sign Bias 1.694 0.0903  * 

 

Table 10. T-value and p-value of diagnostic tests for the estimated EGARCH (1,1) with lag 𝐻𝑡 

in mean equation. 

Diagnostic Test t-value p-value 

Sign Bias 1.274 0.2028   

Negative Sign Bias 1.543 0.1228   

Positive Sign Bias 1.366 0.1721   

  

The test results from the EGARCH model have no significant values which 

means the leverage effect has been taken care of by the model. Comparing the results 

from these two tables, although the EGARCH models have bigger AICs, its power 

to deal with leverage effect is obvious stronger than the GJR-GARCH models. 

EGARCH and GJR-GARCH Models with ARMA Component 

 The ARMA component is added to the EGARCH and GJR-GARCH models in 

order to remove the potential autocorrelations in the residuals. Figure 6 shows the 

correlogram of the residuals of the EGRACH model with simultaneous happiness in 

the mean equation and lagged happiness in the variance. The significant value at lag 

one is the reason to add ARMA component into EGARCH and GJR-GARCH 

models.   



27 
 

 

 

 

 

 

Figure 6. The correlogram of the standard residuals from EGARCH with sim. 𝐻𝑡  in the mean 

equation and lag 𝐻𝑡 in the variance equation.  

 

The estimates of the parameters for the EGARCH-ARMA models are in the 

table A.5 in the appendix. The table indicates that most of the ARMA parameters 

are not significant. The only model that has significant AR and MA parameters is 

the EGARCH-ARMA model with simultaneous happiness data in the mean equation 

and the lagged happiness data in the variance. However, the lagged happiness is not 

significant anymore when the ARMA component is added into this EGARCH model. 

The estimates of the GJR-GARCH-ARMA parameters are displayed in table 

A.6 in the appendix. The GJR-GARCH-ARMA with simultaneous happiness data 

in the mean equation and the lagged happiness data in the variance is the only one 

model that has significant parameters. The signbias test results from GJR-GARCH-

ARMA model in table 11 still indicates that GJR-GARCH-ARMA model is not 

preferable in dealing with the asymmetric problems compared to the EGARCH 

model. 
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Table 11. T-value and p-value of diagnostic tests for the estimated GJR-GARCH (1, 1) –

ARMA(1,1) with sim 𝐻𝑡  in mean and lag 𝐻𝑡 in variance. 

Diagnostic Test t-value p-value 

Sign Bias 2.044 0.0411  ** 

Negative Sign Bias 2.394 0.0167  ** 

Positive Sign Bias 1.743 0.0815  * 

 

 The ARMA component is not significant when added to the EGARCH model 

and the GJR-GARCH-ARMA model still has limited ability to deal with the 

asymmetric problem. Hence, the EGARCH models without ARMA component will 

be the models discussed in the next section. 

Comparison between EGARCH and GARCH Models 

 From last section, the selected models are the EGARCH models for the 

asymmetric problems after testing potential ARMA intensions to the EGARCH and 

GJR-GARCH models. In this section, the compassion between EGARCH models 

and GARCH models will be addressed to show the benefice to use the EGARCH 

models. 

 

Table 12. Models comparison between EGARCH and basic GARCH models. 

Model  AIC(GARCH) AIC(EGARCH) 

Basic GARCH  4208.592 4149.219 

Sim 𝐻𝑡 in mean 4204.35 4138.511 

Lag 𝐻𝑡  in mean 4202.915 4142.426 

Sim 𝐻𝑡 in mean lag 𝐻𝑡 in variance 4202.589 4135.407 

Sim lag 𝐻𝑡 both in mean 4201.859 4139.209 
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In the table 12, the decreasing AIC from basic GARCH to EGARCH implies 

that the EGARCH model does help to better fit the return volatility. Among all the 

asymmetric models, EGARCH model with simultaneous and lagged happiness data 

both in the mean equationhas the lowest AIC.  

 

Table 13. Estimates of EGARCH(1,1) with simultaneous and lagged happiness in the mean 

equation.  

EGARCH μ ω α β 𝛾 𝜏1 𝜏2 

with sim lag 

𝐻𝑡 in mean 

-2.5221 *** 

(0.2195) 

0.0006 

(0.0072) 

-0.1668*** 

(0.0126) 

0.9752*** 

(0.0007) 

0.1477** 

(0.0655) 

1.6555 *** 

(0.0083) 

-1.2306 *** 

(0.0468) 

 

Table 13 provides the estimated parameters for the EGARCH(1,1) model with 

happiness and all of them are significant.   

EGARCH(1,1) with simultaneous and lagged happiness both in the mean 

equation: 

𝑟𝑡 = −2.5221 + 𝜀𝑡ℎ𝑡 +  1.6555𝐻𝑡 − 1.2306𝐻𝑡−1 

log (ℎ𝑡
2) = 0.0006 − 0.1668𝑟𝑡−1 + 0.1477(|𝑟𝑡−1| − E(|𝑟𝑡−1|))] +  0.9752log (ℎ𝑡−1

2 ) 

The parameter α is less than zero, which means the leverage effect does happen. 

The news impact curve is used to check the effect of news on conditional 

heteroskedasticity.  
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Figure 7. News impact curve for the GARCH model and the EGARCH. 

 

The news impact curve is the functional relationship between conditional 

variance at time t and the shock at time t-1, assuming all the information before time 

t-2 is constant. Difference between these two plots is quite clear. The curve in the 

first plot is symmetric meaning the shock has the same impact on the conditional 

variance no matter it is positive or negative. The second curve is asymmetric, that is 

why EGARCH model allows good news and bad news to have different impact on 

volatility. The leverage effect implies that the bad news tends to increase the 

volatility more than the good news does. This is why the curve has a steeper slope 

in the left part.  
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3.2 Heavy Tails 

One of the features of the financial series is the observed excess of kurtosis in 

the error distribution which also means heavy tails exist in the distribution. The 

classic GARCH assumes the error is normally distributed, but in reality, this is often 

not the case. The extensions of models to other distributions with heavier tails are 

needed. The QQ plot from basic models also shows that heavy tails problem exists. 

A few more distributions are needed instead of only using normal distribution in the 

GARCH model to deal with it. The possible distributions are Student’s T, the 

generalized error, and the generalized hyperbolic distributions. 

In addition, excess of skewness is another issue with the financial series. There 

are other distributions with both heavy tails and skewness like skewed student’s T 

distribution, and generalized hyperbolic distribution. 

Student’s T Distribution  

The density function is  

f (x) =
Γ (
𝜈 + 1
2 )

√𝛽𝜈𝜋Γ (
𝜈
2)
(1 +

(𝑥 − 𝛼)2

𝛽𝜈
)−
𝜈+1
2  

where 𝛼, 𝛽, and 𝜈 are the location, scale and the shape parameters and Γ is the 

gamma function which is defined as  

Γ(t) =  ∫ 𝑥𝑡−1𝑒−𝑥 𝑑𝑥
∞

0
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Table 14. Model selection for EGARCH model with t distribution. 

      

 

 

 

 

 

The selected model based on AIC is the EGARCH-T with simultaneous and 

lagged happiness data in the mean function. The estimated parameters are in the 

table 15. 

 

Table 15. Estimates for EGARCH-T model with sim and lag 𝐻𝑡  in the mean equation. 

Parameters μ ω α β 

EGARCH-T with 

sim and lag 𝐻𝑡 in 

the mean equation 

-2.5221 *** 

(0.0207) 

-0.0102 *** 

(0.0061) 

-0.1892 *** 

(0.0193) 

0.9806 *** 

(0.0005) 

γ 𝜈 𝐻𝑡 in mean lag 𝐻𝑡 in mean 

0.1570 *** 

(0.0197) 

6.5345*** 

(1.1330) 

1.5071 *** 

(0.0013) 

-1.0772 *** 

(0.0003) 

 

The estimated GARCH coefficients α and β are significant at 1% level, and the 

sum of them is less than one implies that the GARCH model is stationary. The 

estimated degree of freedom of the conditional t-distribution is 6.53 which means 

that the return is conditionally non-normally distributed. According to Connolly 

(1989), the estimated degree of freedom may indicate the source of the excess 

kurtosis in the return. If it is less than 10, both non-normality and conditional 

heteroskedasticity explain the excess kurtosis, where as if it is bigger than 30, the 

Models  AIC 

T with EGARCH 4100.648 

Sim 𝐻𝑡  in mean T with EGARCH 4097.65 

Lag 𝐻𝑡  in mean T with EGARCH 4095.676 

Sim 𝐻𝑡  in mean lag 𝐻𝑡  in variance T with EGARCH 4092.581 

Sim lag 𝐻𝑡 both in mean T with EGARCH 4092.332 
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conditional heteroskedasticity is the only source of heavy tails in the return. 

Therefore, both non-noamality and conditional heteroskedasticity explain the excess 

turtosis. 

 

 

 

 

 

 

Figure 8. Standard normal QQ plot and density of the standardized residuals from the EGARCH-

T model. 

 

The QQ plot helps to check the power of student’s T distribution. Comparing 

this plot to the one in data description, the heavy tails problem is not an issue 

anymore. The density of the standardized residual shows that student’s T distribution 

captures the shapes of the residuals more accurately than the normal distribution. 

Generalized Error Distribution  

Generalized Error Distribution (GED) is defined with parameter 𝜈 > 0. If x is 

GED distributed then 

𝑓(𝑥) =
𝜈 exp (−0.5 | 

𝑥
𝜆
 |
𝜈

)

𝜈 ⋅ 2
𝜈+1
𝜈 Γ(

1
𝜈)

 

Where  
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λ = √
2−

2
𝜈 Γ(

1
𝜈)

Γ(
3
𝜈)

  

 

Table 16. AICs for the EGARCH-GED models. 

 

 

 

 

 

 

The GARCH-GED model with simultaneous and lagged happiness data in the 

mean equation should be the model to choose based on the AIC. The parameters 

estimated are in the table 17.  

 

Table 17. Estimates for EGARCH-GED model with simultaneous and lagged happiness data in 

the mean function. 

Parameters μ ω α β 

EGARCH-GED 

with sim and lag  

𝐻𝑡 in mean 

-2.5221 *** 

(0.0141) 

-0.0112 *** 

(0.0049) 

-0.1806 *** 

(0.0126) 

0.9784 *** 

(0.0005) 

γ 𝜈 𝐻𝑡 in mean lag 𝐻𝑡  in mean 

0.1556 *** 

(0.0158) 

1.3309 *** 

(0.0756) 

1.8740 *** 

(0.0013) 

-1.4447 *** 

(0.0006) 

 

In the generalized error distribution, if 𝜈 is between 0 and 2, the distribution will 

have a fatter tail than normal distribution; if 𝜈 equals to 2, it is the normal distribution. 

In our case, the estimated 𝜈 is 1.33 which is less than 2. This means the distribution 

Models  AIC 

Ged with EGARCH 4093.532 

Sim 𝐻𝑡 in mean 4089.805 

Lag 𝐻𝑡 in mean 4088.231 

Sim 𝐻𝑡  in mean lag 𝐻𝑡  in variance 4083.961 

Sim lag 𝐻𝑡 both in mean 4081.873 
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has a fatter tail than normal distribution which is also shown in the plot in figure 9.  

 

 

 

 

 

 

Figure 9. Standard normal QQ plot and density of the standardized residuals from the 

EGARCH-GED model. 

 

The performance of GED is similar to the student’s T distribution. For the return 

data, GED seems preferable based on AIC, but the difference between them is small. 

These plots provide the same information as the plots for the student’s T distribution, 

and the other issue is the excess skewness.  

Generalized Hyperbolic Distribution  

The generalized hyperbolic distribution can be parameterized as (Prause, 1999) 

f (x) =

(𝛼2 − 𝛽2)
𝜆
2𝐾

𝜆−
1
2
(𝛼√𝛿2 + (𝑥 − 𝜇)2) exp (𝛽(𝑥 − 𝜇))

√2𝜋𝛼
𝜆−
1
2𝛿𝜆(𝛿√𝛼2 − 𝛽2) (√𝛿2 − (𝑥 − 𝜇)2)

1
2
−𝜆

 

In the above expression, Kj is the modified Bessel function of the third kind of 

order j (Abramowitz and Stegun, 1972) and   

𝛿 ≥ 0, |𝛽| <  𝛼     if λ > 0 

𝛿 > 0, |𝛽| <  𝛼     if λ = 0 

𝛿 > 0, |𝛽| ≤  𝛼     if λ < 0 
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 According to Necula, C. (2009), 𝛼 determines the shape,  𝛽 determines the 

skewness,  𝜇 is a location parameter, 𝛿 serves for scaling, and  λ influences the 

kurtosis and represents the subclass of the generalized hyperbolic distribution. The 

first important subclass is when λ =1, the GED will become Hyperbolic Distribution. 

The second subclass is when λ =-0.5, this distribution is Normal Inverse Gaussian 

Distribution (NIG).  

 

Table 18. AICs for the EGARCH-GH models. 

Models  AIC 

GH EGARCH 4073.774 

Sim 𝐻𝑡  in mean GH EGARCH  4070.793 

Lag 𝐻𝑡  in mean 4068.621 

Sim 𝐻𝑡  in mean and lag 𝐻𝑡 in variance 4119.513 

Sim lag 𝐻𝑡 both in mean 4066.458 

 

The model selected is the EGARCH-GHD with simultaneous happiness in the 

mean function and lagged happiness in the variance function. Although the last 

model is the one with lowest AIC, the parameter λ is not significant. The estimated 

parameters are presented in the table 19. 

 

Table 19. Estimates for EGARCH-GH model 

Parameters μ ω α β γ 

EGARCH-GH 

with sim 𝐻𝑡 in 

mean and 

lag  𝐻𝑡  in 

variance  

-1.8419 *** 

(0.0100) 

-6.1731 *** 

(0.1650) 

-0.2890 *** 

(0.0467) 

0.9000 *** 

(0.0482) 

0.2577 *** 

(0.0635) 

skew Shape λ 𝐻𝑡 in mean Lag  𝐻𝑡 in variance 

-0.2077*** 

(0.0691) 

1.4103 *** 

(0.5954) 

0.6914*** 

(1.1461) 

0.3069 *** 

(0.0017) 

1.0291 *** 

(0.0278) 
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Figure 10. Standard normal QQ plot and density of the standardized residuals from the 

EGARCH-GH model. 

 

 The skewness parameter is -0.2 < 0, which implies the distribution is skewed to 

the left. The skewness is also shown in the density plot. The GHD deals with the 

skewness as well as the heavy tails. Also displayed in the QQ plot, the GHD has one 

almost perfect performance dealing with the heavy tail problem.  

Skewed Student’s T Distribution  

Skewed student’s T distribution can be defined in many ways. In this study, 

skewed student’s T distribution will be defined as a limiting case of the Generalized 

Hyperbolic distribution. 

Let λ= -ν/2 and 𝛼 → |𝛽| in the generalized hyperbolic distribution, it will 

become generalized hyperbolic skewed student distribution. This distribution is 

popularized by Aas and Haff (2006) because of its uniqueness in having one tail with 

polynomial and one with exponential behavior. The skewness and kurtosis do not 

exist when ν ≤ 6, and ν ≤ 8, respectively. The density function is given by  
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 F(x) =
2
1−ν
2  𝛿ν |𝛽|

ν+1
2  𝐾ν+1

2
(√𝛽2(𝛿2+(𝑥−𝜇)2)) exp(𝛽 (𝑥−𝜇 ))

Γ(
ν

2
)  √𝜋  (√𝛿2+(𝑥−𝜇)2 )

ν+1
2

,   β ≠ 0, 

And  

F(x) =
Γ (
ν + 1
2 )

√𝜋 𝛿 Γ (
ν
2)    

[1 +
(𝑥 − 𝑢)2

𝛿2
]

−(ν+1)2

 ,   β = 0 

 

Table 20. AICs for the EGARCH-ST models. 

Models  AIC 

Skew T EGARCH 4078.875 

Sim 𝐻𝑡  in mean 4076.136 

Lag 𝐻𝑡  in mean 4073.824 

Sim 𝐻𝑡  in mean lag 𝐻𝑡  in variance 4070.91 

Sim lag 𝐻𝑡 both in mean 4072.222 

 

Based on the AIC, the recommended model is the model with simultaneous 

happiness in mean and lagged happiness data in variance. The estimated parameters 

are showed in the table 21. 

 

Table 21. Estimates for the EGARCH-ST model with simultaneous happiness in mean and 

lagged happiness in variance. 

Parameters μ ω α β γ 

EGARCH-ST 

with sim  𝐻𝑡  in 

mean and 

lag  𝐻𝑡  in 

variance  

-2.5221 *** 

(0.0086) 

-1.2455 *** 

(0.2263) 

-0.2027 *** 

(0.0219) 

0.9735 *** 

(0.0007) 

0.1503 *** 

(0.0273) 

skew Shape λ 𝐻𝑡 in mean Lag  𝐻𝑡 in variance 

0.8410 *** 

(0.0293) 

7.8809 *** 

(1.5689) 

0.6914*** 

(1.1461) 

0.4251 *** 

(0.0014) 

0.2068 *** 

(0.0376) 
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The skew parameter is the skewness of the distribution. It is 0.84 which is 

slightly bigger than 0 meaning it is positively skewed. The shape parameter is 7.88 

which is almost 8, the existence of kurtosis is uncertain.  

 

 

 

 

 

 

Figure 11. Standard normal QQ plot and density of the standardized residuals from the 

EGARCH-SSTD model. 

 

These two plots in the figure 11 provide very similar results as the generalized 

hyperbolic distribution does. Compared with the results from GED, generalized 

hyperbolic skewed student distribution is not as good as GED. The tail is still a little 

heavy to the left in the QQ plot and the fitting of the residuals is definitely much 

better than normal distribution but not as good as generalized hyperbolic distribution. 

To sum up, the generalized hyperbolic distribution has the biggest power to deal 

with the heavy tail problem and excess skewness. The simultaneous happiness data 

works in the mean equation and the lagged happiness data works in the variance 

function. 
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CHAPTER 4 

 

FORECASTING THE RETURN VOLATILITY 

 

4.1 Forecasting Methods 

Unconditional Forecasting 

Unconditional forecasting, also named as recursive forecasting. It means a series 

of data is used to predict the data n times ahead. Mean Squared Forecasting Error 

(MSE) and Mean Absolute Forecasting Error (MAE) are calculated to measure the 

error of the forecasting. Assume 𝑦𝑇 is the absolute value of the return at time T 

and 𝑦�̂�  is the estimated conditional variance. The mean squared forecasting error and 

the mean absolute forecasting error are used to test the accuracy of the forecasting. 

The Mean Squared Forecasting Error is  

MSE =
∑ (𝑦𝑇+𝑖 − 𝑦𝑇+𝑖)̂

2𝑛
𝑖=0

𝑛
 

The Mean Absolute Forecasting Error is  

MAE =
∑ |𝑦𝑇+𝑖 − 𝑦𝑇+𝑖|̂
𝑛
𝑖=0

𝑛
 

Rolling Forecasting 

Another way to do the forecasting is to use the rolling forecasting method. There 

is one set of time period in the rolling forecast which will shift each time a new value 

is collected. The number of rolling is set to be 100 in this research and each time get 

the 1 step ahead forecasting. The length of dataset is 1528, so the first 1429 data is 

used as the training data and the last 100 data is used as the testing data. For the 
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rolling forecasting, MSE and MAE are also the ways to get a cumulative 

measurement of the error over the forecasting range. 

4.2 Diebold-Mariano Tests for Predictive Accuracy 

The Diebold-Mariano (DM) Test is used to check whether two models are 

equally good about the forecasting. We assume the actual values are {𝑦𝑡; t=1,2,…, 

T} and the two forecasting values are 𝑦1�̂� {𝑦1�̂�; t=1,2,…, T}and {𝑦2�̂�; t=1,2,…, T}. 

The error is defined as 𝜀𝑖= 𝑦𝑖𝑡 ̂ -𝑦𝑡, (i=1,2). The loss function is the square or the 

absolute value of the error as g(𝜀𝑖)=𝜀𝑖
2 or g(𝜀𝑖)= |𝜀𝑖 |. The Diebold-Mariano (DM) 

Test is based on the loss differential dt= g(𝜀1)- g(𝜀2) and we say that the two forecast 

are equally good if the differential has zero expected value. So the null hypothesis 

is H0 : E (dt) =0 versus the alternative hypothesis H1 : E (dt) ≠0. In the DM test, one 

density used is the spectral density:  𝑓𝑑(0) is the spectral density of the loss 

differential at frequency 0, which means 

𝑓𝑑(0) =  
1

2𝜋
 ( ∑ 𝛾𝑑(𝑘)

∞

𝑘=−∞

)  

𝛾𝑑(𝑘) is the autocovariance of the loss differential at lag k. 

The DM test statistics is  

DM = 
�̅�

√2𝜋𝑓𝑑(0)
𝑇

 

Where 𝑓𝑑(0) is a consistant estimate of the 𝑓𝑑(0) defined by  

𝑓𝑑(0) =  
1

2𝜋
 ∑ 𝐼 (

𝑘

ℎ − 1
) 𝛾𝑑(𝑘)

𝑇−1

𝑘=−(𝑇−1)

  

Where   
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𝛾𝑑(𝑘) =  
1

𝑇
 ∑ (

𝑇

𝑡=|𝑘|+1

𝑑𝑡 − �̅�) (𝑑𝑡−|𝑘| − �̅�) 

And               𝐼 (
𝑘

ℎ−1
) = {

1 𝑓𝑜𝑟 |
𝑘

ℎ−1
|  ≤ 1

0       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

Under the null hypothesis, the DM test statistics is N(0,1) distributed. So if the 

DM statistics falls outside of (-𝑍α/2, 𝑍α/2), we will reject the null hypothesis. That 

is to say the two models have differences in the prediction accuracy.  

4.2 Results 

Unconditional Forecasting Results 

 The table 22 shows the MSE and MAE from the unconditional forecasting. In 

this conditional forecasting, 10 data points are estimated using unconditional 

forecasting and compared it to the absolute value of the returns. The models with 

generalized hyperbolic distributed errors are more preferable than basic GARCH 

model based on AIC. However, the model with lower AIC has bigger forecasting 

errors which indicates lower forecasting accuracy.  
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Table 22. Unconditional forecasting evaluation of selected models. 

Model AIC MSE MAE 

Garch (1,1) 4208.592 0.4101 0.4912 

Garch(1,1)-ARMA(1,1) 4204.822 0.4168 0.4932 

Egarch (1,1)  4149.219 0.5030 0.5143 

Lag 𝐻𝑡 in variance sim 𝐻𝑡 in mean egarch 4135.407 0.5155 0.5208 

Lag sim 𝐻𝑡 both in mean egarch 4139.209 0.5104 0.5161 

Egarch(1,1) GH 4073.774 0.5510 0.5447 

Lag 𝐻𝑡 in variance sim 𝐻𝑡 in mean egarch GH 4063.131 0.5571 0.5492 

Lag sim 𝐻𝑡  both in mean egarch GH 4056.864 0.5372 0.5341 

 

 

 

 

 

Figure 12. Unconditional forecasting comparison between GARCH and GARCH-GH 

models. 

 

In the figure 12, the grey line is the absolute value of the returns which works 

as a proxy of the volatility, the blue line is the fitted conditional variance from the 

model and the red line represents ten predicted values. The GARCH(1,1) model and 

the EGARCH-GH (generalized hyperbolic) with lagged happiness in variance and 

simultaneous one in mean are the two models under comparison. There is clear 

evidence that the GARCH-GH model captures volatility well which is also indicated 

by the lower AIC of the model. However, it is not quite clear whether they have the 
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same accuracy or not based only on these two plots. The DM test is shown in the 

table 23. 

  

Table 23. Diebold-Mariano tests results for unconditional forecasting 

Loss function type DM statistics  P-value 

Absolute value -1.2386 0.2468 

Square value -2.1005 0.06506 

 

None of the p-values in table 4.2 is significant, so we cannot reject the null 

hypothesis which is the two models have the same forecast accuracy. In other words, 

more preferable fitting models are not statistically different from other models in the 

forecasting performance. 

The sophisticated models are tested about the forecasting power and the result 

indicates that they actually don’t have a better performance compared to GARCH 

model. This raised the question whether the happiness data helps in the forecasting 

of basic GARCH models. 

 

Table 24. Unconditional forecasting errors of GARCH models 

Model MSE MAE        

Garch (1,1) 0.4101 0.4912 

Garch(1,1)-ARMA(1,1) 0.4168 0.4932 

GARCH with happiness in mean 0.4103 0.4913 

GARCH with lag happiness in mean 0.4103 0.4913 

GARCH sim in mean lag happiness in variance 0.4089 0.4908 

GARCH lag sim happiness both in mean 0.4095 0.4910 
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The last two models in the table 24 are the two candidates that may prove 

happiness data improves the forecasting performance of GARCH models. However, 

as the MSE and MAE are so close, we still need to use DM test to confirm that. 

 

Table 25. D-M test results for GARCH with happiness data 

Model 
GARCH sim in mean lag 

happiness in variance 

GARCH lag sim happiness 

both in mean 

Loss function type DM statistics  P-value DM statistics  P-value 

Absolute value 0.5910 0.5690 0.5378 0.6037 

Square value 1.8464 0.0979 1.7565 0.1128 

 

The DM test results still indicate that the happiness data does not help when 

added into GARCH models in the forecasting performance.  

Rolling Forecasting Results 

 In the unconditional forecasting, only 10 points are estimated. In the rolling 

forecasting, 100 points are estimated out of sample. The table 26 contains the results 

from rolling forecasting. 
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Table 26. Rolling forecasting evaluation of selected models. 

Model AIC MSE MAE 

Garch (1,1) 4208.592 0.1787 0.3529 

Garch(1,1)-ARMA(1,1) 4204.822 0.1798 0.3537 

Egarch (1,1)  4149.219 0.2081 0.3759 

Lag 𝐻𝑡 in variance sim 𝐻𝑡 in mean egarch 4135.407 0.2612 0.4185 

Lag sim 𝐻𝑡  both in mean egarch 4139.209 0.2292 0.3917 

Egarch(1,1)-GH 4073.774 0.2160 0.3790 

Lag 𝐻𝑡 in variance sim 𝐻𝑡 in mean egarch GH  4063.131 0.2369 0.3950 

Lag sim 𝐻𝑡 both in mean egarch GH  4056.864 0.2375 0.3951 

  

 

 

 

 

 

Figure 13. Rolling forecasting comparison between GARCH and GARCH-GH models. 

 

The figure 13 indicates the EGARCH(1,1)-GH with lagged and simultaneous 

happiness in the mean equation has a better performance of estimation which is 

contradictory to the MSE and MAE results. Again, DM test is used to find out 

whether these two models have different estimation accuracy. 
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Table 27. Diebold-Mariano tests results for rolling forecasting 

Loss function type DM statistics  P-value 

Absolute value -1.1225 0.2643 

Square value -1.3940 0.1664 

 

The p-values in table 27 are all bigger than 0.05 which means none of them are 

significant. Hence, we have no enough evidence to reject the null hypothesis 

meaning that the two models are not statistically different in the forecasting accuracy.  

The table 28 presents the MSE and MAE for the GARCH model with happiness 

data. For the basic GARCH models with happiness data, there seems no 

improvement for adding happiness data in the model. When the error distribution 

changes to student’s T distribution, generalized hyperbolic distribution and skewed 

T distribution in the GARCH model, the errors are dropped significantly. This 

phenomenon is quite easy to understand as these distributions deal with the skewness 

and heavy tail problems. However, when happiness is added into these models, 

although the forecasting is more accurate compared to the GARCH(1,1) model, the 

MAE and MSE are bigger than the GARCH models with these distributions only. 

Therefore, there is still no evidence to indicate the happiness data helps to improve 

the forecasting accuracy. 
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Table 28. Rolling forecasting MSE and MAE for GARCH models 

Model MSE MAE 

Garch (1,1) 0.1787 0.3529 

Garch(1,1)-ARMA(1,1) 0.1798 0.3537 

GARCH with happiness in mean 0.1788 0.3528 

GARCH with lag happiness in mean 0.2202 0.3855 

GARCH sim in mean lag happiness in variance 0.2495 0.4097 

GARCH lag sim happiness both in mean 0.2185 0.3840 

GARCH with student’s T    

GARCH(1,1) T  0.1783 0.3516 

GARCH T happiness in mean  0.1786 0.3518 

GARCH T lag happiness in mean  0.1787 0.3518 

GARCH T lag in variance and sim in mean  0.1790 0.3522 

GARCH T lag sim both in mean 0.1795 0.3529 

GARCH with GH   

GARCH(1,1) GH 0.1745 0.3488 

GARCH GH happiness in mean  0.1747 0.3487 

GARCH GH lag happiness in mean  0.1746 0.3486 

GARCH GH lag in variance and sim in mean  0.1750 0.3491 

GARCH GH lag sim both in mean 0.1760 0.3502 

GARCH with skew T    

GARCH(1,1) ST  0.1748 0.3489 

GARCH ST happiness in mean  0.1751 0.3489 

GARCH ST lag happiness in mean  0.1751 0.3488 

GARCH ST lag in variance and sim in mean  0.1754 0.3492 

GARCH ST lag sim both in mean 0.1759 0.3498 
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CHAPTER 5 

 

CONCLUSION 

 

This study has examined the impact of happiness data on the daily DJIA return 

volatility. The happiness data does help to fit the conditional variance but it does not 

help to improve the forecasting accuracy of the return volatility.  

At the beginning, we find out the GARCH(1,1) model is appropriate to be the 

benchmark model. The ARMA component then is added to the GARCH(1,1) to 

remove the autocorrelation within the residuals. The happiness data was included in 

the GARCH(1,1)-ARMA(1,1) model in order to check the impact of happiness on 

the stock market return volatility. It turns out that simultaneous and lagged happiness 

data does help to better fit the return data.  

The asymmetric models are raised to deal with potential leverage effects. The 

asymmetry test results indicate that the EGARCH model is more preferable 

compared to the GJR-GARCH model. Meanwhile, the ARMA component is not 

significant in the EGARCH models. Many other distributions such as student’s T 

distribution, the generalized hyperbolic distribution are included as the extensions 

to the GARCH model. The generalized hyperbolic distribution is the preferable 

distribution to deal with asymmetric and heavy tails problems. In Chapter 4, 

forecasting accuracy is tested for representative models and the models with 

happiness does not have a better prediction accuracy compared to GARCH model. 
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APPENDICES 

Table A.1. Estimates of models tested in chapter 2. 

 

Models  GARCH(1,1)                                 

GARCH(1,1)

-ARMA(1,1) 

GARCH(1,1)-ARMA(1,1) 

w/ 𝐻𝑡 in mean 

GARCH(1,1)-ARMA(1,1) 

w/ lag 𝐻𝑡 in mean 

GARCH(1,1)-ARMA(1,1) 

w/sim 𝐻𝑡 in mean lag ℎ𝑡 in 

variance 

GARCH(1,1)-

ARMA(1,1) w/sim lag 

𝐻𝑡both in mean 

μ 0.0691*** 

(0.0184) 

0.0727*** 

(0.0107) 

-2.6155*** 

(0.1359) 

-2.0329*** 

(0.5113) 

-2.5135*** 

(0.0059) 

-2.5222*** 

(0.0652) 

ω 0.0224*** 

(0.0053) 

0.0222*** 

(0.0053) 

0.0223*** 

(0.0053) 

0.0223*** 

(0.0053) 

0.0000 

(0.00004) 

0.0223*** 

(0.0053) 

α 0.1256*** 

(0.0239) 

0.1264*** 

(0.0241) 

0.1261*** 

(0.0243) 

0.1253*** 

(0.0241) 

0.1249*** 

(0.0237) 

0.1258*** 

(0.0239) 

β 0.8564*** 

(0.0213) 

0.8558*** 

(0.0214) 

0.8561*** 

(0.0216) 

0.8565*** 

(0.0216) 

0.8569*** 

(0.0207) 

0.8559*** 

(0.0214) 

δ  0.9167*** 

(0.0184) 

0.9197*** 

(0.0372) 

0.9208*** 

(0.0134) 

0.9762*** 

(0.0027) 

0.9197*** 

(0.0097) 

𝛾  -0.9460*** 

(0.0148) 

-0.9494*** 

(0.0289) 

-0.9497*** 

(0.00964) 

-0.9917*** 

(0.0001) 

-0.9492*** 

(0.0013) 

𝐻𝑡  in 

mean 

  0.4484*** 

(0.0227) 

0.3513*** 

(0.0858) 

0.4293*** 

(0.0008) 

1.2655*** 

(0.0033) 

𝐻𝑡  in 

variance 

    0.0037*** 

(0.0008) 

 

Lag 𝐻𝑡 

in mean 

     -0.8329*** 

(0.0073) 
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Table A.2. Estimates of EGARCH models in chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

EGARCH GARCH(1,1)                                 
GARCH(1,1) 

w/ 𝐻𝑡 in mean 

GARCH(1,1) w/ lag 

𝐻𝑡 in mean 

GARCH(1,1) w/simℎ𝑡 in 

mean lag 𝐻𝑡 in variance 

GARCH(1,1)- w/sim 

lag 𝐻𝑡 both in mean 

μ 0.0263* 

(0.0162) 

-2.6155 *** 

(0.0107) 

-2.5221 *** 

(0.0110) 

-2.5221 *** 

(0.010) 

-2.5221 *** 

(0.2195) 

ω 0.0017 

(0.0055) 

0.0006*** 

(0.0063) 

0.0007  

(0.0062) 

-1.6460*** 

(0.2455) 

0.0006 *** 

(0.0072) 

α -0.1570*** 

(0.0199) 

-0.1630 *** 

(0.0203) 

-0.1640 *** 

(0.0203) 

-0.1752 *** 

(0.0157) 

-0.1668 *** 

(0.0126) 

β 0.9751*** 

(0.0009) 

0.9750 *** 

(0.0009) 

0.9747 *** 

(0.0009) 

0.9701 *** 

(0.0008) 

0.9752 *** 

(0.0007) 

γ 0.1578*** 

(0.0282) 

0.1506 *** 

(0.0286) 

0.1486*** 

(0.0282) 

0.1492*** 

(0.0118) 

0.1477*** 

(0.0655) 

𝐻𝑡 in mean   0.4252*** 

(0.0018) 

0.4256 *** 

(0.0055) 

1.6555 *** 

(0.0083) 

𝐻𝑡 in variance     0.2742*** 

(0.0408) 

 

Lag 𝐻𝑡 in mean     -1.2306 *** 

(0.0468) 
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Table A.3. Estimates of GJR-GARCH models in chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

GJR-GARCH GARCH(1,1)                                 
GARCH(1,1) 

w/ 𝐻𝑡 in mean 

GARCH(1,1) w/ lag 

𝐻𝑡 in mean 

Garch(1,1) w/sim  𝐻𝑡  in 

mean lag  𝐻𝑡 in variance 

Garch(1,1)- w/sim lag 𝐻𝑡 

both in mean 

μ 0.0270 

(0.0187) 

-2.6155 *** 

(0.0243) 

-2.5221 *** 

(0.0258) 

-2.5221 *** 

(0.0240) 

-2.5221 *** 

(0.0177) 

ω 0.0216*** 

(0.0046) 

0.0220 *** 

(0.0046) 

0.0222 *** 

(0.0046) 

0.0000 *** 

(0.0001) 

0.0221 *** 

(0.0046) 

α 0.0000 

(0.0237) 

0.0000 *** 

(0.0264) 

0.0000 *** 

(0.0261) 

0.0000 *** 

(0.0264) 

0.0000 *** 

(0.0264) 

β 0.8776*** 

(0.0254) 

0.8762 *** 

(0.0268) 

0.8754 *** 

(0.0269) 

0.8751 *** 

(0.0270) 

0.8748 *** 

(0.0269) 

γ 0.2027*** 

(0.0367) 

0.2040 *** 

(0.0372) 

0.2050 *** 

(0.0376) 

0.2060 *** 

(0.0376) 

0.2079 *** 

(0.0375) 

𝐻𝑡 in mean  0.4409*** 

(0.0037) 

0.4254 *** 

(0.0040) 

0.4253 *** 

(0.0037) 

1.6187 *** 

(0.0024) 

𝐻𝑡 in variance     0.0037 *** 

(0.0007) 

 

Lag 𝐻𝑡 in mean     -1.1940 *** 

(0.0028) 
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Table A.4. Diagnostic tests results for GJR-GARCH models. 

 

Model(GJR) GARCH(1,1) Sim 𝐻𝑡 in mean Lag 𝐻𝑡 in mean 

Diagnostic Test t-value p-value t-value p-value t-value p-value 

Sign Bias 2.2102 0.0272** 2.4746 0.0134** 2.1215 0.0340** 

Negative Sign Bias 2.3046 0.0213** 2.4140 0.0158** 2.2788 0.0228** 

Positive Sign Bias 1.6843 0.0923* 1.5452 0.1224  1.6947 0.0903* 

Model(GJR) Sim 𝐻𝑡 in mean lag 𝐻𝑡 in variance Sim lag 𝐻𝑡 both in mean 

Diagnostic Test t-value         p-value t-value p-value 

Sign Bias 2.2372 0.0254** 2.3467 0.0190** 

Negative Sign Bias 2.3258 0.0201** 2.3814 0.0173** 

Positive Sign Bias 1.6439 0.1003 1.6339 0.1024 
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Table A.5. Estimates of EGARCH-ARMA models. 

 

 

 

 

 

 

 

 

 

 

 

 

EGARCH-

ARMA 
GARCH(1,1)                                 

GARCH(1,1) 

w/ 𝐻𝑡 in mean 

GARCH(1,1) w/ lag 

𝐻𝑡 in mean 

GARCH(1,1) w/sim 𝐻𝑡 in 

mean lag 𝐻𝑡 in variance 

GARCH(1,1)- w/sim 

lag 𝐻𝑡 both in mean 

μ 0.0295 

(0.01834) 

-2.6155 *** 

(0.0111) 

-2.5221*** 

(0.0108) 

-2.5219 *** 

(0.002) 

-2.5221 *** 

(0.0176) 

ω 0.0017 

(0.0059) 

0.0005 

(0.0064) 

0.0008  

(0.0063) 

-0.9846 

(0.6146 ) 

0.0007 

(0.0059) 

α -0.1504*** 

(0.0199) 

-0.1561*** 

(0.0200) 

-0.1571*** 

(0.0201) 

-0.1838*** 

(0.01932 ) 

-0.1595 *** 

(0.0137) 

β 0.9754*** 

(0.0009) 

0.9753*** 

(0.0009) 

0.9749 *** 

(0.0009) 

0.9689 *** 

(0.0020 ) 

0.9754 *** 

(0.0007) 

γ 0.1579 *** 

(0.0280) 

0.1510 *** 

(0.0284) 

0.1490*** 

(0.0281) 

0.1408 *** 

(0.0268 ) 

0.1481 *** 

(0.0208) 

ar -0.0515** 

(0.0202) 

0.0049 

(0.0102) 

-0.0172 

(0.0111) 

0.9974*** 

(0.0000) 

-0.0071 

(0.1527) 

ma 0.0050 

( 0.0191) 

-0.0485*** 

(0.0138) 

-0.0283 

(0.0188) 

-1.0000*** 

(0.0001) 

-0.0407 

(0.1409) 

𝐻𝑡 in mean  0.4416 

(0.0019) 

0.4257*** 

(0.0018) 

0.4233*** 

(0.0001) 

1.6844 *** 

(0.0014) 

𝐻𝑡 in variance     0.1634 

(0.1024 ) 

 

Lag 𝐻𝑡 in mean     -1.2591 *** 

(0.0025 ) 
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Table A.6. Estimates of GJR-GARCH-ARMA models. 

 

 

 

 

 

 

 

 

 

 

 

GJR-GARCH GARCH(1,1)                                 
GARCH(1,1) 

w/ 𝐻𝑡 in mean 

GARCH(1,1) w/ lag 

𝐻𝑡 in mean 

GARCH(1,1) w/sim 𝐻𝑡 in 

mean lag ℎ𝑡 in variance 

GARCH(1,1)- w/sim 

lag 𝐻𝑡 both in mean 

μ 0.0321 

(0.0225) 

-2.6155 *** 

(0.1272) 

-2.5221 *** 

(0.0321) 

-1.5279*** 

(0.0064) 

-0.2455*** 

(0.0214) 

ω 0.0211 *** 

(0.0046) 

0.0215  *** 

(0.0046) 

0.0218 *** 

(0.0046) 

0.0000 *** 

(0.0002) 

0.0273 *** 

( 0.0074) 

α 0.0000 

(0.0273) 

0.0000 *** 

(0.0257) 

0.0000 *** 

(0.0261) 

0.0000 *** 

(0.0639) 

0.0000 

(0.3881) 

β 0.8801 *** 

(0.0256) 

0.8788  *** 

( 0.0265 ) 

0.8779 *** 

(0.0267) 

0.8598 *** 

(0.0417) 

0.8593 *** 

(0.1938) 

γ 0.1957 *** 

(0.0431) 

0.1967 *** 

(0.0368) 

0.1981 *** 

(0.0389) 

0.2115 *** 

(0.0522) 

0.2140 

(0.2297) 

ar 
0.1340 

(2.0147) 

0.1713 

(0.4092) 

0.0999 

(0.8817) 

0.9849*** 

(0.0147) 

0.9868*** 

(0.0414) 

ma 
-0.1858 

(1.9995) 

-0.2244 

(0.4039) 

-0.1534 

(0.8748) 

-0.9958*** 

(0.0005) 

-0.9974*** 

(0.0016) 

𝐻𝑡 in mean  0.4417 *** 

( 0.0208 ) 

0.4263 *** 

(0.0049) 

0.2615 *** 

(0.0025) 

1.4679  *** 

(0.0485) 

𝐻𝑡 in variance     0.0046 *** 

(0.0010) 

 

Lag 𝐻𝑡 in mean     -1.4214  *** 

(0.0523) 
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Table A.7. Estimates of EGARCH models with student’s T distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T with EGARCH GARCH(1,1) Sim 𝐻𝑡 in mean lag 𝐻𝑡 in mean Sim 𝐻𝑡 in mean lag 𝐻𝑡 in variance sim lag 𝐻𝑡 both in mean 

μ 0.0587*** 

(0.0165) 

-2.6155 *** 

(0.0086) 

-2.5221 *** 

(0.0087) 

-2.5221 *** 

(0.0085) 

-2.5221 *** 

(0.0207) 

ω -0.0097 

(0.0059) 

-0.0107 * 

(0.0061) 

-0.0107 * 

(0.0061) 

-1.2614 *** 

(0.2687) 

-0.0102 *** 

(0.0061) 

α -0.1810*** 

(0.0232) 

-0.1865 *** 

(0.0234) 

-0.1859 *** 

(0.0232) 

-0.1927 *** 

(0.0234) 

-0.1892 *** 

(0.0193) 

β 0.9811 *** 

(0.0005) 

0.9807 *** 

(0.0005) 

0.9806 *** 

(0.0005) 

0.9769 *** 

(0.0005) 

0.9806 *** 

(0.0005) 

γ 0.1635 *** 

(0.0273) 

0.1584 *** 

(0.0278) 

0.1561 *** 

(0.0275) 

0.1562 *** 

(0.0292) 

0.1570 *** 

(0.0197) 

𝜈 6.5231*** 

(1.1047) 

6.5512*** 

(1.1130) 

6.6142*** 

(1.1368) 

6.8418*** 

(1.2122) 

6.5345*** 

(1.1330) 

𝐻𝑡 in mean  0.4463 *** 

(0.0014) 

0.4307 *** 

(0.0015) 

0.4304 *** 

(0.0014) 

1.5071 *** 

(0.0013) 

𝐻𝑡 in variance     0.2083 *** 

(0.0447) 

 

Lag 𝐻𝑡 in mean     -1.0772 *** 

(0.0003) 
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Table A.8. Estimates of EGARCH models with the generalized error distribution. 

 

 

 

GED with EGARCH GARCH(1,1)                                 Sim 𝐻𝑡 in mean lag 𝐻𝑡 in mean Sim 𝐻𝑡 in mean lag 𝐻𝑡 in variance sim lag 𝐻𝑡 both in mean 

μ 0.0540*** 

(0.0146) 

-2.6155 *** 

(0.0078) 

-2.5221 *** 

(0.0080) 

-2.5221 *** 

(0.0079) 

-2.5221 *** 

(0.0141) 

Ω -0.010* 

(0.0054) 

-0.0109 * 

(0.0057) 

-0.0110 * 

(0.0057) 

-1.3805 *** 

(0.2765) 

-0.0112 *** 

(0.0049) 

α -0.1699*** 

(0.0210) 

-0.1762 *** 

(0.0215) 

-0.1759 *** 

(0.0214) 

-0.1849 *** 

(0.0223) 

-0.1806 *** 

(0.0126) 

Β 0.9785*** 

(0.0005) 

0.9781 *** 

(0.0005) 

0.9781 *** 

(0.0005) 

0.9741 *** 

(0.0010) 

0.9784 *** 

(0.0005) 

γ 0.1634*** 

(0.0275) 

0.1578 *** 

(0.0282) 

0.1557 *** 

(0.0280) 

0.1558 *** 

(0.0339) 

0.1556 *** 

(0.0158) 

𝜈 1.3482*** 

(0.0748) 

1.3460 *** 

(0.0749) 

1.3527 *** 

(0.0754) 

1.3605 *** 

(0.0764) 

1.3309 *** 

(0.0756) 

𝐻𝑡 in mean  0.4453 *** 

(0.0013) 

0.4301 *** 

(0.0013) 

0.4296 *** 

(0.0013) 

1.8740 *** 

(0.0013) 

𝐻𝑡 in variance     0.2281 *** 

(0.0460) 

 

Lag 𝐻𝑡 in mean     -1.4447 *** 

(0.0006) 
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Table A.9. Estimates of EGARCH models with the generalized hyperbolic distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GH with EGARCH GARCH(1,1)                                 Sim 𝐻𝑡 in mean Lag 𝐻𝑡 in mean Sim 𝐻𝑡 in mean lag 𝐻𝑡 in variance Sim lag 𝐻𝑡 both in mean 

μ 0.0236 

(0.0159) 

-2.6155 *** 

(0.0084) 

-2.5221 *** 

(0.0117) 

-1.8419 *** 

(0.0100) 

-2.5221 *** 

(0.0044) 

ω -0.0032* 

(0.0054) 

-0.0038  

(0.0061) 

-0.0039  

(0.0060) 

-6.1731 *** 

(0.1650) 

-0.0039 *** 

(0.0090) 

α -0.1893*** 

(0.0205) 

-0.1953 *** 

(0.0207) 

-0.1945 *** 

(0.0205) 

-0.2890 *** 

(0.0467) 

-0.1979 *** 

(0.0170) 

β 0.9773*** 

(0.0005) 

0.9766 *** 

(0.0005) 

0.9766 *** 

(0.0005) 

0.9000 *** 

(0.0482) 

0.9765 *** 

(0.0008) 

γ 0.1566*** 

(0.0240) 

0.1506 *** 

(0.0244) 

0.1489 *** 

(0.0242) 

0.2577 *** 

(0.0635) 

0.1503 *** 

(0.0315) 

Skew -0.2390*** 

(0.0832) 

-0.2428*** 

(0.0868) 

-0.2443*** 

(0.0837) 

-0.2077*** 

(0.0691) 

-0.2095** 

(0.0855) 

shape 2.0863*** 

(0.7429) 

2.1515 *** 

(0.7650) 

2.1812 *** 

(0.7634) 

1.4103 *** 

(0.5954) 

1.8251* 

(0.9670) 

λ 0.4612 

(1.4284) 

0.3797 

(1.4395) 

0.4095 

(0.4095) 

0.6914*** 

(1.1461) 

0.9642 

(1.3951) 

𝐻𝑡 in mean  0.4402 *** 

(0.0014) 

0.4248 *** 

(0.0020) 

0.3069 *** 

(0.0017) 

1.4881 *** 

(0.0004) 

𝐻𝑡 in variance     1.0291 *** 

(0.0278) 

 

Lag 𝐻𝑡 in mean     -1.0639 *** 

(0.0053) 
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Table A.10. Estimates of EGARCH models with the skewed student’s T distribution. 

 

 

ST with egarch GARCH(1,1)                                 Sim 𝐻𝑡 in mean Lag 𝐻𝑡 in mean Sim 𝐻𝑡 in mean lag 𝐻𝑡 in variance sim lag 𝐻𝑡 both in mean 

μ 0.0266 

(0.0162) 

-2.6155 *** 

(0.0088) 

-2.5221 *** 

(0.4856) 

-2.5221 *** 

(0.0086) 

-2.5221 *** 

(0.0149) 

ω -0.0031 

(0.0058) 

-0.0039  

(0.0062) 

-0.0038  

(0.0061) 

-1.2455 *** 

(0.2263) 

-0.0037  

(0.0068) 

α -0.1916*** 

(0.0219) 

-0.1970 *** 

(0.0219) 

-0.1964 *** 

(0.0217) 

-0.2027 *** 

(0.0219) 

-0.1993 *** 

(0.0170) 

β 0.9779*** 

(0.0005) 

0.9772 *** 

(0.0005) 

0.9771 *** 

(0.0005) 

0.9735 *** 

(0.0007) 

0.9772 *** 

(0.0008) 

γ 0.1585*** 

(0.0242) 

0.1526 *** 

(0.0247) 

0.1508 *** 

(0.0245) 

0.1503 *** 

(0.0273) 

0.1518 *** 

(0.0174) 

Skew 0.8402*** 

(0.0294) 

0.8411 *** 

(0.0294) 

0.8391 *** 

(0.0293) 

0.8410 *** 

(0.0293) 

0.8472 ** 

(0.0304) 

shape 7.4047*** 

(1.3868) 

7.5101 *** 

(1.4269) 

7.5948 *** 

(1.4613) 

7.8809 *** 

(1.5689) 

7.3961 *** 

(1.4758) 

𝐻𝑡 in mean  0.4408 *** 

(0.0014) 

0.4252 *** 

(0.0808) 

0.4251 *** 

(0.0014) 

1.4052 *** 

(0.0015) 

𝐻𝑡 in variance     0.2068 *** 

(0.0376) 

 

Lag 𝐻𝑡 in mean     -0.9804 *** 

(0.0027) 
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Table A.11. Unconditional forecasting results comparison  

Absolute value 

of the return 
GARCH(1,1) 

Garch(1,1)-

ARMA(1,1) 
EGARCH(1,1) 

EGARCH lag 𝐻𝑡 

in variance sim 

𝐻𝑡 in mean 

EGARCH lag 

sim 𝐻𝑡 both 

in mean 

EGARCH- GH 

EGARCH-GH with lag 

𝐻𝑡  in variance and sim 

𝐻𝑡 in mean  

EGARCH-GH lag 

sim 𝐻𝑡 both in 

mean 

1.357 1.2000 1.2104 1.3458 1.3745 1.358 1.4135 1.4307 1.4006 

0.036 1.1987 1.209 1.3372 1.3649 1.3482 1.4002 1.4167 1.3869 

1.0688 1.1975 1.2077 1.3289 1.3479 1.3388 1.3873 1.3972 1.3738 

0.1519 1.1962 1.2063 1.3208 1.3337 1.3297 1.3749 1.3801 1.361 

1.6197 1.195 1.205 1.3129 1.3211 1.3209 1.3628 1.3645 1.3486 

0.1175 1.1938 1.2037 1.3053 1.3118 1.3123 1.3512 1.3517 1.3367 

1.3033 1.1926 1.2025 1.298 1.3085 1.3041 1.3398 1.3436 1.3251 

0.9281 1.1914 1.2012 1.2908 1.2989 1.296 1.3289 1.3309 1.3138 

1.3071 1.1902 1.2 1.2839 1.2861 1.2882 1.3183 1.316 1.3029 

0.7616 1.1891 1.1988 1.2772 1.2732 1.2807 1.308 1.3012 1.2924 
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