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Bottom trawlers land around 19 million tons of fish and invertebrates
annually, almost one-quarter of wild marine landings. The extent of
bottom trawling footprint (seabed area trawled at least once in a
specified region and time period) is often contested but poorly
described.We quantify footprints using high-resolution satellite vessel
monitoring system (VMS) and logbook data on 24 continental shelves
and slopes to 1,000-m depth over at least 2 years. Trawling footprint
varied markedly among regions: from <10% of seabed area in Aus-
tralian and New Zealand waters, the Aleutian Islands, East Bering Sea,
South Chile, and Gulf of Alaska to >50% in some European seas.
Overall, 14% of the 7.8 million-km2 study area was trawled, and
86% was not trawled. Trawling activity was aggregated; the most
intensively trawled areas accounting for 90% of activity comprised
77% of footprint on average. Regional swept area ratio (SAR; ratio
of total swept area trawled annually to total area of region, a metric
of trawling intensity) and footprint area were related, providing an
approach to estimate regional trawling footprints when high-
resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of
24 regions, there was>95% probability that>90% of seabedwas not
trawled. If SAR was 7.9, equal to the highest SAR recorded, there
was >95% probability that >70% of seabed was trawled. Footprints
were smaller and SAR was ≤0.25 in regions where fishing rates con-
sistently met international sustainability benchmarks for fish stocks,
implying collateral environmental benefits from sustainable fishing.

fisheries | effort | footprint | habitat | seabed

There has been sustained debate about the extent of bottom
trawling impacts on marine environments (1, 2). Both the scale
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and ecological consequences of trawl impacts have been high-
lighted, with suggestions that bottom trawls are “annually covering
an area equivalent to perhaps half of the world’s continental shelf”
(1). In contrast, fishing industry representatives often claim that
the scale of their impact is more limited, highlighting their tar-
geted use of well-defined fishing grounds rather than widespread
“ploughing” of the seabed (3). Robust quantification of the dis-
tribution and intensity of bottom trawling would provide an evi-
dence base to assess pressures on seabed habitats, to compare the
impacts of different fisheries, to characterize fisheries, and to es-
timate the extent of untrawled areas outside marine protected
areas (MPAs) and fisheries closures (4–9).
Distributions of trawling activity were traditionally reported at a

spatial scale of several hundred square kilometers and larger,
because these coarse scales were used for data collection and re-
cording (10). Activity mapped at coarse scales inevitably provides
a misleading picture of the spatial distribution of trawling, since
trawled areas combine with untrawled areas (11). Local and re-
gional studies have provided a higher-resolution view of activity
from positions in vessel logbooks, analyses of plotter data, analyses
of overflight data, or direct tracking of subsets of vessels. These
show that trawling distributions are often highly aggregated, but
coverage of vessels and areas was usually insufficient to map total
trawling distributions at the shelf sea scale (12).
The introduction of vessel monitoring systems (VMSs) as a

surveillance and enforcement tool revolutionized the study of
fishing activity and footprints, providing high-resolution informa-
tion on locations of individual fishing vessels and complete or al-
most complete coverage of many fleets (13–15). VMS data enable
management authorities to monitor whether a vessel is in an area
where it is permitted to fish. VMS data are also used by scientists to
show the locations and dynamics of fishing activity, usually based on
density distributions of position records or reconstructed tracks
(16–18). High-resolution descriptions of trawling activity from VMS
have already underpinned studies of fishing behavior and dynamics
(19, 20) and trawling impacts on species, habitats, and ecosystem
processes at regional scales (21–28), and they have provided indi-
cators of fishing pressure (4, 29). They have also supported marine
spatial planning (7, 9, 30, 31), including mapping fishing grounds
(32–35) and providing advice on siting MPAs (7, 33) and assess-
ment of MPA effects (13, 14). VMS data are often linked, vessel by
vessel, to the fishing gears that are deployed and catches that are
recorded (17).
High-resolution position data allow the aggregation of trawl-

ing to be assessed at multiple scales. Aggregation needs to be
accounted for when estimating trawling impacts, because re-
peated passes on a previously trawled seabed each have a smaller
impact than the first pass of a trawl on a previously untrawled
seabed (36). Analyses at finer scales will better identify aggre-

gation and the presence of untrawled areas (2), which have im-
portant implications for impact and recovery dynamics, and
reveal smaller trawled areas and lower trawling pressure than
analyses at coarser scales (37, 38). The scale at which the spatial
distribution of trawling activity can be shown to be random in a
given year is typically less than 5 km2 (12), but random trawling
activity tends to be uniformly spread at the same scale when data
are accumulated over multiple years (39).
An increasing number of regional analyses describe trawling

footprints based on VMS or high-resolution tow-by-tow observer
and logbook data (5, 9, 23, 40). VMS data provide advantages
over automatic identification system (AIS) data for measuring
the totality of these footprints, because VMS is usually required
for whole fleets and the use of VMS as a formal enforcement
tool means that attempts to stop transmissions are usually
spotted and rectified (41). Furthermore, vessel identification
codes recorded with VMS position data can be linked directly to
vessel identification codes used for recording information on
gear types and dimensions as well as catch or landings data (17,
42, 43). The main limitation of VMS data in relation to AIS is
the relatively low transmission rate (typically one position record
every 1 or 2 h), thus requiring the development of methods to
identify fishing activity and to interpolate tracks (44–46).
Systematic comparisons of the footprints of bottom trawl fish-

eries in those regions where the majority of all fishing vessels are
monitored using VMS or reporting tow-by-tow observer data
would provide an evidence base to resolve uncertainties about
the scale and intensity of bottom trawling and to underpin as-
sessments of the impacts of trawling on seabed habitats. Such
evidence is also necessary to effectively assess and manage the
environmental impacts of fishing methods and to address tradeoffs
given that bottom trawl fishing makes a substantial contribution
to human food supply. Data from the Food and Agriculture Or-
ganization of the United Nations (FAO) (47–49) suggest that
landings of fish, crustaceans, and mollusks from towed bottom
gears from 2011 to 2013 were 18.9–19.8 million t y−1, equating to
23.3–24.4% of mean annual marine wild-capture landings in the
same years (SI Appendix, Text S1).
Here, we collate and analyze VMS and logbook data to provide

standardized high-resolution estimates of bottom trawling foot-
prints on continental shelves and slopes to a depth of 1,000 m in
selected regions of Africa, the Americas, Australasia, and Europe.
In these analyses, bottom trawling refers to all towed gears making
sustained contact with the seabed, including beam and otter trawls
and dredges (50). We assess whether the aggregation of bottom
trawling activity is a consistent feature of trawl fisheries in dif-
ferent regions and describe how footprints are related to fisheries
landings, effort, and the status of fish stocks. We quantify a re-
lationship between trawling footprints and less complex measures
of total trawling activity. This relationship can be used to estimate
footprints for those areas of the world where high-resolution data
are not available and to predict how fishing footprints may evolve
in newly exploited areas given any proposed or projected level of
trawling effort (e.g., the Arctic).

Trawling Footprints
To estimate bottom trawling footprints, we obtained high-
resolution vessel position data accounting for 70–100% of all
known trawling activity over 2–6 y (usually 3 y, 2008–2010) in
each of 24 regions (Fig. 1, Table 1, and SI Appendix, Figs. S3–
S26 and Text S2). Footprints were defined as the area of seabed
trawled at least once in a specified region and time period, with
area trawled determined from gear dimensions and tow locations
(SI Appendix, Table S1 and Text S2). Trawling activity data were
collated and processed for regions spanning 7.8 million km2 of
seabed to depths of 1,000 m. Regions were excluded from the
analyses where trawling activity data provided <70% coverage of

Significance

We conducted a systematic, high-resolution analysis of bottom
trawl fishing footprints for 24 regions on continental shelves
and slopes of five continents and New Zealand. The proportion
of seabed trawled varied >200-fold among regions (from 0.4 to
80.7% of area to a depth of 1,000 m). Within 18 regions, more
than two-thirds of seabed area remained untrawled during
study periods of 2–6 years. Relationships between metrics of
total trawling activity and footprint were strong and positive,
providing a method to estimate trawling footprints for regions
where high-resolution data are not available. Trawling foot-
prints were generally smaller in regions where fisheries met
targets for exploitation rates, implying collateral environmen-
tal benefits of effective fisheries management.

E10276 | www.pnas.org/cgi/doi/10.1073/pnas.1802379115 Amoroso et al.
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total trawling activity (SI Appendix; excluded regions are listed in
SI Appendix, Figs. S27–S34, Table S2, and Text S3).
Trawling footprints may be estimated in at least three ways.

All of these rely on gridding the region used by fisheries at a
defined scale and then generating measures of the area trawled
within every grid cell by overlaying information on the positions
of fishing tows. Areas trawled in every grid cell are then summed
across the region. The approaches differ in how they estimate the
area trawled within each grid cell. Approach A involves sum-
ming the area of any grid cells in which any trawling activity is
recorded in a defined time period (usually 1 y), although some of
the area within a grid cell may not have been trawled in that time
period. Approach B involves summing the area trawled within
each grid cell in a defined time period, where the area trawled is
estimated based on the assumption that the number of times that
any point within the cell is trawled is randomly (Poisson) dis-
tributed (5). Approach C involves summing the area trawled
within each grid cell in a defined time period, where the area
trawled is estimated based on the assumption that trawling is
uniformly spread within the cell.
With approach A, footprint estimates depend very strongly

on grid resolution. As grid cell area is increased from 1–3 km2

[the scale at which trawling is usually distributed randomly within
cells (12)] to ≥104 km2, the estimated area of trawling footprints
increased substantially (Fig. 1). Median increases in footprints
were 34, 63, 48, and 57% in Europe, Africa, the Americas, and
Australasia, respectively, at depths of 0–200 m and 41, 33, 56,
and 55%, respectively, at depths of 200–1,000 m. Thus, at
coarse resolutions of analysis, such as the 0.5° grid cells (area
approximately 3,100 km2 at the equator) that have sometimes
been used to show trawling distributions, trawling footprints will
be markedly overestimated, and the extent of untrawled areas
will be underestimated.
Although reductions in the scale of grid cell-based analyses to

around 1 km2 will characterize trawling footprints more accu-
rately, these footprint estimates will still be larger than those
resulting from more detailed analysis of the distribution of in-
dividual trawling tracks within cells. This is because it is impos-
sible, or statistically unlikely, that a grid cell is trawled in its
entirety when trawling intensity is low. Approaches B and C di-
rectly address this issue. Approach B provides a more accurate

estimate of annual trawling footprint, because the distribution of
trawling at any point within cells of close to 1-km2 area has been
shown to be random on annual timescales (39). Approach C is
more appropriate to estimate aggregate footprint over many
years, because trawling within cells tends to spread more uni-
formly as many years of trawl location data are aggregated. Thus,
annual mean footprint is better approximated by approach B
than by approach C, while the multiyear footprint is better ap-
proximated by approach C than by approach B.
To estimate the trawled area within grid cells, we first calcu-

lated the annual swept area ratio (SAR) for each grid cell. In
general, SAR is defined as the total area swept by trawl gear over
a defined time period (usually 1 y) divided by the total seabed area
at a defined spatial scale (usually from grid cell to region). The
total area swept within a defined area (e.g., a grid cell) is calcu-
lated as the product of trawling time, towing speed, and dimen-
sions of gear components contacting the seabed (42) summed over
the different types of trawl gear operating in the area. The esti-
mated mean annual SAR in each grid cell is then used as the
mean of an assumed random distribution (Poisson; approach B)
or uniform spread (approach C) of trawling within each cell to
determine the proportion of grid cell area that was trawled at least
once (i.e., contributes to footprint area) or not trawled.
When using the 1-km2 cell-based approach (approach A) to

estimate the trawling footprints in the study period, 33.6% of the
total area for which we collated ≥70% of bottom trawling activity
(7.8 million km2 of seabed at depths of 0–1,000 m) was trawled
and 66.4% was untrawled. When we accounted for untrawled
areas inside trawled grid cells assuming random trawling distri-
butions (approach B), trawled area fell to just 11.7%, and
untrawled area was 6.9 million km2 or 88.3% of total area. When
we assumed uniform trawling distributions within trawled cells
(approach C), trawled area was 14.0%, and untrawled area was
86.0% (6.7 million km2) of total area. The overall pattern was
consistent with regional patterns, with approach A yielding
higher estimates of footprint than approaches B and C (Table 1
and SI Appendix, Fig. S35). We primarily report footprints based
on the uniform approach C, as these best approximate the ag-
gregate footprint of trawling over many years.
The overall footprint of trawling to a depth of 1,000 m, based

on the assumption of uniform spread within grid cells (approach
C), was ≤10% of seabed area in 11 of 24 regions (Fig. 2 and
Table 1). A larger fraction, from 10 to 30% of the shelf and
upper slope area to 1,000-m depth, was trawled in the Irish Sea,
North Benguela Current, South Benguela Current, Argentina,
East Agulhas Current, and west of Scotland. The remaining
seven regions, all in the northeast Atlantic and Mediterranean,
had >30–81% of the shelf area trawled. The untrawled area
was >50% in 20 of 24 regions. Some of the largest regions that
we considered were among the least intensively trawled. Thus,
trawling footprint in the largest region, New Zealand, was 8.6%,
while footprints in Argentina, North Australian Shelf, and North
West Australian Shelf (ranked two to four by area) were 17.6,
2.2, and 1.6, respectively (Table 1 and SI Appendix, Fig. S36).
Concentration of trawling activity within footprints varied among
regions. The most intensively trawled area accounting for 90% of
total trawling activity (calculated with the uniform spread as-
sumption; approach C) ranged from 0.4 to 60% of the area of the
regions and comprised 52–100% of the total trawling footprint area
within regions (mean 78%) (Table 1 and SI Appendix, Fig. S37).
We focus on approach C when making these comparisons, because
this approach provides more reliable estimates of trawling foot-
prints on the multiyear timescales, which are relevant when con-
sidering impact and recovery dynamics of most seabed biota (50).
The frequency of trawling is another relevant metric when

assessing trawling impacts on the status of seabed biota (50). We
expressed the frequency of trawling disturbance as the average
interval between trawling events for each of the trawled grid
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cells. This metric is the inverse of the cell-specific SAR. More
than one-half of the seabed area is trawled at an interval of at
least once per year, on average, in the region with the highest
regional SAR (Adriatic Sea) (Fig. 2). Over one-quarter of the
seabed area is trawled with this frequency in five of the other
eight European seas (Fig. 2). In all Australasian regions, three-
quarters of the seabed is never trawled or is trawled less than once
every 10 y, such as is the case in the South Benguela Current, East
Agulhas Current, North California Current, East Bering Sea,
Aleutian Islands, Gulf of Alaska, and South Chile (Fig. 2). Within
regions, there tended to be large differences in the proportions of
the seabed area untrawled in the 0- to 200- and 200- to 1,000-m
depth bands (Fig. 3), likely reflecting the different foci and de-
velopment of bottom trawl fisheries in these regions.
Among regions, there was a strong relationship between re-

gional SAR and the total trawling footprint based on the uniform
assumption (Fig. 4). This relationship between regional SAR and
regional trawling footprint implies that regional SAR estimates,
calculated from basic information on fishing effort (measured as
time trawling) and some knowledge of gear and vessel charac-

teristics, may be used to predict trawled and untrawled areas of
seabed at regional scales. For example, for mean regional SAR =
1 y−1, the prediction probability intervals for footprint [where the
mean estimate of footprint by region = SAR/(b + SAR), with b =
2.072; SE = 0.154] indicate >0.95 probability that at least 23% of
the region remains untrawled and 0.90 probability that 33–54%
is trawled (Fig. 4). For SAR ≤ 0.1 y−1, as in 8 of our 23 regions,
there was a >0.95 probability that at least 90% of the seabed was
untrawled. For SAR of 7.93 y−1, equal to the highest SAR
recorded (Adriatic Sea), there is a >95% probability that more
than 70% of the seabed was trawled.
Regions were included in the main analyses when catch or

effort data indicated that the trawling activity recorded with
VMS or observer data was at least 70% of total activity. Alter-
native cutoffs of 80% or 90% did not lead to significant changes
in the mean relationships shown in Fig. 4, but confidence and
prediction intervals increased substantially if only the few regions
with >90% activity were included. This relationship between
regional SAR and trawling footprint allows us to approximate
the increase in trawling footprint that would result if we had

Table 1. Summaries of trawling footprint and fisheries data by region for depths of 0–1,000 m

Region

Region

code

Coverage of

total bottom

trawling

effort (%)

Method

to assess

coverage

Years

included

Area 0–

1,000 m

(103 km2)

Area 0–

200 m

(103 km2)

Regional

SAR (km2

km−2 y−1)

% Area of

region trawled

(approach

A, cell

assumption)

% Area of

region

trawled

(approach B,

random

assumption)

% Area of

region

trawled

(approach

C, uniform

assumption)

% Area of

region

accounting

for 90% of

trawling

activity

Landings

(103 t y−1)

Landings per

unit area of

footprint (t

km−2 y−1)

Adriatic Sea

(GFCM 2.1)

1 72 Landings 2010–2012 39 37 7.926 82.7 79.1 80.7 59.3 28 0.89

West of Iberia

(ICES 9a)

2 81 Effort 2010–2012 40 23 4.321 83.9 58.7 64.3 37.2 14 0.54

Skagerrak and

Kattegat (ICES

3a)

3 100 Effort 2010–2012 55 41 3.328 75.0 50.0 54.4 33.0 31 1.04

Tyrrhenian Sea

(GFCM 1.3)

4 82 Landings 2010–2012 138 53 2.286 68.4 43.8 49.9 30.2 10 0.15

Irish Sea (ICES 7a) 5 83 Effort 2010–2012 48 48 1.459 82.5 25.4 28.5 14.8 71 5.17

North Sea (ICES

4a–4c)

6 86 Effort 2010–2012 586 523 1.191 89.3 42.2 51.7 39.8 745 2.46

North Benguela

Current

7 95 Effort 2008–2010 203 92 0.967 37.0 24.6 27.8 19.4 150 2.66

Western Baltic Sea

(ICES 23–25)

8 72 Effort 2010–2012 87 87 0.960 61.1 30.8 36.1 26.5 26 0.83

Aegean Sea (GFCM

3.1)

9 75 Landings 2010–2012 175 64 0.798 52.4 26.7 31.9 23.9 5 0.09

West of Scotland

(ICES 6a)

10 81 Effort 2010–2012 161 114 0.453 68.4 19.1 23.0 18.5 75 2.03

South Benguela

Current

11 97 Effort 2008–2013 122 56 0.440 29.9 12.2 13.8 9.5 114 6.73

Argentina 12 96 Effort 2010 and 2013 910 837 0.276 45.3 14.2 17.6 14.8 590 3.68

East Agulhas

Current

13 93 Effort 2008–2013 140 96 0.247 38.2 9.4 11.1 8.6 8 0.52

Southeast

Australian Shelf

14 100 Effort 2009–2012 268 230 0.134 31.9 7.0 8.6 7.3 12 0.53

Northeast

Australian Shelf

15 100 Effort 2009–2012 557 337 0.112 19.8 4.7 5.7 4.6 10 0.31

New Zealand 16 90 Effort 2008–2012 1,053 260 0.106 31.3 6.9 8.6 7.5 10 0.11

East Bering Sea 17 97 Effort 2008–2010 634 575 0.089 34.5 6.5 7.9 7.0 1,146 22.88

North California

Current

18 100 Landings 2010–2012 119 55 0.077 29.5 5.5 6.9 6.1 305 37.28

Southwest

Australian Shelf

19 100 Effort 2009–2012 338 283 0.034 10.5 2.1 2.7 2.3 5 0.57

Aleutian Islands 20 97 Effort 2008–2010 84 35 0.033 12.9 1.8 2.1 1.8 123 70.09

North Australian

Shelf

21 100 Effort 2009–2012 794 792 0.026 14.8 1.9 2.2 2.0 150 8.48

Gulf of Alaska 22 85 Effort 2008–2010 398 294 0.024 8.2 1.4 1.7 1.4 138 20.85

Northwest

Australian Shelf

23 100 Effort 2009–2012 686 474 0.023 6.5 1.3 1.6 1.4 5 0.47

South Chile 24 85 Effort 2009–2013 189 149 0.004 7.4 0.4 0.4 0.4 5 5.90

Information in parentheses after region names indicates when regions largely follow existing fishery management areas (excluding areas deeper than 1,000 m). Region codes are used to identify regions in the figures.
Regional SAR is the mean annual total area swept by trawls divided by the area of the region to 1,000-m depth. Trawling footprints are expressed using the three approaches as described in the text: approach A, cell
assumption: summing the area of any grid cells in which any trawling activity is recorded; approach B, random assumption: assuming Poisson distribution of effort within cells; and approach C, uniform assumption: that
trawling is uniformly spread within cells. The percentage of the region accounting for 90% of activity is the sum of the area of the most intensively trawled areas accounting for 90% of total activity divided by the area of
the region based, in this calculation, on approach C. Coverage of trawling activity in each region is estimated from the proportion of total landings or effort attributed to vessels providing VMS or logbook data. Landings
per unit area of footprint are themean annual landings of themonitored fleets divided by the footprint area (based on approach C, uniform assumption). Differences in regional SAR and footprint in this table and in a previous
analysis for the Adriatic Sea and west of Iberia (23) result from differences in the choice of boundary. GFCM, General Fisheries Commission for the Mediterranean; ICES, International Council for the Exploration of the Sea.
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been able to include 100% of known trawling activity in our
analyses. If we assume that the relationship between SAR and
trawling footprint applies in all of the cases where coverage
is <100%, then the combined trawling footprint across all regions
would increase by 71,000 km2, or 0.9% of the 7.8 million-km2 study
area, if we obtained data on all trawling activity. This would rep-
resent an increase of 8.2% in the total area trawled across all
24 regions, with higher regional increases in regions where cov-
erage of effort was closer to 70%.
We calculated regional SAR with high-resolution data, but it

can also be calculated as the product of total annual hours of
trawling, mean towing speed, and gear width without in-
formation on the location of trawlers at subregional scales. Re-
gional SAR calculated from this more widely available information
might then be used to predict trawling footprint using the re-
lationship in Fig. 4. We applied this approach to the bottom trawl
shrimp fisheries off the US coast of the Gulf of Mexico, a region
for which we had no VMS data. The area of the northern Gulf of
Mexico shelf and slope to a depth of 1,000 m is ∼4.6 × 105 km2,
and the swept area in the years 2007–2009 was 2.8 × 105 km2 y−1.
This leads to a mean SAR of 0.64 y−1. If the relationship described
in Fig. 4 applies to these bottom trawl fisheries, then there is a
0.9 probability that 16–43% of this region of the Gulf of Mexico is
trawled based on the uniform assumption and a 0.95 probability
that more than 56% is untrawled (SI Appendix, Text S4).
Bottom trawling may impact a range of seabed types within a

given footprint. For regions where ≥70% of trawling activity was
recorded, we quantified the intersection of trawling with four
broad seabed types. We defined seabed types based on sediment
composition obtained from the dbSEABED database of marine
substrates (51). A simple sediment classification rather than a
more highly resolved habitat classification was adopted to enable
equitable treatment of habitat across all regions and for consis-
tency with habitat types reported in most trawling impact studies

(36, 52–55). Grid cells were classified to sediment types by
denoting “gravel” if gravel >30%, else “sand” if mud <20%, else
“mud” if sand <20%, and else “muddySand” (53). Sediment data
could be obtained for 90% of cells in all regions, except for New
Zealand (86%), Aleutian Islands (72%), Gulf of Alaska (68%),
and Argentina (52%).
Within all regions, the bottom trawling footprint on each

sediment type was correlated with total area by sediment type (SI
Appendix, Fig. S38). This result implies that bottom trawling
activity is not consistently directed toward certain sediment
types. This is expected, since we compiled activity by multiple
fleets rather than individual types of bottom trawl fishery (e.g.,
stratified by gears, fleets) and because fishers are targeting dif-
ferent fish species with different trawl gears on many types of
seabed (42). While this result may be more nuanced with a more
highly resolved classification of habitat types (23), a consistent
and highly resolved ecologically based habitat classification is not
available for all regions.
International calls for MPAs coverage of 10% of ocean area

(56) to 30% or more (57) often focus on the protection of seabed
from bottom trawling. Our results show that ≥30% of the seabed
was not trawled during the study period in all regions except the
Adriatic Sea. In 20 of 24 regions, ≥50% of the seabed was not
trawled during the study period. This proportion of untrawled
seabed is already much greater than the proportion proposed for
protection within MPAs (56, 57), showing opportunities in many
regions to site MPAs in areas that have not been affected by and
would not displace trawling activity. Furthermore, since trawling
footprints were distributed more or less evenly in relation to
broad sediment types, the large proportions of untrawled area in
a region may imply a relatively representative range of seabed
types currently remain untrawled. However, as described in re-
lation to the habitat analysis, this conclusion may not hold when
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Fig. 2. Mean interval between trawling events and the proportion of
unfished area at depths 0–1,000 m for regions in (A) the Americas, (B)
Europe, (C) Australasia, and (D) Africa. Black lines indicate boundaries of
study regions, pale blue tones indicate depths of 0–200 m in the study re-
gions, darker blue tones indicate depths of 200–1,000 m in the study regions,
and all deeper areas and areas outside study regions are shown in white. In
all numbered regions, the proportion of bottom trawling included in this
analysis exceeds 70% of total activity (Table 1). Region codes follow Fig. 3
and Table 1.
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habitat types are more highly resolved or when active manage-
ment intervention affects the distribution of fishing activity.
Finally, we assessed relationships between regional SAR and

metrics of the intensity of fisheries exploitation. There was a
significant but noisy positive relationship between regional SAR
and relative rates of fishing mortality F (expressed as the ratio
between recorded F and the reference point FMSY) (Fig. 5 and SI
Appendix, Table S3 and Text S5). Broadly, when regional SAR
was ≤0.25, as in 12 of our 24 study regions, fishing rates on all
stocks for which we had data were close to or below FMSY.
Conversely, when regional SAR was >0.25, F was greater than
FMSY for 85% of the stocks. A regional SAR of 0.25 corresponds
to a trawling footprint spanning of around 10% of the area of a
region based on the uniform assumption and the relationship
between SAR and footprint (approach C) (Fig. 4; SI Appendix,
Fig. S39 has the direct relationship trawling footprint and rela-
tive F). When regional SAR exceeded three, as recorded in two
Mediterranean regions and one Baltic region, all stocks for
which we had data were fished at or above FMSY (Fig. 5). When
we conducted a more constrained analysis, which only included
those stocks with distributions spanning at least 50 or 70% of the
region to which they were assigned, the breakpoint remained
close to SAR = 0.25 in both cases (SI Appendix, Figs. S40 and
S41). The relationships between trawling footprints (approach
C) and relative F (SI Appendix, Fig. S39) also held when we only
included those stocks with distributions spanning at least 50 or
70% of the region to which they were assigned (SI Appendix,
Figs. S42 and S43). Thus, in regions where fishing rates consis-
tently met international sustainability benchmarks for fish stocks,
trawling footprints based on approach C were typically ≤11% of
region area. These patterns imply that fisheries management
systems that effectively meet reference points for exploitation
rates on bottom dwelling stocks will achieve collateral environ-
mental benefits, because SAR and thus, trawling footprint will
be lower.
Our group made significant efforts internationally to obtain

high-resolution trawling activity data for regions where these
data are recorded. The seabed area, including the continental
shelf area to 1,000 m, globally approximates 42.5 million km2;
thus, the data that we acquired cover 18.4% of this. Our data
accounted for a similar proportion (19.5%) of estimated global
landings by bottom trawlers (3.78 million tons y−1; assuming
mean global landings of 19.35 million tons y−1) (Table 1 and SI
Appendix, Text S1). Regions where data were not available to us

included some areas where we expect high levels of bottom
fishing activity (e.g., Bay of Biscay, the east coast of the United
States and Canada, Brazil shelf, and Southeast Asia).
To conclude, there are large differences in trawling footprints

among study regions. However, for almost all of the shelves and
slopes that we studied, total footprints to depths of 200 and
1,000 m, based on the more representative assumption of uniform
spread of trawling activity within cells, are well below the 50%
previously suggested (1) and are less than 10% overall in almost
one-half of the regions. There were strong positive relationships
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between regional SAR and footprint, providing a method to es-
timate trawling footprints for regions where high-resolution data
from logbooks, AISs, and satellite VMSs are not available. Re-
gional SAR and trawling footprints were generally smaller in re-
gions when fisheries were meeting reference points for sustainable
exploitation rates on bottom dwelling stocks, implying collateral
environmental benefits from successful fisheries management of
these bottom dwelling stocks.

Methods
Bottom Trawling Contribution to Global Landings. Marine global landings by
mobile bottom fishing gears for the years 2011–2013were estimated from FAO
landings data (47) (SI Appendix, Text S1). Species or species groups not caught
with mobile bottom gears were excluded as were species with mean landings
of <1,000 t y−1, which account for a negligible proportion of the total (<1%
but cannot be quantified precisely due to nonrecording). For remaining spe-
cies or species groups, we estimated the proportion caught by mobile bottom
fishing gear (SI Appendix, Text S1) and combined this with estimates of mean
annual landings of marine fishes that are not identified by the FAO (48, 49,
58). The calculation excludes fish that are caught but discarded (59).

Estimating Trawling Footprints.Weestimated the area trawledwithin eachgrid
cell using approach B (assuming random trawling distribution) and approach C
(assuming a uniform spread of trawling distribution). Both approaches required
estimates of grid cell SAR. Grid cell SAR was estimated for individual cells,
typically 1 × 1 km (1 km2) or 1 × 1 min of longitude and latitude (1.9 km2 at 56°
north or 56° south) in grids spanning each region. At these spatial scales,
trawling tends to be randomly distributed within years but tends to be uni-
formly spread on longer timescales (39), consistent with the assumptions that
we make to estimate footprint. For each grid cell, the SAR was calculated as
the ratio of the total trawl swept area (estimated from gear dimensions,
towing speed, and towing time) divided by grid cell area. Methods of analysis
varied among regions depending on how vessels were tracked (VMS or ob-
servers, logbooks), on how fishing tracks were reconstructed from position
data, and how fishing tracks were linked to vessel, gear dimension, and catch
information (SI Appendix, Table S1 and Text S2). The methods were adopted
by regional specialists to provide their most reliable estimates of grid cell SAR
and thus, footprint within the region. Details of analytical approaches for each
region are described in SI Appendix, Figs. S3–S34, Table S1, and Text S2. Data
used in the analyses can be accessed from a database deposited with the
University of Washington (https://trawlingpractices.wordpress.com/datasets/).

At broad scales, the distributions of bottom trawling tend to be consistent
from year to year, as activity is strongly tied to fish distributions and limited by
environmental, technical, and economic constraints on areas of gear de-
ployment in the absence of changing management regulations (11). Even so,
our analyses of changes in activity distribution from year to year in each
region do show that there are often small increases in cumulative footprint
area as additional years are included in the computations (SI Appendix, Figs.
S3–S34). In regions where footprint is small, the absolute effects of these
increases would be trivial, and substantial areas are still expected to remain
untrawled on decadal timescales. In regions where habitat is relatively uni-
form and footprint is large, it is possible that the entire region available to
trawlers would be fished on decadal timescales if economically viable to do
so, with the exception of any management areas where bottom fishing is
banned or where the seabed is unsuitable for use of towed bottom gears.

The selection of regional boundaries will influence the results of the footprint
analysis. Thus, boundarieswere selected and fixedbeforewe started theanalyses,

primarily based on the shelf and slope area to 1,000mand adjacent to nations for
which we expected data to be available but also guided by biogeographic and
oceanographic features and in some cases, existing management regions. After
theseboundariesweredefined,we split thedesignated areabasedon0- to 200-m
and 200- to 1,000-m depths. We could not use existing classifications, like large
marine ecosystems (LMEs), because in many cases, use of LMEs would lead to
mixed jurisdictions and fisheries frommultiple countries in one region, andwould
have reduced theoverall coverageof trawling activity. Theproportional coverage
of trawling activity by region was estimated from the proportion of catch or
fishing effort recorded by the trawlers for which we obtained data as a pro-
portion of total catch or effort by all trawlers in the region (Table 1).

In some regions, such as Europe, small inshore vessels may use towed
bottom gears but may not be subject to the same monitoring or reporting
requirements as larger vessels. Even in regions where we have high coverage
of reported catch or effort, some inshore bottom trawling activity may not be
included. We, therefore, caution that the results for these regions may not be
informative for the immediate inshore zone (typically to 3 miles offshore),
and additional data collection and analyses would be needed to address this
data gap.

Fishing Mortality. Estimates of the ratio of fishing mortality rates (F) to fishing
mortality reference points (FMSY) for 87 stocks caught with towed bottom
gears were used to describe the sustainability of fishing rates in each region.
For each 1 of 23 areas with high coverage of trawling activity (>70%), data
on the intensity of the fishing pressure for stocks targeted by bottom con-
tact fishing gears were obtained from the RAM Legacy database (60) (Ver-
sion 4.30; ramlegacy.org). RAM Legacy is currently the most comprehensive
repository of stock assessment data containing time series of biomass,
catches, fishing mortality, recruitment, and management reference points
for more than 1,000 stocks of marine and anadromous fishes. Stocks were
included in the analyses when (i) both trawl footprint data and a fishing
mortality reference point were available for the years 2008–2010; (ii) the
spatial distribution of the stock matched at least one of the regions with
high coverage (>70%) of trawling activity; and (iii) the largest proportion of
landings from the stock, by gear, is taken with bottom trawls. Additional
descriptions of the methods, the stocks included, stock distributions in re-
lation to the study regions, and resulting status estimates are provided in SI
Appendix, Table S3 and Text S5.

ACKNOWLEDGMENTS. Funding for meetings of the study group and salary
support for R.O.A. were provided by the following: David and Lucile Packard
Foundation; the Walton Family Foundation; the Alaska Seafood Cooperative;
American Seafoods Group US; Blumar Seafoods Denmark; Clearwater Seafoods
Inc.; Espersen Group; Glacier Fish Company LLC US; Gortons Seafood; Inde-
pendent Fisheries Limited N.Z.; Nippon Suisan (USA), Inc.; Pesca Chile S.A.;
Pacific Andes International Holdings, Ltd.; San Arawa, S.A.; Sanford Ltd. N.Z.;
Sealord Group Ltd. N.Z.; South African Trawling Association; Trident Seafoods;
and the Food and Agriculture Organisation of the United Nations. Additional
funding to individual authors was provided by European Union Project
BENTHIS EU-FP7 312088 (to A.D.R., O.R.E., F.B., N.T.H., L.B.-M., R.C., H.O.F.,
H.G., J.G.H., P.J., S.K., M.L., G.G.-M., N.P., P.E.P., T.R., A.S., B.V., and M.J.K.); the
Instituto Português do Mar e da Atmosfera, Portugal (C.S.); the International
Council for the Exploration of the Sea Science Fund (R.O.A. and K.M.H.); the
Commonwealth Scientific and Industrial Research Organisation (C.R.P. and
T.M.); the National Oceanic and Atmospheric Administration (R.A.M.); New
Zealand Ministry for Primary Industries Projects BEN2012/01 and DAE2010/
04D (to S.J.B. and R.F.); the Institute for Marine and Antarctic Studies, Univer-
sity of Tasmania and the Department of Primary Industries, Parks, Water and
Environment, Tasmania, Australia (J.M.S.); and UK Department of Environ-
ment, Food and Rural Affairs Project MF1225 (to S.J.).

1. Watling W, Norse EA (1998) Disturbance of the seabed by mobile fishing gear: A
comparison to forest clear cutting. Conserv Biol 12:1180–1197.

2. NRC (2002) Effects of Trawling and Dredging on Seafloor Habitat (National Academy
Press, Washington, DC).

3. Kaiser MJ, et al. (2016) Prioritization of knowledge-needs to achieve best practices for
bottom trawling in relation to seabed habitats. Fish Fish 17:637–663.

4. Piet GJ, Hintzen NT (2012) Indicators of fishing pressure and seabed integrity. ICES J
Mar Sci 69:1850–1858.

5. Gerritsen HD, Minto C, Lordan C (2013) How much of the seabed is impacted by
mobile fishing gear? Absolute estimates from Vessel Monitoring System (VMS) point
data. ICES J Mar Sci 70:523–531.

6. Kaiser MJ, Collie JS, Hall SJ, Jennings S, Poiner IR (2002) Modification of marine
habitats by trawling activities: Prognosis and solutions. Fish Fish 3:114–136.

7. Fock H (2008) Fisheries in the context of marine spatial planning: Defining principal
areas for fisheries in the German EEZ. Mar Policy 32:728–739.

8. Churchill JH (1989) The effect of commercial trawling on sediment resuspension and
transport over the Middle Atlantic Bight continental shelf. Cont Shelf Res 9:841–864.

9. Bastardie F, et al. (2017) Spatial planning for fisheries in the Northern Adriatic:
Working toward viable and sustainable fishing. Ecosphere 8:e01696.

10. Edser T (1925) A short account of the statistics of the sea fisheries of England and
Wales. Rapp P-V Reun Cons Int Explor Mer 36:2–25.

11. Jennings S, et al. (1999) Fishing effects in northeast Atlantic shelf seas: Patterns in
fishing effort, diversity and community structure. III. International trawling effort in
the North Sea: An analysis of spatial and temporal trends. Fish Res 40:125–134.

12. Rijnsdorp AD, Buys AM, Storbeck F, Visser EG (1998) Micro-scale distribution of beam trawl
effort in the southern North Sea between 1993 and 1996 in relation to the trawling
frequency of the sea bed and the impact on benthic organisms. ICES J Mar Sci 55:403–419.

13. Dinmore TA, et al. (2003) Impact of a large-scale area closure on patterns of fishing
disturbance and the consequences for benthic communities. ICES J Mar Sci 60:371–380.

14. Murawski SA, Wigley SE, Fogarty MJ, Rago PJ, Mountain DG (2005) Effort distribution
and catch patterns adjacent to temperate MPAs. ICES J Mar Sci 62:1150–1167.

15. Deng R, et al. (2005) Can vessel monitoring system data also be used to study trawling
intensity and population depletion? The example of Australia’s northern prawn
fishery. Can J Fish Aquat Sci 62:611–622.

Amoroso et al. PNAS | vol. 115 | no. 43 | E10281

SU
ST

A
IN
A
BI
LI
TY

SC
IE
N
CE

D
ow

nl
oa

de
d 

at
 U

N
IV

 O
F

 R
H

O
D

E
 IS

LA
N

D
 L

IB
 o

n 
A

ug
us

t 2
1,

 2
02

0 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
https://trawlingpractices.wordpress.com/datasets/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
http://ramlegacy.org/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802379115/-/DCSupplemental


16. Russo T, D’Andrea L, Parisi A, Cataudella S (2014) VMSbase: An R-package for VMS
and logbook data management and analysis in fisheries ecology. PLoS One 9:
e100195.

17. Hintzen NT, et al. (2012) VMStools: Open-source software for the processing, analysis
and visualisation of fisheries logbook and VMS data. Fish Res 115–116:31–43.

18. Lee J, South AB, Jennings S (2010) Developing reliable, repeatable, and accessible
methods to provide high-resolution estimates of fishing-effort distributions from
vessel monitoring system (VMS) data. ICES J Mar Sci 67:1260–1271.

19. Watson JT, Haynie AC (2016) Using Vessel Monitoring System data to identify and
characterize trips made by fishing vessels in the United States North Pacific. PLoS One
11:e0165173.

20. Vermard Y, Rivot E, Mahevas S, Marchal P, Gascuel D (2010) Identifying fishing trip
behaviour and estimating fishing effort from VMS data using Bayesian hidden Mar-
kov models. Ecol Modell 221:1757–1769.

21. Baird SJ, Hewitt J,Wood BA (2015) Benthic habitat classes and trawl fishing disturbance in
New Zealand waters shallower than 250 m (Ministry for Primary Industries, Wellington,
New Zealand), New Zealand Aquatic Environment and Biodiversity Report 144, p 184.

22. Baird SJ, Wood BA, Bagley NW (2011) Nature and extent of commercial fishing effort
on or near the seafloor within the New Zealand 200 n. mile Exclusive Economic Zone,
1989–90 to 2004–05 (Ministry for Primary Industries, Wellington, New Zealand), New
Zealand Aquatic Environment and Biodiversity Report 73, p 144.

23. Eigaard OR, et al. (2016) The footprint of bottom trawling in European waters: Dis-
tribution, intensity and seabed integrity. ICES J Mar Sci 74:847–865.

24. Pitcher CR, et al. (2016) Effects of trawling on sessile megabenthos in the Great
Barrier Reef, and evaluation of the efficacy of management strategies. ICES J Mar Sci
73(Suppl 1):i115–i126.

25. Lambert GI, Jennings S, Kaiser MJ, Davies TW, Hiddink JG (2014) Quantifying recovery
rates and resilience of seabed habitats impacted by bottom fishing. J Appl Ecol 51:
1326–1336.

26. Diesing M, Stephens D, Aldridge J (2013) A proposed method for assessing the extent
of the seabed significantly affected by demersal fishing in the Greater North Sea. ICES
J Mar Sci 70:1085–1096.

27. Pitcher CR, Poiner IR, Hill BJ, Burridge CY (2000) Implications of the effects of trawling
on sessile megazoobenthos on a tropical shelf in northeastern Australia. ICES J Mar Sci
57:1359–1368.

28. Hiddink JG, Jennings S, Kaiser MJ (2007) Assessing and predicting the relative eco-
logical impacts of disturbance onto habitats with different sensitivities. J Appl Ecol 44:
405–413.

29. EC (2008) Commission Decision of 6 November 2008 adopting a multiannual Com-
munity programme pursuant to Council Regulation (EC) No 199/2008 establishing a
Community framework for the collection, management and use of data in the fish-
eries sector and support for scientific advice regarding the common fisheries policy
(2008/949/EC). Official J European Union 346:37–88.

30. Campbell MS, Stehfest KM, Votier SC, Hall-Spencer JM (2014) Mapping fisheries for
marine spatial planning: Gear-specific vessel monitoring system (VMS), marine con-
servation and offshore renewable energy. Mar Policy 45:293–300.

31. Stelzenmuller V, Rogers SI, Mills CM (2008) Spatio-temporal patterns of fishing
pressure on UK marine landscapes, and their implications for spatial planning and
management. ICES J Mar Sci 65:1081–1091.

32. Maina I, et al. (2016) A methodological approach to identify fishing grounds: A case
study on Greek trawlers. Fish Res 183:326–339.

33. Jennings S, Lee J (2012) Defining fishing grounds with vessel monitoring system data.
ICES J Mar Sci 69:51–63.

34. Wang Y, Wang Y, Zheng J (2015) Analyses of trawling track and fishing activity based
on the data of Vessel Monitoring System (VMS): A case study of the single otter trawl
vessels in the Zhoushan fishing ground. J Ocean Univ China 14:89–96.

35. Good N, Peel D, Tanimoto M, Officer R, Gribble N (2007) Innovative stock assessment
and effort mapping using VMS and electronic logbooks (Department of Primary In-
dustries and Fisheries, Brisbane, Australia), Final Report on FRDC Project 2002/056,
p 182.

36. Kaiser MJ, et al. (2006) Global analysis of response and recovery of benthic biota to
fishing. Mar Ecol Prog Ser 311:1–14.

37. Jennings S, Freeman S, Parker R, Duplisea DE, Dinmore TA (2005) Ecosystem conse-
quences of bottom fishing disturbance. Am Fish Soc Symp 41:73–90.

38. Piet GJ, Quirijns FJ (2009) The importance of scale for fishing impact estimations. Can J
Fish Aquat Sci 66:829–835.

39. Ellis N, Pantus F, Pitcher R (2014) Scaling up experimental trawl impact results to
fishery management scales - a modelling approach for a “hot time.” Can J Fish Aquat
Sci 71:733–746.

40. Skaar KL, Jørgensen T, Ulvestad BKH, Engås A (2011) Accuracy of VMS data from
Norwegian demersal stern trawlers for estimating trawled areas in the Barents Sea.
ICES J Mar Sci 68:1615–1620.

41. Shepperson JL, et al. (2018) A comparison of VMS and AIS data: The effect of data
coverage and vessel position recording frequency on estimates of fishing footprints.
ICES J Mar Sci 75:988–998.

42. Eigaard OR, et al. (2016) Estimating seabed pressure from demersal trawls, seines, and
dredges based on gear design and dimensions. ICES J Mar Sci 73:i27–i43.

43. Gerritsen H, Lordan C (2011) Integrating vessel monitoring systems (VMS) data with
daily catch data from logbooks to explore the spatial distribution of catch and effort
at high resolution. ICES J Mar Sci 68:245–252.

44. Peel D, Good N (2011) A hidden Markov model approach for determining vessel ac-
tivity from vessel monitoring system data. Can J Fish Aquat Sci 68:1252–1264.

45. Hintzen NT, Piet GJ, Thomas B (2010) Improved estimation of trawling tracks using
cubic Hermite spline interpolation of position registration data. Fish Res 101:108–115.

46. Lambert GI, et al. (2012) Implications of using alternative methods of vessel moni-
toring system (VMS) data analysis to describe fishing activities and impacts. ICES J Mar
Sci 69:682–693.

47. FAO (2016) Fishery and Aquaculture Statistics (FishStatJ) (FAO Fisheries and Aqua-
culture Department, Rome).

48. FAO (2014) Regional guidelines for the management of tropical trawl fisheries in
Asia. Proceedings of the APFIC/FAO Regional Expert Workshop on Phuket, Thailand
(FAO Regional Office for Asia and the Pacific, Bangkok, Thailand), RAP Publication
2014/01, p 91.

49. FAO (2015) Low Value and Trash Fish in the Asia-Pacific Region. Collected Papers of
the APFIC Regional Workshop (FAO Regional Office for Asia and the Pacific, Bangkok,
Thailand), p 267.

50. Hiddink JG, et al. (2017) Global analysis of depletion and recovery of seabed biota
after bottom trawling disturbance. Proc Natl Acad Sci USA 114:8301–8306.

51. Jenkins CJ (1997) Building offshore soils databases. Sea Technol 38:25–28.
52. Pitcher CR, et al. (2016) Implications of current spatial management measures for

AFMA ERAs for habitats (CSIRO Oceans & Atmosphere, Brisbane, Australia), FRDC
Project No. 2014/204 Report, p 50.

53. Pitcher CR, et al. (2017) Estimating the sustainability of towed fishing-gear impacts on
seabed habitats: A simple quantitative risk assessment method applicable to data-
limited fisheries. Methods Ecol Evol 8:472–480.

54. Collie JS, Hall SJ, Kaiser MJ, Poiner IR (2000) A quantitative analysis of fishing impacts
on shelf-sea benthos. J Anim Ecol 69:785–798.

55. Rijnsdorp AD, et al. (2016) Towards a framework for the quantitative assessment of
trawling impact on the seabed and benthic ecosystem. ICES J Mar Sci 73:i127–i138.

56. Leenhardt P, Cazalet B, Salvat B, Claudet J, Feral F (2013) The rise of large-scale
marine protected areas: Conservation or geopolitics. Ocean Coast Manage 85:
112–118.

57. O’Leary BC, et al. (2016) Effective coverage targets for ocean protection. Conserv Lett
9:398–404.

58. Morgan GR, Staples DJ (2006) The History of Industrial Marine Fisheries in Southeast
Asia (FAO Regional Office for Asia and the Pacific, Bangkok, Thailand), RAP Publi-
cation 2006/12, p 28.

59. Kelleher K (2005) Discards in the world’s marine fisheries: An update. FAO Fish Tech
Pap 470:1–131.

60. Ricard D, et al. (2012) Examining the knowledge base and status of commercially
exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish
13:380–398.

E10282 | www.pnas.org/cgi/doi/10.1073/pnas.1802379115 Amoroso et al.

D
ow

nl
oa

de
d 

at
 U

N
IV

 O
F

 R
H

O
D

E
 IS

LA
N

D
 L

IB
 o

n 
A

ug
us

t 2
1,

 2
02

0 

www.pnas.org/cgi/doi/10.1073/pnas.1802379115

	Bottom trawl fishing footprints on the world’s continental shelves
	Citation/Publisher Attribution

	Bottom trawl fishing footprints on the world’s continental shelves
	Creative Commons License

	Bottom trawl fishing footprints on the world’s continental shelves

