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ABSTRACT 

A theoretical analysis of the performance of InGaAsP multi-quantum well electro­

absorption modulators is presented. A comprehensive model of the quantum confined 

Stark effect is described to determine the absorption and index change spectra versus 

applied field. This model is based on previously developed models for GaAs/ AlGaAs 

structures, but includes improvements in the handling of exciton line broadening and the 

variation of exciton oscillator strength with field. 

The analysis of line broadening due to composition fluctuations is presented, 

revealing a previously neglected factor. Two numerical methods for calculating the line 

broadening, based on the resonant tunneling method, are presented and compared. A 

theoretical analysis of barrier composition fluctuation broadening is presented, which 

separately calculates the contribution from the electron and hole and their different 

penetration into opposite barriers when field is applied. The total linewidth model is 

compared with published linewidi:h measurements. 

Theoretical results of absorption spectra versus applied field were compared with 

two sets of experimental measurements. With appropriate choice of several unknown 

factors related to the quantum well fabrication quality, the theory and experimental data 

were \vell matched in shape of the absorption edge, shift of the edge with field, and 

decrease in the exciton oscillator strength with field. 

The theoretical model was used to optimize modulator device design, through the 

calculation of thousands of design combinations of device length, well number, well 

width, barrier width, well composition, and applied voltage. For each design, 



bandwidth, contrast ratio, loss, detuning, and several chirp parameters were calculated. 

It is shown that long distance transmission performance may be optimized with negative 

values of a specific chirp parameter called the 3dB Henry factor. Modulator design can 

be optimized for such values by operating close to the exciton and accepting high optical 

loss. Loss may be reduced by optimum choice of device length, well number, and 

barrier width, while it can be compensated by an optical amplifier. 

The optimum design changes considerably when the requirement for negative 

chirp is eliminated. Such designs use more quantum wells and tune the device further 

from the exciton. Finally, the model provides a means to choose the optimum well width. 
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PREFACE 

There has been considerable interest in the development of external modulator 

devices for optical communications. The conventional methods based on direct 

modulation of a diode laser's drive current tend to be limited by the laser's frequency 

chirp associated with the modulation. This chirp results in system bandwidth limitations 

through pulse dispersion in long fiber optic links. With external modulation the laser is 

operated in a continuous output mode and modulation is provided by an external electro­

optic modulator device. Laser chirp is eliminated and the system is limited instead by the 

lesser chirp introduced by the modulator. Elimination of the modulator function also 

allows optimization of the laser design for other performance aspects. 

A key contender for the role of external modulator is the multiple quantum well 

(MQW) electro-absorption modulators based on the quantum confined Stark effect 

(QCSE). These devices have demonstrated high data rate capability and sufficient 

contrast ratio and loss performance.1-3 Electro-absorption modulators operate at a 

wavelength which is in the transmissive wavelength region above the device's absorption 

edge in the "on" state. In the "off' state a voltage is applied which shifts the absorption 

edge and results in high absorption at the operating wavelength. With the QCSE the 

absorption edge of the semiconductor is considerably sharper or more abrupt with 

wavelength due to excitonic absorption. In a bulk semiconductor, Wannier excitons 

consist of an electron in the conduction band and a hole in the valence band which are 

bound together through their Coulomb interaction to form a state similar to a hydrogen 

atom. In a bulk semiconductor the excitons are seen only at low temperature and quickly 

disassociate with applied field. In a quantum well, the electrons and holes are confined in 

close proximity in one direction in the quantum well. The excitons persist at room 
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tennperature and with high fields applied perpendicular to the quantum well layers. As 

field is applied, the shape of the potential wells for electron and hole changes and the sub­

band levels within the well change. The result is that the energy of the exciton absorption 

shifts with applied field. This effect is known as the quantum confined Stark effect and it 

results in large movements of a sharp absorption edge, both aspects being conducive to 

good modulator performance. 

Historically, these modulators were first developed in the GaAs/AlGaAs material 

system for use at wavelengths near 0.8 µm.4-5 Given the importance of the low loss and 

low dispersion 1.3 µm and 1.55 µm communications windows in optical fiber, MQW 

modulator development for those wavelengths is necessary. The wavelength of 

absorption in such devices is a function of the semiconductor's bandgap and thus 

different material systems are required for operation at 1.3 and 1.55 µm. The quaternary 

In1-xGaxAsyP1-y system is a major contender. 

Quaternary semiconductor systems give additional degrees of design freedom, 

allowing separate optimization of both the well width and the well/barrier compositions. 

Initial work by Nojima and Wakita6 indicated that large well width leads to large exciton 

shift with field but decreased oscillator strength. It is very important to optimize this 

tradeoff as well as other tradeoffs of the various design parameters and performance 

factors. The potential appears to exist to greatly improve performance of InGaAsP MQW 

modulators through design optimization. 

An adequate theoretical model of the basic electroabsorption properties in 

InGaAsP quantum wells is required as a basis for this optimization. The quantum 

confined Stark effect was first described in the GaAs/ AlGaAs system by Miller et al. 4,5 

Since that time the theoretical treatment of the electroabsorption in that material system 

has Leer. extensively treated 7-17 and the best models describe the experimentally 

observed behavior quite well. In contrast, there have been few experimental 

measurements of InGaAsP MQW electroabsorption 18-21 and less work to theoretically 
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explain performance or to seek to optimize device performance.6,22-23 Qualitatively, the 

electroabsorption characteristics of InGaAsP MQWs are quite different from those of 

GaAs/AlGaAs MQWs and further from optimum. Exciton absorption peaks in InGaAsP 

are less prominent and fade or broaden quickly with field. Exciton linewidths are 

increased, giving a less sharp absorption edge. Modulator performance depends on the 

ab~oq.>tion change which can be achieved with a given voltage. It is enhanced by 

prominent, sharp exciton peaks. The observed broadening and fading of InGaAsP 

excitons leads to reduced, though still usable, performance. It is therefore necessary to 

explore the applicability of those theoretical models developed for GaAs/ AlGaAs to the 

InGaAsP system and to investigate modifications necessary to account for differences 

between the two systems. 

The objective of this work has been two-fold. The first objective has been to 

develop a theoretical model of electroabsorption in InGaAsP MQW modulators to serve 

as the basis for design optimization of such modulators. The goal has been to develop a 

model which balances the requirement for accurate reproduction of experimental 

measurements of the exciton peak and absorption edge, with the requirement for 

comp1~tational simplicity to enable multi-parameter device design optimization. The basic 

approach has been to make use of previous theoretical· work done for the GaAs/ AlGaAs 

system, extending or modifying it as necessary to account for differences with the 

InGaAsP system. Results have been compared to several published experimental studies 

of lnGaAsP devices and unpublished measurements available from Siemens researchers. 

The second objective is to use the theoretical model as part of a multiple parameter 

device design optimization. To date there has been very little published work to optimize 

device design and that which has appeared has made use of overly simplistic models for 

the electroabsorption.6,16,22-25 In addition, previous device optimization studies have 

focused on a limited number of performance parameters, usually some combination of 

bandwidth, drive voltage, loss, and extinction ratio. It is common to form composite 
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figures of merit from some of these performance parameters and to optimize the design 

for these figures of merit However, when the figures of merit leave out key 

performance parameters or place undo emphasis on some parameters, the implications of 

the design optimization become misleading. Two examples are illustrative. The use of 

fiber optic amplifiers allows higher modulator insertion loss in some important 

applications. Figures of merit which over-emphasize low loss may lead to wrong design 

choices. Also, there has been no published study which considered the modulator chirp 

performance as part of the device optimization, yet chirp performance is a key parameter 

in long distance, high bit rate communications and is the primary reason driving the use 

of external modulators in the first place. The work presented herein considers device 

optimization across a full range of performance parameters, including chirp performance. 

Chapter 1 presents a theoretical description of the unbounded conduction and 

valence band states and the exciton states in a quantum well (QW). Chapter 2 develops 

the theory for optical absorption associated with electron transitions between these states. 

Both continuum absorption due to unbounded states and exciton absorption is treated. 

Chapter 3 deals with the theoretical treatment of the various mechanisms responsible for 

line broadening in the QW electroabsorption. Chapter 4 combines results of the previous 

three chapters into a model of the absorption spectra and compares it with available 

experimental absorption spectra. Chapter 5 presents the model of the full MQW 

modulator device. Chapter 6 presents and discusses results of a multi-parameter design 

optimization. This program considered over 1400 design combinations at a time and 

evaluated four performance parameters. 
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CHAPTER 1 

QUANTUM WELL STATES 

Bloch States 

Optical absorption occurs in a QW when an electron is excited from a valence band 

to the conduction band while absorbing an incident photon. Such transitions may occur 

between unbounded electron and hole states or involve transitions with excitons 

comprised of bound pairs of electron and hole states. The starting point for describing 

both is the Bloch wave solutions for the Schrodinger equation of an electron in an 

isotroptic infinite periodic crystal. It is well known that these solutions are of the Bloch 

wave form: 

( 1.1) 

The solutions are labeled by the band index B and wavevector k. The Bloch functions u 

have the characteristic that they are periodic with the crystal lattice. Conduction and 

valence hand Bloch functions are orthogonal and the Bloch functions are normalized: 

(ulu)=-1- J u*ud3r=l (1.2) v . 
uc unit cell 

where V uc is the unit cell volume. 

QW Single Particle States 

In the QW structure, the particles are partially confined and their wavefunctions 

localized. The individual particles are confined in the growth (henceforward the z) 

direction by the potential difference between the well and barrier, giving localization in 
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the z dirrction. The localized functions may be described by a linear combination of the 

Bloch wave functions. In the general case of full three dimensional localization: 

'J' 8 (k,r) = J D8 (k)e'l<·ru8 (k,r)d3k (1.3) 

The various D8 (k) are the coefficients of this expansion. 

When localization is only in the z direction, the functions may be expressed as: 

'I' B(k,r) = e•l<u·•11 un{k11,r11) I Dn( kJeikz·Zun(kz, z)dkz ( 1.4) 

where r11 and k11 are the position vector and wavevector in the x,y plane of the QW layer, 

respectively. In the effective mass or envelope function approximation, a major 

assumption is that the Bloch functions are not strong functions of k and can be 

approximated by their value at the band edge k=O. Thus: 

'I' 8 = e•l<u·•11 u8 (0,r) J D8 (kJt/z ·zdkz 

= e 11<11 ·• 11 u8 (0,r)'l'~(z) 

= u8 (0,r)F8 (r) 

(1.5) 

The full wavefunction is described as the product of the band edge Bloch functions and 

the envelope wavefunction F 8 ( r). The envelope function is the solution of the effective 

mass equation rather than the full Schrodinger equation : 

(HxE + V)F8 (r) = E8 F8 (r) 

Since absorption near the band edge is of primary interest, parabolic dispersion 

relationships are usually assumed for each band. 
n2 

HxE =Eno---* v2 
2m8 

(1.6) 

(1.7) 

Here m~ is the effective mass for band B, E8 •0 is the band edge energy, and Vis the 

macroscopic potential (which may include the potential due to any applied field but 

doesn't include the lattice potential). For the MQW, the envelope function 'l'~(z) in the z 

direction is just the solution of the one dimensional "particle in a box" problem. Vis the 

confining potential of the well defined by the bandgap difference between barrier and well 

and the splitting of that difference between conduction and valence band. It may also 

include any field applied in the z direction. The splitting in InGaAsP is often assumed to 
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be 60%:40% between valence and conduction band, respectively. The envelope function 

is labeled with the band index Band the subband index n labeling the various solutions of 

the "particle in a box" problem. 

The InGaAsP valence band structure is complicated by a light and heavy hole band 

degenerate at zone center, and the split off band as shown in Figure 1.1. The exciton 

binding energy is much less than the energy gap to the split off band and this band is 

usually ignored. The reduction in symmetry in the QW and the band discontinuities lifts 

the degeneracy of the light and heavy hole bands at zone center. Provided the wells are 

sufficiently narrow, the subband separation is greater than the exciton binding energy and 

there is very little coupling between bands. In this case the heavy and light hole bands 

can be treated separately. Several authors have included band coupling in more 

complicated theoretical treatments.26-28 Their results showed that including such effects 

gave only small corrections, these corrections becoming negligible as field was applied. 

In what follows, coupling between bands is ignored and each band can be solved 

separately. 

Resonant Tunneling Method (RTM) 

It is necessary to calculate the electron and hole· energy subband levels in the one 

dimensional quantum wells both with and without applied field. Associated with this is 

the task of determining the electron and hole z direction envelope wavefunctions. 

Numerous techniques have been used for this purpose, including perturbation 

methods17, variational methodslO, exact Airy function solutions12,29, infinite potential 

well solutions with modified effective well widths, and Monte Carlo methods14,30_ One 

of the most useful is the resonant tunneling method (RTM)31 in that it easily gives both 

energy levels and wavefunctions, it can handle arbitrary potential profiles, it easily 

incorporates the effective mass changes between well and barrier, and it gives the 

tunneling through the barriers. 
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Energy 

conduction band 

band gap 

split off band 

Figure 1.1. Sketch of the band structure in bulk InGaAsP near the r point (k=O). 
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The resonant tunneling method is used within the effective mass approximation. 

The sloping potential due to an applied field is approximated by small steps as in Figure 

1.2. In each step the particle envelope wavefunction is written in terms of plane wave 

states: 

'I'= Aexp(kz) + Bexp(-kz) (1.8) 

where k is the complex wave number: 

[( 2m *) ]Yi k= fT (V0 -E) (1.9) 

m* is the particle effective mass, Vo is the potential, and E is the total particle energy. A 

transfer matrix is derived to describe transmission across a potential step by requiring that 

the wavefunction and probability flux on each side matches at the interface. At x=p: 

'I' left = 'I' right 

( 1 d'I') ( 1 t1'!') --- = --
~- .,7 *' m a.. left m az right 

Thus: 
Aexp(kp) + Bexp(-kp) = Cexp(k' p) + Dexp(-k' p) 

k ~ 
-(Aexp(kp)-Bexp(-kp)) = -( Cexp(k' p)-Dexp(-k' p)) 
m* m~ 

This leads to the transfer matrix equation: 

( A)= (.!.)(aexp(p(k' -k)) f3exp(-p(k' +k)))(C) 
B 2 f3exp(p(k' +k)) aexp(-p(k' -k)) D 

wherea=l+(m*k'/m*'k) and /3=1-(m*k'/m*'k). 

(l.10) 

(1.11) 

(l.12) 

(l.13) 

To find the subband energy levels one determines the transmission of the structure versus 

energy for a wave traveling from left to right. However, one starts with the exiting wave 

(C,D)=(l,O) at the far right and propagates backward through the structure from right to 

left U'.;ing the transfer matrices at each step. Wavefunction coefficients (A,B) are obtained 

at each step. The transmission coefficient for the structure is: 
2 

T = _1_ k,;ght ( m *left J 
A1eft k1eft m *right 

(1.14) 
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V(z) 

barrier 

well 

barrier 

z 

Figur~ 1.2. Representation of the quantum well potential with an applied electric field in 
the resonant tunneling method. Step size has been exaggerated for clarity. The actual 
number of steps is much greater. · 

where left and right refer to far sides of the entire structure. This calculation is performed 

for various particle energies E and a plot of transmission vs. energy is obtained as in 

Figure 1.3. The resonant peaks in this plot correspond to the sub band energy levels of 

the quantum well, labeled by the index n. Various step sizes were used and the energy 

levels converged on fixed values as the step size was reduced. Steps of 5 angstroms 

were found to be sufficient to give accurate subband energy levels. At the resonant 
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Y the coefficients (A,B) at each step in the structure give the particle one energ , 

dimensional wavefunction as in Figure 1.4. Finally, the method also gives the 

broadening of the energy level due to the limited lifetime of the particle in the well due to 

tunneling. The resonant peak is approximately Lorentzian in shape as seen in Figure 1.5. 

This shape corresponds to the tunneling induced broadening of the energy level. As the 

barrier thickness is reduced and tunneling is increased, the resonance becomes broader. 

This method may be utilized for multiple wells and coupling between wells is well 

described. In the rest of this work, however, only calculations with single wells will be 

employed. It is assumed that coupling is sufficiently low that the MQW characteristics 

can be described by calculations for a single well. The tunneling linewidth will serve as a 

check on this assumption. 

QW Exciton States 

Excitons are bound pairs of electron and hole states. The exciton states are thus 

two particle states. In the exciton, the wavefunctions are further localized in the x,y 

direction by their mutual interaction. In the effective mass approximation the 

Schrodinger-like equation for the envelope wavefunction of the exciton is written by 

combining the equations for electron and hole and including the Coulomb interaction. 32 

As noted before, the heavy and light holes will be treated as separate exciton systems. It 

is assumed that the barriers are thick enough that coupling is negligible between 

neighboring wells and the MQW can be described by considering the action of a single 

well. For the electron: 

( 1.15) 

For the hole: 

(HKEh + Vh + eF.Lzh)\I\(rh) = -E.'1\(rh) (1.16) 

Since absorption near the band edge is of interest parabolic dispersion relationships are 

assumed for each band. 
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8 



N 

~ 

4e+8 

3e+8 

2e+8 

1e+8 

Oe+O 
0 
I!) 

barrier 

0 
0 ,..... 

well 

0 
I!) ,..... 

Distance (angstroms) 

barrier 

0 
0 
C\J 

- 0 kV/cm 
- 20 
- 40 
- 50 
- 60 
- 70 
- 80 

- 90 
100 

····· 110 

Figure 1.4. Heavy hole wavefunction in a QW versus applied field. Well width is 75 
angstroms. Barrier width is 100 angstroms. Well depth is 150.8 meV. 
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tz2 v 2 
Bx&= Eco - 2m· e 

c 

tz2 
H - E --V/ 

KEh - - vO 2m• 
v 

( 1.17) 

Ve <1Bd v h are the confining potentials of the wells defined by the band gap difference 

between barrier and well and the splitting of that difference between conduction and 

valence band. The field applied perpendicular to the MQW layer is FJ.. 

Combining (1.15) and (1.16), and including the Coulomb interaction, Ve-h: 

(HKEe +Ve -eFJ.ze + HKEh + vh + eFJ.zh + ve-h(re,rh))'I'(re,rh) = E'I'(re,rh) (1.18) 

where 'I'(r.,rh) is the two particle envelope wavefunction for the exciton. The coulomb 

tenn couples the electron and hole coordinates and the problem is no longer separable. It 

is useful to transfonn to center of mass coordinates in the plane of the layer. 

R 

re= (x.,y •• z.) r 

rh = (xh,yh,zh) Ze 
(1.19a) 

zh 

Ku 

ke = (kx ,e'ky,e'kz,e) ku 

kh = ( kx ,h•ky,h•kz,h) 
~ 

kz,e 
(1.19b) 

k z,h 

where r. and r h are the three dimensional position vectors for the electron and hole with 

coordinates xe,h, Ye,h, Ze,h and R and r are the two dimensional center of mass and 

relative coordinates in the plane of the layer, respectively. k. and kh are the three 

dimensional wavevectors for the electron and hole, respecitviely, with components 

kx,e•ky,e•kz.e and kx,h•ky,h•kz,h· Ku and ku are the two dimensional in-plane center of 

mass and relative wavevectors respectively. If P. and ph are the in-plane radial position 
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vectors of the electron and hole respectively, and ke11 and kh 11 are the in-plane radial 

wavevectors, the transformation is: 
• +m· p me.uPe v.11 h 

R = • • 
me,11 +mv,11 

( 1.20) 

It should be noted that this represents a change in notation. The relative position vector r 

in the plane of the layer should not be confused with the previous general three 

dimensional one particle position vector r. It can be shown that: 

ti2 2 n2 2 _ n2 2 n2 a1 fi2 2 n2 a1 

--2 • Ve -2*Vh --~Ve.II --2 * -a 2 --2 * vh,11 ---.--a 2 
me mv me.II me,J. Ze mv,11 2mv,J. Zh 

is transformed to: 
fi2 2 n2 2 fi2 a1 fi2 a1 

--V --V ----------R 2 r 2•a2 •a2 2M11 µ 11 me,J. Ze 2mv.J. Zh 

where 

Mu = m;,11 + m:.11 

1 1 1 
-=-+-
µII m;,11 m:.11 

where: 
n2 

HKER =---V 2 
. 2M R 

II 

tz2 
HKE =--V 2 

,r 2 r 
µII 

n2 a1 
HKE··=----''" 2 * 2 mv,J. azh 
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(1.21) 

(1.22) 

(1.23) 

(1.24) 



(l.25) 

£8 = E~,1 - E.o 

The coulomb interaction term is: 
-e2 1 

ve-h = 41Z'£ [r2 +(ze -zh)2r2 
(1.26) 

Exact solution of (1.24) is not possible. Analytic solutions are only possible for 

the two extreme cases of the bulk semiconductor exciton or the pure two dimensional 

exciton. Numerous numerical approaches have been implemented to approximate the 

MQW solution. Most of these assume some sort of separable trial wave function, 

separating it into functions perpendicular and parallel to the MQW layer. Most 

approaches have used some sort of variational technique. 

A common simplification5 is to ignore the coulomb effect in the z direction, 

aswming it to be insignificant in comparison to the confining potential of the well. The 

single particle z direction envelope wavefunctions are then used unchanged. The 

variational minimization is performed on only one variational parameter in the plane of the 

layer. A separable trial wavefunction of the following form is used: 

'¥(R,r, Ze, Zh)"" '¥ e (ze )'¥ h( Zh )<I>(r) (1.27) 

The motion of the center of mass is ignored in the following. The photon momentum is 

too small to significantly affect it. The z direction wavefunctions '¥ e and 'Ph are given by 

the solution of the one dimensional single particle equations: 

(HKE,ze + Ve(ze)- eF.Lze)'Pe = Ee'Pe 

(HKE.zh + Vh(zh)+eF.Lzh)'Ph = Eh'Ph 
(l.28) 

Assuming this form for the wavefunction in effect assumes that the coulomb interaction 

in the z oirection is insignificant in comparison to the well confinement and does not alter 

the wavefunctions from those of the single particle case. The coulomb interaction is only 
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ted for in the x-y plane. The radial envelope wavefunction is a solution of the two 
accoun 

·onal hydrogenic problem, labeled by index n. In the following only the 1-S like dimens1 

state is considered: 

{2 1 -r/). 

<l>(r) =~;A e 

where A. is the variational parameter. 

(l.29) 

Tne expectation value of the exciton Hamiltonian is evaluated to find the exciton 

energy. 

{'l'IHl'I')= Eg +{'l'IHKE.ze +Ve -eFl.zel'l')+{'l'IHKE.zh + Vh +eFl.zhl\JI) 

+{'l'IH KE,Rl'I') +{'I' IHKE,r +Ve-hi 'I'} 

"" Eg + Ee + Eh + Eb 

(1.30) 

The kinetic energy of the total mass has been ignored in the last statement. Eg is the basic 

energy gap of the well material. Ee and Eh are the electron and hole subband energies in 

their respective wells. Eb is the binding energy of the exciton. 

Binding Energy and A. 

The variational method of Miller et al.sis used to find the binding energy. The 

variational parameter /.... is varied and the corresponding binding energy is calculated. The 

actual binding energy is the minimum value so obtained and the associated/.... gives the 

lateral size of the exciton. 

The binding energy is a combination of the kinetic energy of the relative electron­

hole motion in the layer and the Coulomb potential of the electron-hole motion: 

(1.31) 

where: 
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tz2 
£ :::: (<t>IH KE.r l<t>) :::: 2µ/l.2 

XE.r (1.32) 

E :::: ('f'!Ve-hl'f') 
PE.r 

The potential energy may be written as: 

2 21r 2 2 - rexp(-2J'A) 
E = -: A' f f f l'l'.11'1',I f [( )' 'jdrdz,dz,dO 

PE.r 21t £ 9=0 z, z,, r=O Ze - zh + r 
(1.33) 

The integral over 8 is trivial and the integral over r can be handled separately. Equation 

(1.34) 

where: 

( ) - 2 J- rexp(-2r/A.)d Gr -- r 
- ~ 2 2 A r=oY + r 

(1.35) 

Miller et al. show that G(y) can be solved as: 

G( y) = 2111 { ~ [ H.(2111)- N.(2111) ]-1} (1.36) 

H1 is the first order Struve function calculated directly by a power series expansion: 

2 [ z2 z4 z6 ] 
H1(z)= 1C i2 .3 -12 .32.5+12 .32 .52 .7 -• • • . (1.37) 

N1 is the first order Neumann function or Bessel function of the second kind. It is 

calculated from the Wronskian relation: 

l1(z)N0 (z)-J0 (z)N1(z) = ~ 
1CZ 

(1.38) 

The first and zeroth order Bessel function of the first kind and the zeroth order Bessel 

function of the second kind are found from power series expansions. 

The calculation of E,E, is modified from that of Miller et al.5 in that the electron 

and hole one dimensional wavefunctions from the resonant tunneling calculation,'¥ e and 
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'l'b, are utilized rather than approximate analytic forms used by Miller et al. The double 

integral over Ze and Zb is evaluated numerically using Simpson's rule. 

As field is applied, the electron and hole are pulled to opposite sides of the well 

and the exciton is less strongly bound. This effect enters the calculation through the use 

of the resonant tunneling electron and hole wavefunctions. As a result, the exciton lateral 

sire is increased. This effect gives a small correction on the exciton energies. More 

importantly, the exciton size will be found to be important for determining the 

inhomogeneous linewidth broadening and the oscillator strength. 
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CHAPTER 2 

QW ABSORPTION SPECTRA 

Absorption Coefficient 

The absorption coefficient for the QW material is derived using first order time 

dependent perturbation theory32•33. Fermi's golden rule gives the probability per unit 

time for the electric field perturbation of the photon to induce a transition from an initial 

state Ii) of energy Ej to a final state If) of energy Er, where Ii) and If) are 

eigenfunctions of the original unperturbed Hamiltonian. The total transition rate per unit 

time per unit volume is obtained by summing over all states Ii) and If) in the unit 

volume. 

W(m) = 2n(eAo J2 LLl(flei~·rev. Pli)l2 8( El - Ei -1im) 
1i mo i / 

(2.1) 

where Ao is the amplitude and e v is the unit polarization vector of the electromagnetic 

vector potential given by: 

A= Aoev exp(i/3 · r - imt) 

and where p = -i1iV. 

The absorption coefficient is given by: 

a = 1imW( m) 
(c/n)U 

(2.2) 

(2.3) 

where U is the energy density of the electric field and (c/n)U is the energy flux. The 

amplitude of the electric field is obtained by equating the energy in the field to 1im, finally 

obtaining: 
2 

a= m
0
c:(c/n) ~~ ~ IUlei~ .. ev · Pli)j2 8( E1 - Ei -1im) (2.4) 
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£ l·s the dielectric constant and n is the volume. 
where 

The MQW absorption spectra exhibit both sharp resonances due to excitons and a 

broad continuum absorption due to band to band transitions between unbounded valence 

and conduction band states. The above equation may be used for evaluating both the 

continuum absorption due to the unbounded electron and hole states and the exciton 

absorption due to the exciton states. It is necessary to use the correct forms for the initial 

and final states and determine the matrix elements for the specific case of interest 

QW Continuum Absorption 

As shown in Chapter 1, the total wavefunction for either conduction or valence 

band states may be expressed as: 

'I'~{ z,r11) = /k1r'11uB(O,r )'I'~( z) 
(2.5) 

where r 11 is the in-plane position vector and the periodic Bloch function has been split 

into separate functions with z and x,y dependence. 

The matrix element is separable as: 

(!I ~·· . i ·> _ (! I illz 1. )( f" I iflr11 1. ) e ev pt - z e ev·Pz tz J11e ev·P11~1 (2.6) 

The in-layer part is handled first. An electron transitions from a valence band state to the 

conduction band in the process of absorbing a photon. 

( f" je ~·•11 . , . ) _ / 11<11' ·ru (k ' ) I i~·r11 I zl<wr 11 ( )) J I e v Pu ~I - \ e uc,11 II 'rll e e v . P11 e uv,I ku, ru 

It can be shown that: 

{!, jei~·r11 ev · P11I~,) = (uc,11 lev · P11luv,11)<\1<j, 

where the photon momentum has been neglected as insignificant, f3""' 0, so that the 

momentum conservation requirement becomes: k 11 ""'k;,. 

Next the z dependent part is solved. 

(!zlei~·zev · Pzliz) = ('P;(ze)uc.z(O,z)lei~·zev · Pzl'l';(zh)uv.z(O,z)) 

The same procedure is followed as with the in-layer part and it can be shown that: 
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(/z lei~·zev · Pzliz) == ( uc.z le v · Pzluv..)('¥; 1'¥:) (2.10) 

Finally, equations 2.4, 2.6, 2.8, and 2.10 are combined. The sum over initial 

and final states becomes a sum over the various conduction and valence subbands, over 

. and over all k 11 in the Brillouin zone. spin, 

a = Tte
2 LLLLl('¥;1'¥:)111Pcl(2)L_!_8(E1 -E;-nm) (2.11) 

Cf)tl/ moem( c/n) c v n m ku .n 
Here the two in parenthesis is due to spin. The optical matrix element Pcv comes from 

combining the z and in-plane matrix elements as: 

Pcv = (uc,z lev · Pzluv,z)(uc,11 lev · Puluv,11) (2.12) 

Next, the summation over k 11 is converted into an integral and cylindrical coordinates are 

used. Given that the main interest is in the lowest energy transitions near zone center, the 

bands may be assumed to have approximately parabolic dispersion relations: 
1i2k2 

E8 (k) = Eso ±-2 * 
ms 

Finally: 

acont = 1Ce
2 LLLLl('¥;1'¥:)j21Pcl(µc,v,~,m)J dE8(E1 -E; -nm) 

moem( c/n) c v n m nn 
where the reduced mass is given by: 
1 1 1 
-=---+-
µ m; m: 
To study the absorption near the band edge only a limited number of valence and 

conduction subbands will be considered in practice. 

QW Exciton Absorption 

(2.13) 

(2.14) 

(2.15) 

The derivation of exciton absorption is similar in approach to the continuum 

absorption. The initial state consists of a hole in the conduction band and an electron in 

the valence band. The final state is an exciton state with an electron in the conduction 

band bound to a hole in the valence band. The initial state is a combination of two single 

Particle states. The expression for an electron in the conduction band is: 
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'I' ::: 'I' e ( zJ/'11e ·rue Ui1,c ( 0, r11Juz,c ( 0, zJ 
c 

(2 . 16) 

th periodic function u has been separated into parts perpendicular and parallel to 
where e 

the QW layer. The actual initial state has a hole in the conduction band: 

'I' ::: 'I': ( Ze )e -ikue ·r11e U. ,c ( 0, rue )uz,c ( 0, Ze) 
c 

A hole in the valence band may be expressed as: 

'I' v ::: 'I' h ( zh )e-ik,. ·r,,. Ui1,v ( 0, rllh )u • ..( 0, zh) 

Actually start with an electron in valence band: 

'I',== 'l'~(zh)e'1'11h ·r11hUi1, v(O,ruh)u •.• (O,zh) 

Combining (2.17) and (2.19) to get the initial state: 

\U - w 'I' = e -i(k11e·r11e-k1th·r11h)'I'* (z )'1'* (z )11. IJ. u u 
T 1 - J. c v e e h h ... il.c .. il,v z,c z,v. 

Converting to center of mass coordinates in the x,y plane: 

-iKu·R -11'11·rtu*( )u1* ( ) 'I',.= e e Te Ze Th zh Ui1 ,cl'11,vuz,cuz,v 

As before, the center of mass part will be ignored in the following. 

The final exciton state is expressed as: 

'I' f = 'I' e ( zJ'I' h ( Zh )<I> n ( r )Ui1,cl'11,vuz.cuz ,v 

The matrix element is again separable as: 

(/jei~·rev · Pli) = (fz lev · Pzliz)(f11 lev · P11l~1) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2 .22) 

(2.23) 

The photon momentum term was dropped because, as was seen in the continuum case, it 

does not affect the results of interest. 

Considering the z problem first: 

(/: ~.,. P:li.) = ('1' e ( z~ )'1' h ( z~ )uz.c,uz,v le v · Pzl 'I': ( zJ'I': ( zh )uz,cuz ,v ) (2.24) 

However, the transition from a hole in the conduction band and electron in the valence 

band to an electron in the conduction band and a hole in the valence band is the same 

thing as an electron transitioning from valence to conduction band. 

(fz lev · Pzli. ) = ('1' e ( Ze )uz,c lev · P.1'1':( Zh )uz ,v ) (2.25) 

Following the same derivation as used earlier for the continuum, it can be shown that: 

(J. le v. PJ.) = ('1' e l'I' h )( uz,c lev · Pzlu • ..) (2.26) 
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1. dering the part in the layer: 
Next, cons 
{Ju ~v. Pul~i):: (<I> 11 (r )Ui1.clli1,v lev · Pule-ik, ·r Ui1,clli1,v) (2.27) 

dimensional hydrogen-like wave function in the x-y plane is next expanded in Tue two 

f the in-plane "ii plane wave states: renns o 
~ ik 1·r 

c!>,,(r) == £- <l>n.klle 
k, 

= L </>n ,kn ( Uu,c le v ·Pu I Ui1,v) 
kn 

It is noted that: 

c!>,,(r == 0) == L </>n,kll 
kn 

Thus: 

(/11 lev · P11l~1) =<I> n(O)(uu.c lev · P11IU11,v) 

Finally, combining (2.26) and (2.31): 

(/11 lev · P11l~1) = <I> n (O)(\J' e I \JI h )( Uu,c le v · P11l"i1.v )( Uz,c le v · Pz luz.v) 

= <I> n (O)(\J' e I \JI h )(uc le v • Puluv) 

= <l>n(O)(\Jlel\Jlh)Pcv 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

where in the last statement attention is restricted to near zone center where the coupling is 

assumed independent of k. 

Finally, in determining the absorption, the sum over initial and final states becomes a sum 

over the various conduction and valence subbands, over spin, and over index n. 
2 

aucitons = Jre( ) L Il(\J' c I \JI v )l2 IPcvl2 (2) L l<I> n ( 0 )12 8( Eno -1im) (2.33) 
mot:(t) c/n c v n 

21 



CHAPTER 3 

LINE WIDTH 

The calculation of proper linewidth is of major importance for optimizing 

modulator design because modulator performance is critically affected by the steepness 

of the absorption edge. Design choices which adversely affect linewidth will degrade 

performance and this must be modeled accurately to determine which tradeoffs are 

profitable. Previous efforts to optimize modulator device design have relied upon 

simplified empirical expressions for the linewidth based on measured values.16,23 More 

extensive theoretical treatments of linewidth factors are available, and this study will use 

or modify such treatments to derive expressions for the various components of linewidth 

and their dependence upon quantum well design and applied field. Several factors 

influence the linewidth and many of them can be of the same order of magnitude. Early 

theoretical treatments neglected some of the key factors and there has been considerable 

confusion in the literature concerning which factors can be expected to contribute 

significantly. 34 

There has also been a variety of methods by which the various mechanism's 

linewidths are combined and considerable differences in the lineshapes used for various 

mechanisms. Several authors have pointed out that mechanisms with different lineshapes 

should be combined by convolution of the lineshapes.16,23 This study will follow this 

approach. The total linewidth (full width half maximum, FWHM) for a combination of 

multiple Gaussian lineshapes can be calculated from the individual linewidths (FWHM) 

as: 
n 

FWHM1o1 == LFWHM/ (3.1) 
i=l 

This study considered the following linewidth factors: (I) Lorentzian 

homogeneous broadening due to tunneling of electrons and holes, '(2) Gaussian thermal 
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. (3) Gaussian inhomogeneous broadening due to random alloy compositional 
broadening, 

. both wells and barriers, and (4) inhomogeneous broadening due to random 
disorder Ill 
variations in well width. The first two are intrinsic, while the second two will be sample 

dependent. 

Tunneling Broadening 

It has already been shown in Chapter 1 that the resonant tunneling method well 

deseribes the linewidth broadening due to tunneling. Figure 1.5 indicates that this 

broadening is well described by a Lorentzian lineshape. 

Thermal Broadening 

Measurements of exciton linewidth versus temperature were reported by Chemla et 

aI.35 for GaAs/ AIGaAs multi-quantum wells and by Sugawara et al. 33,36 for 

InGaAsP/InP. Their results were well described as broadening due to exciton ionization 

due to interaction with longitudinal optical (LO) phonons. The linewidth is proportional 

to the density of LO phonons, described by Bose-Einstein statistics as:35 
(1ph 

(3.2) 

where nmw = 32 meV is the LO phonon energy, kB is Boltzmann's constant, Tis the 

temperature, and Cfph is the coupling constant between phonon and exciton. It is assumed 

that this broadening does not change with applied field. Sugawara et al.36 found room 

temperature linewidth (FWHM) of approximately 9 meV in InGaAsP/InP multi-quantum 

wells with various compositions. Sugawara et al.36 and Chemla et aI.35 both found that 

a Gaussian lineshape best fits the measured spectra. 

Composition Broadening 

In quaternary and ternary semiconductor alloys, local variations in alloy 

composition are a source of inhomogeneous broadening of the exciton linewidth. These 
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. . ay be totally random or include clustering effects and long range fluctuations. 
vanauonsm 
1be first theoretical derivation of this broadening in bulk semiconductors was done by 

d 37 Apparently unaware of this work, both Schubert et al. 38 and Singh and 
Goe e. 
Bajaj39 independently derived matching results which each differed from that of Goede. 

Singh and Bajaj40 later presented a quantum mechanical correction to this theory which 

brought it into closer agreement with Goede's work. However, numerous researchers 

have followed Schubert et al. and continue to neglect this correction factor. Hong and 

Singh34 later modified Singh and Bajaj's theory for use with multi-quantum wells. The 

general approach in this work was to extend and correct the approach of Hong and Singh 

and implement the calculations using the RTM. Because of the great computational 

compJ.~xity of implementing such a calculation, this method was not suitable for use as 

part of the larger modulator optimization model. An approximation, loosely based on 

work by Sugawara et al.,33 is presented which greatly simplified calculations and yielded 

adequate accuracy. Both methods are presented in what follows. 

An alloy composition change in some region of the well or barrier can change the 

energy of the exciton. Both the bandgap and effective masses for the material are affected 

by a composition change. The bandgap in tum alters the potential well and hence the 

electron and hole subband levels as well as the basic energy gap to which these are 

referenced. The exciton energy shlft from a fluctuation in composition ~C over a volume 

V may be written: 

AE = ( C- Co) 8Eexc I Jj'I'(r)l2 d3r 
DC Co V 

(3.3) 

where C is the new concentration and Co is the average concentration. Actually the 

wavefunction is a two particle wavefunction and it is appropriate to consider separately 
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mposition affects the electron and hole. Recalling the previous form of the 
how the co 

f tion from equation 1.27 the following is obtained: 
wave unc SE J 
ft.£= !!c[ s;~c (¢>(r)l/fe(z.)i V1.(ze)¢>(r))v + s~le ( q'>(r)l/fh(zh)l l/fh(zh)q'>(r))v (3.4) 

For a purely random alloy or one with random clustering, the probability of a 

composition fluctuation ..1C occuning over a volume V is governed by binomial statistics. 

This probability has been derived by both Schubert et al.38 and Singh and Bajaj39. 

Schubert notes that the binomial distribution can be approximated by a Gaussian 

distribution, the necessary condition being met throughout the composition range of 

interest. When this is done the full width at half maximum (FWHM) of such a 

distribution is given by Singh and Bajaj as40: 

( C V)= 2 1.4C0(l-C0 )Vc 
FWHM !! , V (3.5) 

where Ve is the cluster volume or the minimum volume over which a concentration 

fluctuation can occur. For a purely random alloy without clustering, the cluster volume is 

the volume per cation or anion. Combining the above: 

The exciton linewidth is found by considering all possible volumes V to find those 

configurations which maximize the shift LIB. 

FWHM = msu{ FWHM( ..1E, V)} 

=2~1.4C (1-C )V max{SE.1ec ('l'>l/f.ll/fA>)v + SEhole ('1'>1/fhll/fh'l'>)v} 
o o c v SC .JV SC .JV 

(3.7) 

Next, cylindrical volumes are considered, with variable height ~ (not related to photon 

wavevector ~) and radius r with variable parameter y such that : 
r= rll 

V-: r.:·f ll2{3 (3.8) 

Using such a volume and the separability of the wavefunctions, the linewidth is given by: 
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C )V {8Ee1ec ( l/fel V1Jv (</>1</>)v + 8E1iote ( l/fhl l/fh)v (</>l</>)v} 
FWHM=2.Jl.4Co(l- o c mf' 8C ~nA.2/3 y 8C ~nA.2/3 y 

1.4C0 (1-C0 )Vc max{8Ee1ec (l/fell/fe)v + 8E1io1e (l/fhll/fh)v}max{(</>1</>)v} 
= 2 nA.2 f3 8C {ii 8C {ii r y 

(3.9) 

First consider the optimization over the plane of the layers. The wavefunction is 

given by: 

( )Yi 1 
</>(r) = ~ ;:exp(-/A) (3.10) 

Thus: 

max{( </>I</> )v} = max{_!_ JJ ~lexp(-r/ A. )12 rdrde} 
r r r r 0 0 nA. 

= m;ix{ ~[l-exp(-2r)(2r+ l)J} (3.11) 

This is maximized for y=0.9 at which the value is 0.59685. This is the QW version of 

the quantum mechanical correction factor first introduced for bulk semiconductors by 

Singh and Bajaj.40 This has previously been wrongly omitted by other authors.34 

Incorporating this factor into equati_on 3.9: 

(3.12) 

V,.;g is the Wigner-Seitz cell volume, which is the smallest volume over which a 

composition fluctuation can occur. "Clos" is the cluster factor which describes additional 

clustering of the composition variations. 
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This equation can be applied to both well and barrier composition broadening by 

. th composition over appropriate regions. The above equation is for fluctuations 
a1renng e 

. le species of the alloy. In a quaternary alloy like InxGa1-xAsyP1-y both x and y 
of a smg 

ary Presumably independently. Given Gaussian distributions their linewidths can 
can v , 

be combined as_: ---=------;;­
FWHMto, = { FWHMX2 + FWHMY2 (3.13) 

Two methods were used to evaluate equation 3.12. The first utilizes the RTM to 

analyze the energy shifts when composition is changed in regions of various height, ~. 

Because the method is computationally intensive and must be done numerous times (left 

barrier, right barrier, well; x and y; three exciton types; multiple fields) it is too involved 

for 05e in a modulator design optimization model. The second model is a first order 

approximation. Both will be described and the results compared. 

Well Composition Broadening 

RTM Method 

The RTM is capable of handling an arbitrarily complex stack of semiconductor 

layers. It is thus possible to alter the composition slightly in a small region of either the 

well or barrier and recalculate the electron and hole energy levels. Comparison with the 

levels from the normal configuration gives the shift associated with the composition 

change. It is noted that this is not a first order approximation because the RTM 

completely recalculates the problem, determining both new subband levels and new 

wavefunctions. It takes into account changes in both bandgap and effective mass 

associated with the composition change. The RTM automatically takes into account the 

wavefunction weighting of the perturbation: 
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8£e/ec ( l/f I 'I' ) =--gc e e p 
6C p,RTM (3 .14) 

!r~ = 81~/e (1J1hl11'h)p 
6C lp,;,'1ll 

6Eetec I and DEhole I are the change in the electron and hole subband 
where 8C {3,RTM 8C {3,RTM 

levels calculated with the RTM by varying the composition over a region of 
energy • 

height~· 

Equation 3.12 involves an optimization over volumes with various~. The 

simplest method to implement this is to perform RTM calculations for multiple regions to 

find that which maximizes the total of the electron and hole subband level shifts, and 

hence the linewidth. This does not prove generally feasible, given that separate RTM 

calculations must be done for multiple Ws, for x and y composition shifts, for heavy, 

light, and second heavy hole excitons, and for multiple fields. Hong and Singh34 only 

used a single region comprising the entire well, arguing that the exciton was almost 

completely contained in the well. However, this is not as true for the InGaAsP system 

with its lesser electron confinement, and it is not true if applied fields are considered. In 

this work, optimization over regions of various ~ in the well is considered. A first 

simplification is to assume that the effect of a composition shift in a particular volume is 

proportional to the probability that the particle is found in that volume. Thus a single 

RTM calculation can be done for the case in which the entire well composition is altered, 

and the effect of regions of different ~ can be calculated from knowledge of the 

wavefunction. 

It is necessary to judiciously choose appropriate regions. The chosen regions are 

centered in the well and a series of different thicknesses is used. This is depicted in 

figure 3.1 for the conduction band. The case of the valence band is similar. Different size 

steps in height, ~. were tried to ensure that the derivative converged. It was found that 

l.O run steps were adequate. An RTM calculation of the altered electron and hole subband 
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. rforrned for the case in which the entire well composition is changed. This is 
levels 1s pe 

the top diagram of figure 3.1. This is repeated for both a composition change 
shown as 
in x and for a y change. The amount of composition shift for the RTM calculation was 

varied to ensure that the derivative converged. The final program altered the composition 

b 2 percent in x or y. The subband level shifts for the various regions are calculated as: 

:£Mel - 8£elec' ('l'el'l'e)p 
~Jl.R1M' - 8C entirewellaltered, KI'M ('Pel'Pe)entirewell 

6£ lei _ 8£hole' ('l'hl'l'h)p 
_!le- - . ('1' I 'I' ) 6C fJ,.R1Y OC enrrre well altered,RTM h h entire well 

(3.15) 

Because the fluctuations involved are small, the binding energy and exciton size/... 

are assumed to be unaffected by the composition perturbations and are not recalculated. 

First Order Approximation 

The linewidths may be approximated by assuming that the change in energy levels 

is directly related to the energy gap change alone:33 

DEelec = 0. 4 8Eg 
DC 8C 

0E1ro1e = 0.6 8E8 

oC 8C 

(3.16) 

Here 0.4 and 0.6 are the assumed factors for splitting the bandgap change between 

conduction and valence bands. With this approximation the energy shifts can be 

calculated directly with only a single RTM calculation. The regions chosen are similar to 

those used in the previous method. 

Comparison 

The two methods were compared for the case of a MQW with 7.5 nanometer 

lnGaAsP well and 10 nanometer InGaAsP barrier. The well y value was 0.846 and the x 
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composition altered over entire well 

conduction band edge 

barrier well barrier 

_LOE 

T 
z .... 

region of altered composition, variable height J3 

OE 

Fi~re 3.1. J?t?piction of the regions of altered composition used in the calculation of 
we composn1on broadening. 

30 



for lattice matching to an InP substrate. The barrier y was .405. 
value chosen 

h t this study the energy gap is given by the empirical relation: 
'lbroUg OU 

E :-::1.35-0.72y+0.12y2 (3.17) 
I 

When changes in x composition are considered, the less-accurate, two-way interpolation 

formula is used: 
E, = {x(l-x)[(l-y)(l.35 +0.643x + 0. 786x2)+ y(0.36 + 0.505x + 0.555x2 )] 

+y(l- y)[(l- x)(l.35-1.083y + 0.091/) + x(2. 74-1.473y + 0.146y2 )]} (3.18) 

x[x(l- x) + y(l- Y ff' 
Levels from the two equations cannot be compared without errors. Thus, when the RTM 

program determines level shifts due to x fluctuations it is necessary to compare levels 

from the unperturbed case derived using 3.18 and the levels of the perturbed case, also 

derived using 3.18. The effective masses for electron, heavy hole, and light hole are 

determined by: 
m'e ::-;(0.080-0.039y)m0 

m·M = [0.45.xy + 0. 79x(l- y) + 0.40(1- x)y + 0.45(1- x)(l- y )]mo 
m·lh = [0.082.xy + 0.14x(l- y) + 0.026(1- x)y + 0.12(1- x)(l - y )]m0 

For calculating linewidths for x , the alternate interpolation formula is used for the 

electron effective mass: 

m·e = [0.067.xy+ 0.082x(l- y) + 0.023(1-x)y + 0.077(1- x)(l- y)]mo 

(3.19) 

(3.20) 

Figure 3.2 shows a comparison of the well composition broadening calculated by 

the two methods for this case. The variation between the RTM method and the first order 

approximation for the heavy hole runs from 2% to 7% with fields from 0 to 120 kV/cm. 

Agreement is good for the light and second heavy hole excitons as well. Given the 

limited accuracy in determining exciton linewidths and the lesser importance in 

comphlison with other broadening factors, this level of accuracy is sufficient. The first 

order approximation was therefore used in the modulator design optimization. 
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Note that this linewidth broadening mechanism actually improves with applied 

Th. occurs because high applied fields drive the particles toward the barriers, 
field. tS 

. the portion of the wavefunction within the well. 
reducmg 

Barrier Composition Broadening 

There has been significantly less theoretical work on barrier composition 

broadening.34,41-42 The GaAs/AlGaAs material system has AlGaAs barriers which can 

be expected to have alloy composition fluctuations. Given the high exciton confinement 

in this system, however, 

most authors have chosen to neglect barrier composition linewidth broadening. A 

majority of the devices made in the InGaAsP system use InP barriers. In such cases 

barrier C<Jmposition broadening is irrelevant and researchers working with such devices 

have ignored it Some researchers, however, find various advantages in using InGaAsP 

barriers, and calculation of barrier composition linewidths is necessary in such cases. 

Hong and Singh34 are the only authors to have theoretically considered barrier 

broadening, doing so for the InAlAs/InGaAs material system. However, there are 

several problems in interpreting their results. They give the following equation for the 

linewidth due to barrier composition fluctuations: 

l:'nr l.4C0 (l- C0 )V . (}£ . r rrHM = 2 wig exciton 

3nLeff (JC 
(3.21) 

where Leff is "an effective length to which the exciton wave function penetrates into the 

barrier and has to be calculated numerically". This definition indicates that they did not 

consider the composition effects on electron and hole separately. This is further indicated 

because they considered both barriers together rather than separately. This is 

mappropriate. The two barriers are not equivalent except at zero field. As field is applied, 

the electron shifts into one barrier while the holes shift into the opposite barrier. The 

linewidth contributions will differ from one barrier to the other. This study has treated 
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barriers separately. A comparison of equation 3.21 with 3.12 indicates that they 
the tWO 

_ 1,.,,. failed to include the 0.59685 quantum mechanical correction factor. 
have iW)V 

The difference in linewidth contribution from one banier to another and from 

to hole can be seen by looking at just the sub band shifts that result when the 
electron 

. bam·er is changed in composition, one banier at a time. This was done for the 
enure 

previous example of the 7.5 nm well and 10 nm banier. The result is shown in Figure 

3.3. The subband shift is greatest for the electron since it penetrates further into the 

banier. At zero applied field the shifts due to left or right banier changes are equivalent. 

As field is applied the electron moves into the right barrier and its contribution to subband 

shift dominates. Likewise, the hole moves into the left banier and its contribution 

grows. 

In the barrier, the wavefunctions generally fall off in an exponential manner. For 

this reason, the regions of altered composition start at the well/banier interface and 

different thicknesses are used. The regions used are depicted in Figure 3.4 for the 

conduction band. An RTM calculation is done to determine the subband level shifts for 

each of four beta thicknesses. To generate smaller ~ steps, a curve of subband shift vs. 

Pis piecewise quadratically fit to the four RTM calculated cases and used to generate the 

shifts for ~ regions in between. The ~ regions were calculated with steps of single 

monolayers, 2.88 Angstroms. Again, the calculations must be performed for 

composition changes in both x and y. The valence band is similar. 

The barrier calculation is very computationally intensive. Separate RTM subband 

level calculations must be done for the following: 

the basic composition 

left barrier, x altered, four different~ regions 

left banier, y altered, four different f3 regions 

right barrier, x altered, four different f3 regions 

right barrier, y altered, four different f3 regions 
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left barrier c~mposition 
altered in reg10n of 
variable height J3 

right barrier composition 
altered in region of 
variable height J3 

Fig~rr 3.4. Depiction of the regions of altered composition used in the calculation of 
barrier composition broadening. 

It is for this reason that this method was not considered appropriate for the design 

optimization program and a simpler approximation was sought. The first order 

approximation was applied by using equations 3.16 and 3.12 with the same barrier ~ 

regions as described above. Results of the two methods are shown in Figure 3.5. They 
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. · ly well when it is considered that the first order approximation effectively agree surpnsing 

antum well confinement nature of the problem. The agreement is also 
jgnores the qu 

. th t, given the small linewidth contribution relative to other broadening 
suftietent a 

the estimate is acceptable for use in the modulator design optimization. 
sources· 

Macroscopic Composition Fluctuations 

In addition to the pure or clustered alloy disorder presented thus far, there may 

also be macroscopic composition fluctuations where the average composition varies over 

dimensions greatly exceeding those of the exciton. Several authors have briefly 

mentioned this possibility,37,38,43 but only one group has made experimental 

measurements and only one has considered these variations theoretically. 33,36,44 In the 

next section, analysis of Sugawara et al. 's measured linewidths for a series of quantum 

well and bulk samples will demonstrate the need for an additional broadening source to 

explain the smooth transition of linewidth from increasingly wide quantum wells to bulk 

samples. Macroscopic composition fluctuations is a likely candidate for such 

broadening. When the composition varies over dimensions greatly exceeding those of 

the excitnn, the exciton size relative to the fluctuation size is no longer important, as it is 

in equation 3.12. Different excitons in different parts of the material see the local 

composition. Given the large number of factors that may cause composition fluctuations 

and the need for simplicity, a Gaussian distribution of macroscopic composition 

fluctuations is assumed. The resultant linewidth may be written as: 

FWHMmac = FWHMcomp[0.4( tp) l/le)v + 0.6( l/fhl l/fh)v] (3.22) 

where v= well or barrier and FWHMcomp is the FWHM of the gaussian distribution of 

macroscopic composition fluctuations. This equation was presented by Sugawara et 

al.,33 though in fitting to their experimental data of linewidth versus well width they 

apparently neglected the wavefunction weighting and used a form that was constant with 

well width. The above form will vary with well width according to ( l/f e I l/le) v and 
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I ) Thus as the well width shrinks and more of the exciton is in the barrier, the 
(¥'11 1Jf11 v. 

Sition broadening will decline and the barrier composition broadening 
well cornpo 
inCrease· Sugawara et al. did not consider the application of field, but inclusion of the 

a1><>ve factors also captures the field effect of pushing the excitons into the barriers. 

Bulk Composition Fluctuations 

As mentioned above, the linewidth models will later be compared to experimental 

data that includes quantum wells of various thicknesses and bulk semiconductors. 

Therefore it is necessary to derive the composition broadening for bulk semiconductors. 

The derivation of Singh and Bajaj40 is presented. Returning to equation 3.3: 

/lEv = /lC 8Eexc (\Jll\Jl)v 
8C 

As before: 

FWHM(llE, V) = 2 l.4Co(l; Co)Vc ":cc (\Jll\Jl)v 

C1 = max(FWHM(till, V)) 
v 

= 2 Ii. 4C (1- C )V max{ SEexc (\Jll\Jl)v} 
\Jo Ocv 8C ..JV 

It is assumed that : 
OEuc 8E8 

&: ""8C 

The three dimensional exciton has a hydrogenic wavefunction: 

'l'(p) = :ir -Yi A.-Yi exp(-p /A.) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

The maximization over all possible volumes V is then done. The volumes V of interest 

are spheres of various radii centered on the exciton. The radius is written in terms of a 

variable parameter y. 

The volume is thus: 
4 

V =-ny3A.3 
3 

(3.27) 

(3.28) 
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. al over the wavefunction is calculated: 
'lbe mtegr z( 1 ) 3 
('l'l'l')v = Jlexp(-p /A )I 1t'A3 d P 

v 
ir 2irr"-

= (~)J J J exp(-2p /A. )J2 sin 8d8d¢dp 
1t'A o o o 

(3.29) 

=[1-exp(-2r)(2y2 +2y+1)] 

'lbe maximum over V is found: 

{
oEexc ('l'l'l')v}""' oEg max![ 1- exp(-2y)(2y2 + 2 y+ l)]l 

mF 8c ~ oC r ~~ ny3A.3 
(3.30) 

oEg (4 3)-Yz {[ 1- exp(-2 r)(2r2 +2r+1 )]} 
""' - -nA. max Yi oC 3 r y2 

The maximum over g is found to occur at g=l.16 with a value of .3276. Finally: 

O'= 2 1.4Co(l - Co )Ve oEg (0.3276) (3.31) 
%nA.3 oC 

Well Width or Interface Fluctuations 

It is well known that the interfaces in a quantum well are not perfect. The growth 

interruption at the interface leaves monatomic island-like .step variations in the surface. 

Several researchers45-47 have studied ·these islands and the growth conditions that affect 

their characteristics. Birnberg et al. 46 report the imaging of monolayer islands in 

GaAs/AIGaAs interfaces by cathodoluminescence imaging. They found single 

monolayer islands with mean sizes of 6 to 8 microns, which were reduced to 2 microns 

when growth temperature was increased from 600°C to 660°C. Similar studies of 

lnGaAsP interfaces are not available but it can be assumed that they will exhibit similar 

inti!rface fluctuations. These interface fluctuations result in a variation in the quantum 

well width which directly affects the exciton energy. 
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th ry Of well width or interface fluctuation broadening was first presented by 
The eo 

. d Bajaj.42 They stated that the linewidth (FWHM) is given by:42,48 
smgh an 8E I 

_EE.. 8 
FWHM- :: aFWHM;s1and 8w wo 

(3.32) 

FWHM. land is the FWHM of the gaussian random distribution of island heights 
where is 

S:: • th 1 h" kn d 8Eexc I . th . . . · uru·rs of monolayers, u 1s e mono ayer t 1c ess, an -- 1s e vanauon 
~m ~~ 

. ..,citcm energy with well width. a is a factor that approaches 1 as the island size me,. 

approaches the exciton size. Given the size of islands found by Birnberg et aI.46 and 

other researchers, a is often omitted. The variation of exciton energy with well width is 

found by a variety of means, usually by the same method used to initially determine the 

subband levels. In this work the RTM was used. A separate level calculation was 

perfonned for the case of a well with slightly altered width and the resultant levels were 

compared to the normal subband levels. Different size alterations to the step size were 

tried to ensure that the derivative converged. It was found that 1 or 2 angstrom 

alterations were sufficient while minimizing the extra computational effort needed to 

resolve steps this small. 

Figure 3.6 shows a typical result for the 7.5 nanometer well case given before. 

Here the linewidth increases with field. The field pulls the electron and hole 

wavefunctions toward the barrier, increasing the wavefunction at the interface. This 

linewidth is also highly dependent upon well width because the wavefunctions are higher 

at the interface for narrower wells. The above equation may also be used to describe the 

broadening from random variation in well width from well to well within the multi­

quantum well stack. Some fabrication error in well width is to be expected. 

Comparison of Linewidth Theory with Published Experimental Data 

The existing theoretical work on exciton linewidth is largely unverified. Many of 

the broadening mechanisms appear to be of similar magnitude and it is difficult to sort out 
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. dominate. In the equations presented in the last chapter there are several 
which ones 

. ed parameters, mostly associated with the fabrication quality of the multi-
undetennm . 

Well Given the usual lack of detailed data on such quality factors, and the 
quantum · 
Po~bility that they vary from manufacturer to manufacturer or even from wafer to 

wafer, these parameters may be considered fitting parameters. In the composition 

broadening, the cluster volume is undetermined. Practical devices may exhibit clustering 

in wells or barriers. The macroscopic composition fluctuation depends on the 

distribution of macroscopic composition fluctuations, also unknown. The FWHM of this 

distribution becomes a fitting parameter. For the interface fluctuations, the FWHM of the 

distribution of island heights for each interface is unknown and varies from sample to 

sample. It is necessary to compare the theory with the best available measured linewidth 

data to confirm the theory and determine typical values for these fitting parameters. 

Given the large number of broadening factors, and the complex manner in which 

they vary with field, composition, and well width, it is perhaps not possible to design a 

series of measurements capable of fully discriminating between the effects. Future 

developments in measurement techniques may resolve this problem. One of the best 

series of linewidth measurements was reported by Sugawara et at 18 for InGaAsP/InP 

quantum wells. Using carefully controlled metal organic vapor phase epitaxy (MOVPE) 

growth, they fabricated sets of single quantum well samples with well widths varying 

from 1 to 20 nanometers and well composition varying from y=0.6 to 1.0. They also 

fabricated corresponding bulk samples. Finally they fabricated a limited number of 20 

period multi-quantum wells for comparison to ensure that the multi-quantum well 

linewidths were dominated by effects at the single well level. The variation in well width 

allows broadening effects which vary in well width dependency to be discriminated. The 

bulk sarnples eliminate interface broadening and barrier composition altogether. They 

then performed photoluminescence spectral measurements for each sample, at 4.2K. The 
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ture eliminated the effects of thermal broadening, leaving only the 
low tempera 

Us broadening factors. The photoluminescence measurements were made 
jnholllogeneo 

. . the samples with a Krypton laser at 647.1 nanometers. The samples were 
byexc1ung 

d in liquid Helium. The photoluminescence was dispersed by a monochrometer 
irnlllerse 

and deteeted using a lock-in technique. 

Figures 3.7 and 3.8 shows the Sugawara et al.18 data for linewidth versus well 

width. The linewidth shown is the FWHM of the heavy hole exciton at zero applied 

field. Also shown by an open symbol is a 20 period multi-quantum well sample. The 

close agreement in linewidth between the MQW and the single well samples shows that 

the linewidth for these samples is dominated by effects at the single well level. This rules 

out such possible broadening mechanisms as lack of well width uniformity. In general it 

will not be possible to rule out such mechanisms for other samples. The data point 

labeled as bulk is a 200 nm thick layer. 

Figures 3.7 and 3.8 include curves showing the newly calculated 

theoretical linewidth fit and the various contributions to linewidth. Equations 3.32, 3.12, 

3.31, and 3.22 are used for the well width, random composition, random bulk 

composition , and macroscopic composition linewidth respectively. Barrier composition 

broadening was not included because of the non-alloy InP barriers. Temperature 

broadening was not included because the measurements were at 4.2K. 

For the composition broadening, separate x and y composition calculations were done, 

where x and y are the species factors in the In1-xGaxAsyP1-y alloy composition. The x 

and Y composition fluctuations are assumed to be independent and to exhibit Gaussian 

lineshapes. Their linewidths are thus combined as: 

FWHM 2 = FWHM 2 + FWHM 2 tot x y (3.33) 

The random composition, macroscopic composition, and well width broadening are 

likewise assumed to be independent with Gaussian lineshapes. They were combined as: 

fWHMto,2 = FWHMcomp,ran 2 + FWHMma/ + FWHMww2 (3.34) 
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ent has an associated variable parameter: cluster volume for random 
Eaehcompon 

. · 0 broadening, FWHMcomp for macroscopic composition broadening, and 
compos1uo 

fWHMisland for well width broadening. These were chosen to give the best fit of the 

the<>retical linewidth to the data The result is that the narrow well data indicates the well 

width broadening, the additional broadening in the mid-well-size region indicates the 

random composition broadening, and the bulk data indicates the macroscopic 

composition broadening. Resulting cluster volumes were 2.5 and 1.5 times the volume 

per cation for the y=l.0 and 0.6 cases respectively. The volume per cation is given by 

003 /4 where ao, the lattice constant, is that of the InP to which the MQW is lattice 

matched. Resulting values for FWHMisland are 0.19 and 0.73 monolayers for y=l.0 and 

y::0.6 respectively using a value of 2.9344 angstroms per monolayer. 

The random composition broadening is seen to increase with reduced well width 

due to the associated shrinkage of the exciton volume. The smaller wells confine the 

electron and hole closer to each other, increasing the binding energy and resulting in a 

smaller exciton size. It is more likely to realize a composition fluctuation across a smaller 

volume. At very small well widths the exciton penetrates into the barrier and the random 

well composition broadening drops. The well width broadening is non existent for the 

bulk which has no interfaces. It is still very low for large well widths but rises rapidly at 

small well widths because the wavefunction at the interface is greater in such wells. 

These two linewidth contributions are not sufficient to describe the data because 

both decrease with large well width, while the data becomes flat. Sugawara et al.18 

introduced a macroscopic broadening term which was independent of well width and 

chosen to fit the bulk linewidth result. There is considerable evidence for macroscopic 

broadening. Schubert and Tsang48 and then Sugawara et al.18 have reported a variation 

in exciton low temperature photoluminescence lineshape and linewidth with excitation 

power density. At lower power densities the line shape becomes asymmetric and the 
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aller It has been explained that the decrease in excitation power increases 
)jnewidth sm . 

. ombination lifetime and hence the diffusion length of the excitons. The 
the exc1ton rec 

. th n preferentially recombine in lower energy regions. The high energy part of 
exc1tons e 

the Uneshape is thus lost, resulting in a narrower asymmetric lineshape. 

resent work uses a new equation for macroscopic composition fluctuation 
TbeP 
]inewidth, equation 3.22. It accounts for the fact that macroscopic composition 

broadening should not be independent of well width because, as well width decreases, 

~of the exciton is located in the well to be affected by composition fluctuations there. 

In the next chapter, comparison of a full absorption spectra model with 

experimental data from Zucker et al. 19 and unpublished data from Siemens will be 

presented. The linewidths are quite different between the Sugawara, 18 Zucker, 19 and 

Siemens data. Both the Zucker and the Siemens devices demonstrate much worse 

lin~width. This is more than can be accounted for by thermal broadening in the room 

temperature spectra. The Zucker and Siemens data were also quite different, with the 

Zucker linewidth remaining essentially unchanged with applied field while the Siemens 

linewidth increased with field. It appears that at the present stage of development of 

InGaAsP devices, there is great variability in the process control and accuracy of 

fabrication achieved. Different manufacturers may have quite different levels of the 

various linewidth factors. Accuracy· of linewidth measurements is also somewhat 

questionable. While MQW stacks of many layers have been used in measurements with 

the GaAs/ AIGaAs system, most measurements with InGaAsP have used far fewer 

quantum wells)8,l9 The total absorption length is thus reduced, leading to poorer signal 

to noise ratio in the spectral absorption measurements. 

In conclusion for this chapter, a number of line broadening effects have been 

theoretically modeled. The composition broadening model was derived based on a model 

by Hong and Singh34 but including a quantum mechanical correction factor and 
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1 nted through the resonant tunneling method for the first time. A simplified 
iJDP eme 
rnethod was also developed based on assuming that the change in energy levels is directly 

related to the energy gap change alone. Results for the two models were compared and 

the simplified model was shown to be sufficiently accurate for use in device design 

optimization. A barrier composition broadening model was also developed, which for 

the first time correctly treats the exciton as a two particle system with the electron and 

bole penetrating differently into opposite barriers under an applied field. The effect of 

macroscopic composition fluctuations was considered, with the variation with well width 

and applied field included. The theoretical linewidth model was compared to 

experimental results of Sugawara et al.18 
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CHAPTER 4 

MODELING OF ABSORPTION SPECTRA 

In this chapter the theoretical background of chapters one through three will be 

applied to modeling the absorption spectra and associated index change in InGaAsP 

MQW modulators. This model will be compared against published data from Zucker et 

a1. t9 and unpublished data from Siemens researchers. 

Most authors to model the absorption spectra to optimize modulator device design 

have modeled only the exciton absorption, neglecting the continuum.6,22 This will be 

shown to be inadequate, especially in the case of InGaAsP, where at high field the 

exciton may almost fade into the continuum. Stephens et al.16 included continuum 

absorption in modeling GaAs/AlGaAs and Bandyopadhyay and Basu23 followed their 

approach for InGaAsP devices. They used the following expression for the absorption 

spectra prior to convolution with the inhomogeneous broadening function: 

a(tzm, F) = j('P. l'P ht q.xL( tuv, Ecv( F)- Eb( F)) 

+ f l('P e I 'I' ht NqconK( E', Ecv(F) )L( nm, E')dE' 
(4.1) 

E,,,, 

where L is a Lorentzian function representing homogeneous broadening, Ecv is the 

energy separation of the electron and hole subband levels, Eb is the binding energy, qexc 

is the exciton oscillator strength, N is the density of states, and qcon is the continuum 

oscillator strength which was fit to the data. K is the Sommerfeld factor which is given 

by: 

K= 2 
I+ exp[-2 n~ r12 / (nm - £)1'2] 

(4.2) 

where Ry is the three dimensional Rydberg constant: 
4 

R,-== e µ 
327r2£2n2 (4.3) 
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The Sommerfeld factor represents the enhancement in the continuum due to 

.d nn· g the coulomb interaction. It was first derived for the three dimensional 
cons1 e 

. by Elliot SO Unlike the MQW case, the three dimensional and the pure two 
exciton 
. ·,.,.nal exciton problems can be solved analytically within the effective mass 

diJD'OSh. 

l·mation In doing so, Elliot showed that the solution was a series of exciton lines. 
approx · 

'JbeSe became more closely spaced and dropped in intensity as the bandedge was 

approached, forming a quasi-continuum whic~ blended smoothly into the true continuum 

above the band edge. In chapter two we derived the absorption between unbounded 

states in a MQW, neglecting any Coulomb interaction between the electrons and holes. It 

is straightforward to derive a similar result for the three dimensional bulk semiconductor. 

The ratio of Elliot's absorption to that with the no-interaction derivation gives the three 

dimensional Sommerfeld factor. Shinada and Sugano51 derived the absorption for the 

pure two dimensional exciton. Their Sommerfeld factor is given as equation 4.2. It 

gives an enhancement by a factor of two at the band edge and fades to no enhancement 

far above the band edge. Calculations by Chan52 suggest that for a MQW the 

Sommerfeld factor may be less than two. With this in mind a variable Sommerfeld factor 

has been used: 

K = 1+77 
var 1 + 77exp(-2nR/12 j(tzm - E)112 ] 

(4.4) 

with values of 11 between zero and one. 

A major drawback of the work of Stephens et al.16 and Bandyopadhyay and 

Basu23 is that they used a fixed ratio for the oscillator strengths: 

_!k_=l2~ 
Nqcon 

(4.5) 

This value for the ratio is between the values for a pure three dimensional or pure two 

dimensional case. They maintain the same ratio, even when the applied field changes. 

This i~ equivalent to assuming that the exciton does not change size or binding energy 

with field. 
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U·o of oscillator strengths is directly available from equations (2.14) and 
Tite ra 

(2.33). 
2lc1>1 (o)l2 = 4n2 

_!Jg._ = - N µ12 
Nqcot1 

(4.6) 

1be ratio is seen to be quite sensitive to the exciton size. Thus, this ratio may be the most 

.. e measure of lambda available because the binding energy is small and only sens1uv 
}ineafly dependent upon lambda. Exciton size varies with applied field and this should 

have important impact on the above ratio. For these reasons, the following form for the 

absorption spectra was initially used in this study: 

a( hw, F) = 1('1', I 'I\ )I' (). ( ~)' )Nq,~ L( hw, E~ ( F) - E, ( F)) 

+ j j('I' e I 'I' h )12 NqconKvar ( E'' Ecv ( F) )L( nm, E')dE' 
E,., 

The normalized Lorentzian function is: 
(J 

L(1im,E) = ho~ 2 ir[ (nm - E) + ahom] 

where <1hom is the homogeneous linewidth due to tunneling. 

(4.7) 

For each applied field an RTM calculation is performed. This gives the subband 

levels and hence Ecv· It also gives the electron and hole wavefunctions which are used to 

calculate the overlap integral ('I' e I 'I' h) . The variational rriethod described in chapter one 

is used to determine the binding energy and exciton lateral size, /.... 

The RTM calculation was performed separately for the electron, heavy hole, and 

light hole. Three exciton transitions were included in the spectra. The le: lhh transition 

was between the first electron subband and the first heavy hole subband. Also included 

were the le:llh and the le:2hh transitions. Many researchers only include the le:lhh 

transition because they are only interested in the leading edge of the absorption.6,22 In 

the next chapter we will perform our device optimization assuming that a fixed drive 

voltage is available. Many of the designs in question drive the devices into the region 

beyond the heavy hole exciton where the light hole exciton absorption is also important. 
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. . J(ramers-Kronig calculation of index change will be used to determine the 
In adctuon. a 

-' rmance of the modulators. In such a calculation, a light hole absorption 
cbitP penO 

featUJ'C at higher energy contributes significantly to the index change at lower energies. It 

js therefore important to include the light hole exciton. The le:2hh exciton was found to 

fall at almost the same energy as the le:lh. It is initially a forbidden transition at zero 

field. The electron wavefunction is symmetric and the second heavy hole wavefunction 

is assymetric, giving zero for the overlap integral. As field is applied, however, this is 

disturbed and the overlap integral grows so that the le:2hh exciton is a significant 

contribution to the spectrum at high fields. 

Most researchers have not included tunneling induced broadening. Most of the 

work on MQW absorption has been focused on the GaAs/ AlGaAs system which has 

greate: confinement of the electron. The bandgap difference split is less optimal in the 

JnGaAsP system, giving a significantly shallower well for the electrons. In addition, 

there are differences for those working within the InGaAsP system. Many researchers 

use InP barriers with InGaAsP wells. Bandyopadhyay et al.23 did so and calculated that 

the tunneling induced broadening was always less than 10-4 eV. Others use different 

compositions of InGaAsP for both well and barrier. In such cases the confinement is 

less and more tunneling can be expected. A subroutine that is part of the RTM calculates 

the width of each resonance in the RTM transmission. This width is directly related to 

the tunneling of the particles out of the well. Figures 4.1 and 4.2 show a closeup of one 

subband resonance for two values of tunneling. A Lorentzian lineshape is included for 

comparison. It can be seen that the lineshape as given by the RTM is indeed 

approximately Lorentzian, especially for low tunneling. It was found that tunneling 

sometimes contributed noticeable additional linewidth at high fields and should be 

included. 
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The expression in equation 4.7 is convolved with a Gaussian lineshape 

. g the inhomogeneous and thermal broadening. The linewidth of the Gaussian 
representm 

'oination of thermal, random composition broadening, macroscopic composition 
jsacom 

d ru·ng and well width broadening. The well width broadening can represent either 
broa e • 

interface roughness or variation in well thickness in a MQW stack. The thermal 

broadening is not expected to vary much from manufacturer to manufacturer. Sugawara 

etal.36 found a thermal FWHM of 8.9 to 9.2 meV and values of9 to 9.5 meV were used 

in this study. The fitting parameters for the other broadening factors were varied in order 

to fmd a combination which fit the experimental zero-field spectra, and continued to fit as 

the linewidth changed with applied field. 

Typical calculated spectra illustrate the importance of using a full absorption 

spectrum to evaluate any theoretical model. Many researchers have not compared the full 

spectra, but have tried to read the exciton shifts, or exciton heights, or linewidths from 

measureJ data. Figures 4.3 and 4.4 show a typical absorption spectrum and the separate 

exciton and continuum contributions. It can be seen that the exciton positions are not 

where they appear to be from the full spectrum. Neither are the linewidths what they 

appear to be. 

Zucker Data 

The first experimental data to be evaluated is from Zucker et aI.19 Their sample B 

consisted of five periods, with a 70 angstrom well of 1.33 µm composition InGaAsP and 

250 angstrom barriers of InP. They estimated their total intrinsic layer thickness, di, as 

1.16 µm. Their absorption spectra were taken with a broadband optical source and a 

grating spectrometer. Figures 4.5 through 4.8 show an initial fit of the measured spectra 

to the theory for various applied reverse bias voltages. The magnitude drops too fast 

with applied field, partially disguising that the shift and linewidth are well matched. 
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k et al.'s value of intrinsic layer thickness was used to determine the applied 
WJtenZuc er 

the applied voltage, the calculated shifts with field did not match. For di= 1.16 
field from 

lt steps correspond to 43 kV/cm field steps To fit the shifts it was necessary to 
µm,5 VO 

use 51.5 kV/cm field steps, implying an effective di of 0.97 µm. The intrinsic layer 

thickness can be hard to estimate and the Zucker samples may not have been fully 

depleted. 

A key feature of the Zucker data is that the linewidth remains approximately 

unchanged with applied field. In addition, the linewidth is greater than that of 

Sugawara's devices,18,33 even when thermal broadening is accounted for. It was 

necessruy to increase some of the inhomogeneous broadening components relative to that 

found for Sugawara's data and to find a combination yielding constant linewidth. Well 

composition broadening is the only linewidth component which decreases with field and 

hence is capable of offsetting tunneling and well width broadening which increase. The 

fitting factors which best fit the data are given in Table 4.1. 

Strain applied in the plane of the layers through lattice mismatch, either intentional 

or unintentional, has as one of its effects the shifting of the light hole exciton relative to 

the heavy hole. In figure 4.5 to 4.9 a strain shift of+ 10 me V was incorporated to better 

match the separation of light and heavy hole in the data. 

The major problem with the fit is that the model spectrum falls too much with 

field. As mentioned previously, references (16) and (23) did not include the dependence 

of the er.-;iton oscillator strength upon A.-2 • A consequence of including this is that the 

spectra drop too far with field. Two factors were investigated as possible sources of this 

problem, the approximation involved in ignoring the z-direction coulomb interaction, and 

uncertainty in the splitting ratio of the band gap difference between the conduction and 

valence bands. 

Perhaps the greatest weakness of the present theoretical approach is that it neglects 

the coulomb interaction for the exciton in the z direction. The coulomb interaction in the z 
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. ovides additional confinement of the electron and hole in that direction. This 
difeCUOO pr 

the overlap integral and hence increases the binding energy. With higher 
inc.ceases 

. nergy the exciton does not spread as much in the x/y plane, reducing J... Both 
binding e 

. reased overlap integral and the reduced J.. lead to less of a drop of the spectrum 
the JJlC 

with applied field. 

Table 4.1.- -Linewidth Components of Zucker Data 

Component fit factor value Heavy hole exciton 

contribution, FWHM 

(meV) 

0 volt 20 volt 

Comp., random, well cl us 6 16 10.0 

Comp .. random, bar. cl us 6 0 0 

Comp., macro., well mac oc (jcomp 1.7 4.0 3.4 

Comp., macro., bar. mac oc (jcomp 1.7 0 0 

Well width isl= (j . I d IS an 
2.4 mono. 7.2 15.4 

Thermal therm= Gr 9.5 meV 9.5 9.5 

Total gaussian 20.4 21 

Tunneling N.A. .16 5.4 

This simplification was justified in the past in that it gave fairly accurate results. 

This problem would have been less of a problem for the GaAs/ AlGaAs system for which 

most of the theoretical work was done, because the well depth for electrons is 

significantly greater than that in InGaAsP. It may be that other simplifications, such as 
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. . the ).-2 dependence, masked the deficiencies in predicting the absorption 
1gnonng 

. de It is also noted that the magnitude is the characteristic most sensitive to such 
roagn1tu . 

A 20% error in binding energy is of minimal impact to the exciton shifts but an error. 

. substantial change in magnitude through the A -2 dependence. 
gives a 

'Theoretical approaches which include the z direction interaction were investigated. 

One such by Wu et al.53 uses a variational form in the z as well as the x/y directions. 

Two variational parameters are associated with the electron and hole z direction 

wavefunctions and one variational parameter is associated with the in-plane exciton 

wavefunction. A variational minimization is done, varying the multiple variational 

parameters to determine the lowest exciton binding energy. This method, however, is 

expensive in calculations and only made possible by the simplistic variational form used 

for the wavefunction. In solving for the z direction single particle wavefunctions, 

another researcher used a Monte Carlo technique instead of the RTM.14 Like the RTM 

and unlike variational techniques, this method is capable of finding a more accurate and 

complex form of the wavefunction. It would perhaps be possible to use a model 

combining a z direction Monte Carlo technique with an in-plane variational technique, 

doing a simultaneous minimization of the binding energy. While likely to give more 

accurate wavefunction results than that of Wu, it would be. excessively computationally 

intensive. 

The second possible explanation is the uncertainty in the splitting ratio. While a 

40% to 60% conduction band to valence band split has been used so far, various 

researchers have found a broad range of splitting ratios. This ratio was treated as an 

additional fitting factor in the method already described. Figures 4.9 through 4.13 show 

the fit using the factors in Table 4.2. It can be seen from the figures that the modified 

splitting ratio yields model results which more closely match the drop in absorption with 

increased field. 
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4 2 --Fit Factors for Figures 4.9 to 4.13 
fable · · 

Component 
fit factor value 

CoIDP·• random.well cl us 5 

CoIDP·• macro., well mac oc (jcomp 1.7 

Well width isl = (jisland 2.4 mono. 

TherIDal therm= Gr 9.5 meV 

Split ratio 56/44 conduction/valence 

Siemens Data 

The second example is unpublished experimental data provided courtesy of 

Siemens Research Laboratories. This sample included 15 quantum wells with 75 

angstom wells and 100 angstrom barriers. Well composition is y=.846 and barrier 

composition is y=.405. Absorption spectra were obtained using a broadband optical 

source and a grating spectrometer. 

Initial attempts to fit the model to the data encountered the same problem with the 

spectrum absorption dropping too much with applied field. Figures 4.14 to 4.16 show a 

fit using a 50%/50% conduction band/ valence band splitting ratio The three plots show 

applied voltages of 0, 2, and 4 volts. The built in voltage is estimated at 2 volts. The 

model best fits the experimental exciton shifts when fields of 40, 80, and 120 kV/cm 

were used. 

The linewidth is greater than that of Sugawara et al.'s devices, 18 even when 

thermal broadening is accounted for. It was necessary to increase some of the 

inhomogeneous broadening components relative to that found for Sugawara et al. 's data. 

The fitting factors which best fit the data across the range of applied fields are given in 

Table 4.3. The Siemens devices seem to be dominated by well width broadening, either 
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{rorn rough interfaces or from variations in well thickness from well to well. It is also 

d that tunneling is significantly higher than for the Zucker et aI.19 devices. This is a 
note 
difeCt consequence of the smaller composition difference between the wells and barriers, 

giving a shallower well. 

Table 4.3.--Linewidth Components of Siemens Data 

Component 

Comp., random,well 

Comp., random, bar. 

Comp., macro., well 

Comp., macro., bar. 

Well width 

Thermal 

Total gaussian 

Tunneling 

fit factor 

cl us 

cl us 

mac oc (Jcomp 

mac oc (Jcomp 

isl= a. 1a d IS n 

therm= ar 

N.A. 

75 

value 

1 

1 

1 

1 

5.5 mono. 

9.5 meV 

Heavy Hole Exciton 

Contrib., FWHM (meV) 

0 volt 

1.8 

.13/.16 

2.3 

.08/.16 

12.8 

9.5 

16.2 

.48 

20 volt 

1.2 

.14/.26 

2.0 

.07/.48 

20.8 

9.5 

23 

8.8 



CHAPTER 5 

MODULA TOR DEVICE MODELING 

Design Approach 

The goal of all the material modeling thus far presented is to support the design 

optimization of optical modulator devices. It is necessary to take the absorption spectra 

vs field data of the material model and derive from these the modulator performance. It is 

first necessary to identify those performance parameters of interest and the design 

parameters which are available to define the design. Table 5.1 gives a possible list of 

each. 

Table 5.1.--Design and Performance Parameters 

Desi~n Parameters 

well width 

barrier width 

well composition 

barrier composition 

modulator length 

number of wells 

bias voltage 

drive voltage 

stress-strain in layers* 

Performance Parameters 

3 dB bandwidth 

insertion loss 

contrast ratio 

chirp 

drive voltage 

*Stress-strain was not considered in this study due to a lack of experimental data. 
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Given the large number of design and performance parameters, careful thought 

b given to a basic optimization strategy. The few published works on optimization 
must e 

of MQW modulator design have usually relied on establishing figures of merit to combine 

several desired performance parameters into a single parameter. The most common are 

the device's bandwidth/drive voltage ratio or the ratio of the contrast to the drive 

voltage/length product. Figures of merit are inadequate when they leave out important 

performance characteristics or inappropriately weight the importance of the parameters. 

With efficiency figures of merit it is also possible to drive the design to high efficiency 

and no performance, i.e. the design that gives the best bandwidth to drive voltage ratio 

may not give the bandwidth one desires. Given these problems, a figure of merit was not 

used and the performance parameters were simply presented in tabular form. 

Performance cut-offs for the different parameters were established, and designs not 

meeting one or more of the requirements were not presented. 

Several assumptions were made relative to the design process. Rather than 

designing with a variable drive voltage, it was assumed that a certain maximum drive 

voltage is available and the device must be designed for maximum performance with that 

driver. This is more commonly the situation in practice as drive power is severely limited 

at microwave frequencies. This eliminated drive voltage as either a design parameter or a 

performance parameter. A drive voltage of 2 volts and a built in voltage of 1.15 volts 

was used. In a few cases in Chapter 6, this fixed voltage was changed and the model 

recalculated to determine the effect of a lower drive voltage on the design process. 

It was also assumed that fairly high insertion loss could be tolerated. This is 

certainly not true in all cases, but is true in many cases of current interest. The recent 

deveiopr'1ent and widespread implementation of fiber optic amplifiers at 1.55 µm or 

semiconductor optical amplifiers integrated with the modulators can change the 

constraints on system design. High modulator loss at a transmitter can be compensated 

by a power amplifier before transmission. The modulator's loss will not greatly impact 
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m as long as the optical power level input into the amplifier is higher than the 
the syste 

Ptical power level reached in the transmission amplifier chain. Thus, unlike past 
lowest o 

d. s this study has gone further in considering trading optical loss for other 
stu ie ' 
performance features. Finally, chirp was considered to be a major performance 

parameter. External modulation has mostly been considered over direct laser modulation 

due to the perception that chirp performance is improved with the former. External 

modulators, however, can exhibit appreciable chirp and the design must address 

minimizing it to meet system goals for dispersion in long distance communications. 

Several parameters were fixed in the interest of minimizing the number of variable 

design parameters. A single bias voltage was used. Upon manufacture, a modulator's 

operation may be shifted relative to the design and bias voltage may be useful to tune the 

modulator's performance to the correct wavelength. It is not apparent, however, that it 

serves any other purpose. By comparing the Zucker and Siemens tunneling linewidths it 

is apparent that the barrier composition should be as close to InP as possible. The 

modulator efficiency is increased if the inactive barrier material is reduced by thinner 

barrier layers. Thinner barrier layers can only be used if the tunneling is kept low. 

Siemens personnel indicated that they prefer a InGaAsP composition. There is always 

some GaAs diffusion and they have found that a small GaAs concentration is more 

accurately controlled. While it may thus be adviseable to maintain a small y in the barrier, 

it should be minimized. A fixed y of 0.1 was chosen. 

Device Equations 

This study addresses the performance of waveguide type modulators. The 

effective refractive index of the waveguide mode is given by: 
2L 2 

n;ff = nw w + nblb 
Lw +Lb 

(5.1) 

where nw and fib are the refractive index of the well and barrier material respectively, and 

Lw and Lb are the well and barrier thicknesses. The refractive index of the barrier layers 

78 



. b the single-effective-oscillator (SEO) method with interpolation between the 
isgtven Y 

binaries. The formulas of reference (54) are used: 

four ( 2£2 E2 E2 J Ed Ed E1 +]. £4 ln o - g -

n2 ::: 1 + - + E3 ;r E2 - E2 E0 o g 

where: 

11 ::: 2E5 ( Eg - E:) 
Eo::: o.595x2(1- y) + I.626xy- 1.891y + 0.524x + 3.391 

£0 = (12.36x-12. 71)y+ 7.54x+ 28.91 

E ::: 1.35+ 0.668x -1.17y + 0. 758x2 + 0.18y2 -0.069xy-0.322x2y + 0.03xy2 
g 

(5.2) 

This method has been shown to fit well with experimental measurements of InGaAsP 

refractive index at wavelengths away from the band gap. 55 This equation was used for 

the refractive index of the barrier layers and the waveguide cladding layers surrounding 

the multi-quantum well material. 

The SEO theory exhibits a singularity at the bandgap and is of no use in predicting 

refractive index in the region near the bandgap. 

The refractive index at the bandgap is given by Nahory and Pollack56 by interpolation 

between the measured index at the bandgap for the four binaries: 

n = 3.4 + 0.256y -0.095y2 (5.3) 

For this work, the refractive index of the well layers was found by determining the 

detuning from the bandgap, and using linear interpolation between the refractive index at 

the bandgap given by equation 5.3 and the refractive index 20 meV away from the 

bandgap given by equation 5.2. 

Based on Agrawal and Dutta's57 formula for bulk waveguides, the following 

emperical formula gives the fill factor for MQWs: 

r = (k0d;)2 (n;ff - nn ( Lw J 
l.5+(k0d;)2 (n;ff -n;) Lw +Lb 
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k == (2n/ A.). (from this point on the symbol A. is used for the wavelength). The p 
where o 

d . ions of the pin junction form the cladding region of the waveguide and have an n reg 

refractive index ni. These regions are InP with an index given by equation 5.2. The 

thickness of the intrinsic quantum well region is d;, given by: 

d;::: (Lw + L,,)z +Lb (5.5) 

Tue number of quantum wells is z. 

It can be shown that the device contrast ratio is given by: 

CR::: lOlog{ exp[( !ia( F0!!,A. )- !ia( Fb;•A) )rL]} (5.6) 

where Lis the device length. The absorption change at wavelength A. with maximum 

applied field F0ff is: 

Aa( F0!!. A.) == a( F0!!, A.) - a( F = 0, A.) (5.7) 

Likewise !ia( Fb;,A) is the absorption change at A. with built in field Fb;· Fb; 

corresp011ds to the high transmission state of the modulator and includes both the 

device's built in voltage and any voltage applied in the "on" state to tune the modulator's 

performance to the correct wavelength. F011 corresponds to the off state. It is noted that 

the "off' refers to the light being "off', not the applied field. The applied field is given 

by: 

F= V/d; + Fb; (5.8) 

The insertion loss is given by: 

IL= lOlog{ exp[-rL( !ia( Fbi').) +a( F = O,). )) ]} (5.9) 

To determine the bandwidth it is first required to calculate the capacitance of the 

device. 

C = £0n;f!L W + 
d cpara 

I 

(5.10) 

A waveguide width, W, of 3 µm was used. A parasitic capacitance, Cpara• of 0.030 

picofarads was added for contact pads and leads. 

BW= l 
2nJ\iC 
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the terminating resistance, R0 , is 50 ohms. 
where 

Index Change and Chirp 

Associated with the modulator absorption change is a change in refractive index. 

The change in refractive index can be found using a Kramers-Kronig integral58: 

di f- Aa( F, E') dE' 
M(E,F) =-; £'2 -£2 

0 

It is necessary to calculate around a singularity at E'=E. The integral is devided as: 

f
.., Aa( F, E') E' = Ef-h Aa( F, E') dE' + Ef+h Aa( F, E') dE' + f- Aa( F, E') dE' 

,2 _ £2 d E'2 _ £2 £'2 _ £2 £'2 _ £2 
0 E 0 E-h E+h 

(5.12) 

(5.13) 

The first and third integrals were calculated by the trapezoidal rule. The second integral is 

estimated by using Taylor's theorem to expand Aa for small h. The second integral can 

then be calculated term by term. Retaining two terms: 

EJ+h Aa(F,E')dE'::::: ln(2E-h){Aa -(dAa) + .. . } 
E'2 -£2 2E+h 2E dE' ,_ 

E-h E -E 

(5.14) 

In numerically calculating the index change it is not possible to evaluate the integral 

from 0 to infinite energy. The integral is started at an energy well below the exciton 

where the absorption change contribution is negligible. At the high energy end, the 

absorption spectrum model does not adequately represent the true spectrum because only 

the le:lhh, le:llh, and le:2hh excitons are included. Numerous additional transitions 

which have not been modeled also add to the absorption spectrum. This deficiency of the 

model does not have an appreciable effect upon the shape of the index change spectrum in 

the spectral region of interest near the absorption edge. This is because the primary 

contribution to the index change at a particular energy E is the absorption nearest to E. 

The deficiency of the absorption spectra can have the effect of increasing or decreasing 

the entire index change spectrum. As field is applied the absorption curves shift to lower 

energy and the contributions of the light and heavy hole drop. The contribution of the 

second heavy hole exciton initially rises and eventually drops also. The dropping of the 
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t·on spectra decreases the total absorption contribution to the Kramers-Kronig 
absorp I 

integral and the entire index change spectrum is lowered. The most noticeable effect is 

that at low energy, far from the exciton, the index change is negative, instead of going to 

i.ero as expected. In reality, when applied field causes the hh and lh exciton oscillator 

strengths to decrease, the oscillator strengths of other transitions should increase to 

maintain the same oscillator strength sum. 8 This effect was approximated by integrating 

the calculated absorption change across the full range of the integral for each field. The 

absorption change spectra was then increased in a region well above the excitons as 

necessary to maintain the total absorption change constant. This eliminated the problem 

at iow energy without affecting the shape of the index change spectrum near the 

absorption edge. 

The chirp performance of a modulator is often defined in terms of the chirp 

parameter a a , called the Henry factor: 
dn 

aH= dk (5.15) 

where n and k are the real and imaginary parts of the electroabsorptive material's index. 

The Henry factor should not be confused with the symbol used for absorption. 

Dorgeuille and Devaux59 have recently published a study of the non-return to zero (NRZ) 

intensity modulation transmission performance versus the chirp parameter for MQW 

modulators. They discussed how the phase versus absorption curve in a MQW 

modulator is not linear, so that the chirp parameter varies according to how the device is 

biased and changes within each modulation swing. Figure 5.1 shows a typical phase 

versus absorption curve from Reference 59. The chirp parameter is the slope at any point 

of the curve. In the past, system designers have attempted to describe the chirp 

performance by a single chirp parameter. The most common form is the following: 

a _ L\n( Fb; )- L\n( Faff) 
H,on,off - ( ) ( ) 

6.k Fb; - M Faff 
(5.16) 

where: 
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~a(F) 
/V(( F) == 2k0 

(5.17) 

Koyama et al.60 and Gnauck et al.,61 have calculated dispersion penalties and system 

transmission performance, given a single valued chirp parameter as defined in (5.16) . 

All found that the optimum chirp parameter varies between zero and -1, depending on 

system jitter tolerances. These values give some amount of pulse compression in the 

fiber transmission. At the optimum value the bit-rate-squared length product was 

significantly increased compared with that for positive chirp parameters . 
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Figure 5.1. Typical phase of output light versus transmission for a 100 µm modulator. 

Dorgeuille and Devaux59 further investigated the performance with the more 

complicated bias dependent chirp parameter of the MQW modulator. They found that the 

transrr.ission system performance could be estimated accurately with a single valued chirp 

Parameter defined as: 

a - ~n(Fbi)- ~(F3dB) 
H,3dB -

M(Fb;)-M(F3dB) 
(5.18) 
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F is the field at which the absorption is increased by 3dB. This makes intuitive 
where 3dB 

Ul. that dispersion has little impact when the bit is off and there is no light to 
sense 
disperse. Both aH.on-o!f and aH.3dB were calculated, but the design effort focused on 

The phase shift was also calculated: 
aH.3dB" 

tP == k0fi(M( F0ff )- M( Fbi )] (5.19) 

The fmal design optimization program was comprised of two parts. The material 

modd program calculated the absorption change and index change spectra for a series of 

values of well width, well composition, and barrier width. For each combination it ran 

nine fields: 0, 14, 28, 42, 56, 70, 84, 98, and 120 kV/cm. The modulator's design 

wavelength of operation was chosen to be 1550 nm. The second program ran a series of 

lengths and well numbers. As a result, Fbi and Foff varied from trial to trial. It was 

necessary to interpolate from ~a and ~values from a minimal number of fields which 

still provided sufficient accuracy. In the first program the ~a and ~n values at 1550 nm 

were extracted for each field. Separate cubic splines were used to fit ~a vs. field and ~n 

vs. field and the spline parameters were stored for later use by the second program. 

Typical results are shown in Figures 5.2 to 5.4 for case 12513, an optimized low chirp 

design. 
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CHAPTER 6 

DESIGN RES UL TS 

In the following discussion, the various designs considered by the design 

optimization program are represented by a five digit design code. The first digit 

represents the choice of device length, with one through four representing 50, 100, 150, 

and 200 microns. The second digit represents the number of wells: 10, 15, 20 ,or 25. 

The third digit represents the well width: 12.5, 13.0, 13.5, 14.0, 14.5, or 15.0 

nanometers. The fourth digit represents the barrier width: 4.0, 6.0, or 8.0 nanometers. 

Finally, the fifth digit represents well composition Yw: 0.89, 0.90, 0.91, 0.92, or 0.93. 

For quic!c reference these values are shown in Table 6.1. For each design, the 

bandwidth, contrast ratio, absorption loss with no applied field, 3 dB Henry factor 

a H,JdB, and the spectral offset or detuning of the exciton from the operating wavelength, 

both with and without applied field, were calculated. 

Design Parameter Effects 

It would be desirable to be able to distinguish the effects of changes in the design 

parameters. In general, however, this will not be possible because of the complexity of 

the interactions between the various parameters. It is useful to first understand the role 

each design parameter is playing and how it affects the modulator performance 

parameters. 

The affect of the well composition parameter Yw is straight forward. Changing Yw 

primarily acts to change the exciton detuning without other major changes. The detuning 

is the spectral offset of the heavy hole exciton from the operating wavelength. This can 

88 

Iii 



be seen in Table 6.2. It is through the detuning that the contrast ratio, loss, and Henry 

are affected. The bandwidth is virtually unaffected. 
factor 

Table 6.1.--Design Designations 

r-- 1 2 3 4 - --
first digit: 50 100 150 200 

device length (µm) 

second digit: 10 15 20 25 

number of wells 

third digit: 12.5 13 13.5 14 

wellwidth (nm) 

fourth digit: 4 6 8 -

barrier width (nm) 

fifth digit: 0.89 0.90 0.91 0.92 

composition Yw 

5 6 

- -

- -

14.5 15 

- -

0.93 -

The detuning changes rapidly with this factor. Given current fabrication 

accuracies, it is not possible to hit the correct value of Yw close enough. However, in 

actual device operation the bias voltage or operating wavelength can be tuned to optimize 

the device performance. 

Modifying device length also has fairly simple effects. Table 6.3 presents a series 

of designs that illustrates changing the length. Changing the length has no effect on the 

shape of the absorption spectrum calculated for an individual well and doesn't affect the 

applied field. The detuning is thus unchanged. Adding length simply increases the loss 

and contrast ratio in direct linear proportion as expected. The bandwidth is affected 

directly through the increase in capacitance as the length increases. 
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Table 6.2.--Effect of Detuning 

design Yw detuning 
(meV) 

bandwid contrast 
ratio 

(GHz) (dB) 

loss (dB) 

12421 .89 20.5 39.00 14.1 1.71 2.11 I 
12422 .90 15.9 -38-.9-3---:--18 ___ 4 _-t--2-_6_9 _ _,l_i._06--I 

~12~4=23=-----r--·9_1 ___ ,1_1_.0 __ 1~3_8._86_--i __ 2_0_.5 __ ·i--8_.1_8_~1____.l2 ___ 11• 

12424 --:-·9_2 __ --i-6_._4 __ _,_3_8_.8_0_--i-_14_.8 __ _,_2_2_.5_7_-;-~---
L-.:-:12~4_25 __ , __ .9_3 __ ._1._9 ___ ~3_8_.7_3_~_2._1 ___ ~4_1_.8_7_~1 _-2_0_.6_1~1 

The Henry factor is a material parameter and would normally not be expected to 

vary with a device parameter like length, which does not affect the individual well 

absorption spectra. The increase in the 3 dB Henry factor in Table 6.3 demonstrates one 

of the differences between the conventional Henry factor and the 3 dB Henry factor. The 

conventional Henry factor is based on intensity and phase change between an "on" and an 

"off' field, neither of which are affected by device length. The 3 dB Henry factor is 

based on an "on" field and a field which reduces the intensity by 3 dB. Because the 

device length affects how quickly 3 dB of loss is achieved versus applied field, the 3 dB 

Henry factor is modified as well. 

The effect of the remaining parameters are not so simple, mostly because they alter 

the total MQW thickness, di, and hence the built-in field, applied field, and total field 

shift. Designs with small di lead to large field shifts between the bias field and the 

applied field. These shifts can be so large that instead of the applied field moving the 

operation up the leading edge of the first heavy hole exciton, it may move the operation 

well beyond, into the more complex spectral region of the second heavy hole and first 
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light hole excitons. The effects of these parameters are more likely to depend on the 

al Of the other parameters. Changing well thickness may have one effect when other v ues 

pararrieters are such that the applied field is still acting on the initial slope of the first 

heavy hole exciton. Changing well thickness will have quite another effect if the other 

parameters are such that the applied field operates in the region of the other excitons. 

Table 6.3.--Effect of Device Length 

length detuning bandwidth contrast loss (dB) 
aH,3dB 

(µm) at Fbi (GHz) ratio 
(me\') (dB) 

design 

13411 50 23.1 43.0 18.4 2.25 I 2.04 

100 23.1 27.0 36.8 4.51 I 2.44 I I 23411 

I 33411 

I 43411 

150 

200 

23.1 19.6 

23.1 15.4 

55.2 6.76 ~ 75.3 9.02 I 

The number of wells is one of the parameters to have such an effect. Increasing 

the well number decreases the change in applied field. Depending on the spectral shape 

of the absorption, this might decrease or increase the contrast ratio. This is somewhat 

offset because the greater number of wells gives greater absorption per unit length, 

increasing loss and contrast ratio. The situation is further complicated because the built in 

field is also modified, modifying the initial detuning.' It was already shown above that 

this can modify all performance parameters except bandwidth. The effect on the 3 dB 

Henry factor is not straightforward because it depends in a complex way on the initial 

built in field, the shape of the absorption spectrum, and how quickly 3 dB loss is 

achieved versus applied field. The bandwidth is affected through the capacitance change 

with chu:lging di. Table 6.4 shows a particular example. The change in detuning at bias 

and the change in the magnitude of the total detuning shift is apparent. In this case, 
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between 20 and 25 wells, the contrast ratio decreases with well number, indicating that 

the change in field shift is more important than the effect due to more absorption. In the 

15 well case the applied field shifts the spectrum well beyond the first heavy hole exciton 

and results in decreased contrast ratio. The loss increases with well number, indicating 

that the increase in absorption due to extra wells is of greater significance than the change 

in detuning. 

Little can be said a priori about the well width. Well width is another factor that 

changes the total thickness, di, and hence the bias and applied field. Larger well width 

allows greater exciton shift with applied field. However, it also reduces the exciton 

oscillator strength and can vary the exciton linewidth, all of which affect the shape of the 

absorption spectrum in a complex way. 

Table 6.4.--Effect of Well Number 

design well detuning detuning bandwidth contrast loss 
aH,3dB 

number at Fbi at Foff (GHz) ratio (dB) 
(meV) (meV) (dB) 

I 12631 I 15 18.8 -18.2 42.8 14.41 I 1.73 1.28 

113631 I 20 22.5 -1.6 50.2 16.54 I 2.06 1.99 

~I 25 24.4 7.2· 56.0 10.48 I~ 2.14 

Provided sufficient barrier width is incorporated to prevent tunneling, barrier 

width should not have a large effect on the single well absorption spectrum. It is another 

factor which changes the total thickness, and hence the built in and applied field. 

Alternately, a reduction in barrier width can allow more wells without affecting di. 
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Modulator Design for Long Distance 

The interplay of all of the effects leading to a full modulator design is now 

considered. The optimum modulator design will depend on the particular application, 

which will dictate the requirements for bandwidth, loss, contrast ratio, and chirp. For 

long distance applications, the chirp will be of major importance. Dorgeuille and 

Devaux59 showed that the required a H,3d.B to maximize transmission length depended 

upon the system jitter tolerance. For a tolerance of 20% of the bit time, the required 

a is about -0.5. For a tolerance of 10%, greater transmission length can be 
H,3dB 

achieved, but only if aH,3dB is reduced to -1.0. Figure 6.1 illustrates the loss and aH.3dB 

dependence on detuning for the case in Table 6.2. 

There is a basic tradeoff between device loss and chirp performance. Optimum 

negative Henry factors as defined in (5.18) can be achieved by operating close to the 

exciton, but the drawback is greater device loss. It is of interest to see which design 

parameters can influence this tradeoff. Well width and barrier width can potentially 

influence the tradeoff through their effect on the absorption spectra. Figure 6.2 shows 

loss vs aH,Jd.B for designs in the 12xxx design series and shows that the resulting 

tradeoff appears independent of the well width. 

Figures 6.3 and 6.4 show how the tradeoff varies with barrier width for the 12xxx 

and 13xxx design series. In the l 2xxx series the thinner barriers appear to give lower 

loss for the same Henry factor. In the 13xxx series the resulting tradeoff appears 

independent of the barrier width. 

The major factors affecting loss vs. chirp are not those affecting the absorption 

spectra, but the device factors of length and number of wells. These affect the total 

absorption and hence the loss and contrast ratio. Increasing the number of wells 

increases the total absorption. The result on the loss/chirp tradeoff is shown in Figure 

6.5, which compares designs with 10 wells to designs with 15 and 20 wells. Only 

designs with greater than 10 dB contrast ratio are shown. It is seen that the lower 
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Figure 6.1. Loss and chirp dependence on detuning. 

number of wells is clearly superior. However, only one of the 10 well designs achieved 

10 dB contrast ratio and it didn't offer a low Henry factor. 

In Figure 6.6 the 12xxx series with length of 50 microns is compared to the 22xxx 

series with length of 100 micron length. The extra length clearly leads to more loss for 

the same Henry factor. 

The optimum low aH,3dB design is guided by the observations above. It has few 
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enough wells to keep a favorable loss vs. chirp tradeoff, but enough to meet the contrast 

ratio and Henry factor requirement. The exact value will depend on the contrast ratio 

required by the system but will be about 15. The device is as short as possible for chirp 

minimization- about 50 microns. This has the added benefit of increased bandwidth. It 

should also have narrow barriers for.optimum loss/chirp performance. 

The remaining design factor to be determined is the well width. The 12xlx design 

determined in the last paragraph was investigated further by running the model with 

smaller steps in Yw to determine the correct detuning to give a 3 dB Henry factor of -0.5. 

Designs at different well widths were then compared when tuned in Yw for this same 

Henry factor. The device model was run with various drive voltages to determine the 

minimum drive voltage necessary to achieve 15 dB contrast ratio. These drive voltages 

and the design bandwidths are plotted in Figure 6.7. Unless bandwidth is critical, the 

plot would lead to a choice of 14.5 nm wells to minimize drive voltage. 
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The optimum device is slightly detuned from case 12513 and will have a 3 dB 

Henr; factor of -0.5, a bandwidth of about 36 GHz, a contrast ratio around 15 dB, and a 

loss of around 18 dB. It is biased for a detuning of about 7.0 meV. Its drive voltage is 

1.5 volts. This device loss is quite high compared with modulators which have been 

considered in the past. This work clearly indicates the tradeoff involved, and high losses 

will be necessary to achieve low chirp. Such a device could be acceptable if an amplifier 

is used after the modulator. It is possible to trade even higher loss for more bandwidth 
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by choosing designs with thicker barriers. The 12534 design gives 42 GHz bandwidth 

but 22 dB loss. 

The choice of well number is the primary difference from designs that seek to 

maximi:re bandwidth without regard for chirp performance. It will be seen in a later 

section that such designs use the maximum number of wells technically feasible. 

Modulator Design for Short Distance 

When designing a modulator for short distance applications, the chirp performance 

is much less relevant. When a requirement for negative Henry factor is not imposed, 

there is freedom to design the modulator to further maximize other performance 

parameters. In the previous section, the necessity to minimize the chirp guided the design 

choices quite strictly, offering few alternatives. This is not true for the short haul 

modulator. Further, it is necessary to determine what performance objectives the design 

is to mel?.t In some applications the required bandwidth is given and the design task 

becomes to maximize the contrast and minimize loss and drive power. In other 

applications maximum bandwidth will be sought. The full computer model will be useful 

regardless of the performance requirements sought. It is not possible, however, to plot 

out a design chart showing how to design any of these possible devices. The full device 

model has six inputs and four performance outputs and cannot be presented in a single 

plot or even set of plots. A three dimensional plot could show only one output versus 

two inputs. Other two dimensional plots could show several outputs relative to a single 

input. The most complicated plots or sets of plots cannot present the full complexity of 

the model. Any attempt to hold several parameters constant while varying others, results 

in a plot that is a cut of the full model. While it is useful for designs close to the frozen 

values it says nothing of designs away from those frozen values. 
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Despite these limitations, much can be understood from an example. For this 

example an arbitrary (but typical) design goal is considered. The goal in priority order 

will be: 

1) maximize band width as highest priority, 

2) require contrast ratio greater than 15 dB, 

3) minimize drive power, 

4) minimize loss. 

TI1e model showed that bandwidth is maximized by choosing the shortest device 

and the most wells that are feasible. For this work these are designs with 50 µm length 

and 25 wells, designated 14xxx designs. Larger barrier widths also maximize the 

bandwidth by decreasing the device capacitance. 

Bandwidth is also dependent upon well width through the capacitance. However, 

the difference is so small between the well widths considered that in most design 

situations the well width can be used to optimize the other performance parameters. The 

tradeoffs are illustrated in Figures 6.8 to 6.10. These plot contrast ratio versus loss for 

different well widths for the 14x3x design. The contrast versus loss curves are traced out 

by varying the detuning through Yw· 

Figure 6.8 is plotted for a drive voltage of 1.5 volts. It can be seen that at this voltage 

design 1453x with 14.5 nm wells gi.ves the lowest loss for 15 dB contrast ratio. It is 

followed by designs with 14 and then 15 nm wells. 

Figure 6.9 is plotted for a 1.0 volt drive voltage and shows that it is possible to 

tradeoff loss for drive power. The best design requires 4.5 dB loss to reach 15 dB 

contrast ratio compared to 3 dB loss with 1.5 volt drive. It is noted that the best well 

width is now the 1463x case with 15 nm wells. Thus, the designer's decision 

concerning the loss versus drive voltage tradeoff will affect the choice of well width. 

Figure 6.10 shows that this tradeoff can not be carried too far because, below a certain 

drive level, the loss will climb rapidly for all designs. 
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Figure 6.8. Loss versus contrast ratio for various well widths in the 14x3x design 
series. Drive voltage = 1.5 volt. 
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Figure 6.9. Loss versus contrast ratio for various well widths in the 14x3x design 
series. Drive voltage= 1.0 volt. 
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The way the optimum well width changes with applied voltage may be a result of 

two opposing effects. If there is sufficient drive voltage, the lower well width will give 

less linewidth and greater exciton oscillator strength leading to better contrast ratio for 

lower loss. As drive voltage is reduced, greater well width will give greater exciton shift. 

The contrast ratio enhancement due to the greater shift will play off against the oscillator 

strength and linewidth effects in such a way that different well widths are favored at 

different drive voltages. 

If the low voltage option is chosen, the optimum device is slightly detuned from 

case 14633 and will have a bandwidth of about 56 GHz, a contrast ratio of 15 dB, and a 

loss oi 4.5 dB. Its drive voltage is 1 volt It is biased for a detuning of about 14.5 meV. 

The design is not optimized for chirp as evidenced by its 3 dB Henry factor of 1.1. 

In conclusion for this chapter, it has been shown that the MQW electroabsorption 

modulator model can be used to evaluate a large number of possible designs. It has been 

shown that design optimization is possible as long as what constitutes "optimization" is 

well defined. Different applications with different performance requirements can lead to 

distinctly different optimized device designs. For long distance applications where device 

chirp is important, the devices must be tuned closer to the exciton, with higher loss 

resulting. This loss can be tolerated if an optical amplifier is used prior to transmission. 

Minimizing the loss led to a design with 15 wells. For short distance applications, chirp 

is no longer of concern, and the design may be concentrated on optimization of the 

rernair!ing performance parameters. If bandwidth is the top priority the design is 

optimized by the largest number of wells that is feasible. Well width is determined by the 

choice in a tradeoff between loss and drive voltage. 
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CHAPTER 7 

CONCLUSIONS 

A detailed theoretical model of electroabsorption in InGaAsP multi-quantum wells 

has been developed. Though similar to previous theoretical models for GaAs/ AlGaAs 

structures, the model includes significant improvements in the handling of excitonic 

linewidth and the variation of exciton oscillator strength with applied field. The model 

calculates both the absorption spectra and the refractive index change spectra for different 

applied fields. Results of the electro-absorption model were compared with two sets of 

experimental data on InGaAsP MQWs. It was shown that with appropriate choices of 

several parameters related to the MQW fabrication quality, it could effectively describe 

both the shape of the absorption edge, its shift with applied field, and the decrease in 

oscillator strength with applied field. The model clearly demonstrated that it is necessary 

to include the first heavy hole, second heavy hole, and first light hole excitons as well as 

the effect of the continuum. 

This material model was then used to calculate the performance of MQW 

modulator devices as part of a multi-parameter design optimization. The performance 

factors of bandwidth, loss, contrast ratio, drive voltage, and chirp performance were all 

considered, rather than using figures of merit which ignore or inadequately prioritize 

these factors. The design of a modulator to give optimum chirp performance over long 

transmission distances was investigated. It was shown that by using present fiber or 

semiconductor optical amplifiers, higher device loss can be tolerated, allowing operation 

tuned closer to the exciton to optimize the chirp. The loss versus chirp tradeoff can be 

optimized through use of short device length, small well number, and small barrier 

thickness. Well width of 14.5 nm gave the lowest drive voltage requirement. The design 
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of a modulator for typical short distance transmission was also considered. When chirp 

performance is ignored, it is possible to further optimize the remaining performance 

factors. The choice of a large well number is the main result to distinguish these designs 

from designs that optimize chirp performance. The choice of well width was found to 

involve a tradeoff of lower drive voltage versus higher loss. 

The two design examples showed that there are numerous tradeoffs to be made 

between the various performance parameters. They also showed that performance can be 

significantly improved through optimized design. The proper prioritization of the various 

performance parameters will depend upon the specific application and such factors as the 

transmission distance, the loss budget, the ability to include an optical amplifier, the 

contrast ~atio requirements, the drive power available, and the bandwidth desired. 

Furthermore, the model is sufficiently complicated that the tradeoffs change with the 

design parameters and cannot be generalized. In such cases the judgement of a human 

designer who can weigh all the factors can be very valuable. This device model gives the 

designer the tool required to make those judgements. 
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