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ABSTRACT 

 

Predicting the unemployment rate is one of the most important applications for 

economists and policymakers (Golan, 2002). In this thesis, the focus is on the 

seasonally adjusted U.S. national unemployment rate (UR). The goal is to introduce 

the seasonally adjusted job openings (JOB) for UR forecasting. 

In order to forecast UR, firstly, an integrated autoregressive moving average 

model (ARIMA) is constructed as a benchmark mode. For a better comparison, a well 

known leading indicator – the seasonally adjusted initial claim for unemployment 

insurance (IC), released by the U.S. Department of Labor, is also included. By using 

JOB and IC as external variables, integrated autoregressive moving average with 

external variable(s) models (ARIMAX) are successfully constructed. Multivariate 

vector autoregressive models (VAR) are also well constructed for UR, JOB & IC. The 

Akaike Information Criterion (AIC), the Schwarz-Bayesian Criterion (BIC), and the 

Hannan-Quinn Criterion (HQ) are applied for models selection. 

For out-of-sample analysis, both rolling forecasts and recursive forecasts are 

considered. The Mean absolute forecast error (MAFE) and the mean square forecast 

error (MSFE) are calculated, along with the Diebold-Mariano (DM) test, for models 

comparison. The results show that the JOB related models have much better 

forecasting power than the benchmark model and the IC related models. This suggests 

that the JOB index can be used as one of the leading indicators to improve UR 

forecasting. 

Keywords: Unemployment Rate, Forecast, Job Openings, ARIMA, ARIMAX, VAR 
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CHAPTER 1 

 

INTRODUCTION 

 

Predicting unemployment rate is of great importance to many economic decisions 

(Floros, 2005). Forecasting the unemployment rate accurately is important because it 

helps economists to have a better idea of what the future economy holds (Lewis and 

Brown, 2001). Besides, it is also important for the government in terms of decision 

and policy making. 

Over the last century, the U.S. unemployment rate has attracted a lot of attention. 

It displays steep increases that end in sharp peaks and alternates with much more 

gradual and longer declines that end in mild troughs. Such cyclical asymmetries have 

long been noted and much debated (De Long and Summers 1986; Elwood 1996; 

Neftci 1984; Rothman 1996; Sichel 1989). 

 The traditional data-driven, time-series models use only lagged observations of 

unemployment (Golan and Perloff, 2002). In many applications, unemployment 

related variables are available, and one would like to make use of the relevant 

information in forecasting. In predicting the U.S. unemployment rate, there exist data 

on initial jobless claims and some other indicators (Montgomery et al. 1998). 

D’Amuri and Marcucci (2009) found that using a Google job-search index as a 

leading indicator can also increases the forecast precision of the U.S. unemployment 

rate. 
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In this thesis, I focus on the seasonally adjusted U.S. national unemployment rate 

(UR). The goal is to introduce the seasonally adjusted job openings (JOB) from 

Bureau of Labor Statistic as a useful indicator for UR forecasting. 

The UR data are available from Jan 1948 to Feb 2015. However, JOB data are 

only available from Dec 2000 to Dec 2014 with two months lag in release date. As the 

literature observed, the U.S. unemployment rate displays no consistent trend at all, and 

there are no good reasons why it should have either risen or fallen secularly 

(Montgomery et al. 1998). In this thesis, I am interested in testing the relevance of the 

JOB data, and finding the best model for short term forecasting, not modeling the long 

term dynamics of the series. Therefore, for UR data, I choose the relative time period 

as it for JOB data (from Feb 2001 to Feb 2015).  

In order to forecast UR, firstly, an integrated autoregressive moving average 

model (ARIMA) is built as a benchmark model for UR. For a better comparison, a 

well known leading indicator – the seasonally adjusted initial claim for unemployment 

insurance (IC), released by the U.S. Department of Labor, is also included.  

By using the JOB and the IC data, four integrated autoregressive moving average 

with external variable(s) models (ARIMAX) are constructed. The “prewhitening” 

procedure is performed in the first step. Augmented Dickey-Fuller (ADF) test is 

applied to check for stationarity. The Akaike Information Criterion (AIC) and the 

Schwarz-Bayesian Criterion (BIC) are applied for models selection. The Ljung-Box 

test is chosen to check for autocorrelation of the residuals along with the 

autocorrelation function (ACF) plot and the partial ACF plot.  The Shapiro-Wilk test 

is applied for the residuals normality check along with QQ plot and histogram plot.  
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Moreover, three bivariate and one trivariate vector autoregressive models (VAR) 

are also constructed for UR, JOB and IC. Engle and Granger’s two steps procedures 

and Phillips-Ouliaris (PO) cointegration test are applied in the first step. Model lag 

selection is based on the AIC, BIC and Hannan-Quinn (HQ) Criterion. In order to 

check the models’ residuals, multivariate portmanteau test is used to check the 

autocorrelation. Jarque-Bera (JB) test and Royston's multivariate normality test are 

applied for normality check along with Chi-Square QQ plot. Autoregressive 

conditionally heteroskedasticity (ARCH) test is applied to test for deviations from the 

null hypothesis of time-homogeneous variance. The Granger-causality results are 

produced and impulse response function (IRF) plots are also provided.  

After the models are fit, an out-of-sample forecast comparison is applied. Both 

recursive forecasts and rolling forecasts are chosen. Mean absolute forecast error 

(MAFE) and mean square forecast error (MSFE) are calculated, along with Diebold-

Mariano (DM) test for the model comparison.  

Comparing to the benchmark model, JOB related ARIMAX and VAR models 

have much better forecast accuracy with smaller MAFE and MSFE in all forecasting.  

Comparing to IC related models, JOB related bivariate VAR model also has 

better performance in all steps ahead forecasting with smaller MSFE. 

Finally, the trivariate VAR model, which includes both the JOB and the IC index, 

has the best forecasting performance with lowest MAFE and MSFE. Compared to 

Benchmark model, the DM test results show the trivariate VAR model is significantly 

better in 2 and 3 steps-ahead forecasting. 

In conclusion, the forecasting comparison results demonstrate that JOB index can 
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be used as one of the useful indicators to improve UR forecasting. When combining 

the JOB and the IC index together, the ARIMAX and VAR models’ performance are 

further improved. 

This thesis is organized as follows. Chapter 1 shows the primary goal of this 

research and how this thesis is organized. Chapter 2 describes the UR, JOB and IC 

data and the literature reviews of ARIMA, ARIMAX and VAR time series models. 

Chapter 3 introduces the modeling methodology, including the time series models and 

related tests. In Chapter 4, one benchmark ARIMA model and four ARIMAX models 

with JOB and IC as external variable(s) are well built.  In Chapter 5, four bivariate and 

one trivariate VAR models are successfully constructed. Chapter 6 summarizes all the 

selected models and shows the out-of-sample comparison results based on MAFE, 

MSFE and DM test. Chapter 7 presents the conclusions of this research. 
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CHAPTER 2 

 

DATA AND LITERATURE REVIEW 

 

2.1 The U.S. Unemployment Rate 

The unemployment rate is a measure of the prevalence of unemployment and it is 

calculated as a percentage by dividing the number of unemployed individuals by all 

individuals currently in the labor force.  

Typically, macroeconomic data are seasonally-adjusted. Seasonal adjustment is a 

statistical technique that attempts to measure and remove the influences of predictable 

seasonal patterns to reveal how employment and unemployment change from month to 

month. Over the course of a year, the size of the labor force, the levels of employment 

and unemployment, and other measures of labor market activity undergo fluctuations 

due to seasonal events including changes in weather, harvests, major holidays, and 

school schedules. Because these seasonal events follow a more or less regular pattern 

each year, their influence on statistical trends can be eliminated by seasonally 

adjusting the statistics from month to month. These seasonal adjustments make it 

easier to observe the cyclical, underlying trend, and other non-seasonal movements in 

the series (www.bls.gov, 2014). 

The seasonally adjusted U.S. national unemployment rate (UR) is released 

monthly by the Bureau of Labor Statistics (BLS, www.bls.gov). The current seasonal 

adjustment methodology at BLS is called “X-12 ARIMA”, more details of this method 

can be found at http://www.bls.gov/cpi/cpisahoma.htm. The UR index for month t 

http://www.bls.gov/
http://www.bls.gov/cpi/cpisahoma.htm
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refer to individuals who do not have a job, but are available for work, in the week 

including the 12th day of month t and who have looked for a job in the prior 4 weeks 

ending with the reference week. For the federal level, it is available from Jan 1948 up 

to the most recent, can be downloaded from www.bls.gov/bls/unemployment.htm. 

 

Figure 2.1 The seasonally adjusted U.S. national unemployment rate (UR) 
(From Jan 1948 to Dec 2014) 

 

Figure 2.1 shows the UR data have asymmetrical cyclical movements, particularly 

during the severe downward cycles, which dominate the behavior over time of the UR 

data. Short and steep rises, ending in sharp peaks, are characteristic of general 

business contractions; long and gradual declines are characteristic of business 

expansions (Montgomery et al. 1998). 

2.2 Initial Claims for Unemployment Insurance 

The seasonally adjusted initial claims for unemployment insurance (IC) are 

released by the U.S. Department of Labor (http://www.dol.gov), which are available 

Time

U
R

(%
)

1950 1960 1970 1980 1990 2000 2010

4
6

8
1

0

http://www.bls.gov/bls/unemployment.htm
http://www.dol.gov/dol/topic/unemployment-insurance/
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weekly. At the national level, data starting from Jan 1967 can be found in the website: 

http://workforcesecurity.doleta.gov/unemploy/claims.asp 

Montgomery et al. (1998) showed that the IC data can be used as a leading 

indicator of UR, because they contain information on whether unemployment is rising 

or falling.  

In order to align the weekly IC data with the monthly UR data, the IC data is 

constructed the same way as the UR data are collected. For month t, we take into 

consideration the week including the 12th of the month and the three preceding weeks, 

exactly the same interval used to calculate the UR for month t reported in official 

statistics. In that interval, I summarize the total of the four weeks initial claim to get 

the total of the monthly IC data. When there are more than four weeks between the 

reference week of month t and the following month t + 1, we do not use the number 

from that extra week. In Table 2.1, the week ending at 9/20/2014 (marked in yellow) 

is the extra week, which will neither be included in Sep 2014 month calculation, nor in 

Oct 2014 month calculation. 

Table 2.1 A visual description of the alignment procedure of initial jobless claim (IC) 

Week IC 
 

8/9/2014 312,000 
 

8/16/2014 299,000 Reference Week 

8/23/2014 298,000 
 

8/30/2014 304,000 
 

9/6/2014 316,000 
 

9/13/2014 281,000 Reference Week 

9/20/2014 295,000 Extra Week 

9/27/2014 288,000 
 

10/4/2014 287,000 
 

10/11/2014 266,000 
 

10/18/2014 284,000 Reference Week 

10/25/2014 288,000 
 

 

http://workforcesecurity.doleta.gov/unemploy/claims.asp
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In Figure 2.2, we can see the IC data and the UR data have similar cyclical 

movements. During the general business recession periods, such as the 1990 oil price 

shock,  the 2000 Dot Com bubble and the Dec 2007 ~Jun 2009 subprime mortgage 

crisis, we can see short and steep rises in both IC and UR, ending in sharp peaks. 

Following business expansions, UR and IC both show long and gradual declines. This 

similar cyclical pattern suggests that IC can be used as a leading indicator for UR 

forecasting. 

 

Figure 2.2 Seasonally adjusted initial claims (IC) & unemployment rate (UR) 
(UR(%) and IC(x100,000) From Jan 1967 to Dec 2014) 

 

2.3 Bureau New Job Openings 

The economists are searching for other indicators, besides IC. D’Amuri and 

Marcucci (2009) tested the relevance of a Google job search index. They show that the 

Google job search index can also be a leading indicator for unemployment dynamics 

in the United States, which in turn can increase the precision of the forecasts. 
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Similar to the IC index, the Google job search index shows a positive correlation 

to the UR index. In another words, more people are looking for jobs are related to a 

higher unemployment rate. Inspired by the Google job index, Bureau’s new job 

openings comes to my interest. More new job openings will create more employment 

opportunities, which seem to have strong negative correlation to the UR index. 

Starting from Dec 2000, the Bureau of Labor Statistics launched the Job Openings 

and Labor Turnover Survey (JOLTS). Prior to JOLTS, there was no economic 

indicator of the unmet demand for labor with which to assess the presence or extent of 

labor shortages in the United States. This monthly survey is developed to address the 

need for data on job openings, hires, and separations. The availability of unfilled jobs 

is an important measure of the tightness of job markets. These data serve as demand-

side indicators of labor at the national level (www.bls.gov, 2014). 

The JOLTS survey covers all non-agricultural industries in the public and private 

sectors for the 50 States and the District of Columbia, which has a sample size of 

approximately 16,000 U.S. business establishments. For job openings, these are 

monthly observations; the reference period is the last business day of the month.  

The seasonally adjusted national level job openings (JOB) data are available from 

Dec 2000 to Dec 2014. It can be downloaded from http://www.bls.gov/jlt/data.htm. 

In Figure 2.3, the UR data and the JOB data look fare symmetric. The JOB index 

declined to a series low in July 2009, one month after the official end of the most 

recent recession. The UR index continued to increase after the end of the recession, 

reaching a high point in February 2010. The JOB data have trended upward since their 

http://www.bls.gov/jlt/data.htm
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series low in July 2009, and have surpassed the pre-recession peak (March 2007). In 

October 2014, there were 4.8 million job openings.  

 

 

Figure 2.3 Seasonally adjusted job openings (JOB) & unemployment rate (UR) 
(UR(%) and JOB(x1000,000) From Dec 2000 to Oct 2014) 

In Figure 2.3, the correlation between the JOB and the UR index is clear, 

however, I haven’t found any studies that propose the JOB index as a leading 

indicator. I think there are at least two reasons.  

First, compared to UR, the JOB data are relatively new. People have been 

studying the UR index for a long time and most of the related researches are published 

before year 2000.  In 1998, Montgomery et al. present a comparison summary of 

forecasting performance for a variety of linear and non-linear time series models for 

the UR index. The UR data started in 1948, comparing to it, the JOB data are much 

newer, which were published after Dec 2000.  
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Second, the release date of the JOB index has a time lag about two months in 

reality. For example, in Table 2.2, if we want to predict Dec 2014 UR in 1/1/2015, 

prior to its release date (1/9/2015), we can have Dec 2014 IC data ready (released on 

12/18/2014). But we can only have Oct 2014 JOB data available. When people focus 

on the Dec 2014 UR, the Oct JOB data may be too old to be an interest. 

Table 2.2 A visual description of the index release date 

Index Released Date 

Index Period 
Unemployment Rate 

(UR) 
Initial Jobless Claim 

(IC) 
Job Openings 

(JOB) 

Dec 2014 index 1/9/2015 12/18/2014 

 Nov 2014 index 12/5/2015 11/20/2014 1/13/2014 

Oct 2014 index 
 

 

12/9/2014 

 

The release date of the JOB index has two months lag. When forecasting the 

unemployment rate at time t, we can have the initial claim index at time t; but for job 

openings index, we can only have it at time t-2. 

 

Unemployment rate / Initial Jobless Claim 

 
Oct 2014 Index Nov 2014 Index Dec 2014 Index   

9/27 10/4 10/11 10/18 10/25 11/1 11/8 11/15 11/22 11/29 12/6 12/13 12/20 12/27 1/3 

        

   10/1/14 ---- 10/31/14 11/1/14 ----- 11/30/14 12/1/14 ---- 12/31/14 

   Oct Index Nov Index Dec Index  

  

Job Openings  

 Figure 2.4 A visual description of the index reference period 

 

As mentioned before, the UR data and the IC data are collected based on the 

weekly records. For month t, we take into consideration the week including the 12th of 

the month and the three preceding weeks. However, the JOB data are collected 

monthly, and the reference period is the last business day of the month. From Figure 
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2.4, we can see that if I consider Oct 2014 JOB index as an indicator to forecast Dec 

2014 UR index, which means I will use the JOB index from Oct 1
st
 to Oct 30

th
 2014 as 

an indicator to predict the UR index from Nov 16
th

 to Dec 13
th

.  

According to the Dice-DFH Vacancy Duration Measure, an index created by 

University of Chicago economist Steven Davis, in 2014, U.S. employers are taking 

about 25 working days (5 weeks), on average, to fill vacant positions (Davis, 2014). 

From Oct 1
st
 to Nov 16

th
, it is about 6 weeks apart between the JOB index and the UR 

index. It is reasonable to expect that the JOB index could be a good indicator to 

forecast UR. 

2.4 Time Series Models 

The UR data are time series data, so the time series models would be the first 

choice. Nowadays, one of the most used is the methodology based on autoregressive 

integrated moving average (ARIMA) model by Box and Jenkins (Box and Jenkins, 

2008). This is mostly because it offers great flexibility in analyzing various time series 

and because of achieving accurate forecasts. Its other advantage is that this method 

uses only historical data of univariate time series to analyze its own trend and forecast 

future cycle (Peter and Silvia, 2012).  

Montgomery et al. (1998) used ARIMA model as a benchmark model to present a 

comparison of forecasting performance for a variety of time series models for US 

unemployment rate. D’Amuri and Marcucci (2009) tested the relevance of a Google 

job search index for the UR index, with an ARIMA model as the benchmark. Tsay 

(2005) also chooses an ARIMA specification as the benchmark model for the US 
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unemployment rate, when demonstrating the application of threshold autoregressive 

model. 

In many applications, when related variables are available, people would like to 

make use of all relevant information in forecasting. Empirical studies on 

macroeconomic forecasting, such as Stock and Watson (1999), found that including 

leading indicators into the model can improve forecasting performance. In the 

econometric literature, ARIMA model with external variables (ARIMAX) and Vector 

autoregressive model (VAR) have a dominant place (Otter, 1990).  

VAR is one of the most successful, flexible and easy to use models for the 

analysis of multivariate time series. It is a natural multivariate extension of the 

univariate autoregressive model. The VAR model has proven to be especially useful 

for describing the dynamic behavior of economic and financial time series and for 

forecasting. It often provides superior forecasts to those from univariate time series 

models and elaborate theory-based simultaneous equations models (Zivot, 2014). 

D’Amuri and Marcucci (2009) tested the relevance of a Google job search index 

for the UR forecasting. They applied ARIMAX model both for Google job search 

index and for IC index as well as for comparison purposes. 

Montgomery et al. (1998) applied a vector autoregressive model (VAR) for the 

UR and IC data. They showed that the IC index can be used as a leading indicator for 

the UR forecasting.  

Inspired by the past researches, in my thesis, an ARIMA model is used as the 

benchmark model. Four ARIMAX and four VAR models are also successfully 

constructed with the JOB and the IC data.  
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2.5 Forecasting 

Unlike structural models that relate the variable we want to forecast with a set of 

other variables, the time series model is not based on any economic theory. Time 

series models use the past movements of variables in order to forecast their future 

values. In term of forecasting, the reliability of the estimated equation should be based 

on the out-of-sample performance (Stock and Watson, 2003). 

In this paper, the out-of-sample forecasting method is chosen. In the recursive 

forecasting, 8 steps ahead forecasting is calculated. In the rolling forecast, 1 step ahead 

to 4 steps ahead forecasting is computed. By comparing them with the actual UR 

values from Jul 2014 to Feb 2015, mean absolute forecast error (MAFE) and mean 

square forecast error (MSFE) and are calculated. A Diebold-Mariano (DM) test is also 

used for model comparison. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Univariate Time Series Models 

A time series is a set of numbers that measures the status of some activity over 

equally spaced time interval. It is the historical record of some activity, with 

measurements taken at equally spaced intervals with a consistency in the activity and 

the method of measurement. 

White Noise Process 

A time series {  } is called a white noise if {  } is a sequence of independent and 

identically distributed random variables with finite mean and variance. In particular, if  

   is normally distributed with mean zero and variance   , then the series is called a 

Gaussian white noise.  

The mean function is constant                

The auto-covariance function  
                  
                   

    

The auto-correlation function  
                   
                   

    

White noise process is very important and basic stationary process. It is the 

building block for other more interesting time processes. 

Autoregressive (AR) Model 

Yule (1926) carried out the original work on autoregressive processes. The 

autoregressive model specifies that the output variable depends linearly on its own 
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previous values. Specifically, a p
th

 order autoregressive process {  } satisfies the 

equation 

                             

The current value of the series    is a linear combination of the p most recent past 

values of itself plus a white noise term at time t. For every t, we assume     ,     , ... 

     are independent. 

The Backshift (or Lag) operator, indicated with B transforms a variable into its 

lagged version:         . And for iterated version:          . 

The AR model can be expressed as a polynomial of order p using the Backshift 

operator: 

                   
       

        

Moving Average (MA) Model 

Sometimes, after estimation a model using autoregressive component, trend or 

seasonality (or even regression components), there can still be an autocorrelation in 

the residuals.  An autocorrelation in the residuals can be modeled using the Moving 

Average terms. Moving average models were first considered by Slutsky (1927). A 

Moving Average of order q, or MA(q) can be written as  

                              

This is a linear combination of the current white noise term and the past q white 

noise terms. Alternatively, using the backshift operator, an MA(q) can be written as  
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Autoregressive Moving Average (ARMA) Model 

In some applications, the AR or MA models discussed in the previous sections 

become cumbersome because one may need a high-order model with many parameters 

to adequately describe the dynamic structure of the data. To overcome this difficulty, 

the autoregressive moving average (ARMA) models are introduced. (Box, Jenkins, 

and Reinsel, 1994). Basically, an ARMA model combines the ideas of AR and MA 

models into a compact form so that the number of parameters used is kept small. 

The general ARMA model was described in 1951 in the thesis of Peter whittle, 

“Hypothesis testing in time series analysis” and it was popularized in 1970 by Box and 

Jenkins. ARMA (p, q) can be written as  

                                                     

By using the backshift operator, an ARMA (p, q) can be written as  

          
       

               
       

     

Or:                    

Autoregressive Integrated Moving Average (ARIMA) Model 

A time series {   } is said to follow an integrated autoregressive moving average 

(ARIMA) model if the d
th 

difference                   is a stationary ARMA 

process. If    follows an ARMA (p, q) model, we say that {   } is an ARIMA(p, d, q) 

process, which can be written as:  

                                                    

By using the backshift operator, an ARIMA (p, d, q) can be written as  

          
       

                     
       

     

Or                          
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Same as the ARMA model, the ARIMA model methodology was first 

introduced by Box and Jenkins in 1970. In time series analysis, the Box–

Jenkins method, refer to the approach that applies ARMA or ARIMA models to find 

the best fit of a time-series model to past values of a time series.  

Autoregressive Integrated Moving Average with External Variables 

(ARIMAX) Model 

ARIMAX model is combining the predictive value of both the trailing time series 

values themselves (  ) and the trailing model errors (  ) with the predictive value of 

external variables.  

An ARIMA model with external variables, that is, ARIMAX model with 

                 can be written as 

                                                     

                                    

Where X’s are external variables and β’s are the coefficients of external variables.  

Seasonal Time Series Models 

Some financial time series such as quarterly earnings per share of a company 

exhibits certain cyclical or periodic behavior. Such a time series is called seasonal 

time series.   

Analysis of seasonal time series has a long history. In some applications, 

seasonality is of secondary importance and is removed from the data, resulting in a 

seasonally adjusted time series that is then used to make inference. The procedure to 

remove seasonality from a time series is referred to as seasonal adjustment. Most 
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economic data published by the US government are seasonally adjusted, such as the 

growth rate of gross domestic product and the unemployment rate (Tsay, 2005). 

Seasonal ARMA(p,q) × (P,Q)s  with period s can be defined as following 

expression obtained using the backshift operator: 

         
                

     

Similar to non seasonal models, seasonal difference can be defined as       

                 . Seasonal ARIMA(p, d, q) × (P, D, Q)s  with period s can be 

defined as following expression obtained using the backshift operator: 

         
                             

     

These models are easily over-parameterized, so care should be put in the choice 

of parameters. 

Vector Autoregression (VAR) Model 

VAR is an extension of univariate autoregressive models to multivariate time 

series data. VAR model is a multi-equation system where all the variables are treated 

as endogenous. There is one equation for each variable as dependent variable. Right-

hand side of each equation includes lagged values of all dependent variables in the 

system, no contemporaneous variables. 

Let                    
 denote an (n×1) vector of time series variables. The 

basic p-lag vector autoregressive (VAR(p)) model has the form 

                                        

Where    are       coefficient matrices and    is an (n×1) unobservable zero 

mean white noise vector process (serially uncorrelated or independent) with time 

invariant covariance matrix Σ.  
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For example, a bivariate VAR(2) model equation has the form 

 
   
   

   
  
  
   

   
    

 

   
    

   
     
     

   
   
    

 

   
    

   
     
     

   
   
   

  

Or:                 
          

          
          

           

          
          

          
          

           

Where                                     . Hence cross correlation 

doesn’t have to be zero. In each equation, they have the same regressors — lagged 

values of      and     . 

Structural VAR (SVAR) 

In VAR model, we assume there is no concurrent linear relationship between the 

component series. When this assumption is relaxed, we have the so called Structural 

VAR (SVAR). Consider for instant the SVAR(1,1) 

 
                                

                                

  

Both variables are endogenous, so we cannot estimate it as regular VAR. In 

matrix form we have: 

 
    
    

  
  
  
   

  
  
   

      
      

  
    
    

   
    

    
  

Or in compact form:                   

In order to estimate the parameters, we have to calculate the so-called reduced 

form, obtained by solving for     and   : 

                        

             

Given the parameters of the reduced form, it is impossible to identify and estimate 

the structural parameters   without some restrictions. Some of most used are the 



 

31 

 

exclusion condition       , and the linear restriction            . 

 The condition        is equivalent to requiring that B matrix is lower 

triangular, which means    does not have a simultaneous effect on   . 

The matrix of reduced form    
  
    

   ,       
    

     
  

So the bivariate SVAR becomes a recursive system: 

 
                                           

                                

  

3.2 Construct and Validate an ARIMA Model 

Box and Jenkins’ Approach for ARIMA Modeling 

To construct an ARIMA model, I follow the three-stage iterative procedure of 

Box, Jenkins and Reinsel (1994). It includes the model specification (Tsay and Tiao 

1984), parameter estimation (Ansley 1979; Hillmer and Tiao 1979), and Diagnostic 

checking (Ljung and Box 1978). Below I will describe these three steps one by one 

and followed with their related tests. 

Step 1: Model Specification and Unit Root Test 

Determining whether the series is stationary or not, we can use plots of 

the autocorrelation and partial autocorrelation functions of the dependent time series. 

If the time series is not stationary, it can often be converted to a stationary series by 

differencing. To reduce the risk of over-differencing, we will perform unit root tests. 

Unit Root Test for Stationarity 

 (1) Dickey-Fuller (DF) Unit Root Test 

To test whether a time series follows a random walk, we employ an AR(1) model 

               or                        
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We consider the          versus        . Clearly, if     , this time series 

is a random walk, which is not stationary. This is the well-known unit-root test problem 

(see Dickey and Fuller, 1979). A convenient test statistic is the t-ratio of the least squares 

estimate of   . For Equation (3.8a), the least squares method gives 

    
       
 
   

     
  

   
 ,        

  
             

  
   

   
 

Where     , and T is the sample size, the t-ratio is 

t-ratio= 
     

        
 

This is commonly referred to as the Dickey and Fuller test.  

(2) Augmented Dickey-Fuller (ADF) Unit Root Test  

Dickey and Fuller test can only test for the unit root in AR(1) process. To verify 

the existence of a unit root in an AR(p) process, one may perform the test          

versus        using the regression 

                    

   

   

    

Where    is a deterministic function of time index of t.             is the 

differenced series of   . Note that because of the first differencing, above equation can 

be rewritten as   

                      

   

   

    

Where      . We can then test the equivalent hypothesis          versus 

       . The t-ratio of       is  

ADF-test= 
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Where    denotes the least squares estimate of  . This is well-known augmented 

Dickey-Fuller unit root test. If    , the series contains a unit root implying non 

stationary, whereas if     , there is no unit root implying stationary. 

ADF Test with Generalized Least Squares (GLS) De-trending 

In 1996, Elliott, Rothenberg, and Stock performed a modified ADF test (known 

as the ADF-GLS test). Essentially, the test is an ADF test, except that the time series is 

transformed via a generalized least squares (GLS) regression before performing the 

test. Elliott, Rothenberg, and Stock have shown that, comparing to the standard 

versions of the ADF test, this test is significantly greater in terms of small sample size 

and power. 

Step 2: Parameter Estimation 

Finding appropriate values of p and q in the ARMA(p,q) model can be facilitated 

by plotting the partial autocorrelation functions for an estimate of p, and likewise 

using the autocorrelation functions for an estimate of q.  

Autocorrelation Functions (ACF) & Partial ACF (PACF) 

Autocorrelation is the linear dependence of a variable with itself at two points in 

time. For stationary processes, autocorrelation between any two observations only 

depends on the time lag h between them. By defining                , for h > = 0, 

Lag-h autocorrelation is given by 

                 
  
  

 

The denominator    is the lag 0 covariance, the unconditional variance of the 

process. Correlation between two variables can result from a mutual linear dependence 
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on other variables. Partial autocorrelation is the autocorrelation between    and 

      after removing any linear dependence on                   . 

The theoretical ACF and PACF for AR, MA and ARMA conditional mean 

models are known, and quite different for each model. The differences in ACF and 

PACF among models are useful when selecting models. The following summarizes 

the ACF and PACF behavior for these models. 

Table 3.1 ACF and PACF behavior for AR, MA and ARMA models. 

Model ACF PACF 

AR(p) Tails off gradually Cuts off after p lags 

MA(q) Cuts off after q lags Tails off gradually 

ARMA(p,q) Tails off gradually Tails off gradually 

 

Model Selection Criteria  

When fitting models, it is possible to increase the likelihood by adding 

parameters, but doing so may result in over-fitting. Both the Akaike Information 

Criterion, AIC (Akaike, 1973) and the Schwartz / Bayesian Information Criterion, SIC 

/ BIC (Schwartz, 1978) can resolve this problem by introducing a penalty term for the 

number of parameters in the model.  

Suppose that we have a statistical model of some data. Let L be the maximized 

value of the likelihood function for the model; let n be the sample size; let k be the 

number of parameters in the model. Then the AIC and BIC value are:   

                (3.13) 

                    (3.13) 

Both criteria are based on the maximized value of the likelihood function, plus a 

penalty adjustment depending on the number of estimated parameters. Comparing to 

AIC, the penalty term in BIC is larger since                 . Therefore, the 

http://en.wikipedia.org/wiki/Overfitting
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difference between both criteria can be very large if sample size is large. Given a set 

of candidate models for the data, the preferred model is the one with the minimum 

AIC/BIC value. 

In practical work, both criteria are usually examined. As just mentioned, the BIC 

penalizes additional parameters more strongly than the AIC. Thus, the BIC always 

choose a lag length that is shorter (or the same as) the one that minimizes the AIC. So 

one may consider the BIC as a lower bound and AIC as an upper bound for the 

appropriate lag length. In the case that they happen to agree, the choice is clear. 

The AIC is similar to the BIC, but some authors believe that AIC is superior to 

BIC for a number of reasons. First, AIC is derived from principles of information. 

Second, the Bayesian approach requires a prior input but usually it is debatable. Third, 

AIC is asymptotically optimal in model selection in terms of the least squared mean 

error, but BIC is not asymptotically optimal (Burnham and Anderson, 2004; Yang, 

2005). If AIC and BIC do not select the same model, Brockwell and Davis 2009 also 

recommend using AIC for finding p and q.  

Step 3: Diagnostic Checking 

After the model being chosen, we can test whether the estimated model conforms 

to the specifications of a stationary univariate process. In particular, the residuals 

should meet white noise assumptions, as the residuals from the selected ARIMA 

model are assumed to be independent, homoskedastic, and usually normally 

distributed. Several diagnostic statistics and plots of the residuals can be used to 

examine the goodness of fit of the tentative model to the historical data. 
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Residuals Diagnostic Checking 

(1) Ljung-Box Test for Autocorrelation 

Instead of visual inspection of the sample autocorrelation plot, more formally, we 

can apply the Ljung-Box test (Ljung and Box, 1978) to the residual series to check for 

autocorrelation. 

 Suppose we have the first L autocorrelation values                     from 

any ARMA (p, q) process. For a fixed sufficiently large L, the usual Ljung-Box Q 

statistic is given by 

         
   
    

     
   

 

   

          

 

Where, N is the number of sample size, L is the number of lags being tested. 

   
     is the squared sample autocorrelation of residual series      at lag k.  

Under the null hypothesis that residuals are independently distributed,        

                   . the test statistic Q follows the chi-square distribution with 

(L-p-q) degree of freedom. For significance level α, the critical region for rejection of 

the hypothesis of randomness is         
        , where       

          is 

the (1- α) quantile of the           distribution. 

(2) Shapiro-Wilk Test for Normality 

The residuals from ARIMA model should be normally distributed. We can check 

the normality assumption by using the Shapiro-Wilk test. The Shapiro–Wilk test was 

published in 1965 by Samuel Sanford Shapiro and Martin Wilk. This was the first test 

that was able to detect departure from normality due to either skewness or kurtosis, or 

http://en.wikipedia.org/wiki/Significance_level
http://en.wikipedia.org/wiki/Critical_region
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both. It has become the preferred test because of its good power properties (Mendes 

and Pala, 2003). The test statistic is: 

  
        

 
     

          
   

 

Where:  

     is the ith order statistic, i.e., the ith-smallest number in the sample;  

                is the sample mean 

The constants    are given by           
     

              
 
 

where            
 , and        are the expected values of the order 

statistics of independent and identically distributed random variables sampled 

from the standard normal distribution,  

V is the covariance matrix of those order statistics.  

The null-hypothesis of this test is that the population is normally distributed. 

The user may reject the null hypothesis if W is below a predetermined threshold. Or if 

the p-value is less than the chosen alpha level, then the null hypothesis is rejected and 

there is evidence that the data tested are not from a normally distributed population. 

(3) Jarque-Bera Test for Normality 

The Jarque-Bera test is a goodness of fit measure of departure from normality 

(Jarque and Bera, 1980), which is based on the sample kurtosis (k) and skewness(s). 

The test statistics Jarque-Bera (JB) is defined as  

   
 

 
    

      

 
        

  

Where n is the number of observations and k is the number of estimated 

parameters. The statistic JB has an asymptotic chi-square distribution with 2 degrees 
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of freedom, and can be used to test the hypothesis of skewness being zero and excess 

kurtosis being zero, since sample from a normal distribution have expected skewness 

of zero and expected excess kurtosis of zero. 

 (4) Test for Homoskedasticity 

Volatility (i.e. time-varying variance) clustering, in which large changes tend to 

follow large changes, and small changes tend to follow small changes, has been well 

recognized in financial time series. This phenomenon is called the conditional 

heteroskedasticity, and can be modeled by autoregressive conditionally 

heteroskedasticity (ARCH) type models, including the ARCH model proposed by 

Engle (1982) and the later extension GARCH (generalized ARCH) model proposed by 

Bollerslev (1986), etc. Accordingly, when a time series exhibits the autoregressive 

conditionally heteroskedasticity, we say it has the ARCH effect or GARCH effect.  

McLeod and Li (1983) proposed a formal test for ARCH effect based on the 

Ljung-Box test. It tests whether the first L autocorrelations for the squared residuals 

are collectively small in magnitude. 

Similar to the Ljung-Box test, for fixed sufficiently large L, the Ljung-Box Q-

statistic of McLeod-Li test is given by  

         
   
     

     
   

 

   

      

Where, N is the number of sample size, L is the number of lags being tested. 

   
      is the squared sample autocorrelation of squared residual series at lag k.  

Under the null hypothesis that no ARCH effect in the data, the test statistic Q 

follows the chi-square distribution with (L) degree of freedom. For significance 

http://en.wikipedia.org/wiki/Significance_level


 

39 

 

level α, the critical region for rejection of the null hypothesis is         
    , where 

      
      is the (1- α) quantile of the       distribution. 

3.3 Construct and Validate an ARMAX Model 

ARIMAX model is combining the predictive value of both ARIMA model and 

the predictive value of external variables. For example, if a set of external variables 

serving as independent variables in a multiple regression are all significant, and the 

residuals are white noise, and then there would be no need for ARIMAX modeling. 

However, if the residuals have significant serial correlation, then ARIMAX model 

would be required to overcome time effects problem by adding some Auto- 

Regressive (AR) and Moving Average (MA) terms. 

Traditionally, an ARIMAX model starts with a regression model. Then errors 

from the regression model are modeled with AR and MA term to remove serial 

correlation. Actually, this two steps process is not that simple. For example, when an 

additional external variable is added into an ARIMAX model, very likely, it will 

disrupt the white noise pattern of residuals from the previous ARIMAX model. On the 

other hand, adding in new AR and/ or MA terms may cause external variable(s) to be 

statistically insignificant.  

Prewhitening 

Let       be the time series that we want to predict (or forecast), and let       be 

the covariate time series used to improve the forecasting performance. 

When both series are auto correlated, it is very difficult to evaluate the linear 

association between them. Therefore, creating an ARIMAX model requires an 

additional step to remove autocorrelations among external variables.  

http://en.wikipedia.org/wiki/Critical_region
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This step is called “prewhitening”.  The series     , perhaps modeled with an 

ARIMA(p,d,q) is first written according to its representation and then pre-filter the 

series itself:               
              . By using the same filter, we 

“prewhiten” the Y series and then evaluate the CCF. 

Once we were able to demonstrate that there is a significant correlation between 

two series after the pre-whitening process, we can estimate a regression model. When 

the residuals are still autocorrelated, we can expand the regression model adding an 

ARIMA structure. The resulting model is called ARIMAX. 

Residuals Diagnostic Checking 

The Ljung-Box test can be used to statistically evaluate the degree to which the 

residuals are serially correlated. If a model fit well, the residuals should not be 

correlated. If significant serial correlation exists among the residuals, it may be 

reduced by adding an appropriate combination of one or more significant AR and/or 

MA terms identified from the PACF and ACF, respectively. 

The normality check can be done by the Shapiro-Wilk test. The QQ plot and the 

histogram plot will also be produced. 

3.4 Construct and Validate a VAR Model 

Building a VAR model involves three steps: (1) Check for co-integration. If the 

time series are co-integrated, then Vector Error Correction Model (VECM) needs to be 

applied. (2) Use some information criteria to identify the lag.  (3) Use Portmanteau 

test for autocorrelation; apply Jarque-Bera Test for normality; choose ARCH test for 

homoskedasticity. 
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Co-integration 

When modeling several unit-root non-stationary time series jointly, one may 

encounter the case of co-integration, which means two or more series that contain unit 

roots are related. For example, if      and      are co-integrated then the VAR model is 

not the most suitable representation for analysis because the co-integrating relations 

are not explicitly apparent. 

A simple but instructive test for co-integration is the two step procedure proposed 

by Engle and Granger (1987). In the first step, fit with the following regression model: 

                , then a univariate unit root test, such as ADF test will be 

performed on the residuals     .  Once the null hypothesis of a unit root has been 

rejected, the second step is to specify a Vector Error Correction Model (VECM), 

which run on the first differenced variables.  

Corresponding to VAR(p), the VECM(p-1) form is written as: 

                                      

Where   is the differencing operator,              . To specify a VECM 

model, the lag order, the co-integration rank has to be determined. 

The other common used test for co-integration is Phillips- Ouliaris test. Peter C. 

B. Phillips and Sam Ouliaris (1990) show that residual-based unit root tests applied to 

the estimated cointegrating residuals do not have the usual Dickey–Fuller distributions 

under the null hypothesis of no-cointegration.  Because of the spurious regression 

phenomenon under the null hypothesis, the distribution of these tests have asymptotic 

distributions that depend on (1) the number of deterministic trend terms and (2) the 

http://en.wikipedia.org/w/index.php?title=Sam_Ouliaris&action=edit&redlink=1
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number of variables with which co-integration is being tested. These distributions are 

known as Phillips–Ouliaris distributions and critical values have been tabulated. 

Lag Length Selection 

Before we can estimate a VAR model for the series we must specify the order p. 

The lag length for the VAR(p) model may be determined using model selection 

criteria. The general approach is to fit VAR(p) models with orders p = 1, ..., pmax and 

choose the value of p which minimizes some model selection criteria. Model selection 

criteria for VAR(p) models have the form 

         Σ                  

Where Σ                
  

     is the residual covariance matrix without a 

degrees of freedom correction from a VAR(p) model.      is a sequence indexed by 

the sample size T; and        is a penalty function which penalizes large VAR(p) 

models. The three most common information criteria are the Akaike (AIC), Schwarz-

Bayesian (BIC) and Hannan-Quinn (HQ, 1979): 

          Σ      
 

 
    

          Σ      
   

 
    

         Σ      
      

 
    

The AIC criterion asymptotically overestimates the order with positive 

probability, whereas the BIC and HQ criteria estimate the order consistently under 

fairly general conditions if the true order p is less than or equal to pmax. The key 

difference between the criteria is how severely each penalizes increases in model 
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order. For more information on the use of model selection criteria in VAR models see 

Lutkepohl (1991) chapter four. 

Multivariate Portmanteau test 

In time series analysis, a version of portmanteau test is available for testing for 

autocorrelation in the residuals of a model. It tests whether any of a group of 

autocorrelations of the residual time series are different from zero. This test is the 

Ljung–Box test. The univariate Ljung-Box test has been generalized to the 

multivariate case by Hosking (1980, 1981) and Li and McLeod (1981). For a 

multivariate series, the null hypothesis is                and the alternative 

hypothesis                            . Thus the statistic is used to test that 

there are no auto- and cross-correlations in the vector series    . The test statistic 

assumes the form  

         
 

   
      

    
         

   

 

   

 

Where T is the sample size, k is the dimension of    , and tr(A) is the trace of the 

matrix A, which is the sum of the diagonal elements of A. under the null hypothesis 

and some regularity conditions,       follows asymptotically a chi-squared 

distribution with k
2
m degrees of freedom. 

Impulse Response Function (IRF) 

Generally, an impulse response refers to the reaction of any dynamic system in 

response to some external change. In particular, VAR‘s impulse responses mainly 

examine how the dependent variables react to shocks from each independent variable. 

Lutkepohl and Reimers (1992) stated that the traditional impulse response analysis 

http://en.wikipedia.org/wiki/Time_series_analysis
http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Ljung%E2%80%93Box_test
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requires orthogonalization of shocks. And the results vary with the ordering of the 

variables in the VAR. The higher correlations between the residuals are, the more 

important the variable ordering is. In order to overcome this problem, Pesaran and 

Shin (1998) developed the generalized impulse response functions which adjust the 

influence of a different ordering of the variables on impulse response functions.  

More detailed, if everything else stays constant, the (i,j) element of the matrix     

identifies the impact of a unit increase in the j-th variable’s error (or innovation shock) 

at time t for the value of i-th variable at time t+k. Plotting these functions for different 

values of k can be very helpful to  determine how individual shocks affect forecasts. R 

can calculate them easily and provide MC and bootstrap error bands. 

3.5 Software 

All analyses in this thesis are performed using the open source Software R for 

MS-Windows (version 64X 3.1.2). Additional library packages were used:  TSA, 

tseries, urca, vars, MTS, MVN, and forecast. 
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CHAPTER 4 

 

UNIVARIATE TIME SERIES MODELING 

 

4.1Data Description 

Three data are involved in this thesis:  the seasonally adjusted U.S. national 

unemployment rate (UR), the seasonally adjusted job openings (JOB), and the 

seasonally adjusted initial claim for unemployment insurance (IC). 

As mentioned in chapter 2, the JOB data are available from Dec 2000 to Dec 

2014, and the release date of JOB data has two months lag. In align with the JOB data 

I pick the UR and the IC data from Feb 2001 to Feb 2015. Therefore, we have three 

time series datasets: {Ut} for UR, {Jt-2} for JOB and {It} for IC, and they have same 

released period from Feb 2001 to Dec 2014. In this thesis, I choose data released from 

Feb 2001 to Jun 2014 for in sample model estimation, and leave 8 months data from 

Jul 2014 to Feb 2015 for the out of sample forecasting comparison.  

 Table 4.1 The descriptive statistics for UR, JOB and IC 

Data Obs. Mean Std. Dev. Median Min Max Skew Kurtosis Shapiro-Wilk 

UR 167 6.56 1.75 5.90 4.20 10.00 0.57 -1.05 P<0.01 

JOB 167 3.69 0.65 3.69 2.15 5.27 -0.17 -0.56 P=0.1098 

IC 167 1.55 0.30 1.48 1.12 2.62 1.35 1.92 P<0.01 

 

Table 4.1 reports the descriptive statistics for UR, JOB and IC. The UR and IC 

data are right-skewed distributed, they are non-normal (Reject Shapiro-Wilk test at 1% 

level). The JOB data look normal with a p-value of 0.1098. 
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Figure 4.1: Seasonally adjusted Unemployment Rate (UR), Job Openings (JOB) 
& Initial Claim (IC) (From Feb 2001 to Oct 2014) 

 

In Figure 4.1, we can see UR and JOB are fare symmetric; and UR and IC have 

very similar up and down movements.  

Table 4.2 Correlation of UR, JOB and IC 

Correlation UR JOB IC 

UR 1.0000 -0.7928 0.6442 

JOB -0.7928 1.0000 -0.7503 

IC 0.6442 -0.7503 1.0000 

 

From Table 4.2, we can see that correlation between JOB and UR is very high (-

0.7928), even higher than the correlation between IC and UR (0.6442). As we know, 

IC is a well-known indicator for UR. It suggests that the JOB data has a very good 

potential to be a good indicator for predicting UR. 
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4.2 Constructing an ARIMA Model for the UR data 

Unit root test for UR 

Montgomery et al. (1998) concluded that the UR had no consistent trend at all, 

and they used ARIMA model as a benchmark model for forecasting the UR. In this 

thesis, I will also apply ARIMA model to the UR data. 

Before proceeding with the estimation of an ARIMA model, I check the 

stationarity of the UR data by performing unit root tests. Augmented Dickey-Fuller 

test with GLS de-trending (ADF-GLS) is suggested by Elliott et al. (1996). This test is 

similar to the standard ADF test but it applies GLS de-trending before the series is 

tested with the ADF test. Compared with the standard ADF test, ADF-GLS test has 

the best overall performance in terms of small sample size and power.  

Table 4.3 Unit Root Test for UR 

ADF-GLS with a Constant Test 

Variable test Stat. Test Result 

Ut -1.0912 Has Unit Root 

Ut-Ut-1 -2.0395 Stationary 

log(Ut) -0.9339 Has Unit Root 

logit(Ut) -0.9442 Has Unit Root 

Notes: Critical values at 1, 5, 10% are -2.58 -1.94 -1.62 

In Table 4.3, I report the unit root test results by performing ADF-GLS with a 

constant Test for the series Ut, Ut-Ut-1, log(Ut) and logit(Ut), where           

     
      

        
 . The log(Ut) and logit(Ut) are suggested by Koop and Potter (1999) to 

make the series unbounded. Looking at the Ut, log(Ut) and logit(Ut), they all fail to 

reject the null hypothesis of having unit root at 10% significant level. For Ut-Ut-1, it 

shows the stationarity. The test statistic -2.0395 is small than 5% critical value -1.94; 

so it rejects the null hypothesis at 5% significant level. 
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Montgomery et al. (1998) applied first differences of UR to build ARIMA model 

as a benchmark model. From the above ADF-GLS test results and following previous 

researches, I choose first differences of the UR to build up Benchmark ARIMA model. 

Constructing an ARIMA Model 

After a time series has been stationarized by differencing, next step, I will check 

how many AR or MA terms are needed to correct autocorrelations. 

 

Figure 4.2 Plots of First Differences of UR data, and related ACF and PACF 

Figure 4.2 show the graph of the first differences of UR data (Diff.UR) and the 

related ACF and PACF plots. ACF plot tails off gradually after lag 5, PACF plot also 

cuts off after lag 5, which give us the sign of both AR and MA term are needed to 

remove the autocorrelation. As a result, I choose p=6 and q=6 as the maximum lag 

length to find the best model for Diff.UR. 

In order to select the best model ARIMA model for Diff.UR, I start with a very 

short lag model ARIMA(1,1,1) and then successively add one lag separately for AR or 

MA term until it reaches maximum lag length 6 for both AR and MA, which is 
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ARIMA(6,1,6). Among the total 36 ARIMA models, I find ARIMA(4,1,2) comes with 

the lowest AIC and BIC. 

Table 4.4 AIC and BIC for ARIMA model selection 

Model AIC BIC 

ARIMA(4,1,1)                     -153.65 -135.20 

ARIMA(4,1,2)                     -159.16 -137.63 

ARIMA(4,1,3)                     -150.66 -126.05 

ARIMA(3,1,2)          -153.14 -134.69 

ARIMA(5,1,2)                     -154.98 -130.38 

 

Table 4.4 shows the AIC and BIC for model ARIMA(4,1,2) and the models with 

one lag difference in AR and MA term. The ARIMA(4,1,2) has lowest AIC (-159.16) 

and the lowest BIC (-137.63). Since both AIC and BIC happen to agree, the choice of 

model ARIMA(4,1,2) is clear.  

Table 4.5 shows the parameter statistics of model ARIMA(4,1,2). Except AR3 (P-

value=0.3052), the other coefficients for AR1, AR2, AR4, MA1, MA2 are all 

significant different from 0. Do we need to remove AR3 due to the not statistically 

significant? It is conventional in dynamic analysis that if we determine the appropriate 

lag length to be q, we usually include all lags between 0 and q. It would be very 

unusual to encounter an economic model in which, for example,      and      would 

affect     , but      would not. Therefore we would not usually omit      as a 

regressor even if its coefficient is not statistically significant (Parker, 2014).  

Table 4.5 Parameters Statistics of model ARIMA(4,1,2) for UR 

Parameter Estimate s.e. t Value Pr > |t| 

AR1 1.8228 0.0770 23.6727 < 0.0001 

AR2 -1.0051 0.1624 -6.1890 <0.0001 

AR3 -0.1678 0.1637 -1.0250 0.3052 

AR4 0.2558 0.0790 3.2380 0.0012 

MA1 -1.7095 0.0325 -52.6000 < 0.0001 

MA2 1.0000 0.0347 28.8184 <0.0001 



 

50 

 

 

As a result, for UR, the ARIMA(4,1,2) model is created as below: 

                                               

                                     (4.1) 

   
   0.01938. 

Diagnostic Check for ARIMA(4,1,2)  

After the model (model 4.1) being chosen for the UR data, we can test whether 

the residuals can meet white noise assumptions, as the residuals from the selected 

ARIMA(4,1,2) model are assumed to be independent, homoscedastic, and usually 

normally distributed.  

 
Figure 4.3 Plot of residuals from ARIMA(4,1,2) and the residuals’ ACF plot 

 

 
Figure 4.4 Normal QQ Plot and Histogram of residuals from ARIMA(4,1,2) 
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In Figure 4.4, almost all the points are laid on the line in Normal QQ plot; and the 

shape of the Histogram appears “Bell Shaped” curve. So the residuals of the fitted 

model can be referred as normal. 

Instead of visual inspection of the sample autocorrelation plot, more formally, we 

can apply the Ljung-Box test to the residual series to check for autocorrelation and we 

can use the Shapiro-Wilk test for the normality. For ARCH effect, we choose McLeod 

and Li test.  

Table 4.6 Independent and normality test for residuals of ARIMA(4,1,2) 

 
Residuals of ARIMA(4,1,2) 

Test   Ljung-Box test Shapiro-Wilk normality test 

H0 residuals are independent  residuals are normal distributed 

Test Stat. X-squared = 9.6663 W = 0.9946 

P-value  P-value = 0.1394 (df=6) P-value = 0.8234 

 

In Table 4.6, Box-Ljung test fails to reject the null hypothesis of independence 

with a P-value of 0.1394. Shapiro-Wilk normality test fails to reject the null 

hypothesis of normality at P-value of 0.8234. 

 
 

Figure 4.5 McLeod and Li test for residuals of ARIMA(4,1,2) 

 

In Figure 4.5, McLeod and Li test fails to reject the null hypothesis of no ARCH 

effect with P-values > 0.1 for all the lags from 1 to 12. 

In conclusion, the residuals from fitted model are independent and normal 
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distributed, so the UR data can be well represented by ARIMA(4,1,2) model. 

4.3 Constructing an ARIMAX Model with the JOB data 

Creating an ARIMAX model follows the same steps as for an ARIMA model. 

The Box-Jenkins methodology of model specification, estimation of parameters, and 

diagnostic check applies to ARIMAX models as well as ARIMA models. There is an 

additional step added to remove autocorrelations among external variables. This step 

is called prewhitening and is necessary when an external predictor is autocorrelated. 

Prewhitening of the UR data with the JOB data 

When “prewhitening”, the series     , perhaps modeled with an ARIMA(p,d,q) is 

first written according to its representation and then pre-filter the series itself:     

          
              . By using the same filter, we “Prewhiten” the Y 

series and then evaluate the Cross-Correlation Function (CCF). 

As we mentioned in Chapter 3, in reality, the release date of JOB data has two 

months lag, so we choose JOB at time t-2 (JOBt-2)as an external variable to predict UR 

at time t (URt) and construct ARIMAX model. 

 

Figure 4.6 CCF Plot of the prewhitened URt and JOBt-2 data 

 

Figure 4.6 shows there are significant correlations between two series in after the 

pre-whitening process, so we can start to estimate a simple regression model. 
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Table 4.7 linear regression model for URt with JOBt-2 as an external variable 

lm(formula = URt ~ JOBt-2) 

 Parameter Estimate Std. Error t value Pr(>|t|) 

(Intercept) 14.9544 0.487 30.71 < 0.0001 

JOBt-2 -2.2911 0.1313 -17.44 <0.0001 

 

Table 4.7 shows a simple linear regression model by using JOBt-2 as an external 

variable to predict URt:  

                               (4.2) 

Figure 4.7 shows that the residuals from the regression model (model 4.2) are still 

auto-correlated, it is appropriate to expand the regression model by adding an ARIMA 

structure to construct ARIMAX model. In Figure 4.7, the ACF plot tails off gradually, 

PACF plot cuts off after lag 3. As a result, I choose p=6 and q=6 as the maximum lag 

length to find the best ARIMAX model. 

 

Figure 4.7 Plots of the residuals of (model 4.2), and related ACF and PACF. 
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Unit Root Test for Residuals from Model 4.2  

Before proceeding with estimation of ARIMAX model, I am checking the 

stationarity of the residuals of model 4.2 by performing ADF unit root tests. 

Table 4.8 Unit Root Test for residuals of model 4.2 

ADF Test (alternative hypothesis: stationary) 

Variable Test Stat. P-value 

Residuals of model 4.2 -3.6745 0.02863 

 

In Table 4.8, The ADF unit root test result rejects the null hypothesis of having a 

unit root with p-value of 0.02863. The residuals are stationary, so we don’t need to 

apply any transformation for data UR and JOB. 

Model Selection 

The UR and JOB data are all seasonally adjusted, so it is not necessary to add the 

seasonal term into ARIMAX model. To select the best ARIMAX model, I start with a 

very short lag model ARIMAX(1,0,1) and then successively add one lag separately for 

AR or MA term until it reaches maximum lag length 6 for both AR and MA, which is 

ARIMAX(6,0,6). Among the total 36 ARIMA models, I find ARIMAX(6,0,0) comes 

with the lowest AIC and BIC. 

Table 4.9 AIC and BIC of ARIMAX model for URt with JOBt-2 

Model AIC BIC 

ARIMAX(5,0,0) -145.90 -124.33 

ARIMAX(6,0,0) -158.60 -133.95 

ARIMAX(7,0,0) -156.78 -129.05 

ARIMAX(6,0,1) -156.84 -129.11 

 

Table 4.9 shows the AIC and BIC for model ARIMAX(6,0,0) and the models with 

one lag difference in AR and MA term. The ARIMAX(6,0,0) has the lowest AIC (-

158.60) and the lowest BIC (-133.95). Since both AIC and BIC happen to agree, the 

choice of model ARIMAX(6,0,0) is clear.  
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Table 4.10 shows the parameter statistics of model ARIMAX(6,0,0), we can also 

call it ARX(6). Even though AR2, AR3, AR4 not statistically significant, as Parker 

suggested (2014), we would usually not omit them. 

Table 4.10 Parameters Statistics of model ARX(6) for URt with JOBt-2 

Parameter Estimate S.E. t Value Pr > |t| 

AR1 1.1465 0.0752 15.2460 < 0.0001 

AR2 0.0349 0.1164 0.2998 0.764 

AR3 -0.1381 0.1183 -1.1674 0.243 

AR4 -0.0184 0.1217 -0.1512 0.8799 

AR5 0.2657 0.1216 2.1850 0.0289 

AR6 -0.3029 0.0768 -3.9440 <0.0001 

Intercept 6.6451 0.8400 7.9108 < 0.0001 

JOBt-2 -0.1316 0.0555 -2.3712 0.0177 

 

As a result, the ARX(6)-JOB t-2 model is created as below: 

                                                 

                                 +                     (4.3) 

   
   0.01909. 

Diagnostic Check for Model ARX(6)-JOB t-2 

After the model 4.3 being chosen for URt data, with JOBt-2 data as an external 

variable, we can test whether the residuals can meet white noise assumptions. 

 
Figure 4.8 Plot of residuals of ARX(6)-JOB t-2 and the residuals’ ACF plot 
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Figure 4.8 show the plot of residuals from selected model ARX(6)-JOB t-2. The 

ACF plot shows no “Statistically Significant” correlation appears. 

 

Figure 4.9 Normal QQ Plot and Histogram of Residuals of Model ARX(6)-JOB t-2 

 

In Figure 4.9, almost all the points are laid on the line in Normal QQ plot; and 

the shape of the Histogram appears “Bell Shaped” curve. So the residuals of the fitted 

model can be referred as normal. 

Table 4.11 Independent and normality test for residuals of ARX(6)-JOB t-2 

 
Residuals of ARX(6)-JOB t-2 

Test Ljung-Box test Shapiro-Wilk normality test 

H0 residuals are independent residuals are normal distributed 

Test Stat. X-squared = 4.9288 W = 0.9941 

P-value p-value = 0.5530 (df=6) p-value = 0.7609 

 

In table 4.11, for Box-Ljung test, the null hypothesis of independence fail to be 

rejected (p-value =0.553). Shapiro-Wilk test has a test statistics of W=0.9941, leading 

to a P-value of 0.7609, and fails to reject the null hypothesis of normality.  

In conclusion, the residuals from fitted model are independent and normal 

distributed. So the UR data can be well represented by model ARX(6)-JOB t-2. 
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4.4 Constructing an ARIMAX Model with the IC data 

Two models have been well constructed in Chapter 4.2 and 4.3: an benchmark 

model ARIMA(4,1,2) for UR,  and an ARX(6)-JOB t-2 model for UR with JOB t-2  as 

an external variable. As mentioned in Chapter 3, IC is a well known indicator for UR 

prediction. For a better comparison, I am constructing an ARIMAX model with IC as 

an external variable. 

Prewhitening of the UR data with the IC data 

Comparing to the UR data, the release date of IC data has no lag; so we choose IC 

at time t (ICt) as an external variable to predict UR at time t (URt) and construct an 

ARIMAX model. 

Figure 4.10 shows there are significant correlations between two series after the 

pre-whitening process, so we can start to estimate a regression model. 

 

Figure 4.10 CCF Plot of the prewhitened URt and ICt data 
 

Table 4.12 shows the simple linear regression model by using ICt as an external 

variable to predict URt:                                   (model 4.4) 

Table 4.12 linear regression model for URt with ICt as an external variable 

lm(formula = URt ~ ICt) 

 Parameter Estimate Std. Error  t value  Pr(>|t|) 

(Intercept) 0.4744 0.5815 0.816 0.416 

ICt 3.9166 0.3665 10.687 <0.001 
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Figure 4.11 Plots of the residuals of (model 4.4), and related ACF and PACF 
 

Figure 4.11 shows that the residuals from the regression model (model 4.4) are 

auto-correlated; the ACF plot tails off gradually, PACF plot cuts off after lag 1. 

Therefore, time series model would be appropriate to remove the autocorrelation 

among the residuals. 

Unit Root Test for the Residuals from Model 4.4  

Before proceeding with estimation of ARIMAX model, I am checking the 

stationarity of the residuals of model 4.4 by performing ADF unit root tests. 

Table 4.13 Unit Root Test for the residuals of model 4.2 

ADF Test (alternative hypothesis: stationary) 

Variable Test Stat. P-value 

Residuals of model 4.2 -2.0232, 0.5666 

First Differences of Residuals -3.8764 0.01705 

 

0 50 100 150

-2
0

2

Plot of model Residuals (mod.res) )

Index

m
o
d
.r

e
s

5 10 15 20

0
.0

0
.6

Autocorrelation Function Plot of mod.res

Lag

A
C

F

5 10 15 20

0
.0

0
.6

Lag

P
a
rt

ia
l 
A

C
F

Partial Autocorrelation Function Plot of mod.res



 

59 

 

In Table 4.13, The ADF unit root test results for the residuals from model 4.4 fail 

to reject the null hypothesis of having a unit root with p-value of 0.5666. But first 

differences of the residuals reject the null hypothesis with p-value of 0.01705. So the 

first differences of the residuals are stationary. The integrated model will be applied. 

Now we can start to expand the regression model by adding an ARIMA structure to 

construct ARIMAX model. I also choose p=6 and q=6 as the maximum lag length to 

find the best ARIMAX model. 

Model Selection 

In order to select the best ARIMAX model, I start with a very short lag model 

ARIMAX(1,1,1) and then successively add one lag separately for AR or MA term 

until it reaches maximum lag length 6 for both AR and MA, which is 

ARIMAX(6,1,6). Among the total 36 ARIMA models, ARIMAX(4,1,5) comes with 

the lowest AIC, and ARIMAX(4,1,4) comes with the lowest BIC. 

 
Table 4.14 AIC and BIC of ARIMAX model for UR with IC 

Model AIC BIC 

ARIMAX(3,1,5) -162.72 -134.99 

ARIMAX(4,1,5) -166.36 -135.55 

ARIMAX(5,1,5) -164.4 -130.5 

ARIMAX(4,1,4) -165.66 -137.93 

ARIMAX(4,1,6) -162.78 -128.88 

 

Table 4.14 shows the AIC and BIC for model selection. The ARIMAX(4,1,5) has 

the lowest AIC (-166.36) and but ARIMAX(4,1,4) has the lowest BIC (-137.93). In 

this thesis, both models will be selected in the Chapter 6 for forecasting comparison. 

Table 4.15 and 4.16 show the parameter statistics of model ARIMAX(4,1,4)-ICt and 

model ARIMAX(4,1,5)-ICt separately. 
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Table 4.15 Parameters Statistics of model ARIMAX(4,1,4)-ICt 

Parameter Estimate S.E. t Value Pr > |t| 

AR1 0.7151 0.1139 6.278314 <0.0001 

AR2 0.0171 0.0956 0.17887 0.8834 

AR3 0.6392 0.0906 7.055188 <0.0001 

AR4 -0.5595 0.1063 -5.26341 <0.0001 

MA1 -0.6774 0.1168 -5.79966 <0.0001 

MA2 0.1847 0.052 3.551923 0.01617 

MA3 -0.8336 0.0577 -14.4471 0.321 

MA4 0.8427 0.141 5.976596 <0.0001 

ICt 0.566 0.1445 3.916955 <0.0001 

 
Table 4.16 Parameters Statistics of model ARIMAX(4,1,5)-ICt 

Parameter Estimate S.E. t Value Pr > |t| 

AR1 0.5228 0.1647 3.174256 0.0015 

AR2 0.1051 0.0962 1.092516 0.2749 

AR3 0.6195 0.0761 8.140604 <0.0001 

AR4 -0.4969 0.1214 -4.09308 <0.0001 

MA1 -0.4276 0.1761 -2.42817 0.0152 

MA2 0.0287 0.0991 0.289606 0.7722 

MA3 -0.7588 0.0694 -10.9337 <0.0001 

MA4 0.6689 0.143 4.677622 <0.0001 

MA5 0.2124 0.1233 1.722628 0.0848 

ICt 0.5652 0.1277 4.425998 <0.0001 

 

As a result, ARIMAX(4,1,4)-ICt model is created as below: 

                                                        

                                                 (4.5) 

   
   0.01789 

ARIMAX(4,1,5)-ICt model is created as below: 

                                                         

                                                         (4.6) 

   
    0.01754 

 

Diagnostic Check for Model ARIMAX(4,1,5)-ICt   

The residuals of model ARIMAX(4,1,4)-ICt and ARIMAX(4,1,5)-ICt both show 
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the white noise pattern and fit the model assumption of independent and normal 

distributed. For simlicity, the diagnostic procedure of ARIMAX(4,1,5)-ICt will be 

demonstrated as an example. 

 
Figure 4.12 Plot of residuals of ARIMAX(4,1,5)-ICt and the residuals’ ACF plot 

 
Figure 4.13 Normal QQ Plot and Histogram of residuals of ARIMAX(4,1,5)-ICt 

 

Figure 4.12 shows the plot of residuals from selected model ARIMAX(4,1,5)-

ICt. The ACF plot shows no statistically significant correlation appears. 

In Figure 4.13, almost all the points are laid on the line in Normal QQ plot; and 

the shape of the histogram appears “Bell Shaped” curve. So the residuals of the fitted 

model ARIMAX(4,1,5)-ICt can be considered approximately normal. 
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Table 4.17 Independent and normality test for residuals of ARIMAX(4,1,5)-ICt 

 
Residuals of ARIMA(4,1,5)  

Test   Ljung-Box test Shapiro-Wilk normality test 

H0 residuals are independent  residuals are normal distributed 

Test Stat. X-squared = 4.5857 W = 0.9946 

P-value  p-value = 0.2048 (df=3) p-value = 0.824 

 

In table 4.17, Box-Ljung test fails to rejectthe null hypothesis of independence 

with P-value =0.2048. Shapiro-Wilk normality test has a test statistics of W=0.9946, 

leading to a P-value of 0.824, and fails to reject the null hypothesis of normality. 

These confirm that the residuals from fitted model ARIMAX(4,1,5)-ICt are 

independent and normal distributed.  

4.5 Constructing an ARIMAX Model with JOB & IC data  

In this section, both JOB and IC will be added in ARIMAX model for UR 

forecasting. In Chapter 4.3 and 4.4, it has been shown that there are correlations 

between UR and JOB, and between UR and IC after the pre-whitening process.  

Following, I can start to estimate a regression model.  

 Table 4.18 linear regression model for URt with ICt and JOBt-2 as external variables 

lm(formula = URt ~ ICt+ JOBt-2) 

 Parameter Estimate Std. Error  t value  Pr(>|t|) 

(Intercept) 13.0263 1.2536 10.391 <0.0001 

JOBt-2 -2.0563 0.1921 -10.707 <0.0001 

ICt 0.6862 0.4115 1.668 0.0974 

 

Table 4.20 shows the linear regression model by using JOBt-2 and ICt as an 

external variable to predict URt:  

                                         (4.7) 
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Figure 4.14 Plots of the residuals of (model 4.7), and related ACF and PACF. 

 

Figure 4.14 shows that the residuals from the regression model (model 4.7) are 

auto-correlated, the ACF plot tails off gradually, PACF plot cuts off after lag 3.  

Unit Root Test for Residuals from Model 4.7  

Before proceeding with estimation of ARIMAX model, the stationarity of the 

residuals of model 4.7 is checked by performing ADF unit root tests. 

Table 4.19 Unit Root Test for residuals of model 4.7 

ADF Test (alternative hypothesis: stationary) 

Variable Test Stat. P-value 

Residuals of model 4.6 -3.264 0.07967 

First Differences of Residuals -6.2585 <0.01 

 

In Table 4.19, The ADF unit root test result for the residuals from model 4.6 

rejects the null hypothesis of having a unit root at a 0.10 significant level. To avoid 

over-differencing, ARMAX model is first selected. I also choose p=6 and q=6 as the 

maximum lag length to find the best ARMAX model. 
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Model Selection 

In order to select the best ARMAX model, I start with a very short lag model 

ARMAX(1,1) and then successively add one lag separately for AR or MA term until it 

reaches maximum lag length 6 for both AR and MA, which is ARIMAX(6,6). Among 

the total 36 ARIMA models, I find ARMAX(6,0), or ARX(6) comes with the lowest 

AIC and BIC (Table 4.20). 

Table 4.20 AIC and BIC of ARIMAX model for UR with JOB and IC 

Model AIC BIC 

ARMAX(5,0) -148.7 -124.05 

ARMAX(6,0) -164.36 -136.63 

ARMAX(7,0) -162.76 -131.95 

ARMAX(6,1) -162.76 -131.95 

 

Table 4.21 shows the parameter statistics of model AR(6). Both external variables 

JOB and IC are statistically significant at 5% level and 1% level. 

 
Table 4.21 Parameters Statistics of model ARX(6) with JOB & IC 

Parameter Estimate S.E. t Value Pr > |t| 

AR1 1.0866 0.0782 13.89514 < 0.01 

AR2 0.0898 0.114 0.787719 0.4308 

AR3 0.1503 0.1137 1.3219 0.1863 

AR4 0.0437 0.1193 0.366303 0.7142 

AR5 0.248 0.117 2.119658 0.03408 

AR6 -0.3302 0.0758 -4.3562 <0.01 

Intercept 5.9564 0.8542 6.973074 <0.01 

JOBt-2 -0.1198 0.0553 -2.16637 0.0303 

ICt 0.4243 0.1516 2.798813 <0.01 

 

As a result, ARX(6)-JOB&IC model is created as below: 

                                              

                                                         (4.8) 

   
   0.01819. 
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Diagnostic Check for Model ARX(6)-JOB&IC  

After the model 4.8 being chosen with the JOB and IC data as external data, we 

can test whether the residuals can meet white noise assumptions.  

 
Figure 4.15 Plot of residuals from ARX(6)-JOB & IC and the residuals’ ACF plot 

 

Figure 4.15 shows the plot of residuals from selected model ARX(6)-JOB & IC. 

The ACF plot shows no “Statistically Significant” correlation appears. 

 
Figure 4.16 Normal QQ Plot and Histogram of residuals of model ARX(6)-JOB&IC 

 

In Figure 4.16, almost all the points are laid on the line in Normal QQ plot; and 

the shape of the Histogram appears “Bell Shaped” curve. So the residuals of the fitted 

model can be considered approximately normal. 
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Table 4.22 Independent and normality test for residuals of ARX(6)-JOB&IC 

 
Residuals of ARX(6)-JOB&IC 

Test   Ljung-Box test Shapiro-Wilk normality test 

H0 residuals are independent  residuals are normal distributed 

Test Stat. X-squared = 7.3821 W = 0.9947 

P-value  P-value = 0.287(df=6) P-value = 0.835 

 

In table 4.22, Box-Ljung test fails to reject the null hypothesis of independence  at 

P-value of 0.2048. Shapiro-Wilk normality test has a test statistics of W=0.9946, 

leading to a P-value of 0.824, and fails to reject the null hypothesis of normality.  

In conclusion, the residuals from fitted model ARX(6)-JOB&IC are independent 

and normal distributed. So the UR data can be well represented by model ARX(6)-

JOB&IC. 

4.6 ARIMAX Model Attempt with 1 month and 3 months Lag JOB data  

 

According to the Dice-DFH Vacancy Duration Measure, in 2014, U.S. employers 

are taking about 25 working days, on average, to fill vacant positions (Davis, 2014). 

Some positions may be filled sooner; some may need more time to be filled. In 

Chapter 4.3 an ARX(6)-JOB t-2 model has been well built for UR with JOB t-2 as a 

external variable. JOB with 1 month (JOB t-1) and 3 months lag (JOB t-3) will be 

interests. Also, a half number of JOB data from t-2 with a half number of JOB data 

from t-3 is constructed as JOB t-2&3. ARMAX model will be attempted with JOB t-3 or 

JOB t-2&3 as an external data for UR forecasting. 

Same as data JOB t-2, after “pre-whitening”, there are significant correlations 

between JOB t-1 and URt. The residuals from the simple regression model 

“lm(UR~JOB)” show auto-correlated, so it is appropriate to construct ARIMAX 

model. With the lowest AIC (-153.56) and BIC (-138.15), ARMAX(2,1) model is 



 

67 

 

selected. The P-value of t test is 0.3334 for JOB t-3, which means coefficient of JOBt-3 is 

0.4538, not significant different from 0. As a result, model ARMAX(2,1) - JOBt-1 is not 

selected in Chapter 6 for forecasting comparison. 

For data JOB t-3, after going through the same model constructing procedure as 

JOB t-2, with the lowest AIC (-151.91) and BIC (-127.25), ARX(6) model is selected. 

The P-value of t test is 0.3334 for JOB t-3, which means coefficient of JOBt-3 is not 

significant different from 0. As a result, model ARX(6)- JOBt-3 is not selected in 

Chapter 6 for forecasting comparison. 

For data JOB t-2&3, after going through the same model constructing procedure as 

JOB t-2, with the lowest AIC (-153.01) and BIC (-128.35), ARX(6) model is selected. 

The P-value of t test is 0.1536 for JOB t-2&3, which means coefficient of JOB t-2&3 is not 

significant different from 0. As a result, model ARX(6)- JOB t-2&3 is not selected in 

Chapter 6 for forecasting comparison. 
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CHAPTER 5 

 

MULTIVARIATE TIME SERIES MODELING 

  

In Chapter 4, a univariate time series ARIMA model have been built as a 

benchmark model for the UR data. Considering the JOB and IC as external data, 

several ARIMAX model have been successfully constructed. In this chapter, the UR, 

JOB and IC data will be observed over time from one system.  

As mentioned in Chapter 2, the release date of JOB data has two months lag in 

reality. When we have Dec 2104 UR and IC index, only Nov 2014 JOB data are 

available. In order to fit the real data availability, JOBt-1 is chosen along with the URt 

and the ICt for the VAR modeling. For doing so, I also choose the JOB data from Jan 

2001 to May 2014, in align with UR and IC data from Feb 2001 to Jun 2014, 

5.1 Bivariate VAR modeling with JOB data 

 

In Table 5.1, both the Ut and JOBt-1 data are showed as unit root non-stationary. 

But their first differences are showed as stationary series. 

 Table 5.1 Unit Root Test for URt and JOBt-1 

ADF-GLS Test with a Constant  

Variable test Stat. Test Result 

Ut -1.0912 Has Unit Root 

JOBt-1 -0.9033 Has Unit Root 

Notes: critical values at 1, 5, 10% are -2.58 -1.94 -1.62 

When modeling these two unit root time series jointly, there may be the case of 

co-integration, which means two series that contain unit roots may be related.   

In Table 5.2, Engle and Granger’s two steps procedures are first applied, the ADF 

test results fail to reject the null hypothesis of estimated residuals having unit root with 
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a p-value of 0.4976 and 0.1848. Phillips-Ouliaris Cointegration test also fails to reject 

the null hypothesis of these two time series are not co-integrated with a p-value greater 

than 0.15. 

Table 5.2 Cointegration Test for URt and JOBt-1 

Engle and Granger Two Steps Procedure 
Phillips-Ouliaris 

 Cointegration Test Augmented Dickey-Fuller Test 

Model: lm(JOB~UR) Model: lm(UR~JOB) 

P-value=0.4136 P-value=0.1061 P-value > 0.15 

 

 

Lag Length Selection 

Before we can estimate a VAR model for the Ut and JOBt-1 series, the order p 

must be specified. The lag length for the VAR(p) model will be determined by using 

three most common information criteria: the Akaike (AIC), the Schwarz-Bayesian 

(BIC) and the Hannan-Quinn (HQ). 

Table 5.3 VAR order selection for the URt and JOBt-1 series 

Criteria 1 2 3 4 5 6 

AIC(n) -7.16 -7.41 -7.54 -7.54 -7.60 -7.69 

HQ(n) -7.10 -7.31 -7.41 -7.38 -7.41 -7.46 

BIC(n) -7.01 -7.17 -7.23 -7.15 -7.13 -7.14 

 

In table 5.3, the AIC criteria and HQ criteria prefer n=6 as the optimal lag 

number, the BIC criteria prefer n=3 as the optimal lag number. The Jarque-Bera 

multivariate-normality test results show that residuals of VAR(3) model reject the null 

hypothesis of normality with a p-value less than 0.0001, while VAR(6) model fails to 

reject the null hypothesis of normality with a p-value=0.4925. Therefore, VAR(6) 

model is chosen for further analysis. Table 5.4 shows the estimation results for 

equation URt, table 5.5 shows the estimation results for equation JOBt-1.  
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Table 5.4 Estimation results for equation UR of model VAR(6)-UR&JOB 

Parameter Estimate S.E. t Value Pr > |t| Sig. 

UR.l1 1.0816 0.0820 13.1890 0.0000 *** 

JOB.l1 -0.2109 0.0819 -2.5760 0.0110 * 

UR.l2 0.0117 0.1192 0.0980 0.9217   

JOB.l2 0.0661 0.0835 0.7910 0.4305   

UR.l3 -0.1458 0.1202 -1.2130 0.2271   

JOB.l3 -0.0840 0.0863 -0.9740 0.3319   

UR.l4 -0.0017 0.1212 -0.0140 0.9886   

JOB.l4 -0.0324 0.0860 -0.3770 0.7069   

UR.l5 0.1918 0.1225 1.5650 0.1198   

JOB.l5 -0.0856 0.0818 -1.0460 0.2974   

UR.l6 -0.1801 0.0844 -2.1320 0.0347 * 

JOB.l6 0.2723 0.0739 3.6820 0.0003 *** 

const 0.4772 0.3389 1.4080 0.1613   

trend 0.0009 0.0006 1.5210 0.1304   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 

Table 5.5 Estimation results for equation JOB of model VAR(6)-UR&JOB 

Parameter Estimate S.E. t Value Pr > |t| Sig. 

UR.l1 -0.2023 0.0882 -2.2940 0.0233 * 

JOB.l1 0.2978 0.0881 3.3810 0.0009 *** 

UR.l2 -0.0117 0.1282 -0.0910 0.9273   

JOB.l2 0.2472 0.0898 2.7520 0.0067 ** 

UR.l3 0.0807 0.1293 0.6240 0.5335   

JOB.l3 0.3237 0.0928 3.4890 0.0007 *** 

UR.l4 -0.2503 0.1303 -1.9210 0.0568 . 

JOB.l4 -0.0618 0.0925 -0.6680 0.5049   

UR.l5 0.2164 0.1318 1.6420 0.1028   

JOB.l5 0.0048 0.0880 0.0540 0.9570   

UR.l6 0.1044 0.0908 1.1500 0.2520   

JOB.l6 -0.0181 0.0795 -0.2280 0.8203   

const 1.0548 0.3644 2.8950 0.0044 ** 

trend 0.0015 0.0006 2.3110 0.0223 * 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Using notation U=UR, J=JOB, VAR(6)-URt&JOBt-1 model can be showed as : 
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    (5.1) 

 

  

Figure 5.1 Plot of residuals and related ACF plots of model VAR(6)- URt&JOBt-1 

 

Figure 5.1 show the plots of residuals and the ACF plots of the model residuals. 

Plots show no apparent sign of autocorrelation. 

Instead of visual inspection of the residuals, more formally, we can apply the JB 

test for normality. In order to check for autocorrelation, we choose the Portmanteau 

Test. For ARCH effect, we choose the ARCH-LM test. 

Table 5.6 Test for Residuals of VAR(6)- URt&JOBt-1 

Test for Residuals of VAR(6)- URt&JOBt-1 

Test  JB Test for normality 
Portmanteau Test for 
autocorrelation 

 ARCH-LM (multivariate) 

H0 
Residuals are normal 
distributed 

Residuals are not 
autocorrelated  

Residuals has no ARCH 
effect 

Test Stat. Chi-squared = 3.4047 Chi-squared = 41.7378 Chi-squared = 60.314 

DF df=4 df=40 df=45 

P-value p-value = 0.4925 p-value = 0.3952 p-value = 0.0631 

 

In table 5.6, the JB- test fails to reject the null hypothesis of normality. The 

Portmanteau test fails to reject the null hypothesis of autocorrelation at 10% level. The 

ARCH test shows no significant ARCH effect at α=0.05 level. So VAR(6) model is a 

good fit for data UR and JOB. 
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In following further analyses, an R package for assessing multivariate normality 

(Package MVN) is used to provide a graphical approach, such as chi-square Q-Q plot. 

In Package MVN, Royston’s test uses the Shapiro-Wilk/Shapiro-Francia statistic to 

test multivariate normality (Korkmaz, 2015). One may use the “qqplot = TRUE” 

option in “roystonTest” function to create a chi-square Q-Q plot for multivariate 

normality. Figure 5.2 shows almost all the points are laid on the line in QQ plot. 

Royston's Multivariate normality test fails to reject the null hypothesis of normality 

with a P-value of 0.3704. 

 

Figure 5.2 Chi-square Q-Q plot of residuals of VAR(6)- URt&JOBt-1 

 

In table5.7, Granger causality test results show that the null hypotheses are both 

rejected at 0.01 significant level, we can believe that UR do granger-cause JOB, and 

JOB do granger-cause UR as well. 

 Table 5.7 Granger causality test for model VAR(6)-URt&JOBt-1 

Granger causality H0:  Test Stat. D.F. Pr > |t| 

UR do not Granger-cause JOB F-Test = 3.4779 (6, 282) 0.0025 

JOB do not Granger-cause UR F-Test = 5.6090 (6, 282) 1.62E-05 

 

The impulse response function of VAR is to analysis dynamic affects of the 

system when the model received the impulse. As our VAR model, we have UR and 
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JOB two variables. In Figure 5.3, the left graph is the impulse response from UR. UR 

responses positively and keeps increasing from 1 to 10 months. JOB responses 

negatively and keeps decreasing from 1 to 10 months. 

The right graph is the impulse response from JOB. UR responds negatively and 

decreases gradually from 1 to 10 months. JOB responds positively and it has a 

response bottom in the first month, and is fare persistent from 2 to 10 months. 

 

Figure 5.3 Plots of Impulse response function from UR and JOB 

 

5.2 Bivariate VAR modeling with IC data 

 

In Table 5.8, the Ut data are unit root non-stationary. While, the ICt data are 

showed as stationary series. 

 Table 5.8 Unit Root Test for URt and ICt 

ADF-GLS Test with a Constant  

Variable Test Stat. Test Result 

Ut -1.0912 Has Unit Root 

ICt -2.0376 Stationary 

Notes: critical values at 1, 5, 10% are -2.58 -1.94 -1.62 

In Table 5.9, Engle and Granger’s two steps procedures are first applied, the ADF 

test results fail to reject the null hypothesis of estimated residuals having unit root with 
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a p-value of 0.5666 and 0.3811. Phillips-Ouliaris Cointegration test also fails to reject 

the null hypothesis of these two series are not co-integrated with a p-value > 0.15. 

 Table 5.9 Cointegration Test for URt and ICt 

Engle and Granger Two Steps Procedure 
Phillips-Ouliaris 

 Cointegration Test Augmented Dickey-Fuller Test 

Model: lm(UR~IC) Model: lm(IC~UR) 

P-value=0.5666 P-value=0.3811 P-value > 0.15 

 

Lag Length Selection 

Before we can estimate a VAR model for the URt and ICt series, the order p must 

be specified. In table 5.10, the HQ criteria and the BIC criteria prefer n=1, the AIC 

criteria prefer n=4 as the optimal lag number. Following, please see the estimation 

results for both VAR(4) and VAR(1) models. 

Table 5.10 VAR order selection for the URt and ICt series 

Criteria 1 2 3 4 5 6 

AIC(n) -9.3728 -9.4013 -9.3853 -9.4195 -9.4149 -9.3844 

HQ(n) -9.3090 -9.3056 -9.2577 -9.2600 -9.2235 -9.1611 

BIC(n) -9.2157 -9.1657 -9.0712 -9.0268 -8.9437 -8.8346 

 

Table 5.11 shows the VAR(4) estimation results for equation URt. Table 5.12 

shows the VAR(4) estimation results for equation ICt. In both equations, estimates of 

coefficients for lag 1 and lag 4 are significant different from 0. 

Table 5.11 Estimation results for equation UR of model VAR(4)-URt&ICt 

Parameter Estimate S.E. t Value Pr > |t| Sig. 

UR.l1 0.7953 0.0873 9.1130 0.0000 *** 

IC.l1 0.7848 0.1597 4.9150 0.0000 *** 

UR.l2 0.0192 0.1095 0.1750 0.8611   

IC.l2 0.2260 0.2051 1.1020 0.2723   

UR.l3 -0.0567 0.1116 -0.5080 0.6124   

IC.l3 -0.0757 0.2016 -0.3760 0.7078   

UR.l4 0.1423 0.0836 1.7020 0.0908 . 

IC.l4 -0.2765 0.1612 -1.7150 0.0884 . 

const -0.4625 0.0912 -5.0730 0.0000 *** 

trend 0.0014 0.0005 3.0050 0.0031 ** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 5.12 Estimation results for equation IC of model VAR(4)-URt&ICt 

Parameter Estimate S.E. t Value Pr > |t| Sig. 

UR.l1 0.1200 0.0481 2.4930 0.0138 * 

IC.l1 0.8457 0.0881 9.6030 0.0000 ***  

UR.l2 -0.0629 0.0604 -1.0410 0.2995   

IC.l2 0.0967 0.1131 0.8550 0.3941   

UR.l3 0.0285 0.0616 0.4630 0.6441   

IC.l3 -0.0717 0.1112 -0.6450 0.5201   

UR.l4 -0.0810 0.0461 -1.7570 0.0810 . 

IC.l4 0.0170 0.0889 0.1910 0.8488   

const 0.1385 0.0503 2.7550 0.0066 ** 

trend 0.00001 0.00025 0.0530 0.9581   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Using notation U=UR, IC=I, VAR(4)-URt&ICt model can be showed as : 

 

                                                         

                                                      
 

                                                         

                                                 
      

 

         
              
              

    (5.2) 

 
Table 5.13 Estimation results for equation UR of model VAR(1)-URt&ICt 

Parameter Estimate S.E. t Value Pr > |t| Sig. 

UR.l1 0.9011 0.0127 71.1770 0.0000 *** 

IC.l1 0.5894 0.0584 10.0870 0.0000 *** 

const -0.3830 0.0594 -6.4450 0.0000 *** 

trend 0.0016 0.0004 4.1590 0.0001 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 5.14 Estimation results for equation IC of model VAR(1)-URt&ICt 

Parameter Estimate S.E. t Value Pr > |t| Sig. 

UR.l1 -0.0139 0.0070 -1.9850 0.0489 * 

IC.l1 1.0242 0.0324 31.6050 0.0000 *** 

const 0.0329 0.0330 0.9970 0.3202 
 

trend 0.00024 0.00201 1.1760 0.2413 
 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Table 5.13 shows the VAR(1) estimation results for equation URt. Table 5.14 

shows the VAR(1) estimation results for equation ICt. In both equations, estimates of 
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coefficients for lag 1 are significant different from 0. 

Using notation U=UR, IC=I, VAR(1)-URt &ICt model can be showed as : 

 

                                             
 

                                               
 

         
              
              

    (5.3) 

 

I will choose both VAR(1) and VAR(4) model for URt & ICt in Chapter 6 for 

model comparison. For simplicity, in following analyses, I only use VAR(1)-URt &ICt 

model to demonstrate the procedures of the model estimation and validation. 

  

Figure 5.4 Plots of residuals and related ACF plots of model VAR(1)-URt&ICt 

 

Figure 5.4 shows the plot of residuals and the ACF plots of the model residuals. 

Residuals for UR are within 0.2 range, but some residuals for IC are over 2.0 range. 

ACF Plots both show no apparent sign of autocorrelation. 

Instead of visual inspection of the residuals, we apply the JB test for normality, 

the Portmanteau test for autocorrelation, the ARCH-LM test for ARCH effect,  
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Table 5.15 Test for Residuals of VAR(1)-URt&ICt 

Test for Residuals of VAR(1)-URt&ICt 

Test  JB Test for normality 
Portmanteau Test for 
autocorrelation 

 ARCH-LM (multivariate) 

H0 
Residuals are normal 
distributed 

Residuals are not 
autocorrelated  

Residuals has no ARCH 
effect 

Test Stat. Chi-squared = 199.41 Chi-squared =65.0733 Chi-squared = 46.4824 

DF df=4 df=60 df=45 

P-value p-value < 2.2e-16 p-value = 0.3046 p-value = 0.4111 

 

In table 5.15, the JB- test rejects null hypothesis of normality with a p-value < 

0.0001.  The Portmanteau test fails to reject the null hypothesis of autocorrelation with 

a p-value of 0.3046. The ARCH test shows no ARCH effect. Since the residuals are 

not bi-normal distributed, the further investigation is needed.  

 

Figure 5.5 Chi-square Q-Q plot of residuals of VAR(1)-URt&ICt 

Figure 5.5 shows chi-square Q-Q plot for multivariate normality generated by 

“roystonTest” function in R MVN package. It shows that some points are laid out of 

the line in QQ plot. Royston's multivariate normality test also rejects the null 

hypothesis of normality with a p-value < 0.0001.  

In order to fit the multivariate normality assumption, Structural VAR models and 

Vector ARMA models have been tried. But all those models’ residuals do not fit the 
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normality assumption either.  

As noted by several authors (Burdenski, 2000 ; Stevens, 2012), if data have a 

multivariate normal distribution, then each of the variables have a univariate normal 

distribution; but the opposite does not have to be true. Hence, checking univariate 

plots could be very useful to diagnose the reason for deviation from multivariate 

normality.  

As seen in Figure 5.6, almost all the residuals from UR model are laid in the line 

in QQ plot, whereas some residuals from IC model are laid out of the line. 

 

Figure 5.6 Univariate QQ plots for residuals from model IC and UR 
 

 

Figure 5.7 Histograms with normal curves for residuals from model IC and UR 

In Figure 5.7, the residuals from URt model have approximately normal 

distributions, whereas the residuals from ICt model have a right-skewed distribution. 
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Thus, we can conclude that problems with multivariate normality arise from the 

skewed distribution of residuals from IC model. Since my interest in this thesis is for 

UR forecasting, and the VAR model for UR&IC is created as a referencing model, 

therefore VAR(1)-UR&IC and VAR(4)-UR&IC would still be included in Chapter 6 

for forecasting comparison. 

Table 5.16 Granger causality test for model VAR(1)-URt&ICt 

Granger causality H0: Test Stat. D.F. Pr > |t| 

UR do not Granger-cause IC F-Test = 3.9405 (1, 312) 0.04801 

IC do not Granger-cause UR F-Test = 101.75 (1, 312) < 2.2e-16 

 

Table 5.16 shows that the null hypothesis IC do not Granger-cause UR is rejected 

with a p-value lower than 0.0001. It proves that IC does Granger-cause UR. While null 

hypothesis of UR do not Granger-cause IC is also rejected at 5% significant level with 

a p-value of 0.048. 

 

Figure 5.8 Plots of Impulse response function from UR and IC 

In Figure 5.8, the left graph is the impulse response from UR. UR responses 

positively and is fare persistent around 0.14 from 1 to 10 months. IC responses also 
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positively and decreases very slowly. The right graph is the impulse response from IC. 

UR responds also positively, and keeps increasing from 1 to 10 months. IC responses 

positively and is fare persistent around 0.06. 

5.3 Trivariate VAR modeling with both JOB and IC 

When considering the URt , JOBt-1 and ICt data together in one system, the PO 

test is first checked. The test result fails to reject the null hypothesis of non co-

integration with p-value > 0.15. 

Table 5.17 VAR order selection for the URt , JOBt-1 & ICt series 

Criteria 1 2 3 4 5 6 

AIC(n) -13.00 -13.17 -13.21 -13.20 -13.22 -13.23 

HQ(n) -12.89 -12.98 -12.95 -12.87 -12.81 -12.75 

BIC(n) -12.71 -12.70 -12.56 -12.38 -12.22 -12.05 

 

In Table 5.17, the BIC criteria prefer n=1, the HQ criteria prefer n=2 and the AIC 

criteria prefer n=6 as the optimal lag number.  

For the best BIC selected Trivariate VAR(1) model, the JB- test rejects the null 

hypothesis of normality with a p-value smaller than 0.0001. The Granger causality test 

fails to reject the null hypothesis of “JOB do not Granger-cause UR IC” with a p-value 

= 0.5719. Therefore, Trivariate VAR(1) is not a good fit.   

For the best HQ selected Trivariate VAR(2) model, the JB- test rejects the null 

hypothesis of normality with a p-value smaller than 0.0001. The Granger causality test 

also fails to reject the null hypothesis of “JOB do not Granger-cause UR IC” with a p-

value = 0.1955. Therefore, Trivariate VAR(2) is not a good fit.  

For the best AIC selected Trivariate VAR(6) model, the Granger causality test 

rejects the null hypothesis of “JOB do not Granger-cause UR IC” with a p-value < 

0.01. Hence, Trivariate VAR(6) is chosen for further investigation. 
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In table 5.18, the JB- test rejects the null hypothesis of normality with a p-value 

smaller than 0.0001, which is similar to the Bivariate VAR model for URt & ICt . The 

Portmanteau test fails to reject the null hypothesis of autocorrelation with a p-value of 

0.3644. The ARCH test shows no ARCH effect. Since the residuals are not 

multivariate normal distributed, the further investigation is needed. 

Table 5.18 Test for Residuals of VAR(6)- URt , JOBt-1 & ICt 

Test for Residuals of VAR(6)-UR,JOB & IC 

Test  JB Test for normality 
Portmanteau Test for 
autocorrelation 

 ARCH-LM (multivariate) 

H0 
Residuals are normal 
distributed 

Residuals are not 
autocorrelated  

Residuals has no ARCH 
effect 

Test Stat. Chi-squared =54.985 Chi-squared =94.0454 Chi-squared =197.9173 

DF df=6 df=90 df=180 

P-value p-value < 0.0001 p-value = 0.3644 p-value = 0.1712 

 
 
 

Table 5.19 Estimation results for equation UR of Trivariate VAR(6) 

Parameter Estimate S.E. t Value Pr > |t| Sig. 

UR.l1 0.7998 0.0904 8.8480 <0.0001 *** 

JOB.l1 -0.1192 0.0768 -1.5510 0.1232   
IC.l1 0.7306 0.1650 4.4280 <0.0001 *** 

UR.l2 0.0202 0.1089 0.1850 0.8534   
JOB.l2 0.0690 0.0781 0.8830 0.3786   
IC.l2 0.1597 0.2053 0.7780 0.4380   
UR.l3 -0.0639 0.1096 -0.5830 0.5610   
JOB.l3 -0.1389 0.0805 -1.7250 0.0868 . 

IC.l3 0.0155 0.2044 0.0760 0.9397   
UR.l4 0.0336 0.1105 0.3040 0.7619   
JOB.l4 -0.0381 0.0805 -0.4730 0.6367   
IC.l4 -0.4711 0.2047 -2.3010 0.0229 * 

UR.l5 0.2358 0.1124 2.0990 0.0377 * 

JOB.l5 -0.0511 0.0764 -0.6680 0.5050   
IC.l5 -0.1035 0.1988 -0.5210 0.6034   
UR.l6 -0.1032 0.0886 -1.1650 0.2460   
JOB.l6 0.2656 0.0698 3.8040 0.0002 *** 

IC.l6 0.1605 0.1597 1.0050 0.3168   
const -0.2882 0.3916 -0.7360 0.4631   
trend 0.0012 0.0006 1.9500 0.0533 . 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 5.20 Estimation results for equation JOB of Trivariate VAR(6) 

Parameter Estimate S.E. t Value Pr > |t| Sig. 

UR.l1 -0.0091 0.1034 -0.0870 0.9304   

JOB.l1 0.2392 0.0879 2.7220 0.0073 ** 

IC.l1 -0.5901 0.1887 -3.1270 0.0022 ** 

UR.l2 -0.0134 0.1246 -0.1070 0.9147   

JOB.l2 0.2559 0.0894 2.8620 0.0049 ** 

IC.l2 -0.1075 0.2348 -0.4580 0.6477   

UR.l3 0.0050 0.1254 0.0400 0.9683   

JOB.l3 0.3720 0.0921 4.0400 0.0001 *** 

IC.l3 0.1428 0.2338 0.6110 0.5423   

UR.l4 -0.2844 0.1264 -2.2500 0.0261 * 

JOB.l4 -0.0584 0.0921 -0.6350 0.5267   

IC.l4 0.3471 0.2341 1.4830 0.1405   

UR.l5 0.1869 0.1285 1.4540 0.1483   

JOB.l5 -0.0209 0.0874 -0.2390 0.8113   

IC.l5 -0.1262 0.2274 -0.5550 0.5799   

UR.l6 0.0628 0.1013 0.6190 0.5367   

JOB.l6 -0.0202 0.0799 -0.2520 0.8012   

IC.l6 0.0980 0.1827 0.5360 0.5927   

const 1.4288 0.4479 3.1900 0.0018 ** 

trend 0.0015 0.0007 2.2830 0.0240 * 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 

Table 5.21 Estimation results for equation IC of Trivariate VAR(6) 

Parameter Estimate S.E. t Value Pr > |t| Sig. 

UR.l1 0.1445 0.0517 2.7970 0.0059 ** 

JOB.l1 -0.0482 0.0439 -1.0980 0.2744   

IC.l1 0.7991 0.0943 8.4720 0.0000 *** 

UR.l2 -0.0731 0.0623 -1.1740 0.2424   

JOB.l2 0.0283 0.0447 0.6340 0.5270   

IC.l2 0.0663 0.1174 0.5650 0.5731   

UR.l3 0.0189 0.0627 0.3010 0.7640   

JOB.l3 -0.0916 0.0460 -1.9900 0.0486 * 

IC.l3 -0.1148 0.1169 -0.9830 0.3276   

UR.l4 -0.0018 0.0632 -0.0280 0.9776   

JOB.l4 -0.0301 0.0460 -0.6540 0.5143   

IC.l4 -0.0053 0.1170 -0.0450 0.9641   

UR.l5 -0.0369 0.0642 -0.5750 0.5664   

JOB.l5 0.0638 0.0437 1.4600 0.1467   

IC.l5 -0.0889 0.1136 -0.7820 0.4355   

UR.l6 -0.0383 0.0507 -0.7560 0.4512   

JOB.l6 0.0355 0.0399 0.8880 0.3761   

IC.l6 0.0630 0.0913 0.6900 0.4916   

const 0.4961 0.2239 2.2160 0.0284 * 

trend -0.00002 0.00034 -0.057 0.9547   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 5.19, 5.20, 5.21 show the Trivariate VAR(6) estimation results for equation 

UR, JOB and IC. Using notation U=UR, J=JOB, I=IC, this model is showed as: 

                                                         
                                            
                                            

                                            
                                

 

                                                            
                                            
                                            

                                            
                                  

 
 

                                                         
                                            
                                            

                                            
                                 

 

         
                   
                    
                   

    (5.4) 

 

  

Figure 5.9 Plots of residuals and related ACF plots of model VAR(6)-URt, JOBt-1 & ICt 
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Figure 5.9 shows the plot of residuals and the ACF plots of the model residuals. 

ACF Plots show no apparent sign of autocorrelation.  

 

Figure 5.10 Chi-square Q-Q plot of residuals of VAR(6)-URt, JOBt-1 & ICt 

Figure 5.10 shows chi-square Q-Q plot for multivariate normality generated by 

“roystonTest” function in R MVN package. It shows that some points are laid out of 

the line in QQ plot. The Royston's multivariate normality test also rejects the null 

hypothesis of normality with a p-value < 0.0001.  

Same as showed in the Table 5.18, the residuals of the Trivariate VAR(6) model 

are not multivariate normal distributed. In order to diagnose the reason of deviation 

from multivariate normality, the univariate plots are checked. 

As seen in Figure 5.11, almost all the residuals from UR and JOB equation are 

laid in the line in QQ plot, whereas, some residuals from IC equation are laid out of 

the line.  

In Figure 5.12, the residuals from UR and JOB equation have approximately 

normal distributions, whereas the residuals from IC model have a right-skewed 

distribution. Thus, we can conclude that problems with multivariate normality arise 

from the skewed distribution of residuals from IC equation. Since the main focus of 
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this thesis is for UR forecasting, therefore Trivariate VAR(6) model is appropriate to 

be included in Chapter 6 for forecasting comparison. 

 

Figure 5.11 Univariate QQ plots for residuals from equation UR, JOB and IC 

 

 

Figure 5.12 Histograms for residuals from equation UR, JOB and IC 

Table 5.22 shows that the null hypothesis JOB do not Granger-cause UR and IC 

is rejected with a p-value less than 0.01; and the null hypothesis IC do not Granger-

cause UR and JOB is rejected with a p-value less than 0.001, which prove that both 

JOB and IC do Granger-cause UR.  

Table 5.22 Granger causality test for model VAR(6)-URt, JOBt-1 & ICt 

Granger causality H0:  Test Stat. D.F. Pr > |t| 

UR do not Granger-cause JOB, IC F-Test = 1.5838 (12, 405) 0.0934 

JOB do not Granger-cause UR, IC F-Test = 2.2542 (12, 405) 0.0091 

IC do not Granger-cause UR, JOB F-Test = 4.3632 (1, 312) < 0.0001 
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Figure 5.13 Plots of Impulse response function from UR, JOB and IC 

In Figure 5.13, the left graph is the impulse response from UR. UR responses 

positively and keep increasing from 1 to 10 months. JOB responses negatively and 

keep decreasing from 1 to 10 months. IC responses also positively and it is fare 

persistent. 

The middle graph is the impulse response from JOB. UR responses negatively 

and keep decreasing from 1 to 10 months. JOB responds positively and it has a 

response bottom in the first month, and is fare persistent from 2 to 10 months. IC 

responses negatively and keep decreasing from 1 to 4 months, and then it is fare 

persistent from 5 to 10 months. 

The right graph is the impulse response from IC. UR responses positively and 

keep increasing from 1 to 10 months. JOB responses negatively and keep gradually 

decreasing from 1 to 10 months. IC responses also positively and it is fare persistent. 
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CHAPTER 6 

 

MODEL FORECASTING COMPARISON 

 

Along with a bench mark ARIMA model, 4 univariate ARIMAX models and 4 

multivariate VAR models have been constructed in Chapter 4 and Chapter 5 by using 

data from Feb 2001 to Jun 2014. Figure 6.4 shows the plots of all selected models. 

Both recursive and rolling forecasting comparison are applied to evaluate these 

models within the out of sample period (Jul 2014 to Feb 2015). For simplicity, in the 

following analyses, the models’ names (M1 ~M9) in Table 6.1 will be used as the 

notation of different models. 

Table 6.1 List of selected models 

Name Model Model # 

UR Actual UR Values ---------- 

M1 ARIMA(4,1,2) Model 4.1 

M2 ARX(6)--JOBt-2 Model 4.3 

M3 ARIMAX(4,1,5)--ICt Model 4.5 

M4 ARIMAX(4,1,4)--ICt Model 4.6 

M5 ARX(6)--JOBt-2 +ICt Model 4.8 

M6 VAR(6)--URt+JOBt-1 Model 5.1 

M7 VAR(1)--URt+ICt Model 5.2 

M8 VAR(4)--URt+ICt Model 5.3 

M9 VAR(6)--URt+JOBt-1+ICt Model 5.4 

 

6.1 Model Forecasting Methods and DM Test 

There are two types of forecasting methods: recursive forecasting and rolling 

forecasting. In recursive forecasting, a series of data is used to predict h times ahead. 

Each time a new value is collected the model needs to be re-estimated and the forecast 

updated. The rolling forecasting method involves a rolling window of size h that gets 

shifted each time a new value is collected.  
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For example: for an AR(1) model, the h times ahead recursive forecasting model 

can be showed as: 

 
                             

                         
  

With a fixed value t, there is only one predicted value for every step ahead 

recursive forecasting.  But in rolling forecasting, the value t is not fixed. Every time 

when t changes, there are a new set of h step(s) ahead forecasted values. With n 

different time t, for a specific step(s) h, there are n different forecasted values. 

After obtain a set of forecasting data from all models, the accuracy of all selected 

models can be compared by using Mean Square Forecast Error (MSFE), Mean 

Absolute Forecast Error (MAFE) and Diebold-Mariano (DM) test (1995). 

Mean Square Forecast Error (MSFE) 

     
 

 
         

 

 

   

 

Mean Absolute Forecast Error (MAFE) 

     
 

 
         

 

   

 

Where    is a vector of n forecasted values; Y is the vector of the true values; n is 

the size of the out-of-sample.  

Diebold-Mariano test (DM test) 

The DM test is test for the null of equal forecast accuracy between the benchmark 

and the competitor. The DM test is based on the loss differential between the 

benchmark (model 0) and its competitor (model k), i.e.        
      

  .To test the 

null of equal forecast accuracy             , the DM statistic is: 
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Where    is the average loss differential, P is the out of sample size, and      is 

the squared root of long run variance of   . The test statistics DM is asymptotically 

N(0, 1) distributed. 

6.2 Recursive Forecasting Results 

 

Recursive forecast simply adds more time to the initial forecast while keeping the 

same start date. The out-of-sample period is from Jul 2014 to Feb 2015 (Table 6.2). 

Table 6.3 shows the Absolute Forecasting Errors and their MAFE and MSFE. 

Table 6.2 Recursive forecasting results 

NAME Model Jul-14 Aug-14 Sep-14 Oct-14 Nov-14 Dec-14 Jan-15 Feb-15 

UR Actual Value 6.2 6.1 5.9 5.7 5.8 5.6 5.7 5.5 

M1 ARIMA(4,1,2) 6.0407 5.9952 6.0055 6.0288 6.0533 6.0612 6.0497 6.0227 

M2 ARX(6)--JOBt-2 6.0613 5.9983 5.8754 5.8085 5.7496 5.6980 5.6568 5.5989 

M3 ARIMAX(4,1,5)--ICt 6.0945 5.9510 5.8619 5.8239 5.7372 5.7181 5.7483 5.6313 

M4 ARIMAX(4,1,4)--ICt 6.0995 5.9470 5.8812 5.8297 5.7475 5.7375 5.7587 5.6495 

M5 ARX(6)--JOBt-2 +ICt 6.0738 5.9918 5.8710 5.7705 5.7236 5.6998 5.6663 5.5678 

M6 VAR(6)--URt+JOBt-1 6.0396 5.9288 5.7540 5.6580 5.5771 5.5652 5.5069 5.4882 

M7 VAR(1)--URt+ICt 6.1004 6.1125 6.1356 6.1690 6.2118 6.2632 6.3224 6.3887 

M8 VAR(4)--URt+ICt 6.1394 6.1008 6.0879 6.0725 6.0975 6.1267 6.1690 6.2151 

M9 VAR(6)--URt+JOBt-1+ICt 6.0866 6.0060 5.8103 5.6809 5.5903 5.5747 5.5057 5.4702 

 
 

Table 6.3 Absolute Forecasting Errors of Recursive Forecast Results 

NAME Model 
Jul- 

2014 
Aug-
2014 

Sep-
2014 

Oct- 
2014 

Nov-
2014 

Dec-
2014 

Jan- 
2015 

Feb-
2015 

MAFE MSFE 

M1 ARIMA(4,1,2) 0.1593 0.1048 0.1055 0.3288 0.2533 0.4612 0.3497 0.5227 0.2857 0.1035 

M2 ARX(6)--JOBt-2 0.1387 0.1017 0.0246 0.1085 0.0504 0.0980 0.0433 0.0989 0.0830 0.0082 

M3 ARIMAX(4,1,5)--ICt 0.1055 0.1490 0.0381 0.1239 0.0628 0.1181 0.0483 0.1313 0.0971 0.0109 

M4 ARIMAX(4,1,4)--ICt 0.1005 0.1531 0.0188 0.1297 0.0526 0.1375 0.0587 0.1495 0.1000 0.0123 

M5 ARX(6)--JOBt-2 +ICt 0.1262 0.1082 0.0290 0.0705 0.0764 0.0998 0.0337 0.0678 0.0764 0.0069 

M6 VAR(6)--URt+JOBt-1 0.1604 0.1713 0.1460 0.0420 0.2229 0.0348 0.1931 0.0119 0.1228 0.0208 

M7 VAR(1)--URt+ICt 0.0996 0.0125 0.2356 0.4690 0.4118 0.6632 0.6224 0.8887 0.4254 0.2590 

M8 VAR(4)--URt+ICt 0.0606 0.0008 0.1879 0.3725 0.2975 0.5267 0.4690 0.7151 0.3288 0.1594 

M9 VAR(6)--URt+JOBt-1+ICt 0.1134 0.0940 0.0897 0.0191 0.2097 0.0253 0.1943 0.0299 0.0969 0.0142 
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Figure 6.1 Recursive forecasted values of ARIMAX models (Jul 2014 - Feb 2015) 

 

 

Figure 6.2 Recursive forecasted values of VAR models (Jul 2014 - Feb 2015) 
 

In Figure 6.1 and Table 6.2 & 6.3, comparing to Benchmark model M1, all the 

ARIMAX models have better predicting power with much smaller MAFE and MSFE. 
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Comparing to IC related model M3 or M4, JOB related ARIMAX model M2 has 

better performance with smaller MAFE and MSFE. The model with lowest MAFE and 

MSFE is M5, which includes both IC and JOB as external variables. JOB related 

ARIMAX model M2 has second lowest MAFE and MSFE. 

In Figure 6.2 and Table 6.2 & 6.3, IC related VAR models (M7 and M8) fail to 

beat the benchmark model M1 with larger MAFE and MSFE, while JOB related VAR 

model M6 has better performance with lower MAFE and MSFE. The best VAR model 

is M9 including both JOB and UR. 

Comparing to the VAR models, all the ARIMAX models have better performance 

with much smaller MAFE or MSFE. The reason is that ARIMAX model forecasting 

needs the inputs of external data, but VAR model only based on the historical data. 

These actual external variables may somehow adjust the predicting errors in the 

forecasting process. Nevertheless, in the real world, it is impossible to have such 

future values ready for ARIMAX models when forecasting 2 or more steps ahead, 

while VAR models can easily forecast many steps ahead as needed. 

In Table 6.2, the recursive forecasting has only one sample for every step; but in 

rolling forecasting, we can have 8 predicted values for every step forecasting; so the 

average of all 8 forecast errors would be more helpful to evaluate the models. 

6.3 Rolling Forecasting Results 

A rolling forecast is a process ensures that the forecast always covers the same 

amount of time, so a rolling forecast window requires routine revisions. The out-of-

sample period is from Jul 2014 to Feb 2015. So we have 8 months actual UR values in 

hand. The rolling window is from 1 step ahead to 4 steps ahead. For each model, every 
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step forecasting will come with 8 predictions. By comparing the predicted value with 

the actual UR value, the Mean Squared Forecasting Error (MSFE, see Table 6.4) and 

Diebold-Mariano test (DM test, see Table 6.5) is also applied to compare the forecast 

accuracy between the benchmark model and the competitors. 

Table 6.4 Rolling forecast MSFE (Jul 2014-Feb 2015) 

NAME Model 
1 Step 
Ahead 

2 Steps 
Ahead 

3 Steps 
Ahead 

4 Steps 
Ahead 

M1 ARIMA(4,1,2) 0.0252 0.0442 0.0935 0.1161 

M2 ARX(6)--JOBt-2 0.0192 0.0132 0.0336 0.0257 

M3 ARIMAX(4,1,5)--ICt 0.0184 0.0204 0.0258 0.0317 

M4 ARIMAX(4,1,4)--ICt 0.0185 0.0212 0.0239 0.0355 

M5 ARX(6)--JOBt-2 +ICt 0.0158 0.0119 0.0219 0.0192 

M6 VAR(6)--URt+JOBt-1 0.0150 0.0112 0.0114 0.0396 

M7 VAR(1)--URt+ICt 0.0249 0.0366 0.0845 0.1686 

M8 VAR(4)--URt+ICt 0.0195 0.0250 0.0591 0.1163 

M9 VAR(6)--URt+JOBt-1+ICt 0.0130 0.0062 0.0102 0.0307 

 
 

Table 6.5 Rolling forecast DM one side test P-value (Jul 2014-Feb 2015) 

NAME Model 
1 Step 
Ahead 

2 Steps 
Ahead 

3 Steps 
Ahead 

4 Steps 
Ahead 

M1 ARIMA(4,1,2) Benchmark model 

M2 ARX(6)--JOBt-2 0.2113 0.1412 0.0763 0.0400 

M3 ARIMAX(4,1,5)--ICt 0.1729 0.2039 0.0296 0.0344 

M4 ARIMAX(4,1,4)--ICt 0.1401 0.1905 0.0143 0.0483 

M5 ARX(6)--JOBt-2 +ICt 0.0977 0.1587 0.0369 0.0182 

M6 VAR(6)--URt+JOBt-1 0.1169 0.1686 0.0265 0.2255 

M7 VAR(1)--URt+ICt 0.4819 0.2742 0.0000 0.7811 

M8 VAR(4)--URt+ICt 0.2438 0.1714 0.0000 0.5011 

M9 VAR(6)--URt+JOBt-1+ICt 0.1053 0.1557 0.0152 0.1684 

 

In Table 6.4, comparing to benchmark model M1, JOB related Bivariate VAR 

model M6 has much better forecasting power with much smaller MAFE in all steps 

ahead forecasting. Comparing to IC related VAR model M7 and M8, JOB related 

VAR model M6 also has better forecasting performance with smaller MAFE in all 

steps ahead forecasting. Among all the VAR models, the Trivariate VAR model M9 

has best forecasting power with the lowest MSFE in all 4 steps ahead forecasting.  

In Table 6.5, comparing to Benchmark model M1, the DM one side test results 
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show M5 and M9 is significantly greater with a p-value close to 0.10 for 1 steps ahead 

forecast. For 3 steps ahead forecast, all the models are significantly greater with a p-

value less than 0.05. 

Overall, comparing to benchmark model, JOB related Bivariate VAR model has 

much better predict power in UR forecasting. Comparing to the well known indicator 

IC related VAR models, the JOB related Bivariate VAR model has even better 

forecasting performance. The forecasting comparison results demonstrate that JOB 

index can improve UR forecasting accuracy, so it can be used as a good indicator. 

In addition, the best model with smallest MSFE is the trivariate VAR model 

including both JOB and IC. Figure 6.3 shows this best model’s recursive forecasting 

values with its 95% confident interval. In Figure 6.2, the JOB related model tends to 

under-predict UR, while IC related models tends to over-predict UR, therefore include 

both JOB and IC may moderate the variation of UR to reach the best forecasting 

results. 

 
 

Figure 6.3 Model M9 and its 95% confident interval (Jul 2014 - Feb 2015) 
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Figure 6.4 the fitted values of all the selected models 
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CHAPTER 7 

 

CONCLUSION 

 

This thesis is focusing on the UR forecasting. The main purpose is to introduce 

the potential indicator-- JOB data for UR forecasting. For a better comparison, a well 

known indicator-- IC data are also included. 

In order to forecast UR, an ARIMA model is firstly built as a benchmark model. 

By using JOB and IC as external inputs, four ARIMAX models have been well 

constructed.  Also, four multivariate VAR models are successfully created with UR, 

JOB and IC data. 

Recursive forecasting and rolling forecasting are both applied for model 

comparison along with Diebold-Mariano test (DM test).  

Comparing to benchmark model, all the JOB related VAR models have much 

better predict accuracy with much smaller MAFE and MSFE in all forecasting. 

Comparing to the well known indicator IC related VAR model, the JOB related 

Bivariate VAR model has even better forecasting with smaller MSFE in all steps 

ahead forecasting. The best model belongs to trivariate VAR model with smallest 

MSFE. 

In conclusion, JOB index can be a good indicator for UR prediction. When 

combining both the JOB and IC data, the UR forecasting accuracy can improve even 

more with smaller MSFE. Overall, the JOB index does have a big contribution to 

improvement of the UR forecasting. 
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