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ABSTRACT

Efficient and accurate mathematical codes for the prediction of underwater

sound propagation are a critical component of SONAR system development and

operation. Shallow water provides a unique set of complications to the problem

of acoustic propagation prediction due to range dependence of acoustic properties

resulting from a high number of wave interactions with the surface and seafloor

and bathymetric variation. In this situation, the modes of vibration of the acoustic

wave equation become coupled, with a transfer of energy between adjacent modes

occurring upon traversing a horizontal change of environment. While mode meth-

ods have been developed for solving this range-dependent problem with varying

accuracy, the computational intensity of these solutions makes them unsuitable

for use in applications where real-time or near real-time performance is desired.

The goal of the research presented herein was to develop, implement, and verify

an efficient and rigorous coupled-mode solution for acoustic wave propagation in

shallow water range-dependent environments. Particular interest was given to de-

veloping a solution that maintains analytical integrity while executing in a time

window that is useful for tactical applications. A theoretical framework involv-

ing a range-expanded inner product for capturing the coupling between modes as

they propagate through a horizontally-variable medium is presented. This frame-

work includes a novel discretization of the range-dependent acoustic medium. A

difference equations approach, which implements the inner product to account

for non-adiabatic energy transfer between modes, is used to recursively compute

reflection and transmission coefficients throughout the discretized environment.

Increased efficiency is gained in the method due to the ability to compute coupling

via closed-form algebraic expressions and in the application of asymptotic analysis

to simplify the transmission and reflection coefficient solutions.
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CHAPTER 1

Introduction

1.1 Background

Numerical models have been used as standard research tools in the field of

ocean acoustics since the mid-1970s. Technological leaps in the fields of com-

puter science and computer engineering have made it possible for these models to

handle complex nonlinear and inter-coupled phenomena. These models have be-

come particularly useful in the discipline of acoustic propagation prediction, where

spatially and temporally dynamic acoustic terrain necessitate the simulation of

multiple simultaneous physical phenomena to determine how acoustic energy will

propagate in the underwater environment. Despite advances in computer micro-

processor technology, the use of multiphysics models (such as those used in acoustic

propagation prediction) in real-time or near real-time applications still presents a

significant challenge due to the computational complexity of these models.

Since the early days of World War II anti-submarine SONAR systems have

played a key part in naval operations. Efficient and accurate mathematical codes

for the prediction of underwater sound propagation are a critical component of

these systems. In deep water regimes, where the acoustic properties of the ocean

are slowly varying with horizontal range, the pressure field associated with acous-

tic phenomena can be approximated by a sum of linearly independent normal

modes. A number of efficient and accurate models have been developed around

this range-independent solution to acoustic propagation. In shallow water regimes

the assumption of range independence fails in environments with rapidly-varying

bathymetry and/or sound speed. In this situation, the modes of vibration of the

acoustic wave equation become coupled, with a transfer of energy between adja-

cent modes occurring upon traversing a horizontal change of environment. While
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mode methods have been developed for solving this range-dependent problem with

varying accuracy, the computational intensity of these solutions often makes them

unsuitable for use in the warfare environment, where tactical constraints dictate

the need for more efficient codes.

The goal of the research presented herein was to develop, implement, and ver-

ify an efficient and rigorous coupled-mode solution for acoustic wave propagation

in range-dependent environments. Particular interest was given to developing a

solution that maintains analytical integrity while executing in a time window that

is tactically useful for warfare applications. In this dissertation a theoretical frame-

work involving an inner product for capturing the coupling between modes as they

propagate through a horizontally-variable medium is presented. A difference equa-

tions approach, which implements the inner product to account for non-adiabatic

energy transfer between modes, is used to recursively compute reflection and trans-

mission coefficients at discrete interfaces separating stepwise regions throughout

the medium.

Increased efficiency is obtained in the presented method by writing the range-

dependent eigenfunctions and eigenvalues associated with the acoustic modes of

propagation as an expansion in range. This leads to the ability to estimate the inner

product via a truncated Taylor series. Asymptotic analysis is then applied to de-

velop a set of asymptotic identities involving the eigenfunctions and eigenvalues in

adjacent regions, ultimately leading to simplified expressions for the reflection and

transmission coefficients. A novel discretization approach, involving the estimation

of the general range-dependent environment via a series of simpler range-dependent

subenvironments, results in closed-form expressions for computing non-adiabatic

mode coupling. The ultimate payoff of this discretization method is the elimina-

tion of the need to numerically compute inner product integrals at each interface
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throughout the discretized environment. Elimination of the need to numerically

solve the eigenvalue search problem is an additional computational benefit of this

approach.

1.2 Asymptotic Analysis

Asymptotic analysis is a method of describing limiting behavior. This form

of analysis has applications across many areas of science. In computer science,

for example, asymptotic analysis is used to analyze the computational efficiency

of specific computing algorithms. In applied mathematics asymptotic analysis is

used to derive numerical methods for approximating mathematical functions and

equations. Regarding this latter case, the following equivalence relation forms the

basis of many such analyses:

f ∼ g

if and only if

lim
n→∞

f(n)

g(n)
= 1.

(1.1)

This is an equivalence relation on the set of functions of the variable n defined on

some domain. The equivalence class of f then consists of all functions g which

approximate f in the stated limit.

In addition to the typical mathematical notation from real and complex anal-

ysis and calculus, asymptotic analysis has its own family of notation collectively

known as Bachmann-Landau notation. Of particular interest is big-O and little-o

notation. In regards to the former, let f and g be two functions defined on some

subset of the real numbers. We write:

f(x) = O [g(x)] as x→∞, (1.2)

if and only if there is a positive constant M such that for all sufficiently large

values of x, the absolute value of f(x) is at most M multiplied by the absolute
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value of g(x) [1]. Mathematically that is:

|f(x)| ≤M |g(x)| for all x ≥ x0, (1.3)

where x0 is some large value that exists in the domain of f and g. This can be

extended to describe the behavior of f near some real number a:

f(x) = O [g(x)] as x→ a, (1.4)

if and only if there exist positive numbers δ and M such that

|f(x)| ≤M |g(x)| for all |x− a| ≤ δ. (1.5)

Little-o notation, while similar to big-O, makes a stronger statement re-

garding the relationship between two functions f and g. Informally, if we write

f(x) = o [g(x)] we are asserting that g(x) grows much faster than f(x) [1]. Math-

ematically we define little-o as:

f(x) = o [g(x)] as x→∞, (1.6)

if for every positive constant ε there exists a constant N such that

|f(x)| ≤ ε|g(x)| for all x ≥ N. (1.7)

Comparing Equations (1.2) and (1.3) to Equations (1.6) and (1.7) we see that

big-O notation only requires that the condition in Equation (1.3) be met for at

least one constant M . Conversely, little-o notation requires that the inequality in

Equation (1.7) hold for every positive constant ε, however small.

An example of an asymptotic approximation that arises in acoustics is the

asymptotic form of the Hankel function. Hankel functions of the first and second

kind arise as two linearly independent solutions to Bessel’s equation, which specifies
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the behavior of the range solutions to the separated Helmholtz equation. In their

closed form these functions are written:

H
(1)
0 (kr) = J0(kr) + iY0(kr) (1.8)

and

H
(2)
0 (kr) = J0(kr)− iY0(kr), (1.9)

where J0(kr) and Y0(kr) are Bessel functions of the first and second kind, re-

spectively, corresponding to Bessel’s equation of order 0. The Hankel functions

in Equations (1.8) and (1.9) express outward- and inward-propagating cylindrical

wave solutions to the cylindrical wave equation (or vice versa depending on the

sign convention chosen for the time dependence of the acoustic source).

Hankel functions of the first and second kind each admit a contour integral

representation. Namely:

H(1)
ν (z) =

1

π

∫
C1

e−iz sin ζ+iνζdζ (1.10)

and

H(2)
ν (z) =

1

π

∫
C2

e−iz sin ζ+iνζdζ, (1.11)

where the contours C1 and C2 exist in the complex ζ-plane. The contour C1 traces

a path from A = −π + i∞ to B = −i∞ while C2 traces a path from A = −i∞ to

B = π + i∞. Following reference [2], if we consider Re(z) > 0 one can apply the

method of steepest descent to express the integrals in Equations (1.10) and (1.11)

in the form of a series of inverse powers of z, where z is taken to be large. This

leads to asymptotic forms of the Hankel functions of the first and second kind. In

the case of H
(1)
ν (z) we have

H(1)
ν (z) = O

[√
2

πz
ei(z−νπ/2−(π/4))

]
for |z| → ∞. (1.12)
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If we now replace z in Equation (1.12) with kr and let kr → ∞ and ν = 0

(corresponding to the zeroth order Bessel’s equation) we arrive at an asymptotic

form of the Hankel function in Equation (1.8) that is used frequently in acoustic

propagation problems:

H
(1)
0 (kr) ∼

√
2

πkr
ei(kr−(π/4)). (1.13)

Similarly, for Equation (1.9) we obtain

H
(2)
0 (kr) ∼

√
2

πkr
e−i(kr−(π/4)). (1.14)

Here k = ω/c is the acoustic wavenumber, ω is the angular frequency of an acoustic

source, c is the sound speed of the acoustic medium, and r is range from the source.

The asymptotic expressions in Equations (1.13) and (1.14) are often used to model

the radiation of outgoing and incoming energy, respectively, in the normal modes

solution to the acoustic wave equation to be discussed in detail in later sections.

1.3 The Acoustic Wave Equation

In mathematical physics, the acoustic wave equation is a second order par-

tial differential equation (PDE) that governs the propagation of acoustic energy

through a material medium. This equation describes the spatial and temporal

evolution of acoustic pressure or particle velocity as a set of acoustic waves radi-

ates through a particular environment. In underwater acoustics, the environment

is specified through acoustic variables such as sound speed and density in water,

as well as through boundary conditions at the surface and seafloor. Except for

the case of very large wave amplitudes, a linear wave equation is used to describe

acoustic processes underwater, which is a sufficient approximation for the problems

of interest here. As such, the derivation of the linear acoustic wave equation will

now be treated.
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Derivation of the linear acoustic wave equation involves manipulation of three

basic hydrodynamic equations: conservation of mass, conservation of linear mo-

mentum, and the thermodynamic equation of state for a fluid. The first two of

these three equations are derived by applying Reynold’s Transport Theorem to

mass and linear momentum, respectively, for an infinitesimally small control vol-

ume. Reynold’s Transport Theorem for a control volume states that the time

derivative of a particular fluid system property, B, equals the change of B within

the control volume plus the flux of B out of the control surface, minus the flux of

B into the control surface [3]. Mathematically, we write:

d

dt
(Bsyst) =

d

dt

(∫
CV

βρ dV

)
+

∫
CS

βρ(v • n) dA, (1.15)

where β = dB/dm is the intensive value, or the amount of B per unit mass in the

fluid element, ρ is density, typically measured in kilograms per cubic meters and v

is the fluid particle velocity, a vector quantity measured in meters per second. CV

represents the control volume, while CS represents the control surface enclosing

the control volume, and n is the outward unit normal vector to the control surface.

In the case of conservation of mass, the fluid property of interest is the system

mass, m. That is, B = m and β = dm/dm = 1 in Equation (1.15). Applying

Reynold’s Transport Theorem to this property for an infinitesimally small control

volume and recognizing that the time derivative of the system mass is equal to zero

(i.e. mass conservation) leads to the following hydrodynamic equation for mass,

also known as the continuity equation:

∂ρ

∂t
+ ∇ • (ρv) = 0, (1.16)

where ∇ is understood to be the gradient vector defined by

∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
. (1.17)
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This equation requires no assumptions except that the density and velocity are

continuum functions. That is, the flow may be steady or unsteady, viscous or

inviscid, compressible or incompressible. However, the equation does not allow for

any source or sink singularities within the fluid element [3].

For conservation of linear momentum, the fluid property of interest becomes

the product of the system mass times its velocity. That is, B = mv and

β = dB/dm = v in Equation (1.15). Recognizing again that the system mass

is constant, the left side of Equation (1.15) becomes the product of mass and ac-

celeration. From Newton’s second law we recognize that this product is equal to

the sum of all forces acting on the system; that is, the sum of all surface and body

forces acting on the control volume at rest.

In the case of body forces, we include the gravitational force on the fluid ele-

ment. The surface forces are more complicated and include the sum of hydrostatic

pressure plus viscous stresses acting on the six fluid element faces. Unlike velocity,

which is a three-component vector, the stresses and strain rates corresponding to

the surface forces on the fluid element are nine-component tensors. Careful anal-

ysis shows that it is not the stresses themselves, but their gradients, that cause a

net force on the differential control volume.

Substituting the sum of the body and surface forces into the left side of

Reynold’s Transport Theorem for linear momentum leads to the following gen-

eral expression for the conservation of linear momentum in a differential control

volume:

ρg −∇p+ ∇ • τij = ρ
Dv

Dt
, (1.18)

where

D

Dt
{·} =

∂

∂t
{·}+ v •∇{·} (1.19)

is known as the material or total derivative, g is the gravity force vector, and τij is
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the viscous stress tensor acting on the fluid element. This expression holds for ar-

bitrary body and surface forces and it states that: gravity force per unit volume+

pressure force per unit volume + viscous force per unit volume = density ×

acceleration. If we assume frictionless flow and negligible gravitational force the

conservation of linear momentum equation is given by:

−∇p = ρ

[
∂v

∂t
+ v •∇v

]
, (1.20)

where p is pressure measured in Newtons per square meter, also referred to as

pascals. This equation is known as Euler’s equation and it is the typical form of

the conservation of linear momentum that is used in the derivation of the acoustic

wave equation.

Next we consider the state equation for a fluid. In physics and thermody-

namics, an equation of state is a relation between state variables of a thermal

system. These variables include but are not limited to pressure, density, temper-

ature, entropy, and enthalpy. Typically, knowing the values of two of these state

variables allows us to fix a third. That is, state relations typically express one

thermodynamic variable as a function of two other thermodynamic variables.

In the case of an ideal gas, we have an explicit formula for the equation of

state known as the ideal gas law. In the case of fluids, there is no comparable “ideal

liquid law.” Instead, the state equation for liquids typically involves an empirical

relationship between pressure, density and a third thermodynamic variable. In

underwater acoustic applications, this third variable is taken to be entropy, S, and

the general equation of state for our fluid of interest is written as:

p = p(ρ, S). (1.21)

Armed with Equations (1.16)-(1.21) we are now ready to begin derivation of the

linear acoustic wave equation. This will be done following the notation of reference

[2].
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In the absence of a sound wave the undisturbed fluid variables of interest have

the following values:

ρ′ = ρ0

p′ = p0

v′ = v0 = 0

S ′ = S0

Q′ = Q0 = 0,

(1.22)

where Q′ represents the strength of our acoustic source. Note that Q0 and v0

are zero since the fluid is at rest (i.e. no acoustic wave is present). Now suppose

that the acoustic source is turned on with source strength of Q1. We assume

this source to be a vibrating object whose amplitude and velocity of vibration

are so small that they cause only a small perturbation of the undisturbed fluid

variables in Equation (1.22). Let these perturbations be denoted by ρ1, p1, v1,

and S1. Note that the source strength, Q1, is of the same order of magnitude as

the perturbed fluid variables. Given this information, the total density, pressure,

velocity, entropy, and source strength can be represented by the expressions:

ρ′ = ρ0 + ρ1

p′ = p0 + p1

v′ = v0 + v1 = v1

S ′ = S0 + S1

Q′ = Q0 +Q1 = Q1.

(1.23)

Substituting the acoustic variables in Equation (1.23) into Equation (1.16)

and (1.20) and assuming that squares or higher order terms involving the (small)

perturbations of the acoustic variables can be neglected leads to linearized forms

of the conservation of mass and conservation of linear momentum equations. Lin-

earizing the state equation requires a bit more work. We expand the state equation
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about the equilibrium state of the fluid, again neglecting second and higher order

terms in the acoustic variables. This leads to the following linearized equations:

∂ρ1

∂t
+ v1 •∇ρ0 + ρ0∇ • v1 = Q1 (1.24)

∂v1
∂t

= − 1

ρ0

∇p1 (1.25)

p1 = ρ1c
2. (1.26)

To derive a linear wave equation we first take the divergence of the momentum

equation in Equation (1.25), leading to the expression:

∂

∂t
∇ • v1 + ∇ •

(
1

ρ0

∇p1

)
= 0. (1.27)

Next, we recall the constitutive equation for isentropic flow,

Dp′

Dt
= c2 Dρ′

Dt
, (1.28)

where c is the speed of sound in our fluid of interest. We simplify this equation

by substituting the perturbed pressure, p′, and the perturbed density, ρ′, from

Equation (1.23) into the equation and again assume that squares or higher order

terms involving the perturbations of the acoustic variables can be neglected. Doing

so, we arrive at:

∂p1

∂t
+ v1 •∇p0 = c2

[
∂ρ1

∂t
+ v1 •∇ρ0

]
. (1.29)

We now combine Equation (1.29) with Equation (1.24) to obtain the expression:

1

c2

[
∂p1

∂t
+ v1 •∇p0

]
+ ρ0∇ • v1 = Q1. (1.30)

From thermodynamic considerations one has that ∇p0/p0 � ∇T0/T0, where T0

corresponds to the ambient temperature of the fluid medium. As such, we have

that the ∇p0 term is negligible, leading to the following:

1

c2

∂p1

∂t
+ ρ0∇ • v1 ≈ Q1. (1.31)
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We now differentiate Equation (1.31) with respect to time and use Equation (1.27)

to eliminate ∇ • v1, arriving at:

1

c2

∂2p1

∂t2
− ρ0∇ •

(
1

ρ0

∇p1

)
≈ ∂Q1

∂t
. (1.32)

Going forward, subscripts on the acoustic variables will be dropped and it is

understood that all variables refer to their perturbative quantities. In the case

of density, we will consider the variation due to the acoustic disturbance to be

negligible and ρ will refer to the density of the medium at rest. Taking this into

account and rearranging terms in Equation (1.32), the following expression for the

linear acoustic wave equation is obtained:

ρ∇ •

(
1

ρ
∇p

)
− 1

c2

∂2p

∂t2
= −∂Q

∂t
. (1.33)

If we consider density to be constant in space and the source strength to be

time independent we arrive at the standard form of the linear homogeneous wave

equation for small-amplitude acoustic processes:

∇2p− 1

c2

∂2p

∂t2
= 0. (1.34)

where ∇2 is the Laplacian operator:

∇2{·} =
∂2

∂x2
{·}+

∂2

∂y2
{·}+

∂2

∂z2
{·}. (1.35)

1.4 The Acoustic Velocity Potential

Following a procedure similar to that used in deriving the wave equation for

pressure, an acoustic wave equation for particle velocity may be obtained. To

accomplish this, we will assume that we are a significant distance from the source

and that ∇ρ0/ρ0 � 1. Doing so, Equation (1.24) becomes:

∂ρ1

∂t
= −ρ0∇ • v1. (1.36)
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We now take the gradient of Equation (1.36) and the time derivative of Equation

(1.25). Combining the two results using Equation (1.26) and dropping subscripts

we arrive at a wave equation for particle velocity. This equation is:

1

ρ
∇(ρc2∇ • v)− ∂2v

∂t2
= 0, (1.37)

where v is a function of the position vector r and time t. If the density of the

acoustic medium is slowly varying, the vector equation in Equation (1.37) may be

transformed into a scalar equation by defining a velocity potential Φ(r, t) given by

v(r, t) = ∇Φ(r, t). (1.38)

If one substitutes Equation (1.38) into Equation (1.37) and assumes that ∇ρ = 0,

then the following expression is obtained

∇(c2∇2Φ− ∂2Φ

∂t2
) = 0. (1.39)

This expression is satisfied if the velocity potential satisfies the scalar wave equation

∇2Φ− 1

c2

∂2Φ

∂t2
= 0, (1.40)

which we note is identical to that for pressure in Equation (1.34).

A direct relationship between velocity potential and pressure may be obtained

through the introduction of a displacement potential, ψ, defined by

d(r, t) = ∇ψ(r, t), (1.41)

where d(r, t) is the particle displacement vector given by the kinematic relationship

v = ∂d/∂t. Combining Equations (1.36), (1.26), and (1.41), we arrive at the

relationship between pressure and the displacement potential

p = −K∇2ψ, (1.42)
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where we recognize that K is the bulk modulus defined by

K = ρc2. (1.43)

Equation (1.42) is the equivalent of Hooke’s law for an ideal, linearly elas-

tic fluid. Note, that the displacement potential is governed by a wave equation

identical to that of pressure and the velocity potential:

∇2ψ − 1

c2

∂2ψ

∂t2
= 0. (1.44)

Combining Equations (1.42)-(1.44) results in the following alternative expression

for the acoustic pressure

p = −ρ∂
2ψ

∂t2
. (1.45)

Next, we assume a continuous wave time harmonic acoustic source, leading to

a time dependence of the form e−iωt, where ω = 2πf is angular frequency of the

source in radians per second and f is frequency in Hertz. Such a source may be

represented by the expression:

Q(r, t) = Q̂(r, ω)e−iωt. (1.46)

This leads to the following expression for the acoustic pressure:

p(r, t) = p̂(r, ω)e−iωt. (1.47)

An expression for the acoustic velocity potential is similarly obtained. This is:

Φ(r, t) = Φ̂(r, ω)e−iωt. (1.48)

One can show that Φ = ∂ψ/∂t. Using this relationship, we finally arrive at the

following relationship between spatially-dependent pressure and velocity potential

for a time harmonic acoustic source:

p̂(r, ω) = iωρΦ̂(r, ω). (1.49)
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The relationship in Equation (1.49) will be utilized a number of times through-

out the remainder of the presented work. While the proposed coupled-mode theory

is developed in the context of velocity potentials, there will be times at which con-

verting quantities of interest to pressure provides for a more intuitive discussion.

1.5 The Helmholtz Equation

Time-independence of the coefficients to the differential operators in Equa-

tion (1.33) allows for the acoustic wave equation to be further simplified. This is

accomplished through application of the following Fourier transform operator:

F [f(t)] = f̂(ω) =

∫ ∞
−∞

f(t)eiωt dt. (1.50)

The inverse of which is:

F−1[f̂(ω)] = f(t) =
1

2π

∫ ∞
−∞

f̂(ω)e−iωt dω. (1.51)

Application of the transform in Equation (1.50) to Equation (1.33) leads to what

is known as the Helmholtz equation or reduced wave equation, expressed as:

ρ∇ •

(
1

ρ
∇p̂(r, ω)

)
+ k2(r)p̂(r, ω) = iωQ̂(r, ω), (1.52)

where k(r) is the medium wavenumber at radial frequency ω and sound velocity

c(r), that is:

k(r) =
ω

c(r)
. (1.53)

Recall that for a time harmonic acoustic source of a single frequency the time-

dependent pressure may be written as in Equation (1.47). Under these conditions,

Equation (1.52) is equivalently obtained by substituting the expressions on the

right sides of Equations (1.46) and (1.47) into the wave equation in Equation

(1.33) and carrying out the differentiation with respect to time.

A Helmholtz equation similar to Equation (1.52) may be obtained for the

velocity potential by utilizing the relationship given in Equation (1.49). Doing so
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leads to the result:

∇ •

(
1

ρ
∇ρΦ̂(r, ω)

)
+ k2(r)Φ̂(r, ω) =

Q̂(r, ω)

ρ
. (1.54)

Note that if one assumes constant density, the left sides of Equations (1.52) and

(1.54) are identical.

Due to the reduction in dimension, the PDE’s in Equations (1.52) and (1.54)

are simpler to solve than the full wave equation. This simplification is achieved,

however, at the cost of having to evaluate the inverse Fourier transform given by

Equation (1.51) to achieve the final solution.

1.6 Source Representation

Underwater sound due to natural or artificial phenomena is produced through

forced mass injection [4]. For acoustic sources with complex geometries, mathe-

matically representing this mass injection term can be difficult. In the case of an

omni-directional point source, an analytical expression for the forcing term may

be derived by recognizing that the acoustic field is produced by a small sphere

inducing body forces on the fluid medium through expansions and contractions.

These body forces create small particle displacements in the fluid that propagate

out from the source as spherical acoustic waves.

If we consider the medium to be infinite (i.e. unbounded), then the acoustic

field will be spherically symmetric and we need only concern ourselves with the

radial distance from the center of the source, r. Given this set of assumptions, the

particle displacement field in Equation (1.41) may be written as

d(r, t) =
∂ψ(r, t)

∂r
, (1.55)

where ψ(r, t) is again recognized as the displacement potential function. If we then

define the radius of the sphere with the symbol a and apply a no-slip boundary
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condition at the source-fluid interface we recognize that

d(a, t) = D(t), (1.56)

where D(t) is surface displacement of the sphere at time t with dimensions of

length.

To simplify the discussion we will consider the density in the acoustic medium

to be constant. Taking this into account, the Fourier-transformed displacement

potential for our propagation scenario of interest satisfies the Helmholtz equation[
1

r2

∂

∂r
r2 ∂

∂r
+ k2

]
ψ̂(r, ω) = Ŝψ(ω)Q̂(r) (1.57)

with boundary condition

d̂(a, ω) = D̂(ω). (1.58)

Here Q̂(r) is representative of our point source and Ŝψ(ω) is a source strength term

to be analytically derived. Note that the field for this scenario depends solely on

range from the source. As such, Equation (1.57) has been written in spherical

coordinates for convenience.

Considering ranges a significant distance from the source (i.e. r � 0) the

displacement potential satisfies the homogeneous equivalent of Equation (1.57),

the solution of which is a linear combination of incoming and outgoing waves

given by the expressions:

ψ̂(r, ω) =


(A/r)eikr outgoing wave

(B/r)e−ikr incoming wave.

(1.59)

Since the sphere is assumed to be the only source in the infinite medium there are

no incoming waves thus requiring that B = 0. Thus for the current case of interest

ψ̂(r, ω) = A
eikr

r
, (1.60)
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with corresponding displacement field

d̂(r, ω) = Aeikr
(
ik

r
− 1

r2

)
, (1.61)

where Equation (1.61) was obtained by applying the Fourier transform operator

in Equation (1.50) to the displacement field in Equation (1.55) and carrying out

the differentiation with respect range, r. Our assumed model of a simple point

source requires that the radius of the sphere be small compared to the acoustic

wavelength. This necessitates that ka � 1, in which case Equation (1.61) takes

the form

d̂(a, ω) = Aeika
ika− 1

a2
≈ −A

a2
. (1.62)

Utilizing Equation (1.58), we then arrive at the following solution for the wave

amplitude A:

A = −a2D̂(ω). (1.63)

If we now define the source strength Ŝψ(ω) = 4πa2D̂(ω) as the volume-

injection amplitude produced by the source at frequency ω, the following solution

is obtained for the field in the fluid,

ψ̂(r, ω) = −Ŝψ(ω)
eikr

4πr
, (1.64)

where the source strength Ŝψ(ω) has dimensions of cubic length, or volume.

The ratio appearing in Equations (1.64) is known as the free-space Green’s

function, which has general form

gω(r, r0) =
eik|r−r0|

4π|r − r0|
, (1.65)

where r0 is the location of the source. The free-space Green’s function satisfies the

following inhomogeneous Helmholtz equation,

[∇2 + k2(r)]gω(r, r0) = −δ(r − r0), (1.66)
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which can be verified by integrating Equation (1.66) over a small volume containing

the source point. Taking this into account, if one sets Ŝψ(ω) to unity in Equation

(1.57) it is easily verified that Q̂(r) = −δ(r), or in general

Q̂(r) = −δ(r − r0). (1.67)

A source strength for velocity potential, ŜΦ(ω), may be obtained by recalling

that Φ = ∂ψ/∂t. Applying the Fourier transform operator in Equation (1.50) to

this relationship and taking into account Equation (1.64), we find that

ŜΦ(ω) = −iωŜψ(ω) = −iω4πa2D̂(ω), (1.68)

where ŜΦ(ω) has dimensions of cubic length over time. This implies that for the

wave equation

[∇2 + k2]Φ̂(r, ω) = ŜΦ(ω)Q̂(r), (1.69)

the following is a solution:

Φ̂(r, ω) = −ŜΦ(ω)
eikr

4πr
. (1.70)

A source strength for acoustic pressure, Ŝp(ω), may be obtained in a similar

fashion by recalling the relationship in Equation (1.49). This leads to the definition:

Ŝp(ω) = ρω2Ŝψ(ω) = ρω24πa2D̂(ω), (1.71)

where Ŝp(ω) has dimensions mass over squared time. This implies that for the

wave equation

[∇2 + k2]p̂(r, ω) = Ŝp(ω)Q̂(r), (1.72)

the following is a solution:

p̂(r, ω) = −Ŝp(ω)
eikr

4πr
. (1.73)
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Recalling Equations (1.52) and (1.54), we can redefine Ŝp(ω) and ŜΦ(ω) as:

Ŝp(ω) = iωṁ, (1.74)

and

ŜΦ(ω) =
1

ρ
ṁ, (1.75)

where

ṁ = −iρω4πa2D̂(ω). (1.76)

Given these definitions, we see that for a point source in a medium with non-

constant density the Fourier-transformed complex pressure, p̂(r, ω), satisfies the

equation:

ρ∇ •

(
1

ρ
∇p̂(r, ω)

)
+ k2(r)p̂(r, ω) = Ŝp(ω)Q̂(r). (1.77)

Similarly, the Fourier-transformed velocity potential, Φ̂(r, ω), satisfies

∇ •

(
1

ρ
∇ρΦ̂(r, ω)

)
+ k2(r)Φ̂(r, ω) = ŜΦ(ω)Q̂(r). (1.78)

Note that ṁ in Equations (1.74) and (1.75) has dimensions of mass over time. As

such, this term represents the amount of mass per unit time being injected into the

acoustic medium by an omni-directional point source. Taking this into account,

a source is said to have “unit strength” when ṁ = 1, meaning that the source

injects one unit of mass per unit of time into the acoustic medium. In SI units this

corresponds to 1 kg s−1 of mass injection. Under these conditions Ŝp(ω) = iω and

ŜΦ(ω) = 1/ρ, as in Equations (1.52) and (1.54).

1.7 General Solution: Green’s Function

The application of Green’s functions also allows for the development of a

solution to the general problem of a bounded medium with general source. To

solve this problem we consider the wave equation:

[∇2 + k2(r)]Φ̂(r, ω) = F̂ (r, ω), (1.79)
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where the acoustic medium occupies a volume V bounded by a surface S, with

prescribed conditions at the boundary. Here F̂ (r, ω) is a general forcing term,

which includes the source strength and has dimensions of inverse seconds. Next,

we formulate a general solution to Equation (1.66) as a sum of the particular

solution, gω(r, r0), and a homogeneous solution hω(r, r0), that is,

Gω(r, r0) = gω(r, r0) + hω(r, r0). (1.80)

Recognizing that by definition,

[∇2 + k2(r)]hω(r, r0) = 0, (1.81)

we find that

[∇2 + k2(r)]Gω(r, r0) = −δ(r − r0). (1.82)

Following a process outlined in reference [5], we now multiply Equation (1.79) by

Gω(r, r0) and multiply Equation (1.82) by Φ̂(r, ω). Subtracting the two expres-

sions, interchanging r with r0, and integrating over volume we obtain∫
V

[
Gω(r, r0)∇2

0Φ̂(r0, ω)− Φ̂(r0, ω)∇2
0Gω(r, r0)

]
dV0

=

∫
V

Φ̂(r0, ω)δ(r − r0) dV0 +

∫
V

F̂ (r0, ω)Gω(r, r0) dV0,

(1.83)

where we have used the fact that the Green’s function is symmetric, i.e.,

Gω(r, r0) = Gω(r0, r). Application of Green’s theorem to the term on the left

side of Equation (1.83) and the sifting property of the Dirac delta function to the

right side of Equation (1.83) leads to

Φ̂(r, ω) =

∫
S

[
Gω(r, r0)

∂Φ̂(r0, ω)

∂n0

− Φ̂(r0, ω)
∂Gω(r, r0)

∂n0

]
dS0

−
∫
V

F̂ (r0, ω)Gω(r, r0) dV0,

(1.84)

where n0 is the outward-pointing normal on the surface S. Equation (1.84) is the

general solution to Equation (1.79) for a bounded acoustic medium with general
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forcing term. Usefulness of Equation (1.84), however, depends on the ability to

solve the integral equation, which may be nontrivial.
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CHAPTER 2

Normal Mode Theory

2.1 Background

The method of normal modes provides a means of solving the wave equation

that does not require computation of a volume integral. This method involves

solving a depth-dependent equation that results in a decomposition of the field

into a set of modes of vibration, roughly similar to that of a vibrating string.

The complete acoustic field is constructed via a weighted sum of these modes,

where the weights are informed by the value of the modes at the depth of the

sound source. In this section two approaches leading to the normal modes solution

are presented. The first is based on a generalized application of the method of

separation of variables, the derivation of which will be discussed in detail. The

second approach, which involves the computation of a wavenumber contour integral

via a sum of residues, will be discussed more generally as a means of connecting

the normal modes method to the field of geometric acoustics.

2.2 Solution via Generalized Separation of Variables

We begin by recalling from Equation (1.77) that the Fourier-transformed com-

plex pressure, p̂(r, ω), satisfies the Helmholtz wave equation:

ρ∇ •

(
1

ρ
∇p̂(r, ω)

)
+ k2(r)p̂(r, ω) = Ŝp(ω)Q̂(r), (2.1)

where Ŝp(ω) = iωṁ and ṁ = −iρω4πa2D̂(ω). If we now restrict ourselves to the

case of a cylindrical waveguide with azimuthal symmetry, Equation (2.1) takes the

form:

1

r

∂

∂r

(
r
∂p̂

∂r

)
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p̂

∂z

)
+ k2p̂ = −iωṁδ(r)δ(z − zs)

2πr
, (2.2)
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where zs corresponds to the depth of the source. Here we have expanded the first

term on the left side of Equation (2.1) and recalled the definition of the Laplacian

operator in cylindrical coordinates:

∇2{·} =
1

r

∂

∂r

(
r
∂

∂r
{·}
)

+
1

r2

∂2

∂θ2
{·}+

∂2

∂z2
{·}. (2.3)

Note that our assumption of azimuthal symmetry dictates that the derivative in-

volving the angular term, θ, in Equation (2.3) vanishes.

To investigate the solution to Equation (2.2), we apply the method of separa-

tion of variables to its associated homogeneous (unforced) equation. In doing so,

we seek a solution of the form p̂(r, z) = ϕ(r)u(z). We substitute this proposed so-

lution into the homogeneous differential equation and divide by ϕ(r)u(z), leading

to the expression:

1

ϕ

[
1

r

d

dr

(
r
dϕ

dr

)]
+

1

u

[
ρ(z)

d

dz

(
1

ρ(z)

du

dz

)
+

ω2

c2(z)
u

]
= 0. (2.4)

We see that the first and second terms in brackets in this expression are solely

functions of r and z, respectively. The only way that this equation can be satisfied

is if both terms are equal to a separation constant that we will denote by k2
r . That

is:

1

u

[
ρ(z)

d

dz

(
1

ρ(z)

du

dz

)
+

ω2

c2(z)
u

]
= − 1

ϕ

[
1

r

d

dr

(
r
dϕ

dr

)]
= k2

r . (2.5)

Concerning ourselves with the depth equation in Equation (2.5), bringing the

separation constant over to the left side of the equation, and multiplying by u, we

arrive at an ordinary differential equation for the depth solutions, u(z):

ρ(z)
d

dz

[
1

ρ(z)

du(z)

dz

]
+

[
ω2

c2(z)
− k2

r

]
u(z) = 0. (2.6)

Assuming a pressure-release surface located at z = 0 and a perfectly rigid bottom

located at z = H imposes the following boundary conditions on the solutions to
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Equation (2.6):

u(0) = 0

du(z)

dz

∣∣∣∣
z=H

= 0.
(2.7)

Equation (2.6) combined with the boundary conditions in Equation (2.7) define a

classical Sturm-Liouville eigenvalue problem. There are an infinite number of solu-

tions um(z) to Equation (2.6) and we refer to these solutions as the eigenfunctions

of the problem.

If we represent the differential operator in Equation (2.6) by L, then for each

eigenfunction um(z) there exists a corresponding eigenvalue k2
rm such that:

L [um(z)] = k2
rmum(z). (2.8)

Note also that the eigenfunctions or modes, um(z), have the property of orthogo-

nality, which is stated mathematically as:∫ H

0

ρ−1(z)um(z)un(z) dz = δnm. (2.9)

Moreover, the eigenfunctions form a complete set thus allowing us to represent an

arbitrary function as a sum of the eigenfunctions or normal modes. This allows us

to further specify the form of our proposed solution to the original wave equation.

Namely, we have:

p̂(r, z) =
∞∑
m=1

ϕm(r)um(z), (2.10)

where we have expanded p̂(r, z) in the normal mode basis um(z), and ϕm(r) are

our expansion coefficients, which we propose to be strictly a function of range, r.

If we substitute Equation (2.10) into Equation (2.2) and apply the property

in Equation (2.8) we obtain the intermediate equation:

∞∑
m=1

[
1

r

d

dr

(
r
dϕm(r)

dr

)
um(z) + k2

rmϕm(r)um(z)

]
= −iωṁδ(r)δ(z − zs)

2πr
. (2.11)
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Taking into account the property in Equation (2.9), we now multiply Equation

(2.11) by ρ−1(z)un(z) and integrate from 0 to H resulting in the following range-

separated equation:

1

r

d

dr

(
r
dϕn(r)

dr

)
+ k2

rnϕn(r) = −iωṁδ(r)un(zs)

2πrρ(zs)
. (2.12)

Equation (2.12) is a standard equation known as Bessel’s equation. To solve

this equation, we define the Hankel transform:

H[f(r)] = F (κ) =

∫ ∞
0

f(r)J0(κr)r dr, (2.13)

the inverse of which is

H−1[F (κ)] = f(r) =

∫ ∞
0

F (κ)J0(κr)κ dκ. (2.14)

Next we note the following property of the transform in Equation (2.13):

H
[

1

r

d

dr

(
r
df(r)

dr

)]
= −κ2F (κ). (2.15)

Applying the operator in Equation (2.13) to Equation (2.12) and letting

F (κ) = H[ϕn], we arrive at

[−κ2 + k2
rn]F (κ) = −iωṁun(zs)

2πρ(zs)

∫ ∞
0

δ(r)J0(κr) dr = −iωṁun(zs)

2πρ(zs)
. (2.16)

Solving for F (κ), we have

F (κ) =
iωṁun(zs)

2πρ(zs)[κ2 − k2
rn]
. (2.17)

Next we apply the inverse Hankel transform in Equation (2.14) to F (κ) in Equation

(2.17) and note the identity

K0(µr) =

∫ ∞
0

J0(κr)

κ2 + µ2
κ dκ, (2.18)

where K0 is the modified Bessel function of the second kind [1]. Letting µ = ikrn

in Equation (2.18) leads to an intermediate solution to Equation (2.12):

ϕn(r) =
iωṁun(zs)

2πρ(zs)
K0(ikrnr). (2.19)
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Finally, we note that

K0(ζ) =


1

2
πiH

(1)
0 (iζ), − π < arg ζ ≤ π

2

−1

2
πiH

(2)
0 (−iζ), − π

2
< arg ζ ≤ π.

(2.20)

For outgoing radiation we choose H
(1)
0 leading to the following solution to the

range-separated equation in Equation (2.12):

ϕn(r) = −ωṁun(zs)

4ρ(zs)
H

(1)
0 (krnr). (2.21)

Substituting the right side of Equation (2.21) into Equation (2.10) we arrive

at the normal modes solution to Equation(2.2) for a point source in a cylindrical

waveguide with azimuthal symmetry:

p̂(r, z) = − ωṁ

4ρ(zs)

∞∑
m=1

um(zs)um(z)H
(1)
0 (krnr). (2.22)

By utilizing the relationship between complex pressure and the velocity potential

in Equation (1.49) an equivalent solution for the velocity potential may now be

easily obtained. Applying this relationship to Equation (2.22), we arrive at the

solution for the velocity potential due to a point source in a cylindrical waveguide

with azimuthal symmetry:

Φ̂(r, z) =
iṁ

4ρ(zs)ρ(z)

∞∑
m=1

um(zs)um(z)H
(1)
0 (krnr). (2.23)

Asymptotic forms of Equations (2.22) and (2.23) may be obtained by recalling the

asymptotic form of H
(1)
0 (krnr) given in Equation (1.13). This leads to the following

approximate solutions:

p̂(r, z) ≈ − ωṁ√
8πrρ(zs)

e−iπ/4
∞∑
m=1

um(zs)um(z)
eikrmr√
krm

(2.24)

and

Φ̂(r, z) ≈ iṁ√
8πrρ(zs)ρ(z)

e−iπ/4
∞∑
m=1

um(zs)um(z)
eikrmr√
krm

. (2.25)
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Given Equations (2.24) and (2.25), we will now define a forward transmission

loss equation:

TL(r, z) = −20 log10

∣∣∣∣ p̂(r, z)

p̂0(r = 1)

∣∣∣∣ = −20 log10

∣∣∣∣ Φ̂(r, z)

Φ̂0(r = 1)

∣∣∣∣, (2.26)

where

p̂0(r) = iωṁ
eik0r

4πr
(2.27)

and

Φ̂0(r) =
1

ρ(z)
ṁ
eik0r

4πr
, (2.28)

where k0 = ω/c0 and c0 is a reference sound speed. Here p̂0(r) and Φ̂0(r) represent

reference values to be taken at 1 m from the source. Inserting either Equation

(2.24) or (2.25) with its associated reference value into Equation (2.26), leads to

the following approximate expression for forward transmission loss

TL(r, z) ≈ −20 log10

∣∣∣∣∣ 1

ρ(zs)

√
2π

r

∞∑
m=1

um(zs)um(z)
eikrmr√
krm

∣∣∣∣∣. (2.29)

Equation (2.29) will be extended in later sections to compute forward transmission

loss in a range-dependent shallow water environment.

2.3 Wavenumber Decomposition and Evanescent Modes

An intuitive discussion of the decomposition of wave phase in the normal

modes solution can be had if we consider the case of an isovelocity flat-bottom

waveguide with constant density. In this case, the modes have the general form:

um(z) = A sin(kzz) +B cos(kzz), (2.30)

where

kz =

√(ω
c

)2

− k2
r (2.31)

is the vertical wavenumber and kr is the horizontal wavenumber. Recall the

pressure-release surface boundary condition in Equation (2.7). This condition im-

plies that B = 0 in Equation (2.30). The rigid bottom boundary condition from
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Equation (2.7) suggests that either the coefficient A must also be zero (i.e. the

trivial solution) or that

kz = kzm =

(
m− 1

2

)
π

H
, m = 1, 2, ... . (2.32)

Equation (2.32) further implies that kr must assume particular values, namely:

kr = krm =

√(ω
c

)2

−
[(
m− 1

2

)
π

H

]2

, m = 1, 2, ... , (2.33)

where krm is recognized as the eigenvalue associated with mode m and eigenfunc-

tion um. Combining Equations (2.31)-(2.33), we arrive at the expression:

(ω
c

)
=
√
k2
rm + k2

zm. (2.34)

We recognize this quantity as the magnitude (norm) of the vector quantity K, also

known as the total wavenumber of the complex wave phase. If we let x̂ and ẑ be

the unit base vectors along the x and z axes, respectively, we can write the total

wavenumber in component form. For our two-dimensional problem of interest this

is:

K = krmx̂+ kzmẑ. (2.35)

Recall the asymptotic form of the Hankel function in Equation (1.13). It is

easily verifiable from this equation that modes with positive imaginary eigenvalues

are exponentially decaying in range. This allows us to partition the modes into

propagating and evanescent (exponentially decaying/non-propagating) modes. For

propagating modes (i.e. real krm) the following inequality holds:

m <
|K|H
π

+
1

2
. (2.36)

Conversely, for evanescent modes (i.e. imaginary krm):

m >
|K|H
π

+
1

2
. (2.37)

29



This decomposition of the total wavenumber has led to an interesting fact

with regards to the modes in our isovelocity flat-bottom waveguide. Namely, the

real eigenvalues and therefore the propagating modes have an upper bound of

|K| = (ω/c). As the source frequency is reduced the eigenvalues on the real axis

slide to the left and up the imaginary axis. For a sufficiently low frequency, the

first mode (i.e. m = 1) will make this transition leaving no propagating modes in

the problem. The frequency at which this occurs is known as the cutoff frequency

for the waveguide and in appealing to the inequality in Equation (2.37), it is found

to be:

fc =
c

4H
. (2.38)

Note that the depth of the waveguide also has an effect on which modes can

propagate. As the waveguide becomes more shallow H in the above inequalities

becomes smaller in magnitude and lower order modes are cutoff. As was the case

with frequency, there is a critical waveguide depth at which the first mode (i.e.

m = 1) will become cutoff leaving no propagating modes. Appealing again to

Equation (2.37) we see that this depth is:

Hc =
c

4f
. (2.39)

The decomposition of the total wavenumber allows for the discussion of an-

other modal concept, that of mode grazing angle. We define the grazing angle of

a mode as

θm = arcsin

(
kzm
k

)
= arcsin

(
ckzm
ω

)
, (2.40)

where θm corresponds to the angle that an equivalent ray associated with mode

m would make with the bottom boundary of the waveguide. For a flat-bottom

waveguide kzm is constant for a particular mode m, as evident from Equation

(2.31). If sound speed is also constant, the only quantity that can change in the
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argument to the arcsine function in Equation (2.40) is the angular frequency of the

source, ω. Decreasing the frequency of the source will result in an increase in the

argument in Equation (2.40) thus pushing the arcsine toward its maximum real

value of 90◦.

As previously discussed, decreasing the source frequency also pushes the modes

in a waveguide toward their cutoff. This means that the closer a mode is to its

cutoff the steeper its grazing angle, θm, will be. Once a mode is fully cutoff (i.e. its

eigenvalue is purely imaginary), the real part of its grazing angle reaches 90◦ and

the mode is said to have “turned around.” Steep-angle modes will be of particular

interest in later sections of the presented work.

2.4 Modal Velocities

Another useful concept is modal velocity. To understand this concept consider

a traveling wave of amplitude A and a single frequency f . Such a wave may be

represented by the sinusoid:

A cos(kx− ωt). (2.41)

After some small unit of time dt this wave will have experienced ωt/2π = ft

oscillations. Over this same time window, an initial peak of the wave will have

propagated a distance dx away from the source to make room for this same number

of oscillations (i.e. k dx = ω dt). Recognizing this relationship allows us to define

the following:

cp =
dx

dt
=
ω

k
, (2.42)

where cp is referred to as the phase velocity of the wave. The phase velocity

represents the horizontal velocity of a phase point of the wave. It does not represent

the speed of energy transport, which must be less than or equal to the speed of

sound in the medium, c.

To obtain the speed of energy transport consider the combination of two waves
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with slightly different frequencies and wave lengths:

cos [(k −∆k)x− (ω −∆ω)t] + cos [(k + ∆k)x− (ω + ∆ω)t]

= 2 cos(∆kx−∆ωt) cos(kx− ωt)
(2.43)

The amplitude of the wave in Equation (2.43) is a sinusoidal envelope with phase

speed ∆ω/∆k. In the limit, we refer to this speed as the group velocity

cg =
dω

dk
, (2.44)

which is the speed at which energy is transported by a packet of waves.

The ratio between the speed of sound in the medium and the phase velocity of a

wave propagating in the medium is known as the refractive index, n = c/cp = ck/ω.

If one takes the derivative of ω = ck/n with respect to the wavenumber, k, we

obtain

cg =
dω

dk
=
c

n
−
(
ck

n2
× dn

dk

)
= cp −

(
ck

n2
× dn

dk

)
.

(2.45)

As is evident from Equation (2.45), the only way for the group velocity and phase

velocity to be equal is for the refractive index to be constant. In this case, the

phase and group velocities are independent of frequency and the medium is said to

be non-dispersive. Otherwise, the medium is said to be dispersive, meaning that

a wave will separate into its individual frequency components while propagating

through the medium due to the difference between the phase and group velocities.

Now we would like to connect the concept of phase and group velocity to

the normal modes of propagation of an acoustic waveguide. At high frequencies

all modes in an acoustic waveguide approach a propagating eigenvalue, which ap-

proaches the medium wavenumber [2]. That is,

krm → k as ω →∞. (2.46)
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Taking this into account and recalling Equation (2.42), we define the phase velocity

of an individual mode m as

cpm =
ω

krm
. (2.47)

For steep-angle modes (i.e. those near cutoff), the phase velocity approaches infin-

ity. Conversely, as the grazing angle of a mode becomes more horizontal (i.e. more

propagating) the phase velocity approaches c, the speed of sound in the waveguide

[3].

Similar to the case for phase velocity, we can define a modal group velocity

by taking into account Equations (2.46) and (2.44)

cgm =
dω

dkrm
. (2.48)

The modal group velocity is the speed of energy transport of a particular mode. As

the frequency of the acoustic source approaches the cutoff frequency for the mode

its group velocity will approach zero. Conversely, as the frequency of the source

approaches infinity, the group velocities of all modes in the waveguide will approach

the speed of sound. Further investigation into the effects of horizontally-variable

waveguide depth on modal group velocity has been documented in Appendix A.

2.5 Solution via Cauchy’s Residue Theorem

For a point source in a medium with well-defined upper and lower boundaries

that reflect the energy associated with an acoustic wave, we can define two solu-

tions, u+(z) and u−(z), of the homogeneous depth-separated equation in Equation

(2.6). Here u+(z) accounts for the sum of the upper traveling wave plus the wave

reflected from the upper boundary. Conversely, u−(z) accounts for the lower trav-

eling wave plus the wave reflected from the lower boundary. Mathematically these

solutions are given by the expressions

u+(z) = ei
∫ z1
z kz dz +R1e

−i
∫ z1
z kz dz (2.49)
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and

u−(z) = ei
∫ z2
z kz dz +R2e

−i
∫ z2
z kz dz, (2.50)

where z2 > zs > z1 and zs is the depth of the source. The vertical wavenumber,

kz, in these solutions is given by the expression in Equation (2.31), and R1 and

R2 are reflection coefficients at the upper and lower boundaries of the medium,

respectively.

The solutions in Equations (2.49) and (2.50) are known as Wentzel-Kramers-

Brillouin, or WKB, solutions to the depth-separated wave equation. An alternative

expression for the WKB solution is

u(z) =
1√
η sin θ

e±ik0
∫
η sin θ dz, (2.51)

where c0 = ω/k0 is a reference sound speed at the source location, η = c0/c is the

diffraction coefficient due to depth-variable sound speed, and θ is the grazing angle

of a ray associated with the solution u(z) to the depth-separated equation. When

written in this form we see that the solution blows up when θ = 0. This is be-

cause when θ is zero the equivalent ray associated with the solution u(z) becomes

horizontal and consequently turns over. As such, we say that the WKB approxi-

mation breaks down at turning points. Further details on the WKB solution and

the discipline of geometric acoustics can be found in reference [2].

Recalling the method of variation of parameters, we can derive a particular

solution to the inhomogeneous equation corresponding to Equation (2.6). This

solution is of the form of an integral product of a piece-wise defined Green’s function

for our medium of interest and the forcing term on the right side of the depth-

separated equation. The Green’s function has the form:

for z ≤ zs:

G(z, zs, k
2
r) =

u+(z)u−(zs)

W (u+, u−, k2
r)
, (2.52)
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for z ≥ zs:

G(z, zs, k
2
r) =

u−(z)u+(zs)

W (u+, u−, k2
r)
, (2.53)

where W (u+, u−, k2
r) is the Wronskian of the two chosen solutions to the homoge-

neous equation, defined as:

W (u+, u−, k2
r) = u+(zs)u

′−(zs)− u−(zs)u
′+(zs), (2.54)

where primes denote differentiation with respect to z. Note, the Wronskian is

constant for a given value of kr. Next we observe that a normal mode will exist

when the upward traveling and downward traveling waves superimpose to create

a standing wave within the waveguide. This condition implies linear dependence

of the two solutions u+(z) and u−(z), which will occur when W (u+, u−, k2
r) = 0.

In general, the sum of our particular solution to the inhomogeneous equation

with the general solution of the homogeneous equation (i.e. uh = u+(z) + u−(z))

will give us the total solution to the depth-separated equation. If we then combine

this solution with the solution to the range-separated equation we can express

the total solution to the wave equation in Equation (2.1) as a contour integral in

wavenumber space. Thus we have:

p̂(r, z) =

∮
H

(1)
0 (krr)G(z, zs, k

2
r)kr dkr. (2.55)

The previous statement regarding the conditions for the existence of normal modes

implies that values of kr corresponding to normal modes represent singularities

(poles) in the integrand of Equation (2.55). To evaluate this integral we apply

Cauchy’s Residue Theorem [4] to express its solution as a sum of the individual

residues corresponding to each normal mode. Further details on this normal modes

approach can be found in reference [3].
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2.6 Range-Dependent Normal Modes

The introduction of range-dependence into the conditions of Equation (2.2)

significantly increases the difficulty of finding a solution for the acoustic field. This

is primarily due to the fact that the modes of vibration of the wave equation become

a function of depth and range. This means that our assumed solution in Equation

(2.10) takes the form

p̂(r, z) =
∞∑
m=1

ϕm(r)um(r, z). (2.56)

Inserting this proposed solution into Equation (2.2) and following a procedure

similar to that for the canonical normal modes derivation leads to the following

set of coupled equations for the expansion coefficients ϕm(r):

1

r

d

dr

(
r
dϕn
dr

)
+
∞∑
m=1

2Bmn
dϕm
dr

+
∞∑
m=1

Amnϕm + k2
rn(r)ϕn = −iωṁδ(r)un(r, zs)

ρ(zs)2πr
,

(2.57)

where

Amn =

∫
1

r

∂

∂r

(
r
∂um
∂r

)
un
ρ

dz (2.58)

and

Bmn =

∫
∂um
∂r

un
ρ

dz. (2.59)

The expressions for the coefficients in Equations (2.58) and (2.59) involve modes of

mixed index. This is due to the fact that in range-dependent environments energy

is transferred between adjacent modes. This non-adiabatic energy transference,

known as mode coupling, prevents the use of a classical normal modes approach

to solving for the acoustic field.

2.7 Previous Work

A number of approaches have been developed for treating the range-dependent

problem described in Section (2.6). One of the first solutions to this problem was

described by Pierce [5] in 1964. Known as the adiabatic assumption in mode cou-
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pling theory, this approach assumes a nearly stratified acoustic medium such that

coupling between modes may be neglected. The justification for this simplification

is that, for sufficiently slowly varying media, the terms involving the coupling co-

efficients Amn and Bmn in Equation (2.57) are small and may be neglected. Milder

[6] presented a similar argument in 1969 based on the proposition that the equiv-

alent rays associated with the normal modes of acoustic propagation are invariant

in acoustic media with mild range-dependence. While this adiabatic approach to

range-dependent acoustic propagation has been justified in a number of cases, there

are still many other propagation scenarios for which the neglect of non-adiabatic

mode coupling leads to significant errors in the estimation of the acoustic field.

For example, Godin [7] showed that ignoring coupling between modes leads to a

violation of conservation of energy and reciprocity principles in the presence of a

sloping interface or a range-dependent rigid boundary.

Most approaches to the range-dependent problem that account for mode cou-

pling fall into one of three classes. In the first class of solutions one attempts to

directly solve the coupled equation given in Equation (2.57). Among this family of

solutions is the approach described by Buckingham [8] in 1987. In this approach,

the author transforms the acoustic wave equation into a cylindrical coordinate sys-

tem where the z axis is horizontal, termed the “wedge coordinate system.” For the

case of an isovelocity waveguide, it is then possible to derive a set of uncoupled

“wedge modes,” which may be summed to approximate the acoustic field. In 1991

Primack and Gilbert [9] extended the work of Buckingham by developing a compu-

tational model based on this wedge modes approach. They showed that for realistic

sound-speed profiles coupling between wedge modes must be included in the calcu-

lation of the field. Fawcett, Westwood, and Tindle [10] further extended the work

of Primack and Gilbert by including leaky modes into the field calculation and de-
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veloping a least-squares approximation for computing mode coupling in the wedge

coordinate system. While this wedge mode approach to range-dependent acoustic

propagation shows promise for single-slope propagation scenarios, its applicability

to general range-dependent media requires further development.

Also belonging to this first class of solutions to the range-dependent prob-

lem is the work of Desaubies, Chiu, and Miller [11]. In their 1986 study these

authors set out to quantify when it is appropriate to make the adiabatic approx-

imation in the context of slow changes to the sound-speed structure of the ocean

due to mesoscale eddies. In doing so, they present a simplification to the coupled

system given by Equations (2.57)-(2.59) based on an adiabatic expansion of the

range-dependent wavenumber. It was ultimately determined in this study that the

adiabatic solution fails for environments with range-dependent sound speed under

the conditions of high frequency, high mode number, and long range. Note, the

approach of this study assumes a flat-bottom waveguide and therefore is limited to

environments where sound speed is the dominant mechanism for range dependence.

Chiu, Miller, and Lynch [12] also set out to solve the range-dependent problem via

directly solving Equation (2.57) in 1996. In their approach a fourth-order finite dif-

ference method is utilized for approximating the first and second depth derivatives

of the eigenfunctions associated with the modes of acoustic propagation. Fourth

and fifth-order Runge-Kutta algorithms are used to solve a coupled system of equa-

tions governing complex envelopes of the mode amplitudes. The pressure field is

ultimately resolved via an inverse Fourier transform of the product of the source

signal spectrum and a source-to-receiver ocean transfer function. Computational

savings are achieved in this approach through computing the gradually varying

complex envelopes of the modal amplitudes rather than the rapidly varying mode

amplitudes themselves. Conversely, computational bottlenecks are found in the
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method’s need to numerically solve the integrals associated with the coupling co-

efficients and in the iterative approach (i.e. Runge-Kutta) required to solve the

coupled differential equation governing the modal envelopes. Other direct solu-

tions to the range-dependent wave equation can be found in works by Boyles [13],

Gillette [14], and Stotts [15].

The second class of solutions to the problem described in Section (2.6) includes

approximate methods whereby assumptions are made that lead to simplifications

in the range-dependent acoustic wave equation. These methods are often more

computationally efficient due to their simplicity; however, this gain in efficiency is

often at the cost of accuracy in environments with severe range-dependence. The

family of methods known as parabolic-equation methods belong to this class of

approximate solutions. The parabolic-equation method was first introduced into

underwater acoustics in the early 1970s by Hardin and Tappert [16]. In these

solutions, one begins with a Helmholtz equation of the form

∂2p

∂r2
+

1

r

∂p

∂r
+
∂2p

∂z2
+ k2

0n
2p = 0, (2.60)

where n(r, z) = c0/c(r, z) is the index of refraction and c0 is a reference sound speed.

A solution of the form p(r, z) = ψ(r, z)H
(1)
0 (k0r) is assumed and inserted into

Equation (2.60). Next, it is assumed that k0r � 1 (i.e. the farfield assumption),

resulting in the differential equation:

∂2ψ

∂r2
+ 2ik0

∂ψ

∂r
+
∂2ψ

∂z2
+ k2

0(n2 − 1)ψ = 0. (2.61)

From here, the following paraxial approximation (also known as the small angle

approximation) is made:

∂2ψ

∂r2
� 2ik0

∂ψ

∂r
. (2.62)

This ultimately leads to what is known as the parabolic equation of underwater
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acoustics:

2ik0
∂ψ

∂r
+
∂2ψ

∂z2
+ k2

0(n2 − 1)ψ = 0. (2.63)

Methods in this family of solutions are then focused upon solving Equation (2.63).

While the parabolic equation given in Equation (2.63) is significantly easier to

solve than the quadratic acoustic wave equation, this approach comes with some

caveats. In addition to the farfield assumption, the paraxial approximation in

Equation (2.62) puts additional constraints on the propagation scenarios that may

be considered. In particular, parabolic-equation methods require that back scatter-

ing be negligible and that range-dependence in the acoustic medium be relatively

weak. These methods also constrain the propagation scenario to angles less than

or equal to about ten to fifteen degrees off the horizontal and to high source fre-

quencies.

Tindle, O’Driscoll, and Higham [17] developed a method in 2000 that also be-

longs to the class of approximate solutions to the range-dependent wave equation.

In their approach the effects of mode coupling due to range-dependent sound speed

are accounted for through a novel application of perturbation theory. Mode cou-

pling is represented via small perturbative terms that are added to the eigenfunc-

tions and eigenvalues associated with the modes. These perturbed eigenfunctions

and eigenvalues are then used in the canonical (i.e. range-independent) normal

modes solution to approximate the acoustic field. Tindle and Higham later ex-

tended this approach to account for coupling due to range-dependent density [18]

and internal waves [19]. Kampanis and Dougalis [20] developed an approximate

method for solving the range-dependent wave equation based on the Galerkin fi-

nite element method in 1999. In 2005 Clark [21] extended a multipath expansion

method for solving the Helmholtz wave equation, originally developed by Leibiger

[22], to account for horizontal variations in bottom depth, bottom type, and sound
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speed via a stationary phase approximation. A deep water variation of this method

that maintains continuity through mode turning points was published by Clark and

Smith in 2008 [23].

In the third class of solutions to the problem of range-dependent acoustic

propagation the horizontally-variable acoustic environment is approximated via a

series of range-independent steps. Within each of these steps a canonical normal

modes solution such as the one described in Sections (2.2) and (2.5) may be ap-

plied. The non-adiabatic transfer of energy between modes is then accounted for

by applying continuity conditions at discrete interfaces separating the steps. This

approach first appears in a dissertation by Leibiger [22] in 1968. In this work,

Leibiger develops an asymptotic theory for estimating transmission and reflection

coefficients at discrete interfaces throughout the range-dependent medium by writ-

ing the eigenfunctions and eigenvalues as an expansion in range. This theory is

developed in the context of near-surface propagation in an infinitely deep ocean

and therefore coupling effects due to a sloping seafloor are neglected. Moreover,

the transmission and reflection coefficient solutions developed in this work are lim-

ited by the assumption that the wavefronts of the acoustic excitation are planar

(i.e. the farfield assumption). Evans [24] developed a more general stepwise cou-

pled mode approach in 1983. This solution was implemented into a computational

model known as COUPLE and is considered a benchmark solution for problems

in range-dependent acoustic propagation. Despite its ability to provide an exact

solution, the computational intensity required by the COUPLE solution makes it

unsuitable for real-time or near real-time applications. Instead, it often serves as

a benchmark for less computationally intensive approximate solutions [3].
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CHAPTER 3

Asymptotic Stepwise Coupled Modes

3.1 Introduction

The remaining goal of this dissertation is to develop a non-adiabatic mode

coupling solution suitable for implementation in a computational model for the

prediction of acoustic energy propagation in range-dependent shallow water envi-

ronments. Particular attention will be given to developing a solution that main-

tains analytical integrity while offering an increase in computational efficiency over

currently existing solutions. This will be accomplished through a novel two-layer

discretization of the environment, which leads to closed-form expressions for com-

puting non-adiabatic mode coupling at discrete interfaces throughout the acoustic

medium. This approach depends upon writing the range-dependent eigenfunctions

and eigenvalues as an expansion in range. Doing so leads to the development of a

range-expanded normal mode inner product for estimating the transfer of energy

between modes upon encountering a horizontal change in environment. Further

efficiency in the presented solution is gained through the extension and applica-

tion of an asymptotic coupled mode theory originally developed for near-surface

propagation in an infinitely deep ocean, which is documented in reference [1].

We begin by assuming an environment in which the horizontal changes in the

acoustic properties of the medium are small over a distance equal to the wavelength

of the source frequency. A medium possessing this quality will be termed slowly

varying. This assumption will be coupled with the assumption that the acoustic

velocity potential may be expanded locally as a sum of normal modes, i.e.,:

Φ̂(x, y, z) =
∞∑
n=1

ϕn(x, y)un(z; x, y), (3.1)
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where the un(z; x, y) are the solutions of the Sturm-Liouville problem

d2u

dz2
+

(
ω2

c2(z; x, y)
− k2

r

)
u = 0, (3.2)

with boundary conditions

u(0) = 0

du(z)

dz

∣∣∣∣
z=H

= 0.
(3.3)

Here, the range coordinates (x, y) are fixed and the depth coordinate, z, is mea-

sured positive-down.

The form of the proposed solution in Equation (3.1) suggests that the propa-

gation in a slowly varying medium is by modes, although the horizontally variable

character of the medium serves to perturb the eigenvalues, kn, and the eigenfunc-

tions, un(z; x, y), defining these modes. Intuitive justification for this approach is

found in the fact that even though the individual modes experience this pertur-

bation, the slowly variable nature of the medium should not have strong effects

on the energy transport through the medium. This implies that such transport is

essentially the same in character as that of the canonical normal modes problem.

3.2 The Range-Expanded Normal Mode Inner Product

For simplification of the following discussion we will turn our attention to

the two-dimensional problem. In doing so, the acoustic field will be considered

a function of the spatial coordinates x and z, where these coordinates represent

range and depth, respectively. The property of the slowly varying range-dependent

medium to perturb the eigenvalues and eigenfunctions is then introduced into

the analysis by assuming the validity, at least to second order, of the following

representation:

kn(x+ ∆x) = kn(x) + k′n(x)∆x+
1

2
k′′n(x)(∆x)2 + ... (3.4)

un(z, x+ ∆x) = un(z, x) + u′n(z, x)∆x+
1

2
u′′n(z, x)(∆x)2 + ..., (3.5)
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where primes denote differentiation with respect to x. Thus Equations (3.4) and

(3.5) provide expressions for the perturbed eigenvalues and eigenfunctions, respec-

tively, upon taking a single range step of size ∆x. It is next noted that due to the

orthonormality of the original eigenfunctions, un(z, x), the perturbed eigenfunc-

tions, un(z, x+ ∆x), may be expressed as:

un(z, x+ ∆x) =
N∑
m=1

〈un(z, x+ ∆x), um(z, x)〉um(z, x),

n = 1, 2, ..., N

(3.6)

where 〈f(z, x), g(z, x)〉 denotes the inner product

〈f(z, x), g(z, x)〉 =

∫ H(x)

0

f(z, x)g(z, x) dz, (3.7)

and H(x) is the bottom depth from the surface at range x, which may be either

finite or infinite.

In proceeding from range x to range x + ∆x, this transformation imposes a

rotation of the basis vectors of the appropriate function space, or domain of the

differential operator from Equation (3.2). The inner product in Equation (3.6)

then describes the amount of energy transferred from each of the modes m to

mode n upon taking this step in range. Geometrically, this inner product can be

interpreted as the projection of mode n at range x+ ∆x onto each of the modes m

at range x. Substituting Equation (3.5) into the inner product in Equation (3.6),

we arrive at the following range-expanded normal mode inner product describing

the coupling between modes m and n:

〈un(z, x+ ∆x),um(z, x)〉

≈ 〈un(z, x), um(z, x)〉+ 〈u′n(z, x), um(z, x)〉∆x

+
1

2
〈u′′n(z, x), um(z, x)〉(∆x)2 + ... .

(3.8)

There are three important properties of the above range-expanded normal

mode inner product that will be utilized in further derivation of the presented
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theory. The first two of these properties relate the value of the inner product for

coupling due to forward propagating acoustic energy to that for backwards propa-

gation. We will derive these properties by first recalling the definition of the Taylor

series for a real or complex-valued function f(t) that is infinitely differentiable at

a real or complex number, a:

f(t) ≈ f(a) +
f ′(a)

1!
(t− a) +

f ′′(a)

2!
(t− a)2 +

f ′′′(a)

3!
(t− a)3 + ... . (3.9)

For the case of forward coupling, let t = (x+∆x) and a = x in Equation (3.9)

and let the function f be the eigenfunctions, un, associated with the modes of

vibration of the acoustic medium. In doing so, we see that un(z, x+ ∆x) is equal

to the expression given in Equation (3.5), which when inserted into the inner

product in Equation (3.6) leads to the expression in Equation (3.8) for the forward

range-expanded normal mode inner product. Following a similar procedure for the

case of backwards coupling, we let t = (x − ∆x) and a = x in Equation (3.9)

and again let f correspond to the eigenfunctions, un. In doing so, we arrive at an

expression for the backwards range-expanded normal mode inner product:

〈un(z, x−∆x),um(z, x)〉

≈ 〈un(z, x), um(z, x)〉 − 〈u′n(z, x), um(z, x)〉∆x

+
1

2
〈u′′n(z, x), um(z, x)〉(−∆x)2 + ... .

(3.10)

If we now restrict ourselves to the case of m 6= n, we see that the first term in

both Equations (3.8) and (3.10) cancel due to the orthogonality of the eigenfunc-

tions. We will further specify that ∆x is small and therefore second and higher

order terms in these expansions are negligible. Under these assumptions we see

that

〈un(z, x+ ∆x), um(z, x)〉 ≈ 〈u′n(z, x), um(z, x)〉∆x

m 6= n

(3.11)
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and

〈un(z, x−∆x), um(z, x)〉 ≈ −〈u′n(z, x), um(z, x)〉∆x.

m 6= n

(3.12)

Taking into account Equations (3.11) and (3.12), we finally arrive at the first

desired property:

〈un(z, x+ ∆x), um(z, x)〉 ≈ −〈un(z, x−∆x), um(z, x)〉.

m 6= n

(3.13)

This property states that for modes of mixed index (i.e. cross coupling) the forward

and backward inner product differ by a sign. A similar procedure can be applied

to the case m = n, leading to the second desired property between the forward

and backward inner products:

〈un(z, x+ ∆x), un(z, x)〉 ≈ −〈un(z, x−∆x), un(z, x)〉+ 2. (3.14)

In deriving the third property of interest we must first recall the Leibniz

Integral Rule, which provides the value of the derivative of an integral whose

limits of integration are a function of the variable of differentiation. The formal

statement of this rule says that if a function f(z, x) exists such that its partial

derivative with respect to the variable x exists and is continuous then,

∂

∂x

(∫ b(x)

a(x)

f(z, x) dz

)
= f(b(x), x) • b′(x)− f(a(x), x) • a′(x) +

∫ b(x)

a(x)

∂

∂x
f(z, x) dz.

(3.15)

In applying this rule to acoustic propagation via modes in a range-dependent

waveguide we note that a(x) = 0 and b(x) = H(x), where we recall that H(x) is

the range-dependent bottom depth function. Next, we let the function in Equation

(3.15) be u2
n(z, x), such that the integral on the left side of this equation is the inner

product 〈un, un〉. In doing so, we recognize that this integral evaluates to unity

due to orthogonality of the eigenfunctions and therefore the entire term vanishes.
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Applying the product rule for differentiation to the integrand on the right side of

Equation (3.15) and bringing the result over to the left side leads to the desired

property:

〈u′n(z, x), un(z, x)〉 = −1

2
u2
n(H(x), x) ·H(x). (3.16)

Note that in reference [1] the left side of Equation (3.16) is stated to be equal

to zero. This is due to the fact that variation in bottom depth with range can be

neglected when considering near-surface propagation in a deep ocean waveguide.

The effect of this assumption is most easily illustrated if we consider the simplified

case of an isovelocity acoustic wedge with pressure-release surface and rigid bottom.

For this case, the range-dependent eigenfunctions can be written as

un(z, x) =

√
2ρ

H(x)
sin

[(
n− 1

2

)
π

z

H(x)

]
, (3.17)

where density, ρ, is constant. The corresponding range-dependent eigenvalues in

this environment are given by the expression

kn(x) =

√(ω
c

)2

−
(
n− 1

2

)2(
π

H(x)

)2

. (3.18)

A closed-form expression can also be written for the range-dependent bottom depth

function in the wedge waveguide. Namely,

H(x) = H0 + x tan β, (3.19)

where H0 is the initial bottom depth at the source and β is the bottom slope angle.

Inserting Equation (3.17) and (3.19) into right side of Equation (3.16) leads to

〈u′n(z, x), un(z, x)〉 = − 1

H(x)
tan β. (3.20)

From this form of the property we can see that for a flat bottom (i.e. β = 0)

the right side of the equation vanishes. The implication of this property for small

values of ∆x is that the inner product in Equation (3.8) is approximately unity
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for the case m = n (i.e. direct coupling). This is due to the fact that all terms

on the right side of Equation (3.8) except for the first are approximately zero. If,

however, the bottom depth is range-dependent (i.e. β 6= 0) the term in Equation

(3.16) must be included when evaluating the inner product for direct coupling.

It is important to note that the range-expanded normal mode inner product

in Equation (3.8) describes the coupling between modes due to horizontal changes

in the environment encountered when taking a single step in range. This inner

product cannot be used to compute modes at successive range steps via Equation

(3.6) as the condition of orthogonality is lost after successive steps in range due to

estimation error accumulating in the approximated modes. Moreover, use of the

inner product in Equation (3.8) to estimate mode coupling at range x+∆x requires

prior knowledge of the amplitudes and shapes of the orthonormal eigenfunctions

corresponding to the modes at range x. Taking this into account, a method is

desired for resolving the mode amplitudes and shapes, which implements the inner

product in Equation (3.8) to account for non-adiabatic mode coupling at discrete

steps through the medium. Furthermore, it is desirable that this method maintains

analytical rigor and computational efficiency so as to remain compatible with real-

time or near real-time applications. In the next section a discretization technique

for the range-dependent medium is developed that provides a way forward.

3.3 Discretization of the Range-Dependent Medium

As previously stated, implementation of the inner product in Equation (3.8)

for estimating non-adiabatic mode coupling requires prior knowledge of the am-

plitudes and shapes of the normal modes associated with the range-dependent

acoustic medium. Once the modes have been resolved, we then need a means for

implementing the inner product to account for the energy transport down range

as a set of acoustic waves propagates through the medium. To address the resolu-
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tion of the modes a novel discretization approach is proposed whereby the general

range-dependent environment is approximated by a series of connected simpler

range-dependent subenvironments. These subenvironments are chosen such that

their horizontal variability is simple enough to be captured within closed-form ex-

pressions for the eigenfunctions and eigenvalues corresponding to the modes that

exist within each environment.

As an example, consider a hypothetical environment with constant sound

speed and general range-dependent bottom depth, as depicted in Figure (3.1a).

For simplicity of discussion we will further specify that this environment have a

pressure-release surface and rigid bottom. Applying the proposed discretization

technique, this environment may be approximated by a series of acoustic wedges as

depicted in Figure(3.1). As discussed in Section (3.2), the range-dependent eigen-

functions for the isovelocity acoustic wedge with pressure-release surface and rigid

bottom are given by the expression in Equation (3.17) and the range-dependent

eigenvalues are given by Equation (3.18). Use of these expressions allows for the

range-expanded normal mode inner product in Equation (3.8) to be computed in

closed form for each of the acoustic wedges used to approximate the general en-

vironment. The terms of the range-expanded normal mode inner product for the

acoustic wedge are given by the following closed-form expressions:

For m = n:

〈un(z, x), un(z, x)〉 = 1 (3.21)

〈u′n(z, x), un(z, x)〉 = − 1

H
tan β (3.22)

〈u′′n(z, x), un(z, x)〉 =

(
7

4
− 1

3

(
n− 1

2

)2

π2

)
H−2 tan2 β, (3.23)

For m 6= n:
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〈un(z, x), um(z, x)〉 = 0 (3.24)

〈u′n(z, x), um(z, x)〉 = (−1)(m+n) (2n− 1)2

2H(m− n)(m+ n− 1)
tan β (3.25)

〈u′′n(z, x), um(z, x)〉 = (−1)(m+n−1) (2n− 1)2

2H2
(3.26)

×
[

3

(m− n)(m+ n− 1)
+

(m+ n− 1)2 + (m− n)2

(m− n)2(m+ n− 1)2

]
× tan2 β.

Additionally, each of the subenvironments used in this discretization are fully

specified by the parameter β, the bottom slope angle, once the initial bottom depth

at the acoustic source is known. This is evident through observance of the expres-

sion for the bottom depth function, H(x), in Equation (3.19). Application of this

discretization approach to more general environments necessitates thought as one

must choose the subenvironments such that all mechanisms for range-dependence

are captured in closed-form expressions for the eigenfunctions and eigenvalues cor-

responding to the modes of each environment. Once this is accomplished, however,

significant computational gains are achieved as mode coupling is calculated via

closed-form algebraic expressions. This differs from direct approaches to solving

the range-dependent wave equation, which require numerically solving the inte-

grals in Equations (2.58) and (2.59) to obtain coupling coefficients. An additional

benefit of this approach is the elimination of the need to resolve the eigenval-

ues numerically, a computationally expensive problem that exists in many other

solutions.

We now desire a method for incorporating the closed-form solutions for the

range-expanded normal mode inner product obtained from this discretization ap-

proach into a calculation of energy transport through the range-dependent envi-

ronment due to an acoustic excitation. To accomplish this we let any one of the

subenvironments previously discussed (e.g. the wedge subenvironments in Fig-

52



c(z) = c
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δ = 1; 2; :::; 9

(b)

Figure 3.1: (a) Environment with general range-dependent bottom depth (b) Ap-
proximation of the environment in (a) via a series of connected wedge subenvi-
ronments. Each subenvironment is defined by the parameter βδ, its bottom slope
angle. Eigenfunctions and eigenvalues for each subenvironment are given in closed-
form by Equations (3.17) and (3.18).
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ure(3.1)) occupy the range interval [α1, α2]. We then subdivide this interval into

a number of subintervals defined by the boundary points x = xν , ν = 0, 1, 2, ..., τ

and consider a general range-dependent function fn(x) that describes the environ-

ment and is defined on this range. Next, we shall approximate the function fn(x)

by a series of step functions fnν = fn(xν) as depicted in Figure (3.2). The range

subintervals corresponding to constant values of the function fn(x) will henceforth

be referred to as regions. Note that it is always possible to relate the value of fn

...

...

...

...

fn1

fn;ν−1 fn;τ−1

x1 = α1 x2 xν−1 xν xτ = α2xτ−1

Figure 3.2: Stepwise discretization of subenvironment

in one region to that of an adjacent region via an expansion in range, i.e.:

fn,ν+1 = fnν + f ′nν∆x+
1

2
f ′′nν(∆x)2 + ... . (3.27)

To illustrate the method we consider the case of two propagating modes and

note that the results can be generalized to N modes. We will denote the coefficients

of reflection at the interface located at x = xν by An,ν−1 and the coefficients of

transmission by Bnν , where n = 1, 2 is the mode index. Given this notation, the

incident potential function at a subinterval interface x = xν is then:

Φ̂ν−1(x, z) = B1,ν−1e
ik1,ν−1xu1,ν−1(z) +B2,ν−1e

ik2,ν−1xu2,ν−1(z). (3.28)

54



This function will give rise to a transmitted set of waves Φ̂ν(x, z) in the region

xν ≤ x < xν+1, and a reflected set, Φ̂∗ν−1(x, z), for x < xν traveling to the left:

Φ̂ν(x, z) = B1νe
ik1νxu1ν(z) +B2νe

ik2νxu2ν(z) (3.29)

Φ̂∗ν−1(x, z) = A1,ν−1e
−ik1,ν−1xu1,ν−1(z) + A2,ν−1e

−ik2,ν−1xu2,ν−1(z). (3.30)

Note, to simplify the discussion it has been assumed that the first region of interest

is sufficiently far away from the source of the acoustic excitation such that the

wavefronts are planar. The constants Bnν and Anν of our incident, reflected, and

transmitted waves are to be determined from the following continuity conditions:

Φ̂ν−1(xν , z) + Φ̂∗ν−1(xν , z) = Φ̂ν(xν , z) (3.31)

Φ̂′ν−1(xν , z) + Φ̂∗′ν−1(xν , z) = Φ̂′ν(xν , z), (3.32)

where Equation (3.31) is continuity of the total potential and Equation (3.32)

is continuity of the normal derivative, each at the interface located at x = xν .

Figure (3.3) depicts this stepwise discretization approach, including an illustration

of energy transport through the discretized waveguide. Recalling Equation (3.6),

Φ̂0(x; z)

Φ̂
∗

0
(x; z)

Φ̂1(x; z) Φ̂ν−1(x; z)

Φ̂
∗

ν−1
(x; z)

Φ̂ν(x; z)

...

...

...

...

fn1

fn;ν−1 fn;τ−1

x1 = α1 x2 xν−1 xν xτ = α2

Φ̂τ−1(x; z)

xτ−1

Figure 3.3: Energy transport through the discretized environment

we see that the relation between eigenfunctions in subinterval ν − 1 and ν is given
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by:

u1,ν−1 = 〈u1,ν−1, u1ν〉u1ν + 〈u1,ν−1, u2ν〉u2ν (3.33)

u2,ν−1 = 〈u2,ν−1, u1ν〉u1ν + 〈u2,ν−1, u2ν〉u2ν . (3.34)

Substituting these expressions into the continuity conditions and equating coeffi-

cients of u1ν and u2ν yields a coupled set of difference equations for the coefficients

of the reflected and transmitted waves:

B1νe
ik1νxν =

[
B1,ν−1e

ik1,ν−1xν + A1,ν−1e
−ik1,ν−1xν

]
〈u1,ν−1, u1ν〉 (3.35)

+
[
B2,ν−1e

ik2,ν−1xν + A2,ν−1e
−ik2,ν−1xν

]
〈u2,ν−1, u1ν〉

k1νB1νe
ik1νxν = k1,ν−1

[
B1,ν−1e

ik1,ν−1xν − A1,ν−1e
−ik1,ν−1xν

]
〈u1,ν−1, u1ν〉 (3.36)

+ k2,ν−1

[
B2,ν−1e

ik2,ν−1xν − A2,ν−1e
−ik2,ν−1xν

]
〈u2,ν−1, u1ν〉

B2νe
ik2νxν =

[
B1,ν−1e

ik1,ν−1xν + A1,ν−1e
−ik1,ν−1xν

]
〈u1,ν−1, u2ν〉 (3.37)

+
[
B2,ν−1e

ik2,ν−1xν + A2,ν−1e
−ik2,ν−1xν

]
〈u2,ν−1, u2ν〉

k2νB2νe
ik2νxν = k1,ν−1

[
B1,ν−1e

ik1,ν−1xν − A1,ν−1e
−ik1,ν−1xν

]
〈u1,ν−1, u2ν〉 (3.38)

+ k2,ν−1

[
B2,ν−1e

ik2,ν−1xν − A2,ν−1e
−ik2,ν−1xν

]
〈u2,ν−1, u2ν〉.

Here, Equations (3.35) and (3.36) were obtained by equating the coefficients of

u1ν , while Equations (3.37) and (3.38) were obtained by equating the coefficients

of u2ν .

The coupled system consisting of Equations (3.35)-(3.38) provides a path

toward a solution for energy transport through the discretized range-dependent

acoustic environment for which closed-form expressions for the range-expanded

normal mode inner product may be used to compute mode coupling. This system

is, however, complicated and does not provide a direct means for implementing the

desired solution into a computational model for acoustic propagation prediction.

Fortunately, simplification of this system of equations is possible by applying the
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previously derived properties of the range-expanded normal mode inner product

and making use of a set of asymptotic identities to be developed in the next section.

3.4 Asymptotic Identities

Recalling the range-expansion representation in Equations (3.4) and (3.5), a

set of asymptotic identities relating the eigenvalues and eigenfunctions in adjacent

regions in the discretized medium may be developed. To derive these identities

we let kn,ν−1 and un,ν−1 correspond to the eigenvalue and eigenfunction associated

with mode n at range x, which exists in region ν− 1. Similarly, we let knν and unν

correspond to the eigenvalue and eigenfunction associated with mode n at range

x+∆x, which exists in region ν. Given this notation, we first consider the relation

knν +kn,ν−1. Applying the range expansion in Equations (3.4) to the term knν and

dropping terms higher than second order we obtain the expression:

knν + kn,ν−1 ≈ 2kn(x) + k′n(x)∆xν +
1

2
k′′n(x)(∆xν)

2. (3.39)

Following a similar procedure, the relations

knν − kn,ν−1 ≈ k′n(x)∆xν +
1

2
k′′n(x)(∆xν)

2 (3.40)

and

kn,ν−1 − knν ≈ −k′n(x)∆xν +
1

2
k′′n(x)(∆xν)

2 (3.41)

may also be obtained.

Next, we apply the range expansion in Equation (3.5) to the term unν to

obtain the following two expressions for the range-expanded normal mode inner

product:

〈unν , um,ν−1〉 ≈ 〈u′n(z, x), um(z, x)〉∆xν

+
1

2
〈u′′n(z, x), um(z, x)〉(∆xν)2, m 6= n

(3.42)
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and

〈unν , un,ν−1〉 ≈ 1 + 〈u′n(z, x), un(z, x)〉∆xν

+
1

2
〈u′′n(z, x), un(z, x)〉(∆xν)2.

(3.43)

Applying the Bachmann-Landau notation developed in Section (1.2), the following

asymptotic identities may now be established

knν + kn,ν−1 = O [1]

knν − kn,ν−1 = O [∆xν ]

kn,ν−1 − knν = O [∆xν ]

〈unν , um,ν−1〉 = O [∆xν ]

〈unν , un,ν−1〉 = 1 +O [∆xν ]


m 6= n. (3.44)

These identities will be utilized in simplifying the system of coupled difference

equations described by Equations (3.35)-(3.38).

3.5 Asymptotic Solution

In deriving a solution to the system in Equations (3.35)-(3.38), we will first

derive expressions for the reflection coefficients A1,ν−1 and A2,ν−1 that occur at

the interface x = xν of our two-mode example. We wish to obtain expressions

for these coefficients in terms of the transmission coefficients B1,ν−1 and B2,ν−1 as

this will allow for a recursive means of computing the coefficients in any region

given knowledge of the initial transmission coefficients in the first region. To solve

for the reflection coefficients we begin by multiplying Equation (3.35) by k1ν and

subtracting Equation (3.36) from the resulting expression. Similarly, we multiply

Equation (3.37) by k2ν and subtract from it Equation (3.38). These operations
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result in two intermediate equations:

[
A1,ν−1e

−ik1,ν−1xν (k1ν + k1,ν−1) +B1,ν−1e
ik1,ν−1xν (k1ν − k1,ν−1)

]
〈u1,ν−1, u1ν〉

+
[
A2,ν−1e

−ik2,ν−1xν (k1ν + k2,ν−1) +B2,ν−1e
ik2,ν−1xν (k1ν − k2,ν−1)

]
〈u2,ν−1, u1ν〉

= 0

(3.45)[
A1,ν−1e

−ik1,ν−1xν (k2ν + k1,ν−1) +B1,ν−1e
ik1,ν−1xν (k2ν − k1,ν−1)

]
〈u1,ν−1, u2ν〉

+
[
A2,ν−1e

−ik2,ν−1xν (k2ν + k2,ν−1) +B2,ν−1e
ik2,ν−1xν (k2ν − k2,ν−1)

]
〈u2,ν−1, u2ν〉

= 0.

(3.46)

To solve for A1,ν−1 we eliminate A2,ν−1 from these expressions by mul-

tiplying Equation (3.45) by (k2ν + k2,ν−1)〈u2,ν−1, u2ν〉 and Equation (3.46) by

(k1ν + k2,ν−1)〈u2,ν−1, u1ν〉 and subtracting the two resulting expressions. This leads

to the expression:

A1,ν−1e
−ik1,ν−1xν

[
(k1ν + k1,ν−1)(k2ν + k2,ν−1)〈u1,ν−1, u1ν〉〈u2,ν−1, u2ν〉

− (k2ν + k1,ν−1)(k1ν + k2,ν−1)〈u1,ν−1, u2ν〉〈u2,ν−1, u1ν〉
]

+B1,ν−1e
ik1,ν−1xν

[
(k1ν − k1,ν−1)(k2ν + k2,ν−1)〈u1,ν−1, u1ν〉〈u2,ν−1, u2ν〉

− (k2ν − k1,ν−1)(k1ν + k2,ν−1)〈u1,ν−1, u2ν〉〈u2,ν−1, u1ν〉
]

+B2,ν−1e
ik2,ν−1xν

[
(k1ν − k2,ν−1)(k2ν + k2,ν−1)〈u2,ν−1, u1ν〉〈u2,ν−1, u2ν〉

− (k2ν − k2,ν−1)(k1ν + k2,ν−1)〈u2,ν−1, u2ν〉〈u2,ν−1, u1ν〉
]

= 0.

(3.47)

To simplify Equation (3.47) we apply the asymptotic identities given in Equation

(3.44) and recall that ∆xν is small and therefore it is reasonable to eliminate terms

of O [(∆x)2] and smaller. In doing so and dividing by (k2ν + k2,ν−1), we arrive at
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the following simplified equation:

A1,ν−1e
−ik1,ν−1xν (k1ν + k1,ν−1)〈u1,ν−1, u1ν〉〈u2,ν−1, u2ν〉

+B1,ν−1e
ik1,ν−1xν (k1ν − k1,ν−1)〈u1,ν−1, u1ν〉〈u2,ν−1, u2ν〉

+B2,ν−1e
ik2,ν−1xν (k1ν − k2,ν−1)〈u2,ν−1, u1ν〉〈u2,ν−1, u2ν〉 = 0.

(3.48)

Next, we recognize that

k1ν + k1,ν−1 = 2k1,ν−1 + (k1ν − k1,ν−1)

= 2k1,ν−1 +O [∆xν ]

(3.49)

and

k1ν − k2,ν−1 = (k1,ν−1 − k2,ν−1) + (k1ν − k1,ν−1)

= (k1,ν−1 − k2,ν−1) +O [∆xν ] .

(3.50)

If we now substitute into Equation (3.48) the expressions on the right side of

Equations (3.49) and (3.50) and again drop terms of O [(∆x)2] and smaller from

the resulting expression we arrive at the following asymptotic solution for the

reflection coefficient A1,ν−1:

A1,ν−1 =−B1,ν−1
(k1ν − k1,ν−1)

2k1,ν−1

e2ik1,ν−1xν

−B2,ν−1
(k1,ν−1 − k2,ν−1)

2k1,ν−1

ei(k1,ν−1+k2,ν−1)xν
〈u2,ν−1, u1ν〉
〈u1,ν−1, u1ν〉

.

(3.51)

To solve for A2,ν−1 we follow a similar procedure. We eliminate

A1,ν−1 from Equations (3.45) and (3.46) by multiplying Equation (3.45) by

(k2ν + k1,ν−1)〈u1,ν−1, u2ν〉 and Equation (3.46) by (k1ν + k1,ν−1)〈u1,ν−1, u1ν〉 and
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subtracting the two resulting expressions. This leads to:

A2,ν−1e
−ik2,ν−1xν

[
(k1ν + k2,ν−1)(k2ν + k1,ν−1)〈u2,ν−1, u1ν〉〈u1,ν−1, u2ν〉

− (k2ν + k2,ν−1)(k1ν + k1,ν−1)〈u2,ν−1, u2ν〉〈u1,ν−1, u1ν〉
]

+B1,ν−1e
ik1,ν−1xν

[
(k1ν − k1,ν−1)(k2ν + k1,ν−1)〈u1,ν−1, u1ν〉〈u1,ν−1, u2ν〉

− (k2ν − k1,ν−1)(k1ν + k1,ν−1)〈u1,ν−1, u2ν〉〈u1,ν−1, u1ν〉
]

+B2,ν−1e
ik2,ν−1xν

[
(k1ν − k2,ν−1)(k2ν + k1,ν−1)〈u2,ν−1, u1ν〉〈u1,ν−1, u2ν〉

− (k2ν − k2,ν−1)(k1ν + k1,ν−1)〈u2,ν−1, u2ν〉〈u1,ν−1, u1ν〉
]

= 0.

(3.52)

Once again, we utilize the asymptotic identities given in Equation (3.44) to simplify

the above expression by eliminating terms of O [(∆x)2] and smaller. After dividing

by (k1ν + k1,ν−1), this simplification leads to the expression

− A2,ν−1e
−ik2,ν−1xν (k2ν + k2,ν−1)〈u2,ν−1, u2ν〉〈u1,ν−1, u1ν〉

−B1,ν−1e
ik1,ν−1xν (k2ν − k1,ν−1)〈u1,ν−1, u2ν〉〈u1,ν−1, u1ν〉

−B2,ν−1e
ik2,ν−1xν (k2ν − k2,ν−1)〈u2,ν−1, u2ν〉〈u1,ν−1, u1ν〉 = 0.

(3.53)

Using similar arguments as those used in Equations (3.49) and (3.50) we can re-

place k2ν + k2,ν−1 in Equation (3.53) with 2k2,ν−1 +O [∆xν ] and k2ν − k1,ν−1 with

(k2,ν−1 − k1,ν−1) +O [∆xν ]. Eliminating any remaining terms that are smaller than

O [∆x] leads to the following asymptotic solution for A2,ν−1:

A2,ν−1 =−B1,ν−1
(k2,ν−1 − k1,ν−1)

2k2,ν−1

ei(k1,ν−1+k2,ν−1)xν
〈u1,ν−1, u2ν〉
〈u2,ν−1, u2ν〉

−B2,ν−1
(k2ν − k2,ν−1)

2k2,ν−1

e2ik2,ν−1xν .

(3.54)

To derive expressions for the transmission coefficients B1ν and B2ν for our two

mode example in terms of the coefficients B1,ν−1 and B2,ν−1 we follow a procedure
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similar to that for the reflection coefficients. First we multiply Equation (3.35) by

k1,ν−1 and add Equation (3.36) to the resulting expression. Similarly, we multiply

Equation (3.37) by k2,ν−1 and add to it Equation (3.38). Doing so, we arrive at

the intermediate equations:

B1νe
ik1νxν (k1,ν−1 + k1ν) = 2k1,ν−1B1,ν−1e

ik1,ν−1xν 〈u1,ν−1, u1ν〉

+

[
A2,ν−1e

−ik2,ν−1xν (k1,ν−1 − k2,ν−1)

+B2,ν−1e
ik2,ν−1xν (k1,ν−1 + k2,ν−1)

]
〈u2,ν−1, u1ν〉

(3.55)

and

B2νe
ik2νxν (k2,ν−1 + k2ν) =

[
B1,ν−1e

ik1,ν−1xν (k2,ν−1 + k1,ν−1)

+ A1,ν−1e
−ik1,ν−1xν (k2,ν−1 − k1,ν−1)

]
〈u1,ν−1, u2ν〉

+ 2k2,ν−1B2,ν−1e
ik2,ν−1xν 〈u2,ν−1, u2ν〉.

(3.56)

Next we substitute the known values of A1,ν−1 and A2,ν−1 from Equations (3.51)

and (3.54) into Equations (3.55) and (3.56). Doing so and solving Equations (3.55)

for B1ν we arrive at the expression:

B1ν = B1,ν−1
eik1,ν−1xν

eik1νxν (k1,ν−1 + k1ν)

×
[
2k1,ν−1〈u1,ν−1, u1ν〉

− (k2,ν−1 − k1,ν−1)(k1,ν−1 − k2,ν−1)

2k2,ν−1

〈u1,ν−1, u2ν〉
〈u2,ν−1, u2ν〉

〈u2,ν−1, u1ν〉
]

+B2,ν−1
eik2,ν−1xν

eik1νxν (k1,ν−1 + k1ν)

×
[
(k1,ν−1 + k2,ν−1)− (k2ν − k2,ν−1)(k1,ν−1 − k2,ν−1)

2k2,ν−1

]
〈u2,ν−1, u1ν〉.

(3.57)

We simplify Equation (3.57) by performing an order of magnitude analysis of

its terms using the asymptotic identities given in Equation (3.44) and eliminating

terms of O [(∆x)2] and smaller. This simplification yields the following asymptotic
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solution for B1ν :

B1ν =B1,ν−1
2k1,ν−1

(k1,ν−1 + k1ν)
ei(k1,ν−1−k1ν)xν 〈u1,ν−1, u1ν〉

+B2,ν−1
(k2,ν−1 + k1,ν−1)

2k1,ν−1

ei(k2,ν−1−k1ν)xν 〈u2,ν−1, u1ν〉.
(3.58)

To obtain a solution for B2ν we follow a similar procedure. We begin by

solving Equation (3.56) for B2ν , where A1,ν−1 and A2,ν−1 and are replaced with

their known values. This results in the expression:

B2ν = B1,ν−1
eik1,ν−1xν

eik2νxν (k2,ν−1 + k2ν)

×
[
(k2,ν−1 + k1,ν−1)− (k1ν − k1,ν−1)(k2,ν−1 − k1,ν−1)

2k1,ν−1

]
〈u1,ν−1, u2ν〉

+B2,ν−1
eik2,ν−1xν

eik2νxν (k2,ν−1 + k2ν)

×
[
2k2,ν−1〈u2,ν−1, u2ν〉

− (k1,ν−1 − k2,ν−1)(k2,ν−1 − k1,ν−1)

2k1,ν−1

〈u2,ν−1, u1ν〉
〈u1,ν−1, u1ν〉

〈u1,ν−1, u2ν〉
]
.

(3.59)

Yet again utilizing the asymptotic identities from Equation (3.44), we eliminate

terms of O [(∆x)2] and smaller and arrive at the following asymptotic solution for

B2ν :

B2ν =B1,ν−1
(k1,ν−1 + k2,ν−1)

2k2,ν−1

ei(k1,ν−1−k2ν)xν 〈u1,ν−1, u2ν〉

+B2,ν−1
2k2,ν−1

(k2,ν−1 + k2ν)
ei(k2,ν−1−k2ν)xν 〈u2,ν−1, u2ν〉.

(3.60)

The asymptotic expressions for the reflection and transmission coefficients

admit a convenient matrix formulation. To express the matrix form of these solu-

tions we begin by defining a reflection coefficient matrix, Rν , and a transmission

coefficient matrix, Tν :

Rν =


κRν11 e

2ik1,ν−1xν κRν12 e
i(k1,ν−1+k2,ν−1)xν

〈u2,ν−1, u1ν〉
〈u1,ν−1, u1ν〉

κRν21 e
i(k1,ν−1+k2,ν−1)xν

〈u1,ν−1, u2ν〉
〈u2,ν−1, u2ν〉

κRν22 e
2ik2,ν−1xν

 ,

(3.61)
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where

κRνmn =


−(kmν − km,ν−1)

2km,ν−1

m = n

−(km,ν−1 − kn,ν−1)

2km,ν−1

m 6= n

(3.62)

and

Tν =


κTν11e

i(k1,ν−1−k1ν)xν 〈u1,ν−1, u1ν〉 κTν12e
i(k2,ν−1−k1ν)xν 〈u2,ν−1, u1ν〉

κTν21e
i(k1,ν−1−k2ν)xν 〈u1,ν−1, u2ν〉 κTν22e

i(k2,ν−1−k2ν)xν 〈u2,ν−1, u2ν〉

 , (3.63)

where

κTνmn =


2km,ν−1

(km,ν−1 + kmν)
m = n

(km,ν−1 + kn,ν−1)

2km,ν−1

m 6= n.

(3.64)

This allows one to write the following recursive matrix expressions for the reflection

and transmission coefficients:(
A1,ν−1

A2,ν−1

)
= Rν

(
B1,ν−1

B2,ν−1

)
= Rν

ν−1∏
σ=1

Tσ

(
B10

B20

)
(3.65)

and (
B1ν

B2ν

)
= Tν

(
B1,ν−1

B2,ν−1

)
=

ν∏
σ=1

Tσ

(
B10

B20

)
, (3.66)

where B10 and B20 are the transmission coefficients corresponding to modes 1 and

2, respectively, in the region containing the acoustic source. If acoustic absorption

is considered negligible in this region both of these coefficients are equal to unity.

The recursive formulae in Equations (3.65) and (3.66) represent the principle

result of the presented theory. These expressions provide a means of mathemati-

cally modeling energy transport through a range-dependent shallow water acoustic

medium where non-adiabatic coupling between modes is estimated via the range-

expanded normal mode inner product discussed in Section (3.2). Moreover, this
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difference equations solution is easily implemented into a discrete computing de-

vice thus making it suitable for approximating non-adiabatic mode coupling in a

computational model for acoustic propagation prediction. When paired with the

discretization approach discussed in Section (3.3), this solution has the potential

to provide significant computational savings over currently existing coupled mode

solutions. In particular, the ability to compute mode coupling via closed-form al-

gebraic expressions offers significant savings as it avoids the need for numerically

solving an inner product integral at each of the interfaces separating the horizontal

regions throughout the medium. The elimination of the eigenvalue search problem

is an additional benefit of this asymptotic coupled mode solution, as mentioned

previously.

The remaining goal is to extend this solution to study a particular problem

of interest: mode coupling in shallow water due to horizontally-variable bottom

depth. To accomplish this we will first adapt the solution to allow for non-planar

wavefronts due to short range (i.e. near-source) propagation. This will allow for

the formulation of a transmission loss equation for propagation in a cylindrical

waveguide. Following this, adjustments will be made to the solution to ensure

numerical stability. Finally, transmission loss estimates produced via this asymp-

totic stepwise coupled mode solution will be compared to benchmark solutions for

several cases of interest.

3.6 Cylindrical Wave Extension

In many propagation scenarios of interest the plane wave assumption made

in Section (3.3) is insufficient. This is due to the fact that at short distances from

the acoustic source the wavefronts of an omnidirectional point source are typically

spherical or cylindrical depending on the nature of the waveguide. For the case

of upslope propagation in shallow water this is particularly true as the constant
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decrease in waveguide depth causes the modes of vibration of the acoustic medium

to become rapidly cutoff, restricting the propagation scenario to shorter ranges.

To extend the solution in Section (3.5) to these scenarios one must reformulate

the expressions for the incident, reflected, and transmitted waves in Equations

(3.28)-(3.30) to accommodate non-planar wavefronts.

Going forward, we will assume that acoustic propagation is occurring in a

shallow water cylindrical waveguide with azimuthal symmetry. The wave equation

governing the propagation of acoustic energy in this scenario was discussed in

Section (2.2), and the coupled equation governing energy transport with range

was discussed in Section (2.6). Applying the discretization technique of Section

(3.3) to this waveguide, the incident potential function representing the set of

waves arriving at an interface located at range r = rν due to an acoustic excitation

created by a source located at r = 0 is given by the expression

Φ̂ν−1(r, z) =
iṁ√

8πrρ(z)
e−iπ/4

{
B1,ν−1e

ik1,ν−1r
u1,ν−1(zs)

ρ(zs)
√
k1,ν−1

u1,ν−1(z)

+B2,ν−1e
ik2,ν−1r

u2,ν−1(zs)

ρ(zs)
√
k2,ν−1

u2,ν−1(z)

}
,

(3.67)

where the asymptotic solution in Equation (2.25) of Section (2.2) has been used

to inform the expression in Equation (3.67). As was the case for the original

derivation, we will limit ourselves to two modes to simplify the discussion but

note that the method is, again, generalizable to N modes. As in the plane wave

example, the incident set of waves given by Equation (3.67) will give rise to a set

of transmitted waves Φ̂ν in the region rν ≤ r < rν+1, and a reflected set, Φ̂∗ν−1, for

r < rν traveling to the left. These waves are described by the expressions

Φ̂ν(r, z) =
iṁ√

8πrρ(z)
e−iπ/4

{
B1νe

ik1νr
u1ν(zs)

ρ(zs)
√
k1ν

u1ν(z)

+B2νe
ik2νr

u2ν(zs)

ρ(zs)
√
k2ν

u2ν(z)

} (3.68)
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and

Φ̂∗ν−1(r, z) = − iṁ√
8πrρ(z)

eiπ/4

{
A1,ν−1e

−ik1,ν−1r
u1,ν−1(zs)

ρ(zs)
√
k1,ν−1

u1,ν−1(z)

+ A2,ν−1e
−ik2,ν−1r

u2,ν−1(zs)

ρ(zs)
√
k2,ν−1

u2,ν−1(z)

} (3.69)

As was the case in Section (3.3), application of the continuity conditions given

by Equations (3.31) and (3.32) along with the relationship given by Equations

(3.33) and (3.34) leads to a coupled set of difference equations for the constants

Bnν and Anν of our incident, reflected, and transmitted waves. This system is

simplified following a procedure identical to that of Section (3.5), leading to the

following reflection and transmission coefficient matrices for our discretized cylin-

drical waveguide:

Rν =


κRν11

i
e2ik1,ν−1rν

κRν12

i
ei(k1,ν−1+k2,ν−1)rν

〈u2,ν−1, u1ν〉
〈u1,ν−1, u1ν〉

γRν12

κRν21

i
ei(k1,ν−1+k2,ν−1)rν

〈u1,ν−1, u2ν〉
〈u2,ν−1, u2ν〉

γRν21

κRν22

i
e2ik2,ν−1rν

 ,

(3.70)

where

γRνmn =
un,ν−1(zs)

um,ν−1(zs)

√
km,ν−1√
kn,ν−1

, m 6= n (3.71)

and

Tν =


κTν11e

i(k1,ν−1−k1ν)rν 〈u1,ν−1, u1ν〉γTν11 κTν12e
i(k2,ν−1−k1ν)rν 〈u2,ν−1, u1ν〉γTν12

κTν21e
i(k1,ν−1−k2ν)rν 〈u1,ν−1, u2ν〉γTν21 κTν22e

i(k2,ν−1−k2ν)rν 〈u2,ν−1, u2ν〉γTν22

 ,

(3.72)

where

γTνmn =


um,ν−1(zs)

umν(zs)

√
kmν√
km,ν−1

m = n

un,ν−1(zs)

umν(zs)

√
kmν√
kn,ν−1

m 6= n.

(3.73)

67



Here, the terms κRνmn and κTνmn are given by Equations (3.62) and (3.64), respec-

tively. Similar to the plane wave case, these matrices can be incorporated into the

recursive formulae given by Equations (3.65) and (3.66) to compute the reflection

and transmission coefficients at an interface corresponding to any region in the

discretized medium given knowledge of the transmission coefficients for the region

containing the acoustic source.

The reformulation of the transmission coefficients via the matrix in Equation

(3.72) allows for the definition of a forward transmission loss equation for the

discretized range-dependent cylindrical waveguide with azimuthal symmetry. This

transmission loss equation is given by the expression:

TL(r, z) = −20 log10

∣∣∣∣∣
√

2π

r

N∑
m=1

Bmνumν(z)
umν(zs)

ρ(zs)
√
kmν

eikmνr

∣∣∣∣∣; r ∈ [rν , rν+1),

(3.74)

where the terms Bmν are computed recursively by generalizing the results in Equa-

tions (3.66) and (3.72) to N modes. Equation (3.74) accounts for losses due to

cylindrical spreading in the waveguide as well as non-adiabatic mode coupling via

the transmission coefficients Bmν . While this equation is correct relative to the

physical assumptions made, we will see in the next section that adjustments are

necessary to ensure numerical stability of the solution for all ranges and depths.

3.7 Reformulation for Numerical Stability

When implementing the transmission loss solution given by Equation (3.74)

via Equations (3.66) and (3.72) into a discrete computing environment there are

two terms that require special attention to maintain numerical stability. The first

is the exponential term that appears in the entries of the transmission coefficient

matrix in Equation (3.72). The numerical instability in this term becomes obvious

if one rewrites the term as:

ei(kn,ν−1−kmν)rν = eikn,ν−1rν
[
e−ikmνrν

]
. (3.75)
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When the mode of index m in the above expression transitions from propagating to

evanescent, its associated eigenvalue, kmν , becomes purely imaginary. Under these

conditions, the exponential on the left side of this expression becomes numerically

unstable at large values of rν due to the fact that the term in brackets on the

right grows without bound. The instability in this term can be removed if we

distribute the exponential term from the forward transmission loss equation in

Equation (3.74) inside the expression for the transmission coefficient Bmν given by

Equations (3.66) and (3.72). Doing so, we see that the exponential term in the

entries of the transmission coefficient matrix become

eikn,ν−1rν
[
e−ikmνrν

]
× eikmνr = eikn,ν−1rν

[
eikmν(r−rν)

]
. (3.76)

Since rν corresponds to the range at the beginning of the horizontal region ν and

r corresponds to ranges within said region, we have that (r − rν) ≥ 0. As such,

the exponential term in Equation (3.76) is numerically stable since the term in

brackets on the right side of this equation decays exponentially with increasing

range from the interface located at r = rν .

The second numerically unstable term with which we must concern ourselves

is the eigenfunction ratio that appears in the entries of the matrix in Equation

(3.72). This term is written

un,ν−1(zs)

umν(zs)

√
kmν√
kn,ν−1

. (3.77)

It is clear from Equation (3.77) that for certain source depths (i.e. those cor-

responding to the zeros of the eigenfunction umν) the above term will become

undefined due to division by zero. To remove this instability we again turn our

attention to the forward transmission loss equation in Equation (3.74). If we dis-

tribute the term
(
umν(zs)/ρ(zs)

√
kmν
)

from this equation inside the expression for

the transmission coefficient Bmν given by Equations (3.66) and (3.72), the term in
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Equation (3.77) becomes:

un,ν−1(zs)

umν(zs)

√
kmν√
kn,ν−1

× umν(zs)

ρ(zs)
√
kmν

=
un,ν−1(zs)

ρ(zs)
√
kn,ν−1

. (3.78)

It is apparent from Equation (3.78) that this term is now stable for all source

depths.

Taking these results into account, we now wish to define a new set of expres-

sions for the numerically stable reformulation of the presented asymptotic stepwise

coupled mode solution. We will begin by defining the following expression corre-

sponding to the initial transmission coefficients existing in the horizontal partition

containing the acoustic source:

BS
m0 = Bm0e

ikm0r0
um0(zs)

ρ(zs)
√
km0

, (3.79)

where Bm0 are the initial transmission coefficients appearing in Equation (3.66).

Given this definition, the recursive matrix solution for the numerically stable trans-

mission coefficients is given by the expression

BS
1ν

BS
2ν

 = T Sν

BS
1,ν−1

BS
2,ν−1

 =
ν∏

σ=1

T Sσ

BS
10

BS
20

 , (3.80)

where

T Sν =


κTν11e

ik1ν(r−rν)〈u1,ν−1, u1ν〉 κTν12e
ik1ν(r−rν)〈u2,ν−1, u1ν〉

κTν21e
ik2ν(r−rν)〈u1,ν−1, u2ν〉 κTν22e

ik2ν(r−rν)〈u2,ν−1, u2ν〉

 .
(3.81)

Finally, we may define the following numerically stable equivalent of the forward

transmission loss equation in Equation (3.74):

TLS(r, z) = −20 log10

∣∣∣∣∣
√

2π

r

N∑
m=1

BS
mνumν(z)

∣∣∣∣∣; r ∈ [rν , rν+1), (3.82)
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where the terms BS
mν in the summation in Equation (3.82) are obtained by gener-

alizing the results of Equations (3.79)-(3.81) to N modes. Going forward we wish

to verify this result for several range-dependent bottom depth problems of interest.

3.8 Mode Turnaround and Eigenvalue Lag Distance

An additional numerical issue that requires special treatment when imple-

menting the presented solution is that of mode turnaround. Mode turnaround

occurs when a mode’s grazing angle begins to approach 90◦ in the vicinity of its

cutoff depth. Due to the stepwise nature of the approach presented here, this phe-

nomenon creates a discontinuity in the transmission coefficients computed via the

matrix in Equation (3.72). As discussed in Section (2.3), when a mode becomes

fully cutoff its eigenvalue becomes purely imaginary and thus its real part is zero.

To understand how this affects the transmission coefficient calculation we turn our

attention to the terms κTνnn, which appear as multipliers in the diagonal terms of

the matrix in Equation (3.72). Recalling Equation (3.64), these terms are given

by the expression:

κTνnn =
2kn,ν−1

(kn,ν−1 + knν)
. (3.83)

If we consider the case of upslope propagation, we see that the term knν in this

expression will become imaginary in the vicinity of mode n’s cutoff depth prior to

the term kn,ν−1, as the latter term lags the former by a distance of ∆rν−1. This

lag distance between the eigenvalues of the adjacent regions ν−1 and ν will create

a temporary peak in the term κTνnn in the vicinity of the range at which mode n

turns around. This peak will, in turn, create a discontinuity in the transmission

coefficient associated with mode n, as evident from the matrix in Equation (3.72).

Figure (3.4) provides a depiction of the lag distance between the eigenvalues kn,ν−1

and knν in the vicinity of a mode turning around in an upslope propagation sce-

nario. As can be seen in this figure, the real part of the eigenvalue knν becomes
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zero a short distance before that of the eigenvalue kn,ν−1. In Figure (3.5a) a plot

is provided of a mode’s grazing angle approaching 90◦ as it becomes cutoff in an

upsloping waveguide. The discontinuity created in the transmission coefficient as-

sociated with this mode is then depicted in Figure (3.5b). The result of the
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Figure 3.4: Depiction of eigenvalue lag distance in the vicinity of a mode’s
turnaround point in an upslope propagation scenario. As can be seen, the real
part of the eigenvalue knν becomes zero before that of the eigenvalue kn,ν−1 due
to the small distnace, ∆rν−1, separating the respective regions in which the two
eigenvalues exist.

discontinuity in the transmission coefficients as depicted in Figure (3.5b) is that

artificial peaks will appear in the transmission loss curves computed via Equation

(3.82) in the vicinity of mode cutoff depths. There are a number of viable ap-

proaches for removing these artificial peaks. A simple approach is to maintain a
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running average of the term κTνnn for each mode. These average values of κTνnn may

then be used as surrogate multipliers in the diagonal terms of the matrix given

by Equation (3.72) for range intervals containing mode cutoff depths. In Figure

(3.6a) a transmission loss curve produced using Equation (3.82) is provided for an

upslope propagation scenario. Distinct peaks can be seen in this figure as higher

order modes are cutoff due to the rapid decrease in waveguide depth. Figure (3.6b)

shows a corrected version of the transmission loss curve for this propagation sce-

nario where the peaks have been removed using the previously suggested moving

average method.
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CHAPTER 4

Verification of Theory

4.1 Background

To verify the efficacy of the presented theory a particular problem of interest

was chosen: modeling mode coupling due to horizontally-variable bottom depth

in a rigid-bottom waveguide. As discussed in Section (3.3), an environment with

general range-dependent bottom depth may be approximated by a series of con-

nected wedge subenvironments. Moreover, each wedge subenvironment is purely

specified by an initial bottom depth and a bottom slope angle. Taking this into

account, a set of test cases was constructed that spans all possible combinations of

two-slope propagation environments. It is proposed that the bottom depth for any

environment may be approximated by a combination of these two-slope scenarios.

To support this claim, one test case was constructed that consists of a bottom

depth profile approximated by seven slopes.

For all scenarios a sound speed in water of 1500 m s−1 and a water column

density of 1000 kg m−3 were chosen. To run these scenarios, a normal modes prop-

agation model was developed in MATLAB [1] that implements the discretization

technique described in Section (3.3). Output from this model is a set of trans-

mission loss curves produced using the forward transmission loss equation given

in Equation (3.82). Non-adiabatic mode coupling is accounted for in the model

through the recursive computation of transmission coefficients at discrete inter-

faces throughout the medium using Equations (3.80). Going forward, this model

will be referred to as the Asymptotic Stepwise Coupled Mode (ASCM) model.
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4.2 Comparison to Benchmark Solution

To verify the transmission loss estimates generated by the ASCM model, the

same propagation scenarios were modeled using COUPLE, a benchmark solution

for range-dependent problems developed by Evans [2], which was first discussed in

Section (2.7). To ensure that the rigid-bottom boundary condition was being

correctly represented in COUPLE, a test was performed whereby a rigid flat-

bottom propagation scenario described by Jensen, Kuperman, Porter & Schmidt

[3] was modeled repeatedly while increasing the sound speed and density in a

horizontal layer representing the rigid basement. The sound speed and density

for this basement layer were considered sufficient once no detectable difference

existed between the transmission loss curve generated by COUPLE and that given

in reference [3]. This resulted in the basement layer having a sound speed of

13 000 m s−1 and a density of 3500 kg m−3.

In what follows, two figures are provided for each propagation scenario mod-

eled using the ASCM and COUPLE solutions. The first figure provides a plot

of the bottom depth over range for each scenario. In this figure, the source and

receiver depths are also depicted using a circle and star, respectively. The sec-

ond figure provides a comparison of the transmission loss curves produced by the

ASCM and COUPLE models for each scenario. Above each of the figures addi-

tional information about the propagation scenario is provided. This information

includes the source frequency, f , the bottom slope angle, β, the fixed point (source)

depth, Fxd, and the moving point (receiver) depth, Mvd.
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4.3 Comparison to Parabolic Equation Solution

While the strong peak-to-peak agreement achieved with the benchmark so-

lution is sufficient for verifying the feasibility of the proposed coupled-mode ap-

proach, comparisons with solutions not based on normal mode theory were also

pursued. One such comparison was made with the Monterey-Miami Parabolic

Equation (MMPE) model developed by Smith [4]. The MMPE solution uses a

split-step Fourier algorithm to solve the parabolic wave equation. This algorithm

involves decomposing the acoustic field into a slowly modulating envelope function,

known as the PE field function, and a phase term, which oscillates at the acoustic

frequency of the source.

The use of recurrent Fast Fourier Transforms in the MMPE solution necessi-

tates approximating the transition over the water-sediment interface with a smooth

function. As such, the MMPE model did not allow for the representation of a

perfectly-rigid bottom boundary condition as used in the test cases described in

Section (4.2). To get around this limitation the source frequency was increased

from 25 Hz to 200 Hz, which greatly reduced, but did not eliminate, the loss off

acoustic energy to the sub-basement. Despite this difference in bottom boundary

conditions, appreciable agreement was obtained between the benchmark (COU-

PLE), ASCM, and MMPE solutions for this scenario. Figures (4.8a)-(4.8d) pro-

vide a three-way comparison of the transmission loss estimates produced by the

three solutions for the 2D seamount test case with a 200 Hz source. Figure (4.9)

provides a plot of the MMPE-predicted complex pressure field, which shows energy

losses in the MMPE pseudo-rigid basement.
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Figure 4.8: Comparison of transmission loss estimates between COUPLE, ASCM,
and MMPE propagation models for the high frequency 2D seamount scenario
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4.4 Comparison to 3D Finite Element Solution

As a final means of verification of the proposed coupled-mode solution, a

comparison was made to a three-dimensional Finite Element Model (FEM) con-

structed by the Applied Research Laboratories of the University of Texas at

Austin (ARL-UT). This model utilizes out-of-plane wavenumber decomposition

techniques, which involve a series of two-dimensional models to calculate the fully

three-dimensional acoustic field for longitudinally invariant environments [5, 6].

The geometry of the FEM-modeled environment consisted of an underwater sea

ridge, which was constructed by extending the two-dimensional seamount scenario

depicted in Figure (4.5) infinitely in a second horizontal dimension. As such, com-

parison to the FEM was achieved by taking a two-dimensional slice in-plane with

the acoustic source. Figures (4.10a)-(4.10b) provide a comparison of transmis-

sion loss estimates produced by the two-dimensional (i.e. COUPLE and ASCM)

solutions and the three-dimensional FEM.

Strong agreement was found between all three propagation solutions. The

ASCM and FEM solutions showed a stronger peak-to-peak agreement in the vicin-

ity of mode cutoff locations. Conversely, the ASCM and COUPLE solutions showed

stronger agreement at end range. Based on communication with investigators at

ARL-UT, this disagreement at +4.5 km was suggested to be due to a difference

in the predicted mode 1 energy on the downslope half of the ridge. Differences

between the solutions may also be attributed to three-dimensional modal diffrac-

tion and the backwards traveling field, neither of which were included in the two-

dimensional solutions. Despite these differences, the presented results suggest that

the ASCM solution provides an accurate estimate of the acoustic field in three-

dimensional environments with significant bathymetric variation.
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Figure 4.10: Comparison of 2D and 3D solutions for in-plane transmission loss
over a three-dimensional underwater sea ridge
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4.5 Discussion

Strong agreement was found between the transmission loss curves produced

by the ASCM and COUPLE models for all seven cases depicted in Figures (4.1)-

(4.7). Small discrepancies can be found between the two solutions for the upslope

propagation scenario depicted in Figure (4.1). These discrepancies correspond

to areas where the transmission coefficients in the ASCM calculation have been

corrected for mode turnaround points as discussed in Section (3.8). This same

disagreement is found in the first half of the transmission loss curve for the 2D

seamount scenario depicted in Figure (4.5). This is due to the fact that the scenario

in Figure (4.5) was created by replicating and reflecting the bottom slope for the

upslope scenario.

Some disagreement between the two models is also found in the vicinity of the

valley of the 2D canyon case depicted in Figure (4.6). This disagreement is again

contributed to the mode turnaround issue discussed in Section (3.8). In the case

of the 2D canyon, severe mode stripping occurs from 2.5 km to 3.5 km. Over this

range interval higher order modes transition into a propagating state as acoustic

energy propagates downslope and the increased waveguide depth moves away from

the cutoff depths of these modes. These newly propagating modes are, however,

quickly cutoff again as the energy radiates out of the valley of the canyon and up

the second slope.

The results depicted in Figure(4.7) for the general multi-slope propagation

scenario offers particular promise for the practical application of the presented

theory. In this scenario strong agreement is found between the ASCM and COU-

PLE solutions for a highly variable bottom depth profile over a large range interval.

These results support the previous conjecture that any bottom depth profile may

be approximated by a series of connected wedge subenvironments. Moreover, the
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asymptotic solution (i.e. ASCM) is seen to perform similarly to the full-integral

benchmark solution (i.e. COUPLE) for this more complicated environment. This

would suggest that the ASCM solution has the potential to offer comparable accu-

racy to the benchmark solution at less computational cost. Strong agreement with

the Parabolic Equation and three-dimensional Finite Element Model solutions dis-

cussed in Sections (4.3) and (4.4) further support the efficacy of the presented

asymptotic stepwise coupled-mode approach.
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CHAPTER 5

Conclusion

An asymptotic theory for estimating non-adiabatic acoustic mode coupling in

horizontally-variable shallow water environments has been presented. This theory

is based on a novel discretization of the range-dependent acoustic medium, which

allows for the computation of mode coupling via a range-expanded normal mode

inner product. Energy transfer due to an acoustic excitation is accounted for via a

difference equations approach that provides asymptotic solutions for transmission

and reflection coefficients at interfaces throughout the discretized acoustic environ-

ment. This approach is unique in that coupling across these interfaces is calculated

via closed-form algebraic expressions rather than inner product integrals. More-

over, the novel discretization approach associated with this method eliminates the

eigenvalue search problem.

A computational model was developed in MATLAB [1] that implements this

asymptotic stepwise coupled mode theory. Transmission loss curves produced by

this model for several test cases involving environments with range-dependent bot-

tom depth were compared to those produced by a benchmark model for range-

dependent problems developed by Evans [2]. Strong agreement was found between

the two models for all cases considered. For cases in which discrepancies existed

between the two solutions, these differences were attributed to an eigenvalue lag

distance that is inherent to the stepwise approach of the asymptotic solution in the

vicinity of mode turnaround points, as discussed in Section (3.8). Additional ver-

ification of the proposed theory was obtained through comparison to a Parabolic

Equation solution in Sections (4.3) and to a three-dimensional Finite Element

Model in Section (4.4).
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As discussed in Section (3.3), application of the discretization technique as-

sociated with the presented theory to general environments necessitates thought.

This is due to the fact that one must construct a set of subenvironments that

capture the range-dependence of the general environment via closed-form expres-

sions for the eigenfunctions and eigenvalues associated with the acoustic modes

of vibration of the medium. As shown in Section (3.3), range-dependence due to

horizontally-variable bottom depth may be approximated via a series of acoustic

wedges for which the desired closed-form expressions for the eigenfunctions and

eigenvalues have been stated. It is plausible that range-dependence due to sound

speed could be captured in a similar fashion by constraining each wedge suben-

vironment to ranges of constant gradient in the sound speed profile. This would,

however, require further analysis including re-derivation of the closed-form expres-

sions for the terms of the range-expanded normal mode inner product given by

Equations (3.21)-(3.26).

The inclusion of range-dependent sound speed into the current model would

allow for the modeling of more realistic environments and the ability to make

meaningful runtime comparisons with other solutions. Despite the omission of

these types of comparisons in the present work, it is the opinion of the author

that appreciable gains in runtime performance will be achieved due to the ability

to compute mode coupling via the evaluation of closed-form algebraic expressions

instead of inner product integrals. This is particularly evident if one considers the

number of range-independent steps necessary to accurately approximate a general

range-dependent environment. As non-adiabatic mode coupling must be accounted

for at the interfaces separating each of these steps, the multiplicity of the afore-

mentioned coupling calculation is significant.

There is room for improvement in the handling of the mode turnaround issue
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discussed in Section (3.8). While the proposed moving average solution success-

fully eliminates the artificial peaks introduced into the transmission loss curves

associated with this issue, the largest discrepancies between the asymptotic and

benchmark models occurred at ranges associated with mode cutoff. One potential

improvement on this issue may be to simply apply a more sophisticated smoothing

filter to the eigenvalue value ratio appearing in the transmission coefficient matrix

in Equation (3.81). Another approach would be to develop an adaptive range-step

algorithm that reduces range step size in the propagation code in the neighborhood

of mode cutoff depths. This would effectively reduce the eigenvalue lag distance

discussed in Section (3.8) and therefore potentially reduce or eliminate the discon-

tinuities in the transmission coefficients associated with mode turnaround.
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APPENDIX

Note on the Effects of Range-Dependent Bathymetry on Modal Group
Velocities

Mode coupling is a process that affects the amplitudes of the eigenfunctions

associated with the normal modes of propagation of an acoustic waveguide. As

such, it does not have a direct impact on modal phase or group velocities, which

are functions of the eigenvalues rather than the eigenfunctions. This said, both

mode coupling and perturbations in modal velocities originate due to environmen-

tal range-dependence. As such, these two physical phenomena share a common

source and are equally important in the understanding of wave propagation in

horizontally-variable acoustic media.

While conducting the research and development of the presented coupled-

mode theory and associated model a numerical study was performed on the effects

of horizontally-variable bottom depth on modal group velocities. To perform this

study, numerical models were constructed for three isovelocity waveguides: a flat-

bottom waveguide, an acoustic wedge with a bottom slope angle of −1◦, and

an acoustic wedge with a bottom slope angle of −2◦. The sound speed in each

waveguide was chosen to be 1500 m s−1 and the maximum waveguide depth was

chosen to be 200 m. To assess the relationship between frequency and group speed

an evenly-spaced frequency band from 40 Hz to 200 Hz was generated using a 5 Hz

frequency spacing.

Group velocities were computed for all modes and all frequencies at 1 m range

increments across a distance of 3 km in each waveguide. The mean of these samples

was then calculated, providing one range-averaged group velocity per mode, per

frequency for each of the three waveguides. Note that for a given mode in the

wedge waveguides, range increments at which the mode became cutoff and thus its
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eigenvalue became purely imaginary were not included in the averaging process.

Figures (A.1)-(A.3) provide depictions of the range-averaged group velocities and

grazing angles for modes 1, 3, and 7 for the three sample waveguides.

As is evident from the figures, increasing the bottom slope (i.e. reducing the

waveguide depth with range) results in a reduction in modal group speeds across

all frequencies. This “slowing down” of the modal envelope is most pronounced

at lower frequencies and smallest at higher frequencies. This phenomenon can

also be connected to mode grazing angle. That is, increasing the bottom slope

of the waveguide increases the mode grazing angles at all frequencies. As is the

case for group velocity, the perturbation in mode grazing angle is most pronounced

at lower frequencies and least pronounced at higher frequencies. If one considers

the relationship between frequency, waveguide depth, and mode cutoff, the effects

illustrated in Figures (A.1)-(A.3) suggest that the closer a mode comes to its cutoff

conditions (i.e. steep-angle and imaginary eigenvalue) the more “slowed down” it

becomes and therefore the greater the perturbation in its group speed relative to

the flat-bottom case.

The findings of this experiment are particularly significant for shallow wa-

ter applications of mode theory in which modal velocities are considered at low

frequencies. For example, models involving group velocity are often used in geoa-

coustic inversion applications to estimate sediment properties. In these applica-

tions it is desirable to excite the normal modes of the acoustic waveguide at steep

angles (i.e. at low frequencies near modal cutoffs) to maximize sediment pene-

tration. For flat or nearly flat waveguides it has been shown that the effects of

horizontally-variable sound speed on geoacoustic inversion is negligible as the per-

turbation in modal group velocities due to this variability is most pronounced at

higher frequencies [1]. As such, the assumption of range-independence is often
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made in these applications. The results shown here suggest that if the waveguide

has significant bathymetric variability, the perturbation in modal group velocity

is most pronounced in the vicinity of mode cutoff and therefore the assumption of

range-independence could introduce considerable error into the inversion process.
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Figure A.1: Comparison of mode 1 (a) group velocity and (b) grazing angle across
three waveguides with varied bottom slope angle
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Figure A.2: Comparison of mode 3 (a) group velocity and (b) grazing angle across
three waveguides with varied bottom slope angle
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Figure A.3: Comparison of mode 7 (a) group velocity and (b) grazing angle across
three waveguides with varied bottom slope angle
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