Development of a porous layer-by-layer microsphere with branched aliphatic hydrocarbon porogens

Farah Shahjin
Milankumar Patel
Mahmudul Hasan
Jacob D. Cohen
Farhana Islam

See next page for additional authors.

Follow this and additional works at: https://digitalcommons.uri.edu/che_facpubs

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

Citation/Publisher Attribution
Available at: https://doi.org/10.1016/j.nano.2022.102644

This Article is brought to you for free and open access by the Chemical Engineering at DigitalCommons@URI. It has been accepted for inclusion in Chemical Engineering Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Development of a porous layer-by-layer microsphere with branched aliphatic hydrocarbon porogens

Authors
Farah Shahjin, Milankumar Patel, Mahmudul Hasan, Jacob D. Cohen, Farhana Islam, Md Ashaduzzaman, Mohammad Ullah Nayan, Mahadevan Subramaniam, You Zhou, Irene Andreu, Howard E. Gendelman, and Bhavesh D. Kevadiya

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/che_facpubs/687
Original Article

Development of a porous layer-by-layer microsphere with branched aliphatic hydrocarbon porogens

Farah Shahjin PhD a, Milankumar Patel MS a, Mahmudul Hasan MPharm b, Jacob D. Cohen BS a, Farhana Islam BPharm c, Md Ashaduzzaman BSc d, Mohammad Ullah Nayan BPharm a, Mahadevan Subramaniam PhD d, You Zhou PhD c, Irene Andreu PhD f, Howard E. Gendelman MD a,⁎, Bhavesh D. Kevadiya PhD a

a Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
b Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
c Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
d Computer Science, University of Nebraska-Omaha, Omaha, NE, USA
e Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
f Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA

Abstract

Porous polymer microspheres are employed in biotherapeutics, tissue engineering, and regenerative medicine. Porosity dictates cargo carriage and release that are aligned with the polymer physicochemical properties. These include material tuning, biodegradation, and cargo encapsulation. How uniformity of pore size affects therapeutic delivery remains an area of active investigation. Herein, we characterize six branched aliphatic hydrocarbon-based porogen(s) produced to create pores in single and multilayered microspheres. The porogens are composed of biocompatible polycaprolactone, poly(lactic-co-glycolic acid), and poly lactide polymers within porous multilayered microspheres. These serve as controlled effective drug and vaccine delivery platforms.

© 2021

Introduction

Polymer microspheres (MS) facilitate delivery of drugs and vaccines.1-4 Microfluidics and membrane-microchannel research have served to optimize MS synthesis. MS suspensions, dispersions, precipitations, and polymerizations all serving to improve drug, vaccine, and regenerative medicine cargo delivery.5-17 For each of the polymer structure and porosity affect delivery as porosity and scaffold interconnectivity. These confer spatial, physical, and functional control in cell and tissue distribution, support, growth, and nutrient circulation for improved therapeutic outcomes and immune responses.18 The macro- and micropores improve surface area facilitating MS delivery of nutrients, drugs, nucleic acids, and proteins. For biotherapeutic application, porosity affects surface area and in turn MS density leads to improved drug absorption and adsorption.19,20 The surface topography can also affect cargo release which are linked to pore diffusion capacities.12,21 Thus, the means to affect pore size are associated with how MS can facilitate cargo delivery.22 However, control of such pore sizes and their interconnectivity remains challenging.23 The importance of the type and quantity of the porogen used as well as how it influences polymer-pore morphology, surface area, volume, size distribution, rigidity, and mechanical stability is of pivotal importance as they all affect payload loading and distribution.22,24 Based on such needs, research on porogens has focused on density, partition, polarity, and solubility as each and all, affect the MS physicochemical properties.24

Single polymer MS-based drug delivery systems underlie several research advances in nanomedicines.1,25 In particular, MS containing

Note: Low-resolution images were used to create this PDF. The original images will be used in the final composition.
porous core-shells,26–28 ‘Janus’ structures,29 and multilayered structures30–32 have served to improve cargo delivery and release while minimizing toxicities. Core-shell MS, in particular, allows the loading of multiple drugs with an order, timing, and dose release control.33 This is based on stimuli-sensitive or pulsatile release of the payload, which is distinct amongst its layers.27,34–36 Each and all provide a unique means for cargo administration while maintaining payload stability.37 Herein, we provide a unique set of porogens that are designed to generate uniform pores, within single or multilayered biodegradable polymers. The porogens were characterized using solid-state characterization, demonstrating the ability to construct uniformly porous MS. We have also demonstrated the production of unique layer-by-layer (LBL) MS in a single-step process that optimizes timing and mixing of a specific biopolymer blend (Fig. 1) as demonstrated by structural and stability, biodegradation, and profiled release which serve to facilitate a novel drug delivery system. Taken together, the ability to alter MS porosity makes the study of broad interest as it influences a wide range of multilayered delivery systems.

Materials and methods

Reagents

All reagents were purchased from Sigma Aldrich, St. Louis, MO, USA, unless otherwise stated. The porogens used in this study include 2-methylpentane (2-MP) [Cat#M65807], 3-methylpentane (3-MP) [Cat#M66005], 2-methylhexane (2-MH) [Cat#M49704], 3-methylhexane (3-MH) [Cat#M49801], 2,3-dimethylbutane (2,3-DMB) [Cat#D151602], and 2,4-dimethylpentane (2,4-DMP) [Cat#D173401]. The polymers used include Polycaprolactone (PCL) – molecular weight ~ 40 k [Cat#19561], Polysciences, Inc., Warrington, PA, USA. [Cat#440744] and ~80k [Cat#440744], Poly(lactic-co-glycolic acid) (PLGA) 75:25 [Cat#P1941] and PLGA 50:50 [Cat#1001012896, Corbion, Gorinchem, Netherlands], Polyactic acid (PLLA) – PLLA-1 [Cat#765112], PLLA-2 [Cat#16585-10, Polysciences, Inc., Warrington, PA, USA], and PLLA-3 [Cat#1824013]. Other reagents include dichloromethane (DCM) [Cat#270997], acetone [Cat#A949-4], polyvinyl alcohol (PVA, average 30,000–70,000 molecular weight) [Cat#P8136], Phosphate buffer pH 7.2 [Cat#P3288], Tween-80 [Cat#P1754], and Rhodamine B dye [Cat#283924] were from Thermo Fisher Scientific International Inc., Waltham, MA, USA.

Production of porous-single or multilayered polymer MS

MS were prepared by conventional solvent evaporation method.4 PCL or PLGA or PLLA-2 (200 mg) was dissolved in 2 mL of DCM and vortexed to prepare the organic phase. Defined types and amounts of porogens (Table S1) were mixed and vortexed. The organic phase was added dropwise to the aqueous phase, consisting of 1% (w/v) polyvinyl alcohol (200–300 mL) in a 600 mL capacity glass beaker (8.2 cm diameter), while constantly being stirred at 1000 rpm. An overhead stirrer (Cat#3593001, IKA, Wilmington, NC, USA) was used with a pitched blade propeller (Cat#14-500-363, Fisherbrand, Denver, CO, USA). The solution was left stirring overnight for organic solvent evaporation and polymer phase inversion. The porous MS were collected by filtration of aqueous phase using Whatman filter paper. Milli-Q water washes (~500 mL) were done to remove PVA and MS. These were lyophilized to obtain powder form for further characterizations. For layer-by-layer MS (LBL MS) production, the abovementioned solvent evaporation was used. Here the organic phase was prepared by com-

Fig. 1. Scheme of the porous LBL MS production. Single emulsion solvent evaporation technique employed the addition of the organic phase (polymer blend and porogens) to the aqueous phase (1% PVA), stirred overnight at high speed at room temperature (RT). Organic phase evaporation allowed for the phase inversion of the polymers, while the porogens remained entrapped within polymer matrix. Leaching of porogens from polymer matrix left behind uniform pores with unique designing patterns, giving the MS an ‘island-sea’ external topography. The particles were purified by filtration and stored as lyophilized powder for further characterizations.
pletely dissolving PCL (100 mg), PLGA 75:25 (100 mg), and PLLA-1 (50 mg) in 1 mL of DCM prior to addition of the porogen (100 µL of 2-methylpentane) to the aqueous phase. The organic phase must be added to the aqueous phase while being stirred at 1000 rpm.

Scanning electron microscopy and image analyses

Lyophilized MS were collected on conductive adhesive carbon tape and attached to aluminum stubs. Particles were sputter-coated with 50 nm gold-palladium using Hummer VI Sputter Coater (Anatech, CA, USA); used at 10 mA for 5 min. They were imaged at 5–25 kV on an FEI Quanta 200 (FEI Company, OR, USA), operating in high vacuum mode. Based on SEM images, particle size distribution and porosity (pore size and density) measurements were performed in Google Colab using python libraries (cv2, imutils, skimage, scipy, matplotlib). For Google Colab analysis of particle size, electron microscopic images with at least twenty clearly visible MS were selected from the image pool of each polymer-porogen combination. For pore size distribution, a representative high magnification image (with planar surface of a MS) was selected from each polymer-porogen combination. Selected images were pre-processed by image filtering, segmentation, and binarization. Gaussian blur filtering was used for the noise removal of the image. A mean shift filtering algorithm was applied to the images to shift the data-point towards the centroids. Image thresholding techniques, which included Otsu’s method, binary and binary-inverted methods were utilized for the segmentation of the image to create a binarized image. Euclidean distances are measured for each foreground to the background pixels. Local maxima were calculated from each of the foreground images with different nearest neighbor images. The watershed algorithm was applied to separate the overlapping MS in the image. From the output masks of the watershed algorithm, contours were detected. The largest contour for each mask was extracted as an individual particle or pore object. As most of the MS and pores were spherical, the enclosing circle boundary was calculated for each object. Enclosing circles, within a given radius range, were selected for the desired MS or pore objects. The red outlined objects were drawn on top of binarized images as a task output. Image scales were detected from the lower right part of each image. Then, diameters of the detected circular objects were calculated as a second output of the task. For the pore distribution, subsequent analyses were done, (i) total surface area of the analyzed region of interest (ROI) (height×width), number of pores, and area covered by the pores. The summation of the areas of all pores in the ROI were calculated, and (ii) pore density (number of pores/surface area) and percentage of area covered by pores. Finally, the statistics from the result table were plotted using GraphPad Prism 9.2 (GraphPad Software, San Diego, CA, USA).

For cross-sectioning of the LBL MS (Fig. S1), we designed sectioning method in-house, by trial and error and this method has not been reported anywhere. The MS were immobilized in a gel matrix (commercial beauty product, Hemp+ facemask by My Beauty Spot, Amazon, USA) in a suitable mold (e.g., ultracentrifuge tubes, that can be cut by the blade). The MS-gel matrix was frozen at -80 °C for 10 min and 5–10 µm sections were obtained using Leica CM1850 (Leica Biosystems Inc., IL, USA) at -20 °C. The slices were collected in warm water to wash off the water-soluble gel matrix and centrifuged at 5000 rpm to pellet the MS sections. Also, this product has readily water-soluble ingredients, allowing repeated quick washes of the MS with water at 37 °C. The choice of the gel matrix considered two criteria – (i) ability to freeze at -20 °C to -80 °C to immobilize the MS and allow microtome sectioning. The proprietary commercial product solidifies at -80 °C in a short time, without compromising the entrapped MS; (ii) dissolves readily in water at room temperature or 37 °C for matrix removal leaving behind free cut sections with no distortions. For acetone dissolution, acetone (500 µL) was added to MS of either PCL 40 k, PLGA 75:25, PLLA-1 or LBL MS (100 mg) for 1 h. MS were centrifuged to remove supernatant. The sectioned MS were lyophilized into powder form for SEM image analysis.

Spectroscopic characterizations of LBL MS

For Raman confocal microscopy, selected LBL MS were sectioned by freezing a droplet of MS suspension in water using liquid nitrogen and sectioning the frozen droplet using a clean steel razor blade. The low temperature reduces plastic deformation during sectioning. The MS were air dried on a glass slide and imaged on a WITec alpha 300R confocal Raman microscope equipped with a 532 nm laser and a 600 g/mm grating. Raman hyperspectral maps were obtained using a 50× objective (Zeiss Epiplan-NEOFLUAR NA = 0.8), a laser power of 5 mW and 10 accumulations of 1 s per data point, with a distance of 20 µm between data points. The hyperspectral maps were processed by True-Component™ on the WITec Project Five software to find the two main components of the mapped region. Single spectra of pure PCL 40 k, PLGA 75:25 and PLLA-1 were acquired on the same system and compared to the components found on the MS. Fourier Transform Infrared spectroscopy were recorded on a Perkin-Elmer-spectrum attenuated total reflectance (ATR)-FTIR equipped with a UATR-accessory (Perkin-Elmer, Inc., Waltham, MA, USA). The spectra were recorded for single polymer MS and LBL MS. The scanning range was 400–4000 cm⁻¹, and the resolution was 2 cm⁻¹.

For X-ray microscopy (XRM), dry powder of LBL MS was run on a Zeiss Xradia Versa 610 X-ray microscope operated at 80 kV, 10 kW, 4× optical magnification at 1.56 µm voxel size with 1 s exposure time and 1601 projections, to achieve a 3D reconstruction of the MS. The tomography(s) were analyzed with Dragonfly Pro (Object Research Systems, version 2021.1.0.977) to calculate MS size. The acquired tomograms were filtered using a Gaussian blur to remove low frequency noise and segmented into particles and void space using the Dragonfly Pro machine learning module. The segmented particles were separated using watersheds and their minimum Feret diameters were calculated to obtain the size distribution. Fibrous debris or particles not completely captured or separated in the tomogram were not considered in the size distribution.

Surface chemistry and structural analysis of LBL MS

X-ray photoelectron spectroscopy measurements were carried out using monochromatic Al Kα, X-ray with an energy of 1486.6 eV by the K-alpha XPS system (ThermoFisher Scientific, Waltham, MA, USA). The spectra were generated using GraphPad Prism 9.2 software. The crystalline nature of the micropherses was investigated by X-ray powder diffraction (XRD), using Rigaku SmartLab Diffractometer (Rigaku Corporation, Tokyo, Japan), operated with Cu Kα radiation at 40 kV and 30 mA. A length limiting slit of 10 mm, a divergence slit of 1/2° and a 5° Soller slit were used on the incident beam path and the data was collected by q/2q scans using a D/tex Ultra 250 1D strip detector with 20 mm receiving slits and a 5-degree Soller slit. A Ni foil was used to suppress Kβ intensity. The MS were spread in a 20 × 20 mm, 0.2 mm deep pocket of the sample holder and the surface was leveled. The data was collected from 15 to 35°, continuously scanning q/2q scans at 0.6 s/step with a step size of 0.01. The spectra were generated using Origin-Pro 2021 software.

Thermal analysis of LBL MS

For the differential scanning calorimetry (DSC) analysis, samples and reference were heated in an inert nitrogen atmosphere with a nitrogen flow rate of 20 mL/min that was subjected to a heating cycle between 25 and 500 °C with a heating rate of 10 °C/min in NETZSCH DSC 204 F1 Phoenix (NETZSCH, Waldkraiburg, Bayern, Germany). For the thermogravimetric analysis (TGA), samples were measured using NET-
Results

Characterization of a single or multipolymer ‘porous’ MS

Porogen polymers

Single polymer microspheres were prepared by single emulsion solvent evaporation, using PCL, PLA 75:25, and PLLA-2 polymers, to evaluate the pore forming capacities of six chemicals, which were branched aliphatic hydrocarbons. These included 2-methylpentane (2-MP), 3-methylpentane (3-MP), 2-methylhexane (2-MH), 3-methylhexane (3-MH), 2,3-dimethylbutane (2,3-DBMB), and 2,4-dimethylpentane (2,4-DMP) (Table 1). SEM analysis was used to assess the pore forming effects on the polymer MS. Particle size and pore size distributions were analyzed from representative SEM images. Image analysis was completed in Google Colab using python libraries, where the contours (yellow), of either the pore (Fig S2) or MS (Fig S3, A-C), were analyzed on the output masks with the watershed algorithm. The pores generated in the MS were spherical in shape with varying depth (Fig 2A). The pores generated in PCL by all six porogens were larger, as depicted by >60 % porosity (Fig 2B), which in turn resulted in lower number of pores per particle, particularly for MS prepared with 2-MH, as depicted by the pore density (Fig 2C). In case of PLA MS, the pores formed on PLGA were superficial with about ~35–50 % porosity (Fig 2B) with the exception of 2-MP, which had low pore density (Fig 2C). PLLA-2 prepared with the six porogens individually had comparable % porosity (≥ 50 %) and density (≥ 0.02).

SEM images were then analyzed for particle size distributions (Fig S3A-C). The MS generated were spherical in shape, with heterogeneous size distributions (Fig S3D). Mean diameters of the PCL MS were 80.2 (S2 ± 2.9), 104.2 (S2 ± 4.5), 149.6 (S2 ± 5.8), 85.7 (S2 ± 2.8), 90.4 (S2 ± 2.5), 92.6 (S2 ± 2.8) μm, for PLGA were 63.6 (S2 ± 4.6), 77.1 (S2 ± 2.6), 83.8 (S2 ± 5.8), 79.3 (S2 ± 2.3), 51.0 (SEM ± 4.8), 88.2 (S2 ± 3.2) μm, and for PLLA-2 were 92.4 (S2 ± 3.9), 90.8 (S2 ± 3.2), 64.7 (S2 ± 4.1), 65.3 (S2 ± 4.6), 95.3 (S2 ± 3.5), and 61.0 (S2 ± 3.1) μm. Mean diameter was high for porous PCL MS made with 2-MH, showing larger particle sizes (mean diameter = 150 μm) than the other PCL MS (mean diameter ranging from 80 to 105 μm) made with the different porogens.

Table 1

<table>
<thead>
<tr>
<th>Porogen chemical name</th>
<th>Porogen chemical structure</th>
<th>Boiling point (°C)</th>
<th>Density (kg/m³)</th>
<th>Miscibility with DCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-methylpentane (2-MP)</td>
<td></td>
<td>60 °C</td>
<td>653</td>
<td>Miscible</td>
</tr>
<tr>
<td>3-methylpentane (3-MP)</td>
<td></td>
<td>63 °C</td>
<td>670</td>
<td>Miscible</td>
</tr>
<tr>
<td>2-methylhexane (2-MH)</td>
<td></td>
<td>92 °C</td>
<td>670</td>
<td>Miscible</td>
</tr>
<tr>
<td>3-methylhexane (3-MH)</td>
<td></td>
<td>90 °C</td>
<td>687</td>
<td>Miscible</td>
</tr>
<tr>
<td>2,3-dimethylbutane (2,3-DBMB)</td>
<td></td>
<td>58 °C</td>
<td>660</td>
<td>Miscible</td>
</tr>
<tr>
<td>2,4-dimethylpentane (2,4-DMP)</td>
<td></td>
<td>80 °C</td>
<td>697</td>
<td>Miscible</td>
</tr>
</tbody>
</table>
Porogen pattern, size, and porosity

The porogen properties of solvents are related to its quantity and miscibility. Therefore, the effects of varying the ratio of porogens to polymers was also investigated. Based on surface observations by SEM, an increase in the quantity of porogen used, from 200 µL to 400 µL of 2-MP, increased the pore size on the MS, with obvious changes in surface smoothness and visible depth of the pores (Fig. 3). We also observed that the changes in pore patterns when changes were made in molecular weights (in case of PCL and PLLA) and composition (in case of PLGA 75:25 and 50:50) of the polymers. MS prepared with 400 µL 2-MP exhibited visibly deeper pores, for PCL ~40 k and ~80 k, and PLLA-1 and 3. There were no visible changes on PLGA 75:25. Overall, changes in porogens can change the porosity of MS. Additionally, the porogen effects were also affected by the molecular weights and composition of the same polymer. These observations mandate optimization in the MS production process considering different porogen-polymer combinations.

Interestingly, a change in porogen to polymer ratio affected the porosity and the MS morphology. The analysis of porous structure was prepared with PLGA 50:50 and distinct from PLGA 75:25-derived MS (Fig. 3). For PLGA MS prepared with 200 µL 2-MP, PLGA 75:25 had comparable porosity to PLGA 50:50, but a rough external surface. When 400 µL porogen was used for PLGA MS, not only did the pore sizes change for PLGA 50:50, but also the particles assumed a hemispherical morphology. This is a stern departure from the spherical structure of all other generated particles. The pore sizes were visibly larger in PLGA 50:50 hemispheres than in PLGA 75:25 spheres when both received equal quantities of porogen. Varied volumes of 2-MP (300 to 400 µL) were used to observe the exact threshold where the particles split in half (Fig. S4A). Other five porogens, in different quantities (200 and 400 µL) were also used to investigate porogen’s effects on PLGA 50:50 polymer types and particle shape (Fig. S4B). It was observed that the effects of the different porogen effects varied when used with PLGA 50:50. Specifically, 3-MP, 3-MH, 2,3-DMB, and 2,4-DMP generated hemispheres instead of spherical particles when higher amounts of porogens were used. Only 2-MH did not seem to generate such hemispheres, yet instead produced fragile, hollow, and porous MS. Moreover, the uniformity of pores was dependent on quantity of porogens, again highlighting the importance of production process optimization.

Porous LBL MS

Biodegradable polymer MS are widely used in the development of controlled delivery systems because of their reduced side effects through extended dosing and targeting. Multilayered MS have the potential to control drug delivery for pharmaceutical applications. Considering the importance of developing a stable multilayered platform, a polymer blend of PCL, PLGA and PLLA was successfully produced into LBL MS, using single emulsion solvent evaporation technique.

To our knowledge, no multilayer MS production method had been demonstrated previously that allows porosity inclusion in multilayers. In that process, the 2-MP porogen demonstrated the ability to create pores across different polymer layers (Fig. 4). The external morphology and internal architecture of the LBL MS were determined using state-of-
art microscopic techniques. SEM images showed the typical external, smooth morphology of the non-porous LBL MS (Fig. 4A, left). The cross-section of the non-porous MS illustrates the distinct layers of the different polymers. For the porous MS (Fig. 4A, middle), the external surface consisted of pores, with numerous regular spherical inclusions (like ‘pellets’) in a matrix of polymer. The patches were also porous and isolated, with definite borders separating them from the matrix, metaphorically depicting an ‘island-sea’ topography. The cross-section of the porous LBL MS (Fig. 4A, right), showed the definitive double layered architecture with pores generated in both the layers. Zoomed images of the double-layer revealed that the external layer incorporated numerous regular, porous spherical inclusions. The SEM images showed that the polymers form a distinct double-layered structure, with uniform distribution of pores in every layer due to porogen, 2-MP.

The X-ray microscopy (XRM) data for LBL MS was consistent with the observations through SEM. MicroCT 3D reconstruction of the LBL MS (Fig. 4B) confirmed that the MS were spherical and had a core-shell morphology and had a solid core and a porous shell. The histogram of the 3D particles’ diameters (Fig. 4C) was obtained by XRM (n = 84), and the data showed that the MS diameters ranged from 135 to 380 μm, with an average particle size of 240 ± 52 μm corroborating the SEM data.

To identify the internal polymer composition of the LBL MS, the cross-sectioned MS were subjected to acetone dissolution test. Acetone is reported to dissolve PLGA more readily than PLLA and PCL. Upon acetone treatment, the shell retained the intact spherical structure (Fig. 4D, left), the spherical patches remained undissolved by acetone. Such results combined with the fact that the pellets in the shell were distinct from the shell matrix, it indicated that the pellets were likely to be composed of PLLA while the majority of the shell was composed of PCL. The sections had a hollow shell structure, demonstrating the dissolution of the PLGA core (Fig. 4D, right). These results demonstrate that the LBL MS were composed of a PCL shell and PLGA core, with surface pellets composed of PLLA.

Spectroscopic characterizations

To further verify the composition of the multilayers of the MS, Raman microscopy and spectral analysis were performed for LBL MS. Combination of Raman optical microscopy, demonstrating the spatial resolution, and hyperspectral mapping (Fig. 5), corroborated the SEM observations, showing the distinct polymer layers into a core-shell architecture. The combination of the confocal Raman microscopy data (Fig. 5A) and the Raman spectroscopy data (Fig. 5B) allowed for visualization of the MS PCL shell (cyan) and the MS PLGA core (magenta) corresponding to PCL and PLGA respectively. Characteristic peaks (Fig. 5C-D) belonging to PCL - [2916 cm⁻¹, 2871 cm⁻¹, 1729 cm⁻¹, 1447 cm⁻¹, 1307 cm⁻¹, 1287 cm⁻¹, 1113 cm⁻¹ and 1070 cm⁻¹], characteristic peaks belonging to PLGA 75:25 - [3003 cm⁻¹, 2949 cm⁻¹, 2888 cm⁻¹, 1774 cm⁻¹, 1461 cm⁻¹, and 870 cm⁻¹] and characteristic peaks belonging to PLLA - [3002 cm⁻¹, 2949 cm⁻¹, 1772 cm⁻¹, and 878 cm⁻¹] could be identified in the spectra of the individual neat polymers. The characteristic peaks of the raw polymers were seen to overlap with the distinct peaks obtained from the blend made from PLGA/PLLA/PCL LBL MS. Characteristic peaks of PCL at 2916 cm⁻¹, 2871 cm⁻¹, 1729 cm⁻¹, 1447 cm⁻¹, 1307 cm⁻¹, 1287 cm⁻¹, 1113 cm⁻¹ and 1070 cm⁻¹, can all be seen to overlap with the spectra of the LBL MS shell. Characteristic peaks of PLGA at 3003 cm⁻¹, 2949 cm⁻¹, 2888 cm⁻¹, 1774 cm⁻¹, 1461 cm⁻¹, and 870 cm⁻¹ can be seen to overlap with the spectra of the LBL MS core. This confirmed that PCL was
the main component in the shell while PLGA was the main component in the LBL MS core. Characteristic peaks of PLLA at 3002 cm$^{-1}$, 2949 cm$^{-1}$, 1772 cm$^{-1}$, and 878 cm$^{-1}$ were all seen to overlap with the spectra of the shell and core, but not PCL. This indicates that PLLA was incorporated at both shell and core, suggesting that the patches on the shell matrix were possibly composed of PLLA. However, due to similarities in molecular structures of PLLA and PLGA, their Raman spectra were indistinguishable.

To corroborate the Raman spectral results, FTIR was used to verify the functional groups of the polymers existing in the samples (Fig. 5). In the case of neat PLGA 75:25, the IR peaks at 2990 and 2947 cm$^{-1}$ correspond to the C$-$H stretch of CH$_2$, and the C$-$H stretch of C$-$CH respectively, 1746 cm$^{-1}$ was assigned to the stretching vibration of the carbonyl group (C=O) of the ester bond, and 1083 cm$^{-1}$ was attributed to C$-$O stretching. In the case of raw PCL, typical bands at 2941 cm$^{-1}$ (asymmetrical CH$_2$ stretch), 2864 cm$^{-1}$ (symmetrical CH$_2$ stretch),
1045–1165 cm⁻¹ (C=O stretch) were seen. Also, characteristic IR peaks were obtained at 1722 cm⁻¹, corresponding to the conjugated carbonyl group (C=O), and in the region of 1000 to 1500 cm⁻¹, corresponding to C–C, C–H and C–O groups. Similar to PLGA, PLLA also showed strong bands in the region 2995 and 2946 cm⁻¹ for asymmetric and symmetric -CH stretching, respectively. Also, bands at 1753 and 1080 cm⁻¹ were seen due to the stretch of the C=O and C–O groups, respectively. There are also stretching bands due to asymmetric and symmetric C–O vibrations between 1300 and 1150 cm⁻¹. These spectra matched the expected individual polymer profiles from past literature for the individual polymers.51–53 The absorption of the LBL MS overlapped with the individual polymer bands confirming the triple polymer composition of the LBL MS.

Shell composition was further confirmed by X-ray photoelectron spectroscopy (XPS), a surface element analysis technique, which provides quantitative and qualitative information of the elements on the LBL MS surface within 10 nm thickness.54 All raw polymers, core and the shell structures were predominantly composed of the elements carbon (C) and oxygen (O) with binding energies 285 and 532 eV, as evidenced by the photoelectron lines in the wide scan spectrum (Fig. 5E). The high-resolution spectrum (Fig. 5F), corresponding to the C1s wide spectrum, depicted four types of carbon bonds: C–C/C–H (285 eV), C–O (287 eV), C=O (289 eV), and O=C=O (289 eV). The high-resolution spectrum (Fig. 5G) corresponding to the O1s wide spectrum, depicted two types of oxygen bonds: C=O (532.68 eV) and C–OH (534 eV). The decrease in the intensity of the C1s and O1s peak for LBL MS was due to the three polymers’ existence in a blend and in a spherical morphology instead of the neat polymeric state. All the XPS binding energies were in accordance to the previously published reports.55 Overall, the superimposing spectral data showed that the surface composition of the LBL MS shell was of PCL.

The XPS data was further corroborated using X-Ray Diffraction (XRD) analyses. Two intense peaks in the XRD were obtained at diffraction angles of 2θ = 21.5° and 23.8°, indicating that raw PCL and LBL MS were in their semi-crystalline form (Fig. 5H). On the other hand, raw PLGA and PLLA had no distinct peaks, indicating it remained in the amorphous form. In theory, XRD identifies crystalline materials within about 10 µm of the surface56 and the MS we generated were much larger. Thus, the XRD curve only revealed the surface composition, which is predominantly PCL.

Thermal analyses of LBL MS

DSC thermograms of the neat polymer components and the LBL MS were generated to evaluate the thermal properties of the LBL MS. The melting peaks of neat PCL, PLGA and PLLA were observed at approximately 63.7, 82.5 and 173 °C, respectively. Similar melting peaks were seen for the LBL MS at 61.4 and 168 °C (Fig. 6A). The minor shift in the LBL MS peaks indicate PCL/PLLA/PLGA dispersion inside the LBL MS. After 300 °C, raw polymers and the LBL MS showed decomposition. More evidence of the LBL MS thermal properties was obtained from TGA thermograms (Fig. 6B) and differential thermal analysis (DTA) (Fig. 6C). As shown in Fig. 6B, the thermal decomposition temperature of PCL had initial and complete decomposition temperatures of ~380 and 420 °C (mass change = 97.69 %), respectively. PLLA and PLGA had lower initial and complete decomposition temperatures, down to 240 and 350 °C for PLLA (mass change = 94.85 %), and 270 and 360 °C for PLGA (mass change = 80.45 %). The weight decrement of PLGA is biphasic and the first loss between ~75–100 °C can be attributed to the water loss.

This result may be attributed to the decreased crystallinity of PLLA and PLGA compared to PCL and was consistent with the previously published literature.57 The multi-phase weight loss of LBL MS was seen between ~75 and 125 °C (mass change = 8.54 %) and ~230 to 400 °C, with maximum weight reductions in two phases - the first at temperature ~ 288 °C (mass change = 52.68 %) and second at ~350 °C (mass change = 50.15 %). The shift in curve of LBL MS, showing degradation at lower temperatures than PCL, can be attributed to the added PLGA and PLLA.

Additionally, DTA analysis is an alternative thermoanalytical technique, important for the solid-state characterization of pharmaceutical materials58 to determine loss on drying, phase transition temperatures, thermal stability, and whether or not water is bound or unbound. The DTA thermograms in Fig. 6C showed extreme weight reduction at 408 °C for PCL and at 314 °C for PLLA and PLGA. Again, the differential weight loss between ~75 and 100 °C for PLGA can be attributed to the water loss. The thermogram for LBL MS showed two distinct peaks, at 330 °C and 388 °C, corresponding to the decomposition peaks of the individual polymers. The shift further confirmed the presence of the three polymers in the MS. The overall shifted curve for LBL MS had a weight loss pattern as well as initial and complete decomposition temperatures reflective of all three polymers, proving the presence of PCL, PLGA and PLLA in the LBL MS as well as their stability at high temperatures.

Besides determining the analytical thermal stability of the MS, it is also important to identify the suitable long-term storage temperatures for these particles. Polymer MS have wide application in drug and pesticide delivery. Once payload encapsulation has been achieved, up until its administration, the formulation is required to be stored at conditions that will prevent payload or polymer degradation. We performed additional visual inspection by SEM to investigate any changes in particle morphology when stored at temperatures 4 °C, −20 °C, −80 °C, or room temperature, which are ideally used for storage and handling of parenteral formulations. SEM images were taken at days 7, 28, 42 and 130, (Fig. 6D). No visible particle degradation or changes in porosity patterns were observed, ensuring that carrier particles were stable at any of the selected temperatures. In cases where antigenic payload is the intended payload, cooler storage temperatures are required, mandating the study of the LBL MS stability at different storage temperatures. We have subjected the LBL MS to the general storage temperatures suitable for peptide/protein-based cargo storage and have found that the formulation can be stored long term without any major changes in morphology and porosity.

Biodegradation

Controlled drug release from MS depends on the particle size, porosity, roughness, and composition of particles.59–62 For instance, MS with porous and rough surfaces achieve faster release because of enhanced diffusion of the solvent through the pores.12,21 An in vitro simulation of the LBL MS biodegradation was performed to study the particle degradation pattern at pH 5.5 and 7.4. The pH were intended to reflect the in vivo ambience – injection site tissue pH of 7.4 or the intracellular endosomal acidic pH ranging from 4.5 to 5.5.63 The time course (Fig. 7A) of the degradation of the porous LBL MS spanned six months at in vitro simulated neutral (tissue pH, extracellular or cytoplasmic pH) and acidic (endosomal and lysosomal pH) environments (Fig. 7A). SEM images show that the particles suspended at pH 7.2 showed visible surface erosion by week 3, as evidenced by the retracting shell surface and visible pellet protrusion from the eroding surface. Surface erosion resulted in the release of pellets of smaller MS (the shell ‘islands’) by week 5 and subsequent bulk degradation by week 24. Similar surface erosions were observed at acidic pH but at an earlier timepoint, i.e., starting near week 1. Understandably, the faster onset of degradation at pH 5.5 can likely be attributed to the autocatalysis of the polymers induced by the degrading polymer’s acidic byproducts.64 By week 24, most of the particles have disintegrated completely at both pH. Overall, the LBL MS demonstrated surface erosion with smaller ‘pellet’ MS release and eventual bulk degradation.

Release

Polymer-based micro-and nanoparticles are increasingly investigated for sustained release and targeted drug, peptide/protein, and
RNA/DNA delivery applications. In comparison to single polymer MS, the core-shell MS are capable of loading multiple payloads. The core-shell MS offer potential sustained and controlled release, timing, and dosing. As mentioned earlier, drug release from MS are dependent on particle size, polymer composition, and the presence/absence of porosity. Thus, to determine the effect of porosity on the release kinetics of the LBL MS, two formulations of porous and non-porous LBL MS encapsulating RhB dye (referred to as LBL-RhB MS) were prepared using the single emulsion solvent evaporation method.

LBL-RhB MS were resuspended in a dynamic dissolution tester containing PBS (with 1 % Tween 80, at pH 7.2 and 5.5) to simulate in vivo dynamic sink conditions for release (Fig. 7B). The pH was selected to reflect the potential neutral (tissue) or acidic (intracellular) environments where the MS are likely to reside. We monitored the RhB concentration by measuring the absorbance maximum of RhB (λex 560 and λem 585 nm) across time (26 days). This release data was fitted into 2-step release kinetics model. For both non-porous and porous LBL MS, the RhB dye release showed an initial burst release (steep slope) followed by a sustained release phase.
by a sustained release phase (almost plateau). The initial burst release can be related to the RhB dye adsorbed on the surface of the MS that would be immediately released during the initial stage. For acidic pH of 5.5 (Fig. 7B), the porous LBL-RhB MS showed faster ($K_{\text{fast}} = 0.2499$, $K_{\text{slow}} = 0.002259$, degrees of freedom = 55, $R^2 = 0.9972$) and greater RhB release than the non-porous LBL-RhB MS ($K_{\text{fast}} = 0.1619$, $K_{\text{slow}} = 0.001432$, degrees of freedom = 64, $R^2 = 0.9810$). The initial burst release was higher for porous LBL-RhB MS, reaching up to 11.77 µg/mL by day 6 as compared to the non-porous LBL-RhB MS reaching only up to 2.23 µg/mL by day 6, before reaching the sustained release phase. Similarly, for near-neutral pH of 7.2 (Fig. 7C), the porous LBL-RhB MS showed faster ($K_{\text{fast}} = 0.7993$, $K_{\text{slow}} = 0.1020$, degrees of freedom = 55, $R^2 = 0.9717$) and greater RhB release than the non-porous LBL-RhB MS ($K_{\text{fast}} = 0.2136$, $K_{\text{slow}} = 0.0008409$, degrees of freedom = 64, $R^2 = 0.9679$). The initial burst release was also higher for porous LBL-RhB MS, reaching up to 8.56 µg/mL by day 3 as compared to the non-porous LBL-RhB MS reaching only up to 2.09 µg/mL by day 3, before reaching the sustained release phase. Comparing the porous LBL-RhB MS at both pHs, the cumulative amount of dye released were greater for pH 5.5 within comparable time frames.

The higher quantitative release from porous MS at pH 5.5 than pH 7.2 can be attributed to the more significant LBL MS mass loss that occurs due to autocatalysis and pronounced cleavage of ester bonds in polymer chains. This also aligns with the previously reported release kinetics of the positively charged RhB dye in acidic environments. Overall, the release data showed that porous MS have faster, and greater cargo release as compared to its non-porous counterparts within the same period. This phenomenon might be explained by differences in surface topography brought about by increased porosity. The higher surface area of the porous LBL MS compared to the non-porous ones may lead to a faster release rate as porosity and roughness enhance the diffusion of the suspension media into the polymer matrix.

Polymer autofluorescence

So far, our data has demonstrated the stable construction of porous LBL MS. Successful demonstration of cargo loading in the MS structure needs affirmation to have true potential in the field of drug delivery. Confirmation of loading is generally investigated either by (i) release study, popular in the case of drug payloads, where high-performance liquid chromatography is employed for quantification, or (ii) fluorophore-tagged payload for visualization via confocal laser scanning microscopy (CLSM). To our knowledge, there are no studies clearly stating the acceptable spectral range of excitation and emission wavelengths that can be used for payload-labeling in case of CLSM. Importantly, the data (Fig. 8) demonstrated that the choice of the fluorophore used for labeling needs to account for the polymer type and its autofluorescence. For clarification, the spectral range of excitation and emission wavelengths that were likely to generate sample autofluorescence were tested, which may interfere with the image acquisition of the fluorescently labeled MS payload. All neat polymers and MS produced were excited with one laser, set at either 401, 488, 560, or 639 nm and the emission was measured at 10 nm step separation, between 404 and 660 nm. Based on the mean fluorescent intensity (MFI) measurements of the CLSM images, excitation at 401 nm corresponded to minimal emissions for all samples (Fig. 8 and Fig. S6). The LBL MS, being the combination of all the three polymers, showed comparable MFI measurements to that of PLLA MS (Fig. 8A). Comparing the MFI of the raw polymers (Fig. S6A-C) versus respective polymer MS (Fig. 8B-D), it was observed that PCL (raw and MS) showed similar MFI readings at the different excitation wavelengths (Fig. S6B and 8C). On the

Fig. 7. In vitro simulation of LBL MS biodegradation and release kinetics. (A) LBL MS (200 mg) were immersed in buffered DMEM at pH 5.5 and 7.5. Sink media was replaced with fresh media every seven days, and quantity sufficient LBL MS were collected, washed, freeze-dried and prepared for SEM analysis. The samples were collected over the period of six months to follow the in vitro biodegradation process. Scale bar: depicted at lower bar of respective images. (B-C) Non-linear fit of 2-step release kinetics of RhB dye from LBL RhB MS over the period of 26 days at pH 5.5 and 7.2, expressed as µg/mL dye released over time (in days). Elaboration: KFast, fast rate constant; KSlow, slow rate constant; porogen, porous LBL RhB MS; porogen, non-porous LBL-RhB MS.
other hand, MFI for raw PLLA (Fig. S6A) and PLGA (Fig. S6C) were higher than its MS counterparts (Fig. 8B and D respectively), when excited at 488, 560, and 639, indicating loss of inherent MFI upon adopting spherical conformation. Moreover, the MFI was observed to be different across polymers (Fig. 8B-D), with PLGA MS showing the lowest MFI, indicative of the minimal autofluorescence. Additionally, researchers using PLGA MS do not necessarily have to restrict their choice of the fluorophore to a single wavelength but instead have the options to choose from a broader range, provided the label itself has strong MFI. Overall, for research purposes, fluorophores with excitation wavelengths 401 nm, 488 nm, followed by 639 nm maybe the first, second, and third choices, respectively, considering that the chosen fluorophore-label of the payload itself produces intense signals overriding the effects of any existing autofluorescence. The commonly used excitation and emission in the range of 550–600 nm should not be used for signal tags of interest but can be used as counter autofluorescence for the polymer particles. (See Fig. 9.)

Discussion

Porosity affects the particle’s physical properties. These include, but are not limited to, mass density, adsorption,23 encapsulation, and cargo release24,25 and surface area. Herein we demonstrated that the production, polymer and porogen type and quantity, and its physicochemical properties affect the LBL MS performance properties. While prior work has focused on single MS heterogeneous polymers with variable pore sizes and shapes7,26 these lead to variabilities in polymer uniformity, scalability and stability. Thus, attaining homogeneity by improving synthesis remained an unmet need.

Each method in producing porous MS22,23,74,77,78 is limited based on time and expense and requirements for bulk organic solvent volumes, inorganic cations, gases, and supercritical fluids. All affect the degradation of the MS payload. Therefore, a simple and reproducible method of porous MS preparation was needed to create porous particles74,79 optimized for size, shape, and porosity.5,18,22,81 To achieve this goal, we tested six porogens that would generate uniform pores in single and multilayered MS that were prepared through conventional solvent evaporation. We produced porous, multilayered MS (LBL MS) by single emulsion solvent evaporation with a unique blend of biodegradable polymers. Food and drug administration (FDA) US approvals and their lack of polymerization led to the choice of PLLA, PLGA, and PCL.

The six porogens were 2-MP, 3-MP, 2-MH, 3-MH, 2,3-2,3-DMB, and 2,4-DMP and were selected based on their abilities to generate PLLA, PLGA and PCL polymers with varied porosity that included pore size, depth, and density. The mechanism of pore formation also called solvent casting or particulate leaching) are known to affect porogen influx between the inner organic and outer aqueous phase. This occurs in the presence of surfactants and as such can readily generate polymer pores.22 The mechanisms surrounding porosity differences in the single and multi-polymer MS are subjects of future investigations.

The porogen effect are influenced by the polymer type and monomer composition as well as the process of polymerization, and methods for generation the MS. The particle size, the ratio and volume of the porogen:polymer82; and the porogen viscosity-solubility also affect the porogen. In this report we investigated the effects of the porogen polymer ratios and the emulsion and droplet coalescence83 on the pore-size distribution. The results showed that higher quantities of porogens parallel larger and deeper pores. Interestingly, increasing the porogen quantity also resulted in hemispherical particles. Polymer morphology modulating methodology could influence the physical properties of the porogen and as such play a potential role in industrial and impact resistance plastics coatings,83 and for drug delivery.25,84 Further investigations will decipher the relevant kinetic and thermodynamic82,84 and physicochemical parameters together with the role of hydrocarbon-based reagents in pore formation. Of the use of biodegradable polymers82,83 that can affect interfacial tension and solubility can lead to a better understanding of these systems for drug delivery. and the ultimate goal to improve drug delivery by sustained, controlled rate release at sites of disease or in boosting immune responses through vaccinations. Indeed multilayered MS show lower initial burst release and as such can improve efficiency of immunizations and for sustained drug delivery.85

In the current study PCL, PLGA and PLLA created the LBL MS. This demonstrated successful production of double-layered MS, with a shell made of the slow degrading PCL, and a core of fast degrading PLGA. Each were confirmed by microscopy. PCL aided in stability as it demonstrated slow degradation and cargo release rates compared to PLGA and PLLA. The use of three different polymers served to optimize formula-

Fig. 8. Autofluorescence emission spectra of individual polymer MS and LBL MS by confocal laser scanning microscopy (CLSM). CLSM spectral analysis was performed for the dry samples of LBL MS (A, E) and individual polymer MS made of PLLA-1 (B, F), PCL (C,F), and PLGA (D,H), under 1a 0× objective. Excitation laser of 401, 488, 560, or 639 nm were used to acquire images at 10 nm step separation of emission wavelengths between 404 and 660 nm. Mean fluorescence intensity (MFI) was measured for the whole panel for each excitation and emission wavelength, using Fiji, and analyzed by GraphPad Prism 9.2. Representative images at emission wavelengths 424, 484, 544, 604 nm (for excitation wavelengths 488, 560, and 639) and at 424, 484, 544, 604 nm (for excitation wavelength 401 nm) are shown.
tion density, solvent miscibility, and porogen properties. Based on polymer density and miscibility, PCL and PLGA form separate layers. Based on prior work the external PCL served to protect the encapsulated drugs and highlighting the importance of slow degrading shell architectures. Also, PLLA, a single monomer component of PLGA admixture compensated for the low PLGA porosity. In toto, the combination of spectral and thermal data determined the PCL-shell and PLGA-core composition.

We posit that the release of the payload from the LBL MS was controlled through polymer molecular weights, crystallinity, temperature, pH, enzymatic activity, formulation design and porosity rather than polymer degradation. Prior works demonstrated the mechanism of polymer degradation ensued by progressive hydrolysis of the ester bonds, followed by heterogeneous bulk degradation as observed for other LBL MS. Sink condition and bio-secretory fluids, including enzymes serve to catalyze polymer degradation but at a slower rate than the actual payload release. Moreover, depending on the MS payload (for example, drugs, peptides/protein, or antigens), the release kinetics may vary due to differences in the polymer matrix and payload solubility in biological fluids. Release kinetics can be affected by porosity, which can affect the payload diffusion path length and ultimate release. In the most basic sense, MS porosity can promote polymer hydrolysis by increasing surface area and facilitating cargo release by enzymes in vivo microenvironment. Future works that will continue analyses of cargo release over months will provide the exact release kinetics of our LBL MS and demonstrate its role as a sustained carrier.

By virtue of our LBL MS design, the embedded PLLA pellets on the shell component could serve as additional release paradigm. PLLA pellets released over time have the potential to be taken up by tissue phagocytes aka antigen-presenting cells, upon intramuscular administration. This will enhance the mobility and distribution of the PLLA pellets as well as manifesting functional effects at locations apart from the site of injection. Such MS engulfment by cells is expected to expose the MS to intracellular acidic endosomal compartments and follow the degradation pattern shown to occur at lower pH. Moreover, cells would be able to release their cargo elsewhere, highlighting the opportunity for its use as an antigen-carrier to immune cell-populating organs as targets.

For MS applications, loading of the intended cargo, as it will bolster the potential to serve as vehicle for drugs, proteins or peptides, plasmid DNA as well as vaccines are essential. As mentioned earlier, a popular method of cargo loading confirmation is through fluorescence labeling. To our knowledge, no reports are available that clearly delineates the acceptable spectral ranges for the fluorescent tags for such a polymer application. Interestingly, it was observed that the raw polymers as well as polymers used in MS form, in either dry from or buffered solution (not shown in this report), had varying intensity of autofluorescence at different excitation wavelengths, which can potentially obscure the actual fluorescent intensity (especially within the
emission range of 540–600 nm) seen from the labeled payload. Therefore, we consider that the limited spectral range of fluorophore labels seen in this report acceptable for payloads.

In conclusion, the current report identified a new class of chemicals, branched aliphatic hydrocarbon-based porogens, to be able to produce uniformly distributed pores on the MS prepared from a single or multi-polymer blend. Porous biomaterials have both functional and structural characteristics lending itself to a wide swath of biomedical applications. A methodology for stable MS production was developed, and the production reproducibility demonstrated. Overall, the current study provides an understanding and broadens the reagents and methods optionality for porous MS production, which could be utilized for various bio pharmaceutical applications including drug delivery and vaccination. Future investigations into the biological responses of a specific payload would be an appropriate approach for identifying the delivery advantages of LBL MS-based formulations.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nano.2022.102644.

Ethics committee approval

The experiments performed in this study did not involve any human or animal subjects. Hence, it was exempt from the requirement of UNMC IRB (institutional review board) and UNMC IACUC (institutional animal care and use committee) approvals.

CRediT authorship contribution statement

F.S. devised and planned the experimental approaches; F.S., B.D.K., L.A., Z.Y., M.P., J.D.C., F.I. performed the experiments; B.D.K and H.E.G. conceived the original idea, proof outline and troubleshoots experiments, verified the results, interpreting the results and provided experimental guidance; Z.Y. assisted with Confocal Laser Scanning microscopy and L.A. assisted with confocal Raman microscopy and X-ray microscopic analysis; B.D.K., F.S., M.H., L.A., Z.Y., M.P., M.U.N., M.A. S.M. helped in data analysis and B.D.K., F.S., M.H., M.P., prepared and revised the manuscript including data analysis, figures, tables, and legends; B.D.K. and H.E.G. provided the overall project guidance, supervised the findings of this work, research infrastructure, scientific direction, funding, writing and critical review of the manuscript. All authors read, discussed, and approved the results and contributed to the final version of manuscript.

Declaration of competing interest

Data availability

The raw and processed data required to reproduce these findings are available to download from https://data.mendeley.com/datasets/c4yyj74c3p/draft?e=97f078b-c622-47fc-aa26-90087753d3f8.

Acknowledgments

The authors acknowledge the support provided by Tom Barger and Nicholas Conoan of the Electron Microscopy Core Facility (EMFC) at the University of Nebraska Medical Center for technical assistance. The EMFC is supported by state funds from the Nebraska Research Initiative (NRI) and the University of Nebraska Foundation and institutionally by the Office of the Vice Chancellor for Research; Terri Fangman for the confocal spectral analysis work at the Microscopy Core Research Facility of Center for Biotechnology at the University of Nebraska-Lincoln, supported by NIH, CIBC, COBRE grant P20 GM113126, NIGMS; Drs. Shah Valloppilly, Lamping Yue of Nebraska Nanoscale Facility: National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience for the XPS, XRD, DSC, TGA measurements, which are supported by the National Science Foundation under Award ECCS-2025298, and the Nebraska Research Initiative (NRI); and the RI Consortium for Nanoscience and Nanotechnology, a URI College of Engineering core facility for the confocal Raman microscope and X-ray microscope data acquisition which was partially funded by the National Science Foundation EPS-08, Cooperative Agreement #OIA-1665221. The X-ray microscope was acquired through RI Innovation Campus funds by the Rhode Island Commerce Corporation to 401 Tech Bridge and the URI Research Foundation. Some of the figure panels were made with BioRender.com. This publication’s contents are the sole responsibility of the authors and do not represent the official views of the funding agencies.

References

19. Vishva B., Moin A., Gowd D.V., Rizvi S.M.D., Hegazy W.A.H., Abu Lila A.S.,