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 Abstract 

  The AAA+ (ATPases associated with a variety of cellular activities) protein 

superfamily includes approximately 30,000 molecular machines powered by adenosine 

triphosphate (ATP) binding and hydrolysis events, which are important for many cellular 

processes, including cell division, DNA replication, intracellular transport, and protein 

quality control. The bacterial AAA+ protein ClpXP is a two component ATP-dependent 

chaperone-protease that recognizes protein substrates bearing specific recognition 

signals, subsequently unfolding and degrading them to eliminate unnecessary or 

misfolded proteins. Since degradation is irreversible, highly specific recognition motifs 

are needed to ensure intentional engagement. A common strategy to facilitate recognition 

of substrates by AAA+ ATPases is to display multivalent recognition motifs, usually as a 

result of oligomerization or polymerization. During cell division in Escherichia coli, it 

has been reported that ClpXP degrades the essential cell division protein FtsZ (the 

prokaryotic tubulin homolog) in both the monomer and polymer form, however the 

degrons important for ClpX recognition of FtsZ, the mechanism by which ClpX 

recognizes and degrades FtsZ, and the physiological relevance for this regulated 

proteolytic event were previously unknown. We review more about substrate 

discrimination, multivalent recognition, and processive unfolding of FtsZ by ClpXP in 

Manuscript I. 

  In Manuscript II, we identified regions important for ClpXP targeting the native 

substrate FtsZ. First, we mutagenized FtsZ mutant proteins and degraded these proteins 

in vitro to deduce the regions (known as degrons) important for degradation by ClpXP. 

Then, we examined relevant Gfp-tagged FtsZ mutant proteins in dividing E. coli cells in 



 
 

vivo to further understand the importance of impairing regulated proteolysis on FtsZ 

assembly and cell division.  

  In Manuscript III, we propose the mechanism for ClpX recognition of FtsZ. We 

performed a traditional degradation assay with custom protein substrates in vitro to 

deduce the requirements for each degron for ClpX recognition of a monomer or polymer 

of FtsZ. Taken together, Manuscripts II and III describe a differential, dual-targeting role 

for a AAA+ substrate that will provide mechanistic insight in the field for degradation 

strategies in the crowded, cellular milieu. 

  ClpXP degrades approximately 15% of total FtsZ per cell cycle, and therefore 

regulated proteolysis is the proposed role of ClpXP in cell division, however, ClpXP is 

not essential for this process. In Manuscript IV, we examined the physiological relevance 

of ClpXP proteolysis during cell division in E. coli by performing photobleaching and 

recovery assays on Gfp-tagged FtsZ structures and measured the half-time recovery in 

clp-deficient strains or wildtype cells containing Gfp-tagged FtsZ mutant proteins used 

for Manuscript II. For the first time, we established a phenotype for cell division when 

regulated proteolysis was impaired using these approaches and implicated the recognition 

region of FtsZ by ClpX, which is shared by other modulatory cell division proteins, in the 

importance of septation. 

  Finally, using our understanding from the work described for Manuscript II, we 

demonstrated in Manuscript V that ClpXP recognizes and degrades aggregated FtsZ in 

vitro and requires the known degrons for degradation in the aggregated state. We show 

that recognizing FtsZ aggregates in vivo is important since there are higher FtsZ levels in 

clp-deficient cells compared to wild type after heat shock. Furthermore, ClpXP 



 
 

recognizes and degrades the engineered Gfp-ssrA substrate when aggregated, and that the 

chaperone ClpX alone promotes the reactivation of aggregated Gfp-ssrA. In conclusion, 

we describe a novel role for ClpXP under stressful cellular conditions and ClpX alone in 

disaggregation for substrates in E. coli, which broadens our understanding of the role of 

ClpXP in proteostasis. 
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PREFACE 

  This dissertation has been prepared in the Manuscript Format according to the 

guidelines of the Graduate School of the University of Rhode Island. Manuscript I, 

“Substrate discrimination, multivalent recognition, processive unfolding and degradation 

of the essential cell division protein FtsZ by the AAA+ chaperone-protease ClpXP,” is 

formatted as a review article for Biological Chemistry. Manuscript II, “Location of Dual 

Sites in E. coli FtsZ Important for Degradation by ClpXP; One at the C-Terminus and 

One in the Disordered Linker,” was published in PLoS One in 2014. Manuscript III, 

“Tandem tags drive conformation-specific substrate processing of the cell division 

protein FtsZ by ClpXP in Escherichia coli,” was formatted for and will be submitted to 

Protein Science for publication. Manuscript IV, “Proteolysis-Dependent Remodeling of 

the Tubulin Homolog FtsZ at the Division Septum in Escherichia coli,” was published in 

PLoS One in 2017. Manuscript V, “The Protein Chaperone ClpX Targets Native and 

Non-native Aggregated Substrates for Remodeling, Disassembly, and Degradation with 

ClpP,” was published in Frontiers in Molecular Biosciences in 2017. 
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Abstract 

  All living organisms contain proteolytic enzymes that adapt to dynamic 

environments in the cellular milieu to catalyze post-translational, non-processive or 

processive degradation. ClpX is an ATP-dependent chaperone and well-conserved 

molecular machine from bacteria to humans that promotes proteostasis in both non-

processive and processive approaches: by unfolding/remodeling and degradation of 

protein substrates in complex with the serine protease, ClpP. ClpX is a AAA+ ATPase 

and an asymmetric, homohexamer, which docks to a barrel-shaped ClpP tetradecamer. 

Docking opens the pore in ClpP to allow entry of unfolded polypeptides for degradation. 

ClpX utilizes different strategies to recognize native proteins as oligomeric complexes or 

polymers and targets these substrates for degradation in a regulated manner. This review 

summarizes the contributions of ClpXP to the essential cell division pathway in 

Escherichia coli in vivo, and the mechanistic insights known to date about recognition of 

the multivalent, polymeric substrate FtsZ by ClpX. 

Introduction 

  In contrast to transcriptional control, proteolysis occurs post-translationally and is 

less energetically efficient, but allows for a rapid change in protein levels and/or 

dynamics as many cellular processes occur. In E. coli, there are five notable AAA+ 

(ATPases associated with a variety of cellular activities) which hydrolyze ATP and couple 

hydrolysis to unfolding and proteolysis: ClpXP, ClpAP, HslUV, Lon, and FtsH (Baker & 

Sauer 2006; Sauer & Baker 2011; Nyquist & Martin 2014). All AAA+ proteases have a 

similar architecture: an oligomeric ring-like structure with a central pore, through which 

unfolded polypeptides are translocated, and a protease domain for degradation. The ClpX 
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structure comprises a hexameric, ring-like assembly with a central pore, and docks to the 

tetrameric ClpP barrel (Figure 1). Degradation products are usually small peptides, 

ranging from 5 to 25 amino acids in length (Baker & Sauer 2006; Sauer & Baker 2011; 

Bittner et al. 2017; Siddiqui et al. 2004). ClpX is also a member of the Clp/Hsp100 

family, and was recently demonstrated to disaggregate aggregated substrates (Schirmer et 

al. 1996; LaBreck et al. 2017). Distinct from other AAA+ ATPases, ClpX has stringent 

substrate specificity and can recognize substrates via specific recognition sequences or 

“degrons” (Sauer & Baker 2011). 

  ClpX contains an N-domain, also known as the zinc-binding domain (ZBD), 

which dimerizes independently and is generally important for recognizing adaptor 

proteins and some native substrates (Figure 1) (Gottesman 2003; Wojtyra et al. 2003). N-

domain swapping studies between ClpX from E. coli and ClpX from Caulobacter 

crescentus showed that N-domains from different species are interchangeable for 

function; however, sometimes cooperation between the N-domain and the AAA+ domain 

was impaired (Vass et al. 2017). Although the N-domain does not directly affect the 

interaction between the AAA+ domain of ClpX and ClpP, ClpX engagement promotes 

ClpP activity, and a lack of cooperation between a chimeric N-domain with a AAA+ 

domain may have resulted in impaired degradation of species-specific substrates (Singh 

et al. 2001; Vass et al. 2017). The ClpX N-domain does promote stability of the ClpX 

hexamer (likely due to dimerization of the N-domains), but ClpXΔN was reported to bind 

ClpP with the same affinity as ClpX and degrade some substrates in complex with ClpP 

as well as ClpXP (Wojtyra et al. 2003; Singh et al. 2001; Martin et al. 2005). The N-

domain of ClpX has been crystallized independently from the AAA+ domain of ClpX, 
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but not in complex with substrate (Glynn et al. 2009; Donaldson et al. 2003; Kim & Kim 

2003).  

  AAA+ domains have a large and a small subdomain. In ClpX, nucleotide binding 

occurs in the cleft between the two subdomains (large and small) of a single protomer, 

where the conserved Walker A, Walker B, and arginine finger sequence motifs from the 

large subdomain meet the sensor-II arginine sequence, a hallmark of the AAA+ protein 

superfamily (Neuwald et al. 1999; Erzberger & Berger 2006). The structure of a ClpX 

hexamer reveals four nucleotide-bound subunits at a time (with both unbound subunits 

across from one another, oriented in an open conformation) (Hersch et al. 2005; Glynn et 

al. 2009) (Figure 1). As nucleotide is unbound, an 80-degree shift from the axial pore 

occurs; these conformational changes between these subdomains cause the ClpX axial 

pore to expand and contract, likely affecting the engagement and initial processing of 

substrate (Glynn et al. 2009). 

  Three sets of pore loops located in the upper, middle, and lower region of the 

ClpX channel affect polypeptide unfolding and translocation. The central loops (“pore-1” 

loops, GYVG sequence) are well-conserved, whereas the upper, positively-charged RKH 

loops enhance binding of most C-terminal motifs described for ClpX substrates (Neuwald 

et al. 1999; Flynn et al. 2003). The pore-2 loops, positioned at the bottom of the channel, 

are much larger (11 amino acids in length), and affect the overall processing of ssrA-

tagged substrates in combination with the RKH loops, despite the short 11-amino acid 

length (maximally about 20 Å in length) of the ssrA tag relative to the 30 Å long ClpX 

axial channel (Siddiqui et al. 2004; Martin et al. 2008; Martin et al. 2007). The ssrA-tag 

is a peptide that is appended to aborted translation products to target them for degradation 
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by ClpXP. Recognition is enhanced by the adaptor protein SspB. This tagging system 

allows for universal recognition and clearance of these proteins (Gottesman et al. 1998; 

Levchenko et al. 2000). Studies demonstrating that ssrA-tagged substrates can cross-link 

with pore loops support a model in which RKH loops serve as specificity filters, and 

engagement with pore-2 loops ensures processivity of a specific substrate, perhaps due to 

the additional engagement of the conserved pore-1 loops which are characteristic across 

AAA+ proteins (Neuwald et al. 1999; Martin et al. 2008). Mutations in the species-

specific RKH and/or pore-2 loops weaken interactions with ssrA-tagged substrates, but 

enhance binding of others, which suggests the structure of ClpX represents an 

evolutionary compromise for the recognition of a diverse class of substrates (Martin et al. 

2008; Farrell et al. 2007). The conserved, hydrophobic IGF loops of ClpX dock the C-

terminal surface of the ClpX hexamer to either side of the ClpP peptidase (Kim et al. 

2001; Baker & Sauer 2012). 

  The clpX gene is downstream of the clpP gene and in the same operon in E. coli, 

but can be expressed independently of ClpP due to an intercistronic promoter for clpX 

alone that may be relatively weak (Yoo et al. 1994). Cellular levels of ClpXP are higher 

during logarithmic growth phase in E. coli, but clpP alone is induced during stationary 

phase (Yoo et al. 1994). ClpXP degrades RpoS (σS), the RNA polymerase subunit that is 

upregulated during cell stress to activate gene expression and present during stationary 

phase (Schweder et al. 1996). During exponential growth, RpoS is efficiently degraded 

by ClpXP with the assistance of the RssB adaptor protein (Becker et al. 1999; Zhou et al. 

2001). ClpX is not essential in E. coli, but neither are the other AAA+ ATPases with the 

exception of FtsH (Bittner et al. 2017). Regardless, ClpXP performs specific, recognition-



6 
 

mediated proteolysis of substrates for several important cellular processes under certain 

conditions, such as intracellular transport, DNA replication, protein quality control, and 

cell division (Snider et al. 2008). ClpXP degrades the essential cell division protein FtsZ, 

although ClpXP is not necessary for cell viability. However, modest ClpXP 

overexpression causes cell filamentation and perturbed cell division, suggesting that 

regulated proteolysis is important for this process (Camberg et al. 2009).  

FtsZ assembly and regulation during cell division by a network of regulators, 

including ClpXP 

During division, cell division proteins are spatially and temporally regulated to 

ensure proper placement of the Z-ring at midcell and subsequent septation (Hirota et al. 

1968) (Figure 2A). The Z-ring contains bundled filaments of a highly conserved protein 

across bacterial species known as “FtsZ” (named for “Filamenting temperature-sensitive 

Z-mutant,” since temperature-sensitive filamentation was the phenotype in a screen for 

cell division proteins) (Hirota et al. 1968) (Figure 2A). In vivo studies in dividing cells 

using various high-resolution microscopy techniques have shown that Z-rings in rod-

shaped E. coli and B. subtilis, spherical Staphylococcus aureus and Streptococcus 

pneumoniae, and curved/rod-shaped C. crescentus are discontinuous structures that 

contain a network of overlapping bundles of FtsZ polymers (Fu et al. 2010; Szwedziak et 

al. 2014; Strauss et al. 2012; Jacq et al. 2015; Li et al. 2007; Holden et al. 2014) (Figure 

2A). Although only approximately 30% of the total cellular FtsZ is present in the Z-ring 

at any given time, the Z-ring is a highly dynamic structure that rapidly exchanges FtsZ 

subunits from a cytoplasmic pool and is also frequently observed as a loose, helical 

structure rather than a closed ring (Stricker et al. 2002; Anderson et al. 2004). 
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Photobleaching and fluorescence recovery assays of cells expressing green fluorescent 

protein (Gfp) fused to FtsZ show that Z-ring fluorescence recovers with a half-time of 

approximately 9 sec and 8 sec in E. coli and B. subtilis respectively (Anderson et al. 

2004). Given the similarity in subunit exchange rates for a gram-negative and gram-

positive organism, Z-ring dynamics are likely conserved across bacterial species (Stricker 

et al. 2002; Anderson et al. 2004).  

The structural model of FtsZ shows a large, globular polymerization (GTPase) 

domain (residues 1-316), a flexible, unstructured linker region (residues 317-369), and a 

helical C-terminus as shown in co-crystal structures with other division proteins (residues 

370-383) (Nogales et al. 1998; Oliva et al. 2004; Mosyak et al. 2000; Szwedziak et al. 

2012) (Figure 2B). FtsZ is structurally homologous to the eukaryotic protein tubulin, but 

has poor sequence similarity. All FtsZ subunits are the same, but tubulin has alpha and 

beta subunits; however, both assemble in a head-to-tail arrangement and have been 

reported to exhibit treadmilling activity in vivo (Figure 2B) (Bisson-Filho et al. 2017; 

Wagstaff et al. 2017). Both FtsZ and tubulin assemble into linear filaments in vitro in the 

presence of GTP and catalyze GTP hydrolysis (Figure 2B) (Erickson et al. 1996; 

Erickson & Stoffler 1996; Nogales et al. 1998). Like tubulin, FtsZ polymerizes in the 

presence of GTP, and upon nucleotide binding, conformational changes at the surface of 

the polymerization domains allow monomers to self-associate and polymerize at the inner 

face of the cytoplasmic membrane at midcell (Figure 2A and 2B). ClpXP degrades both 

non-polymerized FtsZ (which exists as monomers and dimers) and polymers in vitro 

(Mukherjee & Lutkenhaus 1994; Erickson et al. 1996; Di Lallo et al. 1999; J L Camberg 

et al. 2009).  
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  During division, FtsZ is restricted to midcell by two mechanisms: direct inhibition 

of polymerization by the Min system, which oscillates to create a concentration gradient 

higher at cell poles, and nucleoid occlusion by the protein SlmA, which simultaneously 

binds FtsZ and the nucleoid to prevent constriction over the nucleoid regions; cells 

deleted for minC and slmA are synthetic lethal (Cho et al. 2011; Tonthat et al. 2011; 

Bernhardt & De Boer 2005). Once FtsZ polymers are restricted to midcell, the membrane 

tethering proteins ZipA and FtsA anchor FtsZ polymers to the inner face of the 

cytoplasmic membrane (Pichoff & Lutkenhaus 2002). Stabilizing proteins laterally and 

longitudinally bundle FtsZ filaments to counterbalance destabilizing proteins before 

constriction, likely to promote loose, accessible FtsZ subunits to coordinate constriction 

during late septal phase (Huang et al. 2013). ClpXP degrades 15% of total FtsZ per cell 

cycle and is the only cell division regulator among approximately 20 proteins that 

degrades FtsZ subunits processively to destabilize FtsZ polymers (Camberg et al. 2009). 

The destabilizing proteins ClpXP, MinC, and SlmA bind FtsZ via the C-terminus at 

distinct regions, but substrate hand-off may occur to regulate Z-ring assembly and 

disassembly since ClpXP competes with MinC for FtsZ in vitro (Camberg et al. 2014) 

(Figure 3). The tethering proteins ZipA and FtsA also interact with FtsZ via the C-

terminus at adjacent regions (Figure 3).   

ClpXP recognizes and degrades FtsZ via two distinct regions during division 

  FtsZ is an N-domain dependent substrate of ClpXP and is recognized and 

degraded via two distinct recognition motifs at the C-terminus that resemble the C-motif 

2 degron characterized for ClpX C-terminal substrates (Figure 4A) (Flynn et al. 2003; 

Camberg et al. 2014). The FtsZ recognition sequences, or “degrons,” are structurally 
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distinct (one is in the center of an intrinsically disordered region, and one at the extreme 

C-terminal alpha helix), but resemble the same C-motif 2 consensus sequence as 

described for C-terminal degrons recognized by ClpX (Figure 4A) (Gardner et al. 2013; 

Flynn et al. 2003). ClpX recognition of the C-terminal degron is consistent with 

engagement of other ClpX substrates (which is generally N-or-C-terminal) and other cell 

division regulators, which modulate FtsZ via the extreme C-terminus in overlapping 

regions (Figure 3).  

  The linker degron is uncharacteristic not only due to the lack of structure in this 

region, but also because no other proteins are known to interact with FtsZ in this region 

(Gardner et al. 2013). Unlike the polymerization domain and C-terminal regions, the 

linker region is the least conserved across bacterial species and can range in length from 

9 to over 300 amino acids. The long linker in FtsZ from C. crescentus has been 

implicated in additional functions for peptidoglycan remodeling during late septal phases 

of division (Sundararajan et al. 2015). In Bacillus subtilis, as long as the sequence was 

intrinsically disordered, the specific amino acids did not matter, but the original length 

was required for proper division in vivo and FtsZ assembly in vitro (Buske & Levin 

2012). The linker region is proposed to act as a flexible tether for the C-terminus to 

promote engagement of FtsZ regulatory proteins, possibly due to the species-specific 

differences in FtsZ polymerization properties and dynamics. Similarly, the extreme C-

terminus of FtsZ is hypervariable, and likely allows species-specific cell division 

regulators to recognize FtsZ (Buske & Levin 2013).  

  The rate of degradation is 2-3 fold faster for FtsZ polymers than for FtsZ 

monomers (Camberg et al. 2009). Since an FtsZ monomer contains two degrons, FtsZ 
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monomers alone are multivalent substrates, and ClpX may utilize presentation of the two 

degrons to differentiate between monomer and polymer formation, which could explain 

the differences in degradation rates. ClpXP also degrades another native oligomeric 

substrate, Dps, which is a dodecameric protein complex that protects the nucleoid from 

DNA damage during stationary phase (Stephani et al. 2003). Like FtsZ, ClpXP degrades 

the phage protein MuA as a tetramer more efficiently than individual subunits, leading to 

destabilization of the MuA transposition complex (Abdelhakim et al. 2010; Abdelhakim 

et al. 2008; Ling et al. 2015). In the model for FtsZ degradation, ClpXP promotes 

destabilization of FtsZ polymers in two ways: (1) monomers are degraded, which shifts 

the dynamic equilibrium of FtsZ polymers towards disassembly and (2) ClpXP degrades 

FtsZ polymers directly, leading to polymer severing (Figure 4B and 4C).  

Physiological relevance for ClpXP degradation of FtsZ 

  Of all known FtsZ regulators, ClpX is one of the most highly conserved across all 

bacterial species. ClpX has been shown to prevent and modulate FtsZ assembly in E. coli, 

B. subtilis, and M. tuberculosis in vitro, but only proteolysis by ClpXP is important for 

FtsZ turnover in E. coli and C. crescentus (Camberg et al. 2009; Weart et al. 2005; 

Haeusser et al. 2009; Sugimoto et al. 2010; Dziedzic et al. 2010; Williams et al. 2014). A 

proteomic screen in S. aureus identified FtsZ as a substrate for ClpP degradation (Feng et 

al. 2013).      

  In E. coli, deletion of clpX or clpP does not cause cell filamentation or Z-ring 

misplacement (Camberg et al. 2009; Viola et al. 2017). Since FtsZ is an essential protein 

for an essential process, why is regulating turnover not required for cell division in vivo? 

Deletion of minC causes a visible cell division phenotype consisting of minicells, 
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multiple, misplaced Z-rings and cells up to 3-times longer than wild type cells (Yu & 

Margolin 1999; Teather et al. 1974). Gfp-FtsZ subunit turnover in fluorescent Z-rings of 

dividing cells was measured in photobleaching and recovery experiments in cells deleted 

for clpX, clpP, and cells containing the proteolysis mutant protein clpP(S97A) in place of 

clpP on the chromosome revealed a 70% longer half-time recovery than for FtsZ subunits 

in wild type Z-rings (Viola et al. 2017). These results implicated ClpXP as 

physiologically relevant for FtsZ subunit turnover in a proteolysis-dependent manner. 

Comparably, cells deleted for slmA had an 80% slower recovery rate than wild type, and 

cells deleted for minC were 70% slower, and emphasized the global role of destabilizing 

FtsZ and the impact on Z-ring dynamics in vivo (Viola et al. 2017). Furthermore, 

impairing a conserved residue in FtsZ (R379), which is important for both ClpX and FtsA 

recognition (Figure 3), dramatically perturbed Z-ring subunit turnover by 2-fold (Viola et 

al. 2017; Szwedziak et al. 2012). Therefore, ClpXP promotes the dynamic exchange of 

FtsZ subunits in the Z-ring in live, dividing cells by proteolysis.  

ClpXP degrades FtsZ aggregates 

  ClpX is a member of the Hsp100/Clp family of proteins and was recently shown 

to be capable of disassembling aggregated substrates, including Gfp-ssrA and FtsZ 

(Schirmer et al. 1996; LaBreck et al. 2017). ClpX associates with cellular aggregates in 

E. coli, and both ClpX and ClpP colocalized with cellular inclusion bodies in B. subtilis 

under heat stress (Kain et al. 2008; Simmons et al. 2008; Vera et al. 2005; Winkler et al. 

2010; Kirstein et al. 2008; Maisonneuve et al. 2008; Krüger et al. 2014). In vitro, ClpX 

functions as a traditional chaperone to protect the lambda O phage protein from 

aggregation and promote its refolding (Wawrzynow et al. 1995). ClpX was recently 
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shown to degrade Gfp-ssrA and FtsZ aggregates in vitro, and degrade FtsZ aggregates in 

vivo (LaBreck et al. 2017).  

  ClpX expression does not significantly increase when cells experience heat shock, 

but FtsZ aggregates accumulate significantly in cells deleted for clpX or clpP, but not 

other chaperones, suggesting that ClpXP may remove aggregates with specific degrons in 

vivo (LaBreck et al. 2017). In vitro, neither untagged Gfp aggregates nor FtsZ aggregates 

lacking the C-terminus (FtsZ(ΔC67) aggregates) are degraded by ClpXP, which suggests 

that degrons are required for aggregate recognition and removal (LaBreck et al. 2017). 

Although ClpX alone binds to and promotes refolding of Gfp-ssrA, in E. coli, ClpX 

likely exists in complex with ClpP and may function in aggregate clearance in vivo (Li et 

al. 2000; LaBreck et al. 2017). 

Concluding remarks 

  ClpXP degrades approximately 15% of total FtsZ in actively dividing cells and 

promotes the dynamic exchange of subunits in the Z-ring in E. coli (Camberg et al. 2009; 

Viola et al. 2017). The multivalent targeting strategy ClpX utilizes contributes to robust 

discrimination of substrates in the crowded cellular milieu, and protects against 

irreversible degradation of other cellular proteins (Baker & Sauer 2006). The increased 

affinity of ClpXP for subunits within a polymer, which leads to polymer breakage, would 

favor accessibility of polymer ends and may promote faster polymer remodeling, and 

therefore the dynamic exchange of subunits (Figure 5A). This is consistent with the idea 

that the Z-ring comprises a loose network of FtsZ polymers based on high-resolution 

microscopy of Z-rings in several bacterial species, and places ClpXP in a role that favors 

this cytokinetic structure (Figure 5B). Other cell division regulators, such as SlmA and 
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ZipA, also utilize a multivalent recognition strategy for FtsZ and have a stronger affinity 

for polymerized FtsZ in the cytokinetic septal ring (Du et al. 2015). Cell division proteins 

MinD and FtsA both contain ClpX degrons and were identified as potential substrates for 

ClpXP under cell stress conditions; there is evidence that MinD, FtsA, and FtsZ 

polymerize (copolymers of MinD with MinC, and FtsA in complex with FtsZ along lipid 

membranes) (Neher et al. 2006; Conti et al. 2015; Szwedziak et al. 2012; Krupka et al. 

2014; Lara et al. 2005). Furthermore, cells deleted for minC and clpX have a synthetic 

filamentous phenotype and are longer than cells deleted for minC alone (Camberg et al. 

2011). Therefore, the physiological role of ClpXP in cell division may be more diverse 

than previously thought. 

  Since ClpXP degrades Gfp-ssrA aggregates in vitro and FtsZ aggregates in vitro 

and potentially in vivo, the role for ClpXP in protein quality control with respect to 

universal substrates and native substrates may also be broader than previously determined 

(LaBreck et al. 2017). Prior studies on ClpX disaggregase activity focused on non-native 

substrates or association with inclusion bodies, and did not directly implicate ClpXP in 

this physiological role in vivo for known substrates in E. coli until now. The ability for 

ClpXP to recognize and degrade aggregates in vivo would relieve the other heat shock 

proteins, since ClpXP recognizes over 100 diverse cellular substrates, and would promote 

proteostasis (Flynn et al. 2003; Neher et al. 2006). Polymers, by definition, are ordered 

aggregates, and therefore ClpX substrates that aggregate would be targeted for ClpX 

recognition under stressful cellular conditions. Since the capacity for ClpX 

disaggregation has been demonstrated, further proteomic studies are necessary to 

determine the full contribution of ClpXP aggregate clearance to survival under stress 
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conditions. 
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Figure 1: ClpXP structure from E. coli. A ribbon model for hexameric ClpX from E. coli 

(PDB 3HWS) is depicted in blue above a ribbon model for tetradecameric ClpP protease 

from E. coli (PDB 1TYF) shown in green (Glynn et al. 2009, Wang et al. 1997). The side 

view of ClpX and ClpP is shown left, and the top view of ClpX docking ClpP (which 

opens the ClpP channel) is shown right, and the central channel is clearly visible. The 

ClpX N-domain is depicted to the right with blue cartoon ovals, demonstrating how the 

N-domain dimerizes independently and is situated above the AAA+ ClpX domains. 
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Figure 2: Z-ring assembly and FtsZ structure. 

(A) In a dividing E. coli cell, a loose network of FtsZ polymers are tethered to the inner 

face of the cytoplasmic membrane as determined from high-resolution microscopy of Z-

rings in several bacterial species. (B) FtsZ contains a globular, N-terminal polymerization 

domain (residues 1-316, shown as a dimer in the purple ribbon model, PDB 1W5A) that 

binds GTP depicted in yellow, a flexible/unstructured linker region (317-369, dotted 

line), and a structured C-terminus (370-383, grey cartoon) (Oliva et al. 2004). 
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Figure 3: Recognition of the FtsZ C-terminus by cell division regulators. 

Polymer-stabilizing proteins are depicted with light blue ovals, and polymer-disassembly 

proteins are depicted with red rectangles. ZipA is a polymer-stabilizing protein, ClpXP 

and MinC disassemble FtsZ polymers or prevent FtsZ polymer assembly, while FtsA has 

been reported to do both under different conditions (Ma & Margolin 1999, Pichoff & 

Lutkenhaus 2002, Mosyak et al. 2000, Haney et al. 2001, Shen & Lutkenhaus 2010, 

Camberg et al. 2014, Viola et al. 2017, Du & Lutkenhaus 2014, Szwedziak et al. 2012). 

The conserved region of the FtsZ-Cterminus is underlined, and regulatory proteins are 

aligned with the C-terminal residues they have been reported to interact with. 
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Figure 4: Recognition of FtsZ by ClpXP. 

(A) The schematic for the structure of FtsZ shows the globular, N-terminal 

polymerization domain (residues 1-316, shown in purple), the flexible/unstructured linker 

region (317-369), and the structured C-terminus (370-383) (Oliva et al. 2004). The 

regions where ClpX recognizes FtsZ are shown in teal in the linker region (degron 2, 

residues 352-358) and yellow at the C-terminal region (degron 1, residues 374-383) 

(Camberg et al. 2014). A model for degradation of monomers/dimers by ClpXP (B) and 

for degradation of polymers by ClpXP (C), where a cross-section of ClpXP is depicted 

throughout (ClpX in blue, ClpP in green, and FtsZ subunits in purple). ClpX binds and 

stabilizes an interaction with an FtsZ subunit, then binds and hydrolyzes ATP to power 

substrate unfolding, which destabilizes the protein substrate (B, C). Unfolding substrates 

are translocated to the ClpP peptidase, resulting in degradation into small peptides (B, C). 

Degradation of monomer/dimer subunits decreases the availability of subunits in the 

cytosol (B), and degradation within a polymer leads to polymer breakage (C). 
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Figure 5: Impact of ClpXP degradation on FtsZ dynamics during cell division. 

(A) ClpXP degradation shifts the population of FtsZ towards disassembly (1) or polymer 

breakage may promote faster polymer remodeling (2), which is consistent with reports 

for the ClpXP substrate MuA (Abdelhakim et al. 2008; 2010). (B) ClpXP degradation of 

a small population of FtsZ subunits would support the loose, Z-ring structure which has 

been reported for various bacterial species based on high-resolution microscopy of Z-

rings.  
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ABSTRACT 

  

ClpXP is a two-component ATP-dependent protease that unfolds and degrades proteins 

bearing specific recognition signals. One substrate degraded by Escherichia coli ClpXP is 

FtsZ, an essential cell division protein. FtsZ forms polymers that assemble into a large 

ring-like structure, termed the Z-ring, during cell division at the site of constriction. The 

FtsZ monomer is composed of an N-terminal polymerization domain, an unstructured 

linker region and a C-terminal conserved region. To better understand substrate selection 

by ClpXP, we engineered FtsZ mutant proteins containing amino acid substitutions or 

deletions near the FtsZ C-terminus. We identified two discrete regions of FtsZ important 

for degradation of both FtsZ monomers and polymers by ClpXP in vitro. One region is 

located 30 residues away from the C-terminus in the unstructured linker region that 

connects the polymerization domain to the C-terminal region. The other region is near the 

FtsZ C-terminus and partially overlaps the recognition sites for several other FtsZ-

interacting proteins, including MinC, ZipA and FtsA. Mutation of either region caused 

the protein to be more stable and mutation of both caused an additive effect, suggesting 

that both regions are important. We also observed that in vitro MinC inhibits degradation 

of FtsZ by ClpXP, suggesting that some of the same residues in the C-terminal site that 

are important for degradation by ClpXP are important for binding MinC.  
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INTRODUCTION 

 

 AAA+ ATPases (ATPases associated with various cellular activities) represent a 

superfamily of ATPases that are present across kingdoms and encompass a variety of 

cellular functions, including intracellular trafficking, DNA replication, cytokinesis, 

protein folding and degradation. In Escherichia coli, the AAA+ ATPase ClpX partners 

with ClpP, a serine protease, to form a two-component ATP-dependent proteolytic 

machine. The substrate recognition component of the ClpXP protease is ClpX, which is 

present as a hexameric ring. Hexameric ClpX associates with ClpP, a barrel-shaped 

structure composed of two seven-membered rings with an internal proteolytic chamber. 

Using the energy from ATP hydrolysis, ClpX unfolds polypeptides and threads the 

polypeptide chain through the central channel of ClpX and into the central proteolytic 

chamber of ClpP where degradation occurs [1]. The N-domain of ClpX interacts with 

several substrates directly, including E. coli UmuD and bacteriophage proteins MuA and 

lambda O protein [2-4]. Some degradation substrates require an adaptor protein for 

efficient recognition. Adaptor proteins bind specifically to a substrate and to ClpX to 

promote substrate engagement and initiation of unfolding by ClpX [5]. For example, the 

SspB protein enhances degradation of ssrA-tagged substrates by promoting an interaction 

between ClpX and the ssrA-tag [6]. 

 

 We previously demonstrated that ClpXP degrades polymerized and non-

polymerized FtsZ in vitro, and the rate of degradation for polymerized FtsZ is faster than 

non-polymerized FtsZ [7]. FtsZ is recognized by ClpX directly and does not require an 
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adaptor protein, however the N-domain of ClpX is important for degradation of FtsZ [7]. 

FtsZ, a homolog of the eukaryotic protein tubulin, is essential in E. coli and forms a large 

structure with ring-like architecture at the nascent division site; this structure is referred 

to as the Z-ring [8]. Formation of the Z-ring precedes constriction at the septum and cell 

separation. Evidence suggests that the Z-ring may be comprised of dynamic FtsZ protein 

filaments that are bundled and tethered to the inner face of the cytoplasmic membrane 

through direct interactions with membrane-associated proteins FtsA and ZipA [8].   

 

 FtsZ is a GTPase and assembles into dynamic polymers in the presence of GTP in 

vitro [9]. Several proteins in E. coli bind to FtsZ and influence the dynamic assembly of 

FtsZ fibers [8]. These include ZipA, ZapA and ZapC, which stabilize FtsZ polymers from 

disassembly and promote lateral bundling [8,10,11]. Conversely, E. coli proteins MinC, 

SlmA and ClpXP destabilize FtsZ fibers and promote disassembly [7,12-14]. Of these 

modulators of FtsZ assembly, several, including FtsA, ZipA, ClpXP and MinC, have been 

demonstrated to interact with a region of FtsZ near the C-terminus that contains a highly 

conserved sequence, referred to as the conserved core [7,8,15,16]. MinC has been 

suggested to have a second interaction with FtsZ near the GTP-binding site at the 

interface between adjacent protomers [17]. MinC functions to prevent lateral bundling of 

FtsZ fibers and longitudinal polymer assembly [18].  

 

 Although it degrades FtsZ in vivo and in vitro, ClpXP is not an essential protein 

in E. coli for cell division or other cellular functions [19]. However, it modulates cell 

division by lowering the concentration of FtsZ, thereby shifting the dynamic equilibrium 
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away from the polymerized form of FtsZ [7]. Several other modulators of FtsZ assembly 

are also not essential, including the FtsZ-associated proteins ZapA, ZapB, ZapC and 

ZapD [20]. Unlike the other modulators of FtsZ assembly, ClpXP is not a dedicated cell 

division protein and degrades many diverse protein substrates [21].   

 

 In the present study we report the identification of two regions near the FtsZ C-

terminus that are important for degradation of FtsZ by ClpXP. One region is located 30 

amino acids away from the C-terminus in an unstructured linker and the other region 

includes residues near the C-terminus. Our results suggest that ClpX recognizes FtsZ 

through dual contacts and residues in both regions are important for degradation by 

ClpXP. Although FtsZ degradation does not require an adaptor, degradation is inhibited 

when the SspB adaptor binding site on the ClpX N-domain is occupied by a peptide 

containing 10 C-terminal amino acid residues of SspB. We also demonstrate in vitro that 

FtsZ degradation is reduced in the presence of excess MinC, which is consistent with 

both MinC and ClpXP interacting with an overlapping region of FtsZ near the C-

terminus.  

  

EXPERIMENTAL PROCEDURES 

 

Bacterial strains and plasmids 

 

E. coli strains and plasmids used in this study are listed in Supporting Information (Table 

S1). Bacteria were grown in Lennox (LB) liquid broth at 30C in the presence of 
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ampicillin and arabinose, where indicated. The chromosomal araE promoter was 

replaced in MG1655 by P1 transduction with the constitutive promoter PCP18 to regulate 

expression of the high-capacity transporter (araE) [22,23]. Plasmids encoding FtsZ 

mutant proteins were constructed by site-directed mutagenesis of pBAD-FtsZ, pGfp-FtsZ 

and pEt-FtsZ using the Quik-Site II Mutagenesis kit (Agilent) [7,24,25]. 

 

Proteins and Peptides 

 

 E. coli FtsZ [7], ClpX [26], ClpP [27]  and GFP-ssrA [28] proteins were expressed 

and purified as described previously. ClpX(E185Q) was purified like wild type ClpX 

[26]. The C-terminal SspB peptide, XB, with the sequence NH2-RGGRPALRVVK-

COOH was purchased from Life Technologies. MinC was cloned into vector pET-24b 

(EMD-Millipore). Expression was induced in BL21(DE3) cells (EMD-Millipore USA) 

(Table S1) at 30C by adding 0.5 mM -D-isopropyl-thiogalactoside after cells reached 

an O.D.600 of 1.2. After 3 h of induction, cells were harvested by centrifugation at 6,000 x 

g for 20 min, resuspended in 25 mM Tris-HCl, pH 8.0, 50 mM KCl, 10% glycerol, 1 mM 

EDTA and 1 mM TCEP [tris(2-carboxyethyl)phosphine], and then lysed by French press. 

The cell lysate was centrifuged at 35,000 x g for 30 min at 4C. MinC was purified from 

the soluble cell extract by chromatography on a Q sepharose column. Bound proteins 

were eluted with a KCl gradient (50 – 600 mM). Fractions containing MinC were 

fractionated on a sephacryl S-100 column equilibrated with 25 mM Tris-HCl, pH 7.5, 100 

mM KCl, 10% glycerol and 1 mM TCEP. Protein concentrations are reported for ClpX 

hexamers, ClpP tetradecamers, MinC dimers and FtsZ monomers. 
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 FtsZ mutant proteins were expressed in E. coli BL21 (DE3) and purified like 

wild type FtsZ as described [7]. To incorporate fluorescent labels into active FtsZ wild 

type or mutant proteins, stable polymers were formed by adding GTP in the presence of 

CaCl2, then labeled with Alexa fluor 350, 488 or 670 succinimidyl ester (Life 

Technologies) to a degree of labeling ranging from 0.5 – 5.0 mol/mol as described [29]. 

Fluorescent FtsZ wild type and mutant proteins were depolymerized as described to 

obtain active labeled protein [30]. 

  

Degradation Reactions 

 

 Fluorescent wild type or mutant FtsZ (10 M) was incubated in assembly buffer 

[50 mM MES (morpholino-ethane-sulfonic acid), pH 6.5, 50 mM KCl and 10 mM 

MgCl2] with 25 g/ml, acetate kinase and 15 mM acetyl phosphate.  Where indicated, 2 

mM GTP was added and reactions were incubated for 3 min at room temperature to 

promote FtsZ polymer formation. After polymerization, ClpX, ClpP and 4 mM ATP were 

added, where indicated, at the start of the degradation reaction. After incubation for 30 

min, degradation reactions were stopped by the addition of 25 mM EDTA. Reactions 

were filtered on Nanosep ultrafiltration membranes (Pall Life Sciences) (MWCO 10 

kDa), pre-washed with 100 mM NaCl containing 0.01% Triton X-100, by centrifugation 

at 16,000 x g for 20 min. Total fluorescence of peptides in the eluent was measured using 

a Cary fluorometer. Background correction was made by subtracting the fluorescence of 

the eluting volume from reactions containing fluorescent FtsZ wild type or mutant 
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protein, but without ClpXP.  

 

 Degradation reactions containing FtsZ in the presence of MinC were performed as 

above, except the final concentration of FtsZ present in the reaction was 5 M. MinC was 

included in the FtsZ degradation reaction at final concentrations of 2, 5, 10 and 20 M. 

 

 GFP-ssrA degradation was monitored by measuring the loss of fluorescence with 

time as described in reactions containing ClpX, ClpP, ATP and MinC, where indicated 

[28]. 

 

Functional assays of FtsZ mutant proteins in vivo 

 

 E. coli strain MCZ84, containing the chromosomal ftsZ84 gene, was transformed 

with arabinose inducible pBAD expression plasmids listed in Table S1 encoding FtsZ 

wild type and mutant proteins. Strains were grown overnight at 30°C in Lennox Broth 

containing ampicillin (100 μg ml−1). Stationary phase cultures were diluted 1:100 in LB 

broth containing 0.05% NaCl, 0.02% arabinose and ampicillin, and grown at 42C for 4 

h. Colony forming units (CFU) were determined by dilution plating onto LB agar 

containing ampicillin, then growing the colonies overnight at the permissive temperature.  

  

Assembly Characterization of FtsZ mutant proteins 

 

 FtsZ wild type and mutant proteins were assayed for GTP hydrolysis using the 
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phosphate detection reagent Biomol Green (Enzo Life Sciences). Reactions containing 5 

μM FtsZ and 1 mM GTP in assembly buffer were incubated at 30°C for 15 min. The 

amount of free phosphate was measured in reactions at 0 and 15 min by comparison to a 

phosphate standard curve. Rates were calculated by measuring the amount of free 

phosphate released during the incubation period. 

 

 To measure polymerization by light scattering, wild type and mutant FtsZ 

polymers were assembled in reactions (80 l) containing assembly buffer and 8 M FtsZ. 

Polymerization was monitored with time after the addition of 1 mM GTP by light 

scattering using a Cary Eclipse fluorescence spectrophotometer with excitation and 

emission wavelengths set to 450 nm and 5 nm slit widths. Baseline readings were 

collected for two min, GTP was added and light scattering was measured for 30 min. FtsZ 

wild type and mutant polymers were visualized by negative staining with uranyl acetate 

and electron microscopy as described [48]. 

     

 

Polymerization Assays with MinC 

 

 Fluorescent FtsZ polymers were assembled by mixing 5 M fluorescence-labeled 

FtsZ in assembly buffer in the presence of 25 g/ml acetate kinase and 15 mM acetyl 

phosphate. GTP (2 mM) was added and reactions were incubated for 3 min. Where 

indicated MinC, ClpX, ClpP and 4 mM ATP were added, and reactions were incubated 

for 10 min. FtsZ polymers were collected by centrifugation for 30 min at 129,000 x g at 
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23 C. Supernatants and pellets were resuspended in assembly buffer containing 0.1 M 

NaCl and 0.005% Triton X-100. Total fluorescence was measured in supernatants and 

pellets. 

 

  

Co-sedimentation Assays 

 

  FtsZ polymers were assembled by adding 2 mM GTP to reactions containing 

assembly buffer, 25 g/ml acetate kinase and 15 mM acetyl phosphate with 250 pmol 

FtsZ wild type or mutant protein. After incubating the reaction for 3 min to allow for 

GTP-dependent polymerization, 1.5, 5.0 or 12.5 pmol ClpX(E185Q) and 4 mM ATP were 

added to the reaction. The final reaction volume was 25 µl. After incubating for 10 min, 

reactions were centrifuged at 129,000 x g for 30 min. Supernatants and pellets, 

resuspended in an equivalent volume of assembly buffer, were analyzed by SDS-PAGE 

and Coomassie staining. The relative amounts of ClpX(E185Q) in supernatant and pellet 

fractions were quantified by densitometry, and pmol of ClpX(E185Q) in the pellet 

fraction was calculated. Values were background-corrected by subtracting the total pmol 

of ClpX(E185Q) present in the pellet under identical conditions but omitting GTP and 

normalized to the amount of polymerized wild type or mutant FtsZ detected, which 

ranged from 99 to 174 pmol. 

 

RESULTS 
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The C-terminal region of FtsZ is important for recognition and degradation by 

ClpXP 

 

 The region of FtsZ referred to as the “conserved C-terminal core”, which includes 

residues 370 through 379 [16], is located near the C-terminus (Fig. 1A). Residues 380 

through 383 of FtsZ are less conserved and referred to as the C-terminal variable region 

[31]. The conserved core region contains residues that interact with several cell division 

proteins, including FtsA, ZipA and MinC [7,8,15,16]. In addition residues within 18 

amino acids of the C-terminus, 366 to 383, are important for degradation by ClpXP [7]. 

To elucidate the residues within this region of FtsZ that are important for ClpX 

recognition we constructed FtsZ deletion and substitution mutants (Fig. 1A). FtsZ(380-

383) is a deletion mutant that lacks the C-terminal four amino acid variable region and 

FtsZ(375-383) is a deletion mutant lacking the C-terminal nine amino acids. We also 

engineered substitution mutations at two positively charged residues near the C-terminus, 

R379E and K380A. We determined the rates of degradation of fluorescent wild type and 

mutant FtsZ by ClpXP by monitoring the appearance of degradation products using an 

ultrafiltration assay. As we previously observed, FtsZ was degraded at an approximately 

2-fold faster rate in the presence of GTP, the condition that promotes FtsZ 

polymerization, than in the absence of GTP (0.20 min-1 and 0.11 min-1 in the presence 

and absence of GTP, respectively) (Fig. 1B). However, FtsZ mutant proteins lacking 

either four or nine residues from the FtsZ C-terminus were degraded at ~75% reduced 

rates compared to wild type FtsZ in the presence of GTP and ~65% reduced rates 

compared to wild type FtsZ in the absence of GTP. The reduction in the degradation rates 
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of FtsZ(380-383) and FtsZ(375-383) were similar to the reduction in the degradation rate 

previously observed for FtsZ(366-383) (Fig. 1B) [7]. We also observed that FtsZ 

substitution mutants FtsZ(R379E) and FtsZ(K380A) were degraded by ClpXP at ~75% 

and ~55% reduced rates, respectively, compared to wild type FtsZ in both the presence 

and absence of GTP (Fig. 1B). These results indicate that the positively charged residues 

R379 and K380 of FtsZ are important for degradation of FtsZ by ClpXP. Taken together, 

our results suggest that ClpX recognizes FtsZ through a C-terminal recognition motif and 

further implicates amino acid residues R379 and K380 as important for degradation by 

ClpXP.  

 

 Structural models of an E. coli FtsZ C-terminal peptide containing residues 367 

through 383, which cocrystallized with the FtsZ-binding domain of ZipA, show a nine 

amino acid linear alpha helix at the FtsZ C-terminus (Fig. 1C) [32]. Amino acid residues 

R379 and K380 are located within the C-terminal helix, and the side chains extend 

outward. Cocrystallization of this region with FtsA from Thermatoga maritima showed 

an alternative configuration, with the helix containing a 90 degree bend, which could 

suggest that the FtsZ tail may be capable of adopting different conformations [33]. In the 

absence of structural information concerning the configuration of the E. coli FtsZ C-

terminal tail with ClpX, this region has been illustrated based on the E. coli model with 

ZipA (Fig. 1C) [32].  

 

 Our results indicate that the FtsZ C-terminal region, containing positively charged 

amino acid residues R379 and K380, is important for degradation of FtsZ by ClpXP. 
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ClpX is known to recognize the C-termini of substrates that contain one of two distinct 

recognition motifs; one motif, referred to as C motif-1, resembles the C-terminal LAA 

residues of the ssrA tag sequence, and a second motif, referred to as C motif-2, resembles 

the C-terminal sequence of the degradation substrate from bacteriophage Mu, MuA, a 

DNA transposase [21]. An alignment of the FtsZ C-terminus with the C-terminal 10 

amino acids from substrates that contain recognition tags bearing similarity to the C 

motif-2 consensus motif (R/H-x-K/R-K-Φ with x representing any amino acid and Φ 

representing a hydrophobic amino acid residue) is shown in Fig. 1D [21]. The alignment 

shows similarities between the C-terminus of FtsZ and other ClpXP degradation 

substrates, including K380 and the nearby hydrophobic amino acid A382. The reduced 

rate of degradation observed for the mutant protein FtsZ(380-383), which is missing both 

K380 and A382, compared to wild type FtsZ is consistent with the suggestion that these 

residues are important for degradation by ClpXP.  

 

 Additional substitution mutations in the conserved alpha-helical region near the 

FtsZ C-terminus were constructed and tested for degradation by ClpXP (Fig. S1). We 

observed ~50% reduced rates of degradation of two mutant proteins FtsZ(F377A) and 

FtsZ(P375G) in the presence of GTP, compared to wild type FtsZ; however, we did not 

observe similar reductions when GTP was omitted (Fig. S1). One mutant protein, 

FtsZ(L378A), was degraded at a 1.9-fold faster rate than wild type FtsZ in the absence of 

GTP, but not in the presence of GTP. Together, these results suggest that amino acid 

residues in the vicinity of the recognition motif may modulate the rate of degradation in 

the presence or absence of GTP. 
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The linker region of FtsZ also contains residues important for degradation by 

ClpXP 

 

 Our observation that deletion of 4, 9, or 18 residues from the FtsZ C-terminus 

reduced degradation by ClpXP but did not abolish it (Fig. 1B), suggests that additional 

residues in FtsZ may also participate in a ClpX interaction. Therefore we examined the 

linker region of FtsZ, residues 317 through 369, between the polymerization domain and 

the conserved C-terminal domain for an additional site of interaction for ClpX (Fig. 2A). 

The linker region overall is poorly conserved in bacteria, and structure prediction 

algorithms suggest that the linker has little secondary structure. Erickson and colleagues 

recently showed that the linker region is an intrinsically disordered peptide and because it 

could be replaced with almost any sequence of similar length, it likely functions as a 

bridge, linking the FtsZ polymerization domain to the C-terminal protein interaction sites 

via a flexible tether [34]. By sequence examination, we identified a 10-residue motif in 

the linker region (349 QEQKPVAKVV 358) that contains 60% homology to the ClpXP 

recognition signal in Mu repressor, however the region did not strictly adhere to the C 

motif-2 consensus motif (R/H-x-K/R-K-)  (Fig. 2A). To probe this region further and 

test if residues in this potential site are also important for the interaction with ClpX, we 

constructed several triple alanine substitutions in the region, shown in Fig. 2B. We 

compared rates of degradation of the FtsZ linker mutant proteins to wild type FtsZ in the 

presence and absence of GTP (Fig. 2C). We observed that two of the mutant proteins we 

constructed, FtsZ(352AAA) and FtsZ(356AAA), were degraded at 60-75% slower rates 
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than wild type FtsZ in both the presence and absence of GTP. However, a nearby triple 

alanine substitution mutant, 349AAA, was degraded at a rate similar as wild type FtsZ 

(Fig. 2C).  

 

 To test if the two regions we identified are both important for degradation, we 

constructed FtsZ(352AAA, 375-383). We observed that mutation of both sites in FtsZ, one 

in the linker and the other near the C-terminus, abolished degradation by ClpXP in the 

presence or absence of GTP (Fig. 2C). Taken together, our data demonstrate that two 

regions of FtsZ separated by approximately 20 residues promote the recognition and 

degradation of FtsZ. Disruption of both regions in FtsZ prevents degradation by ClpXP.  

 

FtsZ mutant proteins hydrolyze GTP and exhibit GTP-dependent polymerization 

 

To test if FtsZ mutant proteins are functional for GTP-dependent assembly and 

GTP hydrolysis, we performed a characterization of FtsZ mutant proteins in vitro. As 

expected, all of the mutant proteins hydrolyze GTP. Many of the FtsZ mutant proteins 

exhibit rates of GTP hydrolysis similar to wild type FtsZ (4.9 ± 0.6 min-1), however we 

observed a ~40% slower rate of GTP hydrolysis by FtsZ(349AAA) and FtsZ(352AAA, 

Δ375-383) compared to wild type FtsZ (Fig. 3A). In addition all of the mutant proteins 

showed an increase in light scatter when GTP was added indicating that they polymerize 

in a GTP-dependent manner (Fig. 3B). However, the increase in light scatter upon 

addition of GTP was ~30-70% less with FtsZ(R379E), FtsZ(K380A), FtsZ (Δ380-383), 

FtsZ(356AAA) and FtsZ(352AAA, Δ375-383) compared to wild type FtsZ. Visualization by 
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electron microscopy and negative staining showed that all of the FtsZ mutant proteins 

tested formed single-stranded filaments in the presence of GTP (Fig. S2), including 

FtsZ(352AAA, Δ375-383) which showed reduced GTPase activity and GTP-stimulated 

light scatter. We also observed fiber bundles in addition to single stranded filaments by 

electron microscopy for mutant proteins FtsZ(R379E), FtsZ(352AAA) and 

FtsZ(352AAA, Δ375-383).  

 

 

A region in the ClpX N-domain overlapping the SspB binding site is important for 

FtsZ recognition and degradation by ClpXP 

 

 We next wanted to investigate the region of ClpX N-domain that interacts with 

FtsZ. The N-domain of ClpX, comprised of residues 1 through 61, is important for 

recognition and degradation of FtsZ [7]. The ClpX N-domain is also essential for 

recognition and degradation of lambda O protein and adaptor-mediated substrate 

recognition and degradation, including ssrA-tagged proteins in the presence of adaptor 

protein SspB [3,6,35].  A peptide corresponding to the 10 C-terminal amino acids of 

SspB, referred to as the XB peptide, binds directly to the ClpX N-domain and inhibits 

SspB-stimulated degradation of ssrA tagged substrates [36,37]. The XB peptide also 

inhibits degradation of lambda O protein, and structural studies suggest that the lambda O 

binding site on ClpX overlaps with the SspB binding site [3,35]. Since the ClpX N-

domain is essential for recognition and degradation of FtsZ by ClpXP [7], we tested if 

degradation is susceptible to inhibition by the XB peptide. We monitored degradation of 
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FtsZ in the presence of increasing amounts of XB peptide with and without GTP. We 

observed that addition of XB peptide inhibited degradation of FtsZ in the presence and 

absence of GTP in a concentration-dependent manner (Fig. 4A). The XB peptide is 

approximately two-fold more inhibitory against FtsZ degradation in the presence of GTP 

than in the absence of GTP. These results show that the region of SspB that interacts with 

the N-domain of ClpX is an inhibitor of FtsZ degradation. They suggest that the FtsZ 

binding site on ClpX overlaps with the SspB adaptor-binding site. These results also 

demonstrate that FtsZ polymers are more susceptible to inhibition by the peptide than 

FtsZ monomers. 

 

 Next we tested if both regions of FtsZ that promote ClpXP degradation, the linker 

and the C-terminal region, are susceptible to peptide inhibition by monitoring degradation 

of FtsZ(352AAA) and FtsZ(375-383) in the presence and absence of the XB peptide. Our 

results show that degradation of FtsZ(352AAA) and FtsZ(375-383) is inhibited by the XB 

peptide to a similar extent as wild type FtsZ (Fig. 4B), suggesting that the SspB binding 

region of the ClpX N-domain is important for interaction with both of the FtsZ 

degradation signals, the one in the linker and the one near the C-terminus.  

 

Association of ClpX with wild type and mutant FtsZ polymers 

 

 Having shown that FtsZ degradation by ClpXP involves two regions of FtsZ (Fig. 

1B and 2C), we wanted to determine if the FtsZ mutant proteins that are poorly degraded 

by ClpXP are defective in an interaction with ClpX. To test this, we performed a co-
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pelleting assay to monitor the association of polymerized FtsZ wild type or mutant 

protein with an ATP hydrolysis defective mutant of ClpX, ClpX(E185Q), which can form 

stable interactions with substrates in the presence of ATP [38]. We observed that 

ClpX(E185Q) co-pelleted with wild type FtsZ polymers in a concentration-dependent 

manner (Fig. 5). ClpX(E185Q) also associated with FtsZ(356AAA) polymers. However, 

slightly less ClpX(E185Q) co-pelleted with polymers containing FtsZ(375-383), 

FtsZ(352AAA) or FtsZ(352AAA, 375-383) than wild type FtsZ, suggesting that these 

mutants are slightly defective for the association with ClpX(E185Q).  

 

ClpXP and MinC compete for FtsZ in vitro 

 

 MinC interacts with FtsZ in the C-terminal domain and isoleucine 374 has been 

shown to be important for this interaction [15]. Therefore if ClpX associates with FtsZ 

near the C-terminus, an interaction with MinC could potentially mask residues important 

for recognition by ClpX and prevent degradation in vitro. To test if MinC competes with 

ClpXP for FtsZ in vitro, we monitored degradation of fluorescent FtsZ by ClpXP in the 

presence of increasing amounts of MinC. We observed that MinC inhibited FtsZ 

degradation with 80% inhibition resulting from a four-fold excess of MinC dimer over 

FtsZ monomer (Fig. 6A).  In a control experiment, we observed that degradation of GFP-

ssrA by ClpXP was not inhibited by MinC (Fig. S3). One interpretation of our results is 

that there is competition between ClpXP and MinC in vitro for binding the C-terminal 

domain of FtsZ.  
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 Both MinC and ClpXP have independently been shown to destabilize FtsZ 

polymers in vitro leading to polymer disassembly [7, 18]. In our in vitro competition 

experiment, we observed inhibition of FtsZ degradation when MinC was in excess over 

FtsZ. However, in vivo FtsZ is in large excess over MinC, based on estimates of 10,000 

and 400 molecules of FtsZ and MinC, respectively, per cell [39,40]. Consequently, 

multiple modulators of FtsZ assembly are likely acting independently and at the same 

time on the large amount of FtsZ inside the cell. Therefore, to test if MinC and ClpXP act 

concurrently to disrupt FtsZ polymers in vitro when MinC and ClpXP are under limiting 

conditions, we monitored FtsZ polymer abundance after incubation with ClpXP and 

MinC. MinC was added first to preassembled FtsZ polymers, then ClpXP and ATP were 

added to the reaction. After a short incubation, the remaining FtsZ polymers were 

collected by centrifugation and quantified. The supernatant fractions, which were not 

quantified, contained mixtures of FtsZ monomers and dimers, as well as products of the 

degradation reaction when ClpXP and ATP were included. In control experiments, the 

addition of either ClpXP or MinC to FtsZ polymers caused a reduction in FtsZ polymer 

abundance by 33% for ClpXP and 25% for MinC (Fig. 6B). When ClpXP and MinC were 

both included in the reaction, there was a 65% reduction of FtsZ polymers. The reduction 

was similar to the additive value of the individual contributions of ClpXP and MinC, or 

approximately 60%, and dependent on the presence of ATP. These results suggest that 

under our conditions, MinC and ClpXP perform independent and concurrent disruption 

activities on FtsZ polymers in vitro. 
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FtsZ C-terminal mutants are defective for function in vivo  

 

 In E. coli, clpX and clpP are dispensable for growth and genetic deletion of clpX 

or clpP is not associated with division defects [7,19]. In addition ClpXP-dependent 

phenotypes have not been described. Since the C-terminal region of FtsZ is essential for 

interactions with known cell division proteins as well as ClpXP, it is likely that any 

growth defects exhibited by our FtsZ mutant proteins are caused by failure of FtsZ to 

interact with essential cell division proteins including MinC, FtsA or ZipA. However, we 

tested FtsZ mutant proteins in vivo to determine if mutations in regions of FtsZ important 

for ClpXP degradation are also associated with defects in FtsZ function. We expressed 

each mutant FtsZ protein from a plasmid in an ftsZ84 temperature sensitive strain [41] 

and measured the number of CFUs after incubation at 42C. In control experiments, 

expression of wild type FtsZ from a plasmid supported growth of ftsZ84 cells at 42C, 

while cultures of cells carrying the control vector were unable to grow (Fig. 7). 

Expression of FtsZ(Δ375-383) and FtsZ(R379E) did not support growth and cells 

expressing FtsZ(Δ380-383) were partially functional, as expected since residues in this 

region are important for interactions with both ZipA and FtsA. Cells expressing 

FtsZ(K380A) grew slightly better than those expressing wild type FtsZ, while 

substitution mutations in residues 375 through 378 impaired FtsZ function in vivo (Fig. 

S4A), as previously reported [16]. Expression of the FtsZ linker mutant proteins 

FtsZ(349AAA), FtsZ(352AAA) and FtsZ(356AAA) support growth of ftsZ84 cells at 

42C, similar to cells expressing wild type FtsZ (Fig. 7). However, cells expressing the 

double mutant FtsZ(352AAA, Δ375-383) were unable to grow. The cell growth defects 
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detected in this assay likely reflect changes in interactions with essential cell division 

proteins such as MinC, FtsA or ZipA. In addition, no defects were detected in our assay 

in cells expressing FtsZ(352AAA) or FtsZ(356AAA), which are defective for 

degradation by ClpXP in vitro. 

 

 Next, we tested whether the FtsZ mutant proteins localize to Z-rings in wild type 

cells by expressing each FtsZ mutant protein as a green fluorescent protein (GFP) fusion 

from a plasmid. All GFP-FtsZ mutant proteins tested assembled into ring-like structures 

in dividing cells (Fig. S5). Expression of GFP-FtsZ proteins containing triple alanine 

substitutions in the linker region showed normal Z-rings and no obvious cell division 

defects. In contrast, many of the C-terminal mutations, including R379E and Δ375-383, 

were associated with mild cell filamentation and multiple Z-rings in some cells (Fig. S5 

and Fig. S4B). Filamentation and Z-ring localization was observed in cells that expressed 

GFP-FtsZ proteins containing mutations at residues 375, 376, 377 and 378 (Fig. S4B) 

[16]. Cells expressing GFP-FtsZ(Δ380-383) or GFP-FtsZ(K380A) exhibited normal Z-ring 

formation and were not filamentous. 

 

DISCUSSION 

 

 In this study, we have identified two regions near the FtsZ C-terminus that are 

important for proteolysis by ClpXP. The C-terminal end of FtsZ harbors a motif that 

resembles the C motif-2 family of ClpX recognition motifs proposed in Flynn, et al [21]. 

Like the ClpXP substrate MuA, the C-terminus of FtsZ contains positively charged 
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residues, R379 and K380, which are important for degradation by ClpXP [4]. Our results 

further show that there is a second site important for degradation by ClpXP that is located 

30 residues from the C-terminus of FtsZ in a highly flexible and unstructured linker 

region [34]. Another ClpXP substrate, MuA, also utilizes additional contacts to stabilize 

the ClpX-interaction, and the presence of multiple ClpX recognition sites in FtsZ may 

serve a similar function [4]. In FtsZ, both sites can function independently since both 

FtsZ(352AAA) and FtsZ(Δ375-383) are partially defective and inhibited by the SspB C-

terminal peptide (Fig. 1B, 2C and 4B). A change in the rate of degradation could result 

from impaired recognition, unfolding, translocation into ClpP, or proteolytic cleavage. 

Co-pelleting assays between FtsZ mutants and an ATP hydrolysis-defective mutant of 

ClpX (Fig. 5) are consistent with the suggestion that the reduced rates of degradation may 

be due to defective recognition. However in our assay FtsZ(352AAA, Δ375-383) was only 

partially defective for an interaction with ClpX(E185Q), which could suggest that 

substrate engagement is impaired.  

 

 GTP-dependent polymerization of FtsZ shown here, and previously with the 

GTP-analog GMPCPP [7], enhances the rate of degradation of FtsZ (Fig. 1B), suggesting 

that the GTP-bound or polymer form of FtsZ may be recognized more efficiently. This 

could be due to exposure of additional contacts upon GTP-binding or polymerization, or 

due to enhanced association supported by multivalent interactions with polymerized FtsZ. 

Interestingly, C-terminal substitution mutants of FtsZ at residues P375, A376, or F377 are 

not stimulated for degradation in the presence of GTP compared to the absence of GTP 

(Fig. S1), suggesting that these residues could be important for stabilizing interactions 
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with ClpX; however, GTP enhances the rate of degradation of FtsZ(Δ375-383), which does 

not contain residues 375 through 377, by ~40% (Fig. 1).  Multimerization may be 

important for enhancing degradation of low affinity substrates by ClpXP by increasing 

the local concentration of recognition sites and therefore promoting an interaction with 

ClpX. In our studies with FtsZ, we observed that the rate of degradation is maximal when 

both the C-terminal and linker regions are present and FtsZ is incubated under conditions 

that promote polymerization (Figs. 1B and 2C). Moreover, additional interactions 

between FtsZ and ClpX, which contains six N-domains per hexamer, may stabilize the 

interaction or function as a tether to promote additional recognition events.   

 

 We observed that FtsZ(R379E), which is poorly degraded by ClpXP in vitro, 

causes a severe growth defect (Fig. 7 and S5). Since there are no cell growth phenotypes 

associated with deletion of clpX or clpP in wild type E. coli, this result suggests that this 

residue is important for interactions with cell division proteins, such as MinC or FtsA, in 

addition to ClpX.  Other substitution and deletion mutations introduced in the C-terminal 

conserved region of FtsZ also caused severe functional defects when expressed in ftsZ84 

cells and when expressed as GFP fusion proteins (Fig. 7, S4 and S5). In contrast, 

expression of FtsZ linker mutants FtsZ(352AAA) and FtsZ(356AAA), which are partially 

defective for degradation by ClpXP in vitro, in ftsZ84 cells grown at the restrictive 

temperature did not result in obvious functional defects (Fig. 7). A recent study also 

reported no defects associated with the replacement of residues in the linker region [34].  

 

 The C-terminal variable region of FtsZ, which contains the last six residues of 
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FtsZ, from B. subtilis has been shown to promote the lateral bundling of FtsZ polymers 

[31]. In contrast to the results with B. subtilis FtsZ, neither the variable region nor the 

unstructured linker region of E. coli FtsZ has been shown to promote bundling of 

filaments [31,34]. The FtsZ C-terminal mutant proteins examined in our study form 

single-stranded polymers, however we observed several pairs or bundles of filaments by 

electron microscopy (Fig. S2), but they were not the dominant species observed. 

 

 Several proteins in the cell, both essential and non-essential, influence the 

dynamic assembly and disassembly of FtsZ. The major inhibitor of FtsZ polymerization 

in the bacterial cell is MinC. Our data demonstrate that like MinC, ClpXP is also capable 

of promoting disruption of FtsZ polymers (Fig. 6B). MinC binds to FtsZ and prevents 

assembly at the subunit interface and lateral interactions between FtsZ polymers 

[17,18,42]. Although it has been reported that ClpX can inhibit FtsZ polymerization in 

vitro under certain conditions, our previously published results indicate that FtsZ polymer 

disassembly activity requires ATP-dependent degradation [7,43]. When MinC and ClpXP 

are in limiting concentrations compared to FtsZ and not in competition, then they 

function simultaneously to promote polymer disassembly (Fig. 6B). However, we 

observed that degradation of FtsZ by ClpXP is reduced by 80% in the presence of excess 

MinC, suggesting that MinC and ClpX are in competition and recognize overlapping 

regions of the FtsZ C-terminus. Recently, it was also reported that ZipA can similarly 

protect FtsZ from degradation by ClpXP, likely through preventing access to the FtsZ C-

terminus [44]. Degradation of FtsZ by ClpXP occurs more efficiently under conditions 

that promote FtsZ polymerization (Fig. 1B) [7]. Therefore disassembly of FtsZ polymers 
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by MinC could also contribute to the reduced FtsZ degradation observed in vitro in the 

presence of MinC. 

 

 FtsZ was initially identified as a ClpXP substrate in E. coli in a proteomics study 

to isolate kinetically-trapped ClpP complexes from cell lysates [21]. Recently, a similar 

proteomics study in Staphylococcus aureus, also identified FtsZ as a substrate for ClpP-

mediated degradation [45]. Direct interactions between ClpX and FtsZ have also been 

reported in Bacillus subtilis and Mycobacterium tuberculosis, although FtsZ does not 

appear to be degraded by ClpXP in these organisms [46,47]. In E. coli, the physiological 

effect of inhibiting FtsZ degradation in a cell where division is partially defective, such as 

the ftsZ84 strain, is beneficial, resulting in partial suppression of the phenotype when 

clpX or clpP is deleted [25]. The role of FtsZ degradation during the division process in a 

wild type cell is less clear, however modest overexpression of ClpXP enhances FtsZ 

degradation and causes cellular filamentation associated with defective division [7]. Our 

results demonstrate that the specific degradation of FtsZ by ClpXP occurs through a 

complex recognition mechanism that is modulated by FtsZ conformation and may be 

impacted by the presence of other cell division proteins, including MinC and ZipA, and 

thus provides a mechanism for the cell to modulate division through proteolysis of FtsZ.  
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FIGURE 1. The FtsZ C-terminus is important for ClpXP degradation. A. Linear 

schematic diagram of FtsZ protein separated into three regions: the polymerization 

domain (amino acids 1 through 316), the unstructured linker (amino acids 317 through 

369) and the C-terminal domain or conserved core region (amino acids 370 through 383). 

The C-terminal FtsZ deletions and substitution mutations used here are presented. B. 

Comparison of rates of degradation of FtsZ wild type and mutant proteins in the presence 

and absence of GTP from in vitro degradation reactions containing 10 M wild type or 

mutant fluorescent FtsZ and 1 M ClpXP. C. Structural model of the C-terminal alpha-

helical region of FtsZ, residues 367 through 383, that cocrystallized with ZipA (PDB 

entry 1F47) [32]. Side chains are shown for R379 (red) and K380 (blue). D. Alignment of 

the C-terminal amino acid sequences of several proteins recognized by ClpX. C-terminal 

sequences shown belong to the consensus C motif-2 family of ClpX recognition tags 

(R/H-x-K/R-K-Φ with x representing any amino acid and Φ representing a hydrophobic 

amino acid residue) [21]. In B, data from 3 replicates are presented as mean ± SEM.  
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FIGURE 2. Residues in the linker region of FtsZ are important for degradation by 

ClpXP. A. Alignment of FtsZ residues 349 through 358 from the linker domain with the 

C-terminal ClpX recognition region of Mu repressor protein from phage Mu. B. Linear 

schematic diagram of FtsZ showing regions of the linker that were tested by triple alanine 

scanning mutagenesis of wild type FtsZ and truncated FtsZ(Δ375-383). C. Comparison of 

rates of degradation of wild type and mutant FtsZ, proteins in the presence and absence of 

GTP from in vitro degradation reactions containing 10 M wild type or mutant 

fluorescent FtsZ and 1 M ClpXP. Data from 3 replicates are presented as mean ± SEM. 
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FIGURE 3. FtsZ mutant proteins with C-terminal mutations hydrolyze GTP and 

assemble into polymers. (A) Rates of GTP hydrolysis were measured in reactions 

containing FtsZ wild type or mutant (5 μM) and GTP (1 mM) as described in 

Experimental Procedures. Data from 3 replicates are presented as mean ± SEM. (B) 

GTP-dependent assembly of FtsZ wild type and mutant proteins (8 μM) was monitored 

by 90° light scattering as described in Experimental Procedures. A baseline was collected 

for 2 min, then GTP was added when indicated, to stimulate polymerization. Light 

scattering was measured for 25 min. Data shown is representative of 3 replicates. 
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FIGURE 4. A peptide corresponding to the C-terminus of the SspB adaptor inhibits 

FtsZ degradation. A. Relative rate of FtsZ degradation by ClpXP in the presence and 

absence of GTP with increasing concentration of SspB peptide (10, 20, 40 or 80 M). 

Relative rate of FtsZ degradation was defined by V/Vo, where V is equal to the rate in the 

presence of SspB peptide and Vo is equal the rate in the absence of SspB peptide. 

Degradation reactions contained 15 M fluorescent FtsZ, 0.75 M ClpXP, ATP and, 

where indicated, GTP. Data were fit to a nonlinear dose-response inhibitor curve. B. 

Comparison of relative rates of degradation of wild type FtsZ, FtsZ(375-383) and 

FtsZ(352AAA) in the presence of 0, 20 or 50 M SspB peptide. Reactions contained 10 

M FtsZ wild type or mutant protein, 0.75 M ClpXP with GTP and ATP. In A and B 

data from 3 replicates are presented as mean ± SEM.  
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FIGURE 5. Association of FtsZ wild type and mutant polymers with ClpX. The 

interaction between ClpX and FtsZ was measured by monitoring the fraction of ClpX 

ATP hydrolysis mutant, ClpX(E185Q), that co-pellets with FtsZ wild type or mutant 

protein in the presence of GTP. Pelleted ClpX(E185Q) and FtsZ was quantified by 

Coomassie staining of SDS-PAGE gels and densitometry. Data from at least 3 replicates 

are presented as mean ± SEM. 
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FIGURE 6. MinC competes with ClpXP for FtsZ in vitro. A. MinC was included in 

degradation reactions containing FtsZ with GTP and ClpXP (0.5 M). B. FtsZ (5 M; 

125 pmol/reaction) was first preincubated with GTP (2 mM) and then incubated with 

MinC (2 M), ClpXP (0.5 M) and ATP, as indicated. FtsZ polymer disruption was 

monitored by measuring the amount of fluorescent FtsZ present in high-speed 

centrifugation pellets. In A and B data from 3 replicates are presented as mean ± SEM.  
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FIGURE 7. Mutations in the FtsZ C-terminal domain impair FtsZ function in vivo. 

FtsZ mutant proteins were tested for function in vivo by comparing CFUs of ftsZ84 cells 

expressing FtsZ mutant proteins after incubation in liquid culture at the restrictive 

temperature (42°C) for 4 hours as described in Experimental Procedures. Data from 3 

replicates are presented as mean ± SEM. 
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TABLE S1.  E. coli strains and plasmids used in functional assays in vivo 
 

Strain or Plasmid  Genotype 
Source, reference 

or Constructiona 

Strains 

  MG1655 LAM- rph-1 [21] 

BW27750 BW25113 DE(araFGH)  [20] 

 

(ΔaraEp kan PCP18-araE) 

 

JC0390 MG1655 (ΔaraEp kan PCP18-araE) 

P1(BW27750) x 

MG1655   

MCZ84 ftsZ84(ts), leu-260::Tn10, [araD139], [34] 

 

Δ(argF-lac)169, LAM-, e14-, flhD5301,  

 

 

ΔfruK-yeiR)725(fruA), relA1, rpsL150(strR),  

 

 

rbsR22, (fimB-fimE)632(::IS1), deoC1 

 Plasmids 

    pBAD24 amp (expression vector) [22] 

  pBAD-FtsZ amp Para::ftsZ [23] 

  pBAD-FtsZ(P375G) amp Para::ftsZ(P375G) This study 

  pBAD-FtsZ(A376V) amp Para::ftsZ(A376V) This study 

  pBAD-FtsZ(F377A) amp Para::ftsZ(F377A) This study 

  pBAD-FtsZ(L378A) amp Para::ftsZ(L378A) This study 

  pBAD-FtsZ(R379E) amp Para::ftsZ(R379E) This study 

  pBAD-FtsZ(K380A) amp Para::ftsZ(K380A) This study 

  pBAD-FtsZ(380-383) amp Para::ftsZ(380-383) This study 

  pBAD-FtsZ(375-383) amp Para::ftsZ(375-383) This study 

  pBAD-FtsZ(349AAA) amp Para::ftsZ(349AAA) This study 

  pBAD-FtsZ(352AAA) amp Para::ftsZ(352AAA) This study 

  pBAD-FtsZ(356AAA) amp Para::ftsZ(356AAA) This study 

  pBAD-FtsZ(352AAA, 375-383) amp Para::ftsZ(352AAA, 375-383) This study 

  pGfp-FtsZ amp Para::gfp-ftsZ [23] 

  pGfp-FtsZ(P375G) amp Para::gfp-ftsZ(P375G) This study 

  pGfp-FtsZ(A376V) amp Para::gfp-ftsZ(A376V) This study 

  pGfp-FtsZ(F377A) amp Para::gfp-ftsZ(F377A) This study 

  pGfp-FtsZ(L378A) amp Para::gfp-ftsZ(L378A) This study 

  pGfp-FtsZ(R379E) amp Para::gfp-ftsZ(R379E) This study 

  pGfp-FtsZ(K380A) amp Para::gfp-ftsZ(K380A) This study 

  pGfp-FtsZ(380-383) amp Para::gfp-ftsZ(380-383) This study 

  pGfp-FtsZ(375-383) amp Para::gfp-ftsZ(375-383) This study 

  pGfp-FtsZ(349AAA) amp Para::gfp-ftsZ(349AAA) This study 

  pGfp-FtsZ(352AAA) amp Para::gfp-ftsZ(352AAA) This study 

  pGfp-FtsZ(356AAA) amp Para::gfp-ftsZ(356AAA) This study 
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  pGfp-FtsZ(352AAA, 375-383) amp Para::gfp-ftsZ(352AAA, 375-383) This study 

   a Strain constructions by P1 transduction are described as the following: P1(donor) x recipient.  
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FIGURE S1. Substitution of residues near the FtsZ C-terminus modulates the rate 

of degradation by ClpXP. Comparison of rates of degradation of FtsZ, FtsZ(L378A), 

FtsZ(F377A), FtsZ(A376V) and FtsZ(P375G) in the presence and absence of GTP from 

in vitro degradation reactions containing 10 M wild type or mutant fluorescent FtsZ and 

1 M ClpXP. Data from 3 replicates are presented as mean ± SEM.  
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FIGURE S2. FtsZ mutant proteins with C-terminal mutations assemble into 

filaments. FtsZ mutant proteins (5 μM) were incubated GTP, then visualized by negative 

staining and electron microscopy as described in Experimental Procedures (SI). Arrows 

point to the appearance of filament pairs or bundles in micrographs showing 

FtsZ(352AAA), FtsZ(R379E) and FtsZ(352AAA, Δ375-383). 
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FIGURE S3. MinC does not inhibit degradation of GFP-ssrA by ClpXP. Degradation 

of GFP-ssrA (0.5 M) by ClpXP (0.4 M) was monitored as described in Experimental 

Procedures in the presence and absence of MinC (5 M) by measuring the decrease of 

fluorescence over time. 
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FIGURE S4. Mutations near the FtsZ C-terminal domain impair FtsZ function in 

vivo. A. FtsZ mutant proteins were tested for function in vivo by monitoring high 

temperature growth of ftsZ84 cells expressing FtsZ mutant proteins in a dilution spot 

plate assay under permissive (30 °C) and restrictive (42 °C) conditions. B. Z-ring 

localization of GFP-FtsZ mutant proteins was visualized by fluorescence microscopy in 

live cells (strain JC0390) undergoing division. Expression of GFP-FtsZ mutants proteins 

was induced by arabinose as described in Experimental Procedures (SI). Images are 

representative of at least 3 data sets. 
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FIGURE S5. Expression of GFP-tagged FtsZ mutant proteins causes Z-ring defects. 

Z-ring localization of GFP-FtsZ wild type (WT) and mutant proteins was visualized by 

fluorescence microscopy (top panel) and DIC microscopy (bottom panel) in live cells 

(strain JC0390) undergoing division. Expression of GFP-FtsZ mutant proteins was 

induced by arabinose and cells were imaged as described in Experimental Procedures 

(SI).  
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Abstract 

  The ATP-dependent chaperone ClpX is a Clp/Hsp100 protein and member of the 

AAA+ (ATPases associated with diverse cellular activities) superfamily. In complex with 

ClpP, ClpXP recognizes and degrades over 100 diverse cellular substrates in Escherichia 

coli to regulate cellular processes. ClpXP comprises a hexameric ClpX ring that 

recognizes, unfolds, and translocates substrates to ClpP, a compartmentalized, barrel-

shaped tetradecamer and serine protease, for degradation. ClpX recognizes many 

substrates via adaptors for degradation, but also recognizes some proteins directly at the 

ClpX N-domain via specific recognition motifs, known as degrons. For several substrates 

that oligomerize, degradation by ClpXP is enhanced becasuse of an increase the local 

concentration of degrons. ClpXP degrades both unassembled and polymerized 

populations of the native Escherichia coli substrate and tubulin homolog FtsZ during cell 

division. FtsZ contains a globular polymerization domain (residues 1-316), a poorly 

conserved, disordered linker (residues 317-369), and a structured C-terminal region 

(residues 370-383). ClpX recognizes FtsZ at the disordered linker (residues 352-358, 

known as degron 2) and the extreme C-terminus (residues 375-383, known as degron 1). 

Purified FtsZ is a mixture of monomers and dimers, which complicates experiments 

designed to study recognition of monomeric FtsZ. To determine if both recognition sites 

(degrons 1 and 2) are utilized to degrade monomers, we engineered a chimeric protein 

containing Green fluorescent protein (Gfp) fused to the 67 C-terminal residues of FtsZ 

(Gfp-ZLC), containing the linker and C-terminus (but not the polymerization domain), and 

monitored degradation by loss of fluorescence. ClpXP degrades Gfp-ZLC and Gfp-ZΔDEG2, 



97 
 

which contains alanine substitution mutations in place of the linker degron 2, but not 

Gfp-ZΔDEG1, which lacks the C-terminal degron 1. These results suggest that only degron 

1 is required to recognize an FtsZ monomer. However, degron 2 is important for 

degradation of FtsZ polymers. To determine if the ClpX N-domain is critical for the 

enhanced recognition of FtsZ polymers, we performed a peptide competition assay with a 

previously reported inhibitory peptide (XB peptide) containing the last 10 residues of the 

SspB adaptor, which binds to the ClpX N-domain. The SspB peptide contains sequence 

similarity with degron 1 and inhibits degradation of FtsZ. In the peptide competition 

assay, we determined that the XB peptide inhibits Gfp-ZLC degradation twice as 

efficiently as polymers containing Gfp-FtsZ, suggesting that ClpX uses distinct modes of 

recognition for monomeric and polymeric FtsZ. These data suggest that ClpXP uses two 

sites for enhanced recognition of FtsZ polymers, whereas only one is used for recognition 

of an FtsZ monomer.  

 

Introduction 

  

  ClpX from E. coli is a member of the AAA+ protein family. This family includes 

molecular machines that are powered by ATP hydrolysis and important for many cellular 

processes such as cell division, DNA replication, intracellular transport, and protein 

quality control 1-3. Several of these AAA+ family members are molecular chaperones that 

associate with proteases to catalyze coupled unfolding and degradation reactions in the 

cellular milieu. ClpX also associates with the ClpP protease to degrade proteins: 

characteristic pore loops at the ClpX C-terminus (known as “IGF” loops) make contacts 
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with the ClpP tetradecamer surface and expand the pore in order to accept unfolded 

proteins for degradation 16,17. Protein quality control is important for a variety of reasons: 

damaged or misfolded proteins can be removed from the crowded cellular environment to 

prevent aggregation that might damage or disrupt signaling pathways; misfolded proteins 

may also be remodeled into an alternate state or restored to the original molecular state 

for protein quality control 1–3. Since degradation is irreversible, specific recognition 

regions with a high affinity for ClpX, called degrons, are needed to ensure high fidelity 

recognition. Degrons may be present at either the N- or C-terminus of a native substrate 4. 

Some substrates display multiple recognition motifs (“multivalent” recognition) to 

facilitate recognition by AAA+ ATPases 2. The bacterial chaperone-protease ClpXP can 

operate using a multivalent recognition strategy that enhances degradation of polymeric 

or oligomeric native substrates, including MuA and FtsZ, relative to the monomer 

conformations 4–13. A single protomer of FtsZ contains two tandem degrons and FtsZ 

purifies as a mixture of monomers and dimers 14. Since FtsZ polymers are degraded more 

efficiently than mixtures of FtsZ monomers and dimers, we hypothesize that ClpXP may 

use both degrons to recognize dimers or polymers, but may only require a single degron 

to degrade monomeric FtsZ 6,7. 

  ClpX can operate independently as an unfoldase in vitro, but clpX is usually 

coexpressed with clpP in the same operon 6,15. ClpX subunits contain two globular 

domains: a small N-domain (7 kDa) capable of dimerization also known as the zinc-

binding domain (ZBD), and the conserved AAA+ domain which contains one large and 

one small subdomain 17–19. Substrates are bound directly at the N-domain of ClpX or by 

pore loops in the ClpX axial pore where unfolding occurs and are then translocated into 
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the ClpP chamber for degradation 16,17,20-22. Nucleotides bind in the cleft between the 

large and small AAA+ subdomains, and conformational changes occurring between the 

subdomains as a result of binding, unbinding, and nucleotide hydrolysis promote 

translocation of substrates into the ClpX axial channel 17.  

  Adaptor proteins promote the stable binding and engagement of some ClpXP 

substrates and interact directly with the ClpX N-domain. SspB is a well-characterized 

adaptor protein that recognizes an 11-amino acid sequence known as an “ssrA-tag” 23,24. 

This 11-amino acid sequence is appended by transfer-messenger RNA (tmRNA) when 

the ribosome stalls during protein synthesis (known as trans-translation), to target the 

misfolded or truncated polypeptide for degradation and to release the ribosome from the 

mRNA. ClpX binds FtsZ directly without the requirement of an adaptor protein through 

two recognition motifs near the FtsZ C-terminus 7. FtsZ is structurally homologous to the 

eukaryotic protein tubulin; both FtsZ and tubulin are essential for cell division 25–27. Upon 

nucleotide binding, conformational changes at the surface of the polymerization domains 

of FtsZ allow monomers to self-associate and polymerize 28. In vivo, ClpXP degrades 

approximately 15% of FtsZ subunits per cell cycle, and ClpXP utilizes a mechanism of 

divalent substrate recognition for a single FtsZ protomer and multivalent substrate 

recognition for an FtsZ polymer to regulate FtsZ degradation in vivo 6,7.  

  In this study, we used model, chimeric proteins to serve as monomeric and 

polymeric FtsZ substrates. To investigate the contributions of each degron in recognition 

of monomeric or polymeric substrates, we mutagenized the regions in the C-terminus 

important for ClpX recognition and monitored degradation of purified proteins in vitro. 

We investigated how ClpX may engage polymers versus monomers using a peptide 
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competition assay, as the peptide is known to compete with several native substrates for 

binding to the ClpX N-domain. We engineered model FtsZ substrates with alternative 

architecture, including shortening the region between the recognition motifs and 

swapping the positions of each degron to further understand how ClpX engages FtsZ. Our 

results suggest that although each degron contains a similar C-terminal motif, the relative 

position of each is important for discrimination between polymerized and monomeric 

substrates. 

 

Results 

ClpX requires the C-terminal degron to degrade Gfp-ZLC  

  Purified FtsZ exists as a mixture of monomers and dimers 14. Unassembled FtsZ 

contains a mixture of substrate types – monomers contain two degrons, while dimers 

contain four degrons, and therefore may behave more similarly to polymerized FtsZ. To 

determine how ClpX targets FtsZ monomers distinctly from polymers via the linker and 

C-terminal degrons, we engineered a model monomeric substrate: Gfp fused to the linker 

and C-terminal regions of FtsZ (the C-terminal 67 amino acids), Gfp-ZLC, to serve as a 

proxy for FtsZ monomers [Fig. (1A)]. The Gfp-ZLC chimera does not include the 

polymerization domain 28. In the presence of ClpXP (but not ClpX alone), we observe 

Gfp-ZLC and Gfp-FtsZ degradation by loss of fluorescence 14. To determine the relative 

contributions of each degron for monomer recognition by ClpXP, we mutagenized 

residues in the linker and C-terminal degrons of Gfp-ZLC [Fig. (1A)] and monitored 

degradation of the mutagenized, monomeric substrates. ClpXP degrades the linker-

impaired mutant protein Gfp-ZΔDEG2 similarly to Gfp-ZLC, but not the C-terminal mutant 
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protein Gfp-Z ΔDEG1 [Fig. (1B)]. These results suggest that the C-terminal region is 

required for recognition of an FtsZ monomer, but the linker is dispensable. 

 Next, we aimed to determine if the monomeric FtsZ substrate is an N-domain 

dependent substrate. The XB peptide, which contains residues important for docking the 

SspB adaptor protein to ClpX, inhibits degradation of ssrA-tagged substrates, 

unassembled FtsZ, polymerized FtsZ, and other known native substrates; the XB peptide 

also has sequence similarity to the C-terminus of FtsZ 7,29,30. ClpXP degradation of Gfp-

ZLC was significantly impaired in the presence of the XB peptide, by approximately 80% 

compared to without peptide, and degradation leveled off after 60 minutes [Fig. (1C)]. 

Since degron 1 is required for degradation of Gfp-ZLC, we incubated Gfp-ZΔDEG2 with 

ClpXP in the presence of the XB peptide and monitored degradation by loss of 

fluorescence. Gfp-ZLC and Gfp-ZΔDEG2 are degraded equally well by ClpXP and are 

equally impaired for degradation in the presence of the XB peptide [Fig. (1C)].  

 To directly test if degradation of the monomeric Gfp-ZLC requires N-domain 

recognition by ClpX, we incubated Gfp-ZLC and Gfp-ZΔDEG2 with ClpX(Δ61), a ClpX 

mutant protein lacking the first 61 amino acids (which define the ClpX N-domain) and 

ClpP, and monitored degradation by monitoring loss of fluorescence. Neither Gfp-ZLC nor 

Gfp-ZΔDEG2 were degraded by ClpX(ΔN61)P [Fig. (1D)]. Next, we incubated known N-

domain-independent substrate Gfp-ssrA with ClpXP and ClpX(ΔN61)P. As expected, 

Gfp-ssrA was rapidly and thoroughly degraded by both ClpXP and ClpX(ΔN61)P [Fig. 

(1D)]. These results demonstrate that Gfp-ZLC is an N-domain dependent substrate and 

that loss of degron 2 does not further impair degradation. Since the C-terminal degron 1 

is required for degradation of Gfp-ZLC and is intact in Gfp-ZΔDEG2, these results suggest 
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that the C-terminal region of FtsZ may dock to the N-domain of ClpX. 

 

ClpX engages FtsZ polymers via the linker degron 2 

  Impairing both degrons 1 and 2 abolishes degradation of unassembled and 

polymerized FtsZ, while impairing either degron significantly reduces the degradation of 

FtsZ 7,14. To determine if ClpX utilizes degron 2 for polymer recognition, we monitored 

degradation of either Gfp-ZLC or polymers containing Gfp-FtsZ in the presence of 

increasing concentrations of the XB peptide. The XB peptide inhibits degradation of Gfp-

ZLC 2-fold more efficiently than polymers containing Gfp-FtsZ (Fig. 2). Since the XB 

peptide more efficiently impairs degradation of the Gfp-ZLC monomer than polymers 

containing Gfp-FtsZ, the presence of degron 2 may affect the dynamic recognition of a 

polymerized FtsZ substrate by ClpX. 

 

Relative degron position and distance affect FtsZ polymer degradation 

  Both FtsZ degrons 1 and 2 resemble the C-motif 2 sequence described for ClpX 

substrates 4. To determine if the relative position of each degron is important for 

recognition by ClpX, we constructed mutant proteins with swapped degron sequences 

[Fig. (3A)]. In the presence of GTP, both Gfp-FtsZ and Gfp-FtsZSWAP1 were degraded 

equally well by ClpXP [Fig. (3B)], but in the absence of GTP, unassembled Gfp-

FtsZSWAP1 was degraded significantly more than unassembled Gfp-FtsZ [Fig. (3C)]. 

These results suggest that although the degron sequences contain similarities, the residues 

flanking the degrons may also affect recognition. 

  Next, we constructed a mutant protein without the 16-amino acid sequence 
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between the swapped degrons [Gfp-FtsZSWAP2, Fig. (3A)], and monitored the effect of 

degradation in the presence and absence of GTP by ClpXP. In the presence of GTP, 

degradation of Gfp-FtsZSWAP2 polymers by ClpXP was significantly reduced [Fig. (3D)]. 

Since swapping the degrons did not impair degradation of an FtsZ substrate, but 

subsequently removing the space between them did, this result suggests that the relative 

positioning of each may be important for docking the N-domain of ClpX. In the absence 

of GTP, degradation of unassembled Gfp-FtsZSWAP2 by ClpXP was also significantly 

reduced [Fig. (3E)]. Since both unassembled and polymeric Gfp-FtsZSWAP1 are degraded 

better than unassembled and polymeric Gfp-FtsZSWAP2, the distance between the degrons 

may be important.  

 

Multimerization is important for interactions with the FtsZ C-terminus in vivo 

  Although ClpXP degrades polymerized FtsZ more efficiently, ClpXP recognizes 

and degrades unassembled FtsZ protomers and does not require polymerization for 

engagement 7,31. Other cell division regulators recognize FtsZ via the C-terminus at single 

amino acid residues, but unlike ClpX, some proteins interact with the polymerization 

domain of FtsZ in addition to the C-terminal region 32–34.  

  In the early septal phase of cell division in E. coli, FtsZ forms a network of 

overlapping polymers 34,35. When expressed in vivo, Gfp-FtsZ localizes at midcell during 

log phase 36. To determine if multimerization is required for recruitment of Gfp-ZLC to the 

septal ring, we overexpressed Gfp-ZLC with an arabinose-inducible promoter at 

increasingly high concentrations in vivo and examined cell physiology during log phase. 

Gfp-ZLC did not localize at midcell at arabinose concentrations 20-fold higher than the 
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minimum concentration required to visualize Gfp-FtsZ rings in wild type cells (Fig. 4). 

These results suggest that recruitment of FtsZ via the C-terminus requires 

multimerization via the FtsZ polymerization domain during septal ring formation in vivo. 

 

 Discussion 

  In our model for FtsZ substrate recognition by ClpX, ClpX requires degron 1 to 

degrade the monomeric substrate Gfp-ZLC, but degron 2 is dispensable [Fig. (5A, 5B)]. 

The first step in the degradation pathway of a target substrate is initial substrate binding, 

followed by substrate engagement by the ClpX pore, and subsequent translocation into 

the ClpP chamber for degradation. In our study, impaired degradation does not 

differentiate between impaired binding or unfolding. Further studies could determine if 

Gfp-ZΔDEG1 is defective for direct binding to ClpX; if binding is not impaired, then 

degron 2 may be engaged in the monomeric substrate, but not sufficient to promote 

processive degradation. Substrate engagement with pore loops in the upper and lower 

regions of the ClpX channel are important for processivity, and the detection of binding 

for a substrate that is not degraded would demonstrate that the substrate is alternatively 

engaged 37. 

  We determined that the XB peptide signficantly impairs degradation of Gfp-ZLC. 

Therefore, we propose that monomers are N-domain dependent substrates [Fig. (5A, 

5B)]. We also determined that the XB peptide inhibits Gfp-ZLC twice as efficiently as 

polymers containing Gfp-FtsZ. We further propose that ClpX recognizes degron 2 in an 

N-domain independent manner, while degron 1 likely docks the N-domain [Fig. (5C)]. 

We also determined that relative degron position does not enhance degradation of 



105 
 

polymerized FtsZ by ClpXP, but that the space between degrons does. Our results are 

consistent with the model for MuA, in which the secondary degron acts as an enhancer to 

promote multivalent substrate recognition of the MuA tetramer 13. Further studies could 

determine the theoretical KD of monomeric and polymeric FtsZ substrates using the real-

time degradation assays in this study. 

  Gfp-ZLC does not localize to midcell under the conditions tested in this study [Fig. 

(4A)], suggesting that the FtsZ polymerization domain is required for multimerization 

and potential multivalent substrate recognition in vivo. Impairing degron 2 in Gfp-FtsZ 

does not perturb Z-ring formation, localization, or significantly affect overall cell length 

during log phase, but overexpressing Gfp-FtsZ with an impaired degron 1 causes cell 

filamentation and several Z-rings per cell length 7,14. These results are not surprising, 

since many cell division regulators bind FtsZ via the C-terminus to modulate FtsZ 

polymerization dynamics in vivo, whereas ClpX, which is not essential for cell division 

in E. coli, is the only known protein to recognize FtsZ in the linker region 7,32. Since 

degron 2 is intact in degron 1-impaired Gfp-FtsZ, however, it is interesting that degron 2, 

which we propose here acts as an enhancer for recognition during multimerization, is not 

sufficient to promote proper Z-ring localization and cell length during division 7. This 

further implicates the importance of the enhancer degron 2 when degron 1 is also intact, 

and therefore the relative contributions of each degron may be important for directing 

multivalent recognition in vivo.  

Conclusions 

1. Degron 1 is required for degradation of a monomer by ClpXP, and likely docks on the 

N-domain [Fig. (5A, 5B)]. 
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2. The XB peptide inhibits degradation of Gfp-ZLC and ClpX(ΔN61)P does not degrade 

Gfp-ZLC, suggesting that monomers are N-domain dependent ClpX substrates [Fig. 

(5A, 5B)]. 

3. The XB peptide inhibits degradation of Gfp-ZLC twice as efficiently as polymerized 

Gfp-FtsZ:FtsZ (1:1), indicating that ClpX engages each substrate differently; degron 

2 may facilitate polymer recognition independent of the N-domain [Fig. (5C)]. 

4. Relative degron position does not enhance degradation of polymerized FtsZ by 

ClpXP; however, the distance between degrons is important; degron 2 access may be 

important in a polymer [Fig. (5C)]. 

 

Materials and Methods 

Proteins, plasmids, and peptides 

  Gfp-ZLC and Gfp-FtsZ were cloned into plasmids as described in Viola et al. 

2017, and all Gfp-ZLC, Gfp-FtsZ, and FtsZ mutant proteins were constructed by site-

directed mutagenesis of plasmids using the QuikChange II XL Site-Directed Mutagenesis 

Kit (Agilent). The pBad-Gfp-ZLC was constructed by cloning Gfp-ZLC into the NheI and 

HindIII sites on the arabinose inducible vector, pBad24 38. The pBad-Gfp-FtsZ plasmid 

was constructed as described 39. The C-terminal SspB peptide (“XB peptide”) sequence 

NH2-RGGRPALRVVK-COOH (as described in Camberg et al. 2014) was custom 

produced and purchased from Thermo Fisher Scientific. 

 

Expression and purification of proteins 
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  All Gfp-ZLC, Gfp-FtsZ, and FtsZ wild type proteins were expressed in E. coli 

BL21 [B F– dcm ompT hsdS clpP (rB
– mB

–) gal λ(DE3)], which was constructed for this 

study by deleting the clpP gene by P1 transduction from BL21 λ(DE3) (Agilent), and 

purified as described (Table 1) 14. Gfp-ssrA was expressed and purified as described 40. 

ClpX and ClpP were expressed and purified as described 41,42. Protein concentrations are 

reported as Gfp-ZLC monomers, Gfp-ssrA monomers, Gfp-FtsZ or FtsZ monomers, ClpX 

hexamers, and ClpP tetradecamers. 

 

Degradation assays 

  To monitor degradation by loss of fluorescence, Gfp-FtsZ and Gfp-ZLC were 

degraded by ClpXP in buffer containing 20 mM HEPES pH 7.0, 150 mM KCl, and 10 

mM MgCl2 with 5 mM ATP, 0.005% Triton X-100, and 2mM GTP, where indicated, and 

acetate kinase (25 μg ml-1) and acetyl phosphate (15 mM) (bifunctional ATP/GTP 

regenerating system), where indicated. Importantly, although Gfp(uv) has been reported 

to dimerize at high concentrations, we used Gfp-fusion proteins well below the 

dimerization conditions 43. Where indicated, Gfp-FtsZ polymers were homogeneous 

populations or a mixture of 1:1, Gfp-FtsZ:FtsZ. Fluorescence was monitored in a 96-well 

plate with a Cary Eclipse Spectrophotometer (Agilent) at an excitation wavelength of 395 

nm and emission of 510 nm. The background signal from buffer was subtracted from 

each data set and normalized to report the percentage of arbitrary fluorescence units lost. 

  To determine the rate of degradation, Gfp fluorescence was recorded as a fraction 

of the initial and the arbitrary units of fluorescence degraded per minute (A.U. min-1) was 

determined. For the peptide competition assays with the XB peptide and FtsZ substrate, 
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the initial rates for degradation in the absence of XB peptide were averaged, and 

individual degradation rates in the presence of increasing concentrations of XB peptide 

were divided by the averaged, initial degradation rate. The curve was fit using actual 

values, but plotted manually on a log scale using GraphPad Prism (version 6.0b). 

 

Microscopy 

  The MG1655-derived strain (JC0390 from Viola et al. 2017) was transformed 

with pBad-Gfp-ZLC or pBad-FtsZ, and overnight cultures were diluted and grown to 

logarithmic conditions and induced with different concentrations of arabinose as 

described 14. Images were collected with a Zeiss LSM 700 confocal fluorescence 

microscope and images were captured on an AxioCam digital camera with ZEN 2012 

software. 
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Figure 1. Degradation of a synthetic, monomeric FtsZ substrate by ClpXP. (A) 

Schematic for synthetic monomer FtsZ substrate, Gfp-ZLC: fluorescent protein Gfp is 

fused to the C-terminal 67 amino acids of FtsZ comprising the linker region (residues 

317-369, first white box) and the extreme C-terminal region (residues 370-383, second 

white box) of FtsZ. Either the extreme C-terminus is removed (Gfp-ZΔDEG1), or the 

recognized linker region is impaired with alanine mutagenesis (Gfp-ZΔDEG2). (B) Gfp-ZLC 

(3 μM) (white circles), Gfp-ZΔDEG1 (3 μM) (red circles), or Gfp-ZΔDEG2 (3 μM) (gold 

circles) degradation was monitored by loss of fluorescence with time in the presence of 

ClpXP (1 μM), ATP (5 mM), and a regenerating system as described. Curves shown are 

representative of at least three replicates. (C) Gfp-ZLC (3 μM) (white circles) or Gfp-

ZΔDEG2 (3 μM) (gold diamonds) degradation was monitored by loss of fluorescence with 

time in the presence of ClpXP (1 μM), ATP (5 mM), and a regenerating system as 

described. Gfp-ZLC (3 μM) (black circles) or Gfp-ZΔDEG2 (3 μM) (red circles) degradation 

was monitored by loss of fluorescence with time in the presence of the XB peptide (160 

mM), ClpXP (1 μM), ATP (5 mM), and a regenerating system as described. Reaction 

buffer was monitored over time for reference (grey circles). Curves shown are 

representative of at least three replicates. (D) Gfp-ssrA (1 μM) degradation was 

monitored by loss of fluorescence with time in the presence of ClpXP (1 μM) (black 

circles) or ClpX(ΔN61)P (1 μM) (grey circles), ATP (5 mM), and a regenerating system 

as described. Gfp-ZLC (3 μM) (white circles) or Gfp-ZΔDEG2 (3 μM) (red circles) 

degradation was monitored by loss of fluorescence with time in the presence of 

ClpX(ΔN61)P (1 μM), ATP (5 mM), and a regenerating system as described. Curves 

shown are representative of at least three replicates. 
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Figure 2. ClpX engagement of monomeric and polymeric substrates. Gfp-FtsZ (3 

μM) and FtsZ (3 μM) were precincubated with GTP (2 mM), and degradation by ClpXP 

(1 μM) with ATP (5 mM) and a regenerating system was monitored with time as 

described in the presence of increasing concentrations of XB peptide (0, 5, 10, 20, 40, 80 

μM). Gfp-ZLC (6 μM) degradation by ClpXP (1 μM) with ATP (5 mM) and a 

regenerating system was monitored with time as described in the presence of increasing 

concentrations of XB peptide (0, 5, 10, 20, 40, 80 μM). Degradation rates were 

determined as described, and plotted as a fraction of the initial rate of degradation in the 

absence of XB peptide as shown. 
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Figure 3. Relative degron position and distance affects FtsZ degradation by ClpXP. 

(A) Schematic for Gfp-FtsZ substrate: fluorescent protein Gfp is fused to the full-length 

FtsZ protein, including the polymerization domain in purple (residues 1-316); the linker 

degron is indicated in yellow and the extreme C-terminal degron in cyan. The degrons 

were swapped (Gfp-FtsZSWAP1), and the space between the swapped degrons was 

subsequently removed (Gfp-FtsZSWAP2). (B) Either Gfp-FtsZ (6 μM) (white triangles) or 

Gfp-FtsZSWAP1 (6 μM) (red triangles) was precincubated with GTP (2 mM), and 

degradation by ClpXP (1 μM) with ATP (5 mM) and a regenerating system was 

monitored with time as described. Reaction buffer was monitored over time for reference 

(grey triangles). Curves shown are representative of at least three replicates. (C) Either 

Gfp-FtsZ (6 μM) (white triangles) or Gfp-FtsZSWAP1 (6 μM) (red triangles) were 

incubated with ClpXP (1 μM), ATP (5 mM) and a regenerating system, and degradation 

was monitored with time as described. Reaction buffer was monitored over time for 

reference (grey triangles). Curves shown are representative of at least three replicates. (D) 

Either Gfp-FtsZSWAP1 (6 μM) (black triangles) or Gfp-FtsZSWAP2 (6 μM) (red triangles) 

was precincubated with GTP (2 mM), and degradation by ClpXP (1 μM) with ATP (5 

mM) and a regenerating system was monitored with time as described. Reaction buffer 

was monitored over time for reference (grey triangles). Curves shown are representative 

of at least three replicates. (E) Either Gfp-FtsZSWAP1 (6 μM) (black triangles) or Gfp-

FtsZSWAP2 (6 μM) (red triangles) were incubated with ClpXP (1 μM), ATP (5 mM) and a 

regenerating system, and degradation was monitored with time as described. Reaction 

buffer was monitored over time for reference (grey triangles). Curves shown are 

representative of at least three replicates. 
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Figure 4. Multimerization is important for recruitment of the FtsZ C-terminus in 

vivo. (A) DIC and fluorescence microscopy images of wild type MG1655-derived cells 

in log phase expressing Gfp-ZLC induced with increasing concentrations of arabinose as 

described. (B) DIC and fluorescence microscopy images of wild type MG1655-derived 

cells in log phase expressing Gfp-FtsZ induced with 0.001% arabinose as described. 
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Figure 5. Model for recognition of FtsZ population by ClpXP. For all panels, a cross-

section of the ClpX hexamer is shown in blue, docked to a cross-section of the ClpP 

tetradecamer in green. (A) The Gfp-ZLC protein, which comprises a barrel-shaped Gfp 

protein (dark green) fused to the 67 C-terminal amino acids of FtsZ, docks the N-domain 

of ClpX (blue oval) via the C-terminal degron (yellow circle), but not the linker degron 

(cyan circle). (B) Unassembled FtsZ, which exists as a mixture of dimers and monomers, 

docks the N-domain of ClpX (blue oval) via the C-terminal degron (yellow circle), but 

not the linker degron (cyan circle) of FtsZ. The N-domain of FtsZ (purple box) does not 

bind the ClpX N-domain (blue oval). (C) ClpX recognizes the C-terminal degron (yellow 

circle) via the N-domain of ClpX (blue oval), but the linker degron (cyan circle) binds 

independently of the ClpX N-domain (blue oval) (likely directly in the ClpX axial pore). 
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Abstract 

During bacterial cell division a dynamic protein structure called the Z-ring 

assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a 

tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component 

ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the 

polymerization domain in the unstructured linker and at the C-terminus, are important for 

specific recognition and degradation by ClpXP. We engineered a synthetic substrate 

containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail 

(residues 317-383), including the unstructured linker and the C-terminal conserved 

region, but not the polymerization domain, and showed that it is sufficient to target a non-

native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-

ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild 

type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX 

or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings 

appear normal; however, after photobleaching a region of the Z-ring, fluorescence 

recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. 

Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-

rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In 

vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results 

demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is 

proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli 

fine-tune Z-ring dynamics.  
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Introduction 

Cell division in bacteria is a conserved and highly coordinated dynamic process 

involving many cellular proteins that function together to divide a single cell into two 

daughter cells [1]. During cell division the Z-ring assembles at midcell, the site of 

septation. The Z-ring contains the essential cell division protein FtsZ and many other 

division proteins, which are recruited to the septum. FtsZ is a GTPase that is structurally 

homologous to eukaryotic tubulin and forms large, dynamic polymers [2]. Each FtsZ 

monomer contains a compact, globular N-terminal polymerization domain, a flexible 

unstructured linker region, and a conserved region near the C-terminus that is important 

for protein interactions [2,3]. Several proteins in E. coli bind to FtsZ and have been 

shown to modulate the polymerization state of FtsZ in vitro, including MinC, SlmA and 

Z-ring associated proteins (ZAPs) [4]. Many of these protein-protein interactions occur 

near the FtsZ C-terminus. 

High-resolution microscopy of division septa in several organisms, including E. 

coli, Bacillus subtilis, Staphylococcus aureus, Caulobacter crescentus and Streptococcus 

pneumoniae, showed that the Z-ring contains a network of overlapping FtsZ polymers 

staggered around the inner face of the cytoplasmic membrane [5-10]. By fluorescence 

microscopy, the Z-ring is also frequently observed as a loose helical structure rather than 

a closed ring. The Z-ring is highly dynamic and rapidly exchanges FtsZ subunits with a 

reported half-time of approximately 9 sec in E. coli [5,11-13]. GTP hydrolysis modulates 

the polymerization state of FtsZ and is thought to be the major factor that promotes 

dynamic exchange in the Z-ring. An E. coli strain containing the substitution mutation 
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G105S in FtsZ impairs GTP hydrolysis in vitro and confers a temperature-sensitive 

growth phenotype [14-16]. Cells containing chromosomal ftsZ(G105S), also referred to as 

ftsZ84, have Z-rings that exhibit 3-fold slower dynamics, suggesting that Z-ring dynamics 

are coupled to GTP hydrolysis [12]. It has also been reported that cell division proteins, 

specifically those that interact directly with FtsZ, may modulate Z-ring dynamics in E. 

coli. FtsZ-interacting proteins ZapA and ZapB were shown to stabilize the network of 

overlapping FtsZ polymers in Z-rings in vivo and promote polymer bundling in vitro [17-

19].  

Counteracting the functions of proteins that stabilize or bundle FtsZ polymers, 

several proteins antagonize FtsZ polymers and promote their disassembly. In E. coli, 

MinC, SlmA, ClpXP and most recently ZapE have been reported to destabilize FtsZ 

polymers in vitro by promoting disassembly, preventing reassembly or by shifting the 

equilibrium of FtsZ polymers towards disassembly [4,20-26]. Deletion of the minCDE 

operon from E. coli leads to the assembly of Z-rings with ~2-fold slower dynamics [12]. 

The Min system in E. coli, which includes MinC, MinD and MinE, inhibits Z-ring 

assembly at non-septal locations by establishing an oscillating polar gradient of MinC, an 

FtsZ polymerization inhibitor [27]. The contributions of SlmA, which prevents 

polymerization of FtsZ over the nucleoid, and ZapE, which may destabilize FtsZ 

polymers during late constriction, to Z-ring dynamics are unknown. 

Proteolysis is an important regulatory mechanism for the cell division pathway in 

bacteria. ClpXP is an ATP-dependent protease that contains the ATP-dependent 

chaperone unfoldase, ClpX, bound to a compartmentalized protease, ClpP [28]. In C. 

crescentus, ClpXP controls initiation of DNA replication through degradation of CtrA and 
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is regulated through phosphoregulated adaptor complexes [29]. In addition, ClpXP 

degrades FtsZ in non-replicative swarmer cells [30].  

In E. coli ClpXP is known to degrade many diverse substrates [31,32]. ClpXP 

specifically recognizes, unfolds, and degrades FtsZ in vivo and in vitro, and 

overexpression of ClpXP leads to cell filamentation and increased degradation of FtsZ 

[24]. ClpXP degrades approximately 15% of total FtsZ per cell cycle in E. coli [24]. 

Furthermore, the ClpX chaperones from E. coli, B. subtilis, and Mycobacterium 

tuberculosis have also been shown to antagonize FtsZ polymerization in the absence of 

ClpP [33-36].  

ClpX is a member of the AAA+ superfamily of ATPases and forms a hexameric 

ring with a central substrate translocation channel. Several eukaryotic AAA+ ATPases, 

such as spastin and katanin, have been suggested to sever microtubules and alter tubulin 

dynamics in vivo [37-41]. Spastin and katanin are members of a meiotic clade of AAA+ 

ATPases, which, along with Vps4, may disassemble polymers [40]. ClpX from E. coli 

promotes disassembly and degradation of FtsZ polymers along with its cognate protease 

ClpP [24]. Two regions of FtsZ are important for recognition and degradation by ClpXP. 

One region is present in the unstructured linker (residues 352-358) of FtsZ and the other 

is present near the C-terminus (residues 379-383) [25]. Although FtsZ monomers and 

polymers are degraded by ClpXP, FtsZ polymers, containing either GTP or the GTP 

analog GMPCPP, are degraded more efficiently [24,25,42].  

Here, we demonstrate that the C-terminal extended tail of FtsZ, which includes 

the unstructured linker and conserved C-terminal region, but not the polymerization 

domain, is sufficient to target a non-native substrate for degradation by ClpXP in vitro. To 
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uncover the functional role of FtsZ proteolysis by ClpXP during division, we expressed 

N-terminal Gfp-FtsZ fusion proteins in cells and monitored fluorescence recovery after 

bleaching Z-rings in vivo. We show that cells unable to make functional ClpXP, or cells 

that express an FtsZ mutant protein defective for degradation, have Z-rings that recover 

fluorescence more slowly than Z-rings in wild type cells. We further show that in vitro, 

degradation of FtsZ polymers occurs cooperatively, indicating that polymerization of 

FtsZ promotes recognition by ClpX. Together, these results demonstrate that the role for 

ClpXP during the division cycle of E. coli is to engage the FtsZ C-terminal region, 

degrade FtsZ and regulate FtsZ polymer dynamics.  

 

Results 

Targeting and degradation of a synthetic fluorescent substrate by addition of the 

FtsZ extended C-terminus  

  Recognition and degradation of FtsZ by ClpXP was previously shown by our 

group to utilize two regions of FtsZ, residues 352-358 in the unstructured linker, and C-

terminal residues 379-383 [25]. To determine if an extended C-terminal tail of FtsZ, 

including the unstructured linker (residues 317-369), the conserved region adjacent to the 

FtsZ C-terminus (residues 370-379) and the C-terminal variable region (residues 380-

383) is sufficient to target a synthetic substrate for degradation, we constructed and 

purified a fluorescent fusion protein containing Gfp and the extended FtsZ C-terminal tail 

(Gfp-ZC67) (Fig 1A). This chimera does not contain the FtsZ polymerization domain. We 

measured degradation of Gfp-ZC67 in reactions containing ClpXP and ATP by monitoring 

loss of fluorescence during incubation with ClpXP, indicating that ClpXP unfolds and 
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degrades the Gfp moiety (Fig 1B). After 60 min, approximately 25% of the initial 

fluorescence was lost under the conditions tested, and then the degradation reaction 

plateaued (Fig 1B). Gfp without ZC67 is stable and not degraded during incubation with 

ClpXP since it does not contain a ClpX-recognition region (S1A Fig). We also observed 

that a Gfp-fusion protein containing full-length FtsZ is degraded by ClpXP (Fig 1A and 

1C). The loss of fluorescence is attributable to degradation since incubation of Gfp-ZC67 

or Gfp-FtsZ with ClpX alone, without ClpP, has no effect on the fluorescence of either 

substrate (S1B Fig). The addition of GTP, which is known to induce FtsZ polymerization, 

to the degradation reaction containing Gfp-FtsZ increases the rate of degradation from 

0.008 units min-1 to 0.016 units min-1 (Fig 1C). This is in agreement with previous reports 

showing a 2-3-fold increase in degradation efficiency for native FtsZ in the presence of 

GTP and suggests that Gfp-FtsZ is capable of polymerization with GTP [24,25]. To 

confirm this, we performed sedimentation assays using mixtures of FtsZ and Gfp-FtsZ. 

We observed Gfp-FtsZ sedimentation in the presence of GTP alone and when increasing 

amounts of FtsZ are included in the reaction, indicating that Gfp-FtsZ polymerizes with 

GTP (Fig 1D). 

Z-ring localization of Gfp-FtsZ in dividing cells and slow dynamics in clp deletion 

strains      

Next, we wanted to determine if Z-ring assembly and dynamics are perturbed in 

cells lacking ClpXP. To localize fluorescent Z-rings in live, dividing cells, we expressed 

Gfp-FtsZ from a plasmid in a wild type E. coli MG1655 strain (JC0390), and in strains 

deleted for clpX (JC0394) or clpP (MV0210) (Table 1). Importantly, we used the N-

terminal Gfp-FtsZ fusion protein, which is competent for polymerization (Fig 1D) and 
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leaves the C-terminal ClpX interaction site of FtsZ accessible. All strains also 

constitutively express an arabinose transporter (PCP18-araE) to reduce cell-to-cell 

variability in the presence of inducer (arabinose) [43].  

Expression of Gfp-FtsZ in the wild type strain (JC0390) does not interfere with Z-

ring assembly or division under the expression conditions tested and constitutes ~50% of 

the total FtsZ in the cell (Fig 1E and 1F). As expected, fluorescent Z-rings were present at 

the center of the long axis of dividing cells and the rings contained approximately 20-

30% of the total cellular fluorescence (Fig 1G and 1H). To probe the dynamic exchange 

of fluorescent subunits in the Z-ring of individual dividing cells, we selected a small 

region of the fluorescent Z-ring in each cell and performed a photobleaching and 

recovery assay (Fig 2A). After bleaching the fluorescence from the region, recovery in 

the selected area was monitored at 3, 6 or 8 sec intervals over the next 72 sec, as Gfp-

FtsZ from within the Z-ring is exchanged with subunits from the cytoplasm (Fig 2A, 2B 

and 2C). During the recovery period, we measured the fluorescence at each interval for 

each region, calculated the recovery half-time, and then determined the average recovery 

half-time for all replicates. The fluorescence recovery half-time of Z-rings in wild type, 

dividing cells expressing Gfp-FtsZ is 6.2 ± 0.5 sec (n=18, 8 sec interval) (Fig 2C) (S1 

Table), which is faster but within error of half-times reported previously (9.0 ± 3 and 8.3 

± 3 sec for wild type Z-rings in E. coli and B. subtilis respectively) [12]. Recoveries 

measured at shorter capture intervals (6 sec and 3 sec) generated average half-time values 

similar to the value measured using an 8 sec interval (6.8 ± 0.5 sec and 7.5 ± 0.5 sec, 

respectively) (Fig 2C).  

Next, we expressed Gfp-FtsZ in cells deleted for clpX or clpP, and observed 
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fluorescent Z-rings at midcell, and cells appeared similar to wild type cells expressing 

Gfp-FtsZ (Fig 1G, 3A and 3B) (S2A Fig). We also constructed a strain in which the 

chromosomal clpP gene was replaced with a gene at the native locus encoding protease-

defective clpP(S97A) and visualized Z-rings in ClpP-defective cells by expression of 

Gfp-FtsZ (Fig 3C and 3D) (S2A Fig) [49,50]. We observed no apparent cell division or 

morphological defects in the strain expressing ClpP(S97A) and Z-rings appeared similar 

to Z-rings in wild type and clpP deletion strains (Fig 1G) (S2A Fig).   Next, we selected 

and bleached regions of fluorescent Z-rings in clp deficient cells and monitored 

fluorescence recovery. Surprisingly, in all clp deficient strains, we observed an average 

recovery half-time significantly longer by 70% than the half-time observed in the parental 

strain (average recovery half-time of the Z-ring is 10.6 ± 1.3 sec in the ΔclpX strain, 10.6 

± 0.7 sec in the ΔclpP strain, and 10.4 ± 0.4 sec in the clpP(S97A) strain) (Fig 3E) (S2B, 

S2C and S2D Figs) (S1 Table). We also observed that the distributions of values are 

larger in clp deficient strains, suggesting that there is more heterogeneity among the Z-

rings, which could indicate that there is less control over regulating Z-ring architecture in 

a given population of cells. Finally, we restored wild type copies of clpX and clpP to clp 

deletion strains at their native loci by recombination, expressed Gfp-FtsZ from a plasmid 

in the restored strain and performed bleaching and recovery assays of fluorescent Z-rings 

to determine if we could rescue the slow average recovery half-time (S2A, S2E, S2F, 

S2G and S2H Figs) (Table 1). We observed that strains restored with clpX (MV03722) or 

clpP (MV03712) at the native locus have average half-time recoveries of 8.2 ± 1.4 sec 

and 8.1 ± 0.6 sec, respectively. Although the values are not significantly different from 

the value observed for the wild type parental strain (JC0390), it is interesting to note that 
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the strain restored with clpX has a slightly lower level of ClpX expression than the wild 

type strain, which could explain the modest increase in recovery half-time compared to 

the wild type strain (S1 Table).  

Deletion of clpX or clpP prevents degradation of FtsZ in vivo, leading to slower 

FtsZ protein turnover as measured in antibiotic chase assays [24]. To test if slow Z-ring 

fluorescence recovery could be attributable to higher levels of Gfp-FtsZ, we directly 

tested if a higher expression level of Gfp-FtsZ also leads to slower recovery, but did not 

observe a significant difference in recovery half-time at a higher arabinose concentration 

(7.5 ± 0.8 sec) (Fig S3A and S3B). This is in agreement with a previous report showing 

that an increase in FtsZ expression does not alter the architecture of the Z-ring [5]. These 

results show that Z-rings in cells lacking functional ClpXP have slow recovery after 

bleaching and are less dynamic in early division. 

A residue in the FtsZ C-terminal conserved region is important for fast exchange in 

the Z-ring and recognition by ClpXP  

  The FtsZ mutant protein FtsZ(R379E) has a substitution at the end of the C-

terminal conserved region and is defective for degradation by ClpXP in vitro  [25]. To 

determine if Arg 379 is critical for targeting ClpX, we introduced the R379E substitution 

into Gfp-ZC67, and measured the degradation of purified Gfp-ZC67(R379E) by ClpXP in 

vitro by monitoring the loss of fluorescence with time. We observed that Gfp-

ZC67(R379E) is degraded ~50% more slowly than Gfp-ZC67 indicating that Arg 379 is 

important for recognition and degradation by ClpXP (Fig 4A).  

To investigate if FtsZ(R379E) is capable of assembly into functional Z-rings, we 

expressed Gfp-FtsZ(R379E) in the wild type parental strain (JC0390). Expression of Gfp-
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FtsZ(R379E) causes cells to be 2.7-fold longer than cells expressing Gfp-FtsZ (9.6 ± 0.6 

μm and 3.5 ± 0.1 μm, respectively), and the cells have multiple Z-rings and additional 

fluorescent foci at sporadic locations (Fig 4B) (S4A Fig) (S1 Table). To investigate if the 

R379E substitution near the FtsZ C-terminus impairs the dynamic exchange of subunits 

in the Z-ring, we performed bleaching and recovery assays in wild type cells expressing 

Gfp-FtsZ(R379E) from a plasmid (S4B Fig). Expression of Gfp-FtsZ(R379E) in the wild 

type strain results in the assembly of a Z-ring that recovers fluorescence with a delayed 

average half-time of 12.1 ± 1.6 sec, which is 2-fold slower than Gfp-FtsZ (Fig 4C). 

Moreover, the individual half-time values are broadly distributed, similar to what we 

observed in clp deletion strains (Fig 4C and 3E) (S1 Table). These results suggest that 

Arg 379 in FtsZ is important for promoting fast exchange of FtsZ subunits in the Z-ring 

and is consistent with the role of ClpXP. Moreover, slow fluorescence recovery is not due 

to defective GTP hydrolysis or polymerization, since FtsZ(R379E) hydrolyzes GTP and 

assembles in vitro (S4E Fig) [25]. Furthermore, the expression levels of Gfp-FtsZ and 

Gfp-FtsZ(R379E) in vivo were similar for both strains (S4F Fig).  

Mutation of G105S in FtsZ impairs GTP hydrolysis in vitro and confers a 

temperature-sensitive, filamentous phenotype in vivo; however, FtsZ(G105S) is capable 

of polymerization in vitro [14-16,51-53]. Cells expressing fluorescent Gfp-FtsZ(G105S) 

have previously been shown to exhibit slow fluorescence recovery after bleaching, even 

when grown at the permissive temperature, suggesting that the rate of GTP hydrolysis is 

coupled to subunit exchange in the Z-ring [12,13]. To confirm that impaired GTP 

hydrolysis also slows subunit exchange in vivo with the N-terminal Gfp-FtsZ fusion 

protein used in this study, we expressed Gfp-FtsZ(G105S) in the parental strain 
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containing wild type ftsZ on the chromosome and measured fluorescence recovery after 

bleaching in the Z-ring (Fig 4B and 4C) (S4C Fig). We observed that Z-rings containing 

Gfp-FtsZ(G105S) recover fluorescence ~2-fold more slowly than cells expressing Gfp-

FtsZ (12.6 ± 1.5 sec and 6.2 ± 0.5 sec, respectively) (Fig 4C) (S1 Table). Since mutation 

of either site (G105 or R379) is important, we tested if impairing both would further slow 

dynamic exchange in the Z-ring. We constructed Gfp-FtsZ(G105S, R379E) and 

visualized Z-rings in wild type cells. Gfp-FtsZ(G105S, R379E) localizes to Z-rings, but 

the cells are filamentous. We monitored fluorescence recovery in Z-rings but detected no 

further slowdown than observed for either mutation individually (Fig 4C) (S4D Fig) (S1 

Table). We again observed a wide distribution of recovery times within the data set, 

compared to the parental strain expressing Gfp-FtsZ, and this heterogeneity may suggest 

a defect in regulating Z-ring assembly or maintenance. The expression levels of Gfp-FtsZ 

mutant proteins were similar to the level observed in cells expressing wild type Gfp-FtsZ 

(S4F Fig).  As expected, we also observed that incorporation of the G105S mutation 

slows the rate of GTP hydrolysis of both FtsZ and FtsZ(R379E) using purified proteins in 

vitro (S4E Fig). 

Next, we engineered alanine substitutions in the unstructured linker region of FtsZ 

spanning a second ClpX interaction site (residues 352-358) to construct FtsZ(3527A). We 

purified FtsZ(3527A) and confirmed that it hydrolyzes GTP and is partially defective for 

degradation by ClpXP in vitro (S4E and S5A Figs). We also constructed Gfp-FtsZ(3527A) 

and expressed it in dividing cells. We observed no obvious morphological defects and Z-

rings appeared similar to cells expressing Gfp-FtsZ (Fig 4B). In bleaching and recovery 

assays of Z-rings containing Gfp-FtsZ(3527A), we observed a slightly wider distribution 
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of recovery values than in rings containing Gfp-FtsZ, but the difference in average 

recovery half-time is not significant compared to Gfp-FtsZ (Fig 4C) (S5B Fig) (S1 

Table).  

 

ClpX does not affect the dynamics of the Z-ring reporter ZipA-Gfp  

  To determine if the effect that ClpXP has on fluorescence recovery time in the Z-

ring is restricted to FtsZ or is observable using proteins that localize to a Z-ring after FtsZ 

localizes to the ring, we used cells expressing ZipA-Gfp from the chromosome and 

measured Z-ring dynamics in strains with and without clpX (Fig 5A) (Table 1). Midcell 

rings containing ZipA-Gfp are a marker for Z-ring formation and have a fast average 

recovery half-time, similar to the rate observed for Z-rings containing Gfp-FtsZ [13]. 

ZipA is not a putative substrate for ClpXP degradation and overproduction of ZipA has 

even been shown to protect FtsZ from degradation by ClpXP [54]. Upon expression of 

ZipA-Gfp, we observed fluorescent rings at midcell and cells appeared normal in length 

with and without chromosomally-encoded clpX under the conditions tested (MC181 and 

MV0226) (Fig 5A). We performed bleaching and fluorescence recovery assays on ZipA-

Gfp rings in dividing cells with and without clpX and observed nearly identical average 

recovery half-times for ZipA-Gfp rings in both strains, 5.8 ± 0.6 sec in cells containing 

clpX and 5.8 ± 0.5 sec in cells deleted for clpX (Fig 5B) (S1 Table). Both ZipA-Gfp 

average recovery half-times are within error of Gfp-FtsZ in the wild type parental strain 

(JC0390) and unaffected by the presence or absence of ClpX (S1 Table).  

 

Cooperative degradation and disassembly of FtsZ polymers by ClpXP  
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FtsZ polymers and unassembled FtsZ, which is a mixture of monomers and 

dimers, are degraded by ClpXP. In vitro, degradation reduces the overall abundance of 

polymers, and this is thought to occur as a result of degrading both populations, shifting 

the dynamic equilibrium of polymerized FtsZ in the direction of disassembly [24]. To 

determine if ClpXP reduces the size of existing FtsZ polymers, which would favor a 

directed disassembly model, we incubated ClpXP with FtsZ polymers, crosslinked the 

reaction products, and then analyzed their relative sizes by fractionation on a sucrose 

gradient. Using labeled fluorescent FtsZ (FtsZ-AF488) we observed that without GTP, 

FtsZ exists as a mixture of monomers (40.4 kDa) and dimers (80.8 kDa) (Fig 6A); 

however, when FtsZ was incubated with GTP and then crosslinked, we observed a large 

peak present at the high sucrose concentration (>440 kDa), corresponding to fractions 1 

through 3, which together contained 25.1% of the total fluorescence in the initial reaction. 

We also detected fluorescence in the region between 158 kDa and 440 kDa, 

corresponding to fractions 4 through 6, which is consistent with short polymers and 

represents 14.5% of the total fluorescence (Fig. 6A). In contrast, in the absence of GTP, 

minimal fluorescence was detected in regions corresponding to polymers (fraction 1 

through 3) and short polymer fragments (fractions 4 through 6) amounting to 5.2% and 

5.3% of the total fluorescence, respectively (Fig. 6A). These results show that although 

FtsZ polymers formed in the presence of GTP are dynamic, incubation with 

dithiobis(succinimidyl propionate) (DSP) crosslinks a significant population of 

polymerized FtsZ, with the majority of polymers being very large. Next, we used this 

assay to test if incubation of FtsZ with ClpXP reduces the amount of large polymers 

detected. FtsZ polymers were assembled with GTP and then incubated with ClpXP prior 
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to crosslinking. After incubation with ClpXP, we failed to detect a significant population 

of large polymers present in fractions 1 through 3 above the level of background (6.1% of 

total fluorescence) and even observed that there was less fluorescence in fractions 4 

through 6, which corresponds to the region likely to contain short polymers, 10.1% of the 

total fluorescence with ClpXP, compared to 14.5% of the total fluorescence without 

ClpXP in fractions 4 through 6 (Fig 6A). Small molecular weight fluorescence was also 

detected in the reaction containing ClpXP in the low percent sucrose fraction due to the 

accumulation of fluorescent peptides, which are the products of degradation. However, 

the total fraction of fluorescent peptides was small, since FtsZ was in large excess over 

ClpXP. These results suggest that ClpXP disassembles large FtsZ polymers through 

degradation.  

Finally, we used this assay to determine if ClpX alone, in the absence of ClpP, 

could also lead to fewer large FtsZ polymers, since ClpX has been reported to interact 

directly with FtsZ in vitro [36]. We observed a small reduction in the amount of 

fluorescence detected in polymer fractions 1 through 3 amounting to 15.4% of the total 

fluorescence with ClpX, compared to 25.1% of the total fluorescence without ClpX (but 

with GTP) in fractions 1 through 3 (Fig. 6A). These results suggest that ClpX can 

modestly promote disassembly of large FtsZ polymers, but destabilization is more 

efficient in the presence of ClpP. 

 

Interactions between FtsZ and several FtsZ-interacting proteins, including ZipA 

and SlmA, are mediated by multivalent interactions with FtsZ subunits within a polymer 

[42]. In addition, the rate of FtsZ degradation by ClpXP is enhanced when FtsZ is 
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polymerized with GTP (Fig 1C) or the analog GMPCPP, as previously shown [24,25]. To 

determine if FtsZ polymers are recognized and degraded in a cooperative manner, we 

compared the rates of FtsZ degradation by ClpXP at concentrations above the critical 

concentration for FtsZ polymerization (1 M) [2]. We observed that as the FtsZ 

concentration increased, the rate of degradation also increased in a positively cooperative 

manner (nh = 1.7) when GTP was present (Fig 6B). In contrast, no cooperativity was 

observed when GTP was omitted from the degradation reactions (nh = 1.0) and the overall 

rate of degradation was lower than in the presence of GTP. These results suggest that 

degradation of FtsZ polymers by ClpXP occurs by a cooperative recognition mechanism. 

 

Disassembly of FtsZ polymers is a mechanism to modulate Z-ring dynamics  

  There are relatively few reports of factors that are capable of modifying Z-ring 

dynamics in E. coli. One previous report showed that deletion of the minCDE operon 

from E. coli slows Z-ring dynamics approximately 2-fold, similar to the effects observed 

here in clp deficient strains (Fig 3E) [12]. Since both MinC and ClpXP can destabilize 

FtsZ polymers in vitro, we investigated if destabilization of FtsZ polymers may be a 

mechanism to modulate Z-ring dynamics. Therefore, we expressed Gfp-FtsZ in strains 

deleted for minC (JC0395), slmA (MV0198), or zapE (MV0277), all of which are 

reported to promote FtsZ polymer disassembly, visualized fluorescent Z-rings and 

performed bleaching and recovery assays (Fig 7) (S6A and S6B Figs). In a minC deletion 

strain expressing Gfp-FtsZ, cells are mildly filamentous and contain multiple Z-rings (Fig 

7A), which agrees with previous reports that deletion of minC leads to the formation of 

anucleate minicells as well as elongated cells with an increased number of Z-rings per 
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cell [45,55-57]. Cells deleted for slmA or zapE show a single Z-ring present at the middle 

of the long-axis of the cell and are similar in length to the wild type strain (Fig 7B and 

7C) (S1 Table). In all strains, approximately 20-30% of the total cellular fluorescence was 

present in a Z-ring (data not shown), similar to the wild type strain (Fig 1H). Next, we 

monitored fluorescence recovery of Z-rings in cells deleted for minC, slmA, or zapE. As 

expected, in cells deleted for minC, we observed a 70% longer average fluorescence 

recovery half-time than in the parental strain (Fig 7D) (S1 Table). Furthermore, 

reinsertion of minC back into the native locus by lambda-Red recombination restored 

MinC expression and rescued the slow Z-ring recovery of cells expressing Gfp-FtsZ to 

wild type half-times (S6A, S6C and S6D Figs) (S1 Table). We also observed slow Z-ring 

fluorescence recovery in the strain deleted for slmA, which showed a fluorescence 

recovery half-time that is on average 80% slower than in the wild type strain (Fig 7D) (S1 

Table). Z-ring subunit exchange in cells deleted for zapE occurred faster than in the other 

deletion strains tested, but 50% slower than the parental strain (Fig 7D) (S1 Table). Taken 

together, our results suggest that proteins that function to destabilize FtsZ polymers in 

vitro enhance dynamic exchange in the Z-ring in vivo. Moreover, removal of minC and 

slmA widens the distribution of recovery values among the cells studied, indicating that 

there is increased heterogeneity throughout the population. 

Discussion 

  Using direct biochemical degradation assays, we demonstrate that an extended 

FtsZ C-terminal region (317-383), which includes two sites previously identified as 

important for ClpX recognition, is sufficient to target the non-native substrate Gfp for 

degradation (Fig 1B). We also show that full length FtsZ fused to Gfp at the N-terminus 
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assembles into polymers with GTP and is also degraded by ClpXP in vitro (Fig 1C and 

1D). As expected, degradation of Gfp-FtsZ occurs more rapidly in the presence of GTP, 

which promotes assembly of FtsZ into polymers. Titrating the FtsZ concentration above 

the critical concentration for polymer assembly shows a cooperative increase in the rate 

of degradation by ClpXP, which is consistent with multimerization enhancing recognition 

through concentration of FtsZ C-terminal binding sites (Fig 6B). In vivo Gfp-FtsZ 

localizes to the Z-ring, consistent with a previous report using a similarly constructed N-

terminal Gfp-FtsZ fusion protein [58]. The polymerization domain is critical for FtsZ 

incorporation into the Z-ring because Gfp-ZC67 does not localize to a ring (data not 

shown), even though the protein interaction site near the C-terminus is intact.  

The role of ClpXP during cell cycle progression in C. crescentus is well-

characterized, but in E. coli, the functional role of ClpXP during division was unknown. 

Here we demonstrate that ClpXP is a regulator of Z-ring dynamics in vivo during 

division and that the regulation is proteolysis-dependent in vivo. In cells expressing Gfp-

FtsZ, deletion of clpX or clpP leads to the formation of Z-rings that are on average ~70% 

slower to recover fluorescence after bleaching than Z-rings in the wild type parental 

strain. We also observed a large distribution of fluorescence recovery half-times, 

suggesting that although the cells appear normal, there is cell-to-cell variability in the 

stability of the Z-ring and the cells may be less resistant than wild type cells to further 

perturbations at the septa. Increased sensitivity may also explain why clp deletions are 

synthetic filamentous with a minC deletion [45]. By replacing the clpP gene with one that 

encodes a ClpP proteolytic mutant, ClpP(S97A), we confirmed that ClpXP degradation, 

not just ATP-dependent remodeling by ClpX, is critical for regulating division. Through 
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direct degradation of FtsZ and the additional degradation of the Z-ring stabilizer ZapC, 

ClpXP likely has potent Z-ring destabilizing activity [59]. 

The dynamic nature of the Z-ring is widely reported, and other cell division 

proteins, including FtsA and ZipA, are known to localize to the dynamic ring [13,60]. 

How dynamics impact progression through the cell cycle is not well understood. Slow 

GTP hydrolysis by FtsZ is also linked to slow ring dynamics in vivo and was reported for 

Z-rings containing FtsZ(G105S) [13]. Constriction time could correlate with Z-ring 

dynamics. In a recent report by the Xiao group, deletion of matP was shown to shorten 

constriction time. Since MatP stabilizes the Z-ring through interactions with ZapA and 

ZapB, this suggests that FtsZ-interacting proteins modify the rate of constriction [17]. 

Interestingly, the dynamic ZipA-Gfp ring, often used as a marker for Z-ring assembly, is 

not modulated by ClpXP (Fig 5B). A recent study reported that although FtsZ and ZipA 

are thought to assemble early and form a proto-ring along with FtsA, FtsZ disassembles 

from the division septum prior to ZipA, suggesting that septal association of FtsZ and 

ZipA is differentially controlled [2,61-63]. The important role that FtsZ assembly 

regulators have in promoting division was recently demonstrated by showing that 

intragenic suppressor mutations in ftsZ(G105S) support division but rely on other cell 

division proteins, including ZapA [64]. 

Recognition of FtsZ by ClpX is complex and not yet fully understood. Although 

two sites in FtsZ are important for ClpXP degradation, the relative contributions of each 

site to degradation of distinct FtsZ conformations have yet to be determined. One may 

function as an auto-adaptor or enhancer, while the other may function as the degron, 

similar to the distinct sites of the ClpX substrate MuA [65]. Mutation of Arg 379 in native 
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FtsZ or in Gfp-ZC67 impairs degradation by ClpXP in vitro (Fig 4A) [25]. Consistent with 

this, incorporation of Gfp-FtsZ(R379E) into Z-rings in vivo results in Z-rings that recover 

fluorescence more slowly than cells containing Gfp-FtsZ, suggesting that they are less 

dynamic due to defective degradation by ClpXP. The extreme C-terminus, also referred to 

as the C-terminal variable region, mediates bundling in other organisms such as B. 

subtilis, but not in E. coli [66]. We also investigated the second region of FtsZ in the 

unstructured linker that is involved in ClpX recognition, residues 352 through 358. 

Although FtsZ(3527A) is degraded more slowly than wild type FtsZ in vitro (S5A Fig), 

expression of Gfp-FtsZ(3527A) does not significantly perturb Z-ring assembly or 

fluorescence recovery in the Z-ring (Fig 4B and 4C) (S1 Table). Together, this suggests 

that the ClpX-interaction site near the FtsZ C-terminus is critical during division. Arg 379 

may also be important for recognition by FtsA, which, along with ZipA, recruits FtsZ to 

the membrane in vivo [25,58,67-69]. Arg 379 is well conserved and also present in FtsZ 

from Thermotoga maritima [TmFtsZ(Arg344)] [70,71]. Accordingly, co-crystals of T. 

maritima FtsA and the C-terminal FtsZ peptide show that TmFtsZ(Arg344) forms a salt 

bridge with subdomain 2B of FtsA [70].  

 We also report that deletion of minC, slmA and zapE leads to Z-rings with slower 

dynamics. In a previous report, deletion of the minCDE operon was shown to slow the 

dynamic exchange in the Z-ring to a similar extent observed here by deletion of minC 

[12]. Notably, ZapA and ZapB, which stabilize FtsZ polymers in vitro, have been 

reported to stabilize the Z-ring in vivo [11,17]. It is therefore likely that a global function 

of FtsZ assembly modulators is to regulate the flux of subunits into and out of the Z-ring. 

In this way, the network of regulators ensures that appropriate exchange is maintained in 
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the Z-ring during division.  

 

Materials and methods 

Bacterial strains, plasmids, and growth conditions  

E. coli strains and plasmids used in this study are described in Table 1. Strains 

were grown at 30°C in Lennox broth supplemented with appropriate antibiotics 

(kanamycin 50 μg ml-1, chloramphenicol 35 μg ml-1, and ampicillin 100 μg ml−1, where 

indicated). All MG1655 wild type and deletion strains used in bleaching and recovery 

assays contain constitutive promoter PCP18 in place of the chromosomal araE promoter, 

introduced by P1 transduction, to normalize cell-to-cell variation in expression [43]. 

Single gene kanamycin insertion-deletions were brought into MG1655 by P1 transduction 

using donor strains from the Keio collection [46]. For construction of histidine tagged 

Gfp-FtsZ and Gfp-ZC67, Gfp (Gfpuv) was cloned into pET28a(+) (EMD Millipore) as a 

NheI/HindIII fragment and the FtsZ extended C-terminal tail was cloned at an internal 

SacI site at the end of Gfp. FtsZ mutant proteins were constructed by site-directed 

mutagenesis of plasmids using the QuikChange II XL Site-Directed Mutagenesis Kit 

(Agilent). 

To replace chromosomal clpP with clpP(S97A), we first used site-directed 

mutagenesis of the ClpP expression plasmid (pET-ClpP) to construct pET-ClpP(S97A), 

and then amplified clpP(S97A) using recombination primers containing homology to 40-

bp regions flanking the clpP locus. In the recipient strain, the clpP gene was deleted by 

lambda-Red recombination and replaced with a kanamycin cassette linked to the parE 

gene under the control of a rhamnose promoter ([50] and J. Teramoto, K. A. Datsenko, 
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and B. L. Wanner, unpublished results). The amplified clpP(S97A) containing flanking 

sites for recombination was reinserted at the clpP locus and selected for by growth on L-

rhamnose (1%). Recombinants were confirmed by sequencing. Similarly, clpX, clpP and 

minC wild type genes were restored in deletion strains at their native loci (Table 1). 

 

Expression and purification of proteins  

ClpX, ClpP, FtsZ, and FtsZ(R379E) were each expressed in E. coli BL21 (λDE3) 

and purified as described [24,25,72,73]. FtsZ(G105S), FtsZ(G105S, R379E), and 

FtsZ(3527A) were purified as wild type FtsZ. FtsZ wild type and mutant proteins were 

labeled with Alexa Fluor 488 or 647, where indicated, and then fluorescent active 

subunits were obtained by cycles of polymerization and depolymerization [25,74]. Gfp-

FtsZ and Gfp-ZC67 were overexpressed in E. coli BL21 (λDE3) grown in Lennox broth to 

an OD600 of 1.0 at 37C and then induced with 1 mM IPTG for 3 hours at 30C. Cells 

were lysed by French press, and soluble lysate was bound to TALON superflow resin 

(GE Healthcare). Histidine-tagged proteins were eluted with an imidazole gradient and 

imidazole was removed by buffer exchange. Protein concentrations are reported as FtsZ 

monomers, ClpX hexamers and ClpP tetradecamers. 

 

Degradation assays  

Gfp-FtsZ and Gfp-ZC67 were degraded by ClpXP in buffer containing 20 mM 

HEPES pH 7.0, 150 mM KCl, and 10 mM MgCl2 with 5 mM ATP, 0.005% Triton X-100, 

and 2 mM GTP, where indicated, with acetate kinase (25 μg ml-1) and acetyl phosphate 

(15 mM) (bifunctional ATP/GTP regenerating system). Fluorescence was monitored with 
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an Agilent Eclipse Spectrophotometer (excitation 395 nm, emission 510 nm). 

Degradation of FtsZ wild type and mutant proteins labeled with Alexa Fluor 488 or 647, 

where indicated, was performed as described by quantitating fluorescent peptides [25]. 

Hill coefficients were calculated by fitting the data to a nonlinear regression model using 

GraphPad Prism (version 6.0b) [Y=Rmax*X^h/(K^h + X^h), where Rmax is the 

maximum response, K is the concentration at half-maximal response and h is the Hill 

slope]. 

 

Polymerization assays and GTP hydrolysis  

Gfp-FtsZ and/or FtsZ was incubated with or without GTP (2 mM) for 3 min. in 

assembly buffer (50 mM MES, pH 6.5 100 mM KCl, 10 mM MgCl2) in the presence of a 

regenerating system (same one used for degradation assays) and spun for 30 min at 23C 

in a Beckman TLA 120.1 rotor at 129,000xg. Supernatants and pellets were collected in 

equivalent volumes of 1x lithium dodecyl sulfate (LDS) sample buffer (Life 

Technologies) and analyzed by SDS-PAGE. GTP hydrolysis of FtsZ wild type and mutant 

proteins was assayed using the Biomol Green phosphate detection reagent (Enzo Life 

Sciences) as described [25]. 

 

Sucrose gradient fractionation  

Fluorescence-labeled FtsZ (24 M) was incubated with and without GTP (2 mM), 

acetate kinase (25 μg ml-1) and acetyl phosphate (15 mM) in assembly buffer [50 mM 

MES (morpholino-ethane-sulfonic acid), pH 6.5, 100 mM KCl, 10 mM MgCl2] for 5 min. 

ClpXP (1.6 μM) and ATP (5 mM) were added, where indicated, and all reactions were 
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incubated for 90 min. Reaction products were crosslinked with dithiobis(succinimidyl 

propionate) (DSP) (0.6 mM). After 30 min, reactions were quenched with Tris-HCl (25 

mM, pH 8), applied to a 5-20% sucrose gradient with a 40% sucrose cushion, and 

centrifuged for 180 min at 4°C at 100,000xg in a Beckman TLS-55 rotor. Fractions (20 

μl) were collected and analyzed by fluorescence.  

 

Microscopy  

Overnight cultures of MG1655 wild type and deletion strains expressing Gfp-

tagged (Gfpuv) FtsZ fusion proteins were diluted 1:50 into fresh media containing 

ampicillin (100 μg ml−1) and arabinose (70 μM or 140 μM, where indicated), and then 

grown for three hours at 30°C. Cells were directly applied to a 4% agarose pad containing 

MOPS [3-(N-morpholino) propanesulfonic acid] minimal media with 0.5% glycerol and a 

coverslip was added. Images were collected with a Zeiss LSM 700 confocal fluorescence 

microscope and images were captured on an AxioCam digital camera with ZEN 2012 

software. In fluorescence recovery assays, regions of each Z-ring were selected and 

bleached at full laser power for one iteration until the initial fluorescence was reduced by 

at least 40%. Recovery images were captured at 3, 6 or 8 sec intervals, where indicated. 

The fluorescence intensity of the region at each interval was quantified using NIH 

ImageJ. Intensity values were normalized to the recovery period maximum plateau value, 

which was on average 70-80% of the initial pre-bleach fluorescence. Recovery was 

plotted as fluorescence intensity with time and fit to a nonlinear regression model {Y=Y0 

+ (Plateau-Y0)*[1-exp(-K*x)], where Y0 is the Y-value at time zero, Plateau is the Y 

value at infinite time and K is the rate constant} using GraphPad Prism (version 6.0b). 
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Half-time recovery values were calculated for individual replicates and then averaged. 

The percentage of Z-ring fluorescence per cell was measured in ImageJ for at least 10 

cells. 

 

Immunoblotting  

Cells were grown as described and total proteins were precipitated with 

trichloroacetic acid (15 % v/v). Proteins were resuspended in buffer containing 2% SDS, 

quantified by the bicinchoninic acid assay, and analyzed by SDS-PAGE and 

immunoblotting using antibodies to Gfp (Thermo Scientific), FtsZ, ClpX, ClpP or MinC 

as described [24,45].  
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TABLE 1.  E. coli strains and plasmids. 

Strain or 

Plasmid 
Genotype 

Source, 

reference or 

Constructiona,b

,c 
Strains   
MG1655 LAM- rph-1 [44] 
BW27750 lacIqrrnB3 ΔlacZ4787 hsdR514 

Δ(araBAD)567 Δ(rhaBAD)568 
Δ(araFGH) ϕ(ΔaraEp::kan PCP18-araE) 

[43] 

BW27784 
 
 

lacIqrrnB3 ΔlacZ4787 hsdR514 
Δ(araBAD)567 Δ(rhaBAD)568 

Δ(araFGH) araEp-532::frt ϕPCP18-
araE533  

[43] 

JC0390 MG1655 (araEp::kan PCP18-araE) P1(BW27750) x 
MG1655   

JC0291 MG1655 clpX::frt JC0259 [45]; 
pCP20 

JC0394 MG1655 clpX::frt, araEp::kan PCP18-
araE 

P1(BW27750) x 
JC0291 

MV03720 MG1655 clpX::kan-parE  pKD267c; λRed 

MV03721 MG1655 clpX-restored MV03720; λRed 
MV03722 MG1655 clpX-restored, araEp::kan 

PCP18-araE 

P1(BW27750) x 
MV03721 

MV0050 MG1655 clpP::frt JC0263 [45]; 
pCP20 

MV0210 MG1655 clpP::frt, araEp::kan PCP18-
araE 

P1(BW27750) x 
MV0050 

MV0242 MG1655 clpP::kan-parE pKD267c; λRed   

MV0251 MG1655 clpP(S97A) MV0242; λRed  
MV0256 MG1655 clpP(S97A), araE::kan PCP18-

araE 

P1(BW27750) x 
MV0251   

MV03711 MG1655 clpP-restored MV0242; λRed 
MV03712 MG1655 clpP-restored, araEp::kan 

PCP18-araE 

P1(BW27750) x 
MV03711 

JC0395 MG1655 minC::frt, araEp::kan PCP18-
araE 

P1(BW27750) x 
JC0232 [45] 

MV0196 MG1655 slmA::frt P1(JW5641) [46] x 
MG1655; pCP20 

MV03730 MG1655 minC::kan-parE pKD267c; λRed 

MV03731 MG1655 minC-restored MV03730; λRed 
MV03732 MG1655 minC-restored, araEp::kan 

PCP18-araE 

P1(BW27750) x 
MV03731 

MV0198 MG1655 slmA::frt, araEp::kan PCP18-
araE 

P1(BW27750) x 
MV0196 

MV0340 MG1655 zapE::frt P1(JW3201) [46] x 
MG1655; pCP20 

MV0277 MG1655 zapE::frt, araEp::kan PCP18-
araE 

P1(BW27750) x 
MV0340 

MC181 BW27784 λCH151 [Plac::zipA-gfp]   λCH151 [47] 
MV0226 BW27784 clpX::kan 

λCH151[Plac::zipA-gfp]   

P1(JC0259) [45] x 
MC181  

Plasmids   
pET-H6-Gfp-FtsZ kan This study 
pET-H6-Gfp-ZC67 kan This study 
pET-H6-Gfp- kan This study 
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ZC67(R379E)     
pCP20 amp flp recombinase [48] 
pKD267 kan Prham-parE  B. Wannerc 
pET-ClpP kan [24] 
pET-ClpP(S97A) kan This study 
pET-FtsZ kan [24] 
pET-FtsZ(G105S) kan This study 
pET-FtsZ(R379E) kan [25] 
pET-
FtsZ(G105S,R379
E) 

kan This study 

pET-FtsZ(3527A) kan This study 
pET-ClpX kan [24] 
pGfp-FtsZ amp Para::gfp-ftsZ [45] 

pGfp-FtsZ(G105S) amp Para::gfp-ftsZ(G105S) This study 
pGfp-FtsZ(R379E) amp Para::gfp-ftsZ(R379E) [25] 
pGfp-FtsZ(G105S, 
R379E) 

amp Para::gfp-ftsZ(G105S, R379E) This study 

pGfp-FtsZ(3527A) amp Para::gfp-ftsZ(3527A) This study 
a Strain constructions by P1 transduction are described as the following: P1(donor) x 
recipient.  
b Where indicated gene deletion donor strains were derived from the Keio Collection [46]. 
c J. Teramoto, K. A. Datsenko, and B. L. Wanner, unpublished results.  
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S1 TABLE.  Cell lengths and fluorescence recovery times. 
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Fig 1. Degradation and localization of Gfp-tagged FtsZ chimeras.  

(A) Schematic of native FtsZ, Gfp-FtsZ, and Gfp-ZC67 showing position of Gfp and FtsZ 

polymerization domain (1-316), unstructured linker (317-369) and C-terminal (370-383) 

regions. Sites important for ClpXP degradation are shown (degradation site-1, 379-383; 

degradation site-2, 352-358). (B) Gfp-ZC67 (3 μM) degradation was measured by 

monitoring loss of fluorescence with time in the absence (white circles) and presence 

(black circles) of ClpXP (1 μM), ATP (5 mM) and an ATP regenerating system. The 

curves shown are representative of at least three replicates. (C) Gfp-FtsZ (5 μM) 

degradation was measured by monitoring loss of fluorescence with time in the presence 

of ClpXP (1 μM), ATP (5 mM) and a regenerating system in the presence (black 

triangles) or absence (white triangles) of GTP (2 mM), where indicated. Gfp-FtsZ (5 μM) 

fluorescence was also measured in the absence of ClpXP (white circles). The curves 

shown are representative of at least three replicates. (D) Sedimentation of FtsZ (10 μM) 

and Gfp-FtsZ (10 μM) polymers with GTP, or using different ratios of Gfp-FtsZ to FtsZ 

(total of 10 μM per reaction), collected by ultracentrifugation. Pellet fractions containing 

FtsZ polymers and soluble fractions containing non-polymerized FtsZ are shown. (E) 

Fluorescence microscopy and DIC images of wild type MG1655-derived cells (JC0390) 

in log phase expressing Gfp-FtsZ induced with 70 μM arabinose. (F) Expression of 

plasmid encoded Gfp-FtsZ and chromosome encoded FtsZ from cell extracts (1 μg total 

protein) described in E using antibodies to FtsZ and Gfp. (G) Fluorescence intensity 

across the long axis of the cell was measured and plotted to determine the relative 

position of the Z-ring. Inset shows the fluorescence image used for quantitation. 
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Individual cells were chosen as representative of the population. (H) Box and whiskers 

plot showing total fluorescence at the Z-ring and total cell fluorescence for wild type cells 

(JC0390) expressing Gfp-FtsZ (n=11). The extent of the box encompasses the 

interquartile range of the fluorescence intensity, whiskers extend to the maximum and 

minimum fluorescence intensities, and the line within each box represents the median. 
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Fig 2. Photobleaching and recovery of the Z-ring in wild type strain.  

(A) A region of the Z-ring was selected and bleached from wild type cells (JC0390) 

expressing Gfp-FtsZ and grown in LB containing arabinose (70 μM) as described. 

Fluorescence recovery in the selected region was monitored every 8 sec for 72 sec (B) 

and plotted with time. (C) Box and whiskers plot of recovery half-times for Z-rings in 

wild type cells with various recovery intervals (8 sec, 3 sec, and 6 sec) (n ≥ 16). The 

extent of the box encompasses the interquartile range of the fluorescence recovery half-

times, and whiskers extend to the maximum and minimum values. The line within each 

box represents the median, with the mean value indicated by ‘+’.  
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Fig 3. Z-ring assembly and dynamics in clp deficient strains. Fluorescence intensity 

across the long axis of the cell was measured and plotted for cells deleted for clpX 

(JC0394) (A), clpP (MV0210) (B), and cells with chromosomal clpP(S97A) (MV0256) 

(C). Insets show the fluorescence image used for quantitation. Individual cells were 

chosen as representative of the population. (D) Expression of ClpP and ClpP(S97A) from 

wild type (JC0390), ΔclpP (MV0210), and clpP(S97A) (MV0256) cell extracts (40 μg 

total protein) using antibodies to ClpP. (E) Box and whiskers plot of recovery half-times 

for Z-rings in wild type cells (JC0390) and cells deleted for clpX (JC0394), clpP 

(MV0210), and containing chromosomal clpP(S97A) (MV0256). The extent of the box 

encompasses the interquartile range of the fluorescence recovery half-times, and whiskers 

extend to the maximum and minimum values. The line within each box represents the 

median, with the mean value indicated by ‘+’. Where indicated, p values are specified as 

‘**’ (p<0.01) or ‘***’ (p<0.001) as compared to wild type. 

 

 

 

 

 

 

 

 

 



167 
 

 

 

 

 

 

 

 

 

 



168 
 

Fig 4. Mutation of ClpX interaction site impairs substrate degradation in vitro and 

dynamic exchange in vivo. (A) Degradation of Gfp-ZC67 (3 μM) and mutant Gfp-

ZC67(R379E) (3 μM) was measured by monitoring loss of fluorescence with time in the 

presence (black and white circles, respectively) or absence (black and grey lines, 

respectively) of ClpXP (1 μM) where indicated, ATP (5 mM), and a regenerating system. 

The curves shown are representative of at least three replicates. (B) Fluorescence 

microscopy of wild type cells (JC0390) expressing Gfp-FtsZ, Gfp-FtsZ(R379E), Gfp-

FtsZ(G105S), Gfp-FtsZ(3527A), or Gfp-FtsZ(G105S, R379E) induced with 140 μM 

arabinose under growth conditions described in Materials and methods. (C) Box and 

whiskers plot of average recovery half-times of Z-rings in wild type cells (JC0390) 

expressing Gfp-FtsZ, Gfp-FtsZ(R379E), Gfp-FtsZ(G105S), Gfp-FtsZ(3527A), or Gfp-

FtsZ(G105S, R379E) induced with 140 μM arabinose under growth conditions described 

in Materials and methods. The extent of the box encompasses the interquartile range of 

the fluorescence recovery half-times, and whiskers extend to the maximum and minimum 

values. The line within each box represents the median, with the mean value indicated by 

‘+’. Where indicated, p values are specified as ‘**’ (p<0.01), ‘***’ (p<0.001) or ‘n.s.’ 

(not significant) as compared to wild type. 
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Fig 5. ZipA-Gfp ring assembly and dynamics are unaffected by deletion of clpX. (A) 

Fluorescence microscopy imaging of ZipA-Gfp rings in cells expressing ZipA-Gfp from 

the chromosome induced with 10 μM IPTG in strains with (MC181) and without clpX 

(MV0226) under growth conditions described in Materials and methods. Size bar is 2 

μm. (B) Box and whiskers plot of average recovery half-times of ZipA-Gfp rings with 

(MC181) and without clpX (MV0226). The extent of the box encompasses the 

interquartile range of the fluorescence recovery half-times, and whiskers extend to the 

maximum and minimum values. The line within each box represents the median. Where 

indicated, p values are specified as ‘n.s.’ (not significant) as compared to wild type. 
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Fig 6. ClpXP degradation of FtsZ polymers. (A) Alexa Fluor labeled FtsZ (24 μM 

total) was polymerized with GTP (2 mM), where indicated, in the presence of a 

regenerating system, and then incubated alone, with ClpXP (1.6 μM) and ATP (5 mM) or 

with ClpX (1.6 μM) and ATP (5 mM). Reaction products were crosslinked with DSP, 

fractionated on a sucrose gradient and quantified by fluorescence. (B) Plot of the rate of 

degradation with increasing substrate concentration by ClpXP (1 μM) and Alexa Fluor 

labeled FtsZ (0 to 6 μM) with ATP (5 mM), a regenerating system and, where indicated 

GTP (2 mM). Hill coefficients (nh) were calculated by fitting the data to a nonlinear 

regression model as described in Materials and methods. 
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Fig 7. Slow Z-ring fluorescence recovery half-times in strains deleted for other cell 

division regulators. Fluorescence intensity across the long axis of the cell was measured 

and plotted for cells deleted for minC (JC0395) (A), slmA (MV0198) (B), and zapE 

(MV0277) (C) as described in Materials and methods. Inset shows the fluorescence 

image used for quantitation. Individual cells were chosen as representative of the 

population. (D) Plot for average fluorescence recovery half-times of bleached Z-rings in 

cells deleted for minC (JC0395), slmA (MV0198), and zapE (MV0277). The extent of the 

box encompasses the interquartile range of the fluorescence recovery half-times, and 

whiskers extend to the maximum and minimum values. The line within each box 

represents the median, with the mean value indicated by ‘+’. Where indicated, p values 

are specified as ‘**’ (p<0.01) as compared to wild type. 
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S1 Fig.  

ClpXP degradation of Gfp and ClpX unfolding of FtsZ chimeras in vitro. (A) 

Degradation of Gfp (3 μM) in the presence (black circles) and absence (white circles) of 

ClpXP (1 μM), ATP (5 mM) and a regenerating system was measured by monitoring loss 

of fluorescence with time. (B) Unfolding of Gfp-ZC67 (3 μM) in the presence of ClpX (1 

μM), ATP (5 mM) and a regenerating system was measured by monitoring loss of 

fluorescence with time (grey circles). Unfolding of Gfp-FtsZ (5 μM) in the presence 

(green circles) and absence (yellow circles) of GTP, ClpX (1 μM), ATP (5 mM) and a 

regenerating system was measured by monitoring loss of fluorescence with time. For the 

unfolding of Gfp-FtsZ monomers in the absence of GTP, a regenerating system was used 

only for ATP containing creatine kinase (60 g/ml) and phosphocreatine (5 mg/ml). 
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S2 Fig.  

Fluorescence microscopy of Z-rings and replicate recovery curves in clp deficient 

strains. (A) Fluorescence microscopy of wild type cells (JC0390) expressing Gfp-FtsZ 

induced with 70 μM arabinose under growth conditions described in Materials and 

methods in cells deleted for clpX (JC0394), clpP (MV0210), with chromosomal 

clpP(S97A) (MV0256) in place of clpP, cells containing clpP-restored (MV03712) or 

clpX-restored (MV03722). Size bar is 2 μm. Replicate recovery curves for Z-rings 

containing Gfp-FtsZ in cells deleted for clpX (JC0394) (B), clpP (MV0210) (C), cells 

expressing chromosomal clpP(S97A) (MV0256) (D) in place of clpP, cells containing 

clpP-restored (MV03712) (E) or clpX-restored (MV03722) (F). Fluorescence recovery of 

each replicate was normalized to the maximal fluorescence observed during the recovery 

period and plotted with time. Immunoblot showing expression of ClpP (G) or ClpX (H) is 

restored in each deletion strain after replacement of the parE-kan cassette by lambda-Red 

recombination with clpP or clpX genes, where indicated. 
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S3 Fig.  

Expression of Gfp-FtsZ at various arabinose concentrations and impact on Z-ring 

dynamics. (A) Immunoblot for Gfp-FtsZ in wild type cell (JC0390) extracts (1 μg of 

protein) expressing Gfp-FtsZ induced with 0, 70, or 140 μM arabinose under growth 

conditions for photobleaching experiments as described in Materials and methods. (B) 

Plot for average recovery half-times of Z-rings in wild type cells (JC0390) expressing 

Gfp-FtsZ induced with 70 or 140 μM arabinose under growth conditions for 

photobleaching experiments as described in Materials and methods. 
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S4 Fig.  

Z-ring localization and fluorescence recovery in cells expressing Gfp-FtsZ(R379E) 

or Gfp-FtsZ(G105S). (A) Fluorescence intensity across the long axis of the cell was 

measured and plotted for a wild type cell (JC0390) expressing Gfp-FtsZ(R379E). The 

cell and plot shown are representative of the phenotype caused by expression of Gfp-

FtsZ(R379E). Replicate half-time recovery curves for wild type cells (JC0390) 

expressing Gfp-FtsZ(R379E) (B), Gfp-FtsZ(G105S) (C), and Gfp-FtsZ(G105S, R379E) 

(D) induced with 140 μM arabinose under growth conditions for photobleaching 

experiments as described in Materials and methods. Fluorescence recovery of each 

replicate was normalized to the maximal fluorescence observed during the recovery 

period and plotted with time. (E) Rates of GTP hydrolysis for wild type FtsZ, 

FtsZ(R379E), FtsZ(G105S), FtsZ(G105S, R379E), and FtsZ(3527A). (F) Immunoblot for 

Gfp-FtsZ in wild type (JC0390) cells expressing pBad (empty vector), Gfp-FtsZ, Gfp-

FtsZ(G105S), Gfp-FtsZ(R379E), Gfp-FtsZ(G105S, R379E), or Gfp-FtsZ(3527A) induced 

with 140 μM arabinose under growth conditions described in Materials and methods 

using antibodies to detect Gfp (1 μg of protein assayed).  
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S5 Fig.  

Degradation of FtsZ(3527A) by ClpXP in vitro and fluorescence recovery of Gfp-

FtsZ(3527A) in vivo. (A) Degradation reactions containing Alexa Fluor 647 labeled 

FtsZ(3527A) (5 μM total) in the presence of ClpXP (0.75 μM), ATP (5 mM), a 

regenerating system and GTP (2 mM), where indicated, were incubated for 30 minutes 

and then fluorescent degradation products were collected and quantified. (B) Replicate 

half-time recovery curves for wild type cells (JC0390) expressing Gfp-FtsZ(3527A) 

induced with 140 μM arabinose under growth conditions for photobleaching experiments 

as described in Materials and methods.  
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S6 Fig.  

Fluorescence microscopy of Z-rings in cells deleted for other cell division proteins. 

(A) Fluorescence microscopy of Z-rings containing Gfp-FtsZ in wild type cells and cells 

deleted for minC (JC0395), slmA (MV0198), zapE (MV0277), and minC-restored 

(MV03732) under growth conditions for photobleaching experiments as described in 

Materials and methods. (B) Expression of Gfp-FtsZ in cell lysates (1 μg of protein) 

induced with 70 μM arabinose under growth conditions for photobleaching experiments 

described in Materials and methods for cells deleted for minC (JC0395), clpX (JC0394), 

clpP (MV0210), slmA (MV0198), and zapE (MV0277) using antibodies to detect Gfp (C) 

Replicate fluorescence recovery curves for Z-rings containing Gfp-FtsZ in minC-restored 

cells (MV03732). (D) Expression of MinC in minC-restored cells by immunoblot using 

antibodies to MinC. 
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Abstract 

ClpX is a member of the Clp/Hsp100 family of ATP-dependent chaperones and 

partners with ClpP, a compartmentalized protease, to degrade protein substrates bearing 

specific recognition signals. ClpX targets specific proteins for degradation directly or 

with substrate-specific adaptor proteins. Native substrates of ClpXP include proteins that 

form large oligomeric assemblies, such as MuA, FtsZ and Dps in Escherichia coli. To 

remodel large oligomeric substrates, ClpX utilizes multivalent targeting strategies and 

discriminates between assembled and unassembled substrate conformations. Although 

ClpX and ClpP are known to associate with protein aggregates in E. coli, a potential role 

for ClpXP in disaggregation remains poorly characterized. Here, we discuss strategies 

utilized by ClpX to recognize native and non-native protein aggregates and the 

mechanisms by which ClpX alone, and with ClpP, remodels the conformations of various 

aggregates. We show that ClpX promotes the disassembly and reactivation of aggregated 

Gfp-ssrA through specific substrate remodeling. In the presence of ClpP, ClpX promotes 

disassembly and degradation of aggregated substrates bearing specific ClpX recognition 

signals, including heat-aggregated Gfp-ssrA, as well as polymeric and heat-aggregated 

FtsZ, which is a native ClpXP substrate in E. coli. Finally, we show that ClpX is present 

in insoluble aggregates and prevents the accumulation of thermal FtsZ aggregates in vivo, 

suggesting that ClpXP participates in the management of aggregates bearing ClpX 

recognition signals. 
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Introduction 

 

Maintaining cellular proteostasis relies on chaperone pathways that promote 

native protein folding. Typical strategies include targeting misfolded, unfolded, and 

aggregated polypeptides for reactivation or degradation (Bukau and Horwich, 

1998;Wickner et al., 1999;Stoecklin and Bukau, 2013). Misfolded proteins are generated 

during polypeptide elongation and as a complication of environmental stress (Powers and 

Balch, 2013). The challenges imposed on chaperone systems by proteotoxic stress are 

especially relevant in pathogenic organisms like E. coli, which experience extreme 

fluctuations in environmental conditions leading to accumulation of protein aggregates 

and subsequent proteotoxicity (Mogk et al., 2011). Protein quality control systems 

reactivate, degrade and remove damaged and aggregated proteins. Under thermal stress in 

E. coli, the heat shock response provides a cellular defense mechanism and upregulates 

heat shock protein and chaperone levels to restore proteostasis (Mogk et al., 2011). 

 

 In addition to preventing protein aggregation, chaperone proteins mediate 

aggregate clearance through proteolysis of non-native proteins and aggregation reversal 

(Hartl et al., 2011;Mogk et al., 2011). Clearance of misfolded proteins in E. coli is carried 

out by AAA+ (ATPases Associated with diverse cellular Activities) proteins, which 

initiate substrate recognition, unfolding, and translocation into a proteolytic chamber 

(ClpP, HslV) (Snider and Houry, 2008;Sauer and Baker, 2011). Several AAA+ proteins, 
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such as Lon and FtsH, contain both AAA+ chaperone and proteolytic domains within a 

single protomer (Sauer and Baker, 2011). The chaperone-protease Lon recognizes 

exposed aromatic and hydrophobic residues, which may contribute to less stringent 

substrate selectivity and favor degradation of unfolded or misfolded proteins (Gur and 

Sauer, 2008).  

 

The Clp ATPases of the AAA+ superfamily can be separated into two functional 

categories: degradation or disaggregation machines. Degradation machines, including 

ClpX, ClpA, and HslU form complexes with peptidases ClpP or HslV to remove 

misfolded proteins or specific substrates (Zolkiewski, 2006). Disaggregation machines, 

including Hsp104 and its bacterial homolog ClpB, disaggregate and reactivate aggregated 

proteins by an ATP-dependent mechanism and can function in cooperation with the 

Hsp70/DnaK system independent of protein degradation (Zolkiewski, 1999;Dougan et 

al., 2002;Doyle et al., 2007;Sweeny and Shorter, 2016). Through a collaborative 

mechanism, Hsp70, with Hsp40, binds first to a polypeptide segment of an aggregated 

protein and then the substrate is remodeled by Hsp104/ClpB (Zietkiewicz et al., 

2004;Zietkiewicz et al., 2006;Acebron et al., 2009).  

 

E. coli substrates that are degraded by ClpXP include a variety of cellular 

proteins, metabolic enzymes and several proteins capable of forming large 

conformational assemblies, including FtsZ, Dps and MinD (Flynn et al., 2003;Stephani et 
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al., 2003;Neher et al., 2006;Camberg et al., 2009;Camberg et al., 2014;Conti et al., 2015). 

ClpXP can associate with cellular aggregates in E. coli and can promote removal of 

cellular inclusions, but direct protein disaggregation in vitro is not well characterized for 

ClpX (Vera et al., 2005;Winkler et al., 2010). An early study suggested that ClpX, in the 

absence of ClpP, could protect the lambda O phage protein from aggregation and 

resolubilize lambda O aggregates (Wawrzynow et al., 1995). In Bacillus subtilis, ClpX 

also localizes to protein aggregates, suggesting that it may be involved in protein 

disaggregation (Kruger et al., 2000;Kain et al., 2008;Kirstein et al., 2008)Simmons et al., 

2008). ClpX and ClpX substrates are present in polar protein aggregates in E. coli under 

stress in vivo, suggesting that ClpX associates with aggregated proteins and participates 

in their removal (Kain et al., 2008;Maisonneuve et al., 2008;Simmons et al., 2008).  

  

ClpXP comprises an asymmetric, hexameric ring of ClpX docked to two stacked 

heptameric rings of the ClpP serine protease (Wang et al., 1997;Glynn et al., 2009). 

Although ClpX has been shown to independently remodel substrates, such as MuA, in the 

presence of ClpP, hydrophobic ‘IGF’ loops on the bottom surface of the ClpX hexamer 

contact hydrophobic pockets on the ClpP tetradecamer, allowing unfolded substrates to 

access the ClpP proteolytic chamber (Kim et al., 2001;Abdelhakim et al., 2010;Baker and 

Sauer, 2012). Nucleotide binding by ClpX protomers, in the cleft between the large and 

small AAA+ subdomains, regulate the position of the subdomains relative to each other; 

these conformational changes enable ClpX to couple substrate translocation to ATP 
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hydrolysis (Glynn et al., 2009;Baker and Sauer, 2012). Substrates are then translocated 

into the ClpP chamber for degradation (Baker and Sauer, 2012).  

 

  Substrates bind to the ClpX N-domain and to residues in the ClpX central channel 

(pore-loops) (Bolon et al., 2004;Park et al., 2007;Martin et al., 2008;Baker and Sauer, 

2012). The N-domain of ClpX is separated from the AAA+ domain by a flexible linker 

and can dimerize independently. The N-domain is important for direct recognition of 

some substrates, including FtsZ and MuA, as well as adaptor proteins, but is not required 

for direct recognition of the ssrA-tag (Abdelhakim et al., 2008;Martin et al., 

2008;Camberg et al., 2009;Baker and Sauer, 2012). Adaptor proteins, such as RssB or 

SspB, promote the interaction and engagement of specific substrates, such as RpoS or 

ssrA-tagged substrates, respectively (Sauer and Baker, 2011). The ssrA tag is an 11-

residue degron appended to a nascent polypeptide when the ribosome stalls during 

protein synthesis, targeting the misfolded protein for subsequent degradation (Gottesman 

et al., 1998;Levchenko et al., 2000).  

 

 ClpXP is implicated in the degradation of diverse cellular substrates and more 

than 100 substrates have been reported (Flynn et al., 2003;Neher et al., 2006). Native 

substrates of ClpX contain recognition motifs at the N- or C-termini (Flynn et al., 2003). 

Notably, the essential cell division protein FtsZ in E. coli has two distinct ClpX motifs: 

one in the flexible linker region and one near the C-terminus (Camberg et al., 2014). FtsZ 
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is a tubulin homolog that assembles into linear polymers in vitro and forms the septal ring 

critical for division in vivo, called the Z-ring (Erickson et al., 2010). ClpXP degrades 

approximately 15% of FtsZ proteins during the cell cycle in E. coli and is capable of 

degrading both monomers and polymers in vitro (Camberg et al., 2009). ClpXP degrades 

polymers more efficiently, which is consistent with a common strategy of multivalent 

recognition of substrates by AAA+ ATPases (Davis et al., 2009;Camberg et al., 

2014;Ling et al., 2015). In addition to FtsZ, several other ClpXP substrates form large 

oligomeric structures, including the tetrameric phage protein MuA, the dodecameric 

bacterial protein Dps, and the bacterial cell division ATPase MinD (Stephani et al., 

2003;Neher et al., 2006;Abdelhakim et al., 2010;Conti et al., 2015). Like FtsZ, alternate 

monomeric and oligomeric conformations of MuA are also differentially recognized by 

ClpX (Abdelhakim et al., 2008;Abdelhakim et al., 2010;Ling et al., 2015).  

 

In this study, we use engineered and native substrates to investigate the role of 

ClpX and ClpXP in the disassembly and degradation of protein aggregates that bear 

specific ClpX recognition signals. We observed that ClpX, with and without ClpP, 

destabilizes Gfp-ssrA aggregates in vitro. The native ClpXP substrate FtsZ forms several 

discrete conformations, including linear ordered polymers and also heat-induced 

aggregates. Our results show that ClpXP disassembles both heat-induced and linear 

polymers containing FtsZ. Finally, we also demonstrate that thermal stress promotes 

aggregation of FtsZ, which is exacerbated in cells deleted for clpX or clpP. Together, 

these results show bona fide chaperone activity for ClpX in vitro and suggest that ClpX, 
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with or without ClpP, may play a broader role in rescue and disassembly of protein 

aggregates.  

 

Materials and Methods 

Bacterial strains and plasmids  

  E. coli strains and plasmids used in this study are described in Table 1. An 

expression plasmid encoding FtsZ(ΔC67) was constructed by introducing a TAA stop 

codon (at residue 317 of FtsZ) into pET-FtsZ by site-directed mutagenesis (Camberg et 

al., 2009).  

 

Expression and purification of proteins 

  Gfp-ssrA was purified as previously described (Yakhnin et al., 1998). ClpX, 

ClpP, FtsZ, and FtsZ(ΔC67) were each overexpressed in E. coli BL21 (λDE3) and 

purified as described (Maurizi et al., 1994;Grimaud et al., 1998;Camberg et al., 

2009;Camberg et al., 2014). ClpX(E185Q) was purified as described for wild type ClpX, 

except the expression strain, E. coli MG1655 ΔclpX carrying plasmid pClpX(E185Q), 

was induced with 1% arabinose (Table 1) (Camberg et al., 2011). Gfp(uv) containing an 

N-terminal histidine tag was overexpressed in E. coli BL21 (λDE3) and grown to an 

OD600 of 1.0 and induced for 3 hours at 30 ºC. Cells were lysed by French press in 

purification lysis buffer (20 mM HEPES, pH 7.5, 5 mM MgCl2, 50 mM KCl, and 10% 
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glycerol). Soluble extracts were bound to TALON metal affinity resin (GE Healthcare), 

eluted with an imidazole gradient, and imidazole was removed by buffer exchange. 

Protein concentrations are reported as FtsZ monomers, ClpX hexamers, ClpP 

tetradecamers, and Gfp or Gfp-tagged monomers. For polymerization assays, FtsZ was 

labeled with Alexa Fluor 488 and active protein (FL-FtsZ) was collected after cycles of 

polymerization and depolymerization as described (Gonzalez et al., 2003;Camberg et al., 

2014). 

 

Dynamic light scattering 

Dynamic light scattering (DLS) measurements were made using a Zetasizer Nano 

ZS (Malvern Instruments). To determine size distribution, FtsZ (5 μM), aggFtsZ (5 μM),  

Gfp-ssrA (1.5 μM) and aggGfp-ssrA (1.5 μM)  in reaction buffer (50 mM HEPES, pH 

7.5, 100 mM KCl and 10 mM MgCl2) were added to polystyrene cuvettes and scanned at 

23 °C with a detector angle of 173° and a 4 mW, 633 nm He–Ne laser. The reported 

intensity-weighted hydrodynamic diameters are based on 15 scans. 

 

Heat denaturation, aggregation, disassembly and reactivation of aggregated 

substrates  

To heat-inactivate Gfp substrates, Gfp-ssrA (1.5 μM) or Gfp(uv) (1.5 μM) was 

added, where indicated, to buffer containing HEPES (50 mM, pH 7.5), KCl (100 mM), 

MgCl2 (10 mM), glycerol (10%) and dithiothreitol (DTT) (2 mM) in a volume of 800 μl 
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and incubated at 85 °C for 15 minutes. Immediately following heat-treatment, the 

denatured substrate was placed on ice for 2 minutes and added to a reaction (50 μl) 

containing ClpX, (0.3 μM), ClpX (E185Q) (0.3 μM), ClpP (0.3 μM), ATP (4 mM), 

ATPγS (1 mM), or ADP (2 mM), where indicated. Samples containing ATP were 

supplemented with an ATP-regenerating system containing phosphocreatine (5 mg ml-1) 

and creatine kinase (CK) (60 μg ml-1). Fluorescence recovery was monitored by 

measuring fluorescence in a Cary Eclipse fluorometer with excitation and emission 

wavelengths set at 395 nm and 510 nm, respectively. Readings were corrected for 

background signal by subtracting the fluorescence of buffer. Rates were calculated by 

fitting to a one-phase association model in GraphPad Prism (version 6.0b). 

Disaggregation was monitored by 90º-angle light scatter with excitation and emission 

wavelengths set to 550 nm. Readings were corrected for background signal by 

subtracting the scatter of the buffer and then plotted as percent of the initial turbidity. 

Heat-induced aggregation of Gfp-ssrA with time was monitored by 90º-angle light scatter 

with the temperature of the cuvette holder set to 80 ºC using a circulating water bath. 

 To inactivate native FtsZ substrates, FtsZ and FtsZ(ΔC67) (5 µM) were heated 

for 15 minutes in reaction buffer (20 mM HEPES, pH 7.5, 100 mM KCl, 10 mM MgCl2) 

in a volume of 120 μl at 65 ºC, then cooled on ice for 40 seconds, and held at 23 °C until 

addition to reactions (60 μl volume) containing ClpX (0.5 µM or 1 µM), ClpX(E185Q) 

(0.5 µM), ClpP (1 µM), ATP (4 mM) and an ATP-regenerating system (phosphocreatine 

at 5 mg ml-1 and creatine kinase at 60 μg ml-1), where indicated. Disaggregation was 

monitored by 90º-angle light scatter with excitation and emission wavelengths set to 450 
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nm. Readings were corrected for background signal by subtracting the scatter of the 

buffer and then plotted as percent of the initial turbidity. Heat-induced aggregation of 

FtsZ with time was monitored by 90º-angle light scatter with the temperature of the 

cuvette holder set to 65 ºC using a circulating water bath.   

 

Polymerization and GTP hydrolysis assays 

  FL-FtsZ was incubated with the GTP analog GMPCPP (0.5 mM) in the presence 

of increasing concentrations of ClpX and ClpP (0, 0.25, 0.5 or 1 µM) as indicated and in 

the presence of phosphocreatine at 5 mg ml-1 and creatine kinase at 60 μg ml-1. Samples 

were incubated for 3 minutes in buffer containing MES (50 mM, pH 6.5), KCl (100 mM) 

and MgCl2 (10 mM) at 23 ºC, then centrifuged at 129,000 x g in a Beckman TLA 120.1 

rotor for 30 minutes. Pellets were resuspended in 0.2 M NaCl with 0.01% Triton X-100 

(100 μl) and the fluorescence associated with FL-FtsZ for supernatants and pellets was 

measured using a Cary Eclipse spectrophotometer. GTP hydrolysis rates for FtsZ and 

FtsZ(ΔC67) were measured before and after aggregation using the Biomol Green (Enzo 

Life Sciences) detection reagent as described (Camberg et al., 2014). 

 

Heat shock of wild type and deletion strains 

E. coli wild type and deletion strains were grown overnight, diluted 1:100 in fresh 

Lennox broth the next day and grown at 30 °C to an OD of 0.4. All strains were 

incubated in a water bath at 50 °C for 1 hour, followed by recovery at 30 °C for 35 
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minutes. Cells were harvested by centrifugation and lysed with Bacterial Protein 

Extraction Reagent (B-PER) (ThermoFisher Scientific) (2 ml) and lysozyme (25 μg ml-1). 

Insoluble fractions were collected by centrifugation at 15,000 x g for 5 minutes at 4 °C, 

resuspended in lithium dodecyl sulfate sample buffer and analyzed by reducing SDS-

PAGE. Total proteins were transferred to a nitrocellulose membrane and visualized by 

Ponceau (Fisher Scientific) staining and membranes were immunoblotted using 

antibodies to ClpX and FtsZ (Camberg et al., 2009;2011). Band intensities were analyzed 

by densitometry (NIH ImageJ), normalized to the intensity of the average of the ‘no heat’ 

sample, and evaluated for significance by the Mann-Whitney test. Where indicated, to 

test a mild heat shock condition, cells were incubated in a water bath at 42 °C for 30 

minutes, followed by recovery at 30 °C for 35 minutes, and analyzed as described.
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Results 

ClpXP degrades aggregates in vitro 

To determine if ClpX can remodel protein substrates from the aggregated state, 

we used the fusion protein, Gfp-ssrA, which forms aggregates upon heat treatment 

(Zietkiewicz et al., 2004;Zietkiewicz et al., 2006). Gfp-ssrA is rapidly degraded by 

ClpXP and has been extensively studied to understand substrate targeting by ClpXP. 

The Gfp moiety is widely used in protein disaggregation assays because it forms non-

fluorescent aggregates when heated, but is disaggregated and reactivated by several 

chaperone systems (Zietkiewicz et al., 2004;Zietkiewicz et al., 2006). Therefore, we 

heated Gfp-ssrA at 85 °C for 15 minutes to induce aggregation (aggGfp-ssrA), 

resulting in an 86% loss of fluorescence emitted (Figure 1A). Next, to measure the 

distribution of aggregates by size after heating, we performed dynamic light scattering 

(DLS) of untreated and heat-denatured Gfp-ssrA. We observed that without heating, 

the particle sizes are uniform with an average hydrodynamic diameter of 8-10 nm 

(Figure 1B). After heating, aggregates are approximately 500-600 nm, and there is a 

narrow distribution of particle sizes and no small particles (i.e., less than 100 nm) 

(Figure 1C). Upon heat-treatment, aggregation of Gfp-ssrA (1.5 μM) occurs rapidly 

and plateaus by 10 minutes by 90°-angle light scattering (Figure 1D). The heat 

inactivation is irreversible since incubation of aggregated Gfp-ssrA (aggGfp-ssrA) 

alone does not lead to appreciable fluorescence reactivation, which is consistent with 

previous reports using Gfp (Figure S1) (Zietkiewicz et al., 2004). To determine if 
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ClpXP can bind to aggregates and degrade them, we incubated aggGfp-ssrA with 

ClpXP and monitored turbidity by 90°-angle light scattering. Incubation of aggGfp-

ssrA with ClpXP led to a 35% loss of turbidity in 2 hours (Figure 1E). However, when 

ClpXP was omitted from the reaction, there was very little change in turbidity over 

time (5% loss in 2 hours) (Figure 1E). This suggests that ClpXP targets aggregated 

substrates for degradation. To determine if degradation is required to reduce turbidity, 

we omitted ClpP and observed that ClpX is capable of reducing sample turbidity by 

15% in 2 hours (Figure 1E). Finally, when ATP was omitted from the reaction 

containing ClpXP, we observed a less than 10% reduction in the turbidity of the 

reaction (Figure 1E). To confirm that ClpXP degrades aggGfp-ssrA, we incubated 

aggGfp-ssrA with combinations of ClpX, ClpP and ATP, and sampled degradation 

reactions after 2 hours. We observed that in the presence of ClpXP, aggGfp-ssrA is 

degraded, but not when ClpP or ATP was omitted (Figure 1F). Together, these results 

demonstrate that ClpXP targets aggregates for ATP-dependent degradation and that 

ClpX is also capable of promoting disassembly in the absence of ClpP.  

 

FtsZ is a well-characterized ClpXP substrate that is essential for cell division 

and forms linear polymers in vitro in the presence of GTP (Erickson et al., 2010). We 

previously showed that ClpXP binds to GTP-stimulated FtsZ polymers and promotes 

FtsZ degradation (Camberg et al., 2009). ClpXP also recognizes and degrades non-

polymerized FtsZ, but less efficiently than polymerized FtsZ (Camberg et al., 2009). 

In vitro, FtsZ rapidly aggregates when heated at 65 °C and this aggregation is 
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associated with an increase in overall light scatter and a 97% loss of GTPase activity 

(Figure 2A and 2B). FtsZ, which purifies as a mixture of monomers (40.4 kDa) and 

dimers (80.8 kDa), has an average hydrodynamic diameter of 10-15 nm by DLS 

(Figure 2C). Heat treatment of FtsZ (5 μM) at 65 °C produces several particle sizes, 

including small (30-40 nm) and large aggregates (>300 nm) (Figure 2D). To 

determine if ClpXP reduces the turbidity associated with aggregated FtsZ (aggFtsZ), 

we incubated aggFtsZ with ClpXP and ATP and observed a 40% loss of turbidity after 

incubation with ClpXP for 2 hours (Figure 2E). However, in the absence of ClpXP, 

the light scatter signal remained stable for aggFtsZ (Figure 2E). Incubation of ClpX 

with aggFtsZ also resulted in a 25% loss in light scatter, suggesting that ClpX also 

promotes disassembly of aggregates similar to what we observed for aggGfp-ssrA 

(Figure 2E and 1E).  

 

Next, to confirm that aggFtsZ is degraded by ClpXP, we assembled reactions 

containing combinations of aggFtsZ, ClpX, ClpP and ATP and sampled these 

reactions at 0 and 120 minutes for analysis by SDS-PAGE. We observed that in the 

presence of ClpXP and ATP, 50% of the total aggFtsZ in the reaction is lost to 

degradation after 120 minutes (Figure 2F). Omission of either ClpP or ATP from the 

reaction prevents loss of aggFtsZ (Figure 2F). These results indicate that ClpXP 

degrades aggFtsZ. Furthermore, the amount of aggFtsZ after incubation with ClpX is 

unchanged despite the decrease in light scatter detected, suggesting that ClpX can 

disaggregate aggFtsZ (Figure 2E and 2F). 
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In addition to forming aggregates upon heating, FtsZ also assembles into a 

linear head-to-tail polymer, which is a native, ordered aggregate, and distinct from the 

disordered aggregates which are induced by heating (aggFtsZ). We compared the loss 

of aggFtsZ by ClpXP to a similar reaction monitoring loss of native polymerized FtsZ, 

which is a known substrate of ClpXP. Like aggFtsZ, we also observed a ~50% loss of 

polymeric FtsZ, stabilized by the GTP analog GMPCPP, after 120 minutes in 

reactions containing ClpXP and ATP (Figure 2F). GMPCPP promotes the assembly of 

stable polymers that are far less dynamic than polymers assembled with GTP (Lu et 

al., 2000). To test if ClpXP disassembles GMPCPP-stabilized FtsZ polymers, we 

incubated pre-assembled polymers with ClpXP and ATP. Then, we collected polymers 

by high-speed centrifugation. In these assays, we used active fluorescent FtsZ, labeled 

with Alexa fluor 488 (FL-FtsZ), to quantify the amount of polymerized FtsZ in the 

pellet fraction and soluble FtsZ in the supernatant. We observed that after incubation 

of GMPCPP-stabilized FtsZ polymers with increasing concentrations of ClpXP (0 μM 

to 1 μM), few FtsZ polymers were recovered in the pellet fractions containing ClpXP 

(26% of the total FtsZ was recovered in the reaction containing 1 μM ClpXP), 

indicating that ClpXP is highly effective at promoting the disassembly of GMPCPP-

stabilized FtsZ polymers (Figure 2G). 

 

ClpX reactivates heat-aggregated Gfp-ssrA 
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Incubation of ClpX with aggGfp-ssrA resulted in loss of turbidity, suggesting 

that ClpX may function independently of ClpP to reactivate substrates (Figure 1E). 

Reactivation of misfolded proteins may occur through binding and stabilization of 

intermediates enabling proteins to adopt the native folded conformation, or through 

ATP-dependent chaperone-assisted unfolding. To determine if ClpX, which 

recognizes the ssrA amino acid sequence, is able to reactivate aggGfp-ssrA, we 

monitored fluorescence of aggGfp-ssrA in the presence and absence of ClpX and 

ATP. AggGfp-ssrA regains very little fluorescence alone, approximately 20 units, 

which is 8% of the initial fluorescence lost upon heating; however, in the presence of 

ClpX, fluorescence recovers rapidly in the first 10 minutes of the reaction and then 

plateaus, regaining approximately 85 units, which is 27% of the initial fluorescence 

lost upon heating (Figure 3A).  

 

ClpX catalyzes ATP-dependent unfolding of substrates (Kim et al., 2000;Singh 

et al., 2000). To determine if ATP is essential for reactivation, we incubated aggGfp-

ssrA with ClpX under various nucleotide conditions including with ATP, the ATP 

analog ATPɣS, ADP and omission of nucleotide. We observed an 82% slower rate of 

fluorescence reactivation when ClpX and aggGfp-ssrA were incubated with ATPɣS 

than with ATP (0.02 AU min-1 and 0.11 AU min-1, respectively), and no recovery over 

background with ADP or without nucleotide (Figure 3B). Reactivation by ClpX and 

ATP is prevented in the presence of ClpP, and the residual fluorescence after heat 

treatment is lost upon degradation (Figure S2). Together, these results indicate that 
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ClpX requires ATP to reactivate Gfp-ssrA and, surprisingly, that ATPɣS is also 

capable of promoting reactivation, although at a much slower rate than ATP (Figure 

3B).  

 

Reactivation and disaggregation by ClpX requires a specific recognition sequence

  

Next, we determined if a ClpX recognition motif is important for efficient 

recognition of aggregated substrates by ClpX. We compared reactivation of aggGfp-

ssrA with heat-aggregated Gfp (aggGfp) without an ssrA tag. We observed that after 

incubation with ClpX and ATP for 60 minutes, approximately 30 units of fluorescence 

were recovered, which is 8% of the initial pre-heat fluorescence, indicating that 

aggGfp is a poor substrate for reactivation by ClpX  (Figure 4A). In contrast, aggGfp-

ssrA recovered 33% (>100 units) of the initial pre-heat fluorescence after incubation 

with ClpX (Figure 4A). 

 

 Two regions of FtsZ are important for promoting degradation of E. coli FtsZ 

by ClpXP, one in the unstructured linker region (amino acids 352-358) and one near 

the C-terminus (residues 379 through 383) (Camberg et al., 2014). Using a truncated 

FtsZ mutant protein, FtsZ(ΔC67), which is deleted for 67 C-terminal amino acid 

residues, including both regions involved in ClpX recognition, we tested if ClpXP 

reduces the light scatter in reactions containing heat-aggregated FtsZ(ΔC67) 
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[aggFtsZ(ΔC67)]. We heated FtsZ(ΔC67) at 65 °C for 15 minutes, the condition that 

promotes aggregation of full length FtsZ, and confirmed that heat treatment resulted in 

an 84% loss of GTP hydrolysis activity and an increase in light scatter, which is stable 

over time (Figure 4B and 4C). In the presence of ClpXP, we observed no decrease in 

light scatter for aggFtsZ(ΔC67) after incubation for 120 minutes (Figure 4C), which is 

expected since FtsZ(ΔC67) is a poor substrate for ClpXP degradation (Figure S3). 

Together, these results demonstrate that for ClpX to recognize aggregates and promote 

disaggregation, disassembly and/or reactivation, a ClpX recognition motif is required. 

 

Impaired reactivation by ClpX(E185Q) 

ATP is required for reactivation of aggGfp-ssrA, however, it is unknown if this 

event requires ATP-hydrolysis and substrate unfolding. Therefore, we used the ClpX 

mutant protein ClpX(E185Q), which has a mutation in the Walker B motif and is 

defective for ATP-hydrolysis, but interacts with substrates (Hersch et al., 

2005;Camberg et al., 2014). We observed that ClpX(E185Q) is defective for 

disaggregation of aggGfp-ssrA by monitoring turbidity by 90°-angle light scatter of 

reactions containing aggGfp-ssrA, ClpX(E185Q) and ATP (Figure 5A). We also 

tested if aggFtsZ is disassembled by ClpX(E185Q), and observed no reduction in light 

scatter in reactions containing aggFtsZ, ClpX(E185Q) and ATP after 120 minutes 

compared to ClpX (Figure 5B). Finally, we tested if reactivation of aggGfp-ssrA 

requires ATP hydrolysis using ClpX(E185Q) instead of ClpX. We observed that 

ClpX(E185Q) promotes a small amount of reactivation of aggGfp-ssrA and restores 
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fluorescence, but to a much lesser extent than the level observed for wild type ClpX 

(Figure 5C). These results suggest that ATP hydrolysis by ClpX is required to promote 

efficient reactivation of aggGfp-ssrA and disassembly of large complexes containing 

aggFtsZ or aggGfp-ssrA (Figure 5A, 5B and 5C).  

 

ClpXP prevents accumulation of FtsZ aggregates in vivo under extreme thermal 

stress 

ClpX and ClpP were previously reported to localize to protein aggregates in E. 

coli, suggesting that ClpXP may target aggregates in vivo for direct degradation 

(Winkler et al., 2010). We used the native ClpXP substrate FtsZ, which aggregates 

upon heat treatment, to determine if ClpX and/or ClpXP modulates FtsZ aggregate 

accumulation after thermal stress by comparing the levels of FtsZ present in insoluble 

cell fractions (Figure 2A and 6A). Wild type cells and cells deleted for clpX, clpP, 

clpB, clpA, dnaK, lon, hslU and hslV were exposed to heat shock and insoluble protein 

fractions were collected and analyzed by immunoblot. We observed that FtsZ was 

present in the insoluble fraction of wild type cells (BW25113), and this amount was 

42% higher in cells exposed to heat shock at 50 °C (Figure 6A and S4A). However, 

FtsZ levels were even higher in the insoluble fractions of ΔclpX and ΔclpP strains 

compared to the parental strain (2.4-fold and 2.3-fold, respectively), although the 

amount of total protein was similar to the wild type strain exposed to heat shock 

(Figure S4B). We detected less protein overall in the ΔdnaK strain after recovery, but 

this strain also had poor viability after heat shock and recovery (Figure S4C). In 
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addition, we also detected ClpX in the insoluble fraction in all strains except the clpX 

deletion strain (Figure S4A). Next, we conducted a mild heat shock, 42 °C for 30 

minutes, followed by recovery, and observed that deletion of clpB had a larger effect 

on the accumulation of insoluble FtsZ than deletion of clpX (Figure S4D).  To 

determine the relative contributions of either clpB or clpX during a 40 minute recovery 

period after incubation at 50 °C, we analyzed insoluble FtsZ levels at 20 minute time 

intervals during recovery (Fig. 6B). Notably, we observed that in cells deleted for 

clpX, insoluble FtsZ was present immediately after heat treatment and continued to 

accumulate throughout the recovery period to a greater extent than in wild type or 

clpB deletion cells. These results suggest that ClpXP prevents accumulation of FtsZ 

aggregates in cells exposed to extreme thermal stress. Since we observed that 

insoluble FtsZ levels were elevated in ΔclpB strains exposed to mild heat shock 

(Figure S4D), we repeated the recovery time course in clpX and clpB deletion strains 

after mild heat shock, 42 °C for 30 minutes, to monitor insoluble FtsZ levels (Figure 

S4E). We observed that insoluble FtsZ accumulates during the recovery period in clpB 

deletion strains after mild heat shock (Figure S4E).  

Finally, if ClpXP is active in cells after severe heat shock, then it should not be 

a thermolabile protein. To determine if ClpXP remains active after exposure to 50 °C 

in vitro, we incubated ClpXP in buffer at 50 °C for one hour, and then measured 

activity after addition of Gfp-ssrA by monitoring the loss of Gfp-ssrA fluorescence. 

We observed that ClpXP remained active for unfolding and degradation of Gfp-ssrA 

after incubation at 50 °C for one hour (Figure S4F). As a control, ClpXP was also 
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incubated in buffer at 30 °C for one hour and then assayed for activity.  We observed 

that ClpXP incubated at 30 °C was more active than ClpXP incubated at 50 °C, 

suggesting that a partial loss of activity had occurred at high temperature (Figure S4F). 

However, this assay was performed in the complete absence of other cellular 

chaperones or substrates and suggests that some ClpXP likely continues to retain 

activity after exposure to heat stress, while some may become inactivated. 

 

Discussion 

 

Here, using both a native and an engineered aggregated substrate, we 

demonstrate that ClpXP has the operational capacity to disassemble and degrade large 

aggregates that have ClpX degrons. In this study, FtsZ, a native substrate of ClpXP in 

E. coli, was aggregated in vitro by thermal stress, and we further show that FtsZ also 

aggregates in vivo when cells are exposed to high temperature (Figure 2A and 6A). 

The observation that FtsZ is aggregation prone is in agreement with a prior study 

reporting the presence of FtsZ in intracellular aggregates of ΔrpoH cells incubated at 

42 °C by mass spectrometry (Tomoyasu et al., 2001).  FtsZ aggregates are cleared in 

vitro and in vivo by ClpXP, and ClpXP does not require the assistance of additional 

chaperones (Figure 2E, 2F and 6A). Moreover, in the absence of ClpP, ClpX also 

promotes disassembly of FtsZ and Gfp-ssrA aggregates indicating that disassembly 

can also occur by a proteolysis-independent mechanism, although disaggregation is 
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more efficient in the presence of ClpP. ClpXP-mediated disassembly of Gfp-ssrA 

aggregates requires ATP in experiments monitoring turbidity (Figure 1E). In addition, 

the Walker B mutation in ClpX, E185Q, which impairs ATP hydrolysis, also impairs 

disaggregation of aggGfp-ssrA and, to a lesser extent, aggFtsZ. Aggregate 

disassembly and resolubilization by ClpX was previously described using the substrate 

lambda O protein, and here we show disassembly of aggregates and kinetic monitoring 

using two additional substrates, as well as reactivation of Gfp-ssrA fluorescence 

(Wawrzynow et al., 1995). Reactivation of Gfp-ssrA is largely dependent on ATP 

hydrolysis (Figure 3B), since ClpX(E185Q) only weakly promotes reactivation of 

aggregated Gfp-ssrA (Figure 5C), yet ClpX(E185Q) is capable of stable interactions 

with substrates in the presence of ATP, although they are not unfolded (Hersch et al., 

2005;Camberg et al., 2014). It is unlikely that there are soluble, unfolded Gfp-ssrA 

monomers in solution after heating, since we did not detect them by DLS and it has 

been demonstrated that soluble, unfolded Gfp rapidly refolds, in 20 to 30 seconds, by a 

spontaneous reaction that does not require chaperones (Figure 1C) (Makino et al., 

1997;Tsien, 1998;Zietkiewicz et al., 2004). Therefore, it is likely that large aggregates 

contain loosely associated unfolded proteins, which can be removed and reactivated 

by ClpX and, in the case of Gfp-ssrA, allowed to spontaneously refold. As expected, 

recognition by ClpX is highly specific, as Gfp without an ssrA-tag is not reactivated 

(Figure 4A). 
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We also detected partial disaggregation of aggFtsZ by ClpX, but not by 

ClpX(E185Q) (Figure 5B). Aggregation of FtsZ is induced at 65 °C, but the 

aggregates formed by FtsZ are smaller than those formed by Gfp-ssrA (30 nm and 600 

nm, respectively) (Figure 1C and 2D). FtsZ aggregates likely contain 8-10 monomers, 

based on the average size of a folded FtsZ monomer, which is approximately 40 Å in 

diameter (Figure 2D) (Oliva et al., 2004). In contrast, Gfp aggregates in this study 

likely contain more than 120 subunits, based on an average size of a folded Gfp 

monomer, which is approximately 50 Å across the long axis (van Thor et al., 2005). 

The small size of the FtsZ aggregate may allow it to be more susceptible to 

disassembly by ClpX than a larger aggregate.  

 

In the model for disassembly of aggregates by ClpXP, ClpX binds to exposed 

recognition tags on the surface of the aggregate and promotes removal, unfolding and 

degradation of protomers from within the aggregate (Figure 7A). Removal of 

protomers eventually leads to destabilization and fragmentation of the aggregate as 

well as degradation (Figure 1F and 2F). Although this process does not require ClpP, 

it occurs more robustly when ClpP is present than when ClpP is omitted (Figure 1E 

and 2E).   For aggregated substrate reactivation, ClpX likely engages unfolded 

protomers from the aggregate, which may be internal or loosely bound to the exterior 

of the aggregate, unfolds and release them. For small aggregates, this activity may be 

sufficient to lead to fragmentation and capable of promoting reactivation of substrates 

such as Gfp-ssrA (Figure 7B).  
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Finally, we observed large increases in insoluble FtsZ when cells were exposed 

to two different temperatures, 50 °C, which represents extreme heat shock, and 42 °C, 

which represents a mild heat shock (Figure 6A, 6B and S4D). At 42 °C, deletion of 

clpB was associated with a large accumulation of insoluble FtsZ, suggesting that under 

mild heat stress, ClpB is the major factor that ensures FtsZ solubility (Figure S4D and 

S4E). However, we observed a remarkably different result after heat shock at 50 °C 

and throughout the recovery period. Specifically, in a clpX deletion strain, large 

amounts of insoluble FtsZ accumulate during the recovery period to a greater extent 

than in a clpB deletion strain (Figure 6A and 6B). It is unknown if ClpXP and ClpB 

are processing FtsZ aggregates directly in vivo, because we did not observe a 

reduction of aggregated FtsZ during the recovery period for any strain. FtsZ is 

typically present at very high levels (5,000 to 20,000 copies per cell) and is essential 

for cell division in E. coli (Bramhill, 1997). Interestingly, FtsZ also forms linear 

polymers as part of its normal biological function to promote cell division, and 

polymers are efficiently recognized, disassembled and degraded by ClpXP (Figure 2F 

and 2G) (Camberg et al., 2009;Camberg et al., 2014;Viola et al., 2017).  Given the 

diverse conformational plasticity of FtsZ, its use as a model disaggregation and 

remodeling substrate will be informative for studies of targeting and processing of 

multisubunit substrates by AAA+ proteins. As with FtsZ, many other ClpXP 

substrates are detectable in protein aggregates in cells (Flynn et al., 2003;Maisonneuve 

et al., 2008). Moreover, a previous study showed that ClpXP is important for cell 
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viability under thermal stress conditions in cells depleted of DnaK (Tomoyasu et al., 

2001). Given that it is estimated that 2-3% of E. coli proteins are ClpXP substrates, 

ClpXP likely serves as an additional mechanism to manage accumulation of 

aggregation-prone proteins in vivo, particularly under extreme stress conditions (Flynn 

et al., 2003;Maisonneuve et al., 2008).  
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TABLE 1.  E. coli strains and plasmids used in this study 

 

 
Strain or           Genotype    Source, reference or  
Plasmid        Construction 
Strains   
BW25113 F-, DE(araD-araB)567, lacZ4787(del)(::rrnB-3),        Datsenko and Wanner, 2000 
  LAM-, rph-1, DE(rhaD-rhaB)568, hsdR514 
JW0429  F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3),   Baba et al., 2006 
   Δlon-725::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 
 JW0428   F-, Δ(araD-araB)567,ΔlacZ4787(::rrnB-3),    Baba et al., 2006 
     ΔclpX724::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514  
JW0427               F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3),     Baba et al., 2006 
     ΔclpP723::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 
JW2573   F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3),     Baba et al., 2006 
     ΔclpB757::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 
JW0866   F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3),     Baba et al., 2006 
     ΔclpA783::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 
JW3902   F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3),     Baba et al., 2006 
     ΔhslU790::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 
JW3903   F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3),     Baba et al., 2006 

    ΔhslV720::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 
JW0013   F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3),    Baba et al., 2006 

    ΔdnaK734::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 
JW0462  F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3),   Baba et al., 2006 

   ΔhtpG757::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 
JC0259  MG1655 ΔclpX::kan             Camberg et al., 2011 
 
Plasmids 
pET-ClpX  kan                Camberg et al. 2009 
pET-ClpP  kan                Maurizi et al. 1994 
pET-FtsZ  kan                 Camberg et al. 2009 
pET-FtsZ(ΔC67)   kan                 This study  
pET-H6-Gfp(uv)  kan                 This study 
pBad-Gfp-ssrA  amp                 Singh et al., 2000 
pClpX(E185Q)  amp                  Camberg et al., 2011 
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Figure 1 – Disaggregation and degradation of aggregated Gfp-ssrA by ClpXP. 

(A) The fluorescence emission spectra (450-600 nm) of Gfp-ssrA (1.0 μM) (green) 

and heat-treated Gfp-ssrA (1.0 μM) (black) (85 °C for 15 minutes) were measured 

using an excitation wavelength of 395 nm. Plotted curves are representative of three 

traces. 

(B) DLS was performed for Gfp-ssrA (1.0 μM) (green) as described to determine 

particle size (nm) distribution. 

(C) DLS was performed for heat-treated Gfp-ssrA (aggGfp-ssrA) (1.0 μM) (black) as 

described to determine particle size (nm) distribution. 

(D) Aggregation by 90°–angle light scatter was measured for Gfp-ssrA (1.5 μM) (open 

circles) in a cuvette attached to a circulating water bath held at 80 °C. Light scattering 

was monitored for 15 minutes. 

(E) Disaggregation of aggGfp-ssrA (1 μM) was monitored by 90°–angle light scatter 

as described in Materials and Methods. Disaggregation reactions contained aggGfp-

ssrA (1 μM) (black circles), ClpX (0.5 μM) and ATP (blue circles), ClpX (0.5 μM) 

and ClpP (0.6 μM) (gold circles), ClpX (0.5 μM), ClpP (0.6 μM), and ATP (4 mM) 

(red circles), and a regenerating system, where indicated. Light scattering was 

monitored for 120 minutes. Curves shown are representative of at least three 

replicates. 

(F) Degradation of Gfp-ssrA and aggGfp-ssrA was monitored as described in 

Materials and Methods in reactions containing Gfp-ssrA (1 μM) or aggGfp-ssrA (1 
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μM), where indicated, and    ClpX (0.5 μM), ClpP (0.6 μM), ATP (4 mM), and a 

regenerating system, where indicated. Reactions were incubated at 23 °C for 120 

minutes and samples were analyzed by SDS-PAGE and Coomassie stain. 
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Figure 2 - Aggregation and disaggregation of native ClpXP substrate FtsZ. 

(A) Aggregation by 90°–angle light scatter was measured for FtsZ (5 µM) (black 

circles) in a cuvette attached to a circulating water bath at 65 °C for 30 minutes as 

described in Materials and Methods. The curve shown is representative of at least 

three replicates. 

(B) Rates of GTP hydrolysis were measured for FtsZ (5 µM) (gray) and aggFtsZ (5 

µM) (black) with GTP (1 mM) for 15 minutes at 30 °C, as described in Materials and 

Methods. The average rate was determined from at least four replicates. 

(C) DLS was performed for FtsZ (5 µM) (gray) as described to determine particle size 

(nm) distribution. 

(D) DLS was performed for aggFtsZ (5 µM) (black) as described to determine particle 

size (nm) distribution. 

(E) Disaggregation of aggFtsZ (5 µM) was monitored by 90°-angle light scatter as 

described in Materials and Methods. Disaggregation reactions contained aggFtsZ (5 

µM) (black circles) or aggFtsZ (5 µM) and ClpX (1 µM) (blue circles), or aggFtsZ (5 

µM), ClpX (1 µM), and ClpP (1 µM) (red circles), with ATP (4 mM) and a 

regenerating system. Light scattering was monitored for 120 minutes. The curves 

shown are representative of at least three replicates. 

(F) Degradation was monitored for FtsZ and aggFtsZ as described in Materials and 

Methods in reactions containing FtsZ (6 µM), aggFtsZ (6 µM), ClpX (0.5 µM), ClpP 

(0.5 µM), ATP (4 mM) and a regenerating system, where indicated. For degradation 
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of FtsZ, GMPCPP (0.5 mM) was included to promote the assembly of stable 

polymers. Degradation reactions were incubated at 23 °C for 120 minutes. To detect 

protein loss due to degradation, samples from 0 and 120 minutes were analyzed by 

SDS-PAGE to solubilize any remaining aggregates.  

 (G) Degradation was monitored for FL-FtsZ (125 pmol) incubated in the presence of 

GMPCPP (0.5 mM) for 3 minutes, then ATP (4 mM), a regenerating system, and 

increasing concentrations of ClpXP (0, 0.25, 0.5 and 1 µM as shown) were added and 

reactions were incubated for an additional 30 minutes at 23 °C. Reactions were 

centrifuged at 129,000 x g for 30 minutes at 23 °C. Pellet-associated FtsZ was 

quantified by fluorescence, and each data point is an average of at least three 

replicates.  
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Figure 3 - Reactivation of aggregated Gfp-ssrA in the presence of ClpX. 

(A) Reactivation of aggGfp-ssrA (1.0 μM) was monitored as described in Materials 

and Methods in the absence (black circles) and presence (blue circles) of ClpX (0.3 

μM), ATP (4 mM), and a regenerating system. Fluorescence emission (AU) was 

monitored for 30 minutes. The curves shown are representative of at least three 

replicates. 

(B) Reactivation of aggGfp-ssrA (1.0 μM) was monitored in the absence (black 

circles) or presence of ClpX (0.3 μM), ATP (4 mM) and a regenerating system (blue 

circles), ATPγS (2 mM) (orange circles), ADP (2 mM) (green circles), or no 

nucleotide (gray circles), where indicated. Fluorescence emission (AU) was monitored 

for 60 minutes. The curves shown are representative of at least three replicates. 
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Figure 4 - Aggregation and disaggregation of ClpXP substrates with and without 

recognition motifs. 

(A) Reactivation of aggGfp-ssrA (1.0 μM) alone (dark gray circles) or in the presence 

of ClpX (0.3 μM) (blue circles), and reactivation of aggGfp(uv) alone (1.0 μM) (light 

gray circles) or in the presence of ClpX (0.3 μM) (green circles), where indicated, was 

monitored with ATP (4 mM) and a regenerating system as described in Materials and 

Methods. Fluorescence emission (AU) was monitored for 60 minutes. The plotted 

curves are representative of at least three replicates. 

(B) Rates of GTP hydrolysis were determined as described in Materials and Methods 

for FtsZ(ΔC67) (5 µM) (gray) and aggFtsZ(ΔC67) (5 µM) (black), where indicated, 

incubated with GTP (1 mM) for 15 minutes at 30 °C. The average rate was determined 

from at least four replicates. 

(C) Disaggregation was monitored by 90°-angle light scatter for aggFtsZ(ΔC67) (5 

µM) alone (black), aggFtsZ(ΔC67) (5 µM) in the presence of ClpXP (0.5 µM), ATP 

(4 mM) and a regenerating system (red), or aggFtsZ(5 µM) in the presence of ClpXP 

(0.5 µM), ATP (4 mM) and a regenerating system (blue) where indicated as described 

in Materials and Methods. Light scattering was monitored for 120 minutes. The 

curves shown are representative of at least three replicates.  
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Figure 5 – Disaggregation and reactivation of ClpX substrates in the presence of 

ClpX(E185Q). 

(A) Disaggregation was monitored by 90°-angle light scatter, as described in 

Materials and Methods for aggGfp-ssrA (1.0 µM) alone (black circles) or in the 

presence of ClpX (0.5 μM) (blue circles) or ClpX (E185Q) (0.5 μM) (open circles), 

where indicated, with ATP (4 mM), and a regenerating system. Light scattering was 

monitored for 120 minutes. The curves shown are representative of at least three 

replicates. 

(B) Disaggregation was monitored by 90°-angle light scatter for aggFtsZ (5 µM), 

ClpX (0.5 µM) or ClpX(E185Q) (0.5 µM) where indicated, ATP (4 mM), and a 

regenerating system for 120 minutes as described in Materials and Methods. The 

curves shown are representative of at least three replicates. 

 (C) Reactivation was monitored as described in Materials and Methods for aggGfp-

ssrA (1.0 μM) alone (black circles) or in the presence of ClpX (0.3 μM) (blue circles) 

or ClpX (E185Q) (0.3 μM) (open circles), with ATP (4 mM) and a regenerating 

system, where indicated. Fluorescence emission (AU) was monitored for 90 minutes. 

The curves shown are representative of at least three replicates. 
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Figure 6 – FtsZ aggregation in deletion strains after heat shock. 

(A) FtsZ levels were compared in insoluble cell extracts prepared from single gene 

deletion strains (Table 1) after heat shock at 50 °C for 1 hour and recovery (30 °C) as 

described in Materials and Methods. Cells were collected and insoluble protein 

extracts were analyzed by immunoblotting using anti-FtsZ antibodies. Relative FtsZ 

levels were quantified by densitometry from four independent experiments. Where 

indicated, ‘*’ represents a p-value of 0.03. 

(B) Insoluble FtsZ levels were monitored during the 30 °C recovery period (0, 20 and 

40 minutes) after heat shock at 50 °C for 60 minutes in wild type, ΔclpB and ΔclpX 

deletion strains. 
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Figure 7 – Model of aggregate disassembly. 

(A) ClpXP binds to aggregated substrates bearing a ClpX-recognition motif. ClpXP 

unfolds and degrades protomers from within the aggregate, leading to fragmentation 

and disassembly in an ATP-dependent manner. 

(B) ClpX binds to aggregates that contain unfolded proteins bearing a ClpX-

recognition motif. Unfolded proteins loosely associated with the aggregate surface are 

reactivated by ClpX through a direct protein interaction that requires ATP-dependent 

unfolding. 
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Supplemental Figure S1 – Heat-aggregation of Gfp-ssrA. 

 

The fluorescence emission of aggGfp-ssrA (1.0 μM) (black circles) was monitored as 

described in Materials and Methods for 90 minutes. 
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Supplemental Figure S2 – Unfolding and degradation of aggregated Gfp-ssrA by 

ClpXP. 

Unfolding and degradation were monitored for aggGfp-ssrA (1.0 μM) alone (black 

circles) or in the presence of ClpP (0.3 μM) (gold circles), ClpX (0.3 μM) and ClpP (0. 

μM) (red circles) with ATP (4 mM), where indicated. Fluorescence emission (AU) 

was monitored as described in Materials and Methods. 
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Supplemental Figure S3 – Degradation of FtsZ and FtsZ(∆C67) by ClpXP. 

Degradation was monitored for FtsZ (6 µM) and FtsZ(∆C67), ClpXP (0.5 µM), ATP 

(4 mM), GMPCPP (0.5 mM), and a regenerating system where indicated at 23 °C for 

120 minutes as described in Materials and Methods, and samples were analyzed by 

SDS-PAGE and Coomassie stain.  
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Supplemental Figure S4 – Insoluble FtsZ in deletion strains after heat-treatment. 

(A) Single gene deletion strains (Table 1) were incubated at 50 °C for 1 hour and 

recovered as described in Materials and Methods. Cells from deletion strains were 

collected and insoluble protein extracts were collected as described and analyzed by 

reducing SDS-PAGE. Immunoblots were performed with antibodies to FtsZ or ClpX 

as described. 

(B) Total protein present in insoluble cell extracts shown in (A) after heat shock at 50 

°C and recovery was detected by transferring proteins to a nitrocellulose membrane 

and staining with Ponceau.  

(C) Cell viability for all strains in (A) was determined by measuring colony forming 

units (CFU ml-1) of cultures before heating (‘pre-HS’), after heat treatment at 50 °C 

for 1 hour (‘post-HS’), and after 35 minutes of recovery at 30 °C (‘post-rec’). 

(D) FtsZ levels were compared in single gene deletion strains after heat shock at 42 °C 

for 30 minutes and recovery (30 °C) as described in Materials and Methods. Cells 

were collected and insoluble protein extracts were analyzed by immunoblotting with 

antibodies to FtsZ as described. 

(E) Insoluble FtsZ levels were monitored in wild type, ΔclpX and ΔclpB deletion 

strains before heat shock (50 °C for one hour or 42 °C for 30 minutes, where 

indicated) and during the 30 °C recovery period (0, 20 and 40 minutes). At the 

indicated times, cells were collected from cultures and insoluble protein extracts were 

analyzed by immunoblotting with antibodies to FtsZ as described. 
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(F) Thermal stability of ClpXP was assayed by incubation of ClpX (0.5 μM) and ClpP 

(0.7 μM) in phosphate buffered saline supplemented with ATP (4 mM) MgCl2 (10 

mM), glycerol (15%), Triton X-100 (0.005%), and TCEP (1 mM). Reactions 

containing ClpXP were added to a preheated quartz cuvette attached to a circulating 

water bath set to 50 °C or 30 °C, where indicated, and incubated for one hour. The 

circulating water bath was rapidly cooled to 30 °C, the reactions were supplemented 

with ATP and regenerating system, Gfp-ssrA (0.2 μM) was added, and fluorescence 

was monitored with time in the absence (black) or presence of ClpXP, treated at 50 °C 

(red) or 30 °C (aqua).  
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