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ABSTRACT 

 

This paper investigates the role of upper mantle heterogeneity on circulation. 

We utilize a kinematic laboratory subduction model that drives multiple styles of 

three-dimensional, time dependent mantle circulation that interacts with residuum left 

behind after a major melt production and extraction event. Models of mantle-residuum 

interaction highlight the impact of melt-induced mantle chemical heterogeneity can 

have on return flow in convergent margins. Wedge chemical heterogeneity and 

subsequent melting influence mass and energy transport to the Earth’s surface. These 

models are designed to represent aspects of the Cascadia subduction zone of the 

Pacific Northwest U.S., a geologically challenging area where the ~20 Ma Columbia 

River/Steens flood basalt (CSFB) event transitions to the age-progressive volcanic 

tracks along the High Lava Plains (HLP) and Snake River Plain-Yellowstone (SRP). 

This region is a focal point for debate over the applicability of mantle plume models. 

A series of lab models have tested plume or non-plume explanations for the Cascades-

Yellowstone volcanism. We report on non-plume results that indicate that a non-

plume explanation, in which trench-normal volcanic tracks form naturally from 

deformation of residuum from a CSFB-type event. Melt generating patterns show that 

our models readily explain bimodal melting beneath the HLP and SRP regions and the 

westward progression of melt beneath the HLP. However, replicating the age-

progressive melting patterns under the SRP remains a challenge for these experiments.  
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1. Introduction 

 

Melting models tend to focus on the spatial and temporal patterns of surface 

volcanism, while less attention is paid to the residue of melting that continues to 

evolve in the mantle. The concept of mantle residuum has a long history in the 

geosciences literature, particularly in terms of continental tectosphere, where 

extraction of volatiles in partial melt creates a local separation between geotherm and 

solidus, driving up residuum viscosity (and buoyancy) relative to ambient mantle 

[Jordan, 1975, 1978; Pollack, 1986; James et al., 2001]. While there have been some 

attempts to model time-varying evolution of mantle residuum in plate-driven flow 

fields [e.g., Humphreys et al., 2000; Smith et al., 2009], the phenomenon remains 

poorly understood. Our goal is to characterize the general aspects of flow-residuum 

interactions in subduction settings, with specific focus on the Cascades subduction 

system in the Pacific Northwest U.S.  

 The Cascadia subduction zone is a particularly complicated tectonomagmatic 

region. Most notable geologic events of the Cascades include the ~20 Ma creation of 

the large igneous province Columbia River/Steen flood basalts (CSFB) and 

subsequent (~12 Ma to present day) opposite age-progressive rhyolite tracks: Snake 

River Plain (SRP) and High Lava Plains (HLP) [Geist and Richards, 1993; Camp and 

Ross, 2004] (Fig. 1). Sinking of oceanic lithosphere with rollback and a mode of plate 

steepening, back-arc extension, lithospheric basal topography, and a mantle plume 

have each been implicated in the development of Northwestern U.S. volcanic patterns 

over the past 20 Ma [e.g., Cross and Pilger, 1978; Christiansen et al., 2002; Camp 
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and Ross, 2004; Jordan et al., 2004; Hooper et al., 2007; Long et al., 2012; Kincaid et 

al., 2013]. One explanation for the time-progressive HLP/SRP volcanism invokes a 

CSFB residuum interacting with upper mantle circulation to account for the surface 

magmatic trends [e.g., Humphreys et al., 2000; Smith et al., 2009]. We employ 

kinematic 3D subduction modeling to test the hypothesis that the mantle heterogeneity 

left behind after the CSFB melting event can control the timing and location of 

volcanic activity on the surface. A goal is to test if plate-driven upper mantle flow 

interacting with an evolving shallow mantle residuum can create the bimodal, age-

progressive volcanism beneath the HLP and SRP. 

Laboratory models are employed to represent the deformation and entrainment 

of chemical heterogeneity, or residuum, present in the wedge due to a large melting 

event. Primary experiment variables include residuum viscosity and initial location, 

along with plate parameters such as subduction, trench migration, lithosphere-mantle 

coupling, and back-arc extension. In all cases of rollback subduction, the flow field 

influences the heterogeneity. Slab entrainment transports heterogeneities towards the 

trench while 3D return flow around the slab edge into the wedge controls residuum 

trench-parallel deformation and transportation. Extension in the overriding plate 

strongly controls residuum evolution and has important implications for the Cascades 

subduction system. Presence of weak or strong residuum produces distinct patterns in 

vertical flow, which should in turn influence spatial-temporal patterns in melt 

production. Upwelling related decompression melting driven by residuum-flow field 

interaction provides a source of melt beneath the HLP/SRP-Yellowstone regions. 
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However, the timing of that volcanism in our simplified model is not easily matched to 

the age-progressive magmatic patterns of HLP/SRP. 
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2. Overview: Post-20 Ma Pacific Northwest Volcanism 

2.1 Geological Constraints 

 

The Pacific Northwest has a long tectonic and geologic history [Humphreys 

and Coblentz, 2007], but our focus is on the last 20 Ma of magmatic evolution. Three 

volcanic features dominate this time period: the Columbia River/Steens Flood Basalts 

(CSFB), the High Lava Plains (HLP), and the Snake River Plain (SRP) [Geist and 

Richards, 1993; Camp and Ross, 2004] (Fig. 1). The CSFB is a voluminous pulse of 

basaltic melting and output beginning after 20 Ma and persisting beyond 15 Ma 

[Swanson et al., 1979; Carlson and Hart, 1987; Long et al., 2012]. Flood basalts 

surfaced through generally north-south trending dike swarms over a broad north-south 

region extending between ~42°N and ~48°N latitude, and lying roughly 500 km away 

from the trench and coincident with proposed region of plate extension [Cross and 

Pilger, 1978; Eaton, 1984; Wells and Heller, 1988]. Rough estimates for magma 

output during the flood basalt period range from ~200,000 – 450,000 km3 [Tolan et 

al., 1989; Camp and Ross, 2004]. Remarkably, it is estimated that ~98% of the magma 

volume was erupted in the first 2 Ma of activity [Waters, 1961; Swanson et al., 1979; 

Tolan et al., 1989; Hooper et al., 2007]. 

The challenge for geochemical/geodynamic modeling of the post-20 Ma 

Pacific Northwest lies with the two, more recent east-west trending volcanic chains 

(HLP/SRP) lying to the south of the CSFB complex. The SRP volcanic track is less 

voluminous than the CSFB and records a striking age progression in rhyolitic 

volcanism [Armstrong et al., 1975; Humphreys et al., 2000; Pierce et al., 2000; Camp 
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and Ross, 2004; Jordan et al., 2004; Smith et al., 2009]. This track is generally 

described as beginning near the McDermitt complex (~16 Ma) near the Oregon-

Nevada border [Malde, 1991] or the south-western corner of Idaho (~12 – 14Ma) and 

extending north-eastward to the present day Yellowstone hotspot [Camp and Ross, 

2004], with an estimated average eastward shift in felsic volcanic centers of 3 – 4 cm 

yr-1 [Leeman, 1982].  SRP volumetric rhyolitic output is estimated at 10,000 – 30,000 

km3 [Ellis et al., 2013], an order of magnitude less than the CSFB. Important 

constraints on SRP formation come from seismic studies showing strong, low P- and 

S-wave velocity signals aligned with the SRP trend that are confined in depth (~200 – 

300 km) and north-south extent (200 km) [Schutt and Humphreys, 2004; Jordan, 

2005; Waite et al., 2006; Schutt et al., 2008]. Geophysical estimates attribute this 

confined shallow mantle structure to a modest excess temperature (50 – 120°C), 1  – 

2% partial melt and a minor (0.25 mg s-1) buoyancy flux [Waite et al., 2005; Schutt 

and Dueker, 2008; Smith et al., 2009].  

Similar to the SRP, the HLP track records smaller volcanic output than the 

CSFB and exhibits an approximate trench-normal age progressive trend in rhyolites 

[MacLeod et al., 1975; Christiansen and McKee, 1978; Draper, 1991; Jordan et al., 

2004]. Small volumes of rhyolitic magma, ~ 1,000 – 1,250 km3 [Ford et al., 2013], 

have erupted continuously from ~10 Ma to present day. The interesting twist is that 

the HLP felsic production youngs to the west, or opposite the SRP trend, at rates of 

between 3 cm yr-1 (11 to 5 Ma) and 1 cm yr-1 (5 Ma to present) [Jordan et al., 2004]. 

HLP morphology is similar to the SRP with a less than 200 km wide track-normal 

expression in surface volcanism [Draper, 1991; Jordan et al., 2004; Meigs et al., 
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2009]. The mantle wedge beneath the HLP exhibits a somewhat confined slow seismic 

velocity anomaly that is weaker (2 – 4% ) and less continuous along track than 

the SRP [Long et al., 2012; Wagner et al., 2012]. The stronger velocity reductions are 

resolved to a shallow 100 km thick section that appears laterally discontinuous 

beneath the HLP and broadens towards the western end of the HLP from 100 km to 

200 km. 
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2.2 Melting Models 

 

Though widely studied, the tectonomagmatic history of these three spatial-

temporal events remain poorly understood and greatly debated [Humphreys et al., 

2000; Hooper et al., 2007]. All modes of mantle melting and crustal growth have been 

proposed to explain the striking volcanic patterns in the Cascades, including 

subduction driven melting caused by mechanics of the Juan de Fuca plate beneath the 

North American plate [Faccenna et al., 2010; Liu and Stegman, 2012], ridge melting 

due to back-arc extension [Carlson, 1984; Carlson and Hart, 1987; Christiansen et 

al., 2002; Long et al., 2012], and a Yellowstone mantle plume [Morgan, 1972; Jordan 

et al., 2004; Smith et al., 2009; Kincaid et al., 2013]. Despite the complexity, this area 

provides an excellent setting for testing a spectrum of models for the style of upper 

mantle convection in convergent margins and the expected surface expression of 

related melt generation/transport processes.  

Plume and non-plume models have been developed to reconcile the 

voluminous CSFB (~20 Ma), the age progressive (12 Ma to present) SRP volcanism 

that terminates at Yellowstone and the opposite, westward trending HLP volcanic 

track of central/eastern Oregon. There is presently intense ongoing debate on the 

plume model with the Pacific Northwest at one of the focal points for this dispute 

[Foulger, 2003, 2005; Anderson and Natland, 2005; Foulger et al., 2005]. A plume, or 

thermally buoyant mantle upwelling with a flood basalt producing head and long-lived 

tail for generating an eastward progressive track, is commonly cited as the key 

dynamic process for CSFB and the age progressive rhyolitic volcanism of SRP 
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[Richards et al., 1989; Camp and Ross, 2004; Pierce and Morgan, 2009; Smith et al., 

2009]. But the equivocal HLP, whose rhyolite lavas young opposite North American 

plate motion, and the north-south offset between CSFB and SRP is inconsistent with 

the simple plume model [Christiansen et al., 2002].  

A non-plume model has also been considered to explain the volcanic patterns 

of the PNW. Supporters of a non-plume theory invoke plate motions to trigger large-

scale melting events, like the CSFB [Faccenna et al., 2010; Liu and Stegman, 2012; 

Long et al., 2012]. Geodynamic 3D models have shown that changes in slab motions 

(e.g. subduction initiation, rollback initiation or acceleration, and slab steepening) can 

result in an upward mantle circulation (i.e. a proxy for decompressional mantle 

melting) in the wedge [Kincaid and Griffiths, 2004; Long et al., 2012]. Long et al. 

[2012] propose that the voluminous CSFB melting event was a direct consequence of 

JdF slab rollback initiation ~20 Ma and subsequent back arc-extension. This work 

further suggests that later stage melting (12 Ma – present day) in the mantle beneath 

HLP could be a result of a rollback-controlled wedge circulation (i.e. toroidal flow), 

continued upwelling in the wedge, and thinning of the lithosphere. But this non-plume 

model and others fall short in explaining the SRP-Yellowstone track and concurrence 

and unique progression of HLP/SRP.  

Whether the CSFB event was the result of plume activity or upper mantle 

melting driven by plate mechanics, geodynamic studies have yet to address the fate of 

the flood basalt residuum beyond schematic cartoon models depicting its influence on 

mantle circulation [Humphreys et al., 2000; Smith et al., 2009]. Results are presented 
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from a series of geodynamic laboratory experiments designed to test the importance of 

the CSFB mantle residuum on 4D circulation, transport, and melt production.
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3. Laboratory Methods 

3.1 Apparatus 

 

We examine the evolution and interaction of mantle chemical heterogeneity, or 

residuum, in 4D subduction-driven flow using a kinematic laboratory model [e.g., 

MacDougall et al., 2014]. The mantle is modeled using glucose syrup, i.e. a 

Newtonian viscous fluid, in a transparent Plexiglas tank (150 cm long × 75 cm wide × 

45 cm deep). Similar to Hall and Kincaid [2001], the subducting slab is modeled by 

reinforced continuous rubber belts moving around rollers (Fig. 2a). A large percentage 

of the wedge superadiabatic thermal gradient is locked up in the subducting plate. 

Thus, the downgoing slab is expected to be the dominant driver of forced convection 

in the upper mantle. While dynamic subduction of a tabular plate is ultimately the goal 

for wedge circulation studies, there remain a large number of poorly constrained 

processes in these models (e.g., rate of convection and upwelling in the mantle wedge, 

shear stress on the base of the lithosphere, etc.). We choose kinematic models because 

forced convection of the wedge can be generated in a reproducible fashion.  

We employ kinematic subduction modeling where precise downdip (UD) and 

translational, i.e. trench retreat, (UT) motions of the slab are prescribed to mimic slab 

motions observed in 3D, time-evolving dynamic subduction models [Kincaid and 

Olson, 1987; Griffiths et al., 1995; Funiciello et al., 2003, 2006; Schellart, 2004]. An 

advantage to using kinematic subduction modeling is that each experiment is 

repeatable and controllable. In this way we are able to characterize the wedge response 

to mantle heterogeneity in 3D wedge flow fields when key parameters in plate 
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mechanics are varied. The glucose syrup used to model both upper mantle and 

residuum is a Newtonian viscous fluid with temperature dependent viscosity, 

described by Olson and Kincaid [1991]: 

                          (1) 

where µ and T are dynamic viscosity (Pascal-seconds) and temperature (°C), 

respectively. The volume of fluid (4.5 × 105 cm3) representing the ambient mantle is 

maintained at a constant temperature, resulting in isothermal density of 1.42 g cm-3 

and dynamic viscosity of 134 Pa s at 22°C. The mantle wedge is isothermal until it 

interacts with the mantle residuum, a thermally altered patch of glucose syrup. The 

volume of the residuum is 200 cm3 for all experiments, while temperature (TR), 

thereby viscosity (µR), is varied. For visualization purposes the mantle heterogeneity is 

marked with neutrally buoyant red tracers (beads, whiskers) and micro-bubbles that 

distinguish it from the ambient mantle fluid, which is laced with white whiskers. 

These passive Lagrangian flow tracers move with the fluid providing velocity 

information in both space and time throughout the course of the experiments.  

We model three distinct styles of overriding plate in our experiments. In the 

first setup, we assume a decoupling zone exists between mantle and overriding 

lithosphere. These experiments have a free slip mantle surface, in which the mantle 

surface moves independently of upper plate motion. Our second set of models use a 

strongly coupled mantle-lithosphere boundary to create a no slip mantle surface 

condition. In these cases a uniform overriding plate (OP) is modeled using a thin, 

transparent Plexiglas plate that migrates with trench motion. The OP couples with the 

underlying wedge fluid, imposing a vertical shear flow under the plate (Fig. 3a). In the 
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third set of overriding plate models we simulate extension in the back-arc (BAE) using 

mylar sheeting along the fluid surface (Fig. 3b). The extension center moves at the 

prescribed trench migration rate (UT). As the trench retreats, mylar spools from a reel 

to the extensional axis in the back-arc. The mylar couples with the underlying fluid 

east of the extension center and imposes a zero horizontal surface velocity on the 

wedge surface.
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3.2 Scaling 

 

The length and time scales of these kinematic models, representing dynamic 

sinking modes, are scaled to the mantle using a dimensionless ratio of advective to 

diffusive heat transport, written as the Péclet number,  

                                    (2) 

where length scale, L, is defined as the width of the trench (Llab = 25 cm, Lmantle = 1625 

km) and the thermal diffusivity (κ) values for lab and mantle are 10-3 and 10-2 cm2 s-1, 

respectively. Time and velocity scales are calculated by relating laboratory and mantle 

Péclet numbers. Thus, a UD of 1 cm min-1 in the lab relates to 0.8 cm yr-1 when scaled 

to the Earth’s mantle and 1 min in the lab corresponds to ~8 Ma of geologic time. 
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3.3 Experimental Methods 

 

The experimental method for melt residuum experiments has been developed 

through the running of over 60 distinct cases. Experiments begin after the placement 

of mantle heterogeneity on the surface of the upper mantle wedge, i.e. our experiments 

begin after a major melting event resulting in creation of the flood basalt residuum.  

A residuum volume of ~200 cm3 scales to an initial melt residuum volume of 

5.5 × 107 km3. We assume a residuum volume ~10 times larger than the combined 

estimated erupted and unerupted magmas extracted from the mantle during the CSFB 

melting event. Rough estimates for magma output during the Cascades flood basalt 

period range from ~200,000 – 450,000 km3 [Tolan et al., 1989; Camp and Ross, 

2004]. We also consider that the solidified magma intrusions beneath a large igneous 

province can represent a substantial unerupted igneous volume [Crisp, 1984; Walker, 

1993; White et al., 2009]. Thus, when determining the initial size of our CSFB melt 

residuum, we estimate a 10% mantle melt fraction represented by surface lavas and 

unerupted, underplated magmas.  

The laboratory residuum is made from the same glucose syrup as the ambient 

wedge fluid. Temperature differences are used to represent a wide range in residuum 

viscosity contrasts. Heterogeneity temperature, i.e. viscosity, is an experimental 

variable. To create the low or high viscosity heterogeneity we heat or chill the glucose 

syrup, respectively.  

After the heterogeneity is brought to the appropriate temperature, it is placed in 

the wedge. Location in map view is most often centered in the wedge about the slab 
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centerline and ~14 cm (~900 km) from the trench (e.g. location ‘A’, Fig. 2c). The 

heterogeneity is approximately oval shaped, long in the trench-parallel direction, ~20 

cm (~1300km), and constrained in the trench-normal direction, ~5 cm (~325 km). 

While we can control heterogeneity volume, temperature, and general location, once 

the residuum is placed in the wedge, natural viscous effects take place prior to 

experiment initiation. Our low viscosity heterogeneity has a viscous puddle spreading 

speed of ~0.4 cm min-1 when placed in ambient mantle fluid. So naturally less viscous 

heterogeneities spread more and tend to occupy more surface area than more viscous 

heterogeneities when placed in the tank. Likewise, less viscous heterogeneities extend 

to shallower depths (~2.5 cm, corresponding to ~165 km in the mantle), while more 

viscous heterogeneities reach to deeper depths (~ 3.5 cm, ~225 km). Thus, there are 

slight initial morphology differences at the initiation of each experiment.  

In the following cases, and throughout the paper, we use the terminology 

“weak” or “strong” heterogeneity to relate the strength, or viscosity, of the residuum 

(µR) to that of the surrounding mantle (µM). The viscosity ratio, , is used 

to determine whether the residuum is weak (µ* < 1) or strong (µ* > 1). We assume that 

the strength of the flood basalt residuum is determined by the mantle’s ability to retain 

partial melt and volatiles after the CSFB event. In the case of strong residuum we 

assume eruption of melt and volatiles to the surface results in a more viscous 

chemically altered heterogeneity [Jordan, 1975, 1978; Pollack, 1986; James et al., 

2001]. Following a similar logic, a low viscosity heterogeneity results from the 

mantle’s capacity to stably hold some partial melt at shallow mantle depths 

[Hirschmann, 2010]. Though P and S wave velocity anomalies can detect the presence 
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of retained melt in today’s upper mantle [e.g., Toomey et al., 1998; Villagómez et al., 

2014], dVP and dVS data only offer a present day snapshot.  Since we are unable to 

determine the residuum viscosity resulting from a melting event that occurred millions 

of years ago, e.g. CSFB at ~20 Ma, we model both end members (µ* < 1 and µ* > 1) in 

each set of experiments.  

Assuming that the residuum creation occurs at ~20 Ma and that the 

experimental time begins at t* = 0, we monitor the wedge flow-residuum interaction 

through present day (0 Ma), t* = 1 or 2.5 minutes of laboratory time. To understand 

the long-term wedge impact we run the experiment 60 Ma into the future (up to t* = 4 

or 10 minutes in the lab). All plate motions initiate at the beginning of the experiment 

(t* = 0). Throughout the length of the experiment, slab downdip (UD) and trench 

translational rollback (UT) rates are 8 and 3 cm min-1, which correspond to mantle 

values of 6.5 cm yr-1 and 2.4 cm yr-1, respectively. We model an intermediate slab dip 

angle (θ) of 50° from horizontal in all cases.  

Inertial effects are neglected for all experiments. The Reynolds number, Re, for 

the laboratory fluid is defined as, 

                           (3) 

Reasonable values for the laboratory glucose syrup are ρ = 1.42 g cm-3, D = 40 cm is 

the depth of the tank fluid representing the mantle, u = 8 cm min-1, and µ = 134 Pa s. 

The Reynolds number for our laboratory model is calculated to be Re = 5.6 × 10-3. 

Thus our analogue mantle fluid with Re < 1 is largely unaffected by inertia and flow is 

laminar. 
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With the high viscosity heterogeneity present in the shallow wedge, the system 

is unstable and convects. Using the formula for the onset time of a residuum-ambient 

fluid boundary layer instability from Olson [1990]: 

                               (4) 

where Rac is the critical Rayleigh number, υ is the dynamic viscosity, g is gravity, ΔT 

is the maximum temperature rise between the ambient fluid and residuum, and κ and α 

are thermal diffusivity and thermal expansivity of the lab fluid, respectively. 

Reasonable values of Rac = 3 × 103, υ = 103 cm2 s-1, g = 9.8 m s-2, ΔT = 9 K, κ = 10-3 

cm2 s-1, and α = 4.5 × 10-4 K-1, gives τ ~ 7 hours, the amount of time for Rayleigh-

Taylor instability onset on the underside of the most viscous residuum. Using the 

scaling indicated by the Péclet number we determine that the diffusion characteristic 

timescale for corn syrup with thermal diffusion distance of 1 cm is ~17 minutes, 

almost twice the length of a typical experiment. Subsequently, residuum buoyancy and 

thermal diffusivity are second order factors over the duration of an experiment. 

Our length scale is defined by the width of the trench (~1625 km) which is 

larger than the current width of the Juan de Fuca trench, ~1200 km. Plate tectonic 

reconstructions [e.g., Atwater, 1970; Atwater and Stock, 1998] show that over the last 

25 Ma the Cascadia slab width has been decreasing with the northward migration of 

the Mendecino triple junction. Calculations of the Pacific-North American plate 

reconstructions estimate that the 20 Ma Cascadia plate boundary extended as far south 

as 35°N [Atwater and Stock, 1998], resulting in a subducting slab ~2000 km wide. In 

our lab model, with approximate representation of a system with complex spatial-

temporal characteristics, the subducting plate maintains a fixed width throughout the 
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experiment. In order to account for the diminishing width of the Cascades slab over 

the last 20 Ma, we model an average slab width over this time period of 1625 km. 
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3.4 Data Collection 

 

Data on deformation and entrainment of mantle heterogeneity in subduction-

induced flow are collected throughout the experiment duration using high-resolution 

digital photography. Two cameras are used to take side view and map view 

photographs of flow illuminated in two alternating light sheets. A vertical light sheet 

illuminates the fluid along the slab centerline for side view imagery and a horizontal 

light sheet illuminates a fluid depth of  ~1 cm for map view imagery. The horizontal 

light sheet is ~1 cm thick and starts ~1 cm beneath the lab fluid surface, thus all 

experiment map view images highlight flows from a mantle equivalent depth range of 

~65 – 130 km. Spatially detailed (± 5 mm), time lapsed photographs are taken every 5 

seconds to capture wedge evolution through time. Cameras move with the subduction 

apparatus at trench migration rate (UT) so map and side view perspectives are in a 

fixed trench reference frame. Digitizing software (GraphClick) is used to track passive 

micro-tracers in the wedge. Lagrangian particle velocity is calculated by dividing the 

digitized distance traveled by the known time interval between successive frames. 

Fluid flow patterns represent material pathlines in a fixed trench reference frame. 

Throughout this paper, all velocities and flow directions are given in a fixed trench 

reference frame. For more information on how reference frame affects observed 

wedge flow fields see the Supplemental Information. 
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4. Experimental Results 

 

Using a subset of 15 experiments (Table 1), we investigate the role of upper 

mantle heterogeneity in subduction systems. We develop qualitative and quantitative 

relationships between the subducting plate style, overriding plate structure, wedge 

flow fields, and melt residuum transport and deformation. In each case we characterize 

the time dependence and distribution of material transport in the wedge and compare 

these data to the seismologic results, geochemical data, and post-20 Ma surface 

tectonomagmatic activity of the PNW.  
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4.1 Time Evolution of Residuum: Rollback Subduction 

 

The first set of experiments model a free slip surface, i.e. we model mantle 

decoupling from the overriding lithosphere. Results show that wedge return flows are 

highly 3D and the addition of a rheological heterogeneity disturbs basic flows. Fig. 4 

highlights the evolution of a rollback experiment where the slab subducts with 

downdip (UD = 8 cm min-1) and translational rollback (UT = 3 cm min-1) motions. All 

images are shown in a fixed trench reference frame.  

The weak heterogeneity (Exp. 6, µ* = 0.3) experiences pure shear in 

transformation from an initial north-south morphology to an east-west morphology 

after 2.5 minutes (~20 Ma) (Fig. 4a – c). Rollback induced toroidal flow moves fluid 

around the slab edges into the wedge from the north and south at rates of ~4.0 cm min-

1 (~0.50UD) which efficiently compresses the residuum towards the slab centerline 

(Fig. 4b – c). Concurrently, subduction zone corner flow draws residuum and ambient 

wedge fluid towards the trench at velocities of ~3.5 cm min-1 (0.44UD). Slab 

entrainment velocities decrease with distance from the trench. The far eastern edge of 

the residuum migrates towards the slab at an average rate of ~1.0 cm min-1 (0.14UD). 

At t* =1 (~1.25 min into the experiment) the leading edge of the residuum is at the 

trench and will begin subducting from the shallow mantle.  Later stage images of this 

case (Fig. 5a – b) reveal the long-term fate of weak heterogeneity in the subduction 

system. After 10 minutes (~80 Ma or t* = 4) most of the initial residuum volume has 

subducted (estimated ~95%), but a very small amount (~5%) has not flushed from the 

shallow wedge. Over this time period the low viscosity feature shows continued 
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trench-parallel thinning; with a trench-parallel width of < 1 cm (~ 50 km), extending 

along the slab centerline. This narrow band of low viscosity fluid remains in the 

wedge for the duration of the experiment and has > 80 Ma expected lifetime in the 

shallow wedge. 

Changing residuum µ* affects mass and energy transport within the wedge, on 

both short and long-term timescales. Fig. 4d – f illustrates the ~20 Ma evolution of a 

strong (i.e., high viscosity) heterogeneity in a rollback experiment (Exp. 5, µ* = 8). All 

model parameters remain the same from Exp. 6 except for the viscosity contrast (µ*). 

Similar to the weak heterogeneity, slab entrainment translates the strong heterogeneity 

towards the trench and UT-induced toroidal flow results in north-south compression 

towards the slab centerline. Unlike the low viscosity wedge feature, which experiences 

pure shear as it deforms into an east-west trending morphology, the high viscosity 

feature resists internal deformation and instead folds along the trench-normal 

symmetry line (Fig. 4e – f). The strong residuum is more resistant to the deformation 

flows coming from the north and south edges at rates of ~3.5 cm min-1 (~0.44UD). 

Unlike the low viscosity heterogeneity which compresses down to ~6 cm (~390 km) in 

trench-parallel width, the more viscous morphology maintains 55% of it’s initial 

north-south length and at 20 Ma has a trench-parallel length of ~11 cm (~715 km). 

Another striking dissimilarity between variable µ* cases is the residuum entrainment 

style. With strong heterogeneity present in the wedge, the entire feature is entrained 

towards the trench as one block. This feature translates at ~2 cm min-1 (~0.23UD) 

which is a slower rate than the weak residuum. By present day it is still ~4 cm (~260 

km) from the trench. At later stages of evolution, efficient entrainment of viscous 
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heterogeneity results in ~95% of the heterogeneity flushing from the shallow mantle 

wedge over 80 Ma (Fig. 5c – d), and 100% by 90 Ma. So while both strong and weak 

heterogeneities result in ~95% of the residuum being subducted after 80 Ma, the 

behavior of the remaining 5% of the residuum typifies the varying reactions of the 

residuum to the flow fields produced in the wedge by the different tectonic drivers.  

Circulation in the form of return flows into the innermost wedge is strongly 

influenced by the presence of viscous heterogeneity. Average instantaneous velocity 

and particle direction are summarized in 3 distinct wedge regions: slab centerline, 

northern edge, and mid-region (Fig. 6). For each zone, instantaneous non-dimensional 

velocity is defined as , where  is the slab convergence rate (8 cm min-1) and 

           (5) 

where  , trench-normal velocity, and , trench-parallel velocity, are calculated 

using x, y, and t data collected from digitizing software GraphClick. Normalized 

particle flow direction (Φ*) in a fixed trench reference frame is also calculated from 

this data. Fluid migration direction, Φ*, ranges from 1 to -1, where Φ* = 1 represents 

westward (trenchward, trench-normal) velocities, Φ* = 0 for southward (trench-

parallel) flows, and Φ* = -1 for apparent eastward (away from slab, trench-normal) 

directional flows. We calculate instantaneous  and Φ* for particles located in 

the ambient fluid and residuum at three times: experiment initiation (t* = 0 or 20 Ma), 

at 1.25 minutes (t* = 0.5 or 10 Ma), and at 2.5 minutes (t* = 1 or present day); then 

average over different regions. We confine our analysis to the northern wedge; our 

simplified model is symmetric about the slab centerline so we observe mirrored flow 

patterns about the slab centerline in the southern wedge. To isolate the impact of 
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heterogeneity in rollback subduction, Fig. 6 compares average instantaneous velocity, 

, and direction, Φ*, in the northern (black), mid (blue), and central (red) 

regions of the wedge (see Fig. 6a for location boundaries) for weak and strong 

heterogeneity present in the wedge (Exp. 6 and Exp. 5, respectively). 

 There are basic similarities in wedge circulation, along with key differences, 

when a weak versus strong residuum is present. Regardless, flow enters the edge of 

the wedge in the north to south direction and near the slab centerline transitions to 

fully east to west, trench-normal, approach velocities (Fig. 6b). On average, there is a 

gradual transition from trench-parallel to trench-normal flow through the mid-region 

of the wedge. Trench parallel flow rates entering the edges of the wedge reach 

~0.55UD with a weak residuum and slightly reduced rates, ~0.50UD, when a strong 

residuum is present (Fig. 6c). Average trench-normal flows in the central wedge (red 

region) are inversely related to distance from the trench though mean velocities are 

slower, reaching ~0.45UD when µ* < 1 and ~0.35UD when µ* > 1 (Fig. 6e).  

 There are, however, a number of important differences in detailed flow 

structure based on viscosity of the residuum. Moving trenchward (from east to west) 

the greatest increase in UM (+0.30UD) is seen in the wedge with weak heterogeneity. 

With a high viscosity residuum in the wedge, slower slab centerline velocities supply 

mass to the trench (Fig. 6e). Activated return flows show up in greater UM increases in 

the northern edge and mid-region when a strong heterogeneity is present in the wedge 

(Fig. 6c, d). Values for UM in the strong residuum case show trenchward increases of  

+0.15UD and +0.05 UD over the weak residuum case in the northern edge and mid-

region, respectively (Fig. 6c, d). 
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Across all regions, average velocities in the shallow wedge are reduced when a 

strong heterogeneity is present (Fig. 6c – e). Exp. 6 and Exp. 5 have the same 

prescribed slab motions (Table 1), but in the strong residuum case the wedge 

heterogeneity slows down the ambient fluid existing in the same x-y plane. In our 

analysis of x-z plane residuum evolution (Fig. 10a,b and 11a), we observe that with a 

high viscosity plug slowing surface flows, sinking velocities increase to feed the 

subduction system.  
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4.1.1 Effect of an Overriding Plate 

 

Surface flow coupling to an overriding plate is important for full wedge 

circulation results. Two end member wedge surface conditions exist: fully coupled and 

fully decoupled. Experiments in the previous section have a free slip surface 

condition, i.e. decoupled. In the free slip mantle end member condition we assume that 

the non-Newtonian rheology of the mantle [Hirth and Kohlstedt, 2003] and increased 

amount of shear at the lithosphere/upper mantle boundary result in decreased viscosity 

and decoupling of shallow mantle from the overriding lithospheric plate [e.g., 

Jadamec and Billen, 2012]. In our next set of experiments we assume that the upper 

mantle cannot move independently of the overlying lithosphere. The addition of an 

overriding surface plate (OP) changes the time-dependent flow generated by the 

subducting slab and greatly impacts the residuum evolution. We model the overlying 

lithosphere using a clear Plexiglas plate that sits on the fluid surface and moves with 

the trench at slab translation rate UT (Fig. 3a). The OP couples with the underlying 

wedge fluid, imposing a vertical shear flow under the plate.  

Map view Lagrangian particle velocities in a fixed trench reference frame are 

calculated for an ambient wedge with free slip (Exp. 2) and no slip (Exp. 3) mantle 

surface conditions (Fig. 7). Parameters in both cases are the same except for the 

presence of the overriding plate in Exp. 3 (Table 1). The OP influences material and 

flushing time scales of the fluid in the shallow upper mantle. UT-induced toroidal flow 

decreases by ~0.2UD on the wedge north and south edges and entrainment velocities 

decrease up to ~0.3UD when the system includes a no slip surface condition. In a fixed 
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trench reference frame, flow direction is approximately the same in Exp. 2 and Exp. 3. 

However, in an absolute reference frame flow orientation does change with presence 

of an OP. For more information on how reference frame affects observed wedge flow 

fields see the Supplemental Information.  

Lagrangian particle pathline velocities in the vertical (x-z) plane illustrate the 

same pattern of decreased entrainment velocities in the upper 2 cm (130 km) of the 

wedge with introduction of an OP (Fig. 8). Average UM/UD in the uppermost wedge 

fluid show an OP imposed vertical shear flow under the plate (Fig. 8c). Slight 

upwelling velocities (  up to 0.06 cm min-1) created by the shear-induced net upward 

torque are observed in the shallow wedge (Fig. 8b). Though the upper ~2 cm of the 

mantle flow is dampened by the presence of a fully coupled surface, Fig. 8c shows that 

deeper in the wedge velocities increase. Between 2 and 3 cm depth, average velocities 

in the experiment with fully coupled surface are greater than average UM with 

decoupled mantle surface. This suggests that activated return flows providing mass for 

subduction are originating from depth. 

The introduction of a no slip mantle surface also results in viscous coupling to 

the base of the lithosphere in experiments with heterogeneity. Surface coupling to the 

base of a lithospheric plate dampens the residuum north-south deformation rate (Fig. 

9). Initial north-south residuum length L0 = 20 cm, corresponds to 1300 km when 

scaled to the mantle. A weak heterogeneity experiences the greatest trench-parallel 

deformation over a 40 Ma (5 minute) evolution. By t* = 2, low viscosity residuum has 

changed north-south extent dramatically (~0.1L0) with no OP and moderately (~0.5L0) 

when the wedge couples to an OP. This is consistent with 3D flow rates in Fig. 7. A 
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strong residuum located in the wedge is more resistant to slab induced deformational 

flows. After 5 minutes (40 Ma) evolution, a high viscosity feature maintains ~0.3L0 

with no OP and ~0.95L0 with OP. The decrease in trench-parallel deformation in cases 

with overriding plate is the result of two factors: (1) introduction of an overriding plate 

dampens UT-induced toroidal near-surface flows (Fig. 8b, c); and (2) residuum, 

especially µ* > 1, viscously couples to the base of the OP and resists deformation (Fig. 

9b).  

Results indicate that slab-induced upper mantle circulation can deform and 

entrain wedge heterogeneity. We’ve shown that a weak heterogeneity decoupled from 

the overriding plate most easily deforms from a trench-parallel (north-south) 

morphology to a trench-normal (east-west) morphology, over 20 Ma time scales. 

However, an additional first order feature of volcanism needs to be considered, 

namely melt production patterns. These include volumetric trends and age 

progressions in the lavas, e.g. the CSFB event produced 200,000 – 450,000 km3 

[Tolan et al., 1989; Camp and Ross, 2004] while the SRP eastward trending and the 

HLP westward trending rhyolitic volumetric output is estimated at 10,000 – 30,000 

km3 [Ellis et al., 2013] and 1,000 – 1,250 km3 [Ford et al., 2013], respectively. To 

access vertical velocity, we consider flow and deformation patterns in side view for 

cases of different µ* and surface condition (Fig. 10).  

Side view analysis provides insight on the slab entrainment and transport of µ* 

residuum from shallow mantle to deep (Fig. 10 a, b). At t* = 1, the less viscous 

heterogeneity resembles a thin vertical sheet that runs along the slab centerline (e.g., 

Fig. 4c) and extends from mantle surface to depths beyond the shallow mantle (Fig. 
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10a). Comparatively, analysis of the vertical plane with strong residuum present shows 

that the feature is fully entrained and the entire mass approaches the trench (Fig. 10b), 

similar to the map view observation (e.g., Fig. 4f). To compensate for slower shallow 

mantle velocities when strong heterogeneity is present (Fig. 6), deeper mantle is 

sourced for subduction. In our x-y plane velocity analysis (Fig. 6c – e), strong 

residuum in the wedge results in slower circulation throughout the shallow mantle 

horizontal plane (z ~1 – 2 cm). In the x-z plane, the greatest sinking velocities, up to 

0.5 cm min-1, occur when a high viscosity feature is present in the wedge (Fig. 10b). In 

comparison, weak heterogeneity experiences greater flow velocities in the shallow 

wedge x-y plane (Fig. 6c – e) and slower sinking velocity, ~0.3 cm min-1, in the 

vertical plane (Fig. 10a). Thus, the relative intensities of entrainment and sinking 

velocities supplying the mass for subduction varies based on µ* heterogeneity present 

in the shallow mantle wedge.   

Residuum couples to the no slip surface when an overriding plate is introduced 

(Fig. 10c, d) producing a significant decrease in sinking velocities. Weak 

heterogeneity tends to remain in the shallow mantle wedge, adhered to surface plate, 

until coupling occurs with the subducting slab (Fig. 10c). More viscous heterogeneity 

strongly adheres to the underside of the OP and experiences limited deformation and 

entrainment over 2.5 minutes or 20 Ma when scaled to the mantle (Fig. 10d). There is 

slight shear-induced upwelling detected beneath and on the western side of the 

residuum in each case. Vertical rise velocities up to  ~0.2 cm min-1 (weak 

heterogeneity) and ~0.1 cm min-1 (strong heterogeneity) are observed along the deep 
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and western residuum-ambient fluid interface. However, no evidence of vertical 

motion exists on the eastern side of the heterogeneity. 

Long-term flux of rheological heterogeneity to the deep system is highly 

dependent on µ* and fluid surface coupling conditions (Fig. 11). With no OP, the 

estimated volumetric flushing time for weak and strong heterogeneity is 

approximately the same (Fig. 11a). A strong residuum in a system with a decoupled 

fluid surface (e.g., Exp. 14), µ* is strongly entrained down with the subducting slab. 

98% of the heterogeneity is flushed from the shallow wedge to depths greater than ~3 

cm (~200 km) by t* = 3, corresponding to 60 Ma when scaled to the Earth (Fig. 11a). 

The remaining 2% is strongly entrained, meaning the high viscosity residuum will 

completely flush from the wedge within the next 5 Ma resulting in a total shallow 

wedge lifetime of ~65 Ma. The majority of the low viscosity residuum volume 

subducts as well (~90% in 60 Ma) (Fig. 11a). However, a thin vertical sheet of residue 

is not strongly entrained (e.g. Fig. 5a – b).  Late stage results show that low viscosity 

features, though thin, are a long-lived (over 80 Ma) source of chemical heterogeneity 

in the wedge.  

Deformation and entrainment patterns of wedge heterogeneity alter drastically 

when an overriding lithospheric plate is added to the model (Fig. 11b). Over 60 Ma, 

strong residuum lying beneath an OP experiences slight deformations and entrainment. 

But due to strong viscous coupling with the overlying lithosphere, only 6% of the 

residuum volume has downwelled below the shallow mantle. ~83% of the weak 

residuum with fully coupled mantle surface has flushed by t* = 3. The remaining 17% 

exists in a thin horizontal sheet that is coupled to the no slip surface. Here, and in the 
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case with no OP, low viscosity heterogeneities are capable of long lifetimes in the 

mantle wedge. Thus weak residuum has the greatest potential to impact wedge 

chemistry over long timescales. 
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4.1.2 Effect of Back-Arc Extension 

 

Results so far show how simple plate motions give rise to evolving 3D flow 

fields that affect residuum deformation and evolution, but so far residuum cases have 

not produced complex upwelling patterns. Although our decoupled versus coupled 

wedge surface results show strong differences in vertical velocity, these upwelling 

patterns do not match a number of key characteristics of Cascades, e.g. HLP/SRP thin 

tracks with opposite age progressive lavas. An essential condition of the Cascadia 

subduction system that we will be modeling is the introduction of back-arc extension 

(BAE) above the mantle wedge [Wernicke et al., 1988].  BAE cases are crucial in 

linking our model results to post-20 Ma observations of the PNW. The interaction of 

4D circulation and heterogeneity impacts flow patterns, thereby influencing wedge 

melting processes and surface volcanism.  

The addition of BAE provides a mechanism for upwelling related 

decompression melting in the shallow wedge. The extension center moves at 

prescribed trench migration rate (UT) in our simplified subduction model. The 

extensional axis separates the arc plate (AP) in the west from the overriding plate (OP) 

to the east. As the axis translates horizontally, Mylar spools out at the extension 

location (Fig. 3b). The stationary OP imposes zero horizontal velocity on the mantle 

surface below. The AP has a free-slip mantle surface condition and extends from the 

trench to the BAE axis located ~13.5 cm, ~900 km, from the slab. The OP extends 

from the extensional axis to the far eastern edge of our model. Low viscosity (Exp. 27) 
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and high viscosity (Exp. 18) heterogeneities representing flood basalt residua are 

placed in the central wedge at experiment initiation (Fig. 12) 

The presence of an extensional axis provides a dramatic return flow regime 

boundary for material reaching the areas beneath the arc volcanics and the wedge 

apex. The subducting slab does not entrain residuum and ambient fluid located east of 

the extension center as both trench and extensional axis translate westward at rates of 

3 cm min-1 (Fig. 12). Heterogeneities adhere to the OP, which is stalled relative to the 

system rollback, and are left behind at ~ 2 cm min-1 (Fig. 12b, e). Wedge material 

located beneath the AP, i.e. trenchward of the BAE axis, is entrained towards 

subduction. East-west extension (in the trench-normal direction) occurs along the 

length of the heterogeneity due to the increasing gradient in trench-normal approach 

rates.  

Horizontal velocities for a weak heterogeneity located beneath the AP reach ~3 

cm min-1.  Between 10 and 0 Ma (t* = 0.5 – 1), the low viscosity feature separates into 

two unconnected entities (Fig. 12c). The space between the two discrete features 

grows with time as the subduction system moves west and the detached residuum 

beneath the OP is left in the east. Exp. 18 illustrates the strong heterogeneity stress 

guide effect. Due to viscous coupling within the strong heterogeneity, slab-ward 

advection of residuum beneath the AP is limited (Fig. 12d – f). Approach velocities of 

the western side are ~1 cm min-1, or only ~30% of the rates for the weak heterogeneity 

case (Fig. 12b). After 20 Ma, the strong heterogeneity remains intact and robust from 

west to east (Fig. 12f).  
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Complex 4D flow fields emerge when upper plate extension is modeled. In 

respect to the trench, wedge material beneath the overriding plate has an average 

southeast to east flow direction across all zones (Fig. 13b, c). East of the extension 

axis, surface fluid is not entrained for subduction (Φ* < -0.3). The presence of BAE 

results in efficient return flows along the northern edge of the wedge. The fastest 

average fluid velocities, ~0.55 – 0.65UD, occur in the shallow wedge beneath the AP 

at the northern edge (Fig. 13d). High UM trench parallel flows (Φ* ~ 0) are 

transporting mass southwards, from wedge edge to centerline. These activated return 

flows result in order to compensate for the mass no longer sourced for subduction 

from the far eastern side of the wedge.  

As in previous cases, despite the presence of BAE circulation in the wedge is 

sensitive to a mantle heterogeneity located beneath the extension location. On the 

northern edge region (Fig. 13a, black zone) and mid-region (Fig. 13a, blue zone) there 

is limited residuum presence during the course of the experiments. Between cases 

average UM and Φ* are similar within each zone. As previously discussed, fast trench-

parallel flows exist on the northern edge. Moderate (~0.35UD), westward trench-

oblique particle motion exists on the mid-region (Fig. 13e). There is a greater 

residuum presence along the slab centerline. In the red zone flows readily reorient to a 

trench-normal direction from east to west.  Wedge flow in this region reorients at a 

slower rate when strong residuum than when weak residuum is present (Fig. 13c). Slab 

centerline UM is the same for both cases beneath the OP. Beneath the AP, weak 

heterogeneity experiences faster average slab-ward velocities (~0.35UD) than the case 

with the strong heterogeneity (~0.25UD) (Fig. 13f).  
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Investigation of heterogeneity evolution in side view further highlights the 

importance of µ* features in 4D upper plate-driven wedge (Fig. 14a, b). As we saw in 

map view, the weak residuum splits into two distinct features while the strong 

heterogeneity remains intact. Exp. 27 (low viscosity residuum) is distinct in that the 

ambient fluid-residuum interface is slanted and shallows with time (Fig. 14a). Along 

the slab centerline, upwelling is detected in the shallow wedge along the residuum 

interface boundary with the fastest rise velocities (up to ~0.05 cm min-1) seen, as 

expected, beneath the extensional axis (Fig. 14c). The strong heterogeneity is robust 

directly beneath the BAE location (Fig. 14b). Maximum vertical velocities (up to 

~0.05 cm min-1) are resolved within and up the eastern side of the viscous plug (Fig. 

14c). In both cases shallow wedge velocities are beginning to downwell (vz < 0) near 

the trench due to the downward entrainment of the slab. However, vertical rise 

velocities still exist in the shallowest portion of our domain-averaging window (Fig. 

14c, representing the region between mean and one standard deviation above the 

mean).  

Results reveal interesting horizontal versus vertical flow dominant regimes 

indicating that upwelling patterns depend not only on residuum presence but also on 

location within the wedge. It is only along the slab centerline that trench-normal 

approach velocities, that are less than downdip subduction rate, must be compensated 

for by an advected vertical velocity. Here, material must be brought up from deep, 

against gravity, to fill in the mass deficit created by the extension center on the 

surface. Away from the central wedge flow is predominantly horizontal toroidal flow, 
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with little vertical component. Thus, model predictions indicate that melting will be 

constrained on trench-normal tracks on the slab centerline. 

Analysis of µ* residuum deformation beneath the BAE axis reveals that it is 

possible to produce age-progressive mantle melting. As previously discussed, we 

confine the greatest upwelling to central wedge, along the trench-normal, slab 

centerline track. Relative strength and chemical composition of the residuum beneath 

the back-arc extension axis will effect upwelling related decompression melting trends 

(Fig. 14). The interface represents a boundary between the more refractory residuum 

and ambient mantle. As it shallows and migrates, this boundary controls both the 

chemical composition and timing of the resulting partial melts (Fig. 15).  

Different wedge upwelling patterns occur when heterogeneity viscosity is 

varied (Fig. 14). Shallowing of residuum and ambient fluid throughout the top 3 cm 

(200 km) creates a decompression melting favorable environment. An essential point 

however is that not all wedge upwelling will produce decompression melting. Melt 

production will be delayed in rising residuum parcels that have experienced prior melt 

extraction and are more refractory, with a solidus that is shifted towards higher 

temperatures. Focusing in on the residuum-ambient fluid interface, this results in a 

different melt onset times for neighboring parcels. Melting will depend not only on a 

particle’s ability to rise but also on its composition, location in P-T space, and wedge 

potential temperature (Fig. 15a). In our analysis we assume a fertile mantle lherzolite 

composition for the ambient mantle and a refractory harzburgite composition for the 

depleted mantle residuum. Using these assumptions, ambient mantle will start to melt 

at depths between ~75 and 20 km for wedge potential temperatures of 1500 and 
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1300°C, respectively (Fig. 14d). Refractory mantle heterogeneity will only melt at 

mantle depths shallower than 20 km in the hottest wedge (TP 1400 - 1500°C). 

Relative strength of the residuum plays a key role in the wedge spatial-

temporal patterns of upwelling. Low viscosity heterogeneity interface shallowing with 

time can produce an age progressive melting track (e.g., Fig. 15b). Rise velocities 

beneath a weak mantle heterogeneity decrease with distance from the extension axis 

(Fig. 14c) as wedge fluid is entrained by slab downdip flows. West of the extensional 

axis, weak heterogeneity (Exp. 27) shallows as it approaches the slab at westward 

migration rates of ~3 cm min-1, ~2. 4 cm yr-1 when scaled to the mantle, creating an 

age progression in melt generation. As the feature gets closer to the slab, downward 

entrainment of wedge material decreases upwelling between the trench and ~5 cm 

(~325 km) from the trench. The low viscosity residuum to the east of the extensional 

axis experiences a different pattern of interface shallowing. In our analog model there 

is no strong driver of convection, e.g. the slab, entraining upwelling towards the east. 

Rise of mantle material and shallowing of residuum interface decreases drastically 21 

– 22 cm (~1400 km) from the slab (Fig. 14a). In the long term, as the extension axis 

migrates westward, further away from the eastern heterogeneity, upwelling velocities 

beneath the interface will decrease to zero unless an additional source of upwelling is 

introduced. 

Similar to the weak heterogeneity case, predictions on west and east age 

progression patterns in melting with a strong heterogeneity present in the wedge are 

linked to residuum-mantle interface rise in P-T space. The high viscosity residuum 

(Exp. 18) redirects BAE-induced upwelling around the east and west sides (Fig. 14c). 
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As the extension axis migrates westward at 3 cm min-1, vertical flows preferentially 

rise up the right side of the feature. Consequently, rising of residuum and ambient 

fluid is strongest in the east. Weaker upwelling is detected west of the BAE axis, as 

flow near the trench compete with the downward entrainment of the slab. 1 cm min-1 

(~0.8 cm yr-1 scaled to mantle) westward progression of residuum is occurring to the 

west of the extensional axis. However, the eastern side is coupled to an overriding 

plate that has zero horizontal velocity. Upwelling exists to the east of the BAE 

location but without an additional driver allowing eastward progression of interface in 

an absolute reference frame, there appears to be no eastward age progression in this 

wedge. Only in a fixed trench/fixed BAE reference frame does the eastern edge have 

relative eastward progression.
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4.1.3 Effect of Residuum Initial Position  

 

A north-south (trench-parallel) offset is observed in cases where residuum is 

initially located north of the slab centerline (Exp. 23 and 30). Trench-parallel 

translation is a consequence of deformation induced by trench rollback (Fig. 16). Both 

weak and strong residua are initially located north of the slab centerline (Fig. 2c, 

location ‘B’). Weak heterogeneity migrates south at a maximum rate of ~5.5 cm min-1. 

From 20 Ma to 10 Ma, the residuum’s northern most edge has moved ~7 cm to the 

south, corresponding to ~450 km in the mantle (Fig. 16b). As we saw in previous 

velocity results, particle trench-parallel velocities decrease towards the slab centerline 

(e.g., Fig. 13). The southward migration rate of the transported residuum from 10 – 0 

Ma lessens and the total trench-parallel offset is 550 km after 20 Ma evolution (Fig. 

16c). Similarly to previous cases with BAE, northern wedge residuum morphology 

experiences trench-normal stretching over 20 Ma due to combined slab and upper 

plate extensional forcing. At t* = 1, the weak heterogeneity morphology forms a long 

linear east-west track, extending from the trench to 25 cm (~1625 km) in the east. This 

feature is extremely thin in the north-south extent (~4 cm, ~260 km). Comparatively, 

lower north-south migration and less deformation occur when high viscosity 

heterogeneity is present in the wedge (Fig. 16d – f). Trench-parallel translation rates 

up to ~3 cm min-1 move residuum south by ~7 cm (~450 km) over 20 Ma. The strong 

residuum remains robust throughout and trench-normal extension is restrained due to 

the east-west stress guide.
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5. Discussion 

 

The experiment results produce general aspects of residuum interaction in 4D 

circulation and specific results relate to the Cascades system. Fundamental 

geodynamic modeling results are that: (1) UT-induced toroidal flow plus UD-controlled 

entrainment make distinct regimes of horizontal, or translational, flows away from 

centerline and vertical velocities in the central wedge. Presence of a residuum that 

deforms towards the centerline alters rates of horizontal return flow and, perhaps more 

importantly, vertical flow along the slab centerline. (2) Introduction of a fully coupled 

mantle surface dramatically changes wedge return flows, thereby impacting long-term 

mass and energy transport of wedge fluid and residuum. (3) The presence of back-arc 

extension in the overriding plate provides a striking return flow regime boundary for 

wedge flow. The extensional axis acts as a barrier to for wedge material. Fluid east of 

the extensional axis is not readily entrained by the subducting slab. Activated return 

flows result in increased trench-parallel edge flows west, i.e. trenchward, of the 

extension location. (4) Interplay between complex 4D flow and thermal-chemical 

rheological heterogeneity can produce strong indicators in volcanic production at 

Earth’s surface. Slab and BAE induced flow interacting with an evolving residuum 

can produce linear, time-progressive melting tracks without the use of a deep mantle 

plume conduit. Relative strength and composition of the residuum play key roles in 

the timing and composition of the melt. 

We can apply the observations we’ve made in our experiment results to the 

Cascades. Three distinct models attempt to explain the post-20 Ma thermal evolution 
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of the Cascadia subduction system. Plume models invoke a thermally buoyant deep 

mantle upwelling to explain post-20 Ma magmatic events CSFB, HLP and SRP. 

Typically, plume models attribute the Columbia River/Steens flood basalts to 

processes related to plume head interaction with the lithosphere [e.g., Richards et al., 

1989; Takahahshi et al., 1998; Camp and Hanan, 2008; Wolff et al., 2008; Obrebski et 

al., 2010]. Subsequent eastward trending SRP volcanism is the surface expression for 

the long-lived conduit tail [e.g., Pierce and Morgan, 2009; Kincaid et al., 2013], and 

the westward trending HLP volcanic track is due to the deformations and entrainment 

of remaining plume head modified upper mantle [e.g., Jordan et al., 2004; Kincaid et 

al., 2013]. Non-plume models invoke plate-driven processes, rather than a mantle 

plume, to control mantle dynamics and volcanism in the Pacific Northwest. 

Subduction-related processes such as slab steepening, rollback, and extension in the 

overriding plate lead to a pulse of rapid mantle upwelling responsible for the CSFB 

event [e.g., Faccenna et al., 2010; Liu and Stegman, 2012; Long et al., 2012]. In Long 

et al. [2012] three-dimensional slab rollback-controlled mantle flow along with 

eroding of the overriding lithosphere explains the westward progressing HLP 

volcanism but this conceptual model, and other non-plume models, struggle in 

providing an explanation for the eastward trending magmatism of the SRP.  

Our results represent an extension of the Long et al. [2012] non-plume model 

by adding in the effect of residuum produced by a large scale upwelling event at ~20 

Ma due to changes in plate mechanics. Experiments begin from this point and show 

that various parameter choices improve or diminish the match with basic observations. 

Table 2 summarizes these for geology and seismology. All experiments indicate that 
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the north-south offset between the CSFB and the HLP/SRP volcanic tracks is the 

result of slab migration induced toroidal flow. UD and UT naturally produce horizontal, 

melt unfavorable regions over most of the wedge, except along the centerline. Our 

models constrain mantle upwelling beneath a trench-normal, east-west linear track, 

thereby placing decompression melting favorable environment beneath the HLP and 

SRP regions. Residuum that is defined to occupy this region prior to entrainment 

towards slab and eventual flushing can sharply influence local vertical velocities, i.e. 

volcanic trends.  

Our models that include back-arc extension in the overriding plate are the most 

successful in linking experiment results with geological observations of the PNW 

(e.g., Fig. 17). Interaction between wedge upwelling induced by the extension center 

and a deforming residuum results in time-progressive melting patterns. In the previous 

section we resolved that westward age-progressive melting west of the BAE axis, i.e., 

beneath the HLP, is readily explained in cases with strong or weak residuum present. 

However, there is one preferred model that appears capable of upwelling and possible 

eastward progressing lavas under SRP. Cases with strong heterogeneity located under 

an overriding plate with BAE result in the largest upwelling east of the extension 

location, beneath the SRP region (Fig. 14c). High viscosity residuum that resists 

deformation tends to alter the natural pattern in upwelling along the slab centerline of 

this system. The resistance to deformation manifests itself as diverted and focused 

upwelling along the eastern and western edges of the residuum as depicted in 

schematic models, i.e., region beneath HLP and SRP [e.g., Humphreys et al., 2000; 

Smith et al., 2009]. This pattern tends to only occur where residuum is present and so 
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the progressive accumulation of this material towards the centerline also focuses the 

trend of east end and west end upwelling along tracks at the centerline. This is 

consistent with north-south offset of the CSFB and the HLP/SRP and the centered, 

linear nature of these age-progressive volcanic tracks. While this is the best case for 

any form of upwelling under the SRP, it does not closely model the eastward age-

progressive nature of the rhyolitic lavas. Perhaps if actual melting and hardening of 

residuum were modeled, as in Hall and Kincaid [2004] or Humphreys et al. [2000], 

then eastward progression of upwelling could be achieved. However, this additional 

model complexity is beyond the scope of this study. 

Thus, our results indicate that a third set of models invoking flood basalt 

residuum interaction with 4D mantle flow can affect mantle dynamics and provide 

insight into post-20 Ma volcanism of the Pacific Northwest. The fate of chemical and 

rheological mantle heterogeneity, i.e. residuum, resulting from the CSFB melting 

event has been explored in both plume [e.g., Smith et al., 2009] and non-plume [e.g., 

Humphreys et al., 2000] explanations of Cascades melting. Our models show that the 

deformation of refractory mantle flood basalt residuum created during a massive 

melting event, such as the ~20 Ma CSFB, can influence upper mantle circulation and 

surface volcanism over long time scales (at least 80 Ma). Similar to the works of 

Humphreys et al., 2000, the interface between the refractory residuum and fertile 

mantle acts as a guide for melting and can result in age-progressive volcanism without 

a plume conduit. Though our model readily explains the bimodal melting beneath the 

HLP/SRP tracks and the westward progressing lavas beneath the HLP, the SRP 
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eastward progressing lavas prove enigmatic and may require additional model 

features.  

Our melt residuum models do not rule out the presence of a deep-seated mantle 

plume beneath the Pacific Northwest but offer a different explanation for the 

tectonomagmatism of the last 20 Ma. Similar to Long et al. [2012], our models 

emphasize the importance of 3D subduction-related processes, including rollback and 

extension, in controlling mantle dynamics and melting. However, the introduction of 

viscous mantle heterogeneity within the subduction system of our models leads to 

different results than the conceptual non-plume model of Long et al. [2012]. For 

example, our experimental results do no invoke lithospheric thinning beneath the HLP 

to produce upwelling related mantle melting. Instead magma production beneath the 

HLP in our experiments is achieved by flow interaction with an evolving refractory 

residuum interface. Also, the study of Long et al. [2012] cannot explain the SRP-

Yellowstone track without the addition of a buoyant mantle upwelling possibly 

sourced from the uppermost lower mantle. In contrast, our analysis of upwelling 

patterns in and around the interface of a residuum located beneath a migrating back-

arc extension axis shows vertical rise velocities to the east, beneath the Snake River 

Plain region. But, as we’ve discussed previously, the eastward age-progression 

melting is indiscernible in our models.  

Our mantle residuum models share similarities with previous Pacific 

Northwest melting models that invoke a CSFB residuum. Smith et al. [2009], 

Humphreys et al. [2000], and our subduction system-residuum models indicate the 

potential for refractory mantle heterogeneity to deform over time and impact wedge 
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flows as it evolves. In these models the mantle heterogeneity created during the CSFB 

event is cited as a guiding factor for the general surface volcanism in the post-20 Ma 

Cascades. Similar to our model, in Humphreys et al. [2000] mantle flow and 

decompression melting causing magmatism results from local plate motions. 

However, post-20 Ma Pacific Northwest melting in Smith et al. [2009] relies on the 

existence of a deep-seated plume conduit. There are other dissimilarities between 

these residuum models that are worth examining. The heterogeneity in Smith et al. 

[2009] is created via a plume source. This model explains the eastward progressing 

volcanism of the SRP via a long-lived Yellowstone mantle plume interacting with a 

deforming residuum, while the SRP melting origin remains unresolved in our models. 

There is an interesting dissimilarity between our models and the model proposed in 

Humphreys et al. [2000]. The mantle residuum in Humphreys et al. [2000] grows in 

volume over time. Decompression melting occurring along the edges of the viscous 

heterogeneity creates more refractory residuum along the residuum interface. Through 

time the feature expands trench-normally (to the east and west) and bimodal melting 

progresses further along the HLP and SRP. Our models also show upwelling related 

decompression melting along the eastern and western sides of the high viscosity 

heterogeneity beneath the HLP and SRP tracks. However, in our simplified fluid 

experiments, which utilize a thermally altered path of glucose syrup as a mantle 

residuum analog, the heterogeneity is free to deform but is limited to the same volume 

throughout the course of the experiment. We can theorize that creating new residuum 

along the edges in our model would also deflect the upwelling further eastward and 
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westward. This additional model complexity would foreseeably create eastward-

progressing melting beneath the SRP track.  
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6. Conclusions 

 

Plate-driven circulation in the subduction system is 3D and time evolving. 

Most notably, results highlight the importance of lateral return flow in resupplying the 

wedge. Adding rheological heterogeneity alters wedge circulation and increases 4D 

flow complexity. Our models indicate residuum in the subduction system affects local 

mass and energy transport; i.e. presence of strong heterogeneity decreases shallow 

wedge velocities resulting in increased velocities of deeper fluid towards subduction. 

Results have long-term implications for the geochemistry of the wedge and fluxing of 

mantle to Earth’s deep interior. Viscosity variations representing thermal-chemical 

heterogeneity in the wedge can have residence times much longer than expected, e.g., 

weak heterogeneity lifetime > 80 Ma in the wedge. The residuum experiments with 

downdip and rollback slab motion and back-arc extension in the overriding plate have 

important implications for the Cascades. A north-south offset between Columbia 

River/Steens Flood Basalts and the High Lava Plains/Snake River Plain tracks are a 

consequence of deformations induced by trench-rollback. Slab entrainment coupled 

with back-arc extension trench-normal stretching results in east-west elongated feature 

beneath High Lava Plain and Snake River Plain. The relative strength and chemical 

composition of the residuum beneath the extension axis will effect upwelling related 

decompression melting patterns and compositions. The model results in shallow, 

trench-normal vertical rise of wedge fluid beneath the High Lava Plain and Snake 

River Plain tracks. However, age progression in melting is complicated. Our results 

are hard pressed to fit Pacific Northwest observations, especially the enigmatic 
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eastward melting of the Snake River Plain-Yellowstone track. However, the addition 

of model complexities, e.g., allowing for residuum volume growth, would produce 

better-matched laboratory results to the post-20 Ma Cascades geological constraints. 
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Table 1 
Experimental parameters for plate forcings and residuum. 
Exp  Slab  Wedge   Residuum 

UD UT θ  OP TM µM xi yi TR µR µ* 

  (cm/min) (cm/min) (°)   (°C) (Pa s)  (cm) (cm) (°C) (Pa s)  
Varied residuum viscosity: 
2  8 3 50   22 134  14 0 22 134 1 
5  8 3 50   22 134  14 0 9 1070 8 
6  8 3 50   22 134  14 0 32 36 0.3 
13  8 3 50   19 207  14 0 33 32 0.1 
14  8 3 50   19 207  14 0 13 534 3 
Varied slab parameters: 
1a  8 0 50   22 134  14 0 33 32 0.2 
1b  8 0 50   22 134  14 0 14 453 3 
Varied overriding plate parameters: 
3  8 3 50  OP 20 178  14 0 20 178 1 
12  8 3 50  OP 19 207  14 0 53 4 0.02 
15  8 3 50  OP 19 207  14 0 7 1546 8 
18  8 3 50  BAE 21 154  14 0 7 1546 10 
26  8 3 50  BAE 21 154  14 0 21 154 1 
27  8 3 50  BAE 21 154  14 0 52 5 0.03 
Varied residuum location (Cascades cases): 
23  8 3 50  BAE 21 154  14 6 6 1869 12 
30  8 3 50  BAE 20 178  14 6 49 6 0.03 

Columns 2–3 represent the average plate forcing conditions for each experiment with U
D
 and U

T representing the downdip 
(or longitudinal) sinking and translational rollback speeds of the slab. In the lab, 1 cm min-1 is approximately equivalent to 
0.8 cm yr-1 in the mantle. Dip angle (θ) is given in degrees from horizontal. Columns 4–6 list the wedge parameters, which 
include the mantle surface conditions for each experiment (OP: with overriding plate, BAE: with back-arc extension, and 
blank: free slip mantle surface conditions), mantle wedge fluid temperature (TM) and corresponding viscosity (μM). Columns 
7–8 list the initial central residuum location (xi; yi) where xi is the distance from the trench and yi is the distance from the 
slab centerline. For the majority of experiments the residuum is initially located in the center of the wedge (xi = 14; yi = 0), 
except for the Cascades cases where the residuum location represents the northern wedge location of the CSFB (xi = 13; yi = 
6). Residuum material temperature (TR) and corresponding viscosity (μR) are shown in Columns 9–10. Column 11 lists the 
residuum-wedge viscosity ratio μR/ μM (μ*) for each experiment (μ* < 1: weak mantle heterogeneity present in the mantle 
wedge, μ* > 1: strong mantle heterogeneity present, and μ* = 1: reference cases, no heterogeneity present). 
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Table 2 
Comparison of constraints with models  
 Decoupled  

mantle surface 
 Coupled  

mantle surface (OP) 
 Back-arc extension 

(BAE) 
 Weak 

residuum 
(µ* < 1) 

Strong 
residuum 
(µ* > 1) 

 Weak 
residuum 
(µ* < 1) 

Strong 
residuum 
(µ* > 1) 

 Weak 
residuum 
(µ* < 1) 

Strong 
residuum 
(µ* > 1) 

         
CSFB         
 N-S offset: 10 – 15 Ma  ✓ ✓  ✕ ✕    ✓ ✓ 

 
High Lava Plains         
 Westward progression ✓ ✓   ✓ ✓    ✓   ✓ 
 Narrow N-S, wide E-W 

melting ✕ ✕  ✕ ✕    ✓   ✓ 

 
Snake River Plain-Yellowstone        
 Eastward progression ✕ ✕  ✕ ✕    ✓-    ✓- 
 Narrow N-S, wide E-W 

melting ✕ ✕  ✕ ✕    ✓   ✓ 

 
 ✓: Good agreement, ✕: No agreement,  ✓-: Agreement with caveats 
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1 

 
Figure 1. Geologic map of the Pacific-Northwest U.S. showing the Cascades subduction 
system with key volcanic features: Large igneous province Columbia River/Steens flood 
basalts (CSFB), shown in green, and southern volcanic tracks High Lava Plains (HLP) 
and Snake River Plain (SRP) are marked in pink and blue, respectively, and show 
opposite age progression of rhyolitic lavas in millions of years. 
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(a) 

 

 
Figure 2. (a) Photograph of the subduction apparatus with the tank of glucose syrup and 
the reinforced belt system representing subducting plate. White arrows indicate down-dip 
(UD) and translational (UT) slab motions controlled by piston motors located above fluid 
surface. (b) Scaled map-view cartoon of the lab apparatus. (c) Enlarged inset showing 
approximate center location of residuum at experiment initiation (yellow stars). In most 
cases, residuum location is on the slab centerline (star A). In the Cascadia cases (Table 
1), residuum initial location is north of the slab centerline (star B).  
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(a) With overriding plate 

 
(b) With back-arc spreading center 

 
Figure 3. Cartoon schematics illustrating model overriding 
plates and surface conditions. (a) OP and subducting slab 
migrate with trench motion. (b) The back-arc extension 
(BAE) axis moves with trench motion. Mylar spools out 
from the roller at (-UT). Arrows indicate absolute motion of 
slab, trench, and extension axis. The OP has zero horizontal 
velocity and imposes a no slip surface condition on the 
mantle. The AP have free slip mantle surface. 
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Figure 4. Comparison of map view, 20 Ma evolution of weak (a – 
c) and strong (d – f) residuum in subduction driven flows with UT = 
3 cm/min and UD = 8 cm/min. Images show results at depth z = 1 – 
2 cm (~ 65 – 130 km) beneath a free slip mantle surface. Residuum 
structure is highlighted in yellow. Downdip subduction entrains 
residuum material towards the trench while UT-induced toroidal 
flow compresses the residuum towards the slab centerline. µ* < 1 
experiences very efficient pure shear in transition from an initial 
north-south morphology to an east-west morphology. µ* > 1 resists 
internal deformation and folds along the trench-normal symmetry 
line. 
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Figure 5. Late stage map view images of (a) – (b) weak residuum (Exp. 6) and (c) – (d) 
strong residuum (Exp. 5). Top row shows residuum-wedge after 60 My (7.5 minutes in 
the lab) and bottom row shows wedge results after 80 My (10 minutes in the lab).  
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(a) (c) 

 
 

(b) (d) 

  
 (e) 

 

 
Figure 6. (a) Wedge region divided into three analysis zones: Northern edge (black), 
mid-region (blue), and slab centerline (red). Grey dashes indicate averaging domains. (b) 
Average normalized flow direction (Φ*) and (c – e) average instantaneous flow velocity 
(UM /UD) for case with weak (circles) and strong (squares) residuum. Velocities and 
direction are averaged from instantaneous flows in t* = 0, 0.5, and 1. Grey shading 
indicates standard deviation in each averaging domain. δUM /UD represents change in 
region average velocity between averaging domains located farthest and nearest to the 
trench. 
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(a)  (b) 

  
UM/UD 

 
Figure 7. Lagrangian particle velocity for ambient wedge with (a) free slip and (b) no 
slip surface conditions. Results are in the x-y plane at z = 1 – 2 cm (65 – 130 km). All 
velocities are calculated in a fixed trench reference frame.  
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(a) (b) 

  
UM/UD 

 
(c) 

 
Figure 8. (a) and (b) Identical to Fig. 7, except results are in the x-z plane, along the slab 
centerline from mantle surface to depth. (c) Average surface flow velocity vs. mantle 
depth from the shallow mantle domain shown in grey box from (a) and (b). 
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(a) 

 
(b) 

 
Figure 9. (a) Cartoon illustrating calculation of L*. Experiment initial residuum length 
(L0) is ~20 cm (1300 km). (b)  Residuum north-south nondimensionalized length (L*) 
over time. Except for Exp. 1a, where UT = 0, all experiments are run with slab rates UT = 
3 cm min-1, UD = 8 cm min-1.  Toroidal flow induced by a migrating trench (UT) is the 
major driver of deformation of the mantle wedge heterogeneity. In cases with OP, mantle 
material couples to the OP and resists toroidal flow deformation on the timescales of our 
experiments. HLP/SRP N-S extent red box represents the ~100 – 200 km trench-parallel 
(north-south) length of the HLP/SRP tracks estimated by seismic studies [e.g., Wagner et 
al., 2012], and we’ve assumed a ± 50 km and ± 5 Ma error.  
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(a) (c) 

  
(b)  (d) 

  
Figure 10. Comparison of 20 Ma evolution of weak and strong residuum with free slip 
mantle surface (a – b) and with overriding plate (c – d). Dashed lines indicate mantle-
residuum interface through time. With no OP (Exp. 13 and 14), greater residuum sinking 
velocities (up to 0.5 cm min-1) are observed in µ* > 1. With coupled mantle surface (Exp. 
12 and 15), upwelling velocities are detected beneath and on the west of the residuum. 
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(a)  

 
(b) 

 
Figure 11. Shallow wedge residuum volume vs. time. Residuum volume is approximated 
assuming shallow mantle extends to 3 cm (~200 km) depth. Volume = side view area  × 
residuum N-S extent (from x-y plane). Material subducted below 3 cm is considered 
flushed from shallow mantle. Imposing different mantle surface conditions, such as (a) 
free slip mantle (Exp. 13 & 14) and (b) no slip (Exp. 12 & 15), greatly changes patterns 
of material transport towards the trench and flushing from the shallow mantle. 
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Figure 12. Low viscosity (a – c) and high viscosity (d – f) residuum 
beneath BAE axis with westward migration rate 3 cm min-1. Rollback 
controlled BAE begins at t* = 0. Extensional axis (green dashed line) is 
located ~13.5 cm (~900 km) from the trench. Residuum east of extension 
center is left behind as slab migrates to the west. (c) Weak heterogeneity 
splits into two at the extension axis. (d – f) Experiment illustrates strong 
stress guide effect. Viscous normal stresses limit slab-ward advection of 
residuum under AP. Approach velocity of western side of residuum ~1 cm 
min-1 is ~ two-thirds less than the weak heterogeneity case. After 20 Ma, 
this feature has remained robust throughout. 
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(a) (d) 

 

 
(b) (e) 

  
(c) (f) 

  
Figure 13. Normalized flow direction (Φ*) and mean instantaneous wedge velocity 
(UM/UD) for BAE cases Exp. 27 (weak residuum) and Exp. 18 (strong residuum). The 
majority of the residuum mass is located in the slab centerline region and velocities in 
this region exhibit the greatest variation between weak and strong residuum cases.  
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(a) 

 
(b) 

 
(c) 

 
Figure 14. Side view evolution of (a) weak (Exp. 27) and (b) strong (Exp. 18) residuum 
located beneath a BAE axis. Dashed lines indicate residuum-wedge interface through 
time. For reference, approximate locations of Cascades volcanic centers Newberry (N.), 
McDermitt (McD.), and Yellowstone (Y.) are shown in black triangles. (c) Mean 
Lagrangian upwelling velocity of particles located in shallow mantle (grey box in (a) and 
(b)) between t* = 0 and 1. Grey shading represents standard deviation about the mean. 
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(a) 

 
(b) 

 

 
Figure 15. (a) Anhydrous P-T diagram for mantle lherzolite (red curve, from Thompson 
and Gibson [2000]), and mantle harzburgite (purple curve, from Maaløe [2004]). Black 
lines represent the adiabats for representative mantle potential temperatures (TP). Right-
hand side y-axis shows mantle depths at which decompression melting expected for 
lherzolite, the assumed mantle composition, and harzburgite, the assumed residuum 
composition. (b) Potential trajectory and timing for a low viscosity residuum interface 
migration beneath the HLP. Residuum evolution due to slab and BAE induced upper 
mantle flow fields. Trenchward shallowing of sloped residuum interface leads to 
westward age progressive melting beneath the HLP. Residuum evolution is a guide for 
melting background ambient mantle. 
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 Weak heterogeneity Strong heterogeneity 
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Figure 16. Time evolution of weak (a – c) and strong (d – f) residuum 
initially located in northern wedge beneath BAE axis with extension rate 
of 3 cm min-1. In the t* = 0.5 and t* = 1 images, the initial residuum 
location is outlined in green for reference. Southward migration of 
residuum is the result of deformations induced by trench rollback. 
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(a) 

 
(b) 

 
Figure 17. Annotations highlight rough estimates of key features of PNW overlaid on 
experiments with BAE and (a) weak (Exp. 30) and (b) strong (Exp. 23) residuum. 
Laboratory models represent North-south offset between the CSFB and HLP-SRP tracks 
are a consequence of deformations induced by trench-migration. Our experiments 
indicate that placement of melt residuum beneath HLP and SRP is consequence of slab 
and OP plate forcing allowing E-W extension of features.  
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Supplementary Figure 1. (a) Cartoon schematic illustrating set up of laboratory 

cameras and lightsheets used to visualize model throughout the course of the 

experiments. Two cameras take (b) side view and (c) map view photographs. The 

cameras move with the subduction apparatus at trench migration rate UT. All 

photographs within the paper are in a fixed trench reference frame. 

Supplementary Figure 1. (a) Cartoon schematic illustrating set up of laboratory cameras 

and lightsheets used to visualize model throughout the course of the experiments. Two 

cameras take (b) side view and (c) map view photographs. The cameras move with the 

subduction apparatus at trench migration rate UT. All photographs within the paper is in a 

fixed trench reference frame. 
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Supplementary Figure 2. All images shown in the paper are in a fixed trench 

reference frame. Understanding how the system moves in an absolute reference frame 

is important for the kinematics, seismic anisotropy, and thermochemical evolution of 

the upper mantle. The cartoon schematic illustrates time evolution of subduction 

system with back-arc extension (BAE) apparatus in an absolute reference frame. 

Trench and extensional axis move westward at migration rate UT. Reference locations 

A, A’, B, B’, C, C’ are shown throughout each frame to track plate motion. Mylar 

imposes zero horizontal surface velocity on the underlying fluid surface. 

Supplementary Figure 2. All images shown in the paper are in a fixed trench reference 

frame. Understanding how the system moves in an absolute reference frame is important 

for the kinematics, seismic anisotropy, and thermochemical evolution of the upper 

mantle. The cartoon schematic illustrates time evolution of subduction system with back-

arc spreading extension (BAE) apparatus in an absolute reference frame. Trench and 

extensional axis move westward at migration rate UT. Reference locations A, A’, B, B’, 

C, C’ are shown throughout each frame to track plate motion. Mylar imposes zero 

horizontal surface velocity on the underlying fluid surface. 

(a) t* = 0 (20 Ma) 

 
(b) t* = 0.5 (10 Ma) 

 
(c) t* = 1 (0 Ma) 
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Supplementary Figure 3. Similar to Fig. 7 except velocities are calculated and 

displayed in an absolute reference frame. Map view wedge non-dimensional 

Lagrangian particle velocity (UM/UD) is shown at mantle depth z = 1 – 2 cm (65 – 130 

km) beneath the surface for anambient mantle wedge (µ* = 1) with (a) free slip and (b) 

no slip mantle surface in an absolute reference frame. For each experiment location of 

the trench and select fluid particles are highlighted in light grey, dark grey, and black 

at 40 Ma, 20 Ma, and present day, respectively. With overriding plate shallow mantle 

velocities are dampened and oriented more strongly trenchward (westward) 

throughout the x-y plane due to surface-lithospheric coupling.  

Supplementary Figure 3. Similar to Fig. 7 except velocities are calculated and displayed 

in an absolute reference frame. Map view wedge non-dimensional Lagrangian particle 

velocity (UM/UD) is shown at mantle depth z = 1 – 2 cm (65 – 130 km) beneath the 

surface for anambient mantle wedge (µ* = 1) with (a) free slip and (b) no slip mantle 

surface in an absolute reference frame. For each experiment location of the trench and 

select fluid particles are highlighted in light grey, dark grey, and black at 40 Ma, 20 Ma, 

and present day, respectively. With overriding plate shallow mantle velocities are 

dampened and oriented more strongly trenchward (westward) throughout the x-y plane 

due to surface-lithospheric coupling.  
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Supplementary Figure 4. The evolution of residuum in the wedge is strongly coupled 

to drivers of the local flow field. Varying downdip (UD) and rollback (UT) plate rates 

change the induced mantle flow with which the heterogeneity interacts. In Exp. 6 (Fig. 

4a – c), the eastern residuum edge, located furthest from the trench, gets left behind in 

the mantle as the plate retreats and the residuum edge located closest to the slab gets 

entrained with the downgoing plate over the course of the experiment. Our results 

indicate that the relative intensity of UT to UD determines which wedge material will 

eventually be subducted in a long running system.  

In a fixed trench reference frame, a mantle saddle point results in cases with 

migrating trench. (a) Map view, long exposure image in a fixed trench reference frame 

capturing ~10 Ma of evolution of mantle wedge flows (Exp. 6 shown). With respect to 

the trench, select relative material pathlines are shown in black and the saddle point 

location is highlighted with a yellow diamond. (b) Saddle point location for various 

slab parameters and viscosity ratios. Results indicate that the location of the saddle 

point is highly affected by the relative intensities of UT and UD, represented by the 

variable U*  which equals the ratio UT / UD. Trench migration and slab convergence 

rates used in the calculation of U* for the Aleutians, Cascades, and Tonga-Kermadec 

subduction systems were taken from the compilation of Long and Silver [2009]. 
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