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ABSTRACT 

Eastern hemlock (Tsuga canadensis [L.] Carriere) is a dominant shade-tolerant 

tree in northeastern United States that has been declining since the arrival of the 

hemlock woolly adelgid (Adelges tsugae Annand). Determining where A. tsugae 

settles under different abiotic conditions is important in understanding the insect’s 

expansion. Resource availability such as light and water can affect herbivore 

selectivity and damage. We examined how A. tsugae settlement and survival were 

affected by differences in light intensity and water availability, and how adelgid 

affected tree performance growing in these different abiotic treatments. In a 

greenhouse at the University of Rhode Island, we conducted an experiment in which 

the factors light (full-sun, shaded), water (water-stressed, watered), and adelgid 

(infested, insect-free) were fully crossed for a total of eight treatments (20 two-year-

old hemlock saplings per treatment). We measured photosynthesis, transpiration, 

water potential, relative water content, adelgid density and survival throughout the 

experiment. Adelgid settlement was higher on the old-growth foliage of shaded and 

water-stressed trees, but their survival was not altered by foliage age or either abiotic 

factor. The trees responded more to the light treatments than the water treatments. 

Light treatments caused a difference in relative water content, photosynthetic rate, 

transpiration and water potential, however, water availability did not alter these 

variables. Adelgid did not enhance the impact of these abiotic treatments. Further 

studies are needed to get a better understanding of how these abiotic factors impact 

adelgid densities and tree health, and to determine why adelgid settlement was higher 

in the shaded treatments.  
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This thesis “Effects of light and water availability on the performance of hemlock 

woolly adelgid (Adelges tsugae)” is being submitted in manuscript form. This has 

been accepted for publication in Environmental Entomology.  
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ABSTRACT 

 

Eastern hemlock (Tsuga canadensis [L.] Carriere) is a dominant shade-tolerant 

tree in northeastern United States that has been declining since the arrival of the 

hemlock woolly adelgid (Adelges tsugae Annand). Determining where A. tsugae 

settles under different abiotic conditions is important in understanding the insect’s 

expansion. Resource availability such as light and water can affect herbivore 

selectivity and damage. We examined how A. tsugae settlement and survival were 

affected by differences in light intensity and water availability, and how adelgid 

affected tree performance growing in these different abiotic treatments. In a 

greenhouse at the University of Rhode Island, we conducted an experiment in which 

the factors light (full-sun, shaded), water (water-stressed, watered), and adelgid 

(infested, insect-free) were fully crossed for a total of eight treatments (20 two-year-

old hemlock saplings per treatment). We measured photosynthesis, transpiration, 

water potential, relative water content, adelgid density and survival throughout the 

experiment. Adelgid settlement was higher on the old-growth foliage of shaded and 

water-stressed trees, but their survival was not altered by foliage age or either abiotic 

factor. The trees responded more to the light treatments than the water treatments. 

Light treatments caused a difference in relative water content, photosynthetic rate, 

transpiration and water potential, however, water availability did not alter these 

variables. Adelgid did not enhance the impact of these abiotic treatments. Further 

studies are needed to get a better understanding of how these abiotic factors impact 
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adelgid densities and tree health, and to determine why adelgid settlement was higher 

in the shaded treatments. 

INTRODUCTION 

 

The hemlock woolly adelgid (Adelges tsugae Annand) is an invasive species 

that poses a major threat to eastern hemlock (Tsuga canadensis (L.) Carr.) on the east 

coast of the United States. The adelgid was introduced to eastern Virginia in the early 

1950s from Japan and spread rapidly northward, reaching New England by 1985 

(McClure 1989a). It completes two generations per year and is obligately asexual in its 

invaded range (McClure 1989b), two factors that have helped it spread rapidly through 

the Northeast. In its invaded range the adelgid feeds exclusively on eastern and 

Carolina hemlock (T. carolinensis) and can kill mature trees in as little as four years 

(McClure 1991), although some trees can survive for more than ten years (Orwig et al. 

2002). In its juvenile ‘crawler’ phase, A. tsugae crawlers can move within vegetation 

or be passively dispersed among trees by wind, birds, or other vectors (McClure 

1989b, Turner et al. 2011). Once it locates a suitable feeding site at the base of a 

hemlock needle, the crawler inserts its stylet bundle and begins feeding on xylem ray 

parenchyma cells; it will stay in this feeding site for the remainder of its life (Young et 

al. 1995). The adelgid is now found throughout New England, ranging as far south as 

Georgia, and poses a significant threat to hemlocks in this region (Orwig et al. 2012). 

Hemlocks are considered ‘foundation species’ in eastern forests, and their loss will 

greatly impact both terrestrial and aquatic ecosystems as well as ecosystem processes 

such as carbon sequestration and nutrient cycling (Ellison et al. 2005).  
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Researchers have recently begun addressing the mechanism(s) underlying the 

adelgid’s rapid and lethal impact on hemlock trees. The adelgid has been shown to 

cause a systemic hypersensitive response, a defensive response linked to plant stress, 

in hemlock trees (Radville et al. 2011). The hypersensitive response, a common 

response to pathogens and sessile insect herbivores, kills the tissue surrounding the 

feeding/infection site by starving it of water and nutrients (Heath 2000). Perhaps as a 

result, A. tsugae-infested trees have a greater number of false growth rings, bands of 

thick-walled latewood indicative of water stress, than uninfested trees (Gonda-King et 

al. 2012). The adelgid is also known to affect other water-related parameters in eastern 

hemlock, and to reduce overall tree water use by more than 40% (Domec et al. 2013). 

Infestation by A. tsugae also increases amino acid concentrations at the site of the 

herbivore’s feeding: the largest increase is in proline, an amino acid that acts as an 

osmoprotectant (Gómez et al. 2012). Furthermore, A. tsugae alters plant processes by 

decreasing stomatal conductance and photosynthesis (Gonda-King et al. 2014).  

Despite our improved understanding of the A. tsugae-hemlock interaction, the 

impact of abiotic factors such as light and water availability on this relationship has 

not been assessed. There is some evidence that water stress renders hemlocks more 

susceptible to A. tsugae damage (Souto et al. 1996) and that trees decline more quickly 

on xeric versus mesic sites (Sivaramakrishnan and Berlyn 2000, Preisser et al. 2008). 

During a series of stand-level surveys, we have also noticed that understory hemlocks 

in high-shade conditions appear to decline more quickly than do hemlocks growing in 

full sunlight (E. Preisser, personal observation). One explanation for this result is that 

plants experiencing stress may become more susceptible to herbivores (the plant stress 
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hypothesis; White 1984) . Conversely, healthy and unstressed plants may provide 

high-quality resources necessary for optimal herbivore growth (the plant vigor 

hypothesis; Price 1991).  

We report the results of work testing how altered light and water availability affected 

eastern hemlock, A. tsugae, and the A. tsugae-hemlock interaction. Specifically, we 

assessed the response of greenhouse-grown hemlock saplings in a 2*2*2 factorial 

experiment that crossed light (shade versus full-sun) and water (drought versus 

watered) with adelgid presence (versus absences). Since insects such as A. tsugae are 

generally thought to do better on stressed trees, we hypothesized that A. tsugae would 

settle better and survive longer on shaded, water-stressed trees. Since A. tsugae has 

also been shown to decrease hemlock photosynthesis and stomatal conductance while 

increasing water potential, we further hypothesized that the presence of A. tsugae 

would exacerbate the impact of abiotic stress on eastern hemlock physiology.  

 

METHODS 

 

In February 2013, we purchased 165 two-year-old uninfested Tsuga 

canadensis saplings (~0.5 m in height) from Van Pines Nursery (West Olive, 

Michigan). Upon arrival, each sapling was individually planted into a 3.8L plastic pot 

with potting soil (Sun Gro Metro-Mix 830) and watered. The potted trees were placed 

in a greenhouse at the University of Rhode Island (Kingston RI) in a grid with 0.5m 

spacing; trees were rotated to a new randomly-chosen position within the grid every 

two weeks. Each tree was fertilized two weeks post-transplantation with 175 ppm of 



 

6 

 

20-10-20 peat lite special. The fertilizer was applied using a five-second spray from a 

Dosatron D14MZ2 direct injection proportioner. After three weeks, the trees were 

inspected and five unhealthy trees were removed; each of the remaining 160 trees 

appeared healthy and had begun to put on new growth. Forty of the 160 remaining 

trees were then randomly assigned to one of four treatments: watered/full-sun, 

watered/shaded, water-stressed/full-sun, and water-stressed/shaded. Within each 40-

tree group, 20 randomly-selected trees were assigned to an adelgid-infestation 

treatment and the other 20 trees were assigned to an adelgid-free control (see below 

for details). This produced a total of eight 20-tree groups. 

To create the watered and water-stressed treatments, the soil moisture in each 

pot was measured every other day using an ML2x soil moisture probe and an HH1 

readout (Dynamax Inc., Austin, Texas) accurate to + 1%. After soil moisture levels in 

the 160 pots were measured, data from the 20 trees in each of the four watered 

treatments and 20 trees from each of the four water-stressed treatments was averaged 

to generate a mean soil moisture in the four watered and four water-stressed 

treatments. When average soil moisture in one of the watered treatments dropped 

below 30%, all 20 trees in that treatment were watered to field capacity by slowly 

watering each plant until water dripped quickly out of the bottom of the pot. When 

average soil moisture in one of the water-stressed treatments dropped below 15%, all 

20 trees in that treatment were also watered to field capacity as described above.  

To create the light treatments, trees in the full-sun treatment were individually 

covered with a 0.2 m
3
 bag of 10% shade cloth (ShadeClothStore, Libertyville, IL). 

Trees in the shaded treatment were individually covered with a 0.2 m
3
 bag of 90% 
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shade cloth. To minimize the contact between the bags and the trees, we inserted three 

~0.6 m bamboo stakes at the edge of each pot (at 0, 120, and 240 radial degrees) 

before placing the bags on the trees; each tree's bag rested on the bamboo stakes rather 

than the foliage. 

After six weeks of exposure to the watered/water-stressed and full-sun/shade 

treatments, the 40 trees in each of the four treatments were split equally into adelgid-

infested and uninfested treatments (20 trees per treatment). Crossing the 

watered/water-stressed and full-sun/shade treatments with an adelgid 

infested/uninfested treatment created a total of eight 20-tree treatments.  

Adelgids were applied to each of the trees in the infested treatments using 

adelgid-infested foliage collected from Greenfield, Massachusetts. Foliage was 

attached to each tree using standard protocols (Butin et al., 2007); Briefly, we selected 

branches from naturally growing hemlocks that were infested with adelgids. We 

preferably collected branches that contained wool-bearing adelgids on at least 50 

percent of the 15cm segment chosen.  To control for the disturbance associated with 

applying the foliage, uninfested foliage was applied to each tree in the uninfested 

treatments using pest-free foliage collected from Barre, Vermont. When the inoculants 

were checked four days later, few adelgid crawlers were visible; to ensure that the 

experimental trees were fully infested, more adelgid-infested foliage was collected 

from the University of Rhode Island campus (Kingston, RI). After checking the 

foliage to ensure that no non-adelgid pests were present, a single branch of it was 

added to each of the trees in the infested treatment. Following this round of 

inoculations, first-instar crawlers were clearly visible moving and settling on the trees.  
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Plant measurements: We measured growth, water potential, and gas 

exchange parameters on each of the 160 experimental trees. To account for any initial 

differences in hemlock seedlings, we measured stem diameter at soil surface, tree 

height from soil surface to the tip of the tallest branch, and the length of one 

randomly-selected terminal branch on every tree. These initial measurements were 

used as covariates during analysis. We used a Scholander pressure-bomb to make 

monthly water-potential measurements on each tree from April to July. The April 

measurement was taken prior to adelgid inoculations, while the May/June/July 

measurements were taken following the inoculations. Each measurement took two to 

four consecutive days depending on the number of trees. Two hours before sunrise, 

two clippings were taken from each tree. One clipping was ~6cm and included both 

old and new growth; the other clipping was ~4cm and included only new growth. 

Approximately 0.05g of old-growth needles were removed from the base of each 6cm 

clipping. After being weighed, the old-growth needles were put into a coin envelope, 

placed into a 60
o
 C drying oven for one week, and reweighed. Relative water content 

was determined by subtracting dry weight from wet weight and dividing by the wet 

weight. We took data in April, May, June and July; for the May sampling 

experimental error precluded analysis of old growth samples. The same procedure was 

followed using new-growth needles from the 4cm cutting to determine their relative 

water content. To take water-potential measurements, the stem of each 6cm clipping 

was cut to reveal fresh vascular cambium and individually placed into a pressure-

bomb. Nitrogen gas was added to the chamber; when fluid emerged from the xylem, 
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the pressure in bars was recorded, and then converted to MPa to get the water potential 

for the cutting.  

At the same time we took monthly water-potential measurements, we also took 

gas exchange measurements using a CIRAS-2 photosynthesis meter (PP Systems, 

Amesbury, Massachusetts). We simultaneously measured photosynthesis, 

transpiration, and stomatal conductance between 1 hour after sunrise and 11:30 am, 

with the CIRAS set as follows: ambient light, CO2 reference=390ppm, H2O 

reference=100ppm. Three measurements were taken per branch per tree and used to 

generate a mean value for each parameter. Because the needles in the CIRAS cuvette 

did not fill the entire chamber, we took a picture of each branch while inside the 

cuvette and calculated the needle area using ImageJ (Java Systems) in order to get the 

actual gas exchange measurements. Due to the high humidity in the greenhouse, the 

July measurement could not be taken.  

Insect Measurements: Starting in early June, we measured adelgid density on 

both new- and old-growth foliage on two randomly-selected branches per tree. On 

each branch, the length of new- and old-growth foliage was recorded and the density 

of both unsettled/dead (first-instar adelgids, distinguishable by their black coloration 

and lack of woolly covering) and mature (older adelgids, distinguishable by their 

larger size and white woolly covering) adelgid were counted. Density counts were 

taken every three weeks from early June through the end of the experiment; data from 

the two sampled branches was averaged to determine the number of settled and mature 

adelgids per cm new- and old-growth foliage per tree. 
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STATISTICAL ANALYSIS 

Because new- and old-growth foliage responded very differently to our 

treatments, we analyzed them separately. We analyzed the effect of light and water on 

A. tsugae settlement using a two-way ANOVA, and assessed changes in A. tsugae 

density and survival over time using a two-way rm-ANOVA. Initial plant height was 

included in all analyses to account for pre-existing differences in size. We analyzed 

the effect of light, water, and A. tsugae infestation over time on relative water content 

(‘RWC’), photosynthetic rate, transpiration, and water potential using a three-way rm-

ANOVA. RWC was measured for both new- and old-growth foliage; because 

photosynthetic rate, transpiration, and water potential could not be measured 

separately on new- versus old-growth foliage, our analysis of this data does not 

differentiate between foliage types. All analyses were performed using JMP 10.0.2 

(SAS Systems, Durham NC).  

 

RESULTS 

 

Adelgid performance: Light affected A. tsugae settlement on old-growth but 

not new-growth foliage (table 1). Settlement on old-growth foliage was 50% higher in 

the shade versus light treatment, and 30% higher on water-stressed versus watered 

plants. The impact of light and water on A. tsugae inhabiting old-growth foliage 

persisted over the course of the experiment: A. tsugae density on old-growth foliage 

averaged 36% higher in the shaded treatment and 18% higher in the water-stressed 

treatment (table 1; Figs. 1A,B). Adelgid density on new-growth foliage was not 
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affected by the treatments (Fig. 1B), and survival rates were similar in both old- and 

new-growth foliage (table 1; Figs. 2B,D).  

Hemlock performance: There was no main effect of adelgid infestation or 

water on any of the plant performance variables (table 2; Figs. 3,4). Adelgid 

infestation did decrease water potential in the watered treatment, but not in the water-

stressed treatment (water*HWA interaction in Table 2; Fig 4C). In contrast, there was 

a highly-significant main effect of light on the RWC of both new- and old-growth 

foliage, photosynthetic rate, and water potential. The RWC of foliage from shaded 

trees was 10-15% higher than for full-sun trees (Fig 3B). Full-sun trees had higher 

rates of photosynthesis and transpiration in May, but not in June (time*light 

interaction in Table 2; Figs. 4A,B). Finally, the water potential of full-sun trees was 

lower than that of shaded trees throughout the experiment (Fig 4C). 

 

DISCUSSION 

 

Both light and water availability significantly affected adelgid settlement, but 

only on old-growth foliage (where the majority of crawlers settled; Figs. 1A,B). 

Because A. tsugae survival was consistent across treatments (Table 1), the variation in 

A. tsugae settlement yielded differences in A. tsugae density over the course of the 

experiment. Our results thus suggest that variation in these abiotic factors can 

substantially alter adelgid population dynamics and may lead to especially high-

density infestations in shaded and xeric conditions. Since higher adelgid densities 

should lead to more rapid hemlock decline, our results may help explain why trees 
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growing in low-light understory conditions or in drier areas appear particularly hard-

hit by this pest.  

 While we expected that old- and new-growth foliage would differ in adelgid 

settlement, we were surprised that adelgids appeared to do better on old growth tissue. 

While the mobile crawlers were found in high densities on both types of foliage, they 

were considered ‘settled’ only when they began producing wool; a large fraction of 

crawlers on new-growth foliage never progressed to this stage. As a result, there was 

often a clear line between settled, wool-producing insects on old growth and black 

wool-free insects on new growth. Adelgids typically insert their stylet bundle proximal 

to the plant and the needle abscission site (Young et al. 1995, Oten et al. 2014). When 

settling on the current year’s growth (e.g., the new growth in our study), however, 

adelgids will insert their stylet bundle distal to the plant. This may result in needle 

abscission, or the insect withdrawing its stylet bundle (Young et al. 1995); either 

outcome would likely prove fatal to vulnerable crawlers. Although insects may be 

drawn to newly-produced foliage, the ‘green’ and highly-flexible nature of this tissue 

may interfere with long-term stylet placement or favor needle abscission. This is 

consistent with previous work showing that while the sistens generation prefers the 

current year’s growth (McClure 1991), the progrediens generation (which we 

examined) settle preferentially on the previous year’s growth.  

Adelgid settlement on old-growth foliage was 50% higher on shaded versus 

full-sun trees. Although our study took place in a greenhouse, this result appears 

consistent with work on trees growing in forested habitats. Research into the vertical 

stratification of adelgids found higher densities on lower branches than in the sunnier 
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upper canopy (Evans and Gregoire 2007). One reason for this may be that wool-free 

adelgids are very fragile and prone to desiccation. Studies have shown that adelgid are 

very susceptible to cold temperatures (Skinner et al. 2003), and ongoing research 

suggests that even brief periods of intense summer heat can substantially decrease 

adelgid survival (J. Elkinton, unpublished data). Furthermore, sun stress on a shade-

adapted plant can cause the breakdown of photosystems, proteins, and nucleic acids 

(Demmig-Adams and Adams III 1992). These light-stress-induced problems cause the 

sap-feeding azalea lace bug Stephanitis pyrioides (Heteroptera: Tingidae) to do better 

on shaded plants rather than ones grown in full sun (Trumbule and Denno 1995). 

Although we did not test for the breakdown of photosystems, proteins, or nucleic 

acids, such changes could have resulted in reduced adelgid settlement on full-sun 

trees. Further studies would be useful to determine whether adelgid crawlers exhibit 

negative phototaxis behavior that causes them to move away from the sun, or if the 

sunlight itself is killing the insects once they settle.  

The fact that adelgid settlement was 38% higher on water-stressed trees 

suggests that A. tsugae may respond positively to some aspects of plant stress. 

Because plant morphology, physiology, and water use can be negatively impacted by 

soil drought (Sperry et al. 2002), high settlement densities on water-stressed trees 

supports the hypothesis that abiotic stress renders some plants more susceptible to 

herbivores (White 1984). Our findings are also consistent with work showing that 

piercing-sucking insects such as adelgids have higher relative growth rates and 

reproductive potential on stressed plants (Koricheva et al. 1998), but appear to 

disagree with work showing that other sap-feeders may not benefit from plant water 
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stress (Huberty and Denno 2004). The adelgid may be different from other similar 

insects, however, in its ability to substantially alter water relations within the tree. A 

recent field study found that adelgid presence lowered water potential by 45% relative 

to uninfested trees (Gonda-King et al. 2014). This finding is consistent with another 

showing that adelgid decreases water potential, hydraulic conductivity, and results in 

the production of wood with no constitutive xylem ducts (Domec et al. 2013). This 

large impact on water relations within the tree may be because the adelgid is altering 

the tree to be an even more suitable host, and that the adelgid actually does better 

when hydraulic conductivity and water potential are lowered. 

Despite high rates of A. tsugae settlement, the adelgid did not directly impact 

any of our plant physiological measurements. This was surprising because herbivory is 

well-known to alter plant morphology and physiology (Karban and Baldwin 2007), 

and adelgids have been shown to affect hemlock water potential, photosynthesis, 

stomatal conductance, and tree water use (Domec et al. 2013, Gonda-King et al. 

2014). Adelgids did decrease water potential, but only in the well-watered treatment: 

there was no similar effect in the water-stressed treatment (Table 2, Fig. 4C). Since 

adelgids are known to cause water-stress, we would’ve expected them to exacerbate 

the decrease in water potential for water-stressed trees. Since we saw that they 

significantly altered the watered treatment, we suspect that a water-stressed tree is a 

more suitable host for the insect. This may help explain why the adelgids have a 

greater impact on trees that are well-watered compared to the trees already 

experiencing water-stress.  
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Although most of our plant physiology results appear at odds with those of 

earlier studies (Domec et al. 2013, Gonda-King et al. 2014), it is probable that our 

short-term greenhouse experiment was not long enough to detect adelgid-induced 

physiological changes within the plant. A greenhouse study such as ours has its 

benefits, but also some disadvantages. A greenhouse is a perfect setting to control 

proper soil moisture levels and to control various abiotic conditions. However, 

growing a shade tolerant tree in a greenhouse causes potential issues. The trees may 

have experienced slightly hotter temperatures, despite our efforts to control for that. 

Also, having black shade cloth on the trees may have increased temperatures and 

impacted shoot tips. Since the trees were rotated bi-weekly, and were all kept in the 

same area, they experienced the same increases in temperature. The insects may have 

experienced some greenhouse-related effects. They crawled and settled very similarly 

to natural conditions, but by the end of the experiment most of the crawlers of the 

sistens generation did not settle. The lack of sisten settlement did not alter our study 

because we were interested in the progrediens generation and those insects survived 

for the duration of time we were interested in observing. While we are confident in our 

results, future experiments may look to repeat this in a natural settling to determine if 

the greenhouse had measureable ill-effects and I would recommend not using black 

shade cloth due to its ability to increase temperature. The short-term nature of our 

experiment is also likely responsible for the fact that there was no direct impact of our 

water manipulation on any of our physiology measurements. Furthermore, hemlocks 

are shade tolerant trees and the greenhouse conditions may have made the 

physiological impacts more uniform across trees.  In contrast, light availability had a 



 

16 

 

substantial effect on hemlock physiology, but there was no interaction between this 

factor and adelgid presence (Table 2). The impact of light is unsurprising given its 

importance to plant growth (Pacala et al. 1994), and since full-sun trees had 4.5x more 

light exposure than shaded trees, we expected to see large physiological differences.  

In conclusion, adelgid settlement was higher on the old growth of shaded and 

water-stressed trees, but their survival was not altered by foliage age or either abiotic 

factor.The trees responded more to the light treatments than the water treatments. 

Light treatments caused a difference in relative water content, photosynthetic rate, 

transpiration and water potential, but water availability did not alter this effect. Shaded 

trees had higher adelgid settlement, water potential, and relative water content in the 

foliage; they also had lower photosynthetic rates and lower transpiration. Although we 

expected the adelgid to exacerbate the impact of these abiotic factors, we found no 

evidence that this was the case which may be a product of the experiment being 

relatively short or greenhouse condition. Our study did show, however, that adelgid 

settle at higher rates on old growth, shaded trees, and trees experiencing water stress. 

The preferential settlement of the progrediens generation adelgids on old growth has 

been discussed in connection with other studies, but this is the first to document actual 

densities of these insects. There is a clear distinction between adelgid settlement on 

these two growth types. We speculate that it is due to foliage age and that the newest 

tissue is “greener” than the old growth and may be difficult for stylet bundle insertion 

and feeding. There may be other factors affecting adelgid settlement that could be 

studied further. Also preferential settlement of adelgid on shaded trees is clear, and 

may be a great opportunity for further studies. It is unclear whether this result is a 
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product of adelgid desiccation in the sunlight or negatively phototaxis behavior on the 

part of the crawlers. We did not detect a difference in plant gas exchange, or water 

potential for trees grown in shade versus sun, therefore there may be other light-

induced changes that occur to deter adelgid settlement. These two main findings about 

adelgid settlement allow for more studies examining these insects in various light 

environments and settlement sites. We also showed increased settlement on water-

stressed trees which may result from the adelgid creating an even more suitable host 

for itself. Previous research has shown that A. tsugae can have a large impact on 

hemlock water relations, a result consistent with our finding that adelgids affected the 

water potential of well-watered trees. These results may help to explain hemlock 

susceptibility to A. tsugae and why adelgid densities may vary within a tree. 
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TABLES 

 

Table 1: Results of statistical analysis of A. tsugae-related variables. Values in bold 

are significant at P < 0.05. 

 

Model Term DF F P DF F P DF F P DF F P DF F P DF F P

Light 1,68 6.74 0.012 1,67 0.37 0.54 1,54 5.74 0.020 1,50 0.37 0.55 1,54 2.77 0.102 1,50 1.07 0.31

Water 1,68 4.31 0.042 1,67 1.56 0.22 1,54 4.80 0.033 1,50 1.30 0.26 1,54 2.32 0.134 1,50 0.86 0.36

Light*Water 1,68 0.48 0.490 1,67 1.17 0.28 1,54 1.08 0.303 1,50 0.08 0.78 1,54 1.57 0.216 1,50 0.11 0.74

Initial Height 1,68 1.24 0.269 1,67 3.49 0.07 1,54 1.14 0.289 1,50 3.03 0.09 1,54 0.30 0.587 1,50 0.88 0.35

Time - - - - - - 2,53 1.36 0.270 2,49 1.39 0.26 2,53 11.20 <0.001 2,49 2.76 0.07

Time*Light - - - - - - 2,53 2.06 0.139 2,49 0.15 0.86 2,53 0.48 0.622 2,49 2.12 0.13

Time*Water - - - - - - 2,53 0.38 0.680 2,49 1.38 0.26 2,53 1.50 0.232 2,49 0.51 0.61

Time*Light*Water - - - - - - 2,53 0.42 0.660 2,49 0.26 0.78 2,53 0.36 0.701 2,49 0.44 0.65

Time*Initial Height - - - - - - 2,53 3.25 0.047 2,49 0.89 0.42 2,53 0.28 0.756 2,49 0.74 0.48

A. tsugae  settlement A. tsugae density A. tsugae  survival

Old growth New growth Old growth New growth Old growth New growth
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Table 2: Results of statistical analysis of hemlock-related variables. Values in bold are 

significant at P < 0.05. 
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FIGURES 

Figure 1. Settlement densities of adelgids. Darker bars represent shaded 

treatments, lighter bars are full-sun treatments. Watered and water-stressed are labeled 

below. (A) Settlement densities (± SE) on old growth. (B) Settlement densities (± SE) 

new growth. These data are represented in the 6 June time point in Fig. 2A, C.  
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Figure 2. Density and survival of adelgids throughout the summer. Solid markers 

represent shaded treatments, open markers represent full-sun treatments, circles 

represent watered trees, and triangles represent water-stressed trees. (A) Density of 

adelgid (± SE) on old growth. (B) Percent survival of adelgid (± SE) on old growth. 

(C) Density of adelgid (± SE) on new growth. (D) Percent survival of adelgid (± SE) 

on new growth. Time point 6 June for (A) and (C) are represented in Fig 1 A, B, to 

help enhance the interpretation of the settlement results. 
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Figure 3. Percent relative water content (± SE) in needles on old growth (A) and new 

growth (B). The legend is the same as fig. 1 for abiotic treatments; solid lines connect 

adelgid-present treatments and dashed lines connect adelgid-absent treatments. Light 

availability significantly affected percent relative water content in new and old growth 

foliage (B). Old growth percent relative water content was 10%-15% higher in shaded 

trees than full-sun trees. However, adelgids had no effect on percent relative water 

content. 
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Figure 4. (A) Photosynthesis (±SE), (B) transpiration (±SE), and (C) water potential 

(±SE) of trees after adelgid were added. Legend is the same as in fig 2. Photosynthetic 

rate, and water potential were significantly affected by light, There was also a 

time*light interaction because photosynthetic rates and transpiration were higher for 

full-sun trees in May but not in June. Water potential was lower for full sun trees 

throughout the experiment. Adelgids had no effect on photosynthesis, transformation 

or water potential.   
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