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Simulating Stress–Strain Behavior by Using Individual Chains:
Uniaxial Deformation of Amorphous Cis-
and Trans-1,4-Polybutadiene
Suvrajyoti Kar , Julie L. Cuddigan and Michael L. Greenfield *

Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
* Correspondence: greenfield@uri.edu; Tel.: +1-401-874-9289

Abstract: This work develops a probability-based numerical method for quantifying mechanical
properties of non-Gaussian chains subject to uniaxial deformation, with the intention of being able to
incorporate polymer–polymer and polymer–filler interactions. The numerical method arises from a
probabilistic approach for evaluating the elastic free energy change of chain end-to-end vectors under
deformation. The elastic free energy change, force, and stress computed by applying the numerical
method to uniaxial deformation of an ensemble of Gaussian chains were in excellent agreement with
analytical solutions that were obtained with a Gaussian chain model. Next, the method was applied
to configurations of cis- and trans-1,4-polybutadiene chains of various molecular weights that were
generated under unperturbed conditions over a range of temperatures with a Rotational Isomeric
State (RIS) approach in previous work (Polymer 2015, 62, 129–138). Forces and stresses increased with
deformation, and further dependences on chain molecular weight and temperature were confirmed.
Compression forces normal to the imposed deformation were much larger than tension forces on
chains. Smaller molecular weight chains represent the equivalent of a much more tightly cross-
linked network, resulting in greater moduli than larger chains. Young’s moduli computed from the
coarse-grained numerical model were in good agreement with experimental results.

Keywords: uniaxial deformation; Gaussian chain; rotational isomeric state; polybutadiene; stress–strain

1. Introduction

Polybutadiene is an important commercial polymer with pertinent applications in
the automobile industry. It is such an essential ingredient in rubber tires that they utilize
much of the polybutadiene manufactured worldwide. Additional product uses include
toughened plastics, gaskets, shock absorbers, shoe soles, and golf balls [1,2].

As a tire rolls, stresses on the tread exert strains through both elastic and viscous
mechanisms. The latter results in energy dissipation leading to rolling resistance, which
arises from the viscoelastic energy lost at low frequencies during flattening and re-rounding
of tires. When a vehicle is in motion, the tire tread flattens against the road and deforms
elastomers locally, which results in chains undergoing conformational changes [3–5] that
alter the number of ways that they can be arranged. This change in arrangement of
elastomer chains affects their elastic free energy, which is logarithmically related to the
probability distribution of chain end-to-end vectors [3]. As rotation continues, chains and
particles in a now-unstressed portion of the tire tread relax as random fluctuations restore
the original distribution of chain conformations. This cyclic change in free energy requires
work, which is dissipated to some extent as heat that leads to rolling resistance. The
magnitudes of these mechanical forces depend on equilibrium shape properties of polymer
chains [6]. Thus, studying chain conformations and their changes under deformation
is of the utmost importance to understanding the viscous mechanisms at play within
rubber tires.
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This paper is part of an overall project aimed toward studying elastomer chain con-
formations and their role in computing rubber viscoelastic properties as they arise in tires.
In this work, we describe a novel numerical method for simulating mechanical proper-
ties of elastomer chains subjected to deformation. The numerical method arises from a
probability-based numerical approach for evaluating the elastic free energy change of chain
end-to-end vectors under deformation. We employ uniaxial deformation as a first example.

The intent of the methodology is to obtain mechanical properties from conformational
statistics in a numerical approach that can incorporate effects of specific polymer–polymer
and polymer–filler interactions. Motivational examples from experiments include func-
tionalized end-groups that provide interactions with silica fillers [7,8], which have been
demonstrated to improve metrics that correlate with lower rolling resistance [9–11]. The
basis of the approach developed here on chain conformation probability density enables
sampling over many chain configurations that can be computed without necessarily requir-
ing costly bulk phase molecular dynamics simulations. Instead, the details of chain–chain
and chain–filler interactions are coarse grained into the conformational statistics of end-to-
end vectors of individual chains.

The static, dynamic, and mechanical properties of polymers are typically described via
scaling relationships [12] that apply in the limit of long chain lengths. The entanglement
molecular weight can be inferred from the plateau modulus for stress relaxation of chains
without cross links [6]. For cross-linked networks, a rubbery plateau can involve both en-
tanglements and cross links, depending on their relative concentrations [13]. For entangled
chains, experiments demonstrate [14] that melt viscosity and self-diffusion coefficient scale
consistently with the longest relaxation time. Chains or chain segments that are shorter, yet
still within a scaling regime, follow Rouse model dynamics.

The corresponding entanglement length scales for polybutadiene depend on tempera-
ture and to some extent on measurement technique. Literature sources [6,15] with a basis in
rheology report entanglement molecular weights of 2347 and 1543 g/mol (43 and 29 repeat
units) for polybutadiene comprised of 96% cis or of 40% cis, 50% trans, and 10% vinyl,
respectively. In contrast, flexible end “sub molecules” of 3300 g/mol (61 repeat units) were
reported by Cohen Abbad and Guillermo [16] within NMR studies of segment relaxation
time in polybutadiene with 68% cis, 27% trans, and 5% vinyl units.

In the work here, we invoke deformations of chains that do not incorporate cross
links or explicit entanglements along a chain. Thus we consider our simulation approach
to be relevant for chains or chain segments up to the entanglement molecular weight.
Deformation of longer chains requires additional considerations that are not made here.

An important question is the extent that macroscale deformation invokes changes on
the molecular structure of elastomers. Characterization methods for polymer networks
have been reviewed recently [17]. Among prior experimental studies, pertinent information
for the calculations performed here comes from characterizations that employed NMR,
X-ray scattering, and neutron scattering.

NMR measurements can be sensitive to local relaxation of chain segments that are
between cross links or entanglements; thus, they can probe their influences on elastic-
ity [18,19]. Solid-state 13C NMR experiments by Kameda and Asakura [20] on natural
rubber under uniaxial deformation demonstrated that many chains retained a capability to
relax the 13C chemical shift after macroscopic deformation; they were not reoriented on
a molecular scale. However, mobility of amorphous chains increased immediately after
deformation was imposed and then relaxed toward the mobility of unstretched samples
over long times (ca. 1 h). Valić et al. [21] studied short perdeuterated polybutadiene probes
in cross-linked polybutadiene networks. 2H NMR peaks broadened with increasing uni-
axial deformation, showing increased anisotropy in the local environment that differed
for cis-1,4 vs. trans-1,4 repeat units. Individual segments in the short chains sensed a local
change upon deformation. Valić [22] studied 2H relaxation in natural rubber networks
that were cross linked while the original material was under deformation at a deformation
ratio of λ = L/L0 = 1.5. The rubber exhibited orientational correlations that distinguished
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directions parallel vs. perpendicular to the initial deformation, and these differences in-
creased upon further deformation of the cross-linked chains. Multiple quantum NMR
enables separating 1H contributions from elastically inactive chains and probing the extent
that chain segments deform locally during macroscopic deformation or swelling [23–25].
In cross-linked natural rubber, these local changes were shown [24,25] to be smaller than
those predicted for affine deformation or phantom models of networks [26]. Instead, they
suggested constraints of the tubes imposed by surrounding chains [3,27–29]. Similar re-
sults that favor the relatively smaller deformations of the tube model, compared to affine
deformation, were shown for shear and compression of lightly cross-linked elastomers [30].
Alternate explanations were mentioned in support of heterogeneous distributions of local
forces that rely on deforming only a small fraction of elastically active chains [30]. In
summary, some NMR methods support local chain orientation changes in response to
deformation. Other methods suggest that little chain rearrangement occurs.

Synchrotron X-ray scattering measurements during elastomer deformation distinguish
among amorphous, ordered amorphous, and crystalline regions. Toki et al. [31] found that
∼75% of chains in natural rubber remained unoriented at a strain of 600%. Approximately
5% became oriented with the deformation (while remaining amorphous) and another
20% of chains underwent stress-induced crystallization. The oriented amorphous chains
and the crystallites were thought to convey the imposed stress. Neuefeind et al. [32]
used synchrotron X-rays on cross-linked siloxane systems and deconvoluted isotropic and
angular-dependent contributions to the scattering. They found a slight broadening of bond
length and bond angle distributions at Q > 6 Å−1. For results that depended on scattering
angle, distances increased slightly between chains in directions perpendicular to a uniaxial
deformation. Very slight preferential chain alignment (2% and less) with the stretching
direction was found at a deformation ratio λ = 2.

Small angle neutron scattering (SANS) enables computing the average radius of
gyration rg of chain conformations [33]. Beltzung et al. [34] used SANS to measure changes
in rg parallel and perpendicular to the deformation direction for end-linked siloxane
chains. Changes in shape were closer to those of a phantom model and were smaller than
predicted by an affine deformation. This smaller expansion was more apparent for chains of
higher molecular weight. Fernandez et al. [35] cross linked deuterated polybutadiene into
polybutadiene. During swelling with toluene, expansion occurred by a factor that followed
the phantom model rather than the larger expansion of affine deformation. Straube et al. [36]
measured deuterated isoprene strands cross linked into a polyisoprene network. Changes
in the two-dimensional scattering pattern were consistent with a tube model of deformation
in which tube diameter scaled with λ1/2 rather than scaling affinely with deformation.

Measurements of mechanical properties provide data and directly test stress–strain
models. Dossin and Graessley [37] synthesized various polybutadiene compositions
(40–55% cis, 51–38% trans, 9–7% vinyl) and used radiation to create cross-linked networks.
Then, they measured uniaxial deformation and interpreted their results in terms of a phan-
tom network model. Both cross links and entanglements contributed to elastic modulus
in each network. Subhani et al. [38] performed uniaxial tension and compression tests on
sheet-shaped rubber-like materials and developed a stored energy function to predict such
experimental results. Their proposed model predicted tension behavior accurately for either
uniaxial tension or compression. Starkova and Aniskevich [39] carried out uniaxial tension
tests on silica-filled SBR rubbers in order to compare the dependency of Poisson ratio on the
definition of finite strain. When using Hencky strain, εH ≡ ln λ, they found that this rubber
system was incompressible up to a deformation ratio λ = 4.5 and thus corresponded to a
Poisson ratio of 0.5. Beyond a deformation of 4.5, the Poisson ratio decreased toward 0.4.
Poisson ratio appeared strain-dependent when it was computed from engineering strain.
Tonelli and Andrady created PDMS networks in which the molecular weight between cross
links was tightly controlled through the synthesis mechanism [5,40]. The modulus of a
network with nine repeat units between cross links was ca. 20 times higher than a typical
PDMS modulus in which ca. 200 repeat units arise between cross links.
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Some studies combine multiple experimental methods. Chen et al. [41] focused on
strain-induced crystallization during uniaxial deformation of cross-linked polybutadiene
rubber. Measurements at 25 ◦C of extensional rheometry and synchrotron WAXD indicated
that fracture at deformation ratio λ = 4.1 was accompanied by the presence of an oriented
amorphous phase. Strain-induced crystallization occurred during uniaxial deformation
at temperatures of 0 ◦C to −30 ◦C and was accompanied by much larger elongations
before break. Engineering stress depended linearly on Hencky stress up to εH ≈ 0.8
(λ ≈ 2.2). Stresses measured with the extensional rheometer followed the same trends as
stress measured with a universal testing machine yet was ∼1.75 times larger.

Many insights about relationships between elastomer chain conformation and me-
chanical properties have been obtained through molecular dynamics simulations of generic
chain representations. Svaneborg et al. [42] simulated the deformation of cross-linked
coarse-grained chains of various strand lengths. The extent of chain deformation with
strain varied along the strand contour, reaching affine deformation at the end-to-end dis-
tance between cross links. The magnitude of stress response was consistent with a double
tube model of cross link and entanglement contributions. Simulations of extension by
Hsu and Kremer [43], sampled in large systems of entangled chains, exhibited heteroge-
neous force distributions along an average chain contour. Their results suggested that
entanglements could control how stress is maintained across chains.

Many simulations target polybutadiene specifically. Tsolou et al. [44] simulated cis-
1,4-polybutadiene for times up to 600 ns over temperatures of 298 to 430 K. Density and its
temperature dependence were consistent with prior simulations and with experimental
data [45]. Transitions from Rouse-like motions to reptation were found to occur around
a chain length of 200 carbon atoms (50 repeat units). They also summarized prior MD
simulations of polybutadiene and additional experimental literature relevant for polybuta-
diene viscoelasticity. In one of those prior efforts, Gee and Boyd [46] simulated cis- and
trans-polybutadiene using a united atom model. They found that torsional rotation rates
were similar in isolated chains and in the bulk. Thermal expansion coefficient was similar
to experimental data [45], while specific volumes were smaller. In more recent efforts,
Behbahani et al. [47] simulated polybutadiene–silica nanocomposites by atomistic MD.
Characteristic ratio retained nearly the same value as in the bulk. Adsorption slowed chain
dynamics time scales. Changes in diffusion scaling from Rouse-like to reptation-like were
still observed, and the transition continued to occur near ∼50 repeat units.

Recent works target parameterizing coarse-grained models to represent atomistic MD
results. Pavlov and Khalatur [48] used dissipative particle dynamics (DPD) to simulate
cross-linked polybutadiene without and with silica nanoparticles. Their coarse-grained
model network corresponded to 40 to 50 units per strand. Systems with silica showed a
higher modulus compared to unfilled systems. Young’s modulus from simulation was sim-
ilar to experimental values when its strain rate dependence was extrapolated to the (much
lower) experimental range. Kempfer et al. [49] parameterized a DPD model for polybu-
tadiene by matching an atomistic MD trajectory, which led to temperature-dependent
parameters. Microsecond simulations on long polybutadiene chains reached a plateau
modulus at relaxation times of ∼0.1 µs; it was comparable in magnitude to experimental
data. Behbahani et al. [50] linked united atom, coarse-grained, and slip-link simulations
to span wide ranges of molecular weight and simulation time for cis-1,4-polybutadiene.
Predictions of stress relaxation and storage and loss moduli were similar to experimental
data. Physically meaning time shifts among methods were consistent across multiple
dynamical properties. End-to-end vector rotations were most important for matching the
most coarse-grained method to more detailed molecular time scales.

Some models and simulations target conformations of individual chains. In the
Rotational Isomeric State (RIS) approach [5,51], torsions about single bonds are treated
as existing in one or more discrete rotational states; each state is chosen to coincide with
a conformationally important region of low potential energy. Mark [52,53] used the RIS
approach to study configurational statistics of single cis- and trans-1,4-polybutadiene
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chains under theta conditions. Others who used the RIS approach as an effective tool to
study single chain properties of polybutadiene include Abe and Flory [54] and Kajiwara
and Burchard [55,56]. Tonelli and Andrady used an RIS model for PDMS to compute two
modulus estimates, which bracketed the modulus that they measured [5,40]. Mark et al. [57]
reviewed ways to incorporate the RIS model with filler particles. In previous work [58], we
studied size and shape properties of amorphous cis- and trans-1,4-polybutadiene systems.
We generated single chains under unperturbed conditions, as demonstrated by mean-
squared end-to-end distance scaling with number of repeat units (scaling exponent ν = 0.5).
Then, we analyzed single chain size and shape. Characteristic ratios of both cis- and trans-

1,4-polybutadiene chains increased with rising temperature, indicating chain swelling.
Probability density distributions of chain size over a range of temperatures demonstrated
a previously unreported effect: an increase in average chain size with rising temperature
originated from increases in the least likely and most taut conformations rather than from
uniform changes across the size distribution. We called this a “taut conformation effect”. We
also found analogous effects for amorphous polypropylene and polystyrene [59].

The present work focuses on demonstrating a numerical method for computing a
stress–strain relationship via changes that occur in chain conformational statistics upon a
specified macroscale deformation. As a test case, we employ numerical sets of end-to-end
distances that follow a Gaussian distribution. These are used to confirm that this numerical
deformation methodology obtains the analytical uniaxial stress–strain relationship that
is known for Gaussian chains. We then performed computations to predict the stress–
strain relationship of unoriented cis- and trans-1,4-polybutadiene chains subjected to
uniaxial deformation by using the resulting changes in their chain conformation statistics.
Distributions of end-to-end distances of RIS chains, generated and analyzed previously [58]
under unperturbed conditions via the RIS approach, provided the input information.
Forces, stresses, and moduli as a function of deformation ratio, molecular weight, and
temperature constitute the results.

2. Methodology
2.1. Coarse Graining Steps

The methods explored here employ two levels of coarse graining. First, the molecular
details of polymer chain configuration are subsumed into obtaining a probability density
distribution P(r) of end-to-end vectors. Second, each polymer chain that undergoes stress
is assumed to be in an environment of similar polymer chains within a region that can be
defined via a bulk density. The chains in this environment may constitute a bulk short-
chain polymer, chain segments between entanglements, or independent sub-chains within
a cross-linked polymer network.

A probability distribution of end-to-end distances serves as an input to the mechanical
property calculations. The assumptions that are employed in obtaining this distribution
provide an outline of the polymer system that is being considered. Initial calculations
here use the analytic distribution for a Gaussian chain. Subsequent calculations employ
numerical distributions that were obtained earlier [58] via calculations that used an RIS
model. The intent of the approach here is to provide a method that can accommodate
changes in P(r) that are induced by specific interactions along a chain, such as distinct
groups that promote binding to filler particles.

Literature data described above indicate a range of observed chain-level deformations,
which depend on chain length and analysis method. As a starting point, we assume
affine deformation, i.e., deformation applied macroscopically is transferred uniformly and
microscopically to every chain within the ensemble [13,60]. Employing an approximation
applied previously by others [6], we attribute an equivalent occupied volume per chain

V = LxLyLz =
M
ρ

(
1

NA

)
(1)
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that incorporates temperature-dependent density ρ (g/cm3) and molecular weight M
(g/mol) of an elastically active segment. A conversion factor (107 nm/cm)3 provides
molecular-scale units. Densities of cis- and trans-1,4-polybutadiene at different temper-
atures are available from prior experimental and simulation results [44–46], which are
consistent with measurements [61] of density over extensive temperature and pressure
ranges for 4 polybutadienes that differed in cis/trans/vinyl ratio. To simplify the approach
initially, we assume monodisperse chains and homogeneous chain orientations, which
provide Lx = Ly = Lz = L = V1/3. We note that this volume is smaller than the volume
swept out by a chain of this molecular weight with radius of gyration rg.

Uniaxial deformation was applied to each chain in an ensemble via extension along the
x-direction, which we express by the deformation ratio λx = Lx/Lx,0 ≡ λ. This deformation
induces a corresponding deformation along the y and z directions. Since polybutadiene is
an elastomer, we utilized a Poisson ratio (ν) of 0.5 [4,39], which corresponds to neglecting
any volume change with strain. The accompanying deformations applied along the y and z
directions are compressions such that λy = λz = 1/

√
λx, thereby maintaining λxλyλz = 1.

These deformations change the cross-sectional areas of the nominal box (Lx, Ly, Lz)
that is invoked as encompassing each chain. The area with its normal vector aligned with
the tension direction varies as L2/λ; the areas aligned with compression vary as L2λ1/2.
Stresses are expected to occur in the same direction as each deformation, as in a tensile test.

2.2. Elastic Free Energy

The approach here to quantify mechanical properties arises from how the elastic free
energy of an elastomer changes under deformation. Elastic free energy Ael of a single
chain of end-to-end vector r is related to the probability density distribution P(r) of its
end-to-end vector r [3,51,57]

Ael = c(T)− kbT ln P(r) (2)

where c(T) is only a function of temperature T and kb is the Boltzmann constant. An
isothermal change in elastic free energy of a single chain from an undeformed state r0 to a
deformed state r is

∆Ael = Ael − Ael,0 = −kbT[ln P(r)− ln P(r0)] (3)

For an ensemble containing N chains, the average change in elastic free energy per chain
is obtained by integrating over all chains. This was achieved by multiplying Equation (3)
by the probability density distribution of r and integrating over all possible chain end-to-
end vectors,

〈∆Ael〉
kbT

= −
∫

P(r) ln P(r) dr3 +
∫

P(r0) ln P(r0) dr3
0 (4)

If a chain start is considered to be the origin, then these correspond to integrals over possible
chain end positions. To account for how the elastic free energy change is targeting a chain
segment that arises between cross links or between entanglements, it is necessary to include
a “front factor” [13] r2/〈r2〉0 prior to integration, i.e., the ratio of mean-squared end-to-end
distance in the cross-linked or entangled network relative to that of unencumbered chains
of the same length.

Our objective is to reach a simulation approach that can accommodate cases in which
P(r) cannot be found analytically. The presence of specific chain–filler interactions is
an example. Numerical integration of Equation (4) is then an option. To reach such a
simulation framework, we describe end-group positions of chains through “voxels”, where
each voxel represents a finite cube in three-dimensional space that is a possible endpoint
for an end-to-end vector. The three-dimensional integral over positions r is approximated
by a sum over a countable number of voxels. Assigning the positions of chain ends into
voxels corresponds to a numeric approach toward evaluating the free energy.
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Such a numerical integration of Equation (4), including the front factor, leads to

〈∆Ael〉
kbT

= − ∑
voxels

P(r) ln P(r)
r2

〈r2〉0
(∆r)3 + ∑

voxels
P(r0) ln P(r0)

r2
0
〈r2〉0

(∆r0)
3 (5)

where (∆r)3 = (∆r0)
3 is the volume of a voxel, r2

0 and r2 represent undeformed and
deformed chain end-to-end distances, respectively, and 〈r2〉0 is the average of the mean
squared end-to-end distance of the undeformed chains.

To be a simulation, the probability density P(r0) of undeformed chains is available in
numeric form. Here, simulation involves creating individual chains by using intra- and
inter-chain energy functions along with any other specific interactions of interest. This
creates a set of N independent realizations in the ensemble of single chains, each with their
own r0 vector.

After deformation, the probability densities P(r) were re-computed for ensembles of
chain end-to-end vectors by using voxel location along the x, y, z coordinate directions

P(r)dr =
number of chains in voxel(x, y, z)at r

volume of voxel(x, y, z) ∗ N
dr (6)

and simulation entails altering an end-to-end vector r0 so it represents a new, deformed
direction r. Initial test cases used chains with (a) Gaussian end-to-end vectors and (b) chains
generated with an RIS approach.

2.3. Force Derivatives of Free Energy

Deformation applied to elastomers induces strain, which leads to changes in elastic
free energy. Conversely, an induced strain leads to quantifiable forces and stresses. The
combination of force and distance (or stress and strain), applied reversibly, corresponds to
a thermodynamic work term. Thus force per chain can be related directly to the change in
elastic free energy with system dimension as [13]

fk =

(
∂λk
∂L

)(
∂〈∆Ael〉

∂λk

)
T,V

(7)

where deformation ratio λk = rk/rk,0 [4] applied in the kth direction leads to force fk in the
kth direction. rk and rk,0 are components of deformed and undeformed chain end-to-end
vectors, respectively. Lk refers to a characteristic size of a chain, as described above.

The tensile stress acting on each elastically active chain in the system due to deforma-
tion is obtained by dividing the force by the cross-sectional area (Am) whose normal vector
is aligned with the applied force,

σmk =

(
1

LAm

)(
∂〈∆Ael〉

∂λk

)
T,V

(8)

Choosing actual or initial cross-sectional area leads to Equation (8) providing either a true
stress or an engineering stress [13].

We focus in this work on true stress. The true cross-sectional area (in y-z) decreases
with uniaxial extension in x and is represented by L2/λx. Thus, Equation (8) can be written
in the extension direction as

σxx =

(
λx

V

)(
∂〈∆Ael〉

∂λx

)
T,V

(9)
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The equivalent volume of a single chain (V) was defined above. For transverse (compres-
sion) directions, the true cross-sectional area increases and can be represented by L2λx

1/2,
leading to

σyy =

(
1

Vλx
1/2

)(
∂〈∆Ael〉

∂λy

)
T,V

(10)

with an analogous equation in the z direction.
Tension force in the x direction can be obtained numerically by substituting the

numeric estimate of the elastic free energy per chain, Equation (5), into the force derivative,
Equation (7), as

fx

kbT
=

1
L

∂

(
− ∑

voxels
P(r) ln P(r) r2

〈r2〉0
(∆r)3 + ∑

voxels
P(r0) ln P(r0)

r2
0

〈r2〉0
(∆r0)

3
)

∂λ


T,V

(11)

where the difference in the numerator corresponds to simultaneous deformations λ that
involve changes in all three directions, i.e., extension along the x-direction and compression
along the y- and z-directions.

For compressive forces in transverse directions, the differential change in deformation
ratio can be replaced by invoking the chain rule, ∂λy = ∂

(
1/
√

λ
)

= −(1/2λ3/2)∂λ,
leading to

fy,z

kbT
= −2λ3/2

L

∂

(
− ∑

voxels
P(r) ln P(r) r2

〈r2〉0
(∆r)3 + ∑

voxels
P(r0) ln P(r0)

r2
0

〈r2〉0
(∆r0)

3
)

∂λ


T,V

(12)

where fy,z are compression forces per chain in the y and z directions, respectively.
Numerical equations for tensile and compressive true stresses are obtained by dividing

tension and compression forces per chain with their respective instantaneous cross-sectional
areas, which are LyLz = L2/λ for tension and LxLy = LxLz = L2

√
λ for compression,

leading to

σxx

kbT
=

λ

V

∂

(
− ∑

voxels
P(r) ln P(r) r2

〈r2〉0
(∆r)3 + ∑

voxels
P(r0) ln P(r0)

r2
0

〈r2〉0
(∆r0)

3
)

∂λ


T,V

(13)

σyy,zz

kbT
= −2λ

V

∂

(
− ∑

voxels
P(r) ln P(r) r2

〈r2〉0
(∆r)3 + ∑

voxels
P(r0) ln P(r0)

r2
0

〈r2〉0
(∆r0)

3
)

∂λ


T,V

(14)

The net result of these derivations are equations that can be implemented numerically
for strains that deform an unperturbed polymer with distribution P(r0) into a deformed
system with probability density distribution P(r).

2.4. Orientation of Undeformed and Deformed Chains

Polymer chains within a bulk system are oriented in a manner that reflects their
processing and sample preparation. In this work, we develop the method first by employing
a homogeneous system of unoriented chains in the absence of entanglements.

To evaluate Equations (11)–(14), the orientations of individual chain end-to-end vectors
within an ensemble have to be distributed over a three-dimensional space. Starting from
a set of end-to-end distances [58], we oriented chain conformations randomly over the
(+x,+y,+z) octant of a sphere prior to imposing deformation. Distributing the chains over
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a single octant of a sphere assumes that the same distribution occurs along the remaining
sections of the sphere, and it provides better statistics for a given ensemble population and
computation time.

Chain orientation was accomplished by considering each end-to-end distance as a
randomly distributed unperturbed end-to-end vector in spherical coordinates,

(rx,0 , ry,0 , rz,0) = r0(sin θ cos φ , sin θ sin φ , cos θ) (15)

Each elevation or latitudinal angle θ∈[0, π/2] was chosen uniformly from a sinusoidal
distribution between [0,1]. Each longitudinal angle φ was chosen uniformly within [0,π/2).

Chain deformation was implemented by applying a deformation ratio, representative
of either extension (λx ≡ λ) or compression (λy,z = 1/

√
λ), to each vector component in its

respective x, y, and z direction. Thus, each end-to-end vector of a chain after deformation
was represented as

(rx , ry , rz) = r0(λ sin θ cos φ ,
1√
λ

sin θ sin φ ,
1√
λ

cos θ) (16)

Probability density distributions for the deformed end-to-end vectors were obtained
by averaging over the number of chains ending in the region around each r. For the
homogeneous case, the results from this one octant should be equivalent to results for all
other octants. The outcome is the probability density distribution for uniaxial deformation
to a deformation ratio λ.

2.5. Numerical Implementation

Deformations were performed in steps of ∆λ = 0.25 from λ = 1 to 3.5 to obtain discrete
changes in average elastic free energy per chain 〈∆Ael〉 via Equation (5). The numerical
derivatives of Equations (11)–(14) were obtained by central difference, i.e., changes in the
numerator and denominator between (λ + ∆λ) and (λ− ∆λ).

2.6. Gaussian Test Case

In order to verify the accuracy of the proposed numerical method, we applied it to
Gaussian chains and compared the results with analytical solutions. The probability density
distribution for the end-to-end vector r0 of a Gaussian chain of mixed single and double
bonds in the absence of imposed stress is written analytically as [51]

P(r0)dr0 =

(
3

2πCn
(
nsl2

s + ndl2
d
))3/2

exp

(
−3r2

0
2Cn

(
nsl2

s + ndl2
d
))4πr0

2dr0 (17)

where r0 is the end-to-end distance of a chain, Cn is the characteristic ratio [51], ni is the
number of backbone bonds of each type along a polymer chain, li is the bond length,
and subscripts s and d indicate single and double bonds where ls = 1.53 Å and ld = 1.10 Å
for polybutadiene [52].

To replicate the use of a simulation, an ensemble of N = 105 end-to-end distances was
created that satisfies this distribution. Specifically, independent individual Gaussian chains
were represented by repeatedly determining the distance r that satisfies

ξ =

(
3

2πCn
(
nsl2

s + ndl2
d
))3/2 r∫

0

exp

(
−3r2

0
2Cn

(
nsl2

s + ndl2
d
))4πr2

0dr0 (18)

where ξ was chosen uniformly within [0,1). A linear congruential random number generator
was used to generate the sequence of 105 values of ξ. A different seed was used for each
molecular weight, temperature, and chain type to ensure independent statistics.
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The change in elastic free energy for an ensemble of Gaussian chains is obtained by
substituting Equation (17) in Equation (3) and averaging over all chains, leading to [3]

〈∆Ael〉
kbT

=
3
2

(
〈r2〉
〈r2〉0

− 1
)

(19)

The mean squared end-to-end distances can be represented in terms of end-to-end vectors as

〈r2〉0 = 〈r2
x〉0 + 〈r2

y〉0 + 〈r2
z〉0 (20)

〈r2〉 = 〈r2
x〉+ 〈r2

y〉+ 〈r2
z〉 (21)

Assuming the initial elastomer system to be isotropic in a state of rest [3] equates the
contributions in each direction,

〈r2
x〉0 = 〈r2

y〉0 = 〈r2
z〉0 = 〈r2〉0/3 (22)

The mean squared end-to-end distance can be written in terms of deformation ratio as

〈r2
i 〉 = 〈r2

i 〉0λ2
i (23)

where i = x, y, z. The free energy change for Gaussian chains can be written in terms of
deformation ratios [3] by substituting Equations (20)–(23) in Equation (19)

〈∆Ael〉
kbT

=
1
2

(
λ2

x + λ2
y + λ2

z − 3
)

(24)

Under uniaxial deformation λ in the x direction, with compression 1/
√

λ in the y- and
z-direction in accordance with a Poisson ratio of 0.5, Equation (24) can be written as [4]

〈∆Ael〉
kbT

=
1
2

(
λ2 +

2
λ
− 3
)

(25)

providing an analytic equation for the free energy change of a deformed Gaussian chain.
This dependence on λ can be compared with results obtained from using Equation (5),
computed using the numerical distribution P(r) tabulated for Gaussian chains, to determine
the accuracy of the numerical method for elastic free energy change computations. This
dependence on λ relies on applying affine deformation to each chain.

Analytical tension ( fx) and compression forces ( fy,z) for an ensemble of Gaussian
chains are obtained by applying the force derivative in Equation (7) to the analytic Gaussian
expression for free energy, Equation (24), which leads to [13]

fx

kbT
=

1
L

(
λ− 1

λ2

)
(26)

fy,z

kbT
=

2
L

(
1√
λ
− λ5/2

)
(27)

These may be compared with Equations (11) and (12), respectively, computed using the
Gaussian P(r), to verify the numerical method accuracy for force computations.

Analytic tensile (σxx) and compressive true stresses (σyy,zz) were obtained for the
Gaussian chain model by dividing the tension and compression forces by their respective
instantaneous cross-sectional areas, leading to

σxx

kbT
=

1
V

(
λ2 − 1

λ

)
(28)
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σyy,zz

kbT
=

2
V

(
1
λ
− λ2

)
(29)

These may be compared with Equations (13) and (14) to verify numerical method accuracy
for stresses. Substitution for volume by using Equation (1) provides the classic result [13]

σxx

NAkbT
=

σxx

RT
=

ρ

M

(
λ2 − 1

λ

)
(30)

An analogous substitution in Equation (13) enables comparisons with experimental stress
and modulus measurements.

2.7. RIS Chains

Unperturbed RIS chain end-to-end distances (r0) from previous work [58] were used as
inputs for computing end-to-end vectors of chains before and after deformation. That work
provided distributions of amorphous, single RIS chains of cis- and trans-1,4-polybutadiene
for different molecular weights (n = 15, 25, 50, 75, 100, and 120 repeat units) at a temperature
of 343 K as well as at different temperatures (T = 275, 300, 323, 343, 375, and 400 K) for a
single size of 50 repeat units. Ensembles of Gaussian chains were generated under the same
conditions as the RIS chains. Each ensemble consisted of 105 independent single chains.
We found that this size was large enough to provide typical results of sufficient accuracy.

2.8. Finite Strain

Engineering strain e relates the amount of deformation to the initial size of a sample in
that direction. It also relates directly to deformation ratio λ; together, these relations are

e = ∆L/L0 = λ− 1 (31)

When finite deformation of a three-dimensional body is described in a fully tensorial
representation, i.e., changes in its (x, y, z) dimensions with respect to the (x, y, z) directions,
the resulting 3× 3 strain tensor differs from simpler equations of engineering strain that
apply only in the limit of small strain [62].

There are multiple definitions of finite strain that represent deformation more accu-
rately. In the results presented below, we calculate finite strain as [62]

ε =
1
2

(
λ2 − 1

)
=

1
2

ε2
e + εe (32)

We also express results for Gaussian chains in terms of Hencky strain, calculated as [39]
εH = ln λ. Like other definitions, these equate finite strain and engineering strain in the
limit λ → 1. Slopes of the initial linear regime of stress–strain plots, which employ true
stress and finite strain, were used to compute Young’s modulus (E) [4,13].

3. Results and Discussion
3.1. Gaussian Chains

Gaussian chains provide a useful test case because the probability density function for
their end-to-end distance can be written analytically. Their elastic energy and stress–strain
relationships are also analytic as a consequence, as shown in textbooks [4,13]. Thus, a
significant step towards testing the accuracy of the numerical method was comparing
numerical results with those analytical results.

Implementing this comparison requires a set of Gaussian chains as an input. For each
chain architecture, molecular weight, and temperature, an ensemble of 105 independent
Gaussian chain end-to-end distances was generated using Equation (18). The probability
density distribution of their end-to-end distribution was re-computed for the 105 chains.

Figure 1 shows good agreement between this numerical distribution for the generated
Gaussian chains and the analytic Gaussian probability density distribution at two particular
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conditions (trans- and cis-1,4-polybutadiene, 50 repeat units, 343 K). Small differences arise
at the smallest distances r. Here, the discrete probability densities P(r) = (1/∆r)(j/N) that
can be achieved for consecutive numbers j of chains in a bin of width ∆r differ by amounts
±(1/∆r)(1/N) that are comparable in magnitude to the analytic probability density. Equal
numerical probability densities at the largest distances r correspond to consecutive bins
that contain only a single one of the N chains in the ensemble.

1 10 100

r (Å)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

P
(r

) 
(Å

−
1
)

Figure 1. Probability density distributions of end-to-end distance obtained numerically for Gaussian
chains of (◦, blue) trans-1,4-polybutadiene and (N, red) cis-1,4-polybutadiene at 343 K with 50 repeat
units. Lines indicate the analytic Gaussian probability density distribution function.

Uniaxial deformation of this ensemble of chains was considered next. To represent an
isotropic initial distribution of chain orientations, the end-to-end vector of each undeformed
chain was positioned with one end at (0, 0, 0). Its other end was oriented randomly
within the first quadrant such that the complete set of chain orientation angles sampled a
sphere uniformly.

These chains were then uniaxially extended along the x direction and compressed
along the y and z directions, leading to each deformed end-to-end vector. These correspond
to forces that are aligned with the surface normal directions of a hypothetical parallelepiped
that surrounds each chain, e.g., stress σxx and strain εxx. Cumulatively, independent
deformation of all chains in the ensemble resulted in a change in their probability density
distributions and elastic free energy, which allowed for determining tensile forces and
stresses via Equations (11) and (13).

Conditions for trans- and cis-1,4-polybutadiene of 50 repeat units at 343 K were selected
for displaying a comparison between numerical results and analytical expressions. Figure 2a
shows that changes in elastic free energy with deformation were the same (within numerical
error) for the trans- and cis- chains, as expected for a Gaussian model. Both agree well with
the analytic solution: free energy rises with deformation as 1

2 (λ
2 + 2/λ− 3). Thus, only force

and stress results for trans-1,4-polybutadiene chains are shown in subsequent numeric tests
of the proposed approach. Figure 2b,c shows excellent agreement for the extension force
and tensile stress for Gaussian chains as computed analytically or as determined via the
new simulation method. Compression forces and stresses in the transverse (y, z) directions
(not shown) exhibited similar agreement. Tensile force rises with (λ− 1/λ2). True tensile
stress rises with (λ2− 1/λ), whose slope initially scales as (∂σ/∂ε) = (∂σ/∂λ)/(∂ε/∂λ) =
(2 + 1/λ3) = 3 in the limit of small deformations (λ→ 1, dashed line). The initial modulus
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at zero strain helps to illustrate differences from a linear stress–strain relationship at finite
strain. Figure 2d shows that the stress–strain relationship for the Gaussian chain deviates
further from linearity when plotted using Hencky strain.
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Figure 2. Analytical and numerical comparisons of (a) elastic free energy changes, (b) force in tension,
and (c) stress in tension for (◦, blue) trans- and (N, red) cis-1,4-polybutadiene chains of 50 repeat
units at 343 K. The dashed line indicates the initial modulus. Hencky finite strain is employed in (d).
Overlapping results for cis- are omitted in (b–d).

Analogous extents of very good agreement were also observed for Gaussian chains
that were representative of cis- and trans-1,4-polybutadiene for all numbers of repeat units
and all temperatures that were considered. In summary, a comparative analysis of nu-
merical results and analytical solutions of Gaussian chains indicates that the implemented
numerical method determines stress–strain behavior accurately for a well-defined model
of the end-to-end distance probability density distribution.

3.2. RIS Chains

Next, the new method was applied to RIS chains of cis- and trans-1,4-polybutadiene
of different numbers of repeat units at 343 K. Probability densities of the undeformed
ensembles of chains were shown in earlier work [58]. We initiated these simulations with
isotropic (unoriented) chains and applied affine deformation to each chain.

Figure 3 shows probability density distributions of end-to-end vector components
of trans-1,4-polybutadiene chains of 50 and 120 repeat units under uniaxial tension in
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directions of extension (panels a, b) and compression (panels c, d). The distributions of rx,
ry, and rz are equivalent under undeformed conditions as a consequence of the isotropic
orientation distribution. The rx distribution gradually widens with increasing deformation.
This indicates that the highly probable shorter conformations become less probable upon
stretching, while longer conformations become increasingly present. Conversely, ry or rz
distributions contract in width with increasing deformation; this indicates more probable
shorter conformations and less probable longer conformations while they compress in
response to extension in the x direction.
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Figure 3. Probability density distributions of end-to-end vectors in the (a,b) x and (c,d) y and z
directions for trans-1,4-polybutadiene RIS chains of (a,c) 50, and (b,d) 120 repeat units at 343 K.
Deformation ratios (λ): 1 (O violet); 1.5 (. blue); 2 (/ cyan); 2.5 (M green); 3 (� orange); 3.5 (◦ red).

Chains of 120 repeat units occurred with lower probabilities at any given end-to-end
distance, compared to chains of 50 repeat units, because they spanned larger distances. In
short, Figure 3 displays explicit changes that occur in contributions to end-to-end distance
probability density as a consequence of uniaxial deformation in the x-direction applied
affinely to each chain.

Numeric changes in the elastic energies as a function of deformation were computed
in order to estimate the deformation forces and stresses. Figure 4 shows that normalized
tension and compression forces for chains at the same temperature increased with increas-
ing deformation. Much larger forces accompany shrinking the system in the transverse
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directions than elongating it in the direction of imposed strain, as indicated by the larger
magnitudes of compressive forces shown in Figure 4b. This is consistent with the larger
forces associated with compression compared to elongation in classic experiments on cross-
linked natural rubber [63]. Normalized tensile forces calculated for cis-1,4-polybutadiene
are slightly smaller than those calculated for trans-1,4-polybutadiene at high extensions.
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Figure 4. Normalized (a) tension and (b) compression forces vs. deformation ratio for cis- and
trans-1,4-polybutadiene RIS chains of all sizes at 343 K. Filled red symbols for cis and open blue for
trans. n = 15 (O), 25 (.), 50 (4), 75 (�), 100 (�), and 120 (◦).

Results for different numbers of repeat units (i.e., molecular weights) nearly collapse
onto overlapping curves when the physical dimension L from the chain density prior to
deformation is used to normalize the tension and compression forces. The overlap of
the normalized forces indicates that RIS chains of different numbers of repeat units are
impacted in the same way by molecular weight and density.

Similar to the force behavior, tensile stresses acting on the chains increased with
increasing deformation (or finite strain), as shown in Figure 5. Normalizations of tensile
stresses on the chains demonstrate that across different sizes, stresses are impacted in
the same way by molecular weight and density in terms of their combination into chain-
occupied volume V. Results are similar once again for cis- and trans-1,4-polybutadiene.
The stress–strain relationship is closer to linear for finite strain (Equation (32)) compared to
engineering strain.

The stress–strain behavior of macroscale elastomers can exhibit features that arise from
irreversibilities, strain softening, and hysteresis during multiple stress–strain cycles [38].
The current state of the new simulation method does not enable or account for such
changes in chain structure and their effects on end-to-end vector probability density. Thus
the mechanical response to deformation is treated reversibly in this work.

Figure 6 shows increasing tension and compression forces with increasing uniaxial
deformation for chains of the same molecular weight at various temperatures. Each
temperature corresponds to a separate distribution of end-to-end distances [58] as inputs to
the calculations. Normalization of the forces by the box dimension has the same beneficial
effect that was shown in Figure 4. The role of temperature as another normalization term
is also clear. While the only difference across chains of the same molecular weight is the
temperature, its effects on tension and compression forces is confirmed to be accounted for
via this scaling.
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Figure 5. Normalized tensile stresses vs. (a) finite strain and (b) engineering strain for cis- and trans-
1,4-polybutadiene RIS chains of all sizes at 343 K. Symbols follow convention of Figure 4. Dashed
lines indicate an initial linear fit with E = 2.4 kBT/V.
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Figure 6. Normalized (a) tension and (b) compression forces vs. deformation ratio for cis- and trans-
1,4-polybutadiene RIS chains of 50 repeat units. Filled symbols for cis and open for trans. T = 275 K
(O violet); 300 K (. blue); 323 K (/ cyan); 343 K (M green); 375 K (� orange); 400 K (◦ red).

The tensile stresses increased with deformation (or finite strain), as shown in Figure 7.
The normalized tensile stresses on chains of the same number of repeat units were consistent
across all temperatures. Similar to force, the overlap emphasizes that non-normalized
tensile stresses are impacted by temperature. Once again, the stress–strain relationship
is closer to linear for finite strain compared to engineering strain. While the simulation
results deviate slightly from a linear relationship between true stress and finite strain, they
do not indicate a maximum in engineering stress or a yield point. The simulations also
cannot detect a macroscopic strain-at-break point.

Two observations can be made in regard to the underlying distribution of chain shapes.
Small differences in end-to-end distance probability density distribution with respect to
temperature [58], which lead to the temperature dependence of characteristic ratio, do not
seem to affect deformation forces or stresses when all chain end-to-end vectors are deformed
affinely. Moreover, similar results were found for cis- and trans-1,4-polybutadiene, despite
there being some difference in their underlying end-to-end distance distributions, which is
manifested in them having different characteristic ratios.
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Figure 7. Normalized tensile stresses vs. (a) finite and (b) engineering strain for cis- and trans-1,4-
polybutadiene RIS chains of 50 repeat units. Symbols and colors follow convention of Figure 6.
Dashed lines indicate an initial linear fit with E = 2.4 kBT/V.

Computations of Young’s moduli from the slope of the linear regime of the stress–
strain plots for cis- and trans-1,4-polybutadiene chains of different numbers of repeat units
and temperatures are shown in Figure 8. Moduli significantly decreased with increasing
number of repeat units and increased linearly with increasing temperature. Both arise from
the scaling relationships that are incorporated into the normalized stress–strain plot. The
chains with fewer repeat units correspond to subchains of lower molecular weight between
cross-links. In a network polymer, this corresponds to a more tightly cross-linked chain
network. Tonelli and Andrady [5,40] reported a similar rise in modulus with ever shorter
chains between cross links in PDMS. Polybutadiene networks that incorporated increased
extents of cross linking of the same starting material increased in modulus as a consequence
of the shorter elastically active chains that arose [37].
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Figure 8. Tensile or Young’s moduli of cis- and trans-1,4-polybutadiene RIS chains of (a) different
numbers of repeat units at 343 K and (b) different temperatures for 50 repeat units. Numerical model
results: cis (N red); trans (◦ blue).

The reported moduli are of the correct order-of-magnitude for elastomers. Textbooks
on rubber elasticity [3,64] and polymer engineering [4] have reported Young’s modulus
of polybutadiene to be ∼1 to 3 MPa, and the numerical results here fall within that range
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for all except the shortest chains. The 50-unit size reported here for multiple temperatures
corresponds roughly to a molecular weight between entanglements.

To compare the RIS results more extensively with experimental results for polybu-
tadiene, stress–deformation data were extracted from graphical depictions in the litera-
ture. Dossin and Graessley [37] presented Mooney–Rivlin plots for radiation cross-linked
networks at 298.15 K that were made from two different polybutadiene starting materi-
als. The ratio σengr/(λ − 1/λ2) shown in their results is equivalent to the ratio here of
σtrue/(λ2 − 1/λ) under an assumption that area shrinks as A0/λ during uniaxial defor-
mation. Chen et al. [41] reported true stress vs. Hencky strain and deformation ratio at
temperatures that included 273.15 and 298.15 K within their studies of stress-induced
crystallization in a cross-linked polybutadiene rubber.

Figure 9 compares the results here for cis-1,4-polybutadiene chains of 50 repeat units
at 275 and 300 K with those results from the literature. The experimental data at 298 K
show a range of normalized stresses (y-axis), indicating the effects of different cross link
densities and effective molecular weights. The simulation results fall between data from the
two different networks of Dossin and Graessley [37] and above the data of Chen et al. [41].
Both the simulation results and the experimental data of ref [41] show only a small rise
in normalized stress with increased temperature. In terms of Mooney–Rivlin parameters,
the simulation results demonstrate less of a dependence on 1/λ. Svaneborg et al. [42] found
a similarly small dependence in their simulation results for shorter vs. longer chains. The
tube model has been interpreted [24] as indicating that entanglements contribute to both
the slope and intercept of a Mooney–Rivlin plot, while cross linking affects the intercept
much more. Some differences between the simulation results and the experimental data
are potentially a consequence of the absence of entanglements in the simulation method.
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Figure 9. Mooney–Rivlin plot of normalized stress for polybutadiene as measured at 298.15 K for
networks cross linked from two different starting materials (�, � and ×, + blue) [37] and at 273.15
and 298.15 K for a different cross-linked polybutadiene rubber (., O green) [41]. Simulation results
are for cis-1,4-polybutadiene of 50 repeat units at 275 and 300 K (H, I red).

Experimental studies described in the introduction support a wide range of interpreta-
tions for how individual chains evolve in shape under macroscale deformation. As a test
of one example, we show in Figure 10 how components of the mean-square end-to-end
distance evolve under deformation in our calculations. We divide the end-to-end distance
into parallel (x) and perpendicular (y, z) components relative to the deformation direction.
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Then, we compute averages over all chains at a given deformation ratio λ and compute
ratios to the undeformed case (λ = 1),

α‖ =

(
〈rx

2〉at λ

〈rx2〉at λ=1

)1/2

α⊥ =

(
〈ry

2 + rz
2〉at λ

〈ry2 + rz2〉at λ=1

)1/2

(33)

Filled triangles (red) indicate our results for cis-1,4-polybutadiene of 50 repeat units at
300 K. Other data points indicate comparable ratios for radius of gyration of PDMS reported
by Beltzung et al. [34] via neutron scattering measurements. The simulation results follow
affine deformation precisely. The measurements show smaller shape changes for the
PDMS chains, though the chains of lowest molecular weight (squares) are less far from
exhibiting affine deformation. A similar deviation from affine deformation along an average
polybutadiene chain during uniaxial deformation was reported by Naumova et al. [30]
via NMR measurements. Alternate approaches for simulating changes in conformation
probability density would be necessary to achieve closer agreement with these shape
changes that have been measured experimentally.
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Figure 10. Ratios of root-mean-squared contributions to end-to-end distance in directions parallel
and perpendicular to the deformation direction, normalized by contributions in the absence of
deformation. Simulation results depict cis-1,4-polybutadiene of 50 repeat units at 300 K (I red).
Equivalent radius of gyration data measured by neutron scattering [34] are shown for PDMS of
increasing molecular weight (�; +; ×; ◦ violet). Dashed lines indicate changes expected for locally
affine deformation. Parallel and perpendicular ratios are above and below the dotted line.

4. Conclusions

The aim of this work was to develop a simulation method to predict mechanical
properties of elastomers at various temperatures under deformation through explicit
changes in chain conformation probability densities. We applied it to cis-1,4- and trans-
1,4-polybutadiene chains of different numbers of repeat units. This approach expanded
on prior work in which we generated distributions of end-to-end distance for individual
chains. To create an initially isotropic orientation for the present work, all distances within
this ensemble of chains were randomly distributed over the (+x,+y,+z) octant of a sphere.
Then, all chains were uniaxially deformed affinely via extension along the x-direction

and compression along the y- and z-directions. Probability density distributions of the
chain end-to-end vectors changed due to this deformation, which resulted in changes in
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the elastic free energy of each ensemble of chains. The numerical method derived for
computing the elastic free energy change of chain ensembles ultimately led to numerical
evaluations of force and stress. For an ensemble of end-to-end distances that represented
Gaussian chains, the results were in excellent agreement with analytical solutions. This
demonstrated that the method achieved a successful numerical solution for a known case.

Next, the simulation method was applied to calculate mechanical properties of RIS
chains. Ensembles of cis- and trans-1,4-polybutadiene chains that were generated under
unperturbed conditions using Flory’s RIS method in previous work [58] were distributed
in random directions and then were uniaxially extended. Elastic free energy changes,
forces, and stresses were calculated using the newly developed method. Tension forces,
compression forces, and tensile stresses increased with deformation. Normalized results
emphasized scaling relationships for the forces and stresses as functions of molecular
weight, chain density, and temperature. Differences in stresses and forces were minimal
between cases that corresponded to cis- and trans-1,4-polybutadiene chains.

The slope of the stress–strain curves in the linear regime provided the Young’s modulus
for each combination of chain type, number of repeat units, and temperature. Significant
variations were observed in moduli as a function of the number of repeat units (i.e.,
molecular weight), while minor variations were observed with temperature. Chains with
fewer repeat units demonstrated greater moduli, which was explained as corresponding to
a much more tightly cross-linked network. Numerically computed moduli and stress–strain
behavior as depicted on a Mooney–Rivlin plot were consistent with available experimental
results. Averaged molecular-scale changes in conformation on a chain-by-chain basis
differed from experimental results from the literature for PDMS chains, whose changes in
shape were closer to the phantom model of network deformation.
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22. Valić, S. Orientational motions of chain segments in natural rubber crosslinked under uniaxial deformation. Radiat. Phys. Chem.
2014, 97, 393–397. [CrossRef]

23. Pérez-Aparicio, R.; Schiewek, M.; Valentín, J.L.; Schneider, H.; Long, D.R.; Saphiannikova, M.; Sotta, P.; Saalwächter, K.; Ott,
M. Local Chain Deformation and Overstrain in Reinforced Elastomers: An NMR Study. Macromolecules 2013, 46, 5549–5560.
[CrossRef]

24. Schlögl, S.; Trutschel, M.L.; Chassé, W.; Riess, G.; Saalwächter, K. Entanglement Effects in Elastomers: Macroscopic vs Microscopic
Properties. Macromolecules 2014, 47, 2759–2773. [CrossRef]

25. Ott, M.; Pérez-Aparicio, R.; Schneider, H.; Sotta, P.; Saalwächter, K. Microscopic Study of Chain Deformation and Orientation in
Uniaxially Strained Polymer Networks: NMR Results versus Different Network Models. Macromolecules 2014, 47, 7597–7611.
[CrossRef]

26. James, H.M.; Guth, E. Theory of the elasticity of rubber. J. Appl. Phys. 1944, 15, 294–303. [CrossRef]
27. Heinrich, G.; Straube, E.; Helmis, G. Rubber Elasticity of Polymer Networks: Theories. Adv. Polym. Sci. 1988, 85, 33–87.
28. Wagner, M. Analysis of Small-Angle Neutron Scattering Data on Poly (dimethylsiloxane) Network Unfolding. Macromolecules

1994, 27, 5223–5226. [CrossRef]
29. Rubinstein, M.; Panyukov, S. Nonaffine Deformation and Elasticity of Polymer Networks. Macromolecules 1997, 30, 8036–8044.

[CrossRef]
30. Naumova, A.; Agudelo, D.C.; Villar, M.A.; Vega, D.A.; Valentin, J.L.; Saalwächter, K. Microscopic State of Polymer Network

Chains upon Swelling and Deformation. Macromolecules 2019, 52, 5042–5053. [CrossRef]
31. Toki, S.; Sics, I.; Ran, S.; Liu, L.; Hsiao, B.S.; Murakami, S.; Senoo, K.; Kohjiya, S. New Insights into Structural Development

in Natural Rubber during Uniaxial Deformation by In Situ Synchrotron X-ray Diffraction. Macromolecules 2002, 35, 6578–6584.
[CrossRef]

32. Neuefeind, J.; Skov, A.L.; Daniels, J.E.; Honkimaki, V.; Jakobsen, B.; Oddershede, J.; Poulsen, H.F. A multiple length scale
description of the mechanism of elastomer stretching. RSC Adv. 2016, 6, 95910–95919. [CrossRef]

33. Higgins, J.S.; Benoît, H.C. Polymers and Neutron Scattering; Oxford University Press: Oxford, UK, 1986.
34. Beltzung, M.; Picot, C.; Herz, J. Investigation of the Chain Conformation in Uniaxially Stretched Poly(dimethylsiloxane) Networks

by Small-Angle Neutron Scattering. Macromolecules 1984, 17, 663–669. [CrossRef]
35. Fernandez, A.M.; Sperling, L.H.; Wignall, G.D. Conformation of polybutadiene in the network state by small-angle neutron

scattering. Macromolecules 1986, 19, 2572–2575. [CrossRef]
36. Straube, E.; Urban, V.; Pyckhout-Hintzen, W.; Richter, D.; Glinka, C.J. Small-Angle Neutron Scattering Investigation of Topological

Constraints and Tube Deformation in Networks. Phys. Rev. Lett. 1995, 74, 4464–4467. [CrossRef] [PubMed]
37. Dossin, L.M.; Graessley, W.W. Rubber Elasticity of Well-Characterized Polybutadiene Networks. Macromolecules 1979, 12, 123–130.

[CrossRef]
38. Subhani, P.M.; Kumar, R.K. A New Stored Energy Function for Rubber Like Materials for Low Strains. Mech. Adv. Mater. Struct.

2009, 16, 402–416. [CrossRef]
39. Starkova, O.; Aniskevich, A. Poisson’s ratio and the incompressibility relation for various strain measures with the example of a

silica-filled SBR rubber in uniaxial tension tests. Polym. Test. 2010, 29, 310–318. . [CrossRef]
40. Tonelli, A.E.; Andrady, A. Molecular estimates of the moduli of tough, elastic networks formed through end-linking of

poly(dimethyl siloxane) oligomers. Comput. Theor. Polym. Sci. 1996, 6, 103–108.

http://dx.doi.org/10.1002/pi.6454
http://dx.doi.org/10.1021/ma991983r
http://dx.doi.org/10.1021/ma021567y
http://dx.doi.org/10.1021/acs.chemrev.0c01304
http://www.ncbi.nlm.nih.gov/pubmed/33792299
http://dx.doi.org/10.1021/ma961589i
http://dx.doi.org/10.1021/ma302563z
http://dx.doi.org/10.1016/j.polymer.2003.09.048
http://dx.doi.org/10.1016/S0032-3861(03)00475-0
http://dx.doi.org/10.1016/j.radphyschem.2013.08.002
http://dx.doi.org/10.1021/ma400921k
http://dx.doi.org/10.1021/ma4026064
http://dx.doi.org/10.1021/ma5012655
http://dx.doi.org/10.1063/1.1707432
http://dx.doi.org/10.1021/ma00096a056
http://dx.doi.org/10.1021/ma970364k
http://dx.doi.org/10.1021/acs.macromol.9b00971
http://dx.doi.org/10.1021/ma0205921
http://dx.doi.org/10.1039/C6RA22802J
http://dx.doi.org/10.1021/ma00134a024
http://dx.doi.org/10.1021/ma00164a020
http://dx.doi.org/10.1103/PhysRevLett.74.4464
http://www.ncbi.nlm.nih.gov/pubmed/10058513
http://dx.doi.org/10.1021/ma60067a026
http://dx.doi.org/10.1080/15376490902781167
http://dx.doi.org/10.1016/j.polymertesting.2009.12.005


Polymers 2023, 15, 1441 22 of 22

41. Chen, P.; Lin, Y.; Zhao, J.; Meng, L.; Wang, D.; Chen, W.; Li, L. Reconstructing the mechanical response of polybutadiene rubber
based on micro-structural evolution in strain-temperature space: Entropic elasticity and strain-induced crystallization as the
bridges. Soft Matter 2020, 16, 447–455. [CrossRef] [PubMed]

42. Svaneborg, C.; Grest, G.S.; Everaers, R. Strain-Dependent Localization, Microscopic Deformations, and Macroscopic Normal
Tensions in Model Polymer Networks. Phys. Rev. Lett. 2004, 93, 257801. [CrossRef] [PubMed]

43. Hsu, H.P.; Kremer, K. Primitive Path Analysis and Stress Distribution in Highly Strained Macromolecules. ACS Macro. Lett. 2018,
7, 107–111. [CrossRef]

44. Tsolou, G.; Mavrantzas, V.G.; Theodorou, D.N. Detailed Atomistic Molecular Dynamics Simulation of cis-1,4-Poly(butadiene).
Macromolecules 2005, 38, 1478–1492. [CrossRef]

45. Paul, D.R.; DiBenedetto, A.T. Diffusion in Amorphous Polymers. J. Polym. Sci. C Polym. Symp. 1965, 10, 17–44. [CrossRef]
46. Gee, R.H.; Boyd, R.H. Conformational dynamics and relaxation in bulk polybutadienes: A molecular dynamics simulation study.

J. Chem. Phys. 1994, 101, 8028–8038. [CrossRef]
47. Behbahani, A.F.; Rissanou, A.; Kritikos, G.; Doxastakis, M.; Burkhart, C.; Polińska, P.; Harmandaris, V.A. Conformations and
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