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ABSTRACT 

According to the Brundtland report, sustainable development “meets the needs of 

the present without compromising the ability of future generations to meet their own 

needs” (United Nations 1987). The 3 pillars of sustainability have been identified as 

economic development, social development, and environmental protection (United 

Nations 2005). These components interact and affect each other in any real world 

application.  For manufacturing companies, sustainable manufacturing is one way to 

decrease the environmental impact of their products. In the literature, there are 

different approaches to assess sustainability.  However, no approach aims to improve 

sustainability and costs since sustainability and cost reduction are often seen as 

conflictive and cannot be achieved at the same time. An overlap between cost 

reduction and sustainability can push companies to expend more effort in order to 

achieve long term business success while decreasing the environmental impact of their 

products.  

This study presents a framework that aims to prove this overlap based on gathered 

data of a case study. Besides an assessment of the current state of manufacturing 

processes, alternative future state models are determined, which are more sustainable 

and decrease the costs of production.  

All data gathered within this study was manipulated by a key multiplier to ensure 

the integrity of the manufacturer and does not represent the real manufacturing data. 
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1. CHAPTER 1 – INTRODUCTION 

This thesis provides an overview of the broad discussed topic of sustainability 

and assessment of sustainability in manufacturing by means of an extensive literature 

review. Furthermore, a framework to relate manufacturing costs to environmental 

impact will be derived and applied to a case study at a manufacturing company. The 

first section of this chapter presents the background of the study and exposes the gaps 

and concerns that justify the research in this field. The second section describes the 

derived objectives of this study and how they can be approached successfully. 

1.1. Background, Motivation and related Problems 

A study of The Grocery Manufacturers Association (GMA) and Deloitte from 

2009 states that 95% of all customers would buy “green products”, if there is a 

satisfactory product on the market. Compared to the 25% of customers who already 

purchase green products, it derives that there is an unfulfilled demand for such 

products on the market. This survey shows, that nowadays the demand for sustainable 

products show that society is more aware of the increasing pollution in the 

environment and how it is connected to the ways products are made (Deloitte 2009). 

Customers are increasingly environmentally conscious in their purchase decisions, 

putting more pressure on the producers to create more sustainable products (Windsor 

2011). In addition to this, environmental legislation is becoming stricter in order to 
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extend the producer’s responsibility (Lindahl 2006). To fulfill customer desires and 

current environmental laws, companies have to redesign their products and still stay 

competitive within the market. Therefore, the costs of the products have to be kept on 

the same level or decrease within the redesign process. While different techniques 

such as Design for Environment (DFE) and Design for Sustainability aim to decrease 

the environmental impact of a product, Design for Cost aims to decrease the costs of a 

product. This thesis will analyze the different techniques in order to identify whether 

the relationship between sustainability and cost reduction in conflict, or if there are 

overlapping benefits. The outcome of this approach will be a verification of the 

existing overlapping benefits and how they can be achieved. Furthermore, to prove 

these findings a case study in cooperation with a regional company is considered. An 

existing product will be chosen and reasonable assumptions will be made in order to 

verify the hypotheses. The overlap of sustainability and cost reduction would also 

mean an overlap in business and stakeholder interest and protection of the 

environment. Proving this overlap can push companies to expend more effort in order 

to achieve long term business success while decreasing the environmental impact of 

their products (Savitz and Weber 2007). 

In a world with limited resources and increasing pollution problems a more 

sustainable environment is highly important (Ljungberg 2007). In order to contribute 

to this idea more sustainable products are needed, which means new ecofriendly 

designs have to be implemented. To help designers and engineers, different types of 

methods have been developed to support the development process with guidelines for 

sustainability. However, price is one of the most important characteristics for a 
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successful product since most customers are price sensitive. Therefore, it can be 

difficult to design a successful product while only focusing on its sustainability. To 

avoid higher prices, reducing costs is one of the most important goals for every 

company. Lean design processes that aim to reduce the cost of the product are 

indispensable, since the early stages of product development the influence of future 

costs is high (see Figure 1) (Bullinger and Warschat 1995). 

 

Figure 1: Comparison of Origin and Responsibility of Costs (Bullinger and Warschat 1995) 

1.2. Objectives and Procedure 

While sustainability and cost reduction are both well researched, a comprehensive 

approach of how to combine these two terms is missing. Therefore, this research study 

aims to analyze overlap of sustainability and cost based on a case study conducted at a 

manufacturing company. This analysis identifies where in the manufacturing process 

most of the environmental impact is caused and compares them with costs. Finally, 

this study aims to provide alternative routings and processes to decrease the 

environmental impact and costs. The procedures followed in this research study are 
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illustrated in Figure 2 and are oriented toward the problem-solving cycle. According to 

these procedures, the problem is formulated in the first chapter. ´ 

 

Figure 2: Overall procedures of the study 

In the next chapter, an extensive literature review is given to provide fundamental 

knowledge of: 

 Manufacturing and product development 

 Cost and environmental impact factors in manufacturing 

 Sustainable manufacturing 
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Manufacturing and product development stresses on different approaches of how 

to decrease manufacturing costs and enhance sustainability in the early stages of the 

product design. Cost in manufacturing aims to explain the different cost factors in 

manufacturing that are related to environmental impact and how to estimate them. 

Whereas sustainable manufacturing explains different methods of measuring the 

environmental impact of manufacturing processes and gives an overview of different 

manufacturing processes and their environmental impact.  

The third chapter introduces presents the methodology that is used in this research 

to develop a framework to combine costs and environmental impacts. This includes 

the identification of suitable measures for environmental impact and sustainability, the 

evaluation of different software tools and how the results can be visualized and 

compared to costs. In the fourth chapter, based on the framework, a case study is 

conducted at a manufacturing company to assess the environmental impact of a 

specific product. Therefore, Life Cycle Assessment (LCA) which is a common method 

to evaluate the environmental impact of a product during its life cycle. Possible results 

are for example the total CO2 emissions that are released within the manufacturing 

process. In the next step alternative manufacturing routing and product designs are 

suggested and evaluated. By comparing the LCA results of each alternative the most 

environmental design and manufacturing process can be derived. Furthermore, the 

LCA results will be compared to the costs of each manufacturing step to point out the 

overlap of costs and sustainability. The last chapter closes with a summary and a 

discussion that contains recommendations for further research.  
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2. CHAPTER 2 – REVIEW OF LITERATURE 

For a better understanding of this research study, the following chapter gives a 

review of the current work regarding product life cycle and how it is related to 

sustainability and cost reduction. This also includes an overview of the most common 

techniques to reduce cost and increase sustainability. In addition, existing approaches, 

methods and software are presented within this chapter.  

2.1.  Basics of Sustainability 

Despite its increasingly widespread use, the term and concept of sustainability has 

remained ambiguous, vague, and non-binding in its consequences. However, 

sustainability is becoming an important aspect in politics, industry and everyday life. 

Should the use of the concept of sustainability be more than just a fashionable phrase, 

it requires not only rhetorical interpretations of existing practice, but also an in-depth 

discussion of the importance of this concept and its contents (Linne and Schwarz 

2003). 

2.1.1. Background of Sustainability 

The general principle of sustainability greatly increased in popularity at the 

conference in Rio de Janeiro in 1992. However, it had many precursors. Since the 

early-1970s, there was a new debate on the "sustainability" of economic activity. 

Important events were the growth critical publication "Limits to Growth" in 1972, 

which took place in the same year as the first World Environment Conference which 
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was held in Stockholm and followed by the "Symposium on the economics of 

exhaustible resources" two years later. Based on these three milestones "sustainability" 

was first defined as the question of the optimal use of natural resources (Hauff 2014). 

The report of the "Brundtland Commission", published in 1987, used the term 

sustainable development to describe a new and comprehensive political model of the 

world community. The objectives of this model are the environmental protection and 

economic development that are connected with the demand to meet the needs of both 

today's and future generations (Hinrichsen 1989). After the Rio Conference, there was 

a variety of following conferences during which the vision of sustainable development 

was further concretized (Hauff 2014). 

2.1.2. Sustainability and Sustainable Development 

The Brundtland Report is regarded as one of the most important contributions 

to the development and definition of the vision of sustainable development. However, 

there were a number of publications or opinions that have influenced this report. Of 

particular note is the first report on the Club of Rome. The report is based on a 

forecast which has the following central message: exponential growth leads to 

exceeding the natural limits of nature, whereby particularly a scarcity of exhaustible 

resources such as oil, occurs. This was an extreme contrast compared to the optimistic 

growth models of the capitalistic and dominant economic systems at that time. The 

forecast claims that up to the year 2100 crisis phenomena will occur such as a drop in 

the population, a de-industrialization and a massive restriction of the usual living 

conditions (United Nations 2011). Referring to the definition by Brundtland, 
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sustainable development is “development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs” (United 

Nations 1987).  The 3 pillars of sustainability have been identified as economic 

development, social development, and environmental protection, as renewed by the 

United Nations in their 2005 World Summit Outcome Resolution (United Nations 

2005) (see Figure 3.). These components interact and affect each other in any real 

world application. 

 

Figure 3: The three dimensions of Sustainability 

The three pillars must be considered simultaneously given their intricate 

interatctions (Seliger 2007). In this study, the scope will be limited to sustainable 

manufacturing of products.. 

2.2. Product development and its influence on production 

According to Westkämper, production includes all technical and organizational 

processes for manufacturing, preserving and recycling of tangible and intangible assets 

through the product life cycle (Westkämper 2006). In addition to the initial stages of 

the life cycle such as: research, development, or design and manufacturing, this 
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definition also includes the phases of product life where customs utilize and ultimately 

recycle the product.  On a process-level, production can be described as a 

transformation process, which consists of criteria related to output, input, and 

throughput (see Figure 4) (Dyckhoff and Spengler 2007). 

 

Figure 4: Production systems as an Input-Throughput-Output process (Dyckhoff and 

Spengler 2007) 

In contrast, manufacturing only relates to the production of material goods, using 

resources such as: materials, energy, equipment, people, capital, information and 

knowledge (Westkämper 2006). Management of resources in combination with the 

individual manufacturing processes leads to the desired quantities and qualities of 

goods at scheduled times and targeted costs (Schenk et al. 2014). The factor time is of 

particular importance today because of changing market conditions and customer 

needs. Furthermore, a shorter production time often leads to decreased manufacturing 

cost. This can be achieved by shorter lead times, the reduction of production steps and 

through the use of new production technologies. Many production costs are 

determined in advance during the product development phase (Bullinger et al. 2008). 
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Therefore, even the use of the most efficient production techniques has a 

comparatively low potential for reducing the cost.  

Figure 5 shows the relationship between the origin of costs and where the costs 

occur. The design phase is responsible for nearly 70 percent of the fixed costs and 

causes approximately ten percent of the costs incurred during the manufacturing 

process. In comparison, the production phase has a much lesser effect of about 10 

percent on the fixed costs, while it determines up to 25 percent of the fixed cost. It 

becomes apparent that a substantial part of the costs are incurred in the production of a 

product, but are caused during the design of a product (see Figure 5). A production-

oriented design can consequently help to reduce the manufacturing costs and thus 

reduce product unit costs significantly (Westkämper 2006). 

 

Figure 5: Assessment and cost responsibility within the production process (Westkämper 

2006) 

In practice a production-optimized design can reduce the cost of the product by 

between 30 - 50 percent (Eversheim et al. 1995). In the following, different methods 

for efficient product development are presented. 
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2.2.1. Simultaneous Engineering 

Simultaneous Engineering is a fundamental approach for product development during 

the design phase. In contrast to traditional product development, the formerly strictly 

sequential processes are performed in parallel or overlapping in time for simultaneous 

engineering. Hence, the duration of the entire development phase can be shortened. A 

highly effective working method for this approach can be found in multi-disciplinary 

and cross-divisional teams. Simultaneous Engineering, which is also known as 

concurrent engineering, can help identify problems earlier, which would otherwise not 

be discovered until later in the development chain or during the design of the 

production process (Gaubinger et al. 2014). The late discovery of problems often 

results in restrictions or high costs for troubleshooting (Eversheim et al. 1995). 

For the successful implementation of Simultaneous Engineering the early 

exchange of information between the parallel operating processes is essential. Since it 

is often difficult to design a production process when the product design is not yet 

complete, and on the other hand, product design can only be fully optimized for 

production when the process is defined, both processes should be considered and 

evaluated in parallel. Methods have been developed to support the product 

continuously for manufacturability checks during product development (Bullinger and 

Warschat 1995). 

2.2.2. Design for X 

The aim of production-oriented product design, is to design components so that 

the subsequent production cost is as low as possible (Eversheim et al. 1995). In 
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support of the product design there are a variety of methods that can be summarized 

under the term Design for X (DFX) as seen in Figure 6(Huang 1996).  

 

Figure 6: DFX- Methods (Huang 1996) 

 

Although all DFX methods have a different scope, the approaches follow a 

similar process for evaluating a product’s design and relationships with the 

manufacturing process, measuring performance, and continuously improvings (Huang 

1996). 

 The Design for Manufacture and Assembly (DFMA) method of Boothroyd 

Dewhurst analyzes a product during the development process with manufacturing and 

assembly oriented design in mind. The method supports engineers in the evaluation of 

their product design and in identifying weaknesses regarding manufacturability. The 

result of this analysis can be used for the optimization of the product design. The 

DFMA method consists of two methods: Design for Manufacture and Design for 

Assembly (see Figure 7) (Boothroyd et al. 2011). 
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Figure 7: process steps of DFMA (Huang 1996) 

2.2.3. Design for Assembly by Boothroyd- Dewhurst 

The method Design for Assembly (DFA) was developed by Boothroyd and 

Dewhurst in 1977. The objective of DFA is to make sure that the product is easy to 

assemble and therefore aims to enhance the assimilability of the product by assisting 

in the selection of materials and assembly processes. The method focuses on the 

requirements of the assembly of the product. Therefore, the application of DFA 

methods systematically tries to reduce the number of components by integrating them 

into each other or changing the design of the components so that they can be adjusted, 

handled and installed easily. The first step is to assess all components by asking 

questions such as whether a part moves relative to other parts already assembled, 

whether parts must be made of different materials, or whether it is necessary for a part 

to be separate from all other parts already y assembled (Boothroyd et al. 2011).: 
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If all three questions are answered positive, the component is considered a critical 

component and must remain separate. All non-critical components can be omitted or 

integrated into one of the critical components. In the second step, the assembly time in 

terms of efficiency as well as the difficulty of the installation steps is analyzed. For 

this purpose, a separate DFA rating system is used, based on the Methods-Time 

Measurement system (MTM). MTM calculates the handling and assembly time of 

each component (Huang 1996), which are then summed to obtain the total estimated 

assembly time 𝑇𝐸𝐴𝑇. To evaluate the efficiency of the assembly, a reference value is 

used to compare the results to the minimal assembly time. This value is based on the 

assumption that only critical components are present in an optimized product and that 

every component can be mounted in three seconds. Finally, the design efficiency 𝐷𝐸  

can be calculated as a function of the number of critical components is (𝑛𝑐𝑟𝑖𝑡) and the 

actual total assembly time  𝑇𝐸𝐴𝑇 (see EQ.1) (Huang 1996). 

 

𝐷𝐸 =
3 ∗ 𝑛𝑐𝑟𝑖𝑡

𝑇𝐸𝐴𝑇
 (EQ. 1) 

The design efficiency can now be used as a key figure, in order to compare 

different product designs. A redesign, based on the aim to reduce the number of parts, 

can be analyzed by the DFA method and compared using the calculated design 

efficiency with the previous design. It should be kept in mind that the design 

efficiency metric, is not indicating an absolute value, and only takes into account how 

the DFA optimized design compared to its predecessors (Eskilander 2001). 
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2.2.4. Design for Manufacturing 

After the adjustment of the product design, the next step is to analyze the 

manufacturing and associated costs of the individual components by applying DFM. 

Therefore a list of questions with examples for different manufacturing processes is 

included in DFM. These questions support engineers to specify and characterize the 

current design. Manufacturing-oriented design (DFM) includes product design 

activities that lead to minimization of production cost and time. One of the main 

principles of DFM is to reduce the complexity of the product and its manufacturing 

process, from which the following objectives of DFM can be derived (Boothroyd et al. 

2011): 

• Simplification of the manufacturing process 

• Minimization the number of manufacturing processes per component 

• Decrease of manufacturing steps through process integration 

By changing the design of a product such as the shape, dimensions and materials 

the designer can affect the applicable manufacturing processes and machine tools. The 

processes that are available for manufacturing form the constraints for the design 

engineers. For each of the various manufacturing processes, on the other hand, there 

exists a particular design guideline to ensure easier processing (Ponn and Lindemann 

2008). It helps to take manufacturability into account in the early stages of the product 

development process, so that products can be produced with less effort and with the 

lowest possible manufacturing costs and cycle times. 
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2.2.5. Design for Environment 

Design for Environment (DfE) was originally designed to provide design engineers 

with a set of guidelines that should be taken into consideration during the product 

development process (Rose 2001). With the increasing public interest in sustainably 

produced products and the increasing relevance for company's competitiveness, DfE 

has become an integral part of the product development process for many companies 

today (Huang 1996). 

DfE takes all phases of the product life cycle into account. According to ISO 

14040, the term "product life cycle" is the sum of all phases from the acquisition of the 

raw material to recycling and disposal at the end of the products life. The term product 

can be used as a synonym for all goods and services (ISO 14040:2006). Through the 

comprehensive approach of DfE there exist a large number of factors that have to be 

considered during sustainable production, as described in the following sections. 

2.3.  Cost and environmental impact factors during manufacturing 

In the context of the potential depletion of abiotic resources and rising raw 

material costs, material-efficient production is gaining greater importance. Today, raw 

material and energy costs sum up to over 50% of the total cost of a product, 

representing one of the largest contributing factors. Optimizing the use of resources 

and energy is essential for a sustainable green growth of a company and being 

competitive at the same time (see Figure 8) (Europe INNOVA 2012). 
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Figure 8: Structure of the total costs in manufacturing (Europe INNOVA 2012) 

2.3.1. Energy 

According to a survey conducted by the KfW-Group, more than 60% of all 

responding companies have already started to implement energy efficiency (Thamling 

et al. 2010). According to this survey, the German industry is responsible for 46% of 

the national energy consumption and 35% of the national gas consumption. Therefore, 

companies directly and indirectly take a share of the responsibility for the negative 

environmental effects of conducting business. From a cost perspective, energy-

efficient production is of high relevance, as energy prices for electricity, gas and oil 

have increased disproportionately in recent years. This leads to energy costs, which 

can equal up to 20% of the total cost of a product (Apostolos 2013). 
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Figure 9: Comparison of the energy consumption of the German manufacturing industry 

(Thiede 2012)  

On a process level, heating and process heat from gas, coal and oil represent 

approximately 75% of total energy consumption. However, a large part of the costs 

and CO2 emission in German manufacturing companies are caused by electrical 

energy (see Figure 9). 

Electrical energy is used in manufacturing companies to produce mechanical 

energy to run pumps, air conditioners, air compressors and the actual production 

machines. Production machines especially need different amounts of energy, 

depending on the process and state. Modern production machines combine a variety of 

different functions, e.g. cooling, lubrication, chip removal and tool change. The actual 

main function, the machining of the work piece is only one of many energy consumers 

(see Figure 10) (Thiede 2012). 
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Figure 10: Sankey diagram for energy consumption of a chip removal process (Thiede 2012)  

 

These additional functions are often responsible for a large part of the total energy 

consumption. Most production machines require a lot of energy to start and to stay 

ready-to-operate. From this standby condition only a relatively small amount of 

energy is needed to process a work piece. The required energy for the actual 

machining depends on the material used and the settings such as feeding rate 

(Gutowski et al. 2006). 
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Figure 11: Specific energy consumption for different manufacturing processes (Gutowski et 

al. 2006) 

Figure 11, shows that across a range of manufacturing processes, the energy 

requirement increases with decreasing processing rate. Therefore, a strategy for 

energy-efficient production is to increase the processing rate of the production process 

in order to save energy. Figure 11, also shows that certain manufacturing processes, at 

the same processing rate, consume less energy than others. Hence, changing the 

manufacturing process can save energy costs (Gutowski et al. 2006). 

2.3.2. Resources  

Another aspect of sustainable production is resource efficiency. Production 

processes transform raw materials and other inputs into finished products, while the 

ratio of input used for production output is described as resource efficiency. (Europe 

INNOVA 2012).  
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Increasing resource efficiency leads automatically to a reduction of materials 

demand and also lowers the requirement for production of new material. By reducing 

the production of new material, the extraction of natural resources, energy demand, 

emissions and other threats to the environment can be decreased (Allwood et al. 2013). 

The four materials which have the most harmful emissions are steel, plastic, paper and 

aluminum, which are the basis for almost every modern product (Allwood et al. 2010). 

Improving resource efficiency can often be achieved by relatively small changes in the 

manufacturing process, such as reduction of cuttings and rejects or improved recycling 

of production wastes (Europe INNOVA 2012). 

2.3.3. Consumables 

The main consumables used in most machining processes during operating time 

are: cuttings tools, cutting fluid and lubricant oil. 

Cutting tools 

Cutting tools and inserts wear out during machine operations and must be 

replaced. Otherwise they can cause increasing energy demand and a decrease of 

production quality. In the worst case it causes damage to the product or to the machine 

itself. Often tools can also be regraded and used again. While cutting tools compared 

to other consumables are relatively expensive, they are often amortized over various 

products manufactured (Dahmus and Gutowski 2004). 

Cutting fluids and lubricant oil 

During manufacturing, especially machining, cutting fluid and lubricant oil are 

one of the main sources of environmental impact. In order to pursue sustainable 
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manufacturing of products, it is an important step to reduce the usage of these fluids or 

to use environmental friendly alternatives (Tan et al. 2002). However, cutting fluids 

are often necessary to ensure the quality of manufacturing processes, since they 

improve the cutting performance with cooling and/or lubrication effects. For low 

cutting speeds, lubrication is more critical whereas the cooling effect becomes more 

important at higher cutting speeds due to more heat production. A large variety of 

different types of cutting fluids are available. To classify them, different standards can 

be used (Grzesik 2008). A common norm is the German DIN 51385 that divides 

cutting fluids into non-water miscible fluids, strait or neat oils which all are supplied 

as premixed products. Water miscible products, on the other hand, are often supplied 

as concentrates and must be diluted before application (DIN 51385:2013-12). Cutting 

fluids can also be categorized into the following four categories (Boothroyd and 

Knight 2006): 

 Straight or neat oil  

 Mineral-soluble oils 

 Semi-synthetic fluids 

 Synthetic fluids (mineral oil free) 

According to a survey conducted by the US manufacturing industry, around 80% 

of cutting fluids used are water-based emulsions of oil or synthetic fluids (Grzesik 

2008). Cutting fluid is used in almost every industry to enable high speed, high 

efficiency, high accuracy and long tool life. However, there are also significant costs 

associated with cutting fluids for purchase, maintenance and disposal (Stephenson and 

Agapiou 2006). To keep the performance on a constant level and prolong its work life, 
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cutting fluids have to be maintained properly by testing pH-levels and determining the 

oil concentration values regularly, since part of the fluid vaporizes during the use 

phase and are released into the atmosphere. Cutting fluids are related to significant 

environmental and health impacts such as dermal initiation, air, water and soil 

contamination. Therefore, there are strict national recommendations of permissible 

levels (Boothroyd and Knight 2006).  

Vegetable based cutting fluids 

Besides the mineral oil-based cutting fluid, recent studies investigate the utilization of 

vegetable oil-based metalworking fluids including successful applications for 

machining. Ferrous metals, revealing the possibility of an environmentally friendly 

option with similar performances (Lawal et al. 2012). Vegetable based cutting fluids 

contain fatty acids extracted from a variety of vegetables such as: soy beans, 

sunflowers, rapeseed, olives or coconut (Shashidhara and Jayaram 2010). According 

to Alves and Oliveira, it was found that those vegetable oils contribute over ten times 

less CO2 than mineral oil based cutting fluids. Per kg of mineral oil an equivalent of 

50kg CO2 is released which can be compared to coconut oil which only contributes 

about 6kg of CO2 equivalent emissions (see Figure 12) (Alves and Oliveira 2006).  
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Figure 12: Global Warming Potential (GWP) per kg of cutting fluid (Alves and Oliveira 

2006) 

Besides the low CO2 emissions, vegetable oil based cutting fluids are also highly 

bio degradable, cheaper and highly viscous. On the downside, vegetable oil based 

cutting fluids have a low corrosion protection and low thermal stability. A complete 

list of advantages and disadvantages can be seen in Table 1 (Lawal et al. 2012). 
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Table 1: Advantages and disadvantages of vegetable oil as lubricants (Lawal et al. 2012) 

 

2.4. Measuring environmental impact  

In order to identify sustainable manufacturing processes, their environmental 

impact has to be measured. In the following subchapters, indicators for sustainability 

and tools are explained. 

2.4.1. Life Cycle Assessment  

Life Cycle Assessment (LCA) is a science-based analysis of the environmental 

impacts of product systems. During its early attempts around 1970 to 1990, no 

standardized version of LCA existed, which made the findings from such analysis hard 

to comparable. Since 2000 the first series of LCA standards were published. These 

standards are called ISO 14040 and 14044 (Klöpffer and Grahl 2014). According to 

those standards, LCA has been defined as follows (ISO 14040:2006): 
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“LCA studies the environmental aspects and potential impacts throughout a 

product’s life from raw material acquisition through production, use and disposal. The 

general categories of environmental impacts needing consideration include resource 

use, human health and ecological consequences." 

This definition excludes the pillars of society and economy and focuses on the 

ecological influence of production systems. Since the first standards were established, 

the method was criticized as being too complex regarding the demanding set of 

requirements which led to a trend of simplifying LCA to make it more flexible and 

easier to use (Hesselbach and Herrmann 2011). 

Those simplifications of LCA are represented by simplified/streamlined Life 

Cycle Assessment (SLCA) which can be used as a first step of a full LCA or even as a 

stand-alone study. However, SLCA is not recommended for use in official 

publications but can be sufficient for internal assessments (Klöpffer 2012). 

General structure of LCA 

A life cycle assessment includes the compilation of all significant input and 

output flows and an assessment of the potential environmental impacts of a product. 

For this purpose, the entire life cycle beginning with the supply of raw materials, 

production, use, and disposal or recycling of the product, has to be taken into account. 

Every phase is analyzed for its environmental impact by energy and material use. 

Conducting a LCA is usually divided in to the following four steps (see Figure 13) 

(ISO 14040:2006): 

1. Goal and scope definition 

2. Inventory analysis  
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3. Impact assessment  

4. Interpretation 

These steps are iterative. When the results are planned to be published, an independent 

committee has to conduct a critical review first (Guinée 2006).  

 

 

Figure 13: General steps of Life Cycle Assessment (Jensen et al. 2006) 

The first step in the goal and scope definition phase is to define and explain the 

objectives of the study including its intended application and the audience. The scope 

definition issues the main characteristics such as the temporal, geographical and 

technology coverage of the LCA study and determines the functional unit that will be 

analyzed (Herrmann 2010). 
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For example, environmental impacts of a train cannot easily be compared with 

impacts of a car. A suitable functional unit is 'driving 100 kilometers in 1 hour with 1 

person'. Another example is the functional unit of paint. It is necessary to compare the 

function 'covering 10 square meters of a wall without wallpaper' instead of '1 liter of 

paint' because the paints might have different mileage. The functional unit is often 

drawn as a diagram of the unit’s processes, which clarifies the system boundaries and 

the interdependence within the production system. An example is given in Figure 14. 

 

Figure 14: Simplified example of a PVC window system boundary (Klöpffer and Grahl 

2014) 

 

A particular problem is the omission of whole life cycle stages when products 

with different production processes are compared since it may cause asymmetry of the 

systems. Depending on the production process the major environmental impact of a 

product might happen at a different life cycle stage which lets a product appear to be 
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more sustainable when this stage is not included in the assessment. Therefore, it has to 

be verified that an omission does not influence the symmetry of the systems. 

Whenever the goal of the LCA is to compare different products, it is common to 

exclude life cycle stages that are identical (Klöpffer and Grahl 2014). 

The first step of the LCA also includes the problem of availability and quality of 

data needed to perform a comprehensive analysis. It has to be decided for which 

processes require collection of primary data or whether existing data can be used and 

the level of detail for the study. In this context the approach of simplified LCAs is 

often discussed, since they require less data and are therefore less time intensive and 

easier to conduct (Christiansen 1997). 

Inventory Analysis 

The inventory analysis is the result of material flow or mass flux analysis. It 

includes the collection of data and the calculation method for quantifying relevant 

input and output flows of a product system within the specified scope definition. The 

inventory analysis serves as a basis for impact assessment and should be performed 

transparent and on a uniform level of detail for each process (Klöpffer 2012). To 

visualize the production process flow charts can be used. Flow charts of production 

processes often have different branches for byproducts or waste which should be also 

taken into account to preserve the symmetry of the system (see Figure 15) (Eversheim 

2013). 
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Figure 15: Flow chart to visualize production process (Eversheim 2013) 

The energy analysis of the production process is in addition to the analysis of the 

material flow, and is an important part of the inventory analysis. It is not the amount 

of energy that can be purchased in the form of electricity, heat or fuel to that has to be 

taken into account, but more importantly, the determination of the primary energy that 

is expended to provide this final energy, which depends on the efficiency of the energy 

conversion process in the power plant.  

If the production data for the energy demand is not available, the minimum final 

energy demand can be calculated from material values. However, this is usually not 

the most accurate approach. Due to losses in the processes, the real energy demand 

will be much higher (Klöpffer 2012).  

Gathering process specific data for the inputs and outputs is the most important 

task of the inventory analysis. An accurate analysis of the manufacturing processes of 

the product, including its corresponding raw materials, is the basis for this. 

Furthermore, an analysis of transport processes and waste streams within the selected 

geographical and temporal system boundary should be conducted. For tangible 

products the Bill of Material (BOM) indicates what materials and quantities e.g. per 

piece or mass, are used. The data must be gathered with this reference, so that they 
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later can be converted easily on the reference flow according to the functional unit. 

When there are datasets as generic data from a reliable database for materials that are 

contained in the product, this data can be used alternatively (Simonen 2014). 

 

Figure 16: Schematic data collection (Klöpffer and Grahl 2014) 

Since it is hardly possible that all data can be gathered as primary data for a 

specific product, almost every inventory analysis consists of primary, generic data and 

estimated data. The extent to which primary data is available or can be collected 

depends significantly on whether and how involved the manufacturers of the 

respective products are in the life cycle assessment (see Figure 16). If the 

manufacturer itself conducts or orders the LCA, the expected data quality will be very 

high. Specific records usually allow a better spatial and temporal allocation of 

emissions and resource consumption (Klöpffer and Grahl 2014). Some specific data 

can be relatively easy to collect at the manufacturer while other data can be more 

difficult to collect (see Table 2). 
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Table 2: Collectability of specific data (Jensen et al. 2006) 

 

Especially for different types of energy supplies, transportation, common 

materials and chemicals the use of generic data is often necessary. Generic data can be 

useful in LCA even if specific data is available but has unverifiable qualitiy. Therefore 

the generic data should not be seen as a bias of the life cycle assement, but can still be 

a very valuable source of data (Hendrickson et al. 2006). As shown in Figure 17 a 

combination of generic and collected specific data can be used to generate a 

qualitative data set for the analyzed process module (Klöpffer 2012).  
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Figure 17: Translation of operative data to process module based data set (Klöpffer 2012)  

After all considerable process modules are defined and the input and output data 

is gathered, the last step of the inventory analysis is to link the process modules. 

Existing software tools such as GaBi, Umberto and Ecoinvent can help to link the 

different modules properly.  

Life cycle impact assessment 

The life cycle impact assessment (LCIA) analyzes the inventory analysis data in 

terms of their impact for the environment and categorizes the data accordingly. This 

process follows several mandatory steps according to DIN EN ISO 14040: 

Selection of impact categories, category indicators and characterization models 

Assignment of LCI results (classification) 

Calculation of category indicator results (characterization) 

 Category indicator results (LCIA results, LCIA profile) 
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During the classification, the data is assigned to the impact categories. Every 

other material which accounts for this category is converted by fixed factors into 

equivalents of that indicator. For example, nitrous oxide is multiplied by 25 to receive 

a CO2 equivalent. All equivalents are summed to reach a final result for the impact 

category. In some cases, a parameter can be assigned to several impact categories e.g. 

Methane (CH4) emissions. Methane contributes to both the Global warming potential 

(GWP) as well as to summer smog. In addition to the direct effects, indirect effects are 

determined such as human health hazard by environmental damage (ISO 14040:2006).  

In the following step, the characterization of the environmental impact, the results 

are quantified. There are two assessment approaches. The first is the midpoint 

approach which includes direct impact categories like the change of tropospheric 

ozone concentration under the name ozone depletion. In contrast to that, the endpoint 

approach describes concrete damage categories. For example, the endpoint indicator 

of ozone depletion is loss of life years. On the one hand, since the knowledge of ozone 

depletion is getting more uncertain in the determination of the exact consequences on 

human health, the midpoint approach includes more facts and fewer assumptions. On 

the other hand, the endpoint approach is more demonstrative in presenting concrete 

effects instead of reference indicators only (Curran 2012).  

By the use of weighting factors, the relative contribution of each parameter to 

each category is determined. As the last step, the results are summed and divided into 

the different life-cycle-stages. A common way to display the results is the eco-profile 

(see Figure 18). 
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Figure 18: Example of an eco-profile (Herrmann 2010) 

The eco-profile has its advantages in the simplicity of illustration. In addition, 

advantages and weaknesses of the system become easily comparable and can be 

interpreted (Herrmann 2010). 

Interpretation 

The life cycle interpretation is the last phase of the LCA process. Life cycle 

interpretation is a technique to identify, quantify, check and evaluate the results. 

According to ISO standards results, conclusions and limitations based on the findings 

of the previous phases have to be reported in a transparent manner. Part of the 

interpretation should be: 

 completeness check – Ensure the completeness of the assessment 

 sensitivity check – Assessing the sensitivity of the data elements that have the 

biggest influence on the results 
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 consistency check – evaluate the consistency of the analysis including system 

boundaries, data collection and impact categories for each alternative 

These steps ensure that the LCA was conducted correctly according to ISO standards 

and that the results are not biased. The results can provide information that can be 

used by decision-makers to get a better understanding of the environmental and health 

impacts associated with each alternative. This information includes the environmental 

pros and cons of each alternative, but it does not include any information about 

technical feasibility, cost or social acceptance (Klöpffer and Grahl 2014).  

Simplified LCA 

A major problem of LCA is the required time and cost to perform this study. In 

addition, data availability is often critical and therefore one of the most important 

criterions for the decision regarding whether a full LCA can be conducted or not. 

Alternatives to the full LCA are the Simplified (Streamlined) or Screening LCA, 

which are less complex and require less detailed data sets. Both versions, which are in 

practice often not clearly separated, work primarily with easy available or estimated 

data and also allows to the omission of life cycle phases. Although the results can be 

less accurate, both versions can be useful whenever a fast and simple analysis is 

sufficient. This is often the case when LCA is needed to enhance decision-making 

within internal processes or when different processes are compared. Especially for 

decision- making during the design phase, where only very little time is available, 

those methods have earned their right to exist. There are different approaches to 

simplify the LCA which occurs at two levels (Jensen et al. 2006): 

 What to do – Omission of parts of the full LCA 
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 How to do it – Simplifying procedures of the full LCA 

Generally, approaches to simplify LCA aim to reduce the scope of process data or to 

eliminate life cycle stages. Another approach is to simplify the modeling procedures 

which results in a smaller amount of data that is needed for the assessment of 

processes. A study by Franklin Associates and RTI was done to compare the different 

approaches for streamlining LCA (see Table 3) (Todd and Curran 2007). 

Table 3: Overview of different Streamlining approaches (Todd and Curran 2007) 

 

This comparison showed that none of the streamlining methods produced results 

that were identical to the full LCA. However, streamlined LCA can be successful 

when they include the dominant processes of the life-cycle of the product. In 

applications when the equivalent of a full LCI is not required, this becomes less 

important. To indicate areas in which simplifying is appropriate, a systematic analysis 
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based upon detailed knowledge of the production systems should be done. 

Nonetheless, it should be noted that streamlining LCA will always include the risk of 

obtaining a result that differs from the full LCA. Depending on the goal of each LCA, 

this risk might be acceptable. Table 4 shows where simplified and full LCA are 

frequently used (Jensen et al. 2006).  

Table 4: LCA applications. Bold “X" indicates the most frequently used (Jensen et al. 2006)  

 

No matter which type of LCA is chosen, there are supportive software tools available.  

2.4.2. LCA Software 

Especially detailed Life Cycle Assessment of product systems can be very 

complex. Therefore, LCA software tools can be very helpful. Generally, they include 

an extensive database of different materials and manufacturing processes which allows 

the user to use generic data whenever measuring specific data is exceedingly difficult. 

The first life cycle assessments were manually modeled and calculated. To improve 

these processes, spreadsheets were created. The first special program to create an LCA 

was a database extension for a spreadsheet program, which was published in 1985. 
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With the increasing amount of data, extensive product life cycles and policy 

requirements for reporting environmental impacts of product systems, the need for 

further specific and user-friendly software solutions became more necessary. While 

the first approaches were project-based or in-house developments, today there are a lot 

more software solutions available on the market (Luedemann and Feig 2014). 

2.4.3. Value Stream Mapping 

Value Stream Mapping (VSM) is a method that helps to understand and draw the 

flow of material and information as a product makes its way through the value stream. 

Therefore, every value-added and non-value-added action within the production flow 

from raw material until the shipping process is taken into account. The focus of the 

VSM is on cost reduction through eliminating non-value-added activities and 

unnecessary wait times via applying a management philosophy which focuses on 

identifying and eliminating waste from each step in the production chain respective of 

time, motion and resources alike throughout a product’s value stream, known as lean 

(Rother and Shook 2003).  

However, the VSM does not provide any information about the process energy 

consumption or consumables. As a consequence, it does not give any conclusion of 

how much of each of those actually serve the value adding process steps. The primary 

shortcoming of traditional VSM is the lack of metrics to assess environmental and 

societal aspects of sustainability performance. In an effort to build upon and improve 

traditional VSM to capture additional sustainability aspects of the product flow and 

make this method more useful for identifying the environmental impact of a value 
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stream, different approaches were made (Brown et al. 2014). The EPA developed two 

toolkits: a lean and environmental toolkit and a lean energy toolkit. The first tool seeks 

to reduce the environmental waste such as pollutants and any hazardous materials used 

in production, while the other tool focuses on monitoring the energy consumption 

within the manufacturing system. Both tools collect data for each process and evaluate 

the environmental impact, allowing improvements to be targeted to necessary areas. 

The toolkits also mention how to add an EHS (Environmental, Health, and Safety) 

stamp to identify manufacturing processes with EHS opportunities (EPA 2007).  

Based on the ideas of EPA, Faulkner et al (2012) developed Sustainable VSM (Sus-

VSM), a tool that determines the sustainability of a process by using a comprehensive 

set of different metrics such as: process water, raw material usage, energy 

consumption, and social impact. 

Water, oils, and coolants are used in various manufacturing operations and often 

large quantities are needed which have a large potential for environmental 

improvement. The fluids are tracked by the amount needed, used, and lost in each of 

the process steps. This is visualized by a three-box system below each process cell 

(see Figure 19) (Faulkner and Badurdeen 2014). 

 

Figure 19: Visual Representation of Process Water on Sus-VSM (Faulkner et al. 2012) 

The raw material usage metric displays the amount of material removed or added 

for a given process. An amount of material used is connected directly to the amount of 
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processing time that is needed to create a product and to energy consumption of the 

process. To visualize this, the Sus-VSM records the raw material metric by utilizing a 

dotted-line for the initial mass while the material added and removed during the 

process is recorded above and below the dotted-line, respectively (see Figure 20) 

(Brown et al. 2014). 

 

Figure 20: Visual Representation of Raw Material Usage on Sus-VSM (Brown et al. 2014) 

 

Another metric of Sus-VSM is energy consumption that identifies the amount of 

energy consumed by a process, but not the energy losses of the machines due to heat 

or inefficiencies. Based on the energy consumption data, Sus-VSM act as a map to 

identify which processes have high energy consumption and therefore should be 

further investigated to analyze inefficiencies. The energy consumed by each process is 

displayed as circles while the transportation is shown on the line between the circles, 

as seen in Figure 21 It is important to choose a common unit that is easy to convert 

e.g. BTU (Faulkner and Badurdeen 2014). 

 

Figure 21: Visual Representation of Energy Consumption on Sus-VSM (Faulkner and 

Badurdeen 2014) 
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The social impact of a process can be divided into Physical Work and Work 

Environment. The Physical Work measure include the Physical Load Index (PLI) 

which is using a questionnaire to assess different body positions and the handling of 

materials and products. The Work Environment metrics categorizes risks into four 

different categories: Electrical Systems (E), Hazardous Chemicals/ Materials Used 

(H), Pressurized Systems (P), and High-Speed components (S). Those potential risks 

are then rated from 1-5, as seen in Figure 22, based on the likelihood and impact of 

such risk (Faulkner et al. 2012). 

 

Figure 22: Work Environment Metric (Faulkner et al. 2012) 
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By identifying risky processes an organization can react and install proper 

controls to improve the safety of their employees as well as reduce the potential risks 

(Faulkner and Badurdeen 2014).   

Sus-VSM was applied successfully by Brown et al. (2014) to various 

manufacturing systems showing how the method can provide a baseline for comparing 

the performance of different products and processes (Brown et al. 2014). Therefore, 

VSM and especially Sus-VSM is a powerful tool to measure the environmental impact 

of manufacturing processes and help companies visualize how this impact is related to 

the value stream of the product. 

2.5. Environmental impact of manufacturing processes 

Manufacturing offers many opportunities for reducing environmental impact by 

utilizing resources more efficiently or by using new greener technology of 

manufacturing. Since there is a large variety of manufacturing technologies it can be 

difficult for decision-makers to select the most sustainable one. Analyzing processes 

information can help to identify the environmental impact and enables better decision 

making (Dornfeld 2011). The following subchapters include a comprehensive review 

of the environmental impact of the most common manufacturing processes. This 

includes the traditional group of machining which can be divided into: drilling, 

turning, milling, and grinding. In addition, the review includes casting, welding and 

coating processes. 
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2.5.1. Machining 

Machining is any manufacturing processes in which a piece of raw material is cut 

into a desired shape by a controlled material-removal process. Therefore, machining 

processes are also known as subtractive manufacturing. The machining process can be 

characterized by the way the material removal is performed. Material can be removed 

by using a multitude of small abrasive particles or a defined edge cutting tool (Creese 

1999). In general, machining processes have a high potential for generating negative 

externalities for the environment such as: improper disposal of cutting fluids, high 

energy consumption and health issues involving operators. Abrasive machining such 

as grinding is often used for finishing and high precision operations while machining 

with a defined edge cutting tool such as turning is common for semi-finishing parts. 

This situation of having a choice between two processes may be influenced by 

sustainability (Araujo and Oliveira 2012). The life cycle analysis aims to achieve a 

more comprehensive understanding of the environmental impact due to energy use and 

mass losses or waste. Therefore the system boundaries often only include the use 

phase of the machine tool as shown in the Input-Output diagram in Figure 23, but 

maintenance and disposal of the machine are excluded from the analysis. 

 

Figure 23: Input-Output diagram of Machining 
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Environmental impact due to energy consumption 

The required energy for machining depends on different variables. The variables 

can be ranked by their influence on the energy consumption (Dixit et al. 2012): 

1. Material properties of the work piece 

2. Feed rate f (mm/revolution) 

3. Cutting speed V (m/min) 

4. Size of the work piece 

5. Cutting time 

6. Coolant 

7. Tool wear 

8. Part holding fixture 

9. Geometry and set-up 

 

To calculate the required energy only the first five variables will be into taken 

account. In the first step, the machining time 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 and power 𝑃𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 must be 

determined and can be calculated from the variables above. Depending on the given 

material, a representative cutting speed can selected from the literature. This optimum 

speed is affected by many factors such as (Kalla et al. 2010): 

 composition, hardness and thermal conductivity of material 

 width and depth of cut (roughing or finishing) 

  efficiency of cutting fluid 

 type and condition of the machine 

Knowing the material, depth and length of the cut, the machining energy can be 

calculated. In addition to the actual machining process, the idle and basic energies 

must be included (Zein 2012).  
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Figure 24: Determination of power characteristics and energy requirements of 

machine tools (Kalla et al. 2010) 

According to Figure 24 the time component consists of 𝒕𝒃𝒂𝒔𝒊𝒄, 𝒕𝒊𝒅𝒍𝒆 and 𝒕𝒅𝒓𝒊𝒍𝒍𝒊𝒏𝒈 

which equals the actual machining time. Each time component matches with specific 

power consumption. By multiplying each power consumption with the matching time 

component the total energy consumption 𝑬𝒕𝒐𝒕𝒂𝒍 can be determined (see Eq. 2) (Kalla et 

al. 2010).  

𝐸𝑡𝑜𝑡𝑎𝑙 =  𝑃𝑏𝑎𝑠𝑖𝑐 ∗  𝑡𝑏𝑎𝑠𝑖𝑐 +  𝑃𝑖𝑑𝑙𝑒 ∗  𝑡𝑖𝑑𝑙𝑒 + 𝑃𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 ∗  𝑡𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 (Eq. 2) 

 

The specific amount of energy that is needed to remove a certain volume of material 

differs for every machining process. In general, abrasive processes need a higher 

amount of energy to remove a specific material volume then processes with defined 
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cutting edges, due to high amount of rubbing actions from multiple cutting edges. For 

abrasive processes the converted energy can be divided into process energy, machine 

energy and energy consumed by peripheral components. Process energy includes the 

chip formation energy, deformation energy, friction energy and kinetic energy of the 

chips. As a result of internal and external friction, the majority of the mechanical 

energy is converted into heat. The process power for turning correlates to the spindle 

power of the machine and can be calculated by the cutting speed and tangential force. 

At a high chip thickness which occurs at a high material removal rate, the ratio of chip 

formation energy to friction and deformation energy is high. This results into a more 

effective chip formation and less thermal energy production. Hence, rising material 

removal rates increase the chip thickness while decreasing total energy consumption 

(see Figure 25).  
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Figure 25: Specific energy comparison between hard turning and grinding (Aurich et al. 

2013)  

These correlations are true for any abrasive process, but does not apply for machining 

processes with defined cutting edges (Aurich et al. 2013). The knowledge of specific 

cutting energies for different materials and cutting speeds help to determine the 

minimum amount of energy required to remove a certain amount of material. 

However, this energy requirement does not include the energy that is needed to run the 
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auxiliary equipment such as: automated tool changers or coolant pumps. Such 

equipment often requires a constant energy independent of whether or not a part is 

being produced. Therefore, it is important to calculate or measure the total system 

energy requirements for material removal. In an approach by Dahmus and Gutowski 

different machining scenarios were modelled to analyze the total energy requirements 

based on real machining data and various assumptions about operating and idle times. 

With this approach a rough estimation about the total energy requirements can be done 

(Dahmus and Gutowski 2004).  

 

Environmental impact of waste stream 

The environmental impact due to waste stream during the machining process can 

be split up into solid, liquid and gas/aerosol. In case a dry machining process is used, 

there is no liquid waste stream (see Table 5). 

Table 5: Waste stream for drilling (Dixit et al. 2012) 

 

The work piece material loss due to machining can be specified as chip 

mass 𝑚𝑆. The chip mass can be calculated by multiplying the volume of material 

removed 𝑉𝑟𝑒𝑚𝑜𝑣𝑎𝑙 and the density of the work piece material 𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙. The liquid 
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waste stream of machining operations relates to the cutting fluid that is spent. Cutting 

fluids have different functions. They are used to allow higher cutting speeds, improve 

the machined surface quality, reduce the wear of the tool and therefore prolong the 

tool life. In modern CNC machines, the cutting fluid is constantly recycled until the 

properties become insufficient (Dixit et al. 2012). 

The environmental emissions that can be associated with the use of cutting 

fluids can be split up in seven categories: global warming potential (GWP), 

acidification, energy consumption, land use, solid waste, water use and toxic 

emissions to water. 

A LCA performed by Clarens et al. revealed the fluid consumption of a CNC-

machining tool over a year. Based on the assumptions that the number of parts 

produced per unit will not vary and the running time is based on a schedule (102 

hr/week for 42 weeks/year) and a constant replacement of the cutting fluid, the mass 

loss of coolant can be calculated. The effective loss of cutting fluid is about 17g/min 

due to degradation and divides into 85 percent water and 15 percent cutting oil 

(Clarens et al. 2008). These oils are often petroleum-based and are difficult to dispose. 

In reaction with the environment they cause water, air and soil contamination.  

Moreover, the exposure of those fluids during machining may lead to serious health 

issues for machine operators (Dixit et al. 2012). 

A more detailed LCA was conducted by Lodhia (2007), who analyzed the 

impact of cutting fluids in machining processes. The comparison of dry and wet 

machining within the analysis shows that the energy consumption for dry machining is 

eight percent less than the energy required for wet machining processes and generates 
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about 7 times higher environmental impact (Lodhia 2007). Figure 26 compares the 

different environmental impacts for wet and dry machining. 

 

Figure 26: Comparison of LCA results for wet and dry machining (Lodhia 2007) 

Therefore, dry machining should be favored since it is the best solution from an 

environmental point of view, and options, that eliminate or minimize the use of cutting 

fluids should always be considered (Dixit et al. 2012). Nowadays new vegetable-based 

oils are being tested to replace the existing conventional petroleum-based cutting 

fluids (Boubekri and Shaikh 2012).  

2.5.2. Casting 

Casting generally implies metal casting, but polymers sometimes are referred to 

as being cast. However, castings are poured above the melting point so that the liquid 

material has low viscosity and high fluidity, and gravity feeding is common. Casting 

polymers cannot be fed by gravity since they do not reach the same high fluidity as 
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metal. Two very common techniques of casting are sand and die casting (Creese 

1999). 

 In general, casting is an energy intensive manufacturing process. Most of the 

energy is used to melt the metal. In addition, casting needs a lot of material. The 

creation of nonpermanent molds, such as those used for sand casting, demands an 

exceptionally large amount of additional material. It becomes evident that the 

environmental impact of casting has to be analyzed (Gutowski and Dalaquist 2004). 

Environmental impact due to energy consumption 

According to the Manufacturing Energy Consumption Survey (MECS) by Energy 

Information Administration (EIA) the metal preparation needs 55% of the energy 

within the casting process (see Figure 27). The total energy requirement per 1 kg of 

material is around 2,93 kWh, but varies by metal and furnace type. This relatively high 

value is due to an average efficiency of 40% for furnaces (Dalaquist and Gutowski 

2004).  
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Figure 27: Energy requirements by stage. The total energy requirement is around 10 

MBtu/ton, but varies metal an furnace type (Dalaquist and Gutowski 2004) 

 

Environmental impact of the waste stream  

Comparing the waste stream for die and sand casting shows that they have similar 

waste outputs (see Table 6).   

Table 6: Comparison of the waste stream of different casting types (Dalaquist and Gutowski 

2004) 
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The first steps to analyze are the die or mold preparation. A high amount of 

energy and metal is needed to create the die. In order to cut the material out of the 

metal stock and form the die, machining is required. As already mentioned in Chapter 

2.5.1, machining requires lubricants and cutting fluids. The fluids are often oil-based 

and release hazardous volatile organic compounds (VOC). However, the resulting 

emissions for creating a die can be split in between 15,000 and 500,000 castings over 

the typical lifetime of a die (Dalaquist and Gutowski 2004). It can be estimated that 

around 1kg of cumulative VOC emissions are produced per ton of produced casting 

(Roberts et al. 2003).  

In comparison, the mold preparation for sandcasting needs to be done for every 

casting since every mold can only be used once and is destroyed. Green sand to create 

the molds can be recycled, but has to be filtered to remove binder remnants and fine 

grained particles. It can be estimated that for each ton of cast metal about 5.5 tons of 

sand is needed. About 10% of this sand cannot be used for remolding at has to be 

disposed, which show the high amount of solid waste flow. Besides the green sand, the 

included chemical binders that are used to resist high pressure during the casting 

process have a major environmental impact. They are associated with as hazardous air 

pollutants (HAPs) (Gutowski and Dalaquist 2004).  

During the casting process most environmental impact is related to the release of 

HAPs due to dust and metal fumes. Moreover, sand casting also produces organic 

emission which occurs when the metal comes into contact with the sand and binder, 

which continues until the part is completely cooled down (Yilmaz et al. 2014). 
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After the casted material cools down, the part has to be finished to meet the 

desired quality. During this stage both casting techniques are very similar. Therefore, 

all runners and sprues that are used to funnel metal into the mold have to be removed 

by machining which produces scrap metal and other waste that is related to the usage 

of those machines (see Chapter 2.5.1) (Dalaquist and Gutowski 2004). A detailed 

overview of the input and output flows for iron casting is given by Yilmaz et al. in 

Figure 28. 

 

Figure 28: Material and energy flows used for Sand Casting (Yilmaz et al. 2014) 

2.5.3. Welding 

Welding is an omnipresent process, which is used across at companies worldwide 

for assembly of components of products. There are to different categories of welding 

processes: fusion welding and solid-state welding. Fusion welding is defined as the 

coalescing of materials by means of heat. The thermal energy required for melting the 

materials is usually supplied by chemical and electrical means. Filler metals, which 
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may or may not be used in the weld area during welding lead to another 

differentiation: consumable- and non-consumable- electrode arc welding. In arc 

welding, the heat required is supplied from electrical energy. The two most common 

arc- welding processes are Shielded metal-arc welding (SMAW) and Gas metal-arc 

welding (GMAW). GMAW uses an arc that is struck between a consumable wire 

electrode a workpiece. The weld area is shielded by an atmosphere of inert gases such 

as argon, carbon dioxide or a mixture of both. The consumable bare wire is fed 

automatically through a nozzle into the weld arc (Kalpakjian and Schmid 2013). 

 

Figure 29: Material flow for Gas metal-arc welding 

Recent LCAs conducted by Shrivastava et al. and Chang et al. on gas metal arc 

welding on aluminum and steel, revealed the environmental impact of GMAW 

according to the material flow of inputs and outputs (see Figure 29). Although the 

environmental impact of welding varies with the material and equipment used, these 

studies help to get an overview (Shrivastava et al. 2015).  

According to Chang et al. the most relevant impact indicators for assessing 

welding are: global warming potential, acidification, photochemical ozone creation 

potential, and eutrophication. As shown in Figure 30, the main contributors on these 

indicators are the consumed electricity and filler material e.g. electrodes (Chang et al. 

2015). 
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Figure 30: Contribution on environmental impact indicators (Chang et al. 2015) 

The fumes that are generated during welding processes are very important for the 

environmental impact. This by-product is a complex mixture of metals volatilized 

from the used filler material. It is often associated with different types of lung diseases 

and therefore a potential health risk for humans (Chang et al. 2015).  

2.5.4. Coating  

Coatings are used to protect manufactured components from thermal or corrosive 

degradation and enhance the aesthetic appeal. The large variety of coating techniques 

makes it difficult to select the right coating. Besides considering the operating 

conditions or costs it becomes more and more important to include the environmental 

effects of coating since existing and announced environmental legislations claim the 
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reduction of volatile organic compounds and other hazardous waste (Asthana et al. 

2006). 

2.6. Computer Aided Cost Estimation 

In the past, the assessment of manufacturability and production costs has been 

conducted based on the construction of prototypes and physical tests during the 

development of a product (Ostwald 1992). Manufacturing prototypes often requires 

specific tools which have to be designed and produced, and then future design changes 

require tool adjustments or even replacement by a new tool. This part of product 

development can be very time consuming and costly. One approach to address this 

problem is by using Computer Aided Engineering Cost (CACE) software which can 

help to estimate product costs and make statements about manufacturability. There 

exists already a large variety of software packages on the market, however they are 

mainly based the Activity-Based Costing (ABC) or on the analysis of 3D-CAD data to 

calculate the costs of production (Niazi et al. 2006).  

Activity-Based Costing is focused to allocating overheads for each process step 

during production based on their origins of consumption. Software based on ABC is 

often very flexible and suitable for different manufacturing processes. The user can 

select from different machine types and adjust process data such as cycle time, the 

amount of scrap or energy consumption according to his individual machine (Drury 

1992). This makes this type of software very flexible since it can virtually model every 

manufacturing process. However, CACE software based on ABC requires a high 

availability of reliable and accurate production data, as well as high level of user 
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knowledge (Micro Estimating Systems 2012). In the following section the three most 

important software tools are presented. 

DFM Concurrent Costing Software 

The DFM Concurrent Costing 2.3 software is part of the software package 

"Design for Manufacture and Assembly" of the company Boothroyd Dewhurst, Inc. 

and is divided into the programs "Design for Assembly" and "DFM Concurrent 

Costing". The software is a hybrid tool that generates cost estimates based on the 3D-

CAD files or by manual entry of all input data and definition of assembly steps by the 

user. DFM Concurrent Costing uses a library with a wide range of equipment for 

machining, forging, casting, and various assembly operations (Boothroyd Dewhurst 

2015). 

Siemens Teamcenter Pro Calc  

The Perfect ProCalc software exists since the year 2000 and was developed by the 

company Tsetinis. During that time the software was mainly to estimate costs in the 

German car industry. In 2012, the Siemens software was bought and integrated into 

Siemens software package called Siemens PLM. Perfect ProCalc uses the ABC 

approach to analyze costs and has an extensive database of some 300 regions and 

more than 3,000 types of machines. This allows rapid evaluation of cost effects of the 

transfer of production from regions with high labor costs to other low-wage countries. 

Perfect ProCalc also provides tools for calculating cycle times and allows the user to 

import available documents (e.g. 2D drawings, photographs and Excel Calculation) 

available (Siemens PLM Software 2015). 
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aPriori 

The software aPriori developed by a company of the same name, estimates cost 

based geometric data derived from a 3D CAD file. aPriori is focused on the costing of 

various metals and plastics including their processing and surface treatment. A special 

feature of aPriori is the Virtual Production Environment (VPE), which includes pre-

configured setups for different regions regarding rates for labor, cost per square meter, 

energy, as well as typical overheads of suppliers. In the standard library eight other 

VPEs including the United States are available. Furthermore, aPriori is the only CACE 

software that supports the user by choosing between different manufacturing processes 

based on generic data. This is a very helpful feature when new product designs or 

manufacturing lines have to be planned while detailed cost information is not available 

(Apriori Inc. 2015). 

2.7.  Need for a framework to assess sustainability and cost 

This chapter demonstrated that the manufacturing industry is a main consumer of 

natural resources and main producer of environmental impacts. Knowing this makes 

companies highly responsible towards their environment. Sustainable manufacturing is 

one way to decrease the environmental impact of a company. Before a company can 

start to enhance their processes towards more sustainable manufacturing, it is 

necessary to identify unsustainable manufacturing steps. Therefore, it is important to 

evaluate the environmental impacts of each manufacturing step in order to derive how 

they contribute to the environmental impact of the complete manufacturing process. 
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Comparing those measurements with data from a cost analysis helps to reveal 

potential cost savings that go along with sustainable manufacturing.  

Even though the literature review from Chapter 2 indicates that several tools and 

frameworks are already available to assess sustainability, it also demonstrates that 

results vary depending on the subject of investigation and the required insight 

knowledge and efforts to use those tools is significant. Moreover, most frameworks 

focus primarily on a single measurement such as energy or water consumption. 
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3. CHAPTER 3 – METHODOLOGY 

In order to fill the gap of a missing method that combines different measurements 

for the environmental impact and costs, it is necessary to develop a framework that 

includes both aspects. Therefore, it is important to specify the purpose of the 

framework in the beginning. Generally, the study aims to develop a framework to 

assess product sustainability and cost performance. Furthermore, it is the goal that the 

framework supports small companies by giving them guidance of how to approach 

LCA and identifying the environmental impacts of current and future state 

manufacturing processes. An overview of the methodology is given in Figure 31. By 

comparing the LCA results with costs, overlaps can be derived. In the first step 

suitable indicators for sustainability have to be identified.  

In the next step, primary data is gathered from the product of the case study. 

Since the acquisition of environmental impact data is one of the most critical and cost 

intensive steps within LCA, it is important to limit the number of measurements to an 

easy accessible level. However, it must be ensured that the framework still leads to 

viable results and matches the basic requirements of LCA according to ISO 14040.  

 Analyzing LCA data is very complex, so appropriate software is necessary to support 

the assessment of environmental impacts. Therefore, different LCA-software packages 

are compared and the best suitable software is selected.  

In the next step, LCA is conducted to assess the environmental impact of the 

current state manufacturing processes. Based on these results, alternative future state 

models are developed to improve the sustainability of the product by decreasing its 
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environmental impact. After the models are developed a LCA is conducted for each 

model and the results are compared.  

 

 

Figure 31: Methodology steps of this study 

In addition to the environmental assessment the costs of the product have to be 

assessed. In the first step, the cost data is gathered. For the existing product current 

state, costs data is available. To estimate costs for alternative future state models the 

support of CACE-Software is necessary. In order to find suitable software, different 

CACE-Software packages have to be assessed. Then, this software is used to estimate 

the cost of the alternative models. Finally, the results of the environmental and cost 
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assessment are compared to determine the overlap in cost savings and environmental 

impact improvement. 

3.1.  Suitable Indicators of Sustainability  

This chapter presents general criteria for indicators for sustainability. Based on 

those criteria appropriate indicators are derived.  

3.1.1. Basic criteria for Indicators 

Indicators have to meet certain criteria and user must be able to measure, monitor, and 

record them on a regular basis. There is a large variety of possible sustainability 

indicators that can be found in literature. However, not every indicator is relevant for 

manufacturing processes or are easy to measure. Therefore, suitable indicators have to 

be identified. Indicators are simple measures that represent a state or condition of 

something. Within this study, indicators are defined as “information used to measure 

and motivate progress toward sustainable goals” (Ranganathan 1988). 

 According to Robertson, the selection of indicators should be based on the goals 

that are identified for the assessment. In addition, there are other concerns that should 

be taken into account when selecting indicators. Sustainability indicators should be 

measurable, which means that they are quantitative rather than qualitative. 

Furthermore, they should be relevant for the goals that are pursued. They should be 

based on data that is available, reliable and easy accessible (Robertson 2014). The US 

Environmental Protection Agency (EPA) and Feng et al. have established a catalog of 

criteria for potential sustainability indicators (see Table 7).  
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Table 7: Criteria for Sustainability Indicators (Feng et al. 2010; EPA 2007) 

 

Taking these criteria as a base for the content of the indicators, there are further 

characteristics regarding the format and structure of indicators (Veleva and 

Ellenbecker 2001):  

 Identification: Indicators should be organized either alphabetically or 

numerically. 

 Name: Indicators need to be clearly stated. 

 Definition: Indicators should be defined with their essential characteristics and 

functions. 

 Unit of measurement: The value of indicators needs to be specified by a unit of 

measurement (e.g. kilograms, tons, percent, hours) 

 Type of measurement: Indicators can be measured either quantitatively or 

qualitatively and further can be either absolute (e.g. total energy used per year) 

or adjusted (e.g. energy used per unit of product per year) 
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 Period of measurement: Indicators have to be measured over a defined period 

of time (e.g. year, month, work shift) 

The listed criteria in Table 7 and characteristics that are listed above are helpful to 

select the right indicators and order them appropriately.  

3.1.2.  Identifying Indicators for Sustainability 

According to the three different dimensions of sustainability, environment, social 

and economy suitable indicators for each dimension have to be derived. Every 

dimension is directly related to specific issue(s).  

Issues for Environmental Sustainability 

The environmental impact is traditionally the most crucial dimension in terms of 

sustainability, and it is the dimension discussed in most detail in the literature. Hence, 

a lot of different tools are available that address this dimension and evaluate 

environmental sustainability. In general they can be divided into two main issues:  

 Natural resources: This issue evaluates the use of energy, water and raw 

material as well as the amount of waste that is being created during the 

production of a product.  

 Pollution: This issue assesses the contribution of the manufacturing process to 

climate change and global warming.  

Issues for Social Sustainability 

Issues related to the social dimension of sustainability are becoming more and 

more important for the public. Therefore, there are different issues that belong to the 

social dimension of sustainability: 
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 Health and Safety (Human toxicity)  

 Work satisfaction and development 

 Equal opportunities and perspectives 

However, only health and safety is taken into account with regard to 

manufacturing processes. It focuses on the security and wellbeing of employees that 

could be exposed to hazardous materials and substances. 

Issues for Economic Sustainability 

Issues regarding the economic dimension of sustainability are focused on the 

financial stability or profit of the evaluated subject. Furthermore, economic 

sustainability often includes issues related to investment and expenditures on future 

development. Meanwhile, none of those issues relates directly to specific 

manufacturing processes and therefore will not directly be included as indicators for 

sustainability. However, costs are included as parameters in the CACE-simulation. 

After defining the different issues for each dimension of sustainability and the 

general criteria for indicators, the next step is to define a number of key indicators that 

meet all the criteria. Generally, this research aims to use quantitative indicators, since 

they are more objective and less biased than qualitative ones. It should also be possible 

to express each indicator in relative terms and not only in absolute terms to ensure that 

manufacturing steps can be compared easily. The identified key indicators for this 

framework are summarized in Table 8. 
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Table 8: Key sustainability indicators  

 

While Table 8 gives an overview of all indicators, a more detailed description of 

each key sustainable indicator is presented in the following sections. The description 

includes the significance for manufacturing, the goal in terms of sustainability and the 

calculation or measurement of the indicator. 

Indicator 1: Material use – total consumption of non-renewable resources 

 Relevance: The depletion of non-renewable resources such as metal, 

minerals and fossil fuels is becoming a critical factor for traditional 

economic growth on a global scale. By reducing the material use in 

manufacturing a more sustainable development can be achieved. 

 Goal: Reduce the total material consumption 

 Measurement/calculation:  
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The total consumption of non-renewable resources is measured by adding 

up all material that is used within one manufacturing step.  

Indicator 2: Energy use – total consumption of non-renewable energy 

resources 

 Relevance: A main goal for sustainable manufacturing is to reduce the 

energy consumption of non-renewable resources such as coal and other 

fossil fluids. More efficient manufacturing processes and switching to 

renewable energy resources, such as sun or wind. Moreover, energy from 

non-renewable resources is directly related to increasing air pollution, 

depletion of fossil fuels and global warming. As explained in chapter 2, 

manufacturing processes are often very energy intensive, which makes 

this indicator so significant for this framework. 

 Goal: Reduce the energy consumption 

 Measurement/Calculation: The energy use can be measured with different 

devices, if the power supply is accessible. In case the power supply is not 

accessible, the energy use can be roughly calculated by measuring cycle 

time and multiplying it with the theoretical maximal energy demand given 

by the manufacturer of the machine.  

 

Indicator 3: Waste generation – total generation  

 Relevance: According to EUROSTAT, the United States generates 

7,080,000 thousand tons annually only during manufacturing/production 

(Twardowska et al. 2004). Similar amounts of waste are generated in 
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countries all over the world. This high amount of waste causes major 

environmental problems such as pollution and the release of toxic 

substances that cause harm to humans and the ecosystem.   

 Goal: Reduce the waste generation 

 Measurement/ Calculation: The amount of solid waste generated per 

process unit. The waste is either measured directly or by measured using 

the weight the blank part before manufacturing and afterwards. The 

weight difference is used to measure the generated waste. 

Indicator 4: Global Warming Potential (GWP)   

 Relevance: Global warming potential measures the contribution of a 

particular gas to global warming, by comparing this gas on a relative scale 

with carbon dioxide. As shown in Table 9 , carbon dioxide is assigned to a 

GWP value of 1. Global warming is related to warming up sea water and 

melting glaciers, which changes the earth ecosystem significantly. 

Manufacturing often contributes large amount of emissions to global 

warming. 

 Goal: Reduce emissions and slow down the process of global warming 

 Measurement/ Calculation: GWP is difficult to measure. However, the 

GWP can be calculated by measuring the quantity of emission released 

during the manufacturing process and multiplying it with the equivalent 

factor of that emission relative to carbon dioxide (see Table 9). This 

calculation is often done within the used LCA-Software packages. 

Indicator 5: Acidification potential (AP)   
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 Relevance: Acidification potential measures the contribution to the 

acidification of a particular gas and compares it at a relative scale with 

sulfur dioxide. As shown in Table 9, sulfur dioxide is assigned a value of 

1. Gases with acidification potential can be absorbed by plants and soils, 

which then lead to decreased biomass and poor soil quality. Furthermore, 

surface water may be acidified, resulting in poor water quality.  

 Goal: Reduce emissions of acid gases. 

 Calculation/Measurement: AP is difficult to measure. However, the AP 

can be calculated by measuring the quantity of emission released during 

the manufacturing process and multiplying it with the equivalent factor of 

that emission relative to sulfur dioxide (see Table 9). This calculation is 

often done within the used LCA-Software packages. 

Indicator 6: Human Toxicity (HT) 

 Relevance: Hazardous materials are mainly chemicals or mixtures of 

chemicals that are toxic, flammable or can cause other injury to humans. 

In order to protect worker’s health and safety they should be protected 

from those types of materials. 

 Goal: Reduce usage of hazardous material. 

 Calculation/Measurement: HT is difficult to measure. HT describes the 

expected health effects of materials depending on the concentration and 

probability of effects. This calculation is often done within the used LCA-

Software packages  
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Table 9: Identifying weighting factors for emissions 

 

Characterization methods for LCA 

After suitable indicators for the framework are chosen, they have to be integrated 

into the framework. Therefore, a characterization method has to be chosen. 

Characterization methods address indicators to different impact categories. They 

include different characterization factors that are applied to convert an assigned life 

cycle inventory result to the common unit of the category indicator. Characterization 

methods can be applied using midpoint and endpoint methods. The midpoint method 

is a characterization method that provides indicators for comparison of environmental 

interventions at a level of cause-effect chain between emissions/resource consumption 

and the endpoint level. The endpoint method is an attribute or aspect of natural 

environment, human health, or resources, identifying an environmental issue giving 

cause for concern (ISO 14040) (see Figure 32). Hence, the method (or damage 

approach) is a model that provides indicators at the level of areas of protection (natural 

environment's ecosystems, human health, resource availability) or at a level close to 

the Areas of Protection level. 

Common characterization methods are the different types of ReCiPe. They are 

based on midpoint, endpoint or a combination of midpoint and endpoint approaches. 

ReCiPe Midpoint uses midpoint and ReCiPe 2008 uses a combination of both 
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approaches. For example, the gas methane is classified to the midpoint impact 

category climate change. The reference material of this category is kg CO2 to air.  

 

Figure 32: Example of a midpoint-endpoint model  

 

The quantity of methane is characterized with a certain factor of 25 to an 

equivalent quantity of CO2. After that, all determined equivalents of materials which 

have an impact on climate change are summed. The final value is the result of the 

midpoint approach and indicates the global warming potential of the related product. 

To continue to the endpoint indicator, the midpoint indicator is allocated to damage 

categories. Each indicator of the midpoint classes is re-characterized with fixed factors 

to the indicators of the damage categories. For example, the indicator for damage to 

ecosystem diversity is loss of species during a year (Goedkoeep et al. 2013) 

The example midpoint class with its indicator for global warming potential is 

connected to damage to human health such as Disability adjusted life years (DALY) 

and damage to ecosystem diversity in form of loss of species. 
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The last step of the ReCiPe endpoint method is called normalization. The 

endpoint damage indicators are converted to the unit points with weighting factors 

(Althaus et al. 2010). The factors depend on three different cultural perspectives. The 

individualist is optimistic that future technology is able to solve today's problems. In 

contrast to that, the egalitarian is cautious and rates impacts more negatively. In the 

middle lies the hierarchist perspective (Goedkoop 2014). As this is the weighting 

which is often used in scientific models, the hierarchist perspective is applied in this 

study, too. After the normalization process, one point represents the thousandth part of 

the annual ecological load of an average European (Herrmann 2010).  

The existence of methods addressing midpoints and others addressing endpoints 

is justified and is legitimate given that the choice of method is intricately linked to the 

product/activity under assessment. However, for this research the ReCiPe Midpoint 

approach is chosen, since this approach is highly accepted for scientific research 

because of the relatively low uncertainty. Furthermore, this approach expresses the 

environmental impact in reference indicators such as m
3
, kg CO2, kg SO2 or 1.4-

Dichlorobenzene (DCB) and can be compared more easily with other references. 

According to the indicators in Table 8, following indicators were selected from the 

ReCiPe Midpoint approach: 

 Climate change, Global Warming Potential (GWP100) in kg CO2 equivalent 

 Human toxicity (HT) in kg 1.4.DCB equivalent 

 Acidification potential (AP100), AP 100 in kg SO2 equivalent 

All other indicators, such as material use, waste generation and energy consumption 

can be derived directly and do not need an equivalent ReCiPe indicator.  
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3.2.  Collect Primary Data 

The collection of primary data is an important as it is the base for the conducted 

LCA. However, all data gathered within this study was manipulated by a key 

multiplier to ensure the integrity of the manufacturer and does not represent the real 

manufacturing data. 

3.2.1. Data collection of CNC machines 

The CNC machines used in this case study is an Okuma LB3000 EX with an 

additional mist collector (see Figure 33).  

 

Figure 33: Okuma LB3000 EX CNC machine 

The CNC machines are used to manufacture different components of the product: 

including the housing, mounting cover and eccentric. In order to assess the 

environmental impact of the manufacturing process, the concept of a unit operation is 

applied, that indicates a conversion of material and chemical inputs into a transformed 
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material and chemical output. According to this, the following transformation of input 

to output derives five LCI characteristics (see Figure 34). 

 

Figure 34: General Input-Output diagram for CNC machining 

The input materials for this machine are blank housings, blank mounting covers 

(both casted aluminum) and blank eccentrics (casted iron). Before those pre-casted 

parts can be assembled, they have to be machined to meet required tolerances. 

Therefore, different cutting tools, cutting fluid and energy are needed.  

Energy consumption 

 The energy consumption is calculated based on the constant voltage (220V) and 

the measured amperage during the machining process. To measure the amperage a 

clamp meter is connected to one phase of the power supply. Since the clamp meter can 

only measure the current amperage but not save it over the complete manufacturing 

time, two video cameras are used to film the display of the clamp meter and the 

manufacturing process. By matching the footage, the energy consumption of the 

complete manufacturing process can be derived. This setup is used to measure the 

energy consumption for every manufacturing step. 

The housing, mounting cover and eccentric are all manufactured on the CNC 

machine A, which is equipped with an additional mist collector. 
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Material usage and solid waste generation 

To measure the material usage all blank components are weighed on a scale 

before they are machined. After the machining all components are weighed again, and 

the difference of weight is accounted as waste. In the case study, most of the waste is 

scrap metal. Since most of the blank components have slightly different weight and 

dimensions for each component, five samples were measured. Based on the 

measurements of the different samples, a mean value for each component and 

manufacturing process is derived.  

Cutting fluid consumption 

The fluid is used as a coolant and also lubricates the cutting surfaces. It is 

difficult to measure the cutting fluid consumption because it is constantly recycled 

within the CNC machine until the properties of the fluid become inadequate. 

Moreover, due to other losses such as evaporation and spillage, the cutting fluid has to 

be replenished on a regular basis. To estimate the cutting fluid consumption, an 

approach by Clarens et al. was chosen. It is assumed that the number of parts produced 

per unit time will not vary depending on the cutting fluid replacement. In Clarens 

approach, the machining time associated with one year of manufacturing and is based 

on a schedule of 102 hours of machining per week. The CNC machine used in his 

studies was equipped with a 208 L (55 gallon) tank to provide cutting fluid to the 

cutting zone. The 208L/machine is recycled within the process until it is disposed of 

after two weeks. Assuming cutting fluid is used 204 hr/ 2 weeks, then the cutting fluid 

loss is 208L per (204*60) minute, which is 0.017 L/min or about 17 g/min as the 

effective loss of cutting fluid due to degradation (Clarens et al. 2008).  
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208 𝐿

102 ℎ𝑜𝑢𝑟𝑠 ∗ 2 𝑤𝑒𝑒𝑘𝑠
= 1.019

𝐿

ℎ
= 0.17

𝐿

𝑚𝑖𝑛
 (EQ. 2) 

This approach is used for this case study and the values are adjusted according to the 

process parameters of the cutting fluid and the typical operating procedures at the 

company.. 

3.2.2. Data collection for welding 

In this case study GMAW welding is used to weld the manufactured shaft to the rotor 

as part of the motor assembly. The input-output diagram shows the main three LCI 

characteristics: electricity, used electrodes and shielding gas (see Figure 35).  

 

Figure 35: Input-Output diagram of GMAW Welding 

To measure the energy consumption of one unit welding process, the same setup is 

used as for the CNC machines. 

Welding consumables 

To measure the used amount of welding wire for one process unit of GMAW 

welding, the wire feed rate is measured and multiplied by the cycle time. Another 

consumable used is the shielding gas, a mixture of 75% Argon and 25% CO2, which is 

used to protect the weld from oxygen and ensure a high quality weld. By multiplying 

the flowrate with the cycle time the amount of consumed shielding gas can be 

calculated. 
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3.2.3. Data collection of painting process  

The product is painted with a paint spray gun which uses compressed air to 

spread the lacquer on the component. To calculate the amount of lacquer that is used 

for one process unit, the paint jar attached to the paint gun is filled up with paint and 

the weight is measured on a scale, then the product is painted and after that the jar gets 

weighed again. In order to avoid inaccuracies this process is repeated five times and an 

average consumption is calculated. 

3.3.  Selecting Appropriate LCA Software 

As mentioned in Chapter 2, there is different software available for LCA. 

Although they all fulfill the purpose of supporting the user to conduct a Life Cycle 

Assessment, they differ in price and optional functions. This comparison includes the 

educational versions of Umberto NXT LCA, GaBi and the full version of openLCA. 

Collecting data to conduct an LCA can be very time consuming and expensive, so it is 

helpful to access generic data to fill in data gap. Data may be collected and transferred 

to the software manually or automatically imported from a database via an interface. 

In such databases are independent from the LCA-Software and have to be integrated 

into the software. LCA data are based on product and elementary flows, which are 

related to environmental effects in the form of emissions. These flows are often 

multiple linked to additional data sets such as inputs and outputs for energy supply, 

transport, chemicals, materials and manufacturing processes. Some data bases are 

available for free, while others have to be bought. The most important free available 
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LCA databases are: the European Reference Life Cycle Database (ELCD), the 

National Renewable Energy Laboratory Data Base (NREL) and the New Energy 

Externalities Developments for Sustainability (NEEDS). One of the world's leading 

commercial databases is the Ecoinvent Database. Ecoinvent includes more than 9000 

generic data sets.  

In the following chapter, three of the most common LCA software tools 

(OpenLCA, GaBi, Umberto NXT LCA) will be presented and evaluated by the 

following criteria: 

 Availability of free or educational licenses (1): Costs can often be the first 

burden for small companies when trying new methods. Moreover, since the 

intention is to use this software for research purposes an educational option is 

useful.  

 Includes extensive database (2): As mentioned in Chapter 2, data collection 

can be difficult and very time consuming. Existing databases that include 

generic data such as emissions to air due to the production of electricity can fill 

in gaps where collecting data is impossible or very time consuming. 

 Easy import of databases (3): Some software tools do not include database 

from the beginning, however they have the option to import external databases. 

 User friendliness and flexibility (4): LCA tools should have a user friendly 

interface that is comparable to common software such as Microsoft Office. The 

amount of time to learn how to use the software should be appropriate to the 

results you can achieve with this software. 
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 Transparency (5): LCA calculations should be transparent for the user to track 

down each result in order to find mistakes. 

Each tool is tested by working through available tutorials and on a custom product. 

Then, based on the criteria above, each software is evaluated. 

GaBi 

GaBi was developed by PE International. A trial version is available for free 

but can only be used for 30 days. Furthermore, it only includes a “test” database that is 

not based on real measurement or calculations. The price for the full version is about 

$1000 and has to be paid on an annual basis(1). Besides that, an educational version is 

available that allows students and universities to use an educational version of GaBi 

for free. This version includes a smaller version of GaBis own database, which makes 

an import of an external database unnecessary (2,3).  

Before developing the first product system, the Gabi database has to be 

activated and a project plan has to be created. On this plan object from the database 

can be pasted and connected with arrows. A search function helps to find the right 

process easily. In addition, custom processes can be created. Therefore, all materials 

used have to be identified manually. Different processes are connected with each other 

by product or waste flows. The available tutorial of a paper clip helps new users get 

started (see Figure 36). In addition, there are video tutorials available that explain step 

by step how to use the software. While the design of the main interface is very user 

friendly, adding new processes and connecting them can be complicated and time 

consuming (4). The main reason for this is that the program does not tolerate small 

mistakes. Whenever user individual processes or materials are created the limited 
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database for raw material becomes critical. For example, in order to create a 

customized paint, the all specific components have to grouped and defined as paint.  

 

Figure 36: Screenshot GaBi paper clip tutorial 

However, a lot of those specific components cannot be found in the included 

database, which leaves the user no other option than using a standard paint with 

different components (see Figure 37). 

 

Figure 37: Screenshot from the GaBi database for paint 

When generic data is chosen it should always be compared to the actual material 

or process for which it is being substituted. If “Exterior paint” is chosen in the GaBi 

software, more detailed information about the ingredient of the paint is missing. The 

detailed view for this generic paint only show one ingredient: lacquer (see Figure 38). 
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Figure 38: Screenshot of the detailed view in GaBi 

Selecting a generic data set that does not fit the actual process or material that is 

assessed can change the environmental impact during the LCA calculations 

significantly. Within this research the painting process is crucial. Hence GaBi is not 

suitable for this research and the development of a current state model based on the 

case study could not be finished. A basic model of the case study developed in GaBi is 

shown in Figure 39. 

 

Figure 39: Screenshot of the current state model in GaBi 
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Similar problems where identified by creating specific cutting fluids. With the use 

of a larger database such as ecoinvent or the full version of GaBis own database, this 

problem could possibly be solved.  

OpenLCA 

In contrast to the two other tools, openLCA is open source software by Green 

Delta. Therefore, the software is completely cost free and the full version can be used 

without any limitations (1). In contrast to other software solutions, openLCA includes 

neither LCIA methods nor inventory data within a database. The user receives an 

empty software tool, which then can be adjusted individually and combined with 

external inventory data (2). Every time, when the software starts, the user has to 

import and activate a database that is wanted for use. Free databases are available 

online e.g the European reference Life Cycle Database (ELCD) or the US LCI 

database. However, only one data base can be used at the same time (3). To model a 

system of different processes material flows have to be connected by inputs and 

outputs. Before the results for the LCA can be calculated LCIA and normalization 

methods have to be imported. Before the first system can be created, several attempts 

had to be made to import a database to into the software. Unfortunately, a lot of the 

databases recommended by Green Delta are only focused on agriculture or renewable 

energy. The only general database that includes processes and materials used in 

manufacturing is the ELCD database. OpenLCA supports new users with different 

types of video tutorials that help the user to setup the software and to develop his own 

product system (4). When this software is compared to competing software, it is less 

user friendly since all data input has to be done by the user. Furthermore, to setup a 
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product system there is no visualization of the stream, which can easily confuse the 

user. 

Umberto NXT LCA 

Umberto NXT LCA was developed by a University in Hamburg, Germany. 

The software is often used by Universities and consulting firms. A trial version is 

available for free but can only be used for 30 days. There are different licenses 

available for Umberto that have to be bought on a yearly basis. An entry-level version 

starts at around $2,000 including the ecoinvent-DB v3 database (1). This database has 

over 10,000 entries, making it the largest and most extensive database available. 

Optionally, the GaBi-DB can be purchased and integrated as well (2). Other databases 

such as ELCD are not implementable (3). To start using the software, there are 

different tutorials available that help the user understanding the software. The 

interface is designed to be user friendly. Developing a product system including the 

LCI can be done by simply drag-and-drop operations from different folder of the 

project explorer (4). Squares or circles that symbolize processes or input and outputs 

can be connected on a plan. The system, is then is presented as a petri net. In addition 

the different processes can be dragged into different life cycle phases (see Figure 40).  
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Figure 40: Screenshot of Umberto NXT LCA Tutorial 

A special feature of Umberto is the existing preconfigured complex process that 

allows the user to track on an elementary flow level. This becomes really helpful when 

logistic or electricity generation has to be modeled. Those preconfigured processes are 

based on average data from different regions of the world and can be different from 

the actual material flow. Generic data for paint or metal working fluid shows all 

ingredients and byproducts that occur in the process. This way, the user can compare 

the generic data and verify that it fits the requirements and is similar to the actual 

process. However, Umberto points out that generic data should only be used when it is 

the processes or materials are not in the focus of the LCA study. In the case study the 

used paint and metal working fluid are crucial. Therefore, customized processes have 

to be generated. This can be done in Umberto NXT LCA by adding all known 

ingredients to an empty process.  

The calculation of LCIA is transparent and results can be connected to different 

life cycle phases (5). This feature makes it easier for the user to identify environmental 

impacts and match them to the different phases. Umberto includes a large variety of 

indicators from which the user can choose from. In the educational version of 
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Umberto NXT LCA only three indicators can be chosen at the same time. 

Furthermore, the following limitations are set for the educational license: 

 25 User Defined Materials 

 25 User Defined Processes 

 3 Subnets 

During the tutorials and customized projects, none of these limitations were found as 

critical.  

Results 

After each of the LCA software was tested and evaluated according to the criteria, 

the results presented in Table 10 show that the Umberto NXT LCA fits all of the 

criteria. The only downside is that there is no free version of the software available.  

Table 10: Result of Evaluation of Different LCA Software 

 

The educational license that was used during this research was sponsored by the 

Institute of Machine Tools and Production Technology at the University of 

Braunschweig. The biggest advantage of Umberto NXT LCA regarding this study is 
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that the included ecoinvent database provided a large variety of generic data, while 

other software include a smaller database or no database at all.  

3.4. Selecting CACE Software 

As mentioned in Chapter 2, CACE software can help to estimate manufacturing 

costs, which becomes necessary when no real cost measurement is available. This can 

be the case when changes in the design of the product or the manufacturing processes 

are made. By including CACE software in this framework, costs can be estimated and 

compared with the environmental impact whenever there is no real cost data available. 

Based on the case study, basic requirements for CACE software can be derived. This 

section compares the aPriori, Concurrent Costing 2.3 and Siemens Pro Calc as 

examples of CACE software and evaluates their suitability for this research.  

For the evaluation five criteria are determined in order to select software that 

allows the most accurate simulation of case study. To derive accurate results the 

individual adaption of the manufacturing steps is very important. An import from 3D 

CAD data makes the cost analysis easier, since geometric data is available and no 

manual entry is needed. For the purpose of this research it is important that the CACE 

software includes the calculation of the needed inventory material. Furthermore, the 

calculation of cycle times is important, since the cycle time is essential to calculate 

labor costs. As the last criterion, it is important that the software is easy to use and 

supports the user during the optimization process. This means, that the software 

supports the user during the selection of material and assists to discover weaknesses in 

the process. If a criterion satisfied to the full extent, the software is rewarded with a 
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full point. If, however, software meets a criterion only to limited extent, it is rewarded 

with half a point. If a does not meet a criterion at all, it is rewarded with zero points.  

 

Figure 41: Evaluation of different CACE software 

The results of the evaluation are shown in Figure 41. In comparison, the aPriori 

Software achieved the highest score. aPriori is the only software which supports the 

user in optimizing the production process. The user has the option to choose from 

these proposals and to manually adjust the process. In addition, you can search for the 

optimal solution by the "Let aPriori decide". Furthermore, the import of 3D CAD data 

provides a convenient way to take into account the geometric cost drivers of the 

product. Another function is the calculation of cycle time and the use of materials. In 

General, the use of aPriori appears to be easier compared to the competition. Gaps due 

to unknown process data can be filled by default values from the aPriori database in 

order to obtain plausible results. The software packages Siemens ProCalc and 

Concurrent Costing require a more detailed knowledge of the manufacturing process 

and the individual costs. Especially for inexperienced users estimating such figures is 

extremely difficult. 
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Subsequently, the software aPriori is chosen for this framework, since it is the only 

software that can estimate costs and cycle times based on generic data, when no 

primary data is available. From a cost perspective, the focus of this research is to 

determine material cost for consumables and raw materials. Furthermore, the labor 

costs per part are estimated. Based on this data potential savings can be evaluated.  

 

3.5.  Developing an Enhanced Value Stream Map 

To track sustainability within the manufacturing process, different Value Stream 

Maps were developed (see Section 2.4.3). One approach was done by Faulkner et al., 

who developed the sus-VSM that includes energy consumption, raw material usage, 

water consumption and the social aspect of the work environment (Faulkner and 

Badurdeen 2014). However, no approach includes measurements based on LCA 

results such as Global Warming Potential. Moreover, no approach includes costs and 

sustainability measurements at the same time. Therefore, the traditional Value Stream 

Map will be adjusted and a cost and environmental perspective added according to the 

indicators.  
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Figure 42: Example of the adjusted VSM 

As it can be seen in Figure 42, in the adjusted VSM, the traditional measures such 

as cycle time (CT), change over time (C/O) and Uptime are shown in the first box 

underneath. The next box includes the results of the LCA. In the last box the costs are 

presented.  
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CHAPTER 4: APPLYING FRAMEWORK TO A CASE STUDY 

After giving a comprehensive overview of the most prominent costs factors, 

environmental factors, society factors and the theoretical background was given, this 

chapter focuses on applying this knowledge to manufacturing processes. Therefore a 

case study is conducted, which will be presented in the first section. Based on this, in 

the following sections requirements and system boundaries are set. According to these, 

a concept will be developed to analyze the cost and environmental impact of the 

product. 

4.1. Introduction of the Case Study: Industrial Equipment Unit  

The manufacturer of the product under consideration is located in the New 

England area. The company manufactures industrial equipment for material flow, 

efficiency and safety and has been in business for over 50 years. Depending on the 

environment different Industrial Equipment Units (IEU) are produced. One of the 

most common IEU can be seen in Figure 43.  
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Figure 43: Industrial Equipment Unit 

This tool shakes off materials from the inside to mobile equipment for example:  

 Fertilizer spreaders and Farm equipment 

 ice control and sand spreaders 

 dump trucks  

 concrete pumps 

Therefore the device is mounted on the outside of the equipment (see Figure 44). 
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Figure 44: IEU mounted to the body of a truck 

To get a better understanding of the main components of the product are presented. 

4.1.1. Main components of the product 

The main components of the IEU consist of the housing, eccentric, mounting 

cover, motor assembly and dust cover. Besides those main components, there are 

different other smaller components that are needed for the assembly. This includes 

screws and bearing balls (see Figure 45).  
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Figure 45: Main components of the IEU 

Not all components are manufactured directly in the company itself. A lot of them 

are produced as blanks by a vendor and are processed further at the manufacturer.  

4.1.2. Manufacturing process 

After all components are produced by vendors they run through different 

machining processes, followed by an assembly process. After the product is assembled 

completely it is painted and finished (see Figure 46). 
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Figure 46: simplified manufacturing process of an IEU 

The housing, eccentric and mounting cover is machined on a CNC horizontal 

lathe. The machine uses different tools to perform chucking, boring, turning and 

drilling. The machine itself is connected to a mist collector to avoid having machining 

fluids released into the air. During operation the tools are cooled by a continuous flow 

of lubrication oil. The input voltage for the machine is 220 V. Depending on the 

machined part and material a different setup is needed. The setup varies in tools, feed 

rate and cutting time. Since different jobs require different tools, tools have to be 

changed. The shaft is manufactured of bar stock steel and is machined on a different 

CNC machine. In addition, a bar feeder is used to supply the CNC machine. The 

machine run with 220 V input Voltage. The motor assembly is already preassembled 

by the vendor and can be welded to the shaft. The welding technique is MIG 

(GMAW) used with 75% Argon carbon-dioxide gas mixture. The plastic dust cover is 
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delivered ready for assembly by the vendor. The assembly process is done manually 

and only uses man power and different types of sealers. The next process is the 

painting of the complete part. The solvent based lacquer is applied with a paint 

spraying gun that uses compressed air. After the paint is air dried, the product gets 

finished and packaged for shipping. 

4.2.  Application of Life Cycle Assessment 

4.2.1. Goal and scope definition 

The goal of the assessment of the manufacturing process is to determine impacts 

of the system on the environments and humans. In that process, data has to be 

collected, evaluated and visualized. As a consequence, the awareness for negative 

effects is increased. In addition, the model can be used to create future state 

manufacturing processes and helps to optimize the current processes.  

Three models are constructed. The first model shows the current state of the 

manufacturing process. The second model is an improved future state process with 

lower environmental impact and that provides potential cost savings. The results of 

both models are compared to determine the intensity of reduction of environmental 

impacts due to the implemented optimizations. Furthermore, there will be a 

differentiation in the scope of the assessment. One model will include all of the 

environmental impact during upstream processes such as generation of new material 

and resource extraction. The second model will only focus on the environmental 
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impact during the manufacturing steps within the company. According to this, the 

functional unit is defined. 

Functional unit  

As explained earlier, the functional unit is used to clarify the system boundaries 

and the interdependence within the production system. The functional unit is defined 

as the manufacturing of one IEU, including all main parts. With this definition, the 

manufacturing process can be compared to other manufacturing processes or 

optimizations of the current process.  

System boundaries 

System boundaries include several aspects. The assessment does not include the 

whole life cycle of the product. The first model includes the current manufacturing 

processes of the product within the company and all upstream processes such as raw 

material extraction and production of blank parts. All downstream processes such as 

finishing, shipping and usage are excluded. (see Figure 47).  
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Figure 47: System boundaries of the analyzed product 

Another boundary is the collected data. Data is only taken into account when it is 

directly and exclusively related to the manufacturing of one IEU. This includes 

electricity, paint, raw materials, welding consumables and lubricant oil. It excludes 

electricity used for illumination since it cannot be tracked back to one IEU. 

4.2.2. Inventory analysis 

The inventory analysis and the impact assessment of both models are conducted 

in the software Umberto NXT LCA. Primary data is collected at the company 

according to the framework in section 3.2, while other data is derived from the 

ecoinvent database. In the following, the data collection is explained. 

The input materials for this machine are blank housings, blank mounting covers (both 

casted aluminum) and blank eccentrics (casted iron). Before those pre-casted parts can 
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be assembled, they have to be machined to meet required tolerances. Therefore, 

different cutting tools, cutting fluid and energy are needed.  

Energy consumption 

The results of the measured energy consumption are shown in Figure 48 to Figure 

52. The energy demand (W) of the CNC machine A is varying through the cycle time 

while the energy demand of the mist collector stays constant at 5720 W. The 

maximum energy demand is at second 648 with a value of 9680 W. (see Figure 48). 

The total energy consumption of CNC machine A and the mist collector for a cycle 

time of 11:28 min is 1268.0 Wh. 

 

Figure 48: Energy consumption and demand for the housing on CNC A 
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The second machining step is done on CNC machine C which does not have an 

attached mist collector. The maximum energy demand is at second 23 with a value of 

15,136 W (see Figure 49). The total energy consumption of CNC machine C for a 

cycle time of 11:50 min is 2200 Wh. Compared to CNC machine A, the minimal 

energy demand is higher for the CNC machine C. 

 

Figure 49: Energy demand and consumption for the housing on CNC C 
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Figure 50: Energy consumption and demand for mounting cover on CNC A 

Figure 50 shows the energy demand of CNC-machine A when manufacturing one 

mounting cover. The cycle time was measured with 11:30 min. The maximum energy 

demand is at 2:42 min with a value of 8910 W. The total energy consumption is 1160 

Wh. 
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Figure 51: Energy consumption and demand for eccentric on CNC A 

The cycle time to machine one eccentric is 11:45 min and requires 2000 Wh. As 

it can been seen in Figure 51, the highest energy demand was measured at 3:28 with a 

value of 8404 W. Comparing the energy profile of the eccentric with the housing and 

the mounting cover, the analysis shows that the average energy demand for the 

eccentric is higher. One reason for this might be that the eccentric is made of casted 

iron, while the mounting cover and housing are made of casted aluminum which is 

softer than iron and therefore requires less energy.  
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Figure 52: Energy consumption and demand for shaft on CNC B 

The shaft is machined on CNC machine B that does not have a mist collector 

attached. The total cycle time for the machining process was measured with 12:29 

min. The total energy consumption is 2210 Wh. Comparing the energy profile with the 

profiles of the housing or the eccentric, it can be seen that the peaks in the energy 

demand are significantly higher. One reason for this might be that the shaft is made of 

steel which has a higher hardness than aluminum and iron. The highest energy demand 

is at 0:44 min with 20900 W. 
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Material usage and solid waste generation 

The material usage and solid waste generation was measured according to the 

framework in section 3.2. An example is shown in Table 11. 

Table 11: Results of weight measuring for eccentric component 

 

Based on the measurements of the different samples, a mean value for each 

component and manufacturing process is derived. An overview of the results is given 

in Table 12. 
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Table 12: Overview of the scrap metal production during machining 

 

Cutting fluid consumption 

In this case study the CNC machines use a 197 L (52 gallon) tank for cutting 

fluid. It is assumed that each machine runs 40 hours per week. Furthermore, it is 

assumed that the cutting fluid has to be replaced every four weeks. Based on the 

finding of Clarens et al. following effective loss of cutting fluid can be derived for this 

case study (see EQ.3). 

   

197 𝐿

40 ℎ𝑜𝑢𝑟𝑠 ∗ 4 𝑤𝑒𝑒𝑘𝑠
= 1.231

𝐿

ℎ
= 0.205

𝐿

𝑚𝑖𝑛
 

 

(EQ. 3) 

This operating figure can be used to calculate the loss of cutting fluid for every 

component by multiplying it with the cycle time. The results are presented in Table 

13. 
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Table 13: Collected data for CNC machines 

 

After all data for the machining processes are gathered, in the next step the 

welding process will be analyzed.  

Data collection for welding 

In this case study GMAW welding is used to weld the manufactured shaft to the 

rotor as part of the motor assembly. The cycle time was measured with 1:28 seconds 

which leads to a total energy consumption of 350 Wh (see Figure 53).  
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Figure 53: Energy consumption welding one shaft 

The feed rate for the welding wire was measured as 1.2 m per min which leads to 

a consumption of 2.4m welding wire per process unit. The flowrate of the shielding 

gas in this case study is 14.15 Liters per minute (30 CFH). By multiplying the flowrate 

with the cycle time the amount of consumed shielding gas can be calculated. For each 

process unit 38.3 Liter of shielding gas is required.  

Data collection of painting process  

After all parts are manufactured and the IEU is assembled, it is painted. The paint 

used is a gloss metal lacquer. The list of ingredients can be seen in Table 14. 
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Table 14: List of ingredients gloss metal lacquer 

 

The IEU is painted with a paint spray gun which uses compressed air to spread 

the lacquer on the component. An average of 1290 g of paint is used to paint one IEU.  

4.3. Implementation of the data into LCA Software 

After the functional unit and the boundaries are explained and the necessary data 

is collected in the next step a LCA model of the IEU manufacturing process. This 

model is developed in the software Umberto NXT LCA, which was selected in 

Section 3.3. 

In this assessment three different models are built. The first model simulates the 

current state of the manufacturing process. It was assumed that 10000 IEU are 

produced every year. The second and third models represent possible future states of 
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the manufacturing process. They are developed based on the results of the current state 

LCA. To goal is to reduce the overall environmental impact by replacing 

manufacturing processes which have high environmental impacts or modifying them 

to reduce their impact. Within the models different changes regarding single 

manufacturing processes are conducted. These changes are all theoretical and based on 

other research. However, it is not within the scope of this research to perform these 

changes in the actual manufacturing system. The basic construction of both models is 

the same as Model 1 shown in Figure 54. In the following, the current state model and 

the two future state models are presented. 

4.3.1. Model 1: Current State 

The current state model is divided into the phases: raw material, manufacture and 

distribution/ retail. However, the focus of the LCA is on the manufacturing phase and 

the upstream processes. In the first phase which is called Raw Material all raw 

material processes such as aluminum casting, iron casting, steel production and 

injection molding take place. The raw material processes are marked as light green 

squares. Each process needs different inputs presented as green circles and outputs 

presented as red circles. However, all raw material processes are modeled based on 

generic data as shown in Table 15. The preconfigured processes from the database are 

used, since it is beyond reasonable efforts to gather primary data. The blank castings 

used in this case study, for example, were produced in a foundry in China.  
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Table 15: List of generic data used within the LCA of the IEU case study  

 

To connect different processes, connections are needed which are presented as 

yellow circles. The outputs of the raw materials are blank components and are marked 

as dark green squares. In the next step all blank components are machined. All 

machining processes are marked as blue squares. Every machining process needs the 

blank component, electricity and metalworking fluid as an input. The output consists 

of different types of metal scrap, used metal working fluid and the machined part. The 

data entry for each machining process is based on the collected primary data in 

Section 4.2.2. Although there is generic data available for paints and metal working 

fluid in the data base, new materials based on the list of ingredients were created. This 

ensures more reliable results, since both fluids contain very specific types of chemicals 

that might differ from the generic data and as a result have different environmental 

impacts. The electricity is sent by the process Market for electricity of East North 

America. This dataset describes the electricity available on the medium voltage level 

in this regional entity of the North American Electric Reliability Corporation (NERC). 

This is done by showing the transmission of 1kWh electricity at medium voltage. To 
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weld the shaft and the rotor together, electricity, welding wire and welding gas are 

used as inputs. To create those inputs generic data from the database is used (see Table 

15).This is admissible, since the generic data matches the characteristics of the 

material used in the case study. The dust cover component is made out of molded 

plastic and requires no further machining. It can directly be assembled after its arrival 

at the company. The assembly of all parts is done manually with the support of a 

screwdriver. In the last step the painting process is modeled. Figure 54 shows the 

developed model of the manufacturing process. After the model is completed, the 

impact assessment is conducted.   

4.3.2. Model 2: Coconut-oil based cutting fluid and powder coating 

The second model represents an optimized version of the IEU manufacturing 

process. In the optimized model, all machining processes use coconut oil based 

metalworking fluid instead of conventional mineral based metalworking fluid. The 

fluid was modeled according to the results of the research of Perera. This 

metalworking fluid contains water (90%), coconut oil (7%) and emulsifier (3%), 

which are classified as nontoxic (Perera, G. I. P. 2014). For the model it is assumed, 

that the same amount of fluid is needed for the machining processes as before. 

Furthermore, it is assumed that the change of the fluid does not change the required 

energy consumption during the machining process and is as durable as the mineral 

based metalworking fluid. Those assumption are justified based on the results of 

Lawal et al. 2012.  
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In addition the current painting process was replaced by a generic powder coating 

process from the ecoinvent database.  

4.3.3. Model 3: unpainted IEU 

Model 3 is based on the current state model, but does not use any type of surface 

finish such as lacquer or powder coating. This proposed design change is reasonable 

since the housing and all other parts that protect the inside of the IEU are made of 

aluminum and therefore are already rust-resistant. However, there could be other 

positive or negative effects to the functionality of the product if the surfaces are left 

entirely uncoated. For example, the long-term product durability could be affected.  

From a marketing perspective, some brand recognition could be lost if the company 

does not use its signature paint color on all outer components. Alternatively, the 

company could capitalize on the product design change by promoting a “new, 

environmentally friendly” uncoated alternative that lowers costs for customers and 

promotes their interest in environmental sustainability. 

4.4. LCA Results 

4.4.1. Model 1: Current State 

The first result of the assessment is demonstrated in Figure 54. The so called 

Sankey diagram shows the flow of mass and energy in the supply system of model 1. 

Different types of flows can be selected or all flows can be selected at the same time. 

Every material has another color. The width of the arrows presents the dimension of 

the mass or energy flow. 
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The Sankey diagram gives first visualization of the important flows of a product 

system within the different life cycle phases. Hereby, extensive flows are able to be 

determined. In case of the IEU, the material flows for the aluminum casting in the life 

cycle phase for raw materials is the largest flow within the model. Since the Sankey 

diagram displays the arrows in proportion to all other flows and the aluminum casting 

is very dominant, every other flow appears to be very thin or is even hard to identify.  
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Figure 54: LCA-Model of the IEU 
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The next section presents the results of the ReCiPe midpoint approach. The 

following indicators within this method are used: 

 Climate change, Global Warming Potential (GWP) 100 in kg CO2 equivalent 

 Human toxicity (HT) in kg 1.4.DCB equivalent 

 Acidification potential (AP), AP 100 in kg SO2 equivalent 

 

 

Figure 55: Overall LCA results of current state model 

As shown in Figure 55 over 90% of the environmental impact is done during the 

Raw material phase of the LCA analysis. During the raw material phase, the material 

is extracted and the blank components are produced for the housing, mounting cover, 
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dust cover and shaft. However, the raw material phase can hardly be influenced by the 

manufacturer of IEU.  

Table 16: Quantities of used materials for each manufacturing step 

 

The manufacturing phase is responsible for about eight percent of the total 

environmental impact within the scope of this study. All manufacturing steps are 

performed directly in the company, so they are easier to influence and change. In the 

next step, the results from the manufacturing phase are presented. Therefore, every 

manufacturing step will be analyzed. Table 16 shows the used quantities of every 

manufacturing step. Raw material refers to the input of raw material such as blank 

parts or paint. Solid waste scrap refers to the any type of scrap that is produced during 

the manufacturing step. These quantities are the basis of the following results. 
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Figure 56: GWP100 of Model 1 split up by manufacturing steps 

Between 60 – 70% of the Global Warming Potential (GWP) is related to CO2-

emissions caused by aluminum scrap metal that is wasted within the machining phase. 

The second biggest contributor of CO2-emissions is the used Metal working fluid, 

followed by paint. Comparing the aluminum components (Housing and Mounting 

Cover) with the eccentric or which, which are made of iron and steel, it can be seen 

that the amount of released CO2-emissions is significantly lower (see Figure 56).  

Next, Figure 57 presents the results of the human toxicity indicator in 1.4-DCB 

equivalents. The highest environmental impact according to this indicator is related to 

the generated aluminum scrap.  
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Figure 57: Human toxicity of Model 1 split up by manufacturing steps 

The acidification potential for each manufacturing step measured in kg sulfur 

dioxide equivalents is shown in Figure 58. The generated aluminum scrap is the 

highest contributor for acidification with a maximum of 40 kg SO2-equivalents for the 

first machining process of the Housing. In contrast to the other indicators, the used 

energy has a much higher impact on the acidification potential of each manufacturing 

process.  
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Figure 58: AP of Model 1 split up by manufacturing steps 

The results of the current state model reveal that the solid waste scrap, metal 

working fluid and paint are the biggest contributors of environmental impact within 

the manufacturing of an IEU. The second model replaces the used metalworking fluid 

with a coconut oil based fluid and uses powder coating instead of paint. The results of 

the LCA are presented in the following second model. 

4.4.2. Model 2: Coconut-oil based cutting fluid and powder coating 

The results of the midpoint approach are shown in Figure 59 and Figure 60. Since all 

improvements are performed within the manufacture phase, the all indicators in the 



 

121 

 

raw material phase are equal to Model 1, while they are significantly lower during the 

manufacture phase (see Figure 59).  

 

Figure 59: Overview of environmental impact of Model 2 

This improvement is achieved by the replaced metalworking fluid on coconut oil 

bases and using powder coating instead of spray paint. As shown in Figure 60, there is 

a significant potential for improvement.  
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Figure 60: Potential improvements in the manufacturing phase of Model 2 

Due to the change of metal working fluid 15,049.89 kg of CO2-equivalent 

emissions can be avoided, which is 98% of the released emissions due to the metal 

working fluid used currently. The human toxicity can be decreased by 83%. In 

addition, the acidification potential can be decreased by 98% as well. By using powder 

coating, the global warming potential can be decreased by 48%. Furthermore, the 

human toxicity can be decreased 85% while the acidification potential can be 

decreased by 8%. 



 

123 

 

4.4.3. Model 3: No paint 

Model 3 is based on the current state model but does not include the painting 

process. Therefore, the impacts during the raw material phase are the same as in 

Model 1. In Figure 61 the potential improvement for model 3 is shown. Compared to 

Model 1 544.62 kg of CO2-equivalent, 178.55 kg of SO2-equivalent and 3.08 kg of 1.4 

DCB-equivalent can be saved. 

 

Figure 61: Comparison of the impact improvement by changing the painting process 

Overall, the effect of the optimization of model 2 and 3 are smaller than expected. 

The analysis of the models with the midpoint approach showed that only 10% of the 

environmental impact is done during the Manufacture phase. This environmental 

impact was reduced significantly by changing the metal working fluid and the paint of 

the IEU. The emissions that cause global warming were reduced by 60%, the human 

toxicity was reduced by 55% and the acidification was reduced by 4%. This reduction 

of impacts is small compared to the overall environmental impact and results into an 

overall reduction of emissions of 5%. Further research should concentrate on 

determining more effective options in all life cycle phases. Therefore, two additional 

models are developed which focus on the raw material phase of the IEU. 

GWP100 in kg 

CO2 Eq

HT in kg S02-

Eq

AP100 in kg 

1.4 DCB-Eq 

Paint (Model 1) 544.62 178.55 3.08

Powder coat (Model 2) 284.50 26.02 2.83

No paint (Model 3) 0.00 0.00 0.00
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4.4.4. Further Future State Models 

In addition to the three future state models above, two other models are 

developed. Model 4 is based on the assumption that the housing and mounting cover is 

made of plastic. Model 5 is based on the assumption that the housing and mounting 

cover is made of cast iron. Models 4 and 5 focus on reducing the impact that is caused 

by the raw material phase of the production system which has not been included in the 

earlier future state models. This is important because the production of the blank 

aluminum castings that are used for the housing and the mounting cover have a high 

impact. The processes could be optimized in a new model but in reality the 

manufacturer of the IEU has no influence on the external processes. However, it might 

be possible to change the material from aluminum to iron casting or even plastic, 

which would decrease the environmental impact significantly. Furthermore it was 

assumed that the amount of material used will not change.  
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Figure 62: Comparison of Model 1 and Model 4 (Plastic) 

An overview of the impact based on generic data is given in Figure 62 and Figure 

63. As a result of the changes in in model 4, the overall GWP100 could be decreased 

by about 97%, the HT by 94.8% and the AP100 by 97.2% (see Figure 62). The overall 

impact reduction of model 5 in comparison to the current state model can be seen in 

Figure 63. Similar to model 4, there is a significant improvement for all three 

indicators. The GWP can be reduced by 97.1%, the HT can be reduced by 90.8% and 

the AP can be reduced by 97.6%.  
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Figure 63: Comparison of Model 1 and Model 5 (Cast Iron) 

Model 4 and model 5 are optimistic regarding the environment the IEU is used in. 

Moreover, there was no primary data available to conduct a more detailed LCA, which 

requires further research. 

4.5. Cost Aspect 

After it is shown that the suggested optimizations lead to a reduced environmental 

impact of the production the next section analyzes how those optimizations influence 

the costs of product. The costs are derived directly from the manufacturer of the IEU 

or are estimated based on other case studies.  

 



 

127 

 

4.5.1. Costing: Painting  

The type paint that is used in the current state model is priced with $210.37 per 

18.92 L (5 Gallon). Furthermore the cost of labor is estimated with $127.78 per hour. 

The cycle time of the painting process was measured with 10:47 min. This leads to 

costs for painting one IEU unit of $37.29 including material costs and labor. To 

calculate the cost for powder coating, aPriori software was used to estimate the costs. 

This estimate does not include investment costs for new machinery. According to 

aPriori, the cycle time for powder coating one IEU is 10:14 min and the material costs 

can be estimated with $6.70. This leads to $28.49 per IEU including labor and 

material, which means potential saving of $48.75 per IEU. Comparing Model 3, which 

uses no type of paint, with Model 1, has the highest saving potential of $37.29 per IEU 

(see Figure 64).  

 

Figure 64: Costs and potential savings for coating processes 

By summing up the savings for an annual production of 10000 IEU between 

$284,935 and $772,403 can be saved depending on which model is used. 
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4.5.2. Costing: Metalworking Fluid 

The metalworking fluid used in the current state model is produced by Castrol 

and is priced with $1,035 and is available in drums of 208L (55 Gallons). The cost per 

liter of used metalworking fluid is $4.97. However, this does not include the costs that 

are associated with the disposal of the cutting fluid. To compare it with the coconut-oil 

based metalworking fluid, the cost has to be estimated. The metalworking fluid 

contains 7% of coconut oil, 3% of Span 80 (emulsifier) and 90% of water (Perera, G. 

I. P. 2014). The Coconut oil is estimated with $726 per drum of 208L. The price for 

the emulsifier is estimated with $520 per drum of 208L. The cost for the used water is 

negligible. Based on this estimates the cost per one liter of coconut oil based metal 

fluid is $0.30. Figure 65 compares the two metalworking fluids on a per part basis. By 

replacing the metalworking fluid about $56.52 can be saved per part. For the annual 

production of 10000 IEU this means potential savings of $565,155. 

 

Figure 65: Metal working fluid consumption and related costs 
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4.6. Overlap of Cost reduction an Environmental Impact 

The goal of this study is to identify potential overlaps of cost reduction and 

environmental impact. Based on the LCA results of section 4.4 and the results of the 

analysis of the costs for coating and metal working fluid in section 4.5, in the overlap 

of both can be determined (see Figure 66).  

 

Figure 66: Comparison of Reduced Impact and Cost Savings for 10000 IEUs 

As shown in Figure 66 the optimization of model 2 and 3 not only reduce the 

environmental impact during the manufacturing phase, the also lead to cost savings for 

the manufacturer. If these changes are applied to the current production system, the 

environmental impact can be reduced by 5% of the overall emissions and save about 

$133.75 per produced IEU. For the annual production this means $1,337,559. 
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4.7.  Visualization of the results in a Value Stream Map 

The results from the LCA and cost analysis become the input for an adjusted 

value stream map that includes environmental and cost aspects (see Section 3.5.). As 

an example, the painting process of the IEU is shown in Figure 67. 

 

Figure 67: The painting process of the IEU visualized in a VSM  

The complete Value Stream Map of the current state model is shown in Figure 68. 

It supports the manufacturer tracking the environmental impact and costs within his 

production system and makes different processes easier to compare.  
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Figure 68: Value Stream Map of the current state model  

C
T 

(s
)=

C
/O

( 
m

in
)=

U
p

ti
m

e
 (

%
)=

M
at

e
ri

al
 u

se
 (

kg
)=

W
as

te
 g

e
n

e
ra

ti
o

n
 (

kg
)=

En
e

rg
y 

u
se

 (
kW

h
)=

G
W

P
 (

kg
 C

O
2 

e
q

.)
=

A
P

 (
kg

 S
O

2 
e

q
.)

=

H
T 

(k
g 

1.
4 

D
C

B
 e

q
.)

=

C
o

st
 (

$)
=

C
T 

(s
)=

C
/O

( 
m

in
)=

U
p

ti
m

e
 (

%
)=

M
at

e
ri

al
 u

se
 (

kg
)=

W
as

te
 g

e
n

e
ra

ti
o

n
 (

kg
)=

En
e

rg
y 

u
se

 (
kW

h
)=

G
W

P
 (

kg
 C

O
2 

e
q

.)
=

A
P

 (
kg

 S
O

2 
e

q
.)

=

H
T 

(k
g 

1.
4 

D
C

B
 e

q
.)

=

C
o

st
 (

$)
=

C
T 

(s
)=

C
T 

(s
)=

C
T 

(s
)=

C
T 

(s
)=

C
T 

(s
)=

C
/O

( 
m

in
)=

C
/O

( 
m

in
)=

C
/O

( 
m

in
)=

C
/O

( 
m

in
)=

C
/O

( 
m

in
)=

U
p

ti
m

e
 (

%
)=

U
p

ti
m

e
 (

%
)=

U
p

ti
m

e
 (

%
)=

U
p

ti
m

e
 (

%
)=

U
p

ti
m

e
 (

%
)=

M
at

e
ri

al
 u

se
 (

kg
)=

M
at

e
ri

al
 u

se
 (

kg
)=

M
at

e
ri

al
 u

se
 (

kg
)=

M
at

e
ri

al
 u

se
 (

kg
)=

M
at

e
ri

al
 u

se
 (

kg
)=

W
as

te
 g

e
n

e
ra

ti
o

n
 (

kg
)=

W
as

te
 g

e
n

e
ra

ti
o

n
 (

kg
)=

W
as

te
 g

e
n

e
ra

ti
o

n
 (

kg
)=

W
as

te
 g

e
n

e
ra

ti
o

n
 (

kg
)=

W
as

te
 g

e
n

e
ra

ti
o

n
 (

kg
)=

En
e

rg
y 

u
se

 (
W

h
)=

En
e

rg
y 

u
se

 (
kW

h
)=

En
e

rg
y 

u
se

 (
kW

h
)=

En
e

rg
y 

u
se

 (
kW

h
)=

En
e

rg
y 

u
se

 (
kW

h
)=

G
W

P
 (

kg
 C

O
2 

e
q

.)
=

G
W

P
 (

kg
 C

O
2 

e
q

.)
=

G
W

P
 (

kg
 C

O
2 

e
q

.)
=

G
W

P
 (

kg
 C

O
2 

e
q

.)
=

G
W

P
 (

kg
 C

O
2 

e
q

.)
=

A
P

 (
kg

 S
O

2 
e

q
.)

=
A

P
 (

kg
 S

O
2 

e
q

.)
=

A
P

 (
kg

 S
O

2 
e

q
.)

=
A

P
 (

kg
 S

O
2 

e
q

.)
=

A
P

 (
kg

 S
O

2 
e

q
.)

=

H
T 

(k
g 

1.
4 

D
C

B
 e

q
.)

=
H

T 
(k

g 
1.

4 
D

C
B

 e
q

.)
=

H
T 

(k
g 

1.
4 

D
C

B
 e

q
.)

=
H

T 
(k

g 
1.

4 
D

C
B

 e
q

.)
=

H
T 

(k
g 

1.
4 

D
C

B
 e

q
.)

=

C
o

st
 (

$)
=

C
o

st
 (

$)
=

C
o

st
 (

$)
=

C
o

st
 p

e
r 

p
ar

t 
($

)=
C

o
st

 (
$)

=

C
T 

(s
)=

C
T 

(s
)=

C
/O

( 
m

in
)=

C
/O

( 
m

in
)=

U
p

ti
m

e
 (

%
)=

U
p

ti
m

e
 (

%
)=

M
at

e
ri

al
 u

se
 (

kg
)=

M
at

e
ri

al
 u

se
 (

kg
)=

W
as

te
 g

e
n

e
ra

ti
o

n
 (

kg
)=

W
as

te
 g

e
n

e
ra

ti
o

n
 (

kg
)=

En
e

rg
y 

u
se

 (
kW

h
)=

En
e

rg
y 

u
se

 (
kW

h
)=

G
W

P
 (

kg
 C

O
2 

e
q

.)
=

G
W

P
 (

kg
 C

O
2 

e
q

.)
=

A
P

 (
kg

 S
O

2 
e

q
.)

=
A

P
 (

kg
 S

O
2 

e
q

.)
=

H
T 

(k
g 

1.
4 

D
C

B
 e

q
.)

=
H

T 
(k

g 
1.

4 
D

C
B

 e
q

.)
=

C
o

st
 (

$)
=

C
o

st
 (

$)
=

13
89

.9
3

0.
24

0
0

22
1

35

46
77

.2
5

40
.1

8

51
.7

9
4.

11

24
94

0

88
1

0

74
9

61
2

0
0

0
0

M
a
c
h
in

in
g
 S

h
a
ft
 C

N
C

 B
W

e
ld

in
g
 M

o
to

r 
A

s
s
e
m

b
ly

0
0

0
77

.2
4

0

29
11

.2
8

23
04

.1
8

0.
07

26
.0

2
0

97
48

.3
5

77
32

.9
3

12
.2

7
28

4.
5

0

68
.9

1
71

.5
3

5.
81

2.
83

0

26
9

20
0

0
0

0

12
6.

8
22

0
50

0
0

38
52

35
83

0
12

9
12

90

0
88

0
0

0

S
h
ip

p
in

g

68
8

71
0

78
0

64
7

25
0

M
a
c
h
in

in
g
 H

o
u
s
in

g
 C

N
C

 A
M

a
c
h
in

in
g
 H

o
u
s
in

g
A

s
s
e
m

b
ly

P
a
in

tin
g

F
in

is
h
in

g

0
40

0
0

11
6

92
21

.5
1

77
.3

1

13
89

.9
3

069
0 0

17
78

27
4

30
76

.5
8

39
.9

3

10
03

.0
2

0

M
a
c
h
in

in
g
 M

o
u
n
tin

g
 C

o
ve

r 
C

N
C

 A0 0

32
20

30
1

20
0

M
a
c
h
in

in
g
 E

c
c
e
n
tr

ic
 C

N
C

 A

70
5

0 0

0
0

0
0

0

0

0

M
R

P

S
u

p
p

lie
r

S
u

p
p

lie
r

S
u

p
p

lie
r

S
u

p
p

lie
r

C
u

s
to

m
e

r



 

132 

 

CHAPTER 5 – CONCLUSION 

In the beginning of the study, the basic concept of sustainability and sustainable 

manufacturing was presented. Additionally, a comprehensive literature review of the 

main environmental impact factors during manufacturing was given. Furthermore, 

Life Cycle Assessment was explained and different versions of the method were 

introduced. Finally, different manufacturing processes and their environmental impact 

were presented.  

Sustainability assessment including costs are still rare and are not considered 

sufficiently. Besides the aspect of increasing sustainability in manufacturing, the study 

also compared improved sustainability with its effects on the costs of manufacturing. 

The framework that was developed in this research includes different sustainable 

indicators according to the three dimensions of sustainability. These indicators were 

evaluated due to criteria that were selected for different issues. Furthermore, the 

framework includes the use of LCA software. Therefore, different software was 

evaluated and ranked. To include the cost aspects, CACE-Software was selected to 

estimate costs for improvements. Finally, all results were represented in a Value 

Stream Map, where the indicators for environmental impacts and cost were added. 

Based on the given framework, a case study was conducted to test the usability of 

the framework. The analyzed product was an Industrial Equipment Unit from a 

manufacturing company. After the main components and the manufacturing process of 

the IEU were explained a LCA of the current state was performed. As part of the LCA 
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primary data such as: energy consumption, scrap production and waste generation 

were collected. 

 The scope of the LCA was to evaluate the environmental impact of 

manufacturing processes and to identify the biggest contributors of emissions. 

Therefore the software Umberto NXT LCA was used with the ReCiPe midpoint 

method. Two types of models were developed based on the collected data. The first 

model presents the current state of the system while the other types of models 

simulated an optimized future state version. In one of the future state models, the 

mineral based metalworking fluid is replaced by a coconut-oil based fluid. In another, 

the painting process is replaced by either a powder coating process or by an uncoated 

option. The LCA showed that greatest impacts are due to the production of blank 

aluminum casting, which is an external process in the raw material phase and not 

under the influence of the manufacturer. However, the optimizations in model 2 lead 

to an overall reduction of impacts by 5%. By including cost aspects in the analysis, it 

was shown that the optimizations in model 2 and 3 would also have economic benefits 

for the manufacturer. By applying the changes of model 2 $56.52 can be saved per 

IEU produced. By applying the changes of model 3 about $77.24 can be saved per 

IEU produced.   

5.1. Discussion 

In this section the reliability of the models that were developed reviewed. In 

addition, the defined goals are discussed. The first point of discussion is the model 

software itself. Umberto NXT LCA is a European software which might not consider 
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the different environmental mechanisms within the United States. This might 

influence the characterization of emissions or the determination of the indicators. This 

software setup cannot be adjusted. In contrast to that, processes can be chosen due to 

their origin. For example, the market for electricity in the East North America is 

chosen to respect the national characteristics for energy production and distribution. 

However, this adjustment is not possible for all processes. The market location for 

aluminum and iron castings is chosen as a global market because there is no other 

option. Since there is no other LCA software or database specially developed for the 

United States, this point of critique cannot be changed and is accepted. 

The next point is the input data. The results of section 4.2 are used for the models. 

The reliability of these measures can be stated as satisfying. The problem is that 

collected data like the cycle times and energy consumptions of the machining 

processes are mixed with calculated values like the amount of metal working fluid. 

The CNC-machines used for the manufacturing of the IEU also manufacture other 

products; hence it was not possible to measure the actual consumption. Therefore, the 

calculation is considered as acceptable, but not ideal. These shortcomings result in 

several research options in the future.  

5.2. Further research 

The most important tasks are the reduction of solid scrap such as aluminum, iron 

and steel. This could be achieved by using blank components which are closer to the 

final dimensions of the components and require less machining. This would also 

decrease energy and metalworking fluid consumption. Alternatively, further research 
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should investigate if it is realistic to change the material of any components to plastic 

or iron casting. For the iron casting it has to be investigated whether the extra weight 

of the product leads to higher shipping costs and whether these costs exceed the 

potential savings in comparison to cast aluminum. Furthermore, higher weight also 

leads to higher fuel consumption during transportation which causes a higher 

environmental impact during the shipping phase. 

Another task for further research would be to include the customer opinion on the 

product, since it is important for the company to convince the customers that all 

changes did not adversely influence the quality of the product. Further research could 

also investigate if customers might be willing to pay more for an environmentally 

friendly product. Furthermore, changing to unpainted versions of the IEU also 

includes losing a distinctive design feature and recognition value of the brand from a 

signature paint color. Investigating the impact of this design change can be another 

task for further research. 

5.3. Contribution 

This study contributes a successful example of how Life Cycle Assessment of a 

production process in a small company with limited resources can be conducted. The 

assessment identified the processes and materials that are responsible for a high 

amount of the environmental impact. It was also found that most of the environmental 

impact of the IEU is contributed during the raw material phase. This emphasizes the 

importance of Life Cycle Assessment to get to a better understanding of where in the 

product life cycle the environmental impact occurs. It also demonstrates the idea that 
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most of the costs and environmental impact from a product are determined early in the 

design process, in this case through material selection decisions. Thus, companies that 

want to lower costs and environmental impact should pay close attention to these 

decisions. 

By developing future state models it was shown that there is potential for further 

enhancements of the current production process that can lead to less environmental 

impact. Furthermore, it was shown that there is an overlap of sustainability and cost 

reduction. The findings can encourage companies to conduct LCA and produce their 

products more sustainable, which would not only help to keep our planet clean it also 

would also save the companies’ money. 
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