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ABSTRACT 

Biogeochemical gas budgets at high-latitude regions and sea ice zones are a 

source of uncertainty in climate models. The four main processes that regulate these 

budgets include advection, ventilation, mixing, and accumulation/release from sea ice. 

Considering the scarcity of data in sea ice zones, specifically during winter time, the 

environment is too poorly sampled to constrain these processes through direct 

measurements; hence we proposed models to systematically investigate these 

processes. The models proposed in this dissertation consist of regional numerical ice-

ocean models, 1D forward and inversion numerical models, and analytical models. 

Manuscript I of this dissertation focuses on a 3D regional Arctic ice-ocean 

models. The models are based on MIT general circulation model (MITgcm) code. We 

used 36 km, 9 km and 2 km horizontal resolution of regional MITgcm configuration 

with fine vertical spacing to evaluate the capability of the model to reproduce the 

physical parameters that affect the budget. The model outputs of interest from these 

simulations are sea ice concentration, sea ice speed, water velocities, and mixed layer 

depth.  From gas budget point of view, sea ice concentration and speed effect 

ventilation, changes in mixed layer depth lead to mixing, and resolving water 

velocities quantifies the effects of advection.  

To assess the accuracy of model, we compared the model outputs to existing field 

data. We found model sea ice concentration and speed follow data with good fidelity. 

The model demonstrated the capacity to capture the broad trends in the mixed layer 

although with a significant bias. We saw improvement in mixed layer depth accuracy 



 

 

 

with reducing the horizontal resolution of the model. Finally we showed modeled 

water velocities have low correlation with point-wise in situ data. This correlation 

remained low in all three model resolution simulations and we argued that is largely 

due to the quality of the input atmospheric forcing. 

Manuscript II of this dissertation focuses on 1D forward and inversion modeling 

of gas budgets. Following our results from the first manuscript, we approximated the 

effects of advection analytically and utilized a 1D model and its inversion code. We 

applied the model with combination of numerical passive tracers to reproduce the 53 

radon profiles gathered in the Arctic. The optimization based on inversion model 

reduced the uncertainties in initial conditions and supported the 1D model. We showed 

mixing, if not resolved, can introduce up to 50% error in estimated budgets. When 

effects of mixing, melt/freeze and advection taken into the account, we show current 

estimates of gas exchanges under predicts surface flux in almost cover sea ice areas. 

Manuscript III presents a new approach in modeling gas exchange in sea ice 

zones. In this study a sea state dependent gas exchange parametric model is developed 

based on the turbulent kinetic energy dissipation rate. After comparing this model 

results with data in the Open Ocean, lakes and marginal ice zones, we applied it to a 

numerical ice-ocean model of Arctic Ocean. Finally, it is shown that, under the present 

conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a 

conventional parameterization is used. 



 

 

 

In summary, the work presented in this dissertation evaluates and quantifies the 

effects of environmental forcing on gas budgets in marginal ice zones and offered 

insight into main factors regulating near surface gas budgets in marginal sea ice zone.
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Abstract. In ice-covered regions it is challenging to determine constituent budgets – 

for heat and momentum, but also for biologically and climatically active gases like 

carbon dioxide and methane. The harsh environment and relative data scarcity make it 

difficult to characterize even the physical properties of the ocean surface. Here, we 

sought to evaluate if numerical model output helps us to better estimate the physical 

forcing that drives the air-sea gas exchange rate (k) in sea ice zones. We used the 

budget of radioactive 222Rn in the mixed layer to illustrate the effect that sea ice 

forcing has on gas budgets and air-sea gas exchange. Appropriate constraint of the 

222Rn budget requires estimates of sea ice velocity, concentration, mixed layer depth, 

and water velocities, as well as their evolution in time and space along the Lagrangian 

drift track of a mixed layer water parcel. We used 36 km, 9 km and 2 km horizontal 

resolution of regional MITgcm configuration with fine vertical spacing to evaluate the 

capability of the model to reproduce these parameters. We then compared the model 

results to existing field data including satellite, moorings and Ice-tethered profilers. 

We found that mode sea-ice coverage agrees with satellite-derived observation 88 to 

98% of the time when averaged over the Beaufort Gyre, and model sea-ice speeds 

have 82% correlation with observations. The model demonstrated the capacity to 

capture the broad trends in the mixed layer although with a significant bias. Model 

water velocities showed only 29% correlation with point-wise in situ data. This 

correlation remained low in all three model resolution simulations and we argued that 
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is largely due to the quality of the input atmospheric forcing. Overall, we found that 

even the coarse resolution model can make a modest contribute to gas exchange 

parameterization, by resolving the time variation of parameters that drive the 222Rn 

budget, including rate of mixed layer change and sea ice forcings. 

1 Introduction 

The ocean surface is a dynamic region where momentum, heat and salt, as well as 

biogeochemical compounds are exchanged with the atmosphere and with the deep 

ocean. At the sea-air interface, gases of biogenic origin and geochemical significance 

are exchanged with the atmosphere. Theory indicates that the aqueous viscous 

sublayer, which has a length scale of 20 to 200 μm (Jähne and Haubecker 1998), is the 

primary bottleneck for air-water exchange. Limitations in measurement at this critical 

scale have led to approximations of sea-air gas exchange based on indirect 

measurements. Four approaches involving data are typically used (Bender et al. 2011), 

1) Parametrization of the turbulent kinetic energy (TKE) at the base of the viscous 

sublayer 2) Tracing purposefully injected gases (Ho et al. 2006; Nightingale et al. 

2000a) 3) Micro Meteorological methods (H. J. Zemmelink et al. 2006a; Zemmelink 

et al. 2008; Blomquist et al. 2010; Salter et al. 2011), and 4) Radon-deficit Method. 

Here, we examine the radon-deficit method (4), together with a parameterization of 

the TKE forcing (1) that theoretically leads to the observed deficit in mixed-layer 

radon. 

When the ocean surface is not restricted by fetch, TKE is mostly dominated by wind 

speed and waves (Wanninkhof 1992; H. J. Zemmelink et al. 2006b; Wanninkhof and 
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McGillis 1999; Nightingale et al. 2000b; Sweeney et al. 2007; Takahashi et al. 2009). 

In the polar oceans wind energy and atmospheric forcing are transferred in a more 

complex manner as a result of sea ice cover (Loose et al. 2009, 2014; Legge et al. 

2015). Sea ice drift due to Ekman flow (McPhee and Martinson 1992), freezing and 

melting of ice leads on the surface ocean (Morison et al. 1992) and short period waves 

(Wadhams et al. 1986; Kohout and Meylan 2008) all constitute important sources of 

momentum transfer. Considering the scarcity of data on marginally covered sea-ice 

zones (Johnson et al. 2007; Gerdes and KöBerle 2007), especially during Arctic winter 

time, the environment is too poorly sampled to constrain these processes through 

direct measurement or empirical relationships. 

Lacking sufficient data to constrain these processes, we wonder whether it is possible 

for a numerical model to adequately capture forcing of air-sea gas exchange in the sea 

ice zone and consequently improve predictions of air-sea flux. The parameters of 

interest are sea ice concentration (or fraction of open water), sea ice velocity, mixed 

layer depth, and water current speed and direction in the ice-ocean boundary layer 

(IOBL) (Loose et al. 2014). Here we use the budget of 222Rn gas in the IOBL as an 

example, because the radon-deficit method has emerged as one of the principle 

methods to estimate gas exchange velocity in ice-covered waters (Rutgers Van Der 

Loeff et al. 2014; Loose et al. 2016). 

The Radon deficit method involves sampling 222Rn and 226Ra in the mixed layer to 

examine any difference in the concentration or (radio) activity of the two species. 

Radon is a gas, radium is a cation; in absence of gas exchange 222Rn and 226Ra enter 

secular equilibrium meaning the amount of 222Rn produced is equal to decay rate of 
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226Ra. Any missing 222Rn in the mixed layer is attributed to exchange with atmosphere 

(Peng et al. 1979). 

Since the 222Rn concentration in air is very low, less than 5% (Smethie et al. 1985) and 

considering that concentration is proportional to activity/decay rate A, we can use Eq. 

(1) to determine gas exchange. Where k gas transfer velocity in (m d-1), AE is the 

activity or decay rate of 222Rn which in secular equilibrium is equal to 226Ra activity, 

AM is 222Rn measured decay rate in mixed layer, λ is decay constant of 222Rn (0.181 d-

1) and h is the mixed layer depth 

   h λ 1/AA=k ME          (1) 

The mixed layer depth, h, is calculated from the measurements performed at the 

hydrographic stations during 222Rn sampling process. Gas transfer velocities from 

equation (1) reflect the memory of 222Rn for a period of two to four weeks (Bender et 

al. 2011), which is four to eight times the half-life of 222Rn (3.8 days). 

This memory integrates the physical oceanography properties of the IOBL, including 

sea ice cover, mixed layer depth and water current speed. These processes are likely to 

vary significantly during this period and it is important to consider them as a source of 

uncertainty in Eq. (1). To illustrate this uncertainty, consider a mixed layer that rapidly 

changes by a factor of 2 just prior to sampling for radon. If the mixed-layer becomes 

shallower by stratification, h will be smaller by factor of 0.5 while AE/AM in the mixed 

layer remains the same. Based on equation 1, this causes k to be half of its true value. 

That is, prior to stratification TKE forcing was sufficient to ventilate the ocean to a 

depth greater than the apparent h  (Bender et al. 2011).  
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Conversely, if the mixed layer deepens due to mixing, h increases and a new parcel of 

water with AE/AM= 1 is added to mixed layer, causing the activity ratio to come closer 

to unity. These two influences on equation 1 (increasing H and AE/AM approaching 

unity) work against each other, but the net effect is to cause k to appear larger. The 

change of factor of 2 or higher (in case of convection) in mixed layer depth in less 

than two weeks has been observed during several studies (Acreman and Jeffery 2007; 

Ohno et al. 2008; Kara 2003).  

The “memory” of gas exchange forcing that radon experiences is further complicated 

by the presence of sea ice. Consider two alternate water parcel drift paths that lead to 

the 222Rn sampling station in sea-ice zone (Figure 1). Path B demonstrates a history in 

which water column spends most its back trajectory under sea-ice. Path “A” shows a 

water column which experiences stratification and shoaling of mixed layer depth equal 

to δh when drifting through a region that is completely uncovered by ice. During most 

of Path “B” gas transfer happens in form of diffusion through sea-ice and it will have a 

very low k (Crabeck et al. 2014; Loose et al. 2011), in contrast Path “A” will have a 

greater radon deficit, but a smaller h because of stratification. In either case, it is 

critical to take into account the time history of gas exchange forcing, including 

changes in the mixed-layer and ice cover, which has led to the apparent radon deficit 

at the time of measurement. 

This observation about drift paths in the sea ice zone strongly implies that we must 

consider both time and space in estimating the forcing conditions that are recorded in 

the radon deficit. In other words, we require a Lagrangian back trajectory of water 
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parcels to track the evolution of mixed layer and its relative velocity 4 weeks prior to 

sampling.  

Although satellite data, Ice tethered drifters (Krishfield et al. 2008) and moorings 

(Krishfield et al. 2014; Proshutinsky et al. 2009) have provided valuable seasonal and 

spatial information about the sea ice zone, they do not track individual water parcels 

and tend to convolve space and time variations. The spatial limitation of these data 

poses a challenge to producing a back trajectory of the water parcel. 

To address the above mentioned challenges, we use a suite of the Estimation of the 

Circulation and Climate of the Ocean (ECCO) project’s Arctic regional configurations 

to test the if a numerical model can be used to follow the back trajectory of a radon-

labelled water parcel and the gas exchange forcing acting upon it and yield the missing 

information required for the Radon deficit method. 

The variables and derived quantities of interest from the numerical model include 

mixed layer depth (MLD), sea ice concentration and speed (Loose et al. 2014) and the 

water velocity in the MLD. We note that as part of the Arctic Ocean Model 

Intercomparison Project (AOMIP), a number of Arctic ocean-ice models' capability to 

represent the main ice-ocean dynamics have been assessed (Proshutinsky et al. 2001; 

Lindsay and Rothrock 1995, p. 995; Proshutinsky et al. 2008). Our reasons for 

choosing ECCO over other Arctic models stem from the higher correlation between 

the ECCO’s regional Arctic simulated outputs to satellite derived sea ice data 

(Johnson et al. 2012) and the feasibility in the MITgcm to adapt a high near surface 

vertical resolution to existing configurations. 



8 

 

The remainder of the article is organized as follows: In section 2 we provide the 

details of the ECCO ice-ocean models. Section 3.1 and 3.2 focus on model outputs of 

sea-ice concentration and velocity and comparison with observations from satellite 

and Ice tethered profilers.  Section 3.3 investigates the modeled output salinity and 

temperature structure and the resulting upper ocean density structure and mixed layer. 

Section 3.4 evaluates the correlation in near surface water velocity. In section 4 we 

discuss the results and sources of error and their impact on estimated gas exchange 

and lastly, section 5 provides the summary of our results.  

2 Method 

2.1 ECCO model configurations 

Three ECCO configurations are used, at horizontal grid spacings of 36 km, 9 km, and 

2 km, respectively.  The models are based on the Massachusetts Institute of 

Technology general circulation model (MITgcm) code and employ the z coordinate 

system described in Adcroft and Campin (2004). Our approach is first to assess the 

model outputs from the coarse resolution model using model-data misfits, then to 

investigate if there is quantitative reduction in model-data misfits with higher 

horizontal resolutions. Surface forcings are from the 25 year Japanese Reanalysis 

Project (JRA25)(Onogi et al. 2007) for 36 km and 9 km runs and the European Centre 

for Medium-Range Weather Forecasts (ECMWF) analysis for 2 km run. Initial 

conditions are from World Ocean Atlas 2005 (Antonov et al.; Locarnini et al.) and 

initial sea ice conditions are from (Zhang and Rothrock 2003) for the of 36 and 9 km, 

from which the models are allowed to spin up from 1992. The 2 km global run is 
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initialized from a 4 km spin up version of the ECCO adjoint-based state-estimate for 

Jan 2011 and covers the period Feb 2011 to Oct 2012. The vertical mixing uses K 

profile parameterization (KPP) developed by (Large et al. 1994) and 36 and 9 km runs 

utilize salt plume parameterization of Nguyen et. al(2009). The horizontal boundary 

condition for the 36 km and 9 km configurations comes from existing global ECCO2 

model outputs (Marshall et al. 1997; Menemenlis et al. 2008; Losch et al. 2010; 

Heimbach et al. 2010). 

We introduced a set of new vertical grid spacings to allow us to capture near surface 

small details which cannot be represented with the coarser grid system. In the 36 km 

(hereafter referred to as A1) and 9 km (called A2) models, the spacing is 2 m in the 

upper 50 m of the water column and gradually increases to a maximum of 650 meters. 

In contrast, the 2 km model (called A3) has 25 layers in the top 100 meters of water 

column, starting from 1 meter and increasing to 15 meters step. All the boundary 

conditions from ECCO2 have been interpolated to match the new vertical grid system. 

2.2 Observations 

Satellite-derived estimation of sea-ice cover at 25km horizontal resolution (Comiso 

2000) is interpolated to a horizontal grid system to facilitate model-data comparison. 

In addition, sea-ice drift gathered by 28 Ice Tethered Profilers (ITP) (Krishfield et al. 

2008) which have more than 2 months of data in Beaufort Sea between 2006 and 2013 

have been used to do the ice velocity comparison.  

We compared near surface water velocity data from Ice Tethered Profiler with 

Velocity instruments (ITP-V) (Williams et al. 2010) to A1 and A2 and upward looking 
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Acoustic Doppler Current Profiler installed on McLane Moored Profiler (MMP) 

(McPhee et al. 2009; Cole et al. 2014) to A1, A2 and A3 in order to compute the 

accuracy and feasibility of calculating back trajectory of parcels located in the mixed 

layer. We limit our comparison of ITP-V which runs from Oct-2009 to Mar-2010 to 

A1 and A2 since those models run from 2006 to 2013 and A3 runs from 2011 to 2013. 

Using salinity and temperature profiles from ITPs (Krishfield et al. 2008) we 

calculated mixed layer depth and compared it to 2m vertical resolution model output 

(A1,A2). Most of the observed data exist in Beaufort Gyre, hence we mostly focus our 

comparison to that geographic perimeter. Figure 2 depicts the bathymetry and location 

of most important observations we used to make the comparisons with the model. 

3 Results 

3.1 Sea ice concentration 

 For Sea ice concentration analysis we introduced a grid system covering the Beaufort 

Gyre and interpolated the data from satellite (Comiso 2008) and A1 on to the grid. The 

analysis grid extends from 70° to 80° north and 130° to 170° west, covering most of 

Beaufort Gyre (Figure 3). Grid points can be divided into two main geographic zones 

that are marked out based on sea ice cover. The first zone contains grid points where 

the annual average sea ice cover is greater than 80%. These sets of points are fully 

covered by sea-ice most of the year. The second zone can be described as “marginally 

ice covered” wherein the ocean surface is free of ice for some fraction of the year. We 

chose 3 points within this sea ice geography to compare the seasonal and interannual 
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behavior of the model with satellite ice cover. The points are located at 80° N,131.82° 

W (P1), 70.82° N 169.82° W(P2), and 74.76° N and 163.51° W (P3).  

The ice cover at P1, P2 and P3 (Figure 3) can be divided into 3 ice phases: (a) Fully 

covered in ice, (b) Open water and (c) a transition between (a) and (b). P3, which is 

the furthest south, has all three phases. In contrast P1 ice cover only dips below 60% 

for two brief periods during the 7 year time series depicted in Figure 3 - once in 2008 

and again in 2012. These three points illustrate where and when the model has the 

greatest challenge reproducing the actual sea ice cover. At the extremities of the ice 

pack, where the water is predominantly covered by 100% or 0% ice (P1 and P3), the 

model captures the seasonal advance and retreat and the percent ice cover itself is 

accurate. However, in the transition regions that are characterized by marginal ice for 

much of the year (P2), the model has more difficulty reproducing the observed sea ice 

cover as well as the timing of the advance and retreat. This behavior is consistent with 

the description that has been explained by Johnson et al. (2007), that models have a 

higher accuracy predicting sea ice concentration in central Arctic and less accuracy 

near periphery and lower latitudes.  

The spatial sensitivity of the model can be observed using root mean square (RMS) 

error (Hyndman and Koehler 2006) Eq. (2), calculated over the 1992-2013 period 

(Figure 3). The area with the highest misfits coincides with area between the 80% and 

60% contour lines (Figure 3) and is concentrated primarily in the Western Beaufort. 

The RMSE error of 0.2 is the maximum value away from land, this same level of error 

can also be found near land which is caused by fast-ice generation. Fast Ice in the 
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model is replaced with pack of drifting sea ice; this error is common among numerical 

models and has been brought to attention during AOMIP (Johnson et al. 2012).  

    /nCC=pointRMSE
n

1=i

2
satellitesimulation           (2) 

If we compare the monthly climatology for sea ice cover over the 1992-2013 period, 

the RMS error between model and satellite data is least during the early winter months 

(e.g. Jan-Mar) when sea ice is close to its maximum extent. Comparing Data and A1 

Figure 3 depicts an increase in RMSE during July, August, September and October 

and a minor decrease in May and November. The RMSE appears to be greater during 

the summer months of ice retreat, and slightly less during the autumn months of ice 

advance. Overall, the periods of transition (melt and freeze) coincide with the greatest 

RMSE.  

An important source of errors in the model ice concentration comes from the 

reanalysis surface forcing. Fenty and Heimbach (2012) showed that adjustments in the 

air temperature that are within the uncertainties of this reanalysis field can help bring 

the model ice edge into agreement with the observations.  Of note also is that the 

uncertainty in satellite-derived ice cover can be the highest in the marginal ice zone 

due to tracking algorithms that are sensitive to cloud liquid water or cannot distinguish 

thin ice from open water (Ivanova et al. 2015), this error also manifests itself in 

quantification of model-data misfits. 

3.2 Sea ice velocity 
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Ekman turning causes ice and water to move at divergent angles with respect to each 

other. Ice moves the fastest, with mean values of 0.09 m s-1 (Cole et al. 2014), and the 

water column progressively winds down in velocity, along the Ekman spiral. 

Stratification in the Arctic leads to a confinement of the shear stress closer to the air-

sea interface and also produces greater divergent flow vectors between ice and water 

(McPhee 2012). In the marginal ice zone or in regions where ice is converging or 

diverging, these motions, relative to the motion of the water column can produce 

significant changes in the water column momentum budget as well as air-sea fluxes. 

Thankfully, the ITPs can provide us with a measure of the real ice drift.  

To generate a more quantitative comparison between the results we utilized the same 

method introduced by Timmermans et al. (2011), to compare ice velocity components 

(eastward - northward) of A1 to ITP velocity and compute the correlation coefficient 

of each experiment with the daily averaged actual drift velocity from the ITPs (Figure 

4). 

When averaged over all the ITPs operating in Beaufort Gyre during 2006 to 2013, A1 

had correlations of 0.8 with actual velocity components and 0.82 correlation with 

speed magnitude. RMSE calculated for A1 based on Eq. (2) shows an error of 0.043 

ms-1 and no significant bias. 

3.3 Temperature, salinity, density and MLD 

3.3.1 Vertical Salinity and Temperature profiles 

We chose 4 hydrographic profiles in the Beaufort Sea to assess the simulated vertical 

salinity and temperature. The first two sets of profiles are from ITP-1 winter and 
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summer 2006; the third set is from ITP-43 during winter 2010 and the fourth is from 

ITP-13 during summer 2008 (Figure 5). For visualization we linearly extrapolated the 

profiles from the first layer of the model up to the surface, which occurs over the top 1 

meter of the water column. 

During winter time, the model Temperature and Salinity profiles show a well mixed 

layer that extends below 15 meters, followed by a very large gradient. The mixed-

layer temperature is close to the local freezing point in a condition called “ice bath” 

(Shaw et al. 2009). The ITP profiles are similar; however the ITP mixed layer depth is 

deeper by nearly 10 meters, indicating more ice formation and convective heat loss 

over this water column, as compared to the model water column. In summer the model 

mixed layer shoals to approximately 5 meters depth following two local temperature 

extrema, the bigger maximum is at ~35 meters generated by intrusion of the Pacific 

Summer Water (PSW) which is a dominant feature in Canada basin. The second 

smaller maximum happens around 10 meters called Summer Mixed Layer (Shimada et 

al. 2001, p. 201) or Near-Surface Temperature Maximum (NSTM) (Jackson et al. 

2010) which is a seasonal feature generated by shortwave solar heat diffusion 

(Perovich and Maykut 1990). These two well-defined phenomena are broadly 

descriptive of the summer surface layer in the Beaufort Gyre. They are; however, 

absent from the ITP data at this location, indicating a different ice and heat budget 

time history. 

Data and model profiles in Figure 5b show better agreement in the shape and the 

absolute value of the T and S profiles. Both model and ITP data have a 20 meter deep 

mixed layer during 2010 winter. The model in this case does not show as much change 
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in vertical temperature structure compared to actual data. In the profile from ITP-13 

(Figure 5) the model again over estimates the temperature beneath the mixed layer, 

although certain features including the NSTM can still be found near 10 meters, yet 

not as pronounced since it is very close to PSW. Bearing in mind that density in the 

Arctic is dominated by changes in salinity, we move forward to density profiles from 

this point on.  

In addition, we note that recent studies show that eddies with diameters of 30 km or 

less (Nguyen et al. 2012; Spall et al. 2008; Zhao et al. 2014; Zhao and Timmermans 

2015; Zhao et al. 2016) play an important role in transporting Pacific water from the 

shelf break into Canadian basin. Adequate representation of ocean eddies and 

investigation their roles in setting the water column stratification require a model with 

finer horizontal resolution. Hence moving forward, in addition of A1, we utilize the 

9km model (A2) to investigate the density profiles as well as study the MLD. 

3.3.2 Density profiles 

We compared the 36 km and 9 km model outputs of density to the time series of 

density profiles from ITP-35 (Figure 6) starting in Oct 2009 to Mar 2010. A black 

mask indicates locations where there is no data from ITP-35 - particularly in the upper 

7 meters of the water column. As ITP-35 transited through Canadian basin, density 

profiles contain both temporal and spatial changes.  

We are able to discern some broad similarities between the model and ITP density 

profiles. From November through January, both ITP and model density profiles 

remain relatively constant. Between February and March, ITP-35 appears to drift 
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through a zone of convection, likely caused by ice formation, with sudden increase of 

density near the surface. The same feature can be observed in both A1 and A2 density. 

However, on a smaller scale, there is significantly more variation in the ITP data than 

what the model represents.  

For exploring the reason behind the density signals, we used the simulated fraction of 

sea ice cover and ice thickness (Figure 6). The dominating effect appears to result 

from sea ice fraction when there is almost continuously covered area. The changes 

from sea ice thickness can be observed in the volume of fresh water in the water 

column, as seen by outcropping of the 1022.5 isopycnal coinciding with the increase 

of sea ice thickness. An increase in near surface density can be seen in late January 

and early February accompanied by an increase in ice thickness and insertion of brine 

in the water column. The second peak, which is not as pronounced, happens in late 

February when ice fraction decreases from 100% to 95% and exposes the surface 

water to cold atmosphere, leading to production of newly formed sea ice. We further 

examine these signals in MLD section below. 

3.3.3 Mixed layer depth 

There are many different methods in the literature for calculating mixed layer depth 

(Brainerd and Gregg 1995; Wijesekera and Gregg 1996; Thomson and Fine 2003; de 

Boyer Montégut et al. 2004; Lorbacher et al. 2006; Shaw et al. 2009). The methods 

can be divided into two main types (Dong et al. 2008): The first type of algorithm 

looks for the depth (zMLD) at which there has been a density increase of δρ between the 

ocean surface and zMLD. A typical range of values for δρ are 0.005 (kg m-3) to 0.125 
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(kg m-3) (Brainerd and Gregg 1995; de Boyer Montégut et al. 2004). The second type 

uses slightly different criteria, where the base of the mixed layer is determined as the 

depth where the gradient of density (∂ρ/∂z) equals or exceeds a threshold; typical 

numbers for (∂ρ/∂z) are 0.005 (kg m-4) to 0.05 (kg m-4) (Brainerd and Gregg 1995; 

Lorbacher et al. 2006, p. 200). A more sophisticated approach to type 1 of these 

criteria is to utilize a differential between (ρ100m - ρsurface)  as the cut of point (instead 

of using a fixed δρ) to account for the effects of surface ρ changes during winter and 

summer (Shaw et al. 2009). Here, we have implemented two of these methods M1 and 

M2, with M1 using δρ equal to 0.2 of (ρ100m–ρsurface) (Shaw et al. 2009) and M2 with a 

gradient (∂ρ/∂z) cut off point equal to 0.02 (kg m-4) which matches innate model 

parametrization of MLD (Nguyen et al. 2009).  

We compare these 2 methods by applying them to the profiles from Figure 5 and the 

results are shown in Figure 7. In case (a) and (b) M1 produces a mixed layer depth that 

is 8 to 12 meters deeper, compared to the other method. A visual examination of 

profiles indicates that the M1 criteria may be too flexible of a criteria. The results from 

M1 appear to be intermittently “realistic”, whereas M2 can be difficult to implement 

for data sampled at high vertical resolution as a result of greater small-scale 

variability. In practice, we find M1 is the most straight-forward to implement.  

It should be mentioned that it is difficult to consistently compare performance of the 

M1(δρ) and M2 methods on ITP and model data, because the model data extends to 

top 1 m of water column, whereas the ITP data stops at 7 m depth (Peralta-Ferriz and 

Woodgate 2015). Furthermore, it has been shown that summer mixed layer in the 

Canada basin can be less than 12 meters (Toole et al. 2010). To account for this effect, 
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we apply an additional restriction wherein any profile whose mixed-layer depth is less 

than 2 m below the shallowest ITP measurement is discarded. This restriction 

effectively removes any ML depths shallower than 10 meters due to ITP sampler not 

resolving the upper 8 m of water column. In some cases, a remnant mixed-layer from 

the previous winter may exist in the water column. In this case, the methods 

incorrectly identify the remnant ML as actual ML depth. 

To compare the methods over a longer time period, we calculated the mixed-layer 

depth from model data and ITP-35 data along the ITP-35 drift track. We used M1 to 

determine the ML depth for A1, A2 and for ITP-35 data (Figure 8). Both model results 

show a shallower ML compared to the ITP data; the most prominent feature in late 

January corresponds to a sudden change in density found in (Figure 6). Beside the 

above mentioned peak A1 fails to capture any variability in MLD whereas A2 shows 

that ML deepens by about 10 meters in mid February corresponding to ice opening 

occurring during the same time span (Figure 6). The difference between A1 and A2 

and their ability to capture MLD change, can be explained by the capability of a 

higher resolution model to capture small-scale fractures in the ice cover (Figure 8), 

and conversely, the inability of the coarser resolution to do so is due to averaging over 

a larger grid. The wind appears to be the primary driving mechanism for the 

divergence in ice cover, which in turn exposes the ocean to the cold atmosphere and 

leads to a loss of buoyancy and an increase in MLD. With higher resolution these 

openings can be captured, leading to a better agreement with data in marginal ice 

zones. The changes in MLD are of first-order importance to the calculation of gas 

budgets such as the radon deficit. In this regard a fine-scale grid resolution has real 
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advantages through its ability to capture both the ice advection and openings in ice 

cover that lead to MLD change. Coarser resolution would be justified when the point 

of interest is sufficiently far away from leads and marginal ice zones where the effect 

of sea-ice dynamics on MLD is important, so the effects of area averaging would be 

small enough to omit. 

One last important note is the effect of the salt plume parameterization (SPP) on MLD.  

Nguyen et al. (2009) demonstrated the need to remove the artificial excessive vertical 

mixing in coarse horizontal resolution models. To rule out the dependency of this 

parametrization to vertical resolution as a source in MLD bias, we performed a suite of 

1D tests, with and without the SPP on a variety of vertical resolutions (not shown 

here) and sea ice melting/freezing scenarios and confirmed that SPP is not dependent 

on vertical grid spacing. We also investigated MLD in A3 (no SPP) run compared to 

A2, and confirmed the average MLD is the same between these 2 runs. 

3.4 Velocities in the water column  

We have very little information from direct observations that permit us to track a 

water parcel especially beneath sea ice. This is one area where model output could be 

critical as there are not obvious alternatives. To assess the consistency of the model 

water current field, we compared 2D model water velocity to data gathered from two 

sources: (1) from ADCPs mounted on moorings that were deployed starting in 2008 in 

Beaufort Gyre (Proshutinsky et al. 2009) and (2) the ITP-V sensor equipped with 

MAVS (Modular Acoustic Velocity Sensors) (Williams et al. 2010), which was the 

only operating ITP before 2013 which had an acoustic sensor mounted on it.  
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We compared the velocity components averaged from 5 m to 50 m to account for flow 

direction that is moving the water parcels in the mixed layer over the duration of ITP-

V working days which is from Oct 9, 2009 to Mar 31, 2010 (Figure 9). The ITP data 

has been daily averaged to remove higher frequency information which we do not 

expect the model to capture due to the low frequency (6-hourly) wind forcing.  Both 

A1 and A2 show less than 0.3 correlations with data with no improvement in respect 

to resolution.   

We further add A3 to our comparison for moorings velocities (Figure 9), and 

compared velocities at 25m, which is the level that is shared between all our models 

and removes the necessity of any interpolation. The simulation results show RMSE 

normalized by data of higher than 5 and correlations of less than 0.3 over 3 moorings 

and almost two years of data. This result indicates ocean currents are not well captured 

in the model irrespective of horizontal grid resolution. We must therefore look into the 

atmospheric forcing as a likely source of error on high frequency water velocities near 

surface.  As noted above, the wind inputs into the model from the reanalyses are 

available at a 6-hourly frequency. Chaudhuri et al. (2014) and Lindsay et al. (2014) 

have compared various available reanalysis products over the Arctic which we used to 

force our model, along with multiple other reanalysis products with available ship-

based and weather station data and found out that wind products in all of those have 

low correlation i.e less than 0.2. To investigate we compared JRA55 (Onogi et al. 

2007) and NCEP (Kalnay et al. 1996) to a shipboard data gathered during 2014 in time 

span of 2 months in Arctic and found that JRA55 had -0.20 correlation, RMSE of 7.36 

and bias of -1.3, NCEP had correlation of 0.10, RMSE of 5.73 and bias of -1.40 when 
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compared with high frequency data on each cruise, reinforcing our suspicion of high 

frequency wind as a source of error in water currents. 

4 Gas exchange estimation  

Up to this point we have spent extensive effort assessing the skill of the MITgcm to 

reproduce the key forcing parameters listed in our introduction.  This effort is 

motivated by the potential for using the MITgcm model output as a tool to improve 

our ability to model gas budgets in the IOBL and to improve our estimates of k in the 

sea ice zone, both of which depend on sea ice processes in the IOBL.  To illustrate the 

potential impact that IOBL properties can have on the estimate of k, we perform a 

simple experiment, using estimates of k over the range of variation in model output at 

three locations in the sea ice zone. The intention is to illustrate the variability in k and 

in the radon deficit that can arise as a result of sea ice processes. 

4.1 Constraining gas exchange forcings 

Utilizing the results from section 3.1, 3.2 and 3.3, we calculated gas exchange 

velocities at P1, P2 and P3 (Figure 10), over the course of the model simulation (i.e. n 

= 2557 days * 3 = 7671) introduced in section 3.1. The MITgcm IOBL properties are 

fed to the estimator of k, considering sea ice processes (Loose et al. 2014).  Our 

selected points have the mean sea ice concentrations of 96.1%, 87.62% and 61.69%, 

sea ice speeds of 0.05, 0.086 and 0.10 ms-1, wind speeds of 8.73, 5.87 and 4.11 ms-1. 

The result yields a point cloud of values that vary depending primarily on the range of 

ice velocity, wind speed and sea ice cover. The values of k range between 0.1 and 

14.0, a mean of 2.4 and standard deviation of 1.55. This exercise demonstrates the 
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sensitivity of k to the IOBL forcing parameters.  In the event that we can trust the 

majority of the model outputs, such as the case here with high fidelity in the simulated 

SI concentration and SI velocities in A1, we conclude that, a numerical model, even a 

coarse resolution one, can make significant improvement to the estimate of k.  The 

question of constraining the radon budget within a Lagrangian water parcel is 

somewhat more complicated. 

4.2 Application of forcings on Radon budget 

The results in Section 3.4 showed that the difference between model and data water 

trajectories accumulated too much error to be useful, and indicate that for a regional 

GCM to be useful for reconstructing the back trajectories of radon-labeled water 

parcels, we will need improved wind-forcing fields. With current reanalysis products, 

finding the back trajectory of radon-labeled water parcel is not feasible. When 

improved wind fields are available, the Green’s functions approach (Menemenlis et al. 

2005; Nguyen et al. 2011) or adjoint method (Forget et al. 2015, p. 4; Wunsch and 

Heimbach 2013) can be used to reduce misfits between modeled and observed MLD 

velocity and likely make the model a valuable tool for tracking back trajectories, either 

in a smaller domain or full Arctic regional configuration.  A possible source of wind 

data can be from shipboard measurements, assuming the measurements persist over 10 

days in the given sampling station.  

However, it may be possible to improve on the existing approach.  When the drift 

trajectory is not known, one solution is to resort to averaging IOBL properties within a 

radius that is equal to the 30-day drift track (e.g. as done by Rutgers Van Der Loeff et 
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al. 2014). The averages within this circle are treated as the representative IOBL 

properties. The radius of spatial averaging should be restricted by the average 

magnitude of the water parcel's velocity multiplied by the time span of interest. When 

applying a spatial averaging, if the time scale of changes in forcings is smaller than 

time span of interest, the time dependency of forcings should be accounted for. 

Typically sea ice velocity is ~ 5 times greater than vertically averaged water velocity 

in mixed layer (Cole et al. 2014).  In this regard, it may be acceptable to assume that 

the water parcel is stationary as long as ice advection is accounted for. Hence spatial 

averaging, should account for ice drift over the point of radon/radium sampling. The 

same logic also applies to the changes in the MLD and sea ice concentration. For 

example, gas exchange calculated (Eq. 1) based on assumption of constant MLD of 

27.5 m with limits of 5 to 50 m (Peralta-Ferriz and Woodgate 2015), would have 

limits of ±80%, whereas gas exchange calculated based on model MLD would have 

±50% error and accounts for time variability. With the current level of uncertainty in reanalysis 

products and inherent heterogeneity of marginal sea ice zones, we suggest a mixed weighted 

combination of model outputs and shipboard data to be the way forward for constraining gas budget in 

sea ice zones.  

5. Summary  

We have used 36-km, 9km and 2km versions of the ECCO ocean-sea ice coupled 

models based on the MITgcm to investigate whether numerical model outputs can be 

used to compensate for lack of data in constraining air-sea gas exchange rate in the 

Arctic. The goal is to understand if model outputs can improve estimation of gas 

exchange velocity calculation and to evaluate the capability of the model to fill in the 
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missing information in radon deficiency method. This systematic comparison of upper 

ocean processes has revealed the following. 

The coarse resolution model showed a good fidelity in regard to reproducing sea ice 

concentration. Depending on the location/season, the error of simulated ice 

concentration varied between 0.02 and 0.2. Away from ice fronts or active 

melting/freezing zones the model tended to have higher accuracy. Even in the 

marginal ice zone, due to the potentially high error in the satellite derived ice 

concentration, the model can still be used to quantify the air-sea gas exchange rate, 

though with an expected higher uncertainty due to the combination of model and data 

errors.  In addition to sea ice concentration, we also found good correlation (82%) 

between model ice speed and ITP drift.  

The estimation of mixed layer depth is challenging due to its dependence on 

unconstrained density anomaly or density gradient thresholds. No MLD algorithm 

performs well in all situations. In addition, CTD profiles from drifting buoys often do 

not include the top 7-10 m of the surface ocean where stratification can be important. 

Adding to the challenge is the dependence of the ocean density structure on vertical 

fluxes. In these model-data comparisons we found model MLD to be consistently 

biased on the shallower side in all model resolutions. We note however this result can 

partly be due to the missing upper 7m in moored drifters such as ITPs and thus 

resulting in a 1-sided bias in the observed MLD. The evolution of the mixing events 

showed that MLD correlates to sea ice fraction: in areas of nearly full ice cover, small 

openings may result in exposure of water to the cold atmosphere and the resulting 

freezing events would deepen the mixed layer via brine rejection. The higher the 
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resolution, the higher the capability of the model to capture these openings and the 

resulting deepening effects. The usage of the salt plume parameterization does not 

play an important role in determining the MLD. 

The A1, A2 and A3 experiments consistently could not capture the water velocity 

observed in ITPs or Mooring. We speculate this discrepancy may be the result of the 

quality of the reanalysis wind products that are forcing these models. The wind 

products have been shown to have poor correlation with observed data at high 

frequencies. Considering that the response of near surface water is almost 

instantaneous to the wind forcing, low correlation in wind velocity would have direct 

impact on the modeled near surface water velocities and likely yield low correlations 

between modeled and observed ocean currents. On the other hand, the same wind 

fields at lower frequencies and on broader spatial scale have higher accuracy, as 

evidenced by the high correlation between the modeled and observed sea ice velocity. 

Taking into accounts all the misfits through detailed model-data comparisons, we were 

able to quantify the usefulness of a numerical model to improve gas exchange rate and 

parameterization methods. We showed an example of how the sea ice concentration, 

velocity and mixed-layer depth can affect gas-exchange rate by up to 200% in 

marginal sea ice zones and that the model outputs can help constrain this rate. By 

finding the low correlation in near surface ocean velocities, irrespective of model 

horizontal resolution, we concluded that finding the back trajectory of radon labeled 

water parcels is currently not feasible.  Furthermore, we speculate the source for the 

common errors in our models, namely the high frequency and under-constrained 

atmospheric forcing fields, as well as identify alternative approaches to enable the use 
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of a model to achieve the back trajectory calculation task. The alternative approach 

includes using the MITgcm Green’s functions and adjoint capability to help constrain 

the model ocean velocity to observations, and performing the simulations in a smaller 

dedicated domain based on the specific spatial distribution of data for both 

atmospheric winds and ocean currents in the mixed layer. 
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Figure 1 A graphic illustration of two possible back trajectory for a single sampling 
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Figure 2: Bathymetry and location of ITP-V and 
Mooring for data comparison  
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Figure 3 .  (a) Averaged satellite sea ice cover from 2006-2013, Solid black line marking 60% cover and 
dashed black line marking 80%, Blue dots show the analysis grid, stars show the location of the three points 
Cyan P1, Green P2, Red P3 where time series data is graphed in b. (b)Time history of Sea-Ice fraction from 
top P1, P2 and P3, Satellite data represented by blue dots, compared with A1(c) Horizontal distribution of 
RMS error of A1 sea ice concentration averaged over time from 2006 to 2013; black mask covers the grid 
points on the land, (d) Spatially averaged Annual RMS error of A1 sea ice concentration. 
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Figure 4: Time series of sea ice velocity components and speed of ITP 53 vs. 36 km horizontal resolution 
of MITgcm (A1). The correlations between eastward, northward and magnitude of velocity between ITP 
53 data and A1 are 78%,75% and 80%, respectively. 
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Figure 5 Salinity and Temperature of top 70 m based on ITPs and A1 (a) ITP 1 on 13-Dec-2006 at 
74.80°N and 131.44°W (b) ITP-43 on 27-Nov-2010 at 75.41°N and 143.09°W (c)ITP 1 on 28-Aug-
2006 at 76.96°N and 133.32°W (d) ITP-13 on 30-Jul-2008 at 75.00°N and 132.78°W 
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Figure 6 (a) Observed upper ocean density vs 36 km(A1) and 9 km(A2) resolution MITgcm 
density along the path of ITP drift, black mask covers areas that no ITP data is available and solid 
black line shows isopycnal of 1022.5 kgm-3  . (b) Simulated sea ice fraction and thickness on top 
of the water column   
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Figure 7 Methods M1 and M2 applied to selected  ITP profiles,(a) ITP 1 
on 13-Dec-2006 at 74.80°N and 131.44°W (b) ITP-43 on 27-Nov-2010 
at 75.41°N and 143.09°W (c)ITP 1 on 28-Aug-2006 at 76.96°N and 
133.32°W (d) ITP-13 on 30-Jul-2008 at 75.00°N and 132.78°W.  
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Figure 8 Sea ice cover higher than 0.9 with gray circle marking the area of ITP operation for (a) 36 km 
(A1) and (b) 9 km(A2) horizontal resolution of the model. A2 captured the ice opening and resulting 
mixed layer change while this phenomena has been averaged out by coarse resolution model   (c) 
observed and simulated evolution of mixed layer depth on the path of ITP 
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Figure 9 (a) Daily averaged velocity components from 5 to 50 meters observed by 
ITP-V vs simulated by A1 and A2 (b) Daily averaged velocity components at 25 
meters observed by mooring D vs A1,A2 and A3.  
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Figure 10 Gas exchange estimated model outputs of wind and sea ice speed at locations 
P1: 77.4N 143.6W, P2: 74.8N 163.5W and P3: 70.59N 159.4W from Jan-2006 to Dec-
2012 , Areas enclose the outputs around the mean and two standard deviation. The size of 
the points demonstrate the magnitude of the gas exchange velocities normalized by sea ice 
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Abstract 

The interpretation of upper ocean geochemical gas budgets in marginal ice 

zones are often challenging due to the impact from a combination of environmental 

forcings acting on these budgets. While gas exchange may be the lead forcing, 

changes in stratification, ice cover, and modifications of the gas budget during sea ice 

melt (freeze) also play a role. To investigate the impact of these other forcings, we 

utilized a 1D numerical model based on MIT General Circulation Model (MITgcm) 

code and its inverse model to simulate the sampling conditions of 53 vertical radon 

profiles. The comparison of simulated hydrography and available data using an 

unconstrained model showed sensitivity of the budgets to the initial hydrography. The 

optimization based on the inversion model reduced uncertainties in initial conditions 

and supported the 1D model. Based on model outputs, we quantified the error 

introduced by ignoring the effects of advection, melt, and changes in mixed layer 

depth. We showed, without the insight from the numerical model, the gas budgets in 

areas with more than 80% ice cover, may have errors up to 50%. We further showed, 

in comparison to the radon data, current formulation of gas exchange velocity, under 

predicts gas fluxes in almost fully covered areas. Our results suggest that the 

numerical model and its inversion are necessary tools in interpreting near surface 

budgets in sea ice zones; specifically in almost fully covered regions. 

1 Introduction 
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Mixed layer (ML) budget of biogeochemical gases in high latitude region has 

revived attention recently due to the impact biogenic gases such as CO2 (Bates et al., 

2011; Bates & Mathis, 2009; Detoni et al., 2015; Geilfus et al., 2012), O2 (Castro-

Morales et al., 2013) and methane (Kitidis et al., 2010; Shakhova et al., 2010) have on 

global climate. In addition to their climatological impact, geochemical gas budgets 

offer a mean to understand fundamental processes occurring in the ML such as rate of 

ventilation (Loose et al., 2017; Rutgers Van Der Loeff et al., 2014) and surface-deep 

ocean exchange (Abelmann et al., 2015).  

In the open ocean a series of assumptions including horizontal homogeneity 

and steady state conditions makes determination and interpretation of the 

biogeochemical budgets straight forward (Peng et al., 1979; Smethie et al., 1985). 

Even though gas exchange velocity, due its dependence on wind (Wanninkhof, 2014), 

can vary with high frequency compared to budget renewal time, it has been shown that 

by applying a weighted average on this forcing, a steady state condition can be 

assumed with <20% error (Bender et al., 2011). The weights in this method are based 

on ventilation ratio of a constant ML depth (Reuer et al., 2007). Hence, the steady 

state condition is a valid assumption where the ML depth can be assumed near 

constant. This assumption holds well on time scales shorter than a seasonal cycle 

where atmospheric forcing gradually changes the ML depth (Acreman & Jeffery, 

2007; Kara, 2003; Ohno et al., 2008). 

In sea ice zones, on the other hand, the ML depth changes on shorter time scale 

due to freezing/melting of sea ice (Cole et al., 2014; Peralta-Ferriz & Woodgate, 2015; 

Toole et al., 2010; Vivier et al., 2016). Brine/freshwater input into the ocean surface 
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deepens/shoals the ML in span of a few days. This transient condition contradicts the 

steady state assumption of constant ML depth. Previously, physical numerical ocean 

models demonstrated the ability to capture these short time scale changes in the ML. 

For example, Fer et al. (2017) have used forward numerical 1D models to study 

turbulent heat and momentum transfer in sea ice zones, though constraining the gas 

budgets was not part of their investigation.  

 A shortcoming in using a forward unconstrained 1D model to capture ML 

depth changes and its effect on gas budgets is the highly unconstrained ambient 

conditions, such as initial vertical profile of salinity (S) and temperature (T) (Dwivedi 

et al., 2011), that dictate the initial ML depth and initial gas inventory. An inversion 

framework, on the other hand, can be used to obtain a set of initial conditions that are 

consistent with relevant observation (Nguyen et al., 2017). Here we utilize a 1D model 

based on MIT General Circulation Model (MITgcm) code and its non-linear inversion 

(also known as adjoint) framework (Forget et al., 2015b; Nguyen et al., 2017; Wunsch 

& Heimbach, 2007, 2013) to estimate the initial T & S profiles and study the effects of 

environmental forcing, such as changes in ML depth and sea ice melt/freeze on gas 

budgets.  

A suitable approach to investigate the individual contribution of environmental 

forcing on the gas budgets is to quantify the inventory of near surface radon. Radon is 

an inert gas, does not participate in biology, and the half-life of radon (3.82 days) 

allows us to limit the simulations of the physical ocean conditions to 40 days i.e. 5 

half-lives of radon.  
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Sampling of radon budgets is part of a geochemical method called the “Radon 

deficit method” (Bender et al., 2011; Peng et al., 1979). This method has been used in 

the open ocean and sea ice zones to determine the gas transfer velocity (Loose et al., 

2017; Rutgers Van Der Loeff et al., 2014). The exchange transfer velocity inferred 

from these profiles suggests that, in contrast to other independent measurements 

(Butterworth & Miller, 2016; Prytherch et al., 2017), in marginal ice zones, wind 

speed parametrization of gas exchange velocity does not hold. We can investigate if 

the previously mentioned environmental forcings have distorted the inferred gas 

transfer velocity. We also quantify the impact these environmental forcing conditions: 

wind, sea ice cover, sea ice freeze/melt, and changes in ML depth, can have on the 

upper ocean budget of dissolved gas. We use the 1D MITgcm to simulate gas budgets 

as a function of upper ocean processes, and we use the 1D adjoint to tune the 40-day 

history of the environmental forcing to match observations at the time of sampling 

In section 2.1 we introduce the 1D physical ocean numerical model and its 

adjoint. In Section 2.2 we give a background on the radon deficit method and current 

1D control volume estimates of gas budgets. In section 3.1 we show the adjoint 

optimization results. In section 3.2 we compare the forward model outputs with 

available data and discuss the accuracy of control volume estimates. Finally in section 

4 we provide a summary and an outlook perspective of our work  

2-Method 

2-1 MODEL Description 
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For this study we use the estimation framework existing within the Estimation 

of Circulation and Climate of the Ocean (ECCO) consortium (Wunsch & Heimbach, 

2007, 2013). The forward model is based on an evolved version of the MIT general 

circulation model (MITgcm) (Adcroft et al., 2004; Marshall et al., 1997). Sea ice is 

simulated using MITgcm’s sea ice package (Patick Heimbach et al., 2010; Losch et 

al., 2010). 

The 1-D column configuration employs z coordinate system (Adcroft & 

Campin, 2004) with 0.5 m evenly spaced vertical nodes spanning from the surface 

down to 200m depth. Vertical mixing uses the K Profile Parametrization (KPP) (Large 

et al., 1997). Atmospheric forcing comes from JRA55 (Kobayashi et al., 2015).  Brine 

rejection during sea-ice formation follows an updated parameterization of Nguyen et 

al., (2009). Bigdeli et al. (2017) have shown that the 1-D column is able to reproduce 

realistic seasonal cycle of the Arctic ML depth.  

The MITgcm adjoint code is generated using automatic differentiation tools 

(Heimbach et al., 2005) Observational constraints used to invert for initial T/S 

conditions in this study are the final (day 40) hydrography profile measurements. Day-

40 model-data misfits are systematically reduced through iterative minimization of a 

least-square misfit function (adjoint or Lagrange Multiplier method). At each iteration, 

incremental adjustments are made to uncertain model parameters and input fields 

(together termed control variables), which are often not well constrained (Fenty & 

Heimbach, 2012; Forget, et al., 2015a; Stammer, 2005), to bring the model T/S into 

agreement with the observed hydrography to within data and model representation 

errors (Forget, Campin, et al., 2015; Nguyen et al., 2017).  For this study, the control 



54 

 

variables are the atmospheric forcing inputs: 10-m air temperature, specific humidity, 

downward long and short wave, precipitation, and 10-m winds. 

2-2 Radon deficit method background 

The radon deficit is used to determine the air-sea gas transfer velocity (k). The 

magnitude of k in sea ice zones has been the focus of scientific community in recent 

years and this method has emerged as one of the promising tools for determining k in 

sea ice zones (Loose et al., 2017; Rutgers Van Der Loeff et al., 2014). This 

geochemical method is based on vertical sampling of 222Rn and 226Ra activities (Peng 

et al., 1979). Both radon and its parent radium are radioactive elements with half-lives 

of 3.82 days and 1599 years, respectively (Peng et al., 1979). In a closed system, based 

on the mismatch in their respective half-lives radon and radium reach secular 

equilibrium, whereby the activity of the daughter (222Rn) is determined exclusively by 

the activity of the parent (226Ra). When secular equilibrium is reached the activity of 

radon (ARn) would match the activity of radium (ARa). In the deep ocean, away from 

the surface and the sediments, the secular equilibrium is a valid assumption.  

In the surface ocean, the vertically integrated conservation of mass for radon in 

terms of activities can be written as:  

∫
ௗೃ

ௗ௧




𝑑𝑧 =   𝜆 ∫ (𝐴ோ




− 𝐴ோ)𝑑𝑧 − 𝑘𝐴ோ

௦௨
− 𝐹𝑚𝑀(𝐴ோ

ிெ −  𝐴ோ
௦௨

) + 𝐴𝑑𝑣 + 𝑀𝑖𝑥  

 (Eq-1) 

where λ is the decay constant of radon (0.181 d-1), D is an arbitrary depth, k is 

gas exchange velocity ,and FmM is freezing minus melting rate. ARn and ARa are 

radon and radium activities. AFmM and Asurface denote the activity in sea ice and water 
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surface, finally Adv and Mix accounts for effects of advection and mixing. Based on 

current geochemical approaches, to account for time dependency of a gas budget, a 

weighted average of k is used (Reuer et al., 2007). For radioactive budgets, these 

weights are based on fraction of ML that has been ventilated and radioactive decay 

rate. This weighted average method allows for neglecting the LHS of (Eq-1). Away 

from sea ice zones, FmM is equal to zero. Vertical mixing leads to rapid air-sea 

exchange and the lateral differences in gas concentration are assumed negligible from 

advection i.e. 2 last terms in RHS are negligible. Rapid mixing would results in 

vertically constant activities in ML and allows us to set D equal to ML depth. 

Therefore the conservation of mass for radon, near the surface can be simplified to: 

ቀ
ೃೌ

ೃ
− 1ቁ  𝜆𝐻 =  𝑘          

 (Eq-2) 

where ARn observed activity of radon and Ara is observed activity of radium. Both 

activity values can be obtained by a single vertical sampling of radon and radium.  

We compare the 1D model and its adjoint with in-situ formulations for 53 

sampling stations in Arctic Ocean to investigate the influence of process other than 

air-sea exchange. These sampling stations cover a diverse range of time scale and sea 

ice conditions (Figure ). Samples from ARK-XXVI/3 2011 Sep/Aug (Rutgers Van Der 

Loeff et al., 2014) and JOIS 2013 Sep/Aug and JOIS 2014 Sep/Oct (Loose et al., 

2017), cover late summer and early fall and sea ice conditions that range from open 

ocean to almost fully covered sea ice. 
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Figure 1 Location of the sampling stations from JOIS 2013, JOIS 2014 ,and ARK 2011. The overlay 

color map shows the summer minimum sea ice fraction averaged from 2011 to 2014. 

2-3 Implication on other biogeochemical gases such as O2 

The calculations offered in this paper are explicitly done for budget of radon, 

in this section we are going to demonstrate how these calculations can also be 

applicable to other geochemical gases. We chose oxygen as an example and offer a 

scaling argument between similar terms in conservation of mass for radon and oxygen. 

The conservation for oxygen can be written as:  

∫
ௗ ೀమ

ௗ௧




𝑑𝑧 =  𝐺 − 𝑅 + 𝑘𝐶ைమ

ௌ௧ − 𝑘𝐶ைమ

௦௨
− 𝐹𝑚𝑀(𝐶ைమ

ி −  𝐶ைమ

௦௨
) + 𝐴𝑑𝑣 + 𝑀𝑖𝑥   

 (Eq-3) 
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where 𝐶ைమ
 is concentration of oxygen, G is gross production of oxygen, R is 

respiration, 𝐶ைమ

ௌ௧  is  oxygen saturation concentration. In this equation the effects of 

bubble mediated transport are neglected (Kaiser et al., 2005). 

There is a similarity between main sources of uncertainty e.g. advection, 

mixing, freeze/melt effects in Eq-3 and Eq-1. The possible difference, regarding the 

uncertainties, between these two equations is the ratio between time scale associated 

with sources of uncertainty and renewal rate of gas budget in ML (production - 

consumption). For gas exchange and radon for example a possible scaling is 

𝜆 ∫ (𝐴ோ
ு


− 𝐴ோ)𝑑𝑧 divided by 𝑘ோ𝐴ோ

௦௨, for oxygen this scaling can be written as 

𝐺 − 𝑅 + 𝑘ைమ
𝐶ைమ

ௌ௧ divided by 𝑘ைమ
𝐶ைమ

௦௨.  

First order estimation of the scaling ratio for Rn, based on Eq-2, is 

approximately one. For O2, simplification of the terms in the nominator, considering G 

- R <<  𝑘ைమ
𝐶ைమ

ௌ௧ (Reuer et al., 2007), would result in the scaling ratio for O2 to be 

equal to 𝐶ைమ

ௌ௧/𝐶ைమ

௦௨. Therefore, the ratio to translate the magnitude of error, for gas 

exchange, between O2 to Rn can be estimated by 𝐶ைమ

ௌ௧/𝐶ைమ

௦௨ . The surface to 

saturation concentration of O2 ratio in marginal zones can be estimated at 1.0 ± 0.2 

(Eveleth et al., 2014). This number suggests that errors introduced by assumptions in k 

calculation for O2 and Rn, although not exactly equal, will have the same magnitude.  

  The scaling argument offered in this section lead us to believe that the 

uncertainties that are going to be calculated later on this paper, offer good first guess 

for errors introduced in other biogeochemical gases. Nevertheless, If the exact errors 
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are needed be calculated for specific gas, the forward section of the 1D numerical 

model should be utilized. For this purpose we uploaded the forward section of 1D 

numerical model setup and a relevant user manual on the public domain. 

 

2-3 The budget of 222Rn and 226Ra in the 1D model 

Forty days prior to the sampling date for each station, we initialized the 1D 

numerical model and simulate the ML depth and SI fraction and using the Japanese 

55-year Reanalysis (JRA55) (Kobayashi et al., 2015) as atmospheric forcing. Initial 

estimates of temperature and salinity of the water column came from either the outputs 

of a 9 km horizontal resolution 3D Arctic regional model (Bigdeli et al., 2017; Nguyen 

et al., 2011) or the final observed T/S at each stations; we tested both set of initial 

conditions and used the set of profiles that yielded the lowest misfits in the final T and 

S. Radon and radium are inserted in the water column as passive tracers with their 

respective half-lives. Tracers are initialized assuming secular equilibrium, matching 

the radium values observed in each sample. Gas exchange is modeled as a sink for 

radon at the surface and the magnitude of k at the surface is based on a formulation 

from W92 (Wanninkhof, 1992), H06 (Ho et al., 2006), N00 (Nightingale et al., 2000), 

S07 (Sweeney et al., 2007) ,and finally W14 (Wanninkhof, 2014): 

 

𝒌𝒘𝟗𝟐 =  𝟎. 𝟑𝟎𝟖 𝑼𝟏𝟎
𝟐  𝑺𝒄ି𝟎.𝟓(𝟏 − 𝒇𝒊𝒄𝒆)      (Eq4) 

   

𝒌𝒘𝟗𝟗 =  𝟎. 𝟎𝟐𝟖 𝑼𝟏𝟎
𝟑  𝑺𝒄ି𝟎.𝟓(𝟏 − 𝒇𝒊𝒄𝒆)      (Eq5) 
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𝒌𝑵𝟎𝟎 = (𝟎. 𝟏𝟎𝟎 𝑼𝟏𝟎 +  𝟎. 𝟐𝟐𝟎 𝑼𝟏𝟎
𝟐  )𝑺𝒄ି𝟎.𝟓(𝟏 − 𝒇𝒊𝒄𝒆)    (Eq6) 

𝒌𝑯𝟎𝟔 =  𝟎. 𝟐𝟓𝟒 𝑼𝟏𝟎
𝟐  𝑺𝒄ି𝟎.𝟓(𝟏 − 𝒇𝒊𝒄𝒆)      (Eq7) 

𝒌𝑺𝟎𝟕 =  𝟎. 𝟐𝟕𝟎 𝑼𝟏𝟎
𝟐  𝑺𝒄ି𝟎.𝟓(𝟏 − 𝒇𝒊𝒄𝒆)      (Eq8) 

𝒌𝒘𝟏𝟒 =  𝟎. 𝟐𝟓𝟏 𝑼𝟏𝟎
𝟐  𝑺𝒄ି𝟎.𝟓(𝟏 − 𝒇𝒊𝒄𝒆)      (Eq9) 

 

where k is gas exchange velocity, U10 is wind at 10 meter above the interface, Sc is the 

Schmidt number, and fice is the ice fraction. These formulations suggest a linear 

relationship between fraction of open water and gas exchange (Butterworth & Miller, 

2016; Evans et al., 2015; Prytherch et al., 2017; Takahashi et al., 2009). It is still an 

open question whether this linear relationship holds (Fanning & Torres, 1991; Loose 

et al., 2017; Rutgers Van Der Loeff et al., 2014), we further elaborate if these wind 

speed formulations explain the observed budgets.    

Sea ice formation/melt can result in brine/freshwater discharge in the water 

column, which in turn would deepen/shoal the mixed layer. Our model captures these 

phenomena. Sea ice cover, on the other hand, acts as a barrier for gas exchange even if 

formed outside of our numerical domain and advected to the station’s location. We 

input satellite data (Comiso, 2000) as a mask for gas exchange, and this mask does not 

affect the heat budget of the water column; hence has no effect on ML depth. 

The sea ice in our numerical model contains a prescribed concentration of 

226Ra equal to 30% of observed 226Ra at the surface, but the 226Ra ‘trapped’ in sea ice 

is only released when the ice melts into the surface ocean. This value of 30% of 

surface 226Ra is based on ice core samples gathered by Loose et al., (2017). The Ra 
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and Rn in our simulation can reach secular equilibrium inside the ice and then during 

the melt/freeze of sea ice, dilution/concentration of Ra and Rn are captured in the 

surface water. 

 

3-Results 

3-1 Optimization 

The term tf is the time in days when mixed layer was sampled for radon and 

radium, and we anticipate that the hydrographic trajectory of a forward 1D model 

integration from t = tf–40 to t = tf would capture the effect of changes in ML depth on 

the gas budget, and thus the history of 222Rn over this period. Continuous changes in 

ML depth have direct impact on the budget of gas available for gas exchange.  Thus an 

accurate representation of the evolution of the ML depth is critical to our ability to 

quantify a gas budget.  In addition to sea ice conditions over the 40 day period, the ML 

depth evolution depends on the initial density profile at t = tf – 40 and the atmospheric 

conditions.  

In the initial forward 1D model integration, we utilized the outputs from our 

regional model (Bigdeli et al., 2017) to establish the initial sea ice cover, as well as 

temperature and salinity in the water column.  However, this produced hydrography at 

t = tf that was inconsistent with observed T-S profiles from shipboard CTD casts. In a 

separate test, we have also initialized sea ice cover and hydrography from satellite ice 

cover and observed hydrography at stations.  However, within the 40-day integration 

period, the evolution of ML depth still diverged from the observed T-S at t = tf. Based 
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on our previous analysis (Bigdeli 2017), we attribute most of this divergence to poor 

short-term accuracy in the reanalysis atmospheric conditions. 

 The observed divergence between 1D model forward runs between t = tf-40 

and t = tf, revealed that more effort was necessary to adequately capture the history of 

222Rn in the ML. Taking advantage of the adjoint capability in the MITgcm and in the 

1-D configuration (Nguyen et al., 2017), we optimized for the initial hydrographic 

conditions using the observed T-S at t = tf and observed satellite ice concentration as 

constraints. 

At each station, for each observed T-S profile at t = tf, we assigned a 

corresponding uncertainty. The uncertainty for T (σt) and S (σs) are vertically constant 

profiles equal to 0.1 and 0.5 respectively.  These uncertainty values are estimated from 

maximum variability observed between three CTD casts on the sampling stations.   

The objective of the optimization is then to estimate an initial T/S profiles (t = tf–40) 

such that hydrographic conditions at t = tf are within the prescribed uncertainty.  In 

other words, the adjoint optimization aims to minimize the misfit function J:  

J = JT + JS = (obs – model)
2
/

2
+(Sobs – Smodel)

2
/S

2
     

 (Eq10) 

In the unconstrained forward runs, the misfit JT and JS as defined above were 

53.80 and 22.84, respectively, when averaged over 53 stations. The optimization 

reduced the average JT and JS to 13.3 and 6.3 through adjustment of uncertain surface 

atmospheric conditions and initial T and S at t = tf–40 (Forget, et al., 2015a; Nguyen et 

al., 2017).  For full convergence, J should be reduced to 1, i.e., T-S misfits fall within 
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the uncertainty of the observed profiles.  However, due to other unknown factors such 

uncertainty in our estimated T, S and in the atmospheric forcings, J does not reach 

full convergence here.  However, the improvement in the model T and S at tf is 

significant (75% and 72% respectively) and demonstrates the effectiveness of the 

optimization procedure (Figure 2).  

Station CB-2a is shown (Figure 2) as an example of this optimization process, 

where the unconstrained run’s misfit JS was significantly higher at 98.  After 50 

iterations the optimized solution’s JS is reduced to 8 (Figure 2-b). The optimization 

process, by varying the near surface heat budget, can indirectly effect the evolution of 

sea ice cover (Figure 2-d). Although there are no direct cost (J) related to ice cover, we 

did not observe more than 30% divergence of ice cover from satellite data. This value 

is close to 20% uncertainty reported for satellite data (Ivanova et al., 2015).  

Again, the only metric in water column available to us is the ML depth of ~6 

meters from CTD at time of sampling t = tf. While the unconstrained model shows 

stratification up to the surface, the optimized ML depth is ~7 meters, which is 

consistent with the observation. This improvement is crucial in studying near surface 

radon budgets. The corresponding optimized ML depth evolution is shown in Figure 

2-c. Utilizing the optimized ML depth evolution, we proceed to estimate the near 

surface radon budgets and investigate the effect of the environmental forcings on these 

budgets. 
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Figure 2 (a) Vetical density profiles from CTD cast, forward simulation and optimized run at station 

CB2-a during JOIS 2013 cruise. (b) Weighted root-mean-square error between final salt, temperature 

and total and CTD data for each iteration of optimization (c) Evolution of mixed layer depth for 40 days 

prior to sampling, blue and red solid line show forward and optimized model outputs and diamond 

marker show the ML depth from sampling at day 0 i.e. sampling day (d) Sea ice cover in (%) for 40 

days prior to sampling, blue and red lines show forward and optimized simulated ice cover, black line 

show sea ice cover from satellite.  

 

3-2 Radon budgets and environmental forcings  

With atmospheric forcing and initial conditions optimized, we can move to 

assessment of environmental forcing effects on radon’s budget. This task is divided 

into two steps. First, we statistically compare the simulated budget with available data; 

next we quantify the contribution of each forcing on the simulated budgets or radon.   

3-2-1 Model results and data: gas exchange parametrization in sea ice zones 
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In this section we compare the modeled radon budgets with the profiles of 

radon deficit from the 53 sampling stations. As an example, we showed the results of a 

40-day forward integration for two stations in Supporting-information-1. Station CB-

27 from the JOIS cruise in 2014 (S-1) and station CB-19 from the JOIS cruise in 2013 

(S-2). These two stations show when the model successfully predicts the profile and 

when it is unsuccessful. The evaluation of each gas exchange formulation, introduced 

in section 2-2, will be based on how close the simulated 222Rn budgets are to the 

observed budgets on the sampling day (tf). For purpose of this comparison, we 

removed stations that could have had more than 10% error from advection. This 

criterion removes 10 stations out of 53 and leaves 43 stations in our statistical analysis.  

We observed a peculiar case regarding surface values of radon on 4 of our 

summer stations. During sea ice melt, fresh water with low concentrations of Ra and 

Rn would be released into the surface water (Loose et al., 2017). Although our model 

captures these phenomena, we had no information of Ra concentration of surface 

water when the ice is formed on the last freezing season, we can only estimate the 

initial Ra values of sea ice based on the observed values of Ra at sampling stations. 

Even considering the range of Ra across all stations (10 to 18) we cannot explain a 

phenomenon that is observed in 4 of our summer stations, in which the surface water 

experiences an increase in concentration of Ra during the melt. One explanation for 

this phenomenon may be the release of shelf sediments that were entrained into sea ice 

during the time of ice formation (Notz and Worster, 2009).Further sampling of ice 

cores may lead to answers regarding why this increase happens instead of the expected 

dilution.  
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Our statistical analysis showed formulations of W92, W99, N00, H06, S07, 

and W14 are bounded by data error bars for ~50% of the stations and we found no 

statistically significant difference between their results. We showed the result from 

W14 in Figure 3. The data consistently show higher observed deficits with +80% ice 

covers, with more than 70% of data landing on positive side of the graph, supporting 

enhancement of gas exchange beyond the linear scaling in this range of ice covers.  

  

 

Figure 3 Ratio of budgets simulated with W14 formulation and radon data vs ice cover, the red line 

show 100% accuracy. 

 

3-2-2 Errors introduced by simplifying assumptions in the geochemical budget 

As we stated in the introduction, the common convention is to neglect effects 

of freeze/melt, mixing and assuming a steady state when interpreting mixed-layer 

budgets of e.g. oxygen and radon. To quantify the error introduced by each 

assumption, we should compare the corresponding terms neglected in main 
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conservation of mass equation (Eq-1). Discretizing Eq-1 in time, we neglect the 

advection term for now and we denote the vertical integral of the activity (A) to some 

depth (D) as the budget (B).  Finally, if D is allowed to vary in time we arrive at 

discrete 1D mass conservation of the budget with no further assumptions: 

∆ೃ

∆௧
=   𝜆 𝐵ோ − 𝜆 𝐵ோ − 𝑘𝐴ோ

௦௨
− 𝐹𝑚𝑀൫𝐴ோ

ிெ −  𝐴ோ
௦௨

൯ +
∆

∆௧
(𝐴ோ

ାఋ −

𝐴ோ
ିఋ)  (Eq11) 

where every term on RHS, except the first term, is a function of time. The budget of 

radium (BRa) can be treated as steady state in the water column, because sedimentary 

sources are not proximal (Kadko and Muench, 2005) and the half-life of 226Ra is 1599 

yrs.  By numerically integrating (Eq-11) forward from secular equilibrium, with a 

constant D below ML depth (D >> H), using surface Rn and FmM values from the 

numerical 1D model, and 1 hour time steps, we reach budgets predicted by the 1D 

numerical model with 10-3 accuracy. 

To investigate the error that is introduced through the simplifying assumptions 

in the conventional upper ocean radon budget (e.g. Loose et al., 2017), we evaluate 

Eq-1 using 1D model output while neglecting the terms correspondent to each 

assumption. Specifically, we investigate the effect of 1) neglecting ice formation and 

melt (hereafter called No Freeze/Melt), 2) ignoring the effects resulted from changes 

in mixed layer depth (Const ML) and 3) using weighted average k (Const k). Finally 

we also investigate 4) Assuming Steady State condition (Steady State), the latter 

condition is the combination of all assumptions leading to Eq.2.   
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The No Freeze/Melt and Const K calculations are straight forward. For No 

Freeze/Melt, we set FmM equal to zero. For Const k, we compute the Rn budget (BRn) 

predicted by weighted average k (Bender et al., 2011; Loose et al., 2017; Reuer et al., 

2007; Rutgers Van Der Loeff et al., 2014) to the exact budgets at the end of 

integration. Const ML depth (H) assumption affects 3 terms in Eq11, first limiting the 

integral depth (D) to H. Second replacing Aୖ୬
ୱ୳୰ୟୡୣ as BRn divided by H for each time 

step, and finally setting the time depend term on RHS (∆H

∆t
) to zero.  There are no 

assumption corresponding to time varying ML. Since by adding a time dependency to 

ML, instead of simplifying the problem, further complications would arise due to lack 

of information regarding Rn activities in vicinity of ML at each time step 

(Aୖ୬
ୌାஔୌ and Aୖ୬

ୌିஔୌ). Finally for steady state condition, we apply all these assumptions 

simultaneously. With these assumption mathematically defined, we move to 

quantifying the effects of advection. 

In some oceanographic circumstances (e.g. in an oligotrophic gyre or far from 

boundary currents), the assumption of horizontal homogeneity may be more 

applicable. However in marginal sea ice zones, the lateral gradient of mixed layer 

depth (Timmermans et al., 2017) and sharp changes in the rate of air-sea flux for 

heat/momentum/gas due to sea ice cover (Fanning & Torres, 1991) produce significant 

lateral variations in the surface ocean. The 1D version of the MITgcm does not permit 

us to capture the effects of advection, but we have developed a simple relationship to 

capture the effects of lateral heterogeneity. To take into account the horizontal 

advection of radon we can follow a water parcel that enters our domain from a 
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hypothetical neighboring cell, effectively adopting a Lagrangian framework for that 

specific parcel. 

Following a hypothetical parcel as it enters the numerical grid cell, we make 

two simplifying assumptions. First, the environmental forcing including wind, k and 

FmM are the same between the numerical cell and the traveling parcel. Second, we 

can estimate A୰୬
ୱ୳୰ୟୡୣ as Brn divided by H, where H is the same for the traveling parcel 

and the numerical cell.  In other words, we assumed all deviations from horizontal 

homogeneity are sea ice related, hence every other forcing can be assumed 

horizontally constant. With this set of assumptions, Eq10 can be used for traveling 

parcel as well, although, the specific solution to this equation will be dependent on 

integration time and initial radon budgets.  

When solving Eq11 for the numerical cell, we integrate 40 days forward from 

secular equilibrium i.e. Bୖ୬
୍େ

 = BRa. In contrast, we have to estimate the initial Rn 

budget (Bୖ୬
୍େ ) and time span of integration for the traveling parcel. The integration time 

can be simply estimated by dividing the length of the numerical cell (4 km) by the 

magnitude of Ekman transport (Cole et al., 2014). Initial budgets (B୰୬
୍େ) were estimated 

to be related to ice cover. Ice covers at neighboring cells are obtained by finding the 

minimum and maximum ice cover from satellite data within a circular region centered 

at observed station location with a radius of 2 km (i.e horizontal spacing of our 

numerical cell).  

This estimation effectively takes into account the balance between the parcels 

with high/low radon content coming from high/low ice cover and the time it takes for 
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these parcels to equilibrate compared with the parcels inside the numerical cell. We 

should note that this method gives an upper limit for effects of advection. By limiting 

the integration time to the length of the numerical cell divided by Ekman transport, we 

effectively assumed a straight path for the trajectory of the traveling parcel. 

We systemically quantified the error introduced by each of the estimations 

mentioned above for 53 sampling stations. The errors from No Freeze/Melt, Const 

ML, Const K, and Steady State are sensitive to ice cover (Figure 4). At the open ocean 

limit, none of the assumptions result in more than 10% error, the assumption of 

constant ML depth results in only 5% error. This value is consistent with the 20% 

error estimated by Bender et al. (2011). These results support the validity of these 

assumptions in the open ocean limit. The most error from these assumptions, except 

error from neglecting advection which is only a function of the distance to the ice 

front, occurs at 10-80% ice cover range.  
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Figure 4  Normlized magnitude of error introduced by neglecting melting/freezing, assuming constant 

ML, constant k and steady state condtion vs ice cover in % for 53 stations. 

We depict the error distribution in the collection of 53 radon deficit stations, 

using histograms. For example, ignoring the processes of sea ice freeze/melt (Figure 

5-b) leads to less than 10% error on 85% of stations and more than 20% accuracy on 

only 5% of stations, making this assumption a safe estimate.  On the other hand, 

neglecting advection (Figure 5-a) has more than 90% accuracy on 80% of stations but 

can also generate up to 90% error. This kind of error distribution, when left 

unresolved, would make interpretation of any budget unreliable. The method offered 

here assists in filtering out the stations that are susceptible to effects of advection.  
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Figure 5  (a-e) fraction of stations binned based on the error of estimation , with dashed line showing 

the average error for (a) neglecting advection (b) neglecting freeze/melt (c) assuming constant ML (d) 

assuming a constant k (e) assuming steady state condition  

Assuming weighted average k (Figure 5-d) and steady state (Figure 5-e) 

accurately predicts (<10% error) less than 60% of stations and may result in more than 

50% error. Although these methods are valid in open ocean, with less than 10% error 

(Figure 4), rapid evolution of environmental forcing in marginal ice zones make these 

assumptions erroneous. 

The error associated with assumption of constant ML (Figure 5-c) is mainly, 

but not entirely, dependent on ML rate of change. This dependency can be less 

pronounced if ML depth varies with high frequency compared to gas residence time 

and gas concentration in water below the ML are close to ones inside the ML. These 

conditions would allow us to estimate surface concentration from combination budget 

and ML, although with possibility of 40% error.   

We have shown the effects the freeze/melt can be neglected with good 

accuracy and offered a method to filter samples that may have been affected by 

advection. Mathematically by vertically integrating to a constant depth bellow the ML, 
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the effects of mixing are also removed from the conservation of mass equation. So if 

the environmental forcing such as sea ice cover and k is known in conservation of 

mass equation, is it still necessary to use the 1D numerical model to accurately predict 

the gas budgets? The answer lies with the estimation of surface concentration of the 

dissolved gas. The one downside of using the discretized vertically integrated 

conservation of mass is that it offers no insight in the vertical distribution of 

concentration. This distribution, hence the surface concentration, is dependent on 

evolution of ML and exact concentrations around the edges of ML at each time step. 

Without the 1D numerical model, there no robust way to estimate the surface value 

from the integrated budget.  

 

Summary and Conclusion 

We utilized an optimized 1D numerical model to explain radon profiles 

observed during three Arctic cruises (n = 53). The optimization based on inversion 

model reduced the uncertainties in initial conditions and supported the 1D model in 

capturing the changes in mixed layer depth. 

After resolving the environmental forcing and removing the stations affected 

by advection, we showed current formulation of gas exchange under predict the radon 

deficit observed in marginal ice zones.  

We offered a simple analytical approach to estimate the errors caused by 

advection and evaluated the accuracy of current assumptions and estimations of near 

surface gas budgets in sea ice zones. We showed that assumption of constant mixed 
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layer depth would introduce up to 40% error in estimating near surface gas budgets 

and importance of resolving this environmental forcing.  
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Abstract 

The gas transfer velocity in marginal sea ice zones exerts a strong control on 

the input of anthropogenic gases into the ocean interior. In this study a sea state 

dependent gas exchange parametric model is developed based on the turbulent kinetic 

energy dissipation rate. The model is tuned to match the conventional gas exchange 

parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is 

introduced in the model and results are compared to fetch limited experiments in 

lakes, showing that the model captures the effects of finite fetch on gas exchange with 

good fidelity. Having validated the results in fetch limited waters such as lakes, the 

model is next applied in sea ice zones using an empirical relation between the sea ice 

cover and the effective fetch, while accounting for turbulence the sea ice motion effect 

that is unique to sea ice zones. The model results compare favorably with the available 

field measurements. Applying this parametric model to a regional Arctic numerical 

model, it is shown that, under the present conditions, gas flux into the Arctic Ocean 

may be overestimated by 10% if a conventional parameterization is used.  

1 Introduction 

Constraining the magnitude of the gas exchange velocity (k) at the air-sea 

interface in the Marginal Ice Zone (MIZ) has implications on estimating the fluxes of 

biogenic and anthropogenic gases such as carbon dioxide (Bates, 2006; Evans et al., 

2015; Liss et al., 2004; Smedsrud et al., 2013; Takahashi et al., 2009) and methane 

(Elliott et al., 2011; Uhlig & Loose, 2017; Wåhlström & Meier, 2014).  Gas exchange 

in the MIZ is complex and the relationship between sea ice concentration and carbon 
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sink is poorly understood (Parmentier et al., 2013). Depending on how one describes 

the sea ice effects on gas exchange, either as natural stirrers acting on Arctic surface 

water or as barriers to wave generation, its role can vary from enhancer to inhibitor of 

carbon sink. With the Arctic MIZ extent (Strong & Rigor, 2013) and ice thickness 

both declining (Lindsay & Schweiger, 2015), understanding the relationship between 

gas exchange and sea ice cover is crucial, because ice cover alters the kinetics of gas 

exchange (McGillis et al., 2001). 

The MIZ is unique compared to the open ocean (Loose et al., 2009; Loose & 

Schlosser, 2011) both with respect to the naturally fetch limited wave field (Smith & 

Thomson, 2016) and existence of environmental forcings such as sea ice induced 

turbulence (Loose et al., 2014; McPhee, 2008). Fetch is the distance in which wind 

acts on the water surface and produces waves. When the energy of the wave is limited 

by this distance, the resulting wave field is commonly known as fetch limited.  

 Previous studies on effects of sea ice concentration on gas exchange reveal a 

field of study that is actively evolving. The first paper to consider the effects of sea ice 

used a linear dampener on the open ocean gas transfer velocity (Takahashi et al., 

2009). Two recent studies support this approximation (Butterworth & Miller, 2016; 

Prytherch et al., 2017). However, there are other observations that show enhancement 

(Else et al., 2011; Fanning & Torres, 1991; Loose et al., 2017) as well as reduction 

(Rutgers Van Der Loeff et al., 2014) of gas exchange beyond the linear relationship 

due to sea ice. One possible sea ice effect on gas exchange is surface wave attenuation 

and reduction of breaking wave induced turbulence in the presence of sea ice. 
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However, none of these studies explicitly considers such wave attenuation effects, 

which are the focus of the present study.   

In the open ocean, results of numerous experiments (Ho et al., 2016; Ho & 

Wanninkhof, 2016; Nightingale et al., 2000; Sweeney et al., 2007; Wanninkhof, 1992, 

2014; Wanninkhof et al., 2004) have shown that wind speed can explain more than 

80% of variability in gas exchange (Wanninkhof et al., 2009). These experiments 

conclude that gas exchange in the open ocean can be explained by quadratic or cubic 

formulation based on wind speed, with each experiment offering slightly different 

constants for their proposed formulation. In the open ocean during a fully developed 

sea state, the wave field is a function of wind. However, if sea state is not dependent 

on just wind speed, such as within the MIZ, these formulations may lose their validity.  

There have been theoretical studies suggesting k is related to wave field 

(Woolf, 2005; Zhao & Toba, 2001; Zhao & Xie, 2010) although such frameworks are 

not readily applicable in open ocean (Shuiqing & Dongliang, 2016). Here, we take 

advantage of the previous studies that suggest turbulence regulates gas exchange in the 

interface (Lamont & Scott, 1970), and specifically the relationship between the 

Turbulence Kinetic Energy (TKE) dissipation rate and gas exchange (Katul & Liu, 

2017; Lorke & Peeters, 2006; Zappa et al., 2007). The TKE dissipation rate has been 

used to study the effects of various environmental forcings of gas exchange in low 

wind conditions, such as by tides (Zappa et al., 2003) and rain (Ho et al., 1997; Tokoro 

et al., 2008; Zappa et al., 2009). It is a challenging task to utilize this method when a 

combination of wind, waves, and other environmental forcings act on the water 

column at the same time. We accomplish this task by fitting a TKE based gas 
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exchange parametric model to conventional quadratic formulations in open ocean 

conditions, and then introducing the effects of fetch limitation and sea ice. The sea ice 

section includes the gas exchange model of Loose et al., 2014 that uses sea ice 

velocity and floe size distribution as diagnostic variables for gas transfer velocity.  

We assess the performance of the parametric model in comparison to 

conventional formulation in the open ocean, fetch limited seas, and marginal sea ice 

zones. Furthermore, for investigating the broader impact of this work in realistic 

settings, the formulation developed in this paper alongside the conventional quadratic 

model is applied to a numerical model of Arctic Ocean to study the spatial and 

temporal changes of the gas exchange velocity, which may have been overlooked by 

the conventional formulas. In section 2, we introduce the formulation and method we 

use to construct the parametric model. In section 3.1 to 3.3; we compare the model 

results to available data in the open ocean, fetch limited seas and marginal ice zones. 

Finally, in section 3.4; we apply the parametric model alongside a conventional gas 

exchange formulation to a regional general circulation model and in section 4 we 

summarize our findings.  

 

2 Methods 

 

The model introduced in this manuscript is based on the relationship between 

the TKE dissipation rate (ε) in water and the gas exchange velocity k (Lamont & Scott, 

1970),  
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                                                                𝒌 = 𝜶(𝝂𝜺)𝟏/𝟒 𝑺𝒄ି𝟎.𝟓,                                            (Eq-

1) 

where α is a constant, ν is the kinematic viscosity, and Sc is the Schmidt number. 

Zappa et al. (2007) suggests that α is equal to 0.419 and we adopt this value in this 

study as well. 

When subjected to wind and waves, ε in the water column can vary vertically. 

Previous studies suggest that the vertical profile of ε can be divided into 3 regimes. 

About 10 times the significant wave height (Hs) below the interface, the law of the 

wall applies, hence proportionality between ε and z-1 is observed, where z is the 

distance to the interface. Closer to the interface, in the region between 10 to 2 times 

Hs, the effects of wave breaking shift the profile to z-2 (Terray et al., 1996). Recently, it 

has been shown that above the z-2 layer, in less than two significant wave heights 

below the interface, another layer of z-1 proportionality exists (Gemmrich, 2010; 

Sutherland & Melville, 2015). The latter study shows the relationship between ε and z 

can be written as, 

                                                          𝜀 = 21 ൫𝑐/𝑈ଵ൯
ଷ.ହ

𝑢∗௪
ଷ /𝜅𝑧 ,                                     

(Eq-2) 

above the depth of about 0.3Hs where cp is the wave phase velocity at the wave 

frequency spectral peak, u*w is the friction velocity in water, U10 is wind speed at 10 

m, and κ is the von Karman constant. The air friction velocity (u*a) is related to U10 

such that (u*a/ U10)
2 is the air sea drag coefficient. The ratio cp/u*a is often called 

“wave age”. 
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The main challenge in utilizing Equation-2 is determining the depth at which ε 

is evaluated, hereafter called z*. We achieve this empirically, by matching the value of 

k determined from a combination of Equation-1 and Equation-2, to the existing 

empirical quadratic formulations of (Wanninkhof, 1992; Nightingale et al., 2000; Ho 

et al., 2006; Sweeney et al., 2007; Ho and Wanninkhof, 2016). Most of these quadratic 

formulations are based on open ocean data, such as GasEx experiment (McGillis et al., 

2001) in North Atlantic, in a fully developed sea with wave ages of 29 to 32 (Shuiqing 

& Dongliang, 2016). We set the value of z*, such that the resulting k from Eq-1 and 

Eq-2 is equal to the quadratic formulation of (Ho et al., 2006) (Southern Ocean 

GasEx) at wave age of 32 which has been observed in same region (Sahlée et al., 

2012). Here, we use the COARE 3.5 drag coefficient (Edson et al., 2013) to relate the 

10 meter wind speed and the wind friction velocity. The drag coefficient is assumed 

independent of wave age, since its dependence on wave age is not well understood or 

constrained (Edson et al., 2013). In Section 3.2 we will show that our main results are 

not affected significantly even if different sea state dependent drag formulations are 

introduced instead. 

This exercise yields z* values that decrease with wind speed, from 3 m at wind speed 2 

m/s to 10-3 m at wind speed 15 m/s. This rapid decrease of z* is expected because Eq-1 

suggests that 𝜀 should be proportional to (𝑈ଵ)଼ to be consistent with the quadratic 

formulations of 𝑘, but Eq-2 suggests 𝜀 is proportional to only 𝑢∗௪
ଷ  if z* is independent 

of wind speed and the wave age is fixed. This suggests that z* is not related to the 

actual depth where the gas exchange process is controlled, as long as we assume that k 

and epsilon are averaged over some long period of time. This is not surprising 
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considering the fact that near surface turbulence is often dominated by intense but 

infrequent wave breaking events, and that time averaged 𝜀 and time averaged 𝑘 are 

affected by such events in very different ways. We should therefore interpret z* as a 

tuning parameter to relate the two well established relationships Eq-1 and Eq-2 and the 

observed quadratic formulation of 𝑘.  

  In order to estimate the k using Equations 1 and 2 in fetch limited 

conditions, such as in the MIZ, we need to estimate the wave age cp/u*a. The relation 

between the wave age and the fetch is estimated based on the empirical formulation 

offered in Coastal Engineering Manual (Resio et al., 2002): 

𝑇 = 2.398
௨∗ೌ


 10ଶ          

           (Eq-

3) 

𝑇 =  0.751(
௨∗ೌ


) ቀ

௫

௨∗ೌ
మ ቁ

ି.ଷଷ
   𝑓𝑜𝑟 𝑇 < 𝑇       

        (Eq-4) 

𝑇 = 𝑇                                      𝑓𝑜𝑟 𝑇 ≥  𝑇         

        (Eq-5) 

 

where g is gravitational acceleration, x is the fetch.  This empirical formula outputs the 

wave period (T) at the spectral peak. The phase speed cp at the spectral peak is then 

determined using the deep water dispersion relation. This formulation produces wave 
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ages up to 38 for the open ocean and does not produce older seas (wave age > 40). The 

relation between fetch, wind speed and wave age is depicted in Figure -a. 

We assume that fetch in sea ice zones is related to fraction of sea ice cover by 

the formulation offered by Smith and Thomson (2016)  

                                                               𝑥 = 162 𝑓
ି.ସଽ𝑈ଵ

ଶ /𝑔     

     (Eq-6) 

where fice is fraction of ice cover between 0 and 1 and x is effective fetch. No upper 

limit for this formulation is required, because as f goes to 0, x goes to infinity and the 

wave period goes to Tc.  

In addition to the turbulence generated by wind and waves, the near surface 

turbulence in the MIZ can be further enhanced (diminished) by convection 

(stratification) and friction around ice floes. These effects are parameterized in the 

same manner as in Loose et al., (2014). This method contains the effect of buoyant 

convection/stratification by sea ice freeze/melt (Killawee et al., 1998; Loose et al., 

2009) and shear induced by the ice movement (McPhee, 2008).   

 To assess the spatial and temporal distribution of gas exchange velocity k in 

realistic settings, the parametric model introduced in this paper, alongside the 

quadratic formulation offered by Wanninkhof (2014), is applied to a regional Arctic 

model. The Arctic configuration used in this study, which is based on the MITgcm, is 

described in (Nguyen et al., 2011). Bigdeli et al. (2017) have shown that the model’s 

sea ice velocity, sea ice cover and sea surface temperature are reasonably consistent 
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with available observations in Arctic. Further details about the numerical model can be 

found in Supporting Material (S1).   

 

3 Results and discussion 

The assessment of wave age gas transfer (hereafter called WAGT) parametric 

model performance is divided into three steps. First the WAGT model results are 

compared with open ocean data. Second, the fetch limited formulation of WAGT is 

assessed using lake data. Third, the data in the MIZ are used to evaluate the WAGT 

output in ice covered conditions. 

 

3.1 Open ocean  

We compare the WAGT output with conventional quadratic parametrizations 

(Figure -b). The model is tuned to match the parametrization of (Ho et al., 2006) 

(H06) at the wave age of 32 and it indeed follows that parametrization consistently 

through all wind regimes. The parametrization of (Wanninkhof, 2014) (W14) is also 

close to WAGT model at the wave age of 32.  The parametrization offered by 

(Sweeney et al., 2007) (S07) closely follows the WAGT model at the wave age of 34 

and (Nightingale et al., 2000) is close to the model at the wave age of 29. All of these 

wave ages are in the range of fully developed seas. 

Typically, wave field information, such as the wave age, is either not recorded 

or poorly constrained during gas exchange experiments. An exception is the study of 

Zappa et al. (2007), in which the lower and upper bounds of wave age are reported as 
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12 and 75, respectively. This wide range of wave ages can be attributed to the passing 

of a storm that has been reported during their sampling. Unfortunately, the wave age at 

each sampling location was not reported, and was not made available at the time this 

manuscript was prepared. We therefore compare all the data gathered during that 

experiment (Figure -c), and note that the observational data are reasonably bounded by 

the WAGT model results of wave ages 12 and 40. Although the parametric model can 

be used to estimate k for wave ages higher than 40 if Equation-2 is simply applied, we 

note that these wave ages are not common in the ocean, only observed during short 

transient periods, and are beyond the applicability of Equation-2 and the model 

introduced here.   

 

 

Figure 1 (a) Color map of wave age vs wind speed ms-1 vs fetch km.  (b) Parameter (WAGT) 

model gas exchange velocity md-1 vs wind ms-1 at wave age of 20, 28, 32 and 34, formulation of 

Liss and Merlivat (LM), Nighttingale (N00), Ho (H06), Sweeney (S07) and Wanninkhof (W14). (c) 
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Parameter (WAGT) model gas exchange velocity md-1 vs wind ms-1 at wave ages of 12, 40, and 75 

and the data gathered by Zappa in wave ages of 12 to 75. 

3.2 Fetch limited experiments in lakes 

 

We next evaluate our model in fetch limited condition with data gathered in 

Siblyback Lake, Dozmary pool (Kwan & Taylor, 1993; Upstill-Goddard et al., 1991), 

Rockland Lake, Mono Lake, Crowley Lake (Wanninkhof et al., 1987), and Pyramid 

Lake (Wanninkhof, 1992). Dozmary Pool, Rockland Lake, and Siblyback Lake have 

less than 2 km maximum length (from shore to shore). Mono Lake and Crowley Lake 

have average length of 20 km and Pyramid Lake has maximum length of 

approximately 50 km.  

Due to variant mixing and resident time of tracers employed at each 

experiment, these datasets have been reported with inconsistent wind speed time 

averaging blocks. Intercomparison of data necessitate us to compensate the over 

smoothing of reported wind values. We utilize the empirical formulation offered in 

Coastal Engineering Manual (Resio et al., 2002): 

𝑈௧
𝑈ଷ

ൗ = 1.5334 − 0.15  𝑙𝑜𝑔ଵ 𝑡        

   (Eq-7) 

 

where t is length of averaging block in seconds. Ut and U3600 are wind speed averaged 

at t seconds and 3600 seconds. With all the wind data transformed into 1 hour 

averaged blocks, we compare the observational results with our model outputs. 
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Figure 2 (a) Parameter model gas exchange velocity md-1 at fetch limit of 1000 m with (dashed) or 

without (solid) setting the lower wave age (WA) limit of 9, formulation of Wanninkhof (W14) and 

data by Upstill-Goddard in Siblyback Lake. (b)  Parameter model gas exchange velocity md-1 at 

fetch limit of 500 m with (dashed) or without (solid) setting the lower wave age (WA) limit of 9, 

formulation of Wanninkhof (W14) and data in Dozmary Pool and Rockland Lake.  

With different fetch limits (lake sizes), the modeled gas exchange velocity 

starts as a single quadratic shape at lower wind speeds (because the wave field is fully 

developed and is independent of fetch), and then switches to a nearly linear form when 

the wave field becomes fetch limited at higher wind speeds. The wind speed where 

this transition takes place increases as the fetch increases. As the wind speed increases 

further, there is a second transition point where the wave age becomes 9. At wave age 

9, the turbulence enhancement coefficient, that is, 21(cp/U10)
3.5 in Equation-2, reaches 

unity. It is unlikely that the (averaged) dissipation rate becomes less than the wall 

layer turbulence value below wave age 9. However, it is unclear whether the gas 
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transfer velocity becomes also independent of sea states below wave age 9. We 

therefore consider two scenarios; letting the enhancement coefficient fall below one or 

introducing the lower bound of 1 for enhancement coefficient (that is, setting the wave 

age minimum of 9 as lower limit). In the second scenario, below wave age 9, ε and 

consequently k are no longer sensitive to fetch. 

The results of the smaller lakes are compared with WAGT model estimates at 

fetch 1000 m  for Siblyback Lake (Figure 2-a) and 500 m for Dozmary Pool and 

Rockland Lake (Figure 2-b). The gas exchange velocities are significantly lower than 

the open ocean parameterization (W14) and are quite consistent with our model 

estimates. The second scenario (with wave age minimum 9) appears to be more 

consistent with the data.  

Crowley Lake, Mono Lake (Figure 3-a), and Pyramid Lake (Figure 3-b) have 

more than enough size to demonstrate the effect of fetch without the uncertainty of 

wave age below 9. Again, the reduction of the gas exchange velocity relative to W14 

is consistent with the modeled fetch effect. 
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Figure 3 (a) Parameter (WAGT) model gas exchange velocity md-1 at fetch limit of 500 m, 5 and 

20 km with (dashed or dotted) or without (solid) setting the lower wave age (WA)limit of 9, 

formulation of Wanninkhof (W14) and data by in Mono Lake and Crowley Lake. (b)  Parameter 

(WAGT) model gas exchange velocity md-1 at fetch limit of 20 and 50 km, formulation of 

Wanninkhof (W14) and data in Pyramid Lake.  

There are other fetch limited experiments e.g. in estuaries and laboratories. 

Wave age estimated in laboratory experiments are less than the threshold of 9 (Bock et 

al., 1999; P. S. Liss & Merlivat, 1986) and they show a significant sensitivity to drag 

coefficient (Figure not shown here). Estuaries have enough fetch but are subject to 

tidal forcing (Borges et al., 2004; Ho et al., 2016). Unresolved sources of turbulence 

and enhancement of k rule out the possibility of comparison with estuary data. As for 

the lake results shown here the lines of minimum and maximum modeled gas 

exchange contain most of the data points, while W14 over-estimates the gas transfer 

velocity reduction that is caused by fetch limitation. 
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So far, we have assumed that the drag coefficient is simply a function of wind 

speed and is independent of sea state. Nevertheless, it is important to consider to what 

extent our results could be modified if the drag coefficient is dependent on wave age. 

Previous observations suggest varying degrees of sea state dependence of the drag 

coefficient (e.g., Edson et al., 2013; Johnson & Vested, 1992; Oost et al., 2002; S. D. 

Smith et al., 1992) without a clear consensus. For example, Edson et al. (2013) (E13) 

show very weak sea state dependence, with the normalized roughness length 

(Charnock coefficient) increasing slightly from 0.013 to 0.031 as wave age decreases 

from 32 to 8. However, observations by Oost et al. (2002) (O02) indicate much 

stronger sea state dependence with Charnock coefficient increasing from 0.0066 at 

wave age 32 to almost 0.1 for wave age below 13. We introduce these two very 

different sea state dependent drag coefficient formulations, E13 and O02, in our model 

of the gas transfer velocity, allowing wave age to vary from 32 to 8 (lowest data point 

available in empirical Eq. 2).  

Figure 4-a shows that the drag coefficient can be increased by almost twofold 

at wave age 8 if O02 is used. However, Figure 4-b shows that the effect of sea state 

dependent drag coefficient on the transfer velocity is quite weak (compare red dashed 

line and black dashed line); the transfer velocity at wave age 8 is significantly reduced 

compared to the fully grown sea (wave age 32) case (black solid line) regardless of the 

drag coefficient formulations. This is because the transfer velocity is proportional to 

only 3/8-th power of the drag coefficient (3/4-th power of the friction velocity). These 

results clearly suggest that the effect of the sea state dependent dissipation rate on gas 

exchange is much stronger than the possible effect of the sea state dependent drag 
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coefficient on gas exchange, and that the results of this study are not significantly 

changed even if different sea state dependent drag coefficient formulations are 

introduced. 

   

 

Figure 4 (a) Drag coefficient and (b) gas transfer velocity vs wind speed based on COARE 3.5, 

Edson et .al (2013 (E13) ), and Oost et .al (2002) (O02) drag coefficient formulations at wave age 

of 8 and 32.  

 

3.3 Sea Ice zones 

The equation connecting effective fetch and sea ice is offered by Smith and 

Thomson (2016) during a study on Arctic wave field. This relationship (Eq-6) relates 

effective fetch with fraction of sea ice to power of -0.49. The wave age goes to 32.2 

(Figure 5-a) as the sea ice fraction goes to zero, but it quickly drops to values below 

20 with medium sea ice cover and wind speeds.   
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Figure 5 (a) Color map of wave age vs wind speed ms-1 vs ice fraction %. (b) Ratio of effective gas 

exchange over gas exchange in open water vs ice fraction % at U10
 = 5 ms-1. Solid lines show 

WAGT model prediction for sea ice speed at 10, 5 ,and 0 cms-1. Eddy covariance data from 

Butterworth & Miller, (2016) and Prytherch et al., (2017) squares and circles mark the median 

and error bars show the standard error. (c) Ratio of effective gas exchange over gas exchange in 

open water vs ice fraction for WAGT model, compared with radon data from Loose et al., (2017) 

and Rutgers Van Der Loeff et al., (2014). Data are marked with circles, triangles, and starts and 

are binned based on SI concentration and grouped and colored based on ratio of sea ice to wind 

speed.  

  

The conventional method regarding the relationship between effective gas 

exchange (keff) in ice covered seas and gas exchange in open waters (kopen) is to 

assume a linear relationship between effective gas exchange and fraction of open 

water in sea ice zones. The linear relationship assumes sea ice as a barrier or lid for 

gas exchange, forgoing any effect of sea ice dynamics on either wave field or near 
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surface turbulence. Therefore, this method neglects any wave attenuation or 

turbulence enhancement by sea ice.  

We investigate the effects of fetch dependent wave fields and sea ice motion 

on keff in sea ice zones, by normalizing keff by kopen. The effects of sea ice induced 

turbulence (McPhee, 2008) depend on sea ice velocity (Uice). Without any turbulence 

generation from sea ice (Uice = 0), the WAGT model predicts much lower values for 

effective gas exchange in medium sea ice cover due to wave attenuation (dark blue 

line in Figure 5-b).   

As Uice increases, the sea ice forcing starts to enhance the keff. Even with this 

enhancement the keff from WAGT model remains less than conventional methods until 

the sea ice velocity gets close to the free drift velocity (Uice = 0.02 U10). With free 

drifting ice and sea ice covers below 60%, the WAGT model predicts an enhancement 

of gas exchange beyond the linear relation. 

We first compare our model predictions and the eddy covariance data available 

from (Butterworth & Miller, 2016) and (Prytherch et al., 2017). We compare the keff to 

kopen ratio for the EC data and WAGT parametric model output (Figure 5-b). The EC 

data consists of 482 and 612 samples in MIZ for Butterworth and Miller (2016) 

(BM16) and Prytherch et al. (2017) (P17), respectively. There is a great variability in 

these two data sets and the error bars cover both the linear relationship and the WAGT 

model with free drifting ice.  Some of this scatter in the EC data may reflect the 

influence of processes that we attempt to capture with the WAGT model.  The WAGT 

results with 0.01 U10 < Uice <0.02 U10 mostly bounds the EC data, suggesting that sea 
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ice drift might account for much of the scattering, however we would require more 

detail into the ice and water column properties in order to further test the ability of the 

WAGT model or the linear relationship to reproduce the EC data. In summary, with 

these data sets both the WAGT and linear model can reproduce the spatially averaged 

EC data. 

We next compare our model with estimates of k by the radon deficit method. 

Interpreting the radon data in MIZ is rather a complex task. This complexity is due to 

variability in mixed layer depth and sea ice forcings that are acting on radon budget 

prior to sampling. Here we simply employ the weighted time average (Bender et al., 

2011; Loose et al., 2017) of k as kopen for each of n=53 samples (Loose et al., 2017; 

Rutgers Van Der Loeff et al., 2014) and normalized the k from radon deficit by this 

weighted k. The details of this procedure can be found in Supporting Material (S2). 

The results have been binned by sea ice concentration and grouped based on ratio of 

time averaged ice speed to wind speed (Figure 5-c). The most interesting feature in 

this comparison is the maximum enhancement observed at ~5% ice cover where both 

the data and model show enhancement beyond the linear relationship. It is also 

encouraging that WAGT model predicts very low k values compared to the linear 

model when sea ice motion is weak (Uice = 0), being consistent with the observations. 

In summary, the radon method results show somewhat better agreement with the 

WAGT model than with the linear relationship, since the former may explain the 

observed large variability of k and its dependence on sea ice drift velocity. 

 

3.4 Arctic Ocean 
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We apply the WAGT model alongside the formulation from (Wanninkhof, 

2014) (Kw14) to Arctic regional domain of MIT general circulation model (MITgcm). 

The outputs of numerical model, including sea ice cover, sea ice velocity, sea surface 

temperature and salinity, are daily averaged from 2006 to 2012 and then used as an 

input to the WAGT model. The quantity of interest is the ratio of effective Kw14 to the 

effective gas exchange velocity from the WAGT model.  

 

Figure 6 (a) Spatial distribution of the ratio between daily gas exchange velocities based on W14 

and WAGT parameter model averaged from 2006 to 2012, dashed lines show averaged ice cover 

at 10% and 90%. (b) The blue line and left axis depict the ratio of flux over entire Arctic ocean 

based on W14 and WAGT model, the dashed black line and right axis show the spatially averaged 

sea ice cover in % , each month is averaged between year 2006 to 2012 . (c) The blue line and left 

axis are the same as (b) but yearly averaged, the dashed line and left axis demonstrate the sum of 

areas that have 1 to 99% cover. 

First, we investigate the time averaged spatial distribution of the ratio (Figure 

6-a). The most pronounced features include overestimation by 20% north of 

Greenland. With immobile ice cover, such as fast ice or packed ice, the distribution 
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shows a ratio higher than one such is the case in central Arctic. But when the ice is 

sparse enough to free drift, the ratio is near one as is the east of Greenland and Arctic 

peripheries. The distribution shows the ratio of one in ice free regions such as 

Norwegian Seas.  

In order to elucidate the temporal variation of the ratio, the daily flux ratio over 

entire region north of 70° has been calculated and averaged over 5 years for each 

month (Figure 6-b), this ratio is independent of partial pressure due to common terms 

in nominator and denominator. There is an obvious correlation between sea ice cover 

and the ratio, as the cover increases, the ratio also increases and vice versa, albeit with 

a lag. This behavior should be viewed from packed ice perspective since areas covered 

by this type of ice are dominant. As the packed floes start to melt, they start to be more 

susceptible to wind forcing and gaining higher ice velocity, increasing the 

denominator of the ratio, hence the ratio minimum in July.        

Another aspect of temporal variability is how the ratio would change in 

response to the area of marginal sea ice zones (MIZ) i.e. areas with more than 1% and 

less than 99% ice cover from 2006 to 2012 (Figure 6-c). A positive correlation can be 

found between the ratio and MIZ area. As we move toward the ice free zones and a 

decrease in sea ice extent, the ratio will get closer to one. Based on the results of the 

parametric model introduced in this paper, the conventional models may be 

overestimating the flux into Arctic by 10% in the present climate.  
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4 Summary and conclusion 

We have developed a parametric Wave Age and Gas Transfer (WAGT) model 

based on the earlier studies relating the turbulence dissipation rate to gas exchange. 

First, the WAGT model is tuned to match the quadratic formulation in open ocean, 

when the wave field is fully developed. Next, the fetch (or wave age) effect is 

incorporated into the WAGT model, and the model is successfully tested against 

observational data in lakes. Sea ice cover is then introduced in the WAGT model both 

as a source for turbulence and as an effective fetch limiter. The effect of the sea ice 

velocity has been investigated and it is shown that, on free drift speed, sea ice 

generates enough turbulence to overcome the effects of wave attenuation. 

Finally, the WAGT model is applied to a regional Arctic ocean-sea ice model. 

Comparison with the conventional quadratic formulation, with linear relationship with 

ice cover, shows that the enhancement by sea ice motion is dwarfed by the suppression 

of wave driven turbulence and consequently, when averaged over 70 degree north, the 

flux of gases into the Arctic Ocean is overestimated by 10% by conventional 

formulations in the present climate.  

Although our WAGT model is constructed by adding many components, we 

have so far been able to compare only the combined end result of the gas transfer 

velocity with existing observations.  In the future, it will be desirable to test each 

model component separately with field and lab data that capture both gas exchange 

and the forcing, to clarify how different ice related physical processes affect gas 

exchange. 
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