Conformational Insights Into Aminobiphenyl-Modified DNA: Implications for Mutation and Repair

Ang Cai

University of Rhode Island, angcai@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Recommended Citation

https://digitalcommons.uri.edu/oa_diss/657

This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
CONFORMATIONAL INSIGHTS INTO AMINOBIPHENYL-MODIFIED DNA: IMPLICATIONS FOR MUTATION AND REPAIR

BY

ANG CAI

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN

BIOMEDICAL AND PHARMACEUTICAL SCIENCES

UNIVERSITY OF RHODE ISLAND

2017
DOCTOR OF PHILOSOPHY DISSERTATION
OF
ANG CAI

APPROVED:
Dissertation Committee

Major Professor Bongsup Cho
Roberta King
Joel A. Dain
Deyu Li
Nasser H. Zawia
DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2017
ABSTRACT

Cancer is a major public health problem worldwide. An estimated 1.6 million new cases of cancer will be diagnosed in the United States in 2017. Most cancers are assumed to develop from the initiation of chemically induced DNA damages. Chemical carcinogens are genotoxic and they undergo enzymatic activation into reactive electrophilic species to form covalent bonds with the electron-rich DNA that form adducts. Aromatic amines are one of the most examined chemical carcinogens, and once activated, these amines attack the C-8 position of guanine to form C8-dG adducts (ABP [N-(2′-deoxyguanosin-8-yl)-2-aminobiphenyl], AF [N-(2′-deoxyguanosin-8-yl)-2-aminofluorene], and AAF [N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene]); these formations result in DNA lesions. These bulky DNA lesions at the replication fork can induce a conformational heterogeneity, which complicates mutational outcomes. These outcomes are due to a single DNA adduct that can adopt multiple conformations at the replication fork, and a polymerase may process each conformation in different ways. Studies have shown differences in the mutational consequences of arylamine adducts in different DNA sequences. AF, AAF, and ABP all adopt anti B-DNA, syn stacked (S), and wedge (W) DNA conformational heterogeneity depending on sequence contexts. A replication polymerase is likely to stall or completely stop DNA synthesis when it encounters a bulky DNA lesion; this outcome allows recruitment of various bypass polymerases. This move will determine whether the synthesis is to be error free or error prone. Understanding the processes involving replication polymerases in arylamine-induced translesion synthesis is important; these processes are implicated in mutation and repair.
Our working hypothesis is that the sequence-dependent arylamine-conformational heterogeneity is an important consideration for its mutational and repair outcomes. In *Manuscript I* (to be submitted to *Journal of Chemical Research in Toxicology*), we explored the arylamine-conformational heterogeneity. We previously reported a 3′-next flanking sequence effect [G*CT vs. G*CA; G*, FABP, N-(2′-deoxyguanosin-8-yl)-4'-fluoro-4-aminobiphenyl; FAF, N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene] on arylamine-DNA lesions in relation to DNA replication and repair. In the present study, we present an unusual sequence effect on a 16-mer fully paired DNA duplex 5′-CTTCTG1G2TCCTCATT-3′, in which the same lesion modification at G1 and G2 revealed a dramatic difference in S (base-displaced stacked)/B (major groove binding B-type) conformational heterogeneity. We obtained conformational (19F-NMR/CD), calorimetric (DSC and ITC), and binding (SPR) data for a set of four 16-mer modified templates (FABP vs. FAF and TG1*G2T vs. TG1G2*T) during primer elongation. Dynamic 19F-NMR results indicate that FABP modification at G1 and G2 resulted in 67%:33% of B:S and 100% B population ratios, respectively, and the planar FAF in the same sequence contexts exhibited 25%:75% B:S and 83%:17% B:S, respectively. A significant increase was observed in S-conformation (0% to 17%) going from a twisted nonplanar FABP to a planar FAF. Calorimetric (DSC and ITC) and UV-melting data revealed that the B-conformer is a thermodynamic stabilizer in duplex settings, and the S-conformer is a destabilizer. The situation is reversed during the primer elongation process that involves ss/ds duplexes, i.e., S-conformation promotes lesion stacking at the ss/ds replication fork. This finding is in agreement with SPR binding results, which showed that lesion stacking increases the binding affinity of the complementary strands.
in the order of FABP > FAF and G*GT > GG*T. Surprisingly, our data revealed that
the twisted biphenyl is a better stacker at ss/ds junction than the coplanar FAF, possibly
due to its ring flexibility that helps accommodate the replication fork structures. This
finding is not the case for fully paired duplexes in which base-displaced stacking is
enhanced by lesion planarity. The extent of primer dissociation rates across the lesion
was influenced by the DNA sequences and the nature of the lesion (FAF vs. FABP).
These results provide conformational insights into the important role of ss/ds sequence
effects in modulating bulky lesion-induced translesion DNA synthesis. **Manuscript II**
(to be submitted to *Journal of Nature Structural & Molecular Biology*) is the extension
of manuscript I. Bulky organic carcinogens are usually activated *in vivo* and form DNA
adducts. Some of these DNA adducts exist in multiple conformations that are slowly
interconverted to one another. For example, the dG-C8-lesion of the human bladder
carcinogen 4-aminobiphenyl (ABP) has been reported to exist in a sequence-dependent
mixture of B/S conformations. Different conformations have been shown to lead to
different kinetic capacities, binding capacities, and ultimately different translesion
synthesis and transcription capacities. Although rare, conformation-dependent
mutagenic and repair patterns have been reported. For example, the bulky N-
acetylaminofluorene at G₃ in the NarI sequence (5′-G₁G₂CG₃CN-3′) induces a high
frequency of −2 frameshift mutations, whereas the adducts on G₁ and G₂ are not
mutagenic. Results show why mutagenic hotspots exist in the genome. However, the
conformation-specific replication block, which is more relevant to replication, has not
been reported. Such research deficiency may be due to the dynamicity of the replication
block process. As such, the replication block becomes difficult to capture by current
end-point assays, which usually detect either the ensemble of consequence of all the conformers or the culmination of all cellular behaviors, such as mutagenicity or survival rate. In Manuscript I, we showed very unusual sequence-dependent conformational heterogeneities involving FABP-modified DNA under different sequence contexts (TG₁*G₂:T [67%B:33%S] and TG₁G₂*G [100%B], G*, FABP, N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl). Different biological consequences are believed to be linked to different adducts. In the present study, we attempted to correlate the replication block to different conformations from the single FABP-modified DNA lesion. We utilized a combination of biophysical (SPR and steady-state kinetics) tools to reveal the differences *in vitro*. The results were discussed in terms of conformational differences.

Manuscript III (has been accepted by *Journal of ACS Omega*) is a technical paper. We focused on the oligonucleotides. Oligonucleotides serve as important tools for biological, chemical, and medical research. The preparation of oligonucleotides through automated solid-phase synthesis is well established. However, identification of byproducts generated from DNA synthesis, especially from oligonucleotides containing site-specific modifications, is sometimes challenging. Typical HPLC, Mass Spectrometry (MS), and gel electrophoresis methods alone are not sufficient for characterizing unexpected byproducts, especially for those having identical or very similar molecular weight (MW) to the products. We used a rigorous quality control procedure to characterize byproducts generated during oligonucleotide syntheses: 1) purify oligonucleotide by different HPLC systems; 2) determine the exact MW by high resolution MS; 3) locate modification position by MS/MS or exonuclease digestion with MALDI-TOF analysis; and 4) conduct, where applicable, enzymatic assays. We applied
these steps to characterize byproducts in the syntheses of oligonucleotides containing important methyl DNA adducts 1-methyladenine (m1A) and 3-methylcytosine (m3C). In m1A synthesis, we differentiated a regioisomeric byproduct 6-methyladenine, which possesses identical MW to m1A. As for m3C, we identified a deamination byproduct 3-methyluracil, which is only 1 Dalton greater than m3C in the ~ 4,900 Dalton context. The detection of these byproducts would be very challenging if the abovementioned procedure were not adopted.
ACKNOWLEDGEMENTS

Many people were involved in this dissertation process and there are many people to thank. First, I would like to express my sincere gratitude to my advisor Dr. Bongsup Cho for his guidance, understanding, patience, and most importantly, his encouragement during my studies at the University of Rhode Island. I am very lucky to have such an outstanding mentor who gave me the power to work with such independence on my research. For everything you’ve done for me, Dr. Cho, I cannot thank you enough.

I would also like to thank my committee members, Dr. Roberta King, Dr. Joel Dain, Dr. Deyu Li, and the defense chair, Dr. Ying Zhang, for their valuable contribution and feedback on my dissertation. In particular, I would like to thank my collaborative lab professors, Dr. Deyu Li and Dr. Joel Dain, for their exceptional and valuable suggestions on my projects. Additionally, I am grateful for the time spent with Dr. Cho’s lab members, Dr. Lifang Xu, Matthew Blake, Dr. Vaidyanathan Ganesan, Dr. Sathyaraj Gopal and Dr. Vipin Jain. It was a pleasure to work with these fine scientists. Their guidance and patience made it a smooth transition into Dr. Cho’s lab for me.

Many thanks goes to all of my friends especially Dr. Hang Ma, Qi Tang, Ke Bian. I thank for their help, support and the wonderful time we had together at the lab. The lab environment could somewhat be stressful, but not when they are around. Their humor and entertainment is contagious. A good laugh was all I needed to get me back to work.

Finally, and most importantly, I would like to thank my family. I owe an obvious debt of gratitude to my parents, Qisheng and Yufeng, my wife, Ai Chang and my sister, Jie
for their love, devotion, constant encouragement and understanding during this journey at URI. It would have been impossible without their support.
PREFACE

This dissertation has been written in manuscript style format according to the University of Rhode Island “Guidelines for the Format of Theses and Dissertations”.

MANUSCRIPT I: DNA Base Sequence Effects on Bulky Lesion-Induced Conformational Heterogeneity during Simulated Translesion Synthesis.

This manuscript will be submitted to Chemical Research in Toxicology.

MANUSCRIPT II: Probing the Effect of Bulky Lesion-Induced Replication Fork Conformational Heterogeneity Using 4-Aminobiphenyl-Modified DNA.

This manuscript will be submitted to Journal of Nature Structural & Molecular Biology.

MANUSCRIPT III: Characterization of Byproducts from Chemical Syntheses of Oligonucleotides Containing 1-Methyladenine and 3-Methylcytosine.

This manuscript has been accepted by Journal of ACS Omega.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>MANUSCRIPT I</td>
<td>1</td>
</tr>
<tr>
<td>MANUSCRIPT II</td>
<td>71</td>
</tr>
<tr>
<td>MANUSCRIPT III</td>
<td>104</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

MANUSCRIPT I

Figure 1: (a) Structures of ABP [N-(2’-deoxyguanosin-8-yl)-4-aminobiphenyl], AF [N-(2’-deoxyguanosin-8-yl)-2-aminofluorene], and AAF [N-(2’-deoxyguanosin-8-yl)-2-acetylaminofluorene] and their fluoro models, FABP [N-(2’-deoxyguanosin-8-yl)-4’-fluoro-4-aminobiphenyl], FAF [N-(2’-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene], and FAAF [N-(2’-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene]. (b) Major groove views of arylamine-conformational motifs: B-, S-, and W-conformers. (color code: Arylamine- red CPK, modified dG- blue, complementary C- orange). 43

Figure 2: Translesion synthesis (TLS) models for (a) unmodified control, (b) FABP/FAF-modified G1 (G*GT) templates, and (c) FABP/FAF-modified G2(GG*T) templates... 44

Figure 3: HPLC chromatogram of a reaction mixture of 16-mer sequence (5’-CTTCTG\textsubscript{1}G\textsubscript{2}TCCTCATTTC-3’) with an activated FABP (N-Acetoxy-N-(trifluoroacetyl)-4’-fluoro-4-aminobiphenyl) and photodiode array UV spectra of unmodified, mono-, di-FABP adducts... 45

Figure 4: HPLC chromatogram of a reaction mixture of 16-mer sequence (5’-CTTCTG\textsubscript{1}G\textsubscript{2}TCCTCATTTC-3’) with an activated FAF (N-acetoxy-N-(trifluoroacetyl)-7-fluoro-2-aminofluorene) and photodiode array UV spectra of unmodified and mono-FAF adducts... 46

Figure 5: HPLC profile, photodiode array UV spectra of mono-FABP adducts and MALDI-TOF mass spectra of FABP modified biotinylated 16mer-GGT for
SPR experiments: (a) HPLC chromatogram of FABP modified biotinylated 16mer-GGT. (b) 3’-enzyme digestion of peak 1 at 0min, 0.5min, 3min 5min, 6min and 7min. (c) 3’-enzyme digestion of peak 2 at 0min, 0.5min, 3min 5min, 6min and 7min. Insets show the theoretical MW of the corresponding fragments that should form after 3’-enzyme digestion.

Figure 6: MALDI-TOF mass spectra of FABP modified 16mer-GGT: (a) 3’-enzyme digestion of peak 1 at 0min, 0.5min, 2min and 5min. (b) 3’-enzyme digestion of peak 2 at 0min, 0.5min, 2min and 5min. Insets show the theoretical MW of the corresponding fragments that should form after 3’-enzyme digestion.

Figure 7: MALDI-TOF mass spectra of FAF modified 16mer-GGT: (a) 3’-enzyme digestion of peak 1 at 0min, 0.5min, 1min, 2min, 3min, 5min and 6min. (b) 3’-enzyme digestion of peak 2 at 0min, 0.5min, 1min, 2min, 3min, 5min and 6min. Insets show the theoretical MW of the corresponding fragments that should form after 3’-enzyme digestion.

Figure 8: Dynamic ^{19}F-NMR spectra (5-60°C) of FABP-modified duplexes with primer elongation. (a) FABP-modified G1 (G*GT) showing a 67% B- and 33% S- conformational mixture in full duplex. (b) FABP-modified G2 (GG*T) exhibiting 100% B-conformer in full duplex. For all of the duplexes, the ^{19}F signals around 60°C coalesced into a sharp single peak around -115ppm indicating a denatured FABP-residue. * indicates unassigned minor conformers.
Figure 9: Dynamic 19F-NMR spectra (5-60°C) of FAF-modified duplexes with primer elongation. (a) FAF-modified G1 (G*GT) showing a 25% B- and 75% S- conformational mixture in full duplex. (b) FAF-modified G2 (GG*GT) exhibiting 83% B- and 17% S-conformer in full duplex. For all of the duplexes, the 19F signals around 60°C coalesced into a sharp single peak around -117ppm indicating a denatured FAF-residue. * indicates unassigned minor conformers.

Figure 10: Deuterium isotope effect of FABP-modified 16-mer GGT full duplexes in 10% and 100% D$_2$O at 25°C. (a) FABP-modified G1 (G*GT) (0.18 and 0.08 ppm for B- and S-conformer, respectively). (b) FABP-modified G2 (GG*GT) (0.18 ppm for B-conformer).

Figure 11: Deuterium isotope effect of FAF-modified 16-mer GGT full duplexes in 10% and 100% D$_2$O at 25°C. (a) FAF-modified G1 (G*GT) (0.19 and 0.04 ppm for B- and S-conformer, respectively). (b) FAF-modified G2 (GG*GT) (0.18 and 0.04 ppm for B- and S-conformer, respectively).

Figure 12: CD spectral overlays of primer elongation (9 mer to 16 mer) for FABP modified 16-mer GGT at 25°C. (a) unmodified control, (b) FABP modified G1 (G*GT), (c) FABP modified G2 (GG*GT), (d) Full duplex overlays of unmodified and FABP G1/G2-modified sequences.

Figure 13: CD spectral overlays of primer elongation (9 mer to 16 mer) for FAF modified 16-mer GGT at 25°C. (a) unmodified control, (b) FAF modified G1 (G*GT), (c) FAF modified G2 (GG*GT), (d) Full duplex overlays of unmodified and FAF G1/G2-modified sequences.
Figure 14: (a) UV melting (T_m) of FABP modified 16-mer GGT with primer elongation (9 mer to 16 mer). (b) UV melting (T_m) of FAF modified 16-mer GGT with primer elongation (9 mer to 16 mer). Unmodified control is blue line, FABP/FAF-modified G1 (G*GT) is shown as red dash line, and FABP/FAF-modified G2 (GG*T) is shown as yellow dash line.

Figure 15: DSC heat capacity ΔC_p vs temperature (15-85 °C) for primer elongation (9 mer to 16 mer) of the (a) control, (b) FABP modified G1 (G*GT) and (c) FABP modified G2 (GG*T). (d) Full duplex overlays of unmodified and FABP G1/G2-modified sequences. FABP-G1 and FABP-G2 show smaller T_m and ΔH than the control/unmodified in full duplex exhibiting that S-conformer (FABP-G1, G*GT) might produce thermodynamic destabilization in full duplex.

Figure 16: ITC binding thermograms of duplex formation for (a) FABP- and (b) FAF- modified 16 mer GGT full duplexes at 25°C.

Figure 17: SPR sensorgrams of unmodified and FABP/FAF-modified TLS: (a) Unmodified and FABP-modified G1 (G*GT) and G2 (GG*T), (b) Unmodified and FAF-modified G1 (G*GT) and G2 (GG*T).

Figure 18: Normalized SPR sensorgrams of (a) FABP- and (b) FAF- modified 16 mer GGT sequences with primer elongation (9 mer to 16 mer). Slower dissociation shows better stability of the primer–template duplexes.

Figure 19: Normalized SPR sensorgrams of FABP-modified 16 mer GGT sequences with 9-mer and 10-mer primers, and progression of lesion conformational rigidity. (a) 9-mer and (b) 10-mer. Slower dissociation shows better stability of the primer–template duplexes.
Figure 20: syn- and anti-FABP-modified dG and their energy barrier from nucleoside MD (Modeling Dynamic) simulation. ... 62

Figure 21: FABP-dG DNA helices structures from MD simulation. (a) G\textsubscript{1} position, (b) G\textsubscript{2} position. B conformation is preferred at both the G1 and G2 positions...... 63

MANUSCRIPT II

Figure 1: (a) The views of FABP-conformational motifs: B-, and S-conformers. ABP-red, modified dG-blue, complementary C-orange. (b) dG-C8-FABP 94

Figure 2: (a) HPLC chromatogram of a reaction mixture of biotinylated-31-mer sequence (5'-Bio-CCTCTTCCCTCACCTCTTCTG\textsubscript{1}G\textsubscript{2}TCCTCATTCC-3') with an activated FABP (N-Acetoxy-N-(trifluoroacetyl)-4'-fluoro-4-aminobiphenyl) and photodiode array UV spectra of unmodified, mono-adducts. (b) MALDI-TOF mass spectra of FABP modified biotinylated-31mer-TGGT: (a) 3’-enzyme digestion of peak 1 at 0, 1, 4, 6, 7, 8 and 10min. (b) 3’-enzyme digestion of peak 2 at 0, 1, 4, 6, 7, 8 and 10min. Insets show the theoretical MW of the corresponding fragments that should form after 3’-enzyme digestion 95

Figure 3: (a) Hairpin template–primer oligonucleotide constructs of 85-mer G\textsubscript{1} and 84-mer G\textsubscript{2} for Kf-exo−; (b) Sensorgrams of binary complexes of Kf-exo− with 85-mer and 84-mer unmodified control, G\textsubscript{1}-FABP and G\textsubscript{2}-FABP modified sequences (1:1 binding fitted curves are overlaid as black lines); (c) K_a (K_a-modified / K_a-control) and K_d (K_d-modified / K_d-control) ratio, G\textsubscript{1} and G\textsubscript{2} represent the ratio of 85-mer FABP-G\textsubscript{1}/85-mer-control and 84-mer FABP-G\textsubscript{2}/84-mer-control ... 96
Figure 4: Denaturing gel (15%) profiles of 84-mer and 85-mer ligated oligonucleotides, 31-mer, 53-mer and 54-mer non-ligated oligonucleotides 97

Figure 5: Lineweaver – Burk model of the DNA Repair Reactions Catalyzed by the Kf-exo− at (a) 10-mer, G1-FABP and (b) 9-mer G2-FABP lesion sites with dCTP at steady-state. According to the model, the behavior of G1-FABP against with Kf-exo− showed as a competitive inhibitor, whereas the behavior of TG1G2*T played as non-competitive.. 98

Figure 6: dATP insertion efficiency results of (a) 8-mer to 9-mer and (b) 11-mer to 12-mer in control, TG1*G2T-FABP and TG1G2*T-FABP, respectively, in 10 min ... 99

Figure 7: Sensorgrams of ternary Kf-exo− complexed with (a) 85-mer control, (b) 85-mer TG1[FABP]G2T, (c) 84-mer control and (d) 84-mer TG1G2[FABP]T sequences in the presence of dNTPs (1:1 binding fitted curves are overlaid as black lines) ... 100

MANUSCRIPT III

Figure 1: Oligonucleotide products and byproducts studied in this work. a) the structures of adducts and byproducts from chemical syntheses and b) the alkyl adduct m1A, as an example, is repaired in the presence of the AlkB enzyme and necessary cofactors.. 129

Figure 2: Reverse phase HPLC chromatograms of 16mer DNA alkyl products and byproducts. The retention time of a modification-containing oligonucleotide is
labeled on top of the corresponding chromatogram. The modifications are: a) m6A; b) m1A; c) A; d) mixture of m3C + m3U; e) m3C; and f) m3U

Figure 3: High resolution ESI-TOF MS analyses of 16mer DNA oligonucleotides containing target modifications and byproducts. Data represent the -4 charge envelopes and the monoisotopic peak (all 12C, 14N, etc.) values are labeled above the first peak in each peak envelope. a) The oligonucleotide (containing m6A) generated from initial m1A synthesis; b) m1A; c) m3C; and d) m3U 131

Figure 4: Predicted fragmentation pattern from collision-induced-dissociation of the 16mer oligonucleotide products from the m1A and m3C syntheses. X denotes the modified nucleotides ... 132

Figure 5: Time-course MALDI-TOF analyses of SVP digestion products of the 16mer product oligonucleotide (containing m6A) generated from m1A synthesis. Theoretical masses are listed in the inset. The theoretical monoisotopic mass at 2745.5 is highlighted in red because it is the smallest digestion product containing the modification ... 133

Figure 6: HPLC profiles of the AlkB repair reactions on different alkyl substrates.

The three chromatograms within each panel represent one set of repair reaction including the oligonucleotides of starting material, reaction mixture, and product. For example, in the panel containing chromatograms a, b, & c, a) represents the starting material m6A, b) represents the repair reaction of m6A by AlkB, and c) represents the pure product adenine synthesized separately. Chromatograms shown in a, b, & c relevant to m6A repair and in j, k, & l relevant to m3U repair were analyzed under reverse phase conditions.
Chromatograms shown in d, e, & f relevant to m1A repair and in g, h, & i relevant to m3C repair were analyzed under anion exchange conditions (see Experimental Procedures for detailed information). a) m6A; b) m6A+AlkB; c) A; d) m1A; e) m1A+AlkB; f) A; g) m3C; h) m3C+AlkB; i) C; j) m3U; k) m3U+AlkB; and l) U.
LIST OF TABLES

MANUSCRIPT I

Table 1: Partial charges and atom types for FABP-dG... 65
Table 2: UV melting thermal and thermodynamic parameters of FABP modified
16-mer G1 (G*GT) and G2 (GG*T) duplexes.. 66
Table 3: UV melting thermal and thermodynamic parameters of FAF modified 16-
mer G1 (G*GT) and G2 (GG*T) duplexes... 67
Table 4: Thermal and Thermodynamic Parameters Derived from DSC...................... 68
Table 5: Thermodynamic parameters C, N, K, ΔH and ΔS derived from the ITC 69
Table 6: Dissociation off-rate constants (k_d, x10^{-2}, s^{-1}) from SPR.................... 70

MANUSCRIPT II

Table 1: Steady-state kinetic parameters for insertion of dCTP opposite unmodified
and FABP−dG adduct with Kf-exo−.. 101
Table 2: SPR binding affinities, K_D (nM) of unmodified (TG1G2T) and FABP−dG
adducts (TG1[FABP]G2T and TG1G2[FABP]T) with Kf-exo− (steady-state
affinity analysis) in the binary and ternary systems. Association and
dissociation rate constants, k_a and k_d, in binary system are listed...................... 102
Table 3: Binding net stabilization energy of unmodified and FABP-adducts with
Kf-exo− in binary system (1:1 binding)... 103
MANUSCRIPT III

Table 1: Calculated and observed monoisotopic molecular weight and m/z value of modified oligonucleotides. For m1A and m3C synthesis, the sequence of the 16mer was 5’-GAAGACCTXGGCGTCC-3’, where X indicates the position of the modified bases.
MANUSCRIPT I

To be submitted to Chemical Research in Toxicology

DNA Base Sequence Effects on Bulky Lesion-Induced Conformational Heterogeneity during Simulated Translesion Synthesis

Ang Cai1, Katie A. Wilson2, Stacey D. Wetmore2 and Bongsup P. Cho1*

1Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA

2Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada

*Correspondence to Bongsup Cho:
Telephone#: (+1) 401-874-5024; E-mail: bcho@uri.edu

Present address:
Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island
7 Greenhouse Road,
Kingston, RI, 02881, USA
ABSTRACT

DNA damage by bulky organic lesions can affect DNA replication and repair efficiencies. We previously reported a 3′-next flanking sequence effect [G*CT vs. G*CA; G*, FABP, N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl; FAF, N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene] on arylamine-DNA lesions in relation to DNA replication and repair1,2. In the present study, we present an unusual sequence effect on a 16-mer fully paired DNA duplex 5′-CTTCTG\textsubscript{1}G\textsubscript{2}TCCTCATTCC-3′, in which the same lesion modification at G\textsubscript{1} and G\textsubscript{2} revealed a dramatic difference in S (base-displaced stacked)/B (major groove binding B-type) conformational heterogeneity. We obtained conformational (19F-NMR/CD), calorimetric (DSC and ITC), and binding (SPR) data for a set of four 16-mer modified templates (FABP vs. FAF and TG\textsubscript{1}G\textsubscript{2}T vs. TG\textsubscript{1}G\textsubscript{2}*T) during primer elongation. Dynamic 19F-NMR results indicate that FABP modification at G\textsubscript{1} and G\textsubscript{2} resulted in 67%:33% of B:S and 100% B population ratios, respectively, and the planar FAF in the same sequence contexts exhibited 25%:75% B:S and 83%:17% B:S, respectively. A significant increase was observed in S-conformation (0% to 17%) going from a twisted nonplanar FABP to a planar FAF. Calorimetric (DSC and ITC) and UV-melting data revealed that the B-conformer is a thermodynamic stabilizer in duplex settings, and the S-conformer is a destabilizer. The situation is reversed during the primer elongation process that involves ss/ds duplexes, i.e., S-conformation promotes lesion stacking at the ss/ds replication fork. This finding is in agreement with SPR binding results, which showed that lesion stacking increases the binding affinity of the complementary strands in the order of FABP > FAF and G*GT > GG*T. Surprisingly, our data revealed that the twisted biphenyl is a better stacker at
ss/ds junction than the coplanar FAF, possibly due to its ring flexibility that helps accommodate the replication fork structures. This finding is not the case for fully paired duplexes in which base-displaced stacking is enhanced by lesion planarity. The extent of primer dissociation rates across the lesion was influenced by the DNA sequences and the nature of the lesion (FAF vs. FABP). These results provide conformational insights into the important role of ss/ds sequence effects in modulating bulky lesion-induced translesion DNA synthesis.
INTRODUCTION

Abbreviation: ABP: N-(2′-deoxyguanosin-8-yl)-4-aminobiphenyl; AF: N-(2′-deoxyguanosin-8-yl)-2-aminofluorene; AAF: N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene; 19FNMR: fluorine nuclear magnetic resonance.

When a replication polymerase encounters a DNA lesion, DNA synthesis pauses or stops to allow the recruitment of bypass polymerases. This in turn will affect whether the synthesis becomes error free or error prone. Some bulky DNA lesions at the single-strand (ss)/double-strand (ds) replication fork can exist in multiple conformations, which can affect mutational outcomes. In summary, a single bulky adduct can induce conformational heterogeneity at the ss/ds replication fork, wherein a polymerase may process each of the conformations in a uniquely different way. A similar conformational argument can be made for DNA duplexes, which is the usual substrate for nucleotide excision repair. The latter removes various bulky lesions, such as arylamines, aflatoxins, and aristolochic acids.

Arylamines are carcinogens derived from cigarette smoke, incomplete combustion of diesel exhaust, and overcooked meat among others3, 4. These aromatic chemicals per se do not directly interact with DNA; however, they are metabolized in vivo by cytochrome P450 and subsequently activated by cellular enzymes, such as N-acetyltrasferase or sulfotransferase to form DNA adducts5, 6. For example, the well-known human bladder carcinogen 4-aminobiphenyl (ABP) is activated to produce C8-substituted dG-ABP as a major DNA lesion7 8. The bulkier 2-aminofluorene (AF) and N-2-acetylaminofluorene
(AAF) produce similar C8-dG adducts (Figure 1a). These bulky DNA adducts have been extensively studied and shown to adopt at least three major conformations in the duplex setting: major groove B-type (B), base-displaced stacked (S), or minor groove wedge (W) (Figure 1b), and the S/B/W-population ratios are influenced by neighboring sequence contexts. In the S-conformation, the carcinogen stacks between the bases and disrupts base pairing in the double helix, whereas the B-type conformer places the carcinogen in the major groove of the DNA helix that maintains the traditional Watson–Crick base pairings. The W conformer was originally found in dA mismatch duplexes, and the hydrophobic lesion is well-placed in the narrow minor groove. These adducts exhibit sequence-dependent S/B/W population ratios and consequently have different repair and mutational efficiencies. For example, the purine base at the 3'-flanking base favors S-conformer in the AF- and AAF-modified duplexes. AAF at G3 in the NarI sequence (5'-G1G2CG3CN-3') induces a greater frequency of −2 frame shift mutations with the G3-mutational frequency regulated by the nature of the N base. Miller et al. reported a significant reduction in nucleotide incorporation rates at neighboring and downstream of the lesion site by Klenow fragment (Kf) exo-. We investigated the sequence effect of AF on nucleotide insertion efficiencies catalyzed by Kf–exo− on TG*A and CG*A translesion synthesis (TLS) systems and found the S conformer of CG*A thermodynamically favors insertion of A over C at the lesion site.

We previously reported an unusual 3′-flanking T effect on a random duplex sequence (5′-CCATCG*CNACC-3′; N=T or A), i.e., FABP modification at G exhibited a 40%:60% B:S in the G*CT context whereas 100% B in the G*CA sequence context. Though not
as dramatic, a similar trend was observed for the AF and AAF lesions\(^1\). In the present paper, another unusual ABP-induced sequence effect on a random 16-mer duplex sequence \((5'\text{-CTTCTG}_1\text{G}_2\text{TCCTCATTC-3'})\) was investigated. ABP-modification at \(\text{G}_1\) exhibited a 67:33 ratio of B:S conformations, whereas the B conformation was adopted exclusively at the \(\text{G}_2\) modification. We conducted a series of conformational [NMR, induced circular dichroism (ICD)], thermodynamic [UV-melting, differential scanning calorimetry (DSC)], and binding [surface plasmon resonance (SPR), isothermal titration calorimetry (ITC)] experiments for two 16-mer ss/ds DNA templates \[(5'\text{-CTTCTG}_1^*\text{G}_2\text{TCCTCATTC-3'})\text{ and } (5'\text{-CTTCTGT}_1\text{G}_2^*\text{TCCTCATTC-3'})\]; \(\text{G}_1^*/\text{G}_2^*=\text{FABP}\) or \(\text{FAF}\) (fluorinated ABP, AF), which mimic a TLS (Figure 2). The experimental data showed that the B-conformer is a thermodynamic stabilizer and the S-conformer is a destabilizer in full duplex settings. However, the opposite was true for a simulated TLS that involved ss/ds sequences. Lesion stacking increased the binding affinity of the complementary strands in the order of FABP > FAF and \(\text{G}^*\text{GT}>\text{GG}^*\text{T}\). The twisted nonplanar ABP was a better stacker than the planar AF in ss/ds systems, which were in contrast to the duplexes. The present study provided valuable insights into the important distinction between ss/ds and full ds sequence contexts and flanking base sequences and lesion stacking in modulating bulky lesion-induced conformational heterogeneity.

MATERIALS AND METHODS
Caution: 4-Aminobiphenyl derivatives are known human bladder carcinogens. Aminofluorene analogues are animal carcinogens; therefore, must be handled with caution.

Oligodeoxynucleotides (oligo, 10 µmol scale) in desalted form were obtained from Integrated DNA Technologies (Iowa) and were purified by using a reverse phase HPLC. The HPLC system comprised a Hitachi EZChrom Elite HPLC with a L-2450 diode array detector and a Phenomenex Luna C18 column (150 x 10 mm, 5.0 µm) (Phenomenex, Torrance, CA). All HPLC solvents were purchased from Fisher Inc. (Pittsburgh, PA).

Preparation of Lesion-Modified Oligodeoxynucleotides

FABP-modified 16-mer templates (5′-CTTCTG₁G₂TCCTCATTTC-3′) were prepared according to the published procedures\(^22\). For each lesion, we obtained two mono-adducts [d(5′-CTTCTG₁*G₂TCCTCATTTC-3′)] and [d(5′-CTTCTG₁G₂*TCCTCATTTC-3′)] (G*=FABP) and one di-adduct [d(5′-CTTCTG₁*G₂*TCCTCATTTC-3′)]. Briefly, 5–10 mg of N-acetoxy-N-trifluoroacetyl-7-fluoro-4-aminobiphenyl dissolved in 500 µL absolute ethanol was added to 10 mL sodium citrate buffer (10 mM, pH 6.0) containing approximately 200 ods of unmodified 16-mer oligo and incubated in a 37 °C water bath shaker for 1 h. Unreacted carcinogens were removed by extraction with anhydrous ether. An acetonitrile gradient of 14%–25% in triethylammonium acetate (TEAA) buffer (100 mM, pH 7.0) for 30 min was used to separate the two mono-adduct strands from di-adduct and unreacted 16-mer oligos. Figure 3 shows the HPLC profile and photodiode array UV spectra of FABP-modified 16-mers. The combined collection of the two
mono-adduct oligos was lyophilized and stored in \(-80^\circ C\). FAF-modified 16-mer oligos were prepared similarly according to published procedures and the resulting HPLC profile is shown in Figure 4.

MALDI-TOF Mass Spectrometry Characterization of Mono-adducts

The FABP- and FAF-modified mono-adducted 16-mer oligos above were digested by 3′–5′ exonuclease enzyme digestion and characterized by MALDI-TOF mass spectrometry following published procedures\(^{24}\). Briefly, 1 µL (0.1 unit) of snake venom phosphodiesterase (SVP) was added to a solution of 1 µL of modified oligo (~100–200 pmol), 6 µL of ammonium citrate (100 mM, pH 9.4), and 6 µL of water for 3′–5′ digestion. In each case, 1 µL of the reaction mixture was withdrawn at regular time intervals and was quenched by mixing with 1 µL of matrix (3-hydroxypicolinic acid and diammonium hydrogen citrate in a 1:1 ratio). All MALDI spectra were obtained using Shimadzu Axima Performance MALDI-TOF mass spectrometer equipped with a 70 Hz nitrogen laser in positive ion reflectron mode\(^{12}\).

UV Melting

UV thermal melting experiments were performed on a Cary100 Bio UV-Vis spectrophotometer (Santa Clara, CA) equipped with a 6 × 6 multi-cell chamber (1.0 cm path length) and connected with a built-in Peltier temperature controller. Samples were prepared in the buffer (containing 0.2M NaCl, 10 mM sodium phosphate and 0.2 mM EDTA at pH 7.0) in the range of 0.8 µM to 5.6 µM. Samples were scanned forward/reverse five times during melting experiments. Thermodynamic parameters
were calculated using the program MELTWIN version 3.5 according to previous reports22.

DSC

DSC calorimetry measurements were performed on a Nano-DSC from TA Instrument (Lindon, UT, USA) according to previous reports25. Solutions at 0.1 mM containing unmodified or modified templates with various primers were dissolved in a pH 7.0 buffer (0.1 M NaCl, 20 mM sodium phosphate), and the solutions were incubated at 95 °C for 5 mins and cooled at room temperature for 3 h to ensure duplex formation. After 15 min degassing, samples were loaded into the instrument cells. A buffer scan was used as control and then subtracted from the sample scan and normalized for heating rate. All samples were scanned against the control buffer from 15 °C to 85 °C at a rate of 1 °C/min by measuring five repetitions. Raw data were collected as microwatts versus temperature. Δ\(H\) is an integration of \(\Delta C_p^e\) over temperature \(T\). \(T_m\) was the temperature at half the peak area. Thermodynamic parameters (\(\Delta G\) and \(\Delta S\)) were determined according to previously described procedures26, 27.

CD Spectra

Circular dichroism (CD) experiments were conducted on a Jasco J-810 spectropolarimeter (Easton, MD) equipped with a Peltier temperature controller. Typically, a modified template (20 µM) was annealed with an equimolar amount of a primer in 400 µL buffer (containing 0.2M NaCl, 10 mM sodium phosphate, and 0.2 mM EDTA, pH 7.0). The samples were hybridized by heating to 95 °C for 5 min and slowly
cooled to room temperature for 3 h to ensure duplex formation. Spectra were acquired every 0.2 nm from 200 nm to 400 nm at a rate of 50 nm/min for five repetitions and smoothed with 25-point adaptive algorithms provided by Jasco14.

Dynamic 19F -NMR

Approximately 0.1 mM of full and ss/ds duplex samples (Figure 2) were dissolved in 250 µL of NMR buffer (pH 7.0) containing 10% D2O/90% H2O, 100 mM NaCl, 10 mM sodium phosphate, and 100 µM EDTA. Solutions were filtered into a Shigemi tube through a 0.22 µm membrane filter. All 1H and 19F NMR experiments were performed on a Varian NMR spectrometer with a HFC probe operating at 500.0 and 476.5 MHz, respectively9,16,28. Imino proton spectra was obtained at different temperature points (5 °C to 50 °C) using phase-sensitive jump-return sequences and referenced to DSS. 19F-NMR spectra were recorded with increment of 5 °C–10 °C (from 5 °C to 60 °C) in the 1H-decoupled mode and referenced to C6F6 in C6D6 at −164.9 ppm. Computer line shape simulations were processed as reported previously using MestReNova 10.0.2 (Mestrelab Research, Spain)9,29.

SPR

SPR binding measurements were conducted using a Biacore T200 instrument (GE Healthcare, Marlborough, MA). Two isomeric 16-mer biotinylated DNA template strands (5′-biotin-CTTCTG1*G2TCCTCATTC-3′ and 5′-biotin-CTTCTG1G2*TCCTCATTC-3′; G*= FABP or FAF) were each modified with FABP or FAF2,20,25,30. HPLC gradient conditions for biotinylated FABP-modified oligos were
16%–25% gradient on acetonitrile for 55 min in TEAA buffer (100 mM, pH 7.0) with a flow rate of 3.0 mL/min (Figure 5a). The biotin-FABP-modified sequences were characterized by MALDI-TOF-MS using 3–5′exonuclease enzyme digestion (Figure 5b–c).

Carboxymethylated CM 5 chip was activated by amine coupling kit according to published procedures20, 25, 30. Streptavidin (SA, 50 µg/mL dissolved in sodium acetate buffer, pH 4.5) was coated on flow cells 2, 3, and 4 after the injection of EDC/NHS mixture for 7 min. Flow cell 1 was left as blank. Ethanolamine (1 M) was injected over the surface to block unreacted esters. The unbound SA was removed by five pulses of 50 mM NaOH and three pulses of running buffer. The surface was stabilized for 20–30 min in running buffer before DNA coating. Flow cells 2, 3, and 4 were coated around 300 RU of unmodified DNA sequence (–G\textsubscript{1}G\textsubscript{2}T–), FABP modified (–G\textsubscript{1}*G\textsubscript{2}T–) and (–G\textsubscript{1}G\textsubscript{2}*T–) DNA sequences by the manual control mode, respectively. Samples of 9- to 16-mer primer sequence were prepared separately in HBS-P+ buffer (10 mM Hepes, 150 mM NaCl, 0.05% surfactant P20 at pH 7.4) and injected over the chip surface with 100 s contact time and 360 s dissociation time at a flow rate of 15 µL/min at 25 °C.

Due to distinct molecule weights, the primers (9- to 16-mer) were used at different concentrations to gain steady-state associations: 300 nM (9-mer), 500 nM (10-mer), 500 nM (11-mer), and 750 nM (12-, 13-, and 16mer). After the system reached a steady state, excess primers were washed off by the HBS-P+ buffer, and the system was regenerated by adding NaOH (50 nM, 30 s). We were unable to measure the usual $K_D (k_d/k_a)$ kinetics
of duplex formation for each elongation. Instead, we used dissociation rates (k_d), which are concentration-independent, to estimate binding strengths for complementary strands.

Dissociation constants (k_d) were analyzed in k_d-alone fitting mode by Scrubber software (version 2.0, Myszka and collaborators, BioLogic Software). The goodness of the fit was determined from the residual standard deviation.

ITC

VP-ITC microcalorimeter from MicroCal Inc. (Northampton, MA) was performed to measure full duplex formation of unmodified and modified templates (2.5 µM) with their complementary (25 µM) sequences prepared in 10 mM phosphate buffer (pH 7.0), containing 0.2 M NaCl and 0.2 mM EDTA. The samples were degassed thoroughly under vacuum using ThermoVac (MicroCal, Northampton, MA) for 20 mins. ITC experiments consisted of 25 consecutive injections and each injection involves 10 µL of complementary sequence with injection time 10 s and 240 s intervals between each injection with 307 rpm stirring at 25 °C. The integrated and normalized areas of raw data were plotted as ΔH of injectant against the molar ratio. The titration data were fitted using a single-site binding model provided in ORIGIN7.0 software supplied by the manufacturer. ΔH, ΔS, K, and N (reaction stoichiometry) of 16-mer full duplex formation were obtained31,32.

Modeling Dynamic Simulation
The initial undamaged helix (5’-CTTCTG\textsubscript{1}G\textsubscript{2}TCCTCATT-3’) was generated using the NAB module of AMBER 1433. The helix was modified to position the FABP-dG adduct at G\textsubscript{1} or G\textsubscript{2} such that the lesion was paired opposite dC. At each position, three orientations of the lesion site were considered to generate the B, S, and W adducted DNA conformations. Resulting duplexes were neutralized with Na+ ions and solvated in a TIP3P octahedral water box with sides 8.0 Å from the solute. All natural nucleotides were modeled with the AMBER ff14SB force field34, 35. FABP-dG parameters were assigned according to the GAFF36 and AMBER ff14SB force fields using ANTECHAMBER 1.4 (Table 1)37, and partial charges were developed using RESP charge fitting from a HF/6-31G(d) calculation by using R.E.D.v.III.4 program (Table 1)38.

Each system was initially minimized with a 500 kcal/mol Å2 constraint on the DNA for 500 steps of steepest descent and 500 steps of conjugate gradient minimization. Subsequently, 1,000 steps of unrestrained steepest descent and 1,500 steps of unrestrained conjugate gradient minimization were performed on the entire system. Each system was then heated over 20 ps at constant volume to 300 K. Heating was performed using a Langevin thermostat (\(\gamma = 1.0\)) and a 10 kcal/mol Å2 constraint on the DNA. Subsequently, each system was simulated for 100 ns at 300 K using a 2 fs time step. To prevent unnatural unravelling of the DNA helices throughout the MD simulations, a 25 kcal/mol Å2 harmonic distance restraint was used to maintain the heavy atom–heavy atom distance in the Watson–Crick hydrogen bonds for the terminal G:C base pairs between 2.0 Å and 4.0 Å. During simulations, the SHAKE algorithm was used to constrain covalent bonds involving hydrogen, and the periodic boundary
condition was applied. The particle mesh Ewald algorithm was used for long-range
electrostatic interactions, with a nonbonded cutoff of 8.0 Å. All simulations and analysis
were completed with Amber 14 using the pmemd and cpptraj modules, respectively.

RESULTS

Experimental DNA Sequences. Chemical structures of ABP and AF and their fluorine
analogues, FABP and FAF, are shown in Figure 1a. We previously observed that FABP-
modified 12-mer DNA duplex 5’-CTTCTG₁G₂TCCTC-3’ at G₁ and G₂ resulted in
60%:40% of B:S and 100% B population ratios, respectively. In the present study, the
original 12-mer was extended to 16-mer (5’-CTTCTG₁G₂TCCTCATTC-3’) by adding
“–ATTC–” to the 3’-end to improve thermal stability for the n−1 and n TLS duplexes.
NMR results indicate that the fully paired FABP modified 16-mer duplexes exhibited
67%:33% of B:S and 100% B population ratios for G₁ and G₂ modifications, which are
in good agreement with those observed above for the original FABP-modified 12-mer
duplex.

As shown in Figure 2, the two 16-mer template strands (TG₁*G₂T- or TG₁G₂*T-; G* =
FABP or FAF) were each annealed with various lengths of complementary strands (9-
to 16-mer) to generate two discrete model TLS systems (n−2, n−1, n, n+1, n+2, n+
5 for -G₁*G₂T- and n−1, n, n+1, n+2, n+3, n+6 for -G₁G₂*T-, respectively; n is
the lesion site). In the present study, we used these TLS model systems consistently for
¹⁹F-NMR/CD, DSC, UV melting, and SPR experiments. Our strategy is to investigate
the effects of the S/B conformational heterogeneity on thermodynamic and duplex
binding parameters. The results will help us understand the uniqueness of flanking base sequence in the TGGT context in promoting lesion-induced conformational heterogeneity.

MALDI-TOF Characterization. FABP- and FAF-modified 16-mer oligos were characterized by exonuclease enzyme digestion followed by MALDI-TOF mass spectrometry, according to published procedures. Figure 6a–b shows the MALDI-TOF MS spectra of the 3′-5′ SVP exonuclease digestions of peaks 1 and 2 from FABP-HPLC profile at different time points (0, 0.5, 2, and 5 min). Briefly, the m/z of 4,958 at 0 min represents the control mass to charge ratio of the modified template without SVP. Within 0.5 min of 3′-5′ exonuclease digestion (Figure 6a), the lower masses showed up corresponding to the 15-mer to 6-mer fragments. The fragment at m/z = 1,943 (theoretical 1945), which was the most detectable mass between 2 min to 5 min digestion, was assigned to a 6-mer containing the FABP lesion. These results confirmed that peak 1 from the HPLC profile was the G1*-FABP-modified sequence (5′-CTTCTG1[FABP] G2TCCTCATTC-3′, G1*G2T). Peak 2 from HPLC profile was characterized similarly. Figure 6b shows the control molecular ion m/z of 4,961 at 0 min. The m/z 2272 ion peak in the 0.5–5 min of digestion corresponded to the 7-mer fragment containing FABP-modified guanine. These results confirm peak 2 as the G2*- FABP modified sequence (5′-CTTCTG1G2[FABP] TCCTCATTC-3′, G1G2*T).

The FAF-modified 16-mer templates have been characterized similarly. Figure 7a–b shows the MALDI-TOF MS spectra of the 3′–5′ SVP exonuclease digestion of the FAF-
modified 16-mer oligo (peaks 1 and 2) at different time intervals. The m/z of 4972 (theoretical 4971) in peak 1 at 0 min (before digestion, as a control) indicated the 16mer DNA sequence containing a FAF-modified DNA base. From 0 min to 3 min, with the disappearance of the original oligonucleotide (4972) the digestion process has been observed when new lower masses showed up corresponding to the smaller fragments from 3’ cleavage (e.g., 4682, 4377, and 4073). After digestion for 3 min, the digestion stopped at $m/z = 1955$ (theoretical 1955), which represented the FAF-modified 6-mer fragment and confirmed peak 1 as G$_1$*-FAF modified sequence (5’-CTTCTG$_1$[FAF] G$_2$TCCTCATTC-3’, G$_1$*G$_2$T). Following the same procedure, we found the SVP digestion of peak 2 stalled at $m/z = 2284$ (theoretical 2284) after 3 min and confirmed peak 2 as G$_2$*-FAF modified sequence (5’-CTTCTG$_1$G$_2$[FAF] TCCTCATTC-3’, G$_1$G$_2$*T). Taken together, the SVP enzymatic digestion from the 3’-end is slowed down significantly at lesion sites of 6- and 7-mer representing G$_1$*G$_2$T and G$_1$G$_2$*T, respectively.

Dynamic 19F-NMR Spectroscopy

Dynamic 19F-NMR experiments were performed to measure the extent of conformational heterogeneity during primer elongation. Figures 8 and 9 show the 19F-NMR spectra of the FABP- and FAF-modified duplex series as function of temperature (5 °C–60 °C). The same sequence systems were used for CD, DSC, UV-melting, and SPR experiments for comparison. Briefly, FABP-G$_1$*-16-mer duplex showed a mixture of S (33%) and B (67%) conformations at 25 °C (highlighted in Figure 8a). By contrast,
the corresponding FABP-G₂*-duplex exclusively revealed B-conformer (100%) with no sign of conformational heterogeneity.

FABP-G₁*G₂T

In Figure 8a, no indication of conformational heterogeneity at $n - 2$ (9-mer) and $n - 1$ (10-mer) was found, whereas the 3′-end of the primer did not reach the lesion site. A slight heterogeneity was observed at n (11-mer); however, but interestingly it disappeared at $n + 1$. At $n + 2$ (16/13-mer), however, we observed complex 19F signals indicating the presence of multiple conformations. These 19F signals were coalesced into a sharp single peak around -116 ppm upon around and above $50 \, ^{\circ}C$; this result indicates duplex melting. The conformational pattern was steadied at fully paired 16-mer duplex ($n + 5$), which showed a ratio of 33% S and 67% B populations at $25 \, ^{\circ}C$ (highlighted in Figure 8a).

The 19F-signals were assigned according to the general protocols based on relative chemical shifts, chemical exchange patterns, and H/D isotope effects. We have investigated a number of 19F-NMR spectra of arylamine-modified duplexes in various sequence settings and found that the fluorine of the S-type conformer resonates always upfield relative to that of the external binding B-type conformer and they are in slow exchange and eventually coalesce into a denatured ss. In addition, the 19F tag in the B-conformation is fully exposed to the solvent in the major groove area, whereas that of the S-conformer is shielded from van der Waals interactions with neighboring base pairs. In addition, the fully exposed 19F tag of the major groove binding B-conformer always
exhibits significant deuterium isotope effect (0.18 ppm) going from 10% to 100% D$_2$O (Figure 10 a–b). This result is in contrast to the buried 19F of the stacked conformer, which shows no isotope effect (0.08 ppm) (Figure 10 a).

FABP-G$_1$G$_2^*$T

G$_2$-modified series shown in Figure 8b is quite different from the G$_1$-modified above. Some minor heterogeneities are observed on $n-1$ (16/9-mer) and $n+3$ (16/12-mer); in general, all duplex sequences exhibited one major signal around −117.5 ppm. This signal can be assigned as the B-like conformer because of its close proximity to the coalescent signal (ss) and also by comparison with the G$_1$ modified duplex above.

FAF-G$_1^*$G$_2^*T$ and FAF-G$_1$G$_2^*T$

Figure 9a–b show the dynamic 19F-NMR spectra for the FAF-modified series. The results indicate both FAF-G$_1^*$G$_2^*T$ and FAF-G$_1$G$_2^*T$ duplexes adopted more S conformation than the FABP series. FAF-G$_1^*$G$_2^*T$ had approximately 42% more S$^-$ than the FABP counterpart G$_1^*$G$_2^*T$ (75% S $&$ 25% B) in the full duplex, whereas the S$^-$ increased from 0% to 17% in the FAF/G$_1$G$_2^*T$. These results reflected the planar nature of FAF relative to FABP preferring to intercalate/stack. Moreover, the B-conformer exhibit significant deuterium isotope effect (~ 0.18 ppm) going from 10% to 100% D$_2$O whereas the stacked conformer shows little isotope effect (0.04 ppm) (Figure 11a–b).

ICD
Figure 12 shows CD overlays of unmodified and FABP-modified 16-mer templates with increasing primer length. The S curve consisted of +@270 nm, and the B-form DNA duplex consisted of −@250 nm. Given the conformational heterogeneity, FABP-modified TLS duplexes exhibited lesion ICD between 290 nm and 360 nm. This result is in contrast to the unmodified control series, which showed no such ICD. The ICD gradually increases along with the primer elongation from 9-mer to 16-mer. In the fully paired 16-mer duplex, T agrees with the above 1H-F-NMR data, which showed a B/S-conformeric TGi*G2T and exclusively B-conformeric G1G2*T on fully paired 16-mer duplexes. The predominant B-conformer of G1G2*T highly affects the bending of DNA helix around the adduct site. G1 and G2 FABP-modified duplexes displayed slight blue shifts (~3 nm) relative to the unmodified controls, indicating adduct-induced DNA bending. Similar results were obtained for FAF-modified series (Figure 13).

UV Melting Experiments
The UV-melting profiles of all the ss/ds duplex models were measured at the 0.8–4.0 μM range for FABP and FAF samples. The UV monophasic and sigmoidal melting curves between lnCt and T_m^{-1} $(R^2 > 0.9)$ confirmed that the duplexes adopted a typical helix-coil transitions. Figure 14a–b shows the plots of melting (T_m) for modified duplexes as a function of primer elongation for TLS systems.

Figure 14a–b shows the melting results of FABP and FAF lesions at the G1*G2T (red) and G1G2*T (yellow) systems (red dash lines and yellow dash lines, respectively) relative to the unmodified controls (blue solid lines). Thermal and thermodynamic
parameters calculated from UV melting curves are summarized in Tables 2 and 3. For all the modified and unmodified duplexes, T_m increases with the elongation of primers. However, modified systems showed stalls around the lesion sites.

Lesion effect in the G_1*G_2T system was minimal at one and two bases before the lesion sites (ΔT_m of 0.35 °C and 0.67 °C for 9-mer and 10-mer, respectively). This finding is in contrast to that of the G_1G_2*T system, which showed minimal lesion effect at those sites (9-mer ΔT_m of 1.45 °C). However, the effect was significant when the primer elongation was opposite the lesion [11-mer and 10-mer for G_1*G_2T (ΔT_m = -2.54 °C) and G_1G_2*T (ΔT_m = -5.21 °C), respectively]. In full duplex (16-mer), G_1*G_2T showed greater negative thermodynamic effect to G_1G_2*T (ΔT_m of -7.68 °C to -6.29 °C), which can be due to the S-conformer (see ^{19}F NMR results above).

DSC

DSC experiments were performed for the FABP-modified TLS models (TLS/TG_1*G_2T vs. TLS/TG_1G_2*T). Figure 15a–d shows DSC thermogram overlays of excess heat capacity C_p^{ex} vs. temperature. T_m is the maximum point of the curves, and transition enthalpy (ΔH) is the area under the curves. DSC results are superior to UV-melting due to its independent concentration, thereby providing reliable thermodynamic parameters. DSC results are summarized in Table 425,39.

Control TLS
Figure 15a shows the DSC thermograms for the control TLS system. For the natural DNA, T_m and ΔH values increased progressively with increasing primer length from 9-mer ($T_m = 42.9$ °C, $\Delta H = -71.4$ kcal/mol) to 13 mer ($T_m = 59.8$ °C, $\Delta H = -87.2$ kcal/mol) and increased significantly at full duplex (16 mer, $T_m = 63.1$ °C, $\Delta H = -98.5$ kcal/mol).

G$_1$[FABP]G$_2$T Duplex

In FABP-G$_1$ profiles (Figure 15b), the 9-mer primer, which is two bases ($n - 2$) before the lesion (n), showed a minimal lesion effect, i.e., T_m 43.3 °C is compared with the control duplex 42.9 °C. However, 10-mer ($n - 1$) to 16-mer ($n + 5$) primers were stalled, i.e., their T_m values were clustered between 51 °C and 53 °C. The 16-mer full duplex showed a significant increase in enthalpy ΔH, indicating a full duplex formation.

G$_1$G$_2$[FABP]T Duplex

DSC patterns for the TG$_1$G$_2^*$T system (Figure 15c) were similar to those of the TG$_1^*$G$_2$T. Curves for 10-n to 13-$(n + 3)$ mer were clustered between Tm 45 °C and 53 °C, which is lower than that of the TG$_1^*$G$_2$T counterpart. The increase in ΔH was not as incremental as that of T_m. In general, the exclusively B-conformeric 16-mer TG$_1$G$_2^*$T full duplex showed greater T_m and ΔH than the G$_1$ counterpart that contains a mixture of B and S conformers (see 19F-NMR above). This finding suggests that B-conformation can be a thermodynamic destabilizer during primer elongation and yet S-conformer might produce thermodynamic destabilization in full duplex. TG$_1^*$G$_2$T and TG$_1$G$_2^*$T duplexes in TLS settings show consistently smaller T_m and ΔH compared with the unmodified controls (Figure 15d).
ITC for Duplex Formation

ITC is a direct solution technique and provides the nature of duplex formation through a sigmoidal curve and the respective thermodynamic parameters (ΔH, ΔG, ΔS) through plots of heat capacity (C_p) vs. molar ratios. This result indicates that the lesion destabilizes the duplex formation.

Figure 16 shows ITC thermograms of duplex formation for FABP and FAF-modified GGT sequences at 25 °C. In all cases, unmodified controls (black) showed well-defined sigmoidal curves with sharp changes in heat capacity at starting and ending points. The results indicate a typical cooperative 1:1 binding process (e.g., molar ratio of $N = \sim 1$) expected for formation of Watson–Crick-based DNA duplexes. By contrast, the ITC curves for modified full duplexes were not well defined in terms of stoichiometry and overall shape, probably due to heterogeneity. Table 5 summarizes the ITC-derived thermodynamic parameters ΔH, ΔS, K, and N for unmodified and modified sequences, for example, the binding constant order is GGT (49.9 M$^{-1}$) > G_1*G_2*T (18.7 M$^{-1}$) > G_1G_2*T (5.9 M$^{-1}$) in FABP case. In general, the ΔH and the binding constant of the modified sequences are consistently lower than that of the controls, and the FABP shows more variances in shapes than the FAF counterpart.

SPR on Duplex Formation
SPR experiments were conducted to probe the effect of conformational heterogeneity on duplex formation and dissociation. The results were obtained in buffer-only environment without a polymerase. With different concentrations used for each complementary strand, we measured dissociation rates (k_d) to evaluate their binding strengths (see Results).

Figure 17 shows the entirety of SPR results, and Table 6 lists the respective dissociation rate constants. Figure 18 shows the overlay of sensograms for FABP and FAF lesions on the unmodified (green) and the G_1 (blue)/G_2 (purple) sequences with increasing length of complementary strands. As expected, in each complementary sequence, SPR data show gradual reduction in k_d values with elongation in unmodified and modified sequences.

By contrast, rapid duplex formation took place for all duplexes; different dissociation rates were observed for modified duplexes. In general, slower dissociation indicates greater duplex binding with thermodynamic stability. This appears to be generally true with post-lesion duplexes (16/11- to 16/16-mer). The 16/9-mer duplexes, which represents the prelesion $n - 2$ and $n - 1$ site for G_1 and G_2, respectively, showed generally faster dissociation (Figure 19a, Table 6): $G_1G_2[FABP]T$ (7.1 s$^{-1}$) < $G_1[FABP]G_2T$ (12 s$^{-1}$) < unmodified (16.5 s$^{-1}$). As for the 16/10-mer (Figure 19b), however, dissociation was dramatically slower for G_1*G_2T (0.343 s$^{-1}$) than the unmodified (0.515 s$^{-1}$) and G_1G_2*T (2.37 s$^{-1}$). These results are consistent with duplex stability in the order of $TG_1*G_2T >$ unmodified $> TG_1G_2*T$. The 16/9-mer is one base
before \((n-1)\) the \(G_1G_2*T\), and 10/16mer is one base \((n-1)\) before the \(G_1*G_2T\) duplex. The results suggest that the modified \(n-1\) duplexes may form a stable S-conformer at the ss/ds junction, resulting in slow dissociation. Similar SPR patterns were observed for the FAF lesion (Figure 18b); however, general dissociation rates were slightly faster compared to the FABP lesion. This finding indicates that FABP is a better stacker in the ss/ds duplex setting.

Modeling Dynamic Simulation

With increasing size, we can pinpoint the effects of different components of the system by using a variety of different models.

FABP-dG Nucleoside: The first model we considered was the nucleoside model. The FABP-dG nucleoside has greater conformational flexibility in the \(syn\)-conformation (S-conformer) compared to the \(anti\)-conformation (B-conformation). The bulky moiety prefers a twisted conformation about the linkage between the two rings (Figure 20).

FABP-dG DNA Duplex: Figure 21 shows that the DNA helix is more stable with FABP positioned at \(G_2\) compared with that at \(G_1\). B conformation is preferred at \(G_1\) and \(G_2\) positions. At \(G_1\), the W conformation is also stable because of interactions with the 5' backbone. Steric prevents such an interaction at \(G_2\). The FABP adduct does not affect the structure of the flanking base pairs.

ss/ds DNA Junction: ss/ds DNA junction is difficult to model because of the flexibility of ssDNA. Greater conformational flexibility is observed with FABP-dG is positioned at \(G_1\). Similar to the DNA model, intercalation of the bulky moiety does not increase
the stacking energetics. However, energies were hard to compare due to the variation in structure of the ssDNA.

Summary: Twisted conformation of the bulky moiety destabilizes the S conformation. In general, the B conformation is most stable regardless of model or stand sequence. Formation of a stable W conformation is dictated by the flanking bases. Flanking bases affect the conformation adopted by FABP-dG.

DISCUSSION

Unusual Flanking Sequence Effects on the TG1G2T Sequence

In this study, we present a striking flanking sequence effect on a 16-mer fully paired DNA duplex 5′-CTTCTG1G2TCCTCATTC-3′, in which lesion modification at G1 (TG1*G2T sequence) and G2 (TG1G2*T sequence) yielded a dramatic difference in conformational heterogeneity. Dynamic 19FNMR results indicate that FABP modification at G1 and G2 resulted in 67%:33% of B:S and 100% B population ratios, respectively. Modification with the planar FAF in the same sequence contexts exhibited greater S-conformer population: 25%:75% B:S and 83:17% B:S for the G1 and G2 position, respectively. This represents a significant increase in S-conformation from 33% to 75% and from 0% to 17% going from FABP to FAF on the G1*G2T and G1G2*T sequence context, respectively.

This example is analogous to our recent reporting on a random 11-mer DNA duplex sequences 5′-CCATCG*CNACC-3′ (N = T or A), in which FABP modification exhibited a 40%:60% ratio of B:S and 100% B and FAF modification resulted in 10%:90%
and 34%:66% in the G*CT and G*CA sequence context, respectively. These 3′-next flanking sequence effects influence primer kinetics, DNA replication, and repair. Lesion stacking was primarily responsible for the greater population of the stacked S-conformer compared with that of G*CA counterparts; the S conformation decreased the binding affinity of complementary strands. These adduct-induced conformational heterogeneities are caused by 3′-next flanking sequence effect, which is different from the G₁G₂T in the present study, which represents the flanking sequence effects.

Our calorimetric results showed a greater thermodynamic stability for the B-conformeric G₂ over the S/B-conformeric G₁ in the full duplex, which indicates that the B-conformer is a thermodynamic stabilizer in fully paired duplex DNA. This finding is consistent with our modeling data, which show that DNA duplex is more stable with FABP positioned at G₂ compared with G₁, and B-conformer is preferred at G₁ and G₂ positions. The greater S-conformer population of FAF over FABP at duplex DNA is probably due to their aromatic coplanarity, i.e., the single-carbon atom methylene bridging between two aromatic rings in FAF restricts the twisting of the biphenyl and enhances the stacking capability. As shown in ITC curves (Figure 16), lesion modification has reduced enthalpic energies (~13% and ~17% average for FABP- and FAF-G₁/G₂, respectively) during duplex formation, as expected. The lesion destabilizes the duplex formation. Correlating the ITC data with conformation heterogeneity is difficult; hence, the difference in ring planarity had a major effect on the shape of binding isotherms (C), i.e., FABP has greater sequence differences compared with FAF. Modeling data also indicate that the low-energy S conformation at G₁ and G₂ is not
much different; however, a unique low-energy W-conformer at G₁ position is observed due to the interactions with the 5’ backbone. By contrast, steric clash prevents such an interaction at G₂. These results may explain the sequence-dependent isotherm fluctuation in the G₁ over G₂.

Thermodynamic Effect on Lesion Heterogeneity during Primer Elongation

We studied six discrete TLS model duplexes prepared by annealing the 16-mer TG₁*G₂T and TG₁G₂*T (G* = FABP or FAF; Figure 2) modified template with appropriate primer strands. These experiments were performed in buffer solutions without a polymerase. The main objective of these experiments is to study the effect of the lesion-induced S/B-heterogeneity on their thermal and thermodynamic stabilities during the primer elongation that mimics a TLS.

The thermodynamic results show a systemic increase in T_m and ΔH with primer elongation from 9-mer to 16-mer in unmodified control duplexes. However, FABP modification has generally lowered T_m and ΔH, as well as changed their calorimetric curve patterns for G₁*G₂T and G₁G₂*T systems. As mentioned above, for full duplexes, the exclusively B-conformeric G₂* was more thermally stable than G₁*. However, this finding is not observed during the primer elongation from 10-mer to 13-mer, in which average T_ms of G₁G₂*T is lower that of the G₁*G₂T. These results imply that the B-conformer is a thermodynamic stabilizer in the duplex setting but is a destabilizer during primer elongation. In other words, S-conformer may play as a thermodynamic stabilizer
in the TLS (as presented below), although modeling data indicate that the intercalation of the bulky moiety does not increase the stacking energetics.

The Impact of Lesion Heterogeneity on ss/ds Duplex Formation

We performed SPR experiments to investigate the effect of lesion heterogeneity on strand binding that simulates a TLS. SPR is an excellent real-time technique that allows monitoring for formation and dissociation of DNA duplexes, DNA–RNA hybridization, and triplex formation. Figure 18 shows an overlay of SPR sensorgrams as a function of various complementary strands (9-mer to 16-mer). Sensorgrams from SPR for each primer elongation and dissociation rate k_d (Table 6) was used to evaluate lesion and sequence effects. This finding is due to the different concentrations of each primer elongation; thus, conducting a global binding analysis is difficult for KD affinity values (see Results). Instead, we utilize k_d dissociation rates (Table 6) to examine lesion effects.

The binding strength for each primer elongation was increased with increasing extent of Watson–Crick hydrogen bonds. As a result, dissociation rates are steadily reduced with primer elongation. Not surprisingly, binding strength for the unmodified templates was generally greater than that of the modified ones throughout the TLS process. Initially, the effect was relatively minimal at prelesion sites ($n - 1$ and $n - 2$ for G_1^* and G_2^*, respectively) (Figure 19a, 9-mer). According to NMR results, the FABP-G_1^* lesion with the 9-mer (16/9-mer) is likely to exist in a B/S-mixture that can be readily accommodated in the flexible $n - 2$ environment. As for G_2^*, this represents $n - 1$, in which the mostly B-conformer can exist at the 16-/9-mer ss/ds junction. Small, modified
16/9-mer sequences appeared to be slightly more stabilized than the controls. However, the effect of lesion modification on dissociation was clearly seen around the lesion sites. The 16/10-mer corresponds to $n-1$ and n for G_1^* and G_2^*, respectively. The effect on dissociation was in the order of $n-1\ G_1^* > \text{control} > n\ G_2^*$. The most significant lesion effect of G_1^* at $n-1$ is probably due to the presence of S-conformer population that can stabilize the ss/ds replication fork (see above). This situation is illustrated in Figure 19b. For G_2^*, the primer has advanced up to the lesion site (n); hence, such lesion-induced stacking cannot attain the same stability. Modeling an ss/ds sequence was difficult and indicated a greater flexibility of the FABP lesion at G_1^*; however, this sequence does not support stacking-induced stabilization at the replication fork. As a result, $n\ G_2^*$ was less stable than that of the unmodified control. The opposite was true for the 16/11-mer, in which the binding stability at G_1^* was reduced at the lesion site presumably due to the clash with the new primer. This is not the case for the B-conformeric G_2^* at $n+1$, which did not change much other than the usual gain of binding energy through elongation. The trend remained unchanged for the rest of the elongation ($n+2, +3$) and for the full ($n+16$) duplex.

As shown in Figure 18, the nature of the lesion (FABP vs. FAF) had no noticeable effect on dissociation rates, except that FAF dissociates generally faster than FABP (Table 6). A similar situation was noted in our previous GCA/GCT examples2. Although no polymerase was involved, these SPR results are in line with the NMR/thermodynamic/modeling results given that the greater S-conformation of the G_1^* sequence posed a major hindrance toward the binding affinity. In other words, the lesion
effect was propagated primarily upstream of the template strand and gradually diminished.

SUMMARY

We conducted systematic 19F NMR, CD, DSC, and SPR studies for the elongation of the TG$_1$*G$_2$T and TG$_1$G$_2$*T sequences modified by FABP and FAF. Model systems mimic a hypothetical TLS process involving the bulky structurally related arylamine lesions. DNA adducts in the TG$_1$*G$_2$T duplex exhibited greater populations of the S-conformer compared with that in the TG$_1$G$_2$*T duplex. Bulky lesions exhibited unique sequence-dependent conformational heterogeneities at various elongation positions, including the replication fork that differentially contributes to template-primer bindings and thermodynamics. We found that the B-conformer is a major thermodynamic stabilizer in the duplex settings and the S-conformer is a destabilizer. The opposite was observed during the primer elongation process involving ss/ds duplex sequences, i.e., the S-conformation promotes lesion stacking with nascent base pairs at the ss/ds replication fork. The results are supported by SPR sensograms, which revealed that the bulky adduct in the stacked conformation increases the binding affinity of the complementary strands in the order of FABP > FAF and G$_1$*G$_2$T > G$_1$G$_2$*T. Interestingly, unlike the coplanar FAF, the twisted FABP is a better stacker at ss/ds junction than in fully paired duplexes. The extent of primer dissociation rates across the lesion were influenced by the flanking DNA sequences and the stacking ability of the lesion. Future studies include examination of the effects of the conformational heterogeneity in DNA replication and repair.
REFERENCES

excision repair of 2-aminofluorene and 2-acetylan" recommends adding these two lines to the end of the text:

...2-aminofluorene and 2-acetylan fluorene dG adducts in the NarI sequence, *Nucleic Acids Research* 40, 3939-3951.

FIGURE LEGENDS

Figure 1. (a) Structures of ABP [N-(2’-deoxyguanosin-8-yl)-4-aminobiphenyl], AF [N-(2’-deoxyguanosin-8-yl)-2-aminofluorene], and AAF [N-(2’-deoxyguanosin-8-yl)-2-acetylaminofluorene] and their fluoro models, FABP [N-(2’-deoxyguanosin-8-yl)-4’-fluoro-4-aminobiphenyl], FAF [N-(2’-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene], and FAAF [N-(2’-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene]. (b) Major groove views of arylamine-conformational motifs: B-, S-, and W-conformers. (color code: Arylamine- red CPK, modified dG- blue, complementary C- orange).

Figure 2. Translesion synthesis (TLS) models for (a) unmodified control, (b) FABP/FAF-modified G1 (G*GT) templates, and (c) FABP/FAF-modified G2(GG*T) templates.

Figure 3. HPLC chromatogram of a reaction mixture of 16-mer sequence (5'-CTTCTG_{1}G_{2}TCCTCATTC-3') with an activated FABP (N-Acetoxy-N-(trifluoroacetyl)-4’-fluoro-4-aminobiphenyl) and photodiode array UV spectra of unmodified, mono-, di-FABP adducts.

Figure 4. HPLC chromatogram of a reaction mixture of 16-mer sequence (5'-CTTCTG_{1}G_{2}TCCTCATTC-3') with an activated FAF (N-acetoxy-N-(trifluoroacetyl)-7-fluoro-2-aminofluorene) and photodiode array UV spectra of unmodified and mono-FAF adducts.

Figure 5. HPLC profile, photodiode array UV spectra of mono-FABP adducts and MALDI-TOF mass spectra of FABP modified biotinylated 16mer-GGT for SPR
experiments: (a) HPLC chromatogram of FABP modified biotinylated 16mer-GGT. (b) 3’-enzyme digestion of peak 1 at 0min, 0.5min, 3min, 5min, 6min and 7min. (c) 3’-enzyme digestion of peak 2 at 0min, 0.5min, 3min, 5min, 6min and 7min. Insets show the theoretical MW of the corresponding fragments that should form after 3’-enzyme digestion.

Figure 6. MALDI-TOF mass spectra of FABP modified 16mer-GGT: (a) 3’-enzyme digestion of peak 1 at 0min, 0.5min, 2min and 5min. (b) 3’-enzyme digestion of peak 2 at 0min, 0.5min, 2min and 5min. Insets show the theoretical MW of the corresponding fragments that should form after 3’-enzyme digestion.

Figure 7. MALDI-TOF mass spectra of FAF modified 16mer-GGT: (a) 3’-enzyme digestion of peak 1 at 0min, 0.5min, 1min, 2min, 3min, 5min and 6min. (b) 3’-enzyme digestion of peak 2 at 0min, 0.5min, 1min, 2min, 3min, 5min and 6min. Insets show the theoretical MW of the corresponding fragments that should form after 3’-enzyme digestion.

Figure 8. Dynamic 19F-NMR spectra (5-60°C) of FABP-modified duplexes with primer elongation. (a) FABP-modified G1 (G*GT) showing a 67% B- and 33% S-conformational mixture in full duplex. (b) FABP-modified G2 (GG*T) exhibiting 100% B-conformer in full duplex. For all of the duplexes, the 19F signals around 60°C coalesced into a sharp single peak around -115ppm indicating a denatured FABP-residue. * indicates unassigned minor conformers.
Figure 9. Dynamic 19F-NMR spectra (5-60°C) of FAF-modified duplexes with primer elongation. (a) FAF-modified G1 (G*GT) showing a 25% B- and 75% S-conformational mixture in full duplex. (b) FAF-modified G2 (GG*T) exhibiting 83% B- and 17% S-conformer in full duplex. For all of the duplexes, the 19F signals around 60°C coalesced into a sharp single peak around -117ppm indicating a denatured FAF-residue. * indicates unassigned minor conformers.

Figure 10. Deuterium isotope effect of FABP-modified 16-mer GGT full duplexes in 10% and 100% D$_2$O at 25°C. (a) FABP-modified G1 (G*GT) (0.18 and 0.08 ppm for B- and S-conformer, respectively). (b) FABP-modified G2 (GG*T) (0.18 ppm for B-conformer).

$\Delta \delta_S = |\delta_S(100\% D_2O) - \delta_S(10\% D_2O)|$; $\Delta \delta_B = |\delta_B(100\% D_2O) - \delta_B(10\% D_2O)|$.

Figure 11. Deuterium isotope effect of FAF-modified 16-mer GGT full duplexes in 10% and 100% D$_2$O at 25°C. (a) FAF-modified G1 (G*GT) (0.19 and 0.04 ppm for B- and S-conformer, respectively). (b) FAF-modified G2 (GG*T) (0.18 and 0.04 ppm for B- and S-conformer, respectively).

$\Delta \delta_S = |\delta_S(100\% D_2O) - \delta_S(10\% D_2O)|$; $\Delta \delta_B = |\delta_B(100\% D_2O) - \delta_B(10\% D_2O)|$.

Figure 12. CD spectral overlays of primer elongation (9 mer to 16 mer) for FABP modified 16-mer GGT at 25°C. (a) unmodified control, (b) FABP modified G1 (G*GT), (c) FABP modified G2 (GG*T), (d) Full duplex overlays of unmodified and FABP G1/G2-modified sequences.

Figure 13. CD spectral overlays of primer elongation (9 mer to 16 mer) for FAF modified 16-mer GGT at 25°C. (a) unmodified control, (b) FAF modified G1 (G*GT),
(c) FAF modified G2 (GG*T), (d) Full duplex overlays of unmodified and FAF G1/G2-modified sequences.

Figure 14. (a) UV melting (T_m) of FABP modified 16-mer GGT with primer elongation (9 mer to 16 mer). (b) UV melting (T_m) of FAF modified 16-mer GGT with primer elongation (9 mer to 16 mer). Unmodified control is blue line, FABP/FAF-modified G1 (G*GT) is shown as red dash line, and FABP/FAF-modified G2 (GG*T) is shown as yellow dash line.

Figure 15. DSC heat capacity ΔC_p vs temperature (15-85 °C) for primer elongation (9 mer to 16 mer) of the (a) control, (b) FABP modified G1 (G*GT) and (c) FABP modified G2 (GG*T). (d) Full duplex overlays of unmodified and FABP G1/G2-modified sequences. FABP-G1 and FABP-G2 show smaller T_m and ΔH than the control/unmodified in full duplex exhibiting that S-conformer (FABP-G1, G*GT) might produce thermodynamic destabilization in full duplex.

Figure 16. ITC binding thermograms of duplex formation for (a) FABP- and (b) FAF-modified 16 mer GGT full duplexes at 25°C.

Figure 17. SPR sensorgrams of unmodified and FABP/FAF-modified TLS: (a) Unmodified and FABP-modified G1 (G*GT) and G2 (GG*T), (b) Unmodified and FAF-modified G1 (G*GT) and G2 (GG*T).

Figure 18. Normalized SPR sensorgrams of (a) FABP- and (b) FAF- modified 16 mer GGT sequences with primer elongation (9 mer to 16 mer). Slower dissociation shows better stability of the primer–template duplexes.
Figure 19. Normalized SPR sensorgrams of FABP-modified 16 mer GGT sequences with 9-mer and 10-mer primers, and progression of lesion conformational rigidity. (a) 9-mer and (b) 10-mer. Slower dissociation shows better stability of the primer-template duplexes.

Figure 20. *syn-* and *anti-*FABP-modified dG and their energy barrier from nucleoside MD (Modeling Dynamic) simulation.

Figure 21. FABP-dG DNA helices structures from MD simulation. (a) G$_1$ position, (b) G$_2$ position. B conformation is preferred at both the G1 and G2 positions.
TABLE LEGENDS

Table 1. Partial charges and atom types for FABP-dG.

Table 2: UV melting thermal and thermodynamic parameters of FABP modified 16-mer G1 (G*GT) and G2 (GG*T) duplexes.

Table 3: UV melting thermal and thermodynamic parameters of FAF modified 16-mer G1 (G*GT) and G2 (GG*T) duplexes.

Table 4. Thermal and Thermodynamic Parameters Derived from DSC.

Table 5. Thermodynamic parameters C, N, K, ΔH and ΔS derived from the ITC.

Table 6. Dissociation off-rate constants \((k_d, \times 10^{-2}, s^{-1})\) from SPR.
Figure 1:

(a)

(b)
Figure 2:

(a) Unmodified control

5′-CTTCCTG.TCCTCATTC-3′
3′-AGGAGTAAG-5′

9mer

5′-CTTCCTG.TCCTCATTC-3′
3′-C AGGAGTAAG-5′

10mer

5′-CTTCCTG.TCCTCATTC-3′
3′-GAAGAC C AGGAGTAAG-5′

11mer 12mer 13mer 16mer

(b) G1-modified

5′-CTTCCTG.G.TCCTCATTC-3′
3′-AGGAGTAAG-5′

9mer

5′-CTTCCTG.G.TCCTCATTC-3′
3′-C AGGAGTAAG-5′

10mer

5′-CTTCCTG.G.TCCTCATTC-3′
3′-GAAGAC C AGGAGTAAG-5′

11mer 12mer 13mer 16mer

(c) G2-modified

5′-CTTCCTG.G.TCCTCATTC-3′
3′-AGGAGTAAG-5′

9mer

5′-CTTCCTG.G.TCCTCATTC-3′
3′-C AGGAGTAAG-5′

10mer

5′-CTTCCTG.G.TCCTCATTC-3′
3′-GAAGAC C AGGAGTAAG-5′

11mer 12mer 13mer 16mer
Figure 3:
Figure 4:
Figure 5:

(a)

(b)

\[
\begin{array}{lc}
\text{mass} & \text{sequence} \\
5363.2 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCTCATTC} \\
5073.9 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCTCAT} \\
4769.8 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCTCA} \\
4465.6 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCTC} \\
4152.4 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCT} \\
3863.2 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCT} \\
3558.9 & \text{Bio-CTTCTG}_1\text{G}_2\text{TC} \\
3269.8 & \text{Bio-CTTCTG}_1\text{G}_2 \text{T} \\
2980.6 & \text{Bio-CTTCTG}_1\text{G}_2 \text{T} \\
2676.4 & \text{Bio-CTTCTG}_1\text{G}_2 \\
2336.2 & \text{Bio-CTTCTG}_1 \\
\end{array}
\]

\[
\begin{array}{rcccc}
2334.0 & 7 \text{ min} \\
2334.9 & 6 \text{ min} \\
2335.0 & 5 \text{ min} \\
3267.2 & 3 \text{ min} \\
3558.7 & 0.5 \text{ min} \\
5361.0 & 0 \text{ min} \\
5362.7 & 0 \text{ min} \\
\end{array}
\]

(c)

\[
\begin{array}{lc}
\text{mass} & \text{sequence} \\
5363.2 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCTCATTC} \\
5073.9 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCTCAT} \\
4769.8 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCTCA} \\
4465.6 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCTC} \\
4152.4 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCT} \\
3863.2 & \text{Bio-CTTCTG}_1\text{G}_2\text{TCCT} \\
3558.9 & \text{Bio-CTTCTG}_1\text{G}_2\text{TC} \\
3269.8 & \text{Bio-CTTCTG}_1\text{G}_2 \text{T} \\
2980.6 & \text{Bio-CTTCTG}_1\text{G}_2 \text{T} \\
2676.4 & \text{Bio-CTTCTG}_1\text{G}_2 \\
\end{array}
\]

\[
\begin{array}{rcccc}
2674.6 & 7 \text{ min} \\
2674.9 & 6 \text{ min} \\
2674.6 & 5 \text{ min} \\
3267.1 & 3 \text{ min} \\
3558.9 & 0.5 \text{ min} \\
5362.6 & 0 \text{ min} \\
5362.1 & 0 \text{ min} \\
\end{array}
\]
Figure 6:

(a)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945.285</td>
<td>CTTC\textsubscript{T}G\textsubscript{1}</td>
</tr>
<tr>
<td>2274.495</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}</td>
</tr>
<tr>
<td>2578.692</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}T</td>
</tr>
<tr>
<td>2867.877</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TC</td>
</tr>
<tr>
<td>3157.062</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCC</td>
</tr>
<tr>
<td>3461.259</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCT</td>
</tr>
<tr>
<td>3750.444</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTC</td>
</tr>
<tr>
<td>4063.654</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTCA</td>
</tr>
<tr>
<td>4367.851</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTCAT</td>
</tr>
<tr>
<td>4672.040</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTCATT</td>
</tr>
<tr>
<td>4961.233</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTCATTTC</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2274.495</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}</td>
</tr>
<tr>
<td>2578.692</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}T</td>
</tr>
<tr>
<td>2867.877</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TC</td>
</tr>
<tr>
<td>3157.062</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCC</td>
</tr>
<tr>
<td>3461.259</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCT</td>
</tr>
<tr>
<td>3750.444</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTC</td>
</tr>
<tr>
<td>4063.654</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTCA</td>
</tr>
<tr>
<td>4367.851</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTCAT</td>
</tr>
<tr>
<td>4672.040</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTCATT</td>
</tr>
<tr>
<td>4961.233</td>
<td>CTTC\textsubscript{T}G\textsubscript{2}TCCTCATTTC</td>
</tr>
</tbody>
</table>
Figure 7:

(a)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955.085</td>
<td>CTTCTG_{G_{1}}</td>
</tr>
<tr>
<td>2284.295</td>
<td>CTTCTG_{G_{2}}</td>
</tr>
<tr>
<td>2588.492</td>
<td>CTTCTG_{G_{3}}</td>
</tr>
<tr>
<td>2877.677</td>
<td>CTTCTG_{G_{4}}TC</td>
</tr>
<tr>
<td>3166.862</td>
<td>CTTCTG_{G_{5}}TCC</td>
</tr>
<tr>
<td>3471.059</td>
<td>CTTCTG_{G_{6}}TCCT</td>
</tr>
<tr>
<td>3760.244</td>
<td>CTTCTG_{G_{7}}TCCTC</td>
</tr>
<tr>
<td>4073.454</td>
<td>CTTCTG_{G_{8}}TCCTCA</td>
</tr>
<tr>
<td>4377.651</td>
<td>CTTCTG_{G_{9}}TCCTCAT</td>
</tr>
<tr>
<td>4681.848</td>
<td>CTTCTG_{G_{10}}TCCTCATTT</td>
</tr>
<tr>
<td>4971.033</td>
<td>CTTCTG_{G_{11}}TCCTCATATC</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2284.295</td>
<td>CTTCTG_{G_{12}}</td>
</tr>
<tr>
<td>2588.492</td>
<td>CTTCTG_{G_{13}}T</td>
</tr>
<tr>
<td>2877.677</td>
<td>CTTCTG_{G_{14}}TC</td>
</tr>
<tr>
<td>3166.862</td>
<td>CTTCTG_{G_{15}}TCC</td>
</tr>
<tr>
<td>3471.059</td>
<td>CTTCTG_{G_{16}}TCCT</td>
</tr>
<tr>
<td>3760.244</td>
<td>CTTCTG_{G_{17}}TCCTC</td>
</tr>
<tr>
<td>4073.454</td>
<td>CTTCTG_{G_{18}}TCCTCA</td>
</tr>
<tr>
<td>4377.651</td>
<td>CTTCTG_{G_{19}}TCCTCAT</td>
</tr>
<tr>
<td>4681.848</td>
<td>CTTCTG_{G_{20}}TCCTCATTT</td>
</tr>
<tr>
<td>4971.033</td>
<td>CTTCTG_{G_{21}}TCCTCATTC</td>
</tr>
</tbody>
</table>
Figure 8:

(a)

(b)
Figure 9:

(a)

(b)
Figure 10:

(a) 16mer (full duplex) B: 116.62 ppm, S: 117.69 ppm, \(\Delta \delta = 0.08 \text{ ppm} \)

(b) 16mer (full duplex) B: 116.80 ppm, S: 117.61 ppm, \(\Delta \delta = 0.18 \text{ ppm} \)
Figure 11:

(a) 16mer (full duplex)

(b) 16mer (full duplex)
Figure 12:

(a) Unmodified (control)

(b) FABP-G1

(c) FABP-G2

(d) full duplex overlay
Figure 13:
Figure 14:

(a)

(b)
Figure 15:

(a) Unmodified (control)

(b) FABP-G1

(c) FABP-G2

(d) Full duplexes overlay
Figure 16:
Figure 17:

(a)

FABP

Unmodified
G1 (G*GT)
G2 (G*G)

(b)

FAF

Unmodified
G1 (G*GT)
G2 (G*G)
Figure 18:

(a) [Graphs showing data for FABP and (Opposite G2) and (Opposite G1) with different mer lengths (9-mer, 10-mer, 11-mer, 12-mer, 13-mer, 16-mer (full duplex))]

(b) [Graphs showing data for FAF and (Opposite G2) and (Opposite G1) with different mer lengths (9-mer, 10-mer, 11-mer, 12-mer, 13-mer, 16-mer (full duplex))]
Figure 19:
Figure 20:

- syn-FABP-dG
- anti-FABP-dG
- Energy barrier
Figure 21:

(a) G₁ position

B-Conformation

S-Conformation

W-Conformation

2.2 kcal/mol

17.0 kcal/mol

10.5 kcal/mol
Table 1:

<table>
<thead>
<tr>
<th>Atom Name</th>
<th>Atom Type</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P</td>
<td>1.1625</td>
</tr>
<tr>
<td>O5'</td>
<td>OS</td>
<td>-0.4931</td>
</tr>
<tr>
<td>OP1</td>
<td>O2</td>
<td>-0.7634</td>
</tr>
<tr>
<td>OP2</td>
<td>O2</td>
<td>-0.7699</td>
</tr>
<tr>
<td>O3'</td>
<td>OS</td>
<td>-0.5407</td>
</tr>
<tr>
<td>C5'</td>
<td>CT</td>
<td>-0.0122</td>
</tr>
<tr>
<td>H5'1</td>
<td>H1</td>
<td>0.0791</td>
</tr>
<tr>
<td>H5'2</td>
<td>H1</td>
<td>0.0791</td>
</tr>
<tr>
<td>C4'</td>
<td>CT</td>
<td>0.1579</td>
</tr>
<tr>
<td>H4'</td>
<td>H1</td>
<td>0.1088</td>
</tr>
<tr>
<td>O4'</td>
<td>OS</td>
<td>-0.403</td>
</tr>
<tr>
<td>C1'</td>
<td>CT</td>
<td>0.1931</td>
</tr>
<tr>
<td>H1'</td>
<td>H2</td>
<td>0.0679</td>
</tr>
<tr>
<td>C3'</td>
<td>CT</td>
<td>0.1358</td>
</tr>
<tr>
<td>H3'</td>
<td>H1</td>
<td>0.0758</td>
</tr>
<tr>
<td>C2'</td>
<td>CT</td>
<td>-0.057</td>
</tr>
<tr>
<td>H2'1</td>
<td>HC</td>
<td>0.0457</td>
</tr>
<tr>
<td>H2'2</td>
<td>HC</td>
<td>0.0457</td>
</tr>
<tr>
<td>N9</td>
<td>N*</td>
<td>-0.0447</td>
</tr>
<tr>
<td>C8</td>
<td>CK</td>
<td>0.5148</td>
</tr>
<tr>
<td>N7</td>
<td>NB</td>
<td>-0.5657</td>
</tr>
<tr>
<td>C5</td>
<td>CB</td>
<td>0.1146</td>
</tr>
<tr>
<td>C6</td>
<td>C</td>
<td>0.5093</td>
</tr>
<tr>
<td>O6</td>
<td>O</td>
<td>-0.5442</td>
</tr>
<tr>
<td>N1</td>
<td>NA</td>
<td>-0.4523</td>
</tr>
<tr>
<td>H1</td>
<td>H</td>
<td>0.3452</td>
</tr>
<tr>
<td>C2</td>
<td>CA</td>
<td>0.6267</td>
</tr>
<tr>
<td>N2</td>
<td>N2</td>
<td>-0.8744</td>
</tr>
<tr>
<td>H21</td>
<td>H</td>
<td>0.3894</td>
</tr>
<tr>
<td>H22</td>
<td>H</td>
<td>0.3894</td>
</tr>
<tr>
<td>N3</td>
<td>NC</td>
<td>-0.5033</td>
</tr>
<tr>
<td>C4</td>
<td>CB</td>
<td>0.1036</td>
</tr>
<tr>
<td>N8</td>
<td>N2</td>
<td>-0.6715</td>
</tr>
<tr>
<td>H8</td>
<td>H</td>
<td>0.3746</td>
</tr>
<tr>
<td>C9</td>
<td>CA</td>
<td>0.369</td>
</tr>
<tr>
<td>C10</td>
<td>CA</td>
<td>-0.1778</td>
</tr>
<tr>
<td>H10</td>
<td>HA</td>
<td>0.1531</td>
</tr>
<tr>
<td>C11</td>
<td>CA</td>
<td>-0.3158</td>
</tr>
<tr>
<td>H11</td>
<td>HA</td>
<td>0.1754</td>
</tr>
<tr>
<td>C12</td>
<td>CA</td>
<td>-0.1902</td>
</tr>
<tr>
<td>H12</td>
<td>HA</td>
<td>0.1513</td>
</tr>
<tr>
<td>C13</td>
<td>CA</td>
<td>-0.1284</td>
</tr>
<tr>
<td>H13</td>
<td>HA</td>
<td>0.1387</td>
</tr>
<tr>
<td>C14</td>
<td>cp</td>
<td>0.0446</td>
</tr>
<tr>
<td>C15</td>
<td>cp</td>
<td>0.0704</td>
</tr>
<tr>
<td>C16</td>
<td>CA</td>
<td>-0.0807</td>
</tr>
<tr>
<td>H16</td>
<td>HA</td>
<td>0.1214</td>
</tr>
<tr>
<td>C17</td>
<td>CA</td>
<td>-0.4271</td>
</tr>
<tr>
<td>H17</td>
<td>HA</td>
<td>0.1965</td>
</tr>
<tr>
<td>C18</td>
<td>CA</td>
<td>-0.2676</td>
</tr>
<tr>
<td>H18</td>
<td>HA</td>
<td>0.1899</td>
</tr>
<tr>
<td>C19</td>
<td>CA</td>
<td>0.4444</td>
</tr>
<tr>
<td>H19</td>
<td>HA</td>
<td>-0.101</td>
</tr>
<tr>
<td>C20</td>
<td>CA</td>
<td>-0.1481</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>-0.0416</td>
</tr>
</tbody>
</table>
Table 2:

<table>
<thead>
<tr>
<th></th>
<th>-ΔG<sup>a</sup> (kcal/mol)</th>
<th>-ΔH (kcal/mol)</th>
<th>T<sub>m</sub><sup>b</sup> (°C)</th>
<th>ΔΔG<sup>c</sup> (kcal/mol)</th>
<th>ΔΔH<sup>d</sup> (kcal/mol)</th>
<th>ΔT<sub>m</sub><sup>e</sup> (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABP-G1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mer</td>
<td>6.60 (8.48)</td>
<td>64.28 (68.69)</td>
<td>35.04 (34.69)</td>
<td>0.11</td>
<td>-4.41</td>
<td>0.35</td>
</tr>
<tr>
<td>10 mer</td>
<td>10.82 (10.65)</td>
<td>76.48 (76.11)</td>
<td>44.46 (43.79)</td>
<td>0.17</td>
<td>0.38</td>
<td>0.67</td>
</tr>
<tr>
<td>11 mer</td>
<td>11.27 (12.06)</td>
<td>78.59 (83.70)</td>
<td>46.12 (48.66)</td>
<td>-0.79</td>
<td>-5.11</td>
<td>-2.54</td>
</tr>
<tr>
<td>12 mer</td>
<td>11.38 (12.99)</td>
<td>77.40 (89.10)</td>
<td>46.74 (51.46)</td>
<td>-1.61</td>
<td>-11.71</td>
<td>-4.72</td>
</tr>
<tr>
<td>13 mer</td>
<td>12.38 (15.50)</td>
<td>87.12 (105.85)</td>
<td>49.42 (57.22)</td>
<td>-3.12</td>
<td>-18.73</td>
<td>-7.80</td>
</tr>
<tr>
<td>16 mer</td>
<td>14.53 (17.82)</td>
<td>109.16 (121.68)</td>
<td>53.49 (61.16)</td>
<td>-3.29</td>
<td>-12.53</td>
<td>-7.68</td>
</tr>
<tr>
<td>FABP-G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mer</td>
<td>8.86 (8.48)</td>
<td>59.82 (68.69)</td>
<td>36.14 (34.69)</td>
<td>0.38</td>
<td>-8.87</td>
<td>1.45</td>
</tr>
<tr>
<td>10 mer</td>
<td>9.34 (10.65)</td>
<td>59.75 (76.11)</td>
<td>38.59 (43.79)</td>
<td>-1.31</td>
<td>-16.36</td>
<td>-5.21</td>
</tr>
<tr>
<td>11 mer</td>
<td>10.24 (12.06)</td>
<td>70.69 (83.70)</td>
<td>42.38 (48.66)</td>
<td>-1.83</td>
<td>-13.02</td>
<td>-6.28</td>
</tr>
<tr>
<td>12 mer</td>
<td>10.93 (12.99)</td>
<td>75.29 (89.10)</td>
<td>45.08 (51.46)</td>
<td>-2.07</td>
<td>-13.82</td>
<td>-6.38</td>
</tr>
<tr>
<td>13 mer</td>
<td>12.68 (15.50)</td>
<td>89.23 (105.85)</td>
<td>50.27 (57.22)</td>
<td>-2.82</td>
<td>-16.62</td>
<td>-6.95</td>
</tr>
<tr>
<td>16 mer</td>
<td>15.00 (17.82)</td>
<td>109.61 (121.68)</td>
<td>54.88 (61.16)</td>
<td>-2.82</td>
<td>-12.08</td>
<td>-6.29</td>
</tr>
</tbody>
</table>

^aThe average standard deviations for -ΔG, -ΔH and T_m are ± 0.3, ±6.3 and 0.5, respectively.

^bT_m values taken from 1/T_m⁻¹ - InC_v/4 Meltwin plots.

^cΔΔG = ΔG (modified duplex) - ΔG (control duplex).

^dΔΔH = ΔH (modified duplex) - ΔH (control duplex).

^eΔT_m = T_m (modified duplex) - T_m (control duplex).
Table 3:

<table>
<thead>
<tr>
<th></th>
<th>(-\Delta G^a) (kcal/mol)</th>
<th>(-\Delta H) (kcal/mol)</th>
<th>(T_m^b) (°C)</th>
<th>(\Delta \Delta G^c) (kcal/mol)</th>
<th>(\Delta \Delta H^d) (kcal/mol)</th>
<th>(\Delta T_m^e) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAF-G1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mer</td>
<td>9.19 (8.76)</td>
<td>70.22 (68.63)</td>
<td>37.76 (35.79)</td>
<td>0.44</td>
<td>1.60</td>
<td>1.97</td>
</tr>
<tr>
<td>10 mer</td>
<td>11.05 (10.53)</td>
<td>74.77 (75.26)</td>
<td>45.68 (43.33)</td>
<td>0.53</td>
<td>-0.48</td>
<td>2.36</td>
</tr>
<tr>
<td>11 mer</td>
<td>11.76 (12.34)</td>
<td>81.61 (83.87)</td>
<td>47.80 (48.98)</td>
<td>-0.58</td>
<td>-2.26</td>
<td>-1.18</td>
</tr>
<tr>
<td>12 mer</td>
<td>11.38 (12.62)</td>
<td>72.99 (89.41)</td>
<td>47.43 (50.93)</td>
<td>-1.24</td>
<td>-16.42</td>
<td>-3.51</td>
</tr>
<tr>
<td>13 mer</td>
<td>12.59 (15.35)</td>
<td>86.72 (103.74)</td>
<td>50.32 (57.15)</td>
<td>-2.76</td>
<td>-17.02</td>
<td>-6.83</td>
</tr>
<tr>
<td>16 mer</td>
<td>16.51 (18.81)</td>
<td>128.03 (131.70)</td>
<td>56.26 (61.91)</td>
<td>-2.30</td>
<td>-3.67</td>
<td>-5.65</td>
</tr>
<tr>
<td>FAF-G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mer</td>
<td>9.31 (8.76)</td>
<td>65.85 (68.63)</td>
<td>38.42 (35.79)</td>
<td>0.56</td>
<td>-2.78</td>
<td>2.63</td>
</tr>
<tr>
<td>10 mer</td>
<td>9.44 (10.53)</td>
<td>58.98 (75.26)</td>
<td>39.19 (43.33)</td>
<td>-1.09</td>
<td>-16.28</td>
<td>-4.14</td>
</tr>
<tr>
<td>11 mer</td>
<td>10.11 (12.34)</td>
<td>63.52 (83.87)</td>
<td>42.05 (48.98)</td>
<td>-2.23</td>
<td>-20.35</td>
<td>-6.93</td>
</tr>
<tr>
<td>12 mer</td>
<td>10.51 (12.62)</td>
<td>70.88 (89.41)</td>
<td>43.65 (50.93)</td>
<td>-2.11</td>
<td>-18.53</td>
<td>-7.29</td>
</tr>
<tr>
<td>13 mer</td>
<td>12.18 (15.35)</td>
<td>85.06 (103.74)</td>
<td>48.93 (57.15)</td>
<td>-3.17</td>
<td>-18.88</td>
<td>-8.23</td>
</tr>
<tr>
<td>16 mer</td>
<td>15.12 (18.81)</td>
<td>111.70 (131.70)</td>
<td>54.91 (61.91)</td>
<td>-3.69</td>
<td>-20.00</td>
<td>-7.00</td>
</tr>
</tbody>
</table>

\(^a\)The average standard deviations for \(-\Delta G\), \(-\Delta H\) and \(T_m\) are ± 0.14, ± 4.8 and 0.4, respectively.

\(^b\)\(T_m\) values taken from \(1/T_m^{-1} - \ln C/4\) Meltwin plots.

\(^c\)\(\Delta \Delta G = \Delta G\) (modified duplex) - \(\Delta G\) (control duplex).

\(^d\)\(\Delta \Delta H = \Delta H\) (modified duplex) - \(\Delta H\) (control duplex).

\(^e\)\(\Delta T_m = T_m\) (modified duplex) - \(T_m\) (control duplex).
Table 4:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>ΔH^* (kcal/mol)</th>
<th>ΔS^* (eu)</th>
<th>$\Delta G_{37,^\circ C}$ (kcal/mol)</th>
<th>Tm* (°C)</th>
<th>ΔH^{mb} (kcal/mol)</th>
<th>$\Delta G_{37,^\circ C}^{\text{mb}}$ (kcal/mol)</th>
<th>ΔTm^d (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 mer</td>
<td>71.8 (71.4)</td>
<td>207.3 (206.1)</td>
<td>7.6 (7.5)</td>
<td>43.3 (42.9)</td>
<td>-0.4</td>
<td>-0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>10 mer</td>
<td>72.1 (72.1)</td>
<td>202.5 (203.4)</td>
<td>9.3 (9.0)</td>
<td>51.3 (50.0)</td>
<td>0</td>
<td>-0.3</td>
<td>1.3</td>
</tr>
<tr>
<td>11 mer</td>
<td>69.6 (74.4)</td>
<td>194.8 (207.9)</td>
<td>9.2 (9.9)</td>
<td>51.5 (53.8)</td>
<td>4.8</td>
<td>0.7</td>
<td>-2.3</td>
</tr>
<tr>
<td>12 mer</td>
<td>70.0 (82.0)</td>
<td>195.8 (228.7)</td>
<td>9.3 (11.1)</td>
<td>51.6 (56.9)</td>
<td>12</td>
<td>1.8</td>
<td>-5.3</td>
</tr>
<tr>
<td>13 mer</td>
<td>71.6 (87.2)</td>
<td>199.5 (342.2)</td>
<td>9.7 (12.1)</td>
<td>53.4 (59.8)</td>
<td>15.6</td>
<td>2.4</td>
<td>-6.4</td>
</tr>
<tr>
<td>16 mer</td>
<td>90.6 (98.5)</td>
<td>258.3 (273.4)</td>
<td>10.5 (13.8)</td>
<td>52.8 (63.1)</td>
<td>7.9</td>
<td>3.3</td>
<td>-10.3</td>
</tr>
</tbody>
</table>

FABP-G2

<table>
<thead>
<tr>
<th>Sequence</th>
<th>ΔH^* (kcal/mol)</th>
<th>ΔS^* (eu)</th>
<th>$\Delta G_{37,^\circ C}$ (kcal/mol)</th>
<th>Tm* (°C)</th>
<th>ΔH^{mb} (kcal/mol)</th>
<th>$\Delta G_{37,^\circ C}^{\text{mb}}$ (kcal/mol)</th>
<th>ΔTm^d (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 mer</td>
<td>66.5 (71.4)</td>
<td>189.5 (206.1)</td>
<td>7.8 (7.5)</td>
<td>45.0 (42.9)</td>
<td>4.9</td>
<td>-0.3</td>
<td>2.1</td>
</tr>
<tr>
<td>10 mer</td>
<td>64.6 (72.1)</td>
<td>182.1 (203.4)</td>
<td>8.1 (9.0)</td>
<td>46.9 (50.0)</td>
<td>7.5</td>
<td>0.9</td>
<td>-3.1</td>
</tr>
<tr>
<td>11 mer</td>
<td>67.8 (74.4)</td>
<td>191.1 (207.9)</td>
<td>8.6 (9.9)</td>
<td>48.5 (53.8)</td>
<td>6.6</td>
<td>1.3</td>
<td>-5.3</td>
</tr>
<tr>
<td>12 mer</td>
<td>74.8 (82.0)</td>
<td>212.1 (228.7)</td>
<td>9.1 (11.1)</td>
<td>49.7 (56.9)</td>
<td>7.2</td>
<td>2</td>
<td>-7.2</td>
</tr>
<tr>
<td>13 mer</td>
<td>84.4 (87.2)</td>
<td>239.2 (242.2)</td>
<td>10.2 (12.1)</td>
<td>52.8 (59.8)</td>
<td>2.8</td>
<td>1.9</td>
<td>-7</td>
</tr>
<tr>
<td>16 mer</td>
<td>96.7 (98.5)</td>
<td>273.0 (273.4)</td>
<td>12.1 (13.8)</td>
<td>57.3 (63.1)</td>
<td>1.8</td>
<td>1.7</td>
<td>-5.8</td>
</tr>
</tbody>
</table>

Standard deviation ±3 ±8 ±0.3 ±0.3

aTm value is the maximum point of the DSC curve.

bΔΔG = ΔG (modified duplex) - ΔG (control duplex).

cΔΔH = ΔH (modified duplex) - ΔH (control duplex).

dΔTm = Tm (modified duplex) - Tm (control duplex).
Table 5:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>shape of binding isotherm (C)</th>
<th>reaction stoichiometry (N), number of sites</th>
<th>binding constants (K), [M]^{-1} (x10^7)</th>
<th>Enthalpy(ΔH), kcal/mol</th>
<th>Entropy(ΔS), cal/K·mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>unmodified</td>
<td>1240</td>
<td>0.99±0.0024</td>
<td>49.9±7.58</td>
<td>-113.3±0.653</td>
<td>-340</td>
</tr>
<tr>
<td>FABP-G1</td>
<td>505</td>
<td>1.08±0.0117</td>
<td>18.7±8.14</td>
<td>-97.82±2.025</td>
<td>-290</td>
</tr>
<tr>
<td>FABP-G2</td>
<td>135</td>
<td>0.92±0.0083</td>
<td>5.9±1.15</td>
<td>-98.44±1.627</td>
<td>-295</td>
</tr>
<tr>
<td>FAF-G1</td>
<td>635</td>
<td>0.98±0.0093</td>
<td>25.9±11.1</td>
<td>-93.23±1.735</td>
<td>-274</td>
</tr>
<tr>
<td>FAF-G2</td>
<td>476</td>
<td>1.04±0.0043</td>
<td>18.3±3.01</td>
<td>-94.26±0.822</td>
<td>-278</td>
</tr>
</tbody>
</table>
Table 6:

<table>
<thead>
<tr>
<th>sequences</th>
<th>[C] (nM)</th>
<th>FABP</th>
<th>FAF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unmodified</td>
<td>G₁</td>
<td>G₂</td>
</tr>
<tr>
<td>9mer</td>
<td>300</td>
<td>16.5</td>
<td>12</td>
</tr>
<tr>
<td>10mer</td>
<td>500</td>
<td>0.515</td>
<td>0.343</td>
</tr>
<tr>
<td>11mer</td>
<td>500</td>
<td>0.072</td>
<td>0.216</td>
</tr>
<tr>
<td>12mer</td>
<td>750</td>
<td>0.028</td>
<td>0.139</td>
</tr>
<tr>
<td>13mer</td>
<td>750</td>
<td>0.02</td>
<td>0.073</td>
</tr>
<tr>
<td>16mer</td>
<td>750</td>
<td>0.013</td>
<td>0.049</td>
</tr>
</tbody>
</table>
MANUSCRIPT II

(to be submitted to Journal of Nature Structural & Molecular Biology)

Probing the Effect of Bulky Lesion-Induced Replication Fork Conformational Heterogeneity Using 4-Aminobiphenyl-Modified DNA

Ang Cai, † Ke Bian, † Bongsup P. Cho, and Deyu Li

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy,
University of Rhode Island, Kingston, Rhode Island 02881, United States.

Author Contributions

† A.C. and K.B. contributed equally to this work.

Corresponding Author

*E-mail: deyuli@uri.edu

Present address:
Department of Biomedical and Pharmaceutical Sciences,
University of Rhode Island
7 Greenhouse Road,
Kingston, RI, 02881, USA
ABSTRACT

Bulky organic carcinogens are usually activated in vivo and form DNA adducts. Some of these DNA adducts exist in multiple conformations that are slowly interconverted to one another. For example, the dG-C8-lesion of the human bladder carcinogen 4-aminobiphenyl (ABP) has been reported to exist in a sequence-dependent mixture of B/S conformations. Different conformations have been shown to lead to different kinetic capacities, binding capacities, and ultimately different translesion synthesis and transcription capacities. Although rare, conformation-dependent mutagenic and repair patterns have been reported. For example, the bulky N-acetylaminofluorene at G3 in the NarI sequence (5′-G1G2CG3CN-3′) induces a high frequency of −2 frameshift mutations, whereas the adducts on G1 and G2 are not mutagenic. Results show why mutagenic hotspots exist in the genome. However, the conformation-specific replication block, which is more relevant to replication, has not been reported. Such research deficiency may be due to the dynamicity of the replication block process. As such, the replication block becomes difficult to capture by current end-point assays, which usually detect either the ensemble of consequence of all the conformers or the culmination of all cellular behaviors, such as mutagenicity or survival rate. In Manuscript I, we showed very unusual sequence-dependent conformational heterogeneities involving FABP-modified DNA under different sequence contexts (TG1*G2T [67%B:33%S] and TG1G2*T [100%B], G*, FABP, N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl). Different biological consequences are believed to be linked to different adducts. In the present study, we attempted to correlate the replication block to different conformations from the single FABP-modified DNA lesion. We utilized a combination
of biophysical (SPR and steady-state kinetics) tools to reveal the differences \textit{in vitro}.

The results were discussed in terms of conformational differences.
INTRODUCTION

The human genome is under constant assault from the environment. DNA-damage-induced mutations are known to trigger chemical carcinogenesis1-2. Therefore, understanding the mechanisms of DNA mutations is important. Arylamines belong to a notorious group of environmental mutagens/carcinogens that produce bulky DNA adducts \textit{in vivo}3. These lesions have been well documented to adopt the following three unique conformational motifs: the major groove B-type (B), stacked (S), or minor groove wedge (W). As such, the lesions complicate mutational and repair outcomes (Figure 1a)4.

4-Aminobiphenyl (ABP) is a well-known human bladder carcinogen that forms preferentially dG-C8-substituted adducts (dG-C8-ABP) (Figure 1b)5-7. Our structural studies (Manuscript I) showed that fully paired duplexes containing dG-C8-FABP (fluorine-labeled ABP, FABP, N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl) adopted a 67\%:33\% mixture of the B- and S-conformers in the TG\textsubscript{1}*G\textsubscript{2}T (G*=FABP) sequence context at 25 °C. Meanwhile, the same lesion in the TG\textsubscript{1}G\textsubscript{2}*T context exhibited exclusively the B-type conformation under identical experimental conditions. When a replication polymerase encounters a bulky DNA lesion, the polymerase likely stalls or completely stops DNA synthesis. In this case, the lesion influences whether the DNA replication will be error free or error prone. The aforementioned striking sequence effect warrants systematic polymerase binding studies. Vaidyanathan et al.8 probed into the sequence effect of dG-C8-AF, the ABP analog, on nucleotide insertion efficiencies catalyzed by the Klenow fragment (Kf-exo−) on TG*A and CG*A sequences. The
researchers found that the S conformer of CG*A thermodynamically favors the insertion of A over C at the lesion site. Xu et al. reported that Kf-exo− is a strong binder to template/primer junctions, but with minimal nucleotide selectivity against modified DNA. The sequence-dependent conformational heterogeneity may play an important role in DNA replication and mutation. In the present study, we hypothesize that different conformations lead to different extents of polymerase binding affinities, kinetics, and replication blocks, ultimately resulting in complex mutational outcomes. We also conducted SPR and steady-state enzyme kinetics in vitro to probe into the effect of ABP-induced conformational heterogeneity.

MATERIALS AND METHODS

Model Oligonucleotide DNA sequences.

FABP-modified 16-mer templates (5′-CTTCTG1G2TCCTCATTCC-3′) were prepared in accordance with the published procedures: two mono-adducts (d(5′-CTTCTG1*G2TCCTCATTCC-3′)) (G*=FABP) (G1* adduct) and (d(5′-CTTCTG1G2*TCCTCATTCC-3′)) (G2* adduct). 5′-biotin-labeled 31-mer oligonucleotides, 5′-phosphorylated and 3′-dideoxy-A 53-mer, 5′-phosphorylated and 3′-dideoxy-C 54-mer were purchased from IDT (Integrated DNA Technologies, Inc. Coralville, IA) in desalted form and purified by reverse-phase high-performance liquid chromatography (RP-HPLC). Kf-exo− (D355A, E357A) was purchased from NEB Inc. (Ipswich, MA). All high-performance liquid chromatography (HPLC) solvents were purchased from Fisher Inc. (Pittsburgh, PA). The modified oligonucleotides were purified by HPLC (Thermo Scientific, Madison, WI) on a Phenomenex Luna C18
analytical column (100 × 46 mm, 3.0 μm) (Phenomenex, Torrance, CA). For the FABP-modified biotinylated 31-mer sequences, a 0.2 mL/min flow rate was used in a 48 min linear gradient profile (2% to 26%, v/v) acetonitrile with 100 mM TEAA buffer (pH 7.0) in a mobile phase (Figure 2a).

HPLC-based Steady-State Kinetic Analysis

The extension efficiency of Kf-exo\(^-\) polymerase opposite G\(_1^*\) and G\(_2^*\) adducts were determined by steady-state kinetic experiments as described by published reports\(^{11-14}\). All reactions were performed using Kf-exo\(^-\) (100 nM) and primers (5 μM) in NEB buffer 2 (New England Biolabs, MA) at 22 °C. The primers (8-mer to 12-mer) were pre-annealed with 6.75 μM FABP-modified or unmodified 16-mer templates by heating up to 70 °C and slowly cooling down to room temperature. Five different concentrations of dCTP or dATP (0, 12.5, 25, 50, and 100 μM) were used to initialize nucleotide insertion. All reactions were quenched by adding ethylene diamine tetraacetic acid followed by immediately denaturing at 80 °C. The initial velocity of each reaction within the steady-state range was then obtained by performing every reaction within a short time period from 5 s to 30 s. The extended and unextended primers were separated by anion-exchange HPLC at 40%–60% B, 6.5 min gradient conditions (A: water and B: 1.5 M ammonium acetate) and quantified by absorbance of UV at 260 nm. All reactions were performed at 22 °C in triplicate, and the results were analyzed through the GraphPad Prism 5 software by using the Lineweaver–Burke model. The inhibition curves were fitted to the equation \(1/V = 1/V_{\text{max}} + (K_M/V_{\text{max}})/[S_{\text{dCTP}}]\). The relative insertion efficiency \(f_{\text{ins}}\) was obtained as \((k_{\text{cat}}/K_M)_{\text{modified}}/(k_{\text{cat}}/K_M)_{\text{unmodified}}\).
SPR Measurements

FABP-modified Hairpin Template/Primer Constructs. 5′-Biotinylated 31-mer containing dG-C8-FABP in the “-TG\textsubscript{1}G\textsubscript{2}T-” sequence context was used in SPR analysis following the reported procedures9,15-16. The two FABP-modified biotinylated 31-mer G\textsubscript{1}* and G\textsubscript{2}* adducts were separated by RP-HPLC and characterized by MALDI-TOF mass spectrometry (MS)17. An 84-mer and an 85-mer hairpin–template–primer were prepared by following the reported protocols18. Briefly, two different lengths of hairpin DNA sequences (53- and 54-mer) were prepared. These two hairpin sequences were phosphorylated at their 5′-terminals, but their 3′-terminals were modified with ddA and ddC, respectively, to prevent further primer elongation (Figure 3a). The biotinylated 31-mer modified G\textsubscript{1}* adduct and 54-mer hairpin were desalted by G-25 spin columns and annealed together by heating to 95 °C for 5 min and cooling to room temperature. The mixture solution was ligated in a buffer containing 4,000 units of T4 ligase enzyme for 16 h at room temperature. The resulting 85-mer oligonucleotides were purified in 15% denaturing polyacrylamide gel and extracted using the electroelution method followed by desalting by again using G-25 spin columns. The pure biotinylated 85-mer was finally purified by RP-HPLC. G\textsubscript{2}* adduct biotinylated 84-mer and unmodified biotinylated 84- and 85-mers were also prepared similarly. All the 84- and 85-mer oligonucleotides were identified by the 15% denaturing polyacrylamide gel (Figure 4).

Immobilization of Streptavidin (SA) on CM5 S Chip and DNA Coating
SPR experiments were carried out using Biacore T200 (GE Healthcare, Piscataway, NJ). The SA via the amine coupling kit was immobilized on flow cells on the carboxymethylated dextran-coated CM5 S chip by following the reported procedures. After SA immobilization at around 2,000 RU on the flow cells, the chip surface was washed with 50 mM NaOH for 60 s five times to reach below 20 RU. Then, the running buffer was injected around three times, and the system was equilibrated with running buffer for ~2 h. The 84- and 85-mer unmodified and modified G$_1$* and G$_2$* biotinylated DNA sequences (2 nM) were injected over the flow cells (2 to 4) for 90-120 s to achieve 5-6 RU. The surface was stabilized with running buffer for 3 h before conducting SPR binding affinity experiments.

Real-time Kinetic Analysis

Initially, the SPR system was primed at least three times with running buffer and zero-concentration injections to condition the plasmon surface. The DNA was coated on the SA surface of flow cells 2 to 4 (cell 1 as blank reference). Surface testing, regeneration buffer scouting, and mass transport limitation test were conducted prior to kinetics experiments following previous reports. DNA coating around 4-5 RU did not show any impact of mass transport. The steady-state affinity analysis of Kf-exo$^-$ binding to unmodified and modified DNA was analyzed in the absence (binary) and presence of dNTPs (ternary) by varying Kf-exo$^-$ concentrations.

For the binary system, Kf-exo$^-$ was injected without dNTPs over the DNA surface in varying concentrations (0-25 nM) and repeated twice as described by previous reports.
Briefly, the 1× HBS-P running buffer (containing 100 μg/mL bovine serum albumin [BSA] and 5 mM MgCl₂) with six different concentrations Kf-exo⁻ (0-25 nM) was injected for 30 s at a flow rate of 100 μL/min over the cells. Afterward 0.05% SDS was applied as regeneration solution at a flow rate of 100 μL/min over the surface for 30 s. The surface was stabilized with running buffer for 15 min after a regeneration step between different concentration circles.

For the ternary system, dNTPs were injected with the HBS-P running buffer for comparison. 1× HBS-P running buffer (100 μg/mL BSA, 5 mM MgCl₂, and 100 μM individual dNTPs) with varying concentrations of Kf-exo⁻ was injected over the surface. For both binary and ternary systems, sensorgrams were fitted by using a 1:1 Langmuir model, and the binding affinity constants (K_D) were determined using steady-state affinity analysis in the BIA evaluation software v 1.0.

RESULTS

Model Systems

For SPR binding experiments, we constructed two biotinylated hairpin-based template–primer strands (Figure 3a), 85-mer G₁* adduct and 84-mer G₂* adduct (G* = FABP). Specifically, two FABP-modified–biotin–31-mer DNA sequences (TG₁*G₂T and TG₁G₂*T) were separated, purified, and characterized individually by enzyme digestion/MALDI-MS⁹ (see below). The 54-mer hairpin DNA was annealed and ligated to the biotin–31-mer TG₁*G₂T oligonucleotide, whereas the 53-mer hairpin DNA was ligated to the biotin–31-mer TG₁G₂*T oligonucleotide. The hairpin structures were used
to improve the stability of the oligonucleotide during SPR experiments and the lesion G1* and G2* adduct were at the 21st and 22nd bases, respectively, to avoid clash between the polymerase protein and the gold chip surface9.

For steady-state kinetics experiments, two 16-mer G1* or G2* template strands were each annealed to various lengths of complementary strands (8-mer to 11-mer) to create n-3, n-2, n-1, and n for the G1* adduct and n-2, n-1, n, and n+1 for G2* (n is the lesion site) (see Manuscript I).

MALDI-TOF Characterization

The FABP-modified biotin–31-mer oligos were characterized by exonuclease enzyme digestion followed by MALDI-TOF MS in accordance with the published procedures9,17. In the present case, 5'-3' exonuclease digestion was not possible because of the biotin group present at the 5' end of the DNA. Figure 2b shows the MALDI-TOF MS spectra of the 3'-5' snake venom phosphodiesterase (SVP) exonuclease digestions of the biotin–31-mer G1* adduct at different time points (0, 1, 4, 6, 7, 8, and 10 min). The m/z of 9,804 (theoretical 9,803) at 0 min represents the control mass-to-charge ratio. Within 6 min of 3'-5' exonuclease digestion, the lower masses appeared corresponding to the 27-mer to 21-mer fragments. The m/z = 6,788 (theoretical 6,787) fragment, which persisted in 6 min to 10 min was assigned to the G1*-FABP-modified 21-mer. These results confirmed the first eluting peak (peak 1) from the HPLC profile (Figure 2b) as the biotin–31-mer TG1*G2T. Figure 2c presents the MALDI-TOF MS spectra of the HPLC peak 2 with 3'-5' exonuclease digestions. The digestions were fast in the first 4 min
showing the m/z range from 9,803 to 7,116. However, the reaction stalled at m/z 7,116 from 4-10 min corresponding to the 22-mer fragment containing the FABP-modified guanine (theoretical m/z = 7,116). These results confirm peak 2 as the G₂*-FABP-modified biotin–31-mer sequence.

The 84- and 85-mer biotinylated oligonucleotides were purified and identified by 15% denaturing polyacrylamide gel (Hercules, CA). Figure 4 reveals the denaturing gel profiles of unmodified/modified 84- and 85-mer ligated oligonucleotides, biotin–31-mer, and 53-mer/54-mer non-ligated oligonucleotides. For the 85-mer control, all the biotin–31-mer and 54-mer hairpins were ligated. As for the 84-mer control, 85-mer G₁*, and 84-mer G₂*, excessive biotin–31-mer, 54-mer, and 53-mer were observed. The ligated 85-mer control/ G₁* and 84-mer control/ G₂* were employed for SPR experiments.

HPLC-based Steady-state Kinetics

We conducted steady-state experiments to investigate the impact of conformational heterogeneity on nucleotide insertion kinetics¹⁹. The *E. coli* exonuclease-deficient Kf-exo⁻ was used for single-nucleotide incorporation, and the results are summarized in Table 1. dATP was added to 16/8-mer and 16/11-mer systems, whereas dCTP was added to 16/9-mer and 16/10-mer sequences.

dCTP: Specifically, adding dCTP to the n-1 (16/9-mer) G₂* adduct elongated the oligomer to 10- and 11-mer, whereas the n-1 (16/10-mer) G₁* adduct produced a single
The 10- and 11-mer mixture from the G₂* adduct sequence was difficult to quantify; thus, reduction of the starting 9-mer was employed to determine the kinetics analysis.

The n-1 (16/9-mer) G₂* adduct showed a K_m value (5.7 µM) similar to that of the control (5.8 µM); such similarity indicates equal affinity (Table 1). However, the insertion efficiency f_{ins} of dCTP opposite -G₂* was 5-fold lower than that of the unmodified control (0.24 :1) (Table 1). By contrast, the K_m of the G₁* adduct showed a lower affinity (23.4 µM) than that of the control (7.4 µM). The insertion efficiency f_{ins} in G₁* was three times lower than the control (0.33 to 1). As shown by the Lineweaver–Burke enzyme inhibition model (Figure 5a), the (16/10-mer) G₁* adduct and its control intersected on the Y-axis. A competitive inhibition behavior was indicated. By contrast, the n-1 16/9-mer G₂* adduct and its control merged at the x-axis. This behavior can only be explained as non-competitive inhibition (Figure 5b). When the n-1 (16/9-mer) G₂* adduct elongated to 10-mer (n) and 11-mer (n+1), few 10-mer primers but most of the 11-mer primers were observed. This result was achieved because the bulky FABP on the G₂ at the lesion site (n) did not block the replication from n-1 to n+1.

dATP: The conformational and long-range lesion effect was examined by initiating the primer elongation with a 16/8-mer template/primer that produces n-2 for G₂* and n-3 for G₁*. Figure 6a presents the results at 10 min. In the control, ~70% of the 8-mer was extended to 9-mer. With adduct on G₁, ~40% of the 8-mer was converted to 9-mer. This result is a moderate pre-lesion effect at G₁*. However, G₂* blocked ~80% of the 8-mer
converting to 9-mer; this effect indicates a much stronger pre-lesion effect than that of G$_1^*$ This result is not surprising because the 8-mer primer is closer to the G$_2^*$ adduct than the G$_1^*$ adduct. In the 11-mer (Figure 6b), unmodified control exhibited 90% of dATP insertion efficiency. However, only ~20% of the 11-mer was elongated to 12-mer opposite the G$_1^*$ lesion. This finding indicates a strong post-lesion effect. Moreover, only ~55% of the 11-mer was converted to 12-mer in the n+1 G$_2^*$. These results suggest the significant retardation of insertion rates close to the lesion site.

Kf-exo$^-$ SPR binding Kinetics

Binary System—Figure 3b shows the sensorgrams for the binary binding between Kf-exo$^-$ and unmodified controls (85-mer/84-mer TGGT) or modified sequences (85-mer TG$_1^*$G$_2^*$T/84-mer TG$_1^*$G$_2^*$T). These sequences represent a true replication fork for the G$_1^*$ and G$_2^*$, respectively. Kf-exo$^-$ showed a much stronger binding to the modified 85-mer TG$_1^*$G$_2^*$T and 84-mer TG$_1^*$G$_2^*$T sequences than to their unmodified controls (85-mer/84-mer TGGT), respectively (Table 2). Specifically, the binding affinity (K$_D$) of Kf-exo$^-$ in the 85- and 84-mer was reduced by 8.3- and 5.6-fold, respectively, for the G$_1^*$ and G$_2^*$ adducts related to the controls. The differences were more striking in the dissociation rates (85-mer TGGT k$_d$: 0.84 s$^{-1}$ vs. 85-mer TG$_1^*$G$_2^*$T k$_d$: 0.17 s$^{-1}$; 84-mer TGGT k$_d$: 0.03 s$^{-1}$ vs. 84-mer TG$_1^*$G$_2^*$T k$_d$: 0.009 s$^{-1}$). The K$_d$ ratio (K$_d$-modified/K$_d$-control) between G$_1$ and G$_2$ was (20%:30%) showing 1.5 times difference (Figure 3c). In contrast to K$_d$, the K$_a$ ratios of G$_1$ and G$_2$ were close to each other. This closeness indicates similar association rates. The net stabilization energies for the binary system were positive (Table 3). Although only one base length (dC) differed between the 84-
mer and 85-mer, the binding affinity of the unmodified 84-mer was 18.2-fold tighter than that of the 85-mer. Similarly, the K_D of the 84-mer TG$_1$G$_2$*T was 12.2-fold greater than that of the 85-mer TG$_1$*G$_2$T.

Ternary System— Kf-exo$^-$ bound tightly to the unmodified controls when the correct dCTP was introduced in the ternary system (Figure 7). In the unmodified 85-mer, the binding affinities of dATP and dGTP were exceedingly weak to be measured, and the K_D for the dTTP was reduced by 234-fold relative to the correct dCTP. The binding affinities of the dATP, dGTP, and dTTP to the 84-mer controls were reduced by 315, 284, and 89 fold, respectively, relative to that of the dCTP (Table 2). However, nucleotide selectivity was extremely low for the modified ternary complexes. The K_D value for the 85-mer TG$_1$*G$_2$T was only reduced by ~5-fold in the dATP, dGTP, and dTTP than that of dCTP. Similar results were obtained for the 84-mer G$_2$* adduct, where binding tightness was reduced by ~2-fold in the dATP, dGTP, and dTTP compared with that of dCTP. Moreover, as in the binary system, slower dissociation rates were observed for the unmodified and G$_2$* modified 84-mers. The K_D values of dCTP, dATP, dGTP, and dTTP in the unmodified and G$_2$* modified 84-mers were smaller than those of the unmodified 85-mer (5- and 13-fold smaller in dCTP and dTTP) and G$_1$* modified 85-mer TG$_1$*G$_2$T (4-, 13-, 10-, and 12-fold smaller in dCTP, dATP, dGTP, and dTTP, respectively).

DISCUSSION
In Manuscript I, we conducted systematic 19F-NMR, CD, DSC, and SPR studies for the elongation of the 16-mer $G_1^*G_2T$ and $G_1G_2^*T$ (G^*=FABP) template sequences. These model systems mimic a TLS process involving the bulky FABP lesion in two different conformational states, that is, G_1 and G_2 modification resulted in 67%:33% of B:S and 100% B population ratios, respectively. These sequence-dependent conformational complexities appeared to persist at various elongation positions, including the replication fork. The B-conformer is a major thermodynamic stabilizer in duplex settings, whereas the S-conformer is a destabilizer. The opposite was the case for ss/ds duplex sequences. In particular, the S-conformation promotes lesion stacking with nascent base pairs at the replication fork. SPR results reveal that the S-conformation increased the binding affinity with the complementary strands in the order of $G_1^* > G_2^*$.

In the present work, we examined the effects of these unusual sequence effects on polymerase binding (binary and ternary) and nucleotide insertion kinetics.

Improvement in Model Hairpin Oligonucleotide Construction

We previously reported a construction of biotinylated hairpin-based template–primer strand for DNA–polymerase SPR binding studies. The general strategy is to ligate a biotinylated arylamine-modified 31-mer sequence with 52-mer hairpin DNA to form an 83-mer hairpin, followed by adding a ddNTP to the 3’-end to prevent primer elongation. However, ddNTP addition is low yielding, and the separation of ligated products is difficult. In the current study, successfully directly ligated a biotinylated modified 31-mer with ddNTP-containing 53- and 54-mer hairpin DNA. This process improved the yield (from ~10% to ~ 30%), and the products were readily separated.
Previously, individual dNTPs (100 μM) were mixed with varying concentrations of Kf-exo in sample buffer and injected over the surface without any dNTP in the running buffer. In this experiment, two variables were involved, that is, dNTPs and Kf-exo. However, in the updated buffer system, each dNTP was prepared in running buffer. Thus, only one variable, Kf-exo, was introduced onto the chip surface. This change increased the system stability and accuracy in simulating a TLS system.

Lesion and Sequence Effects on Binding Affinities and Kinetics

Tight binding of Kf-exo with native unmodified dG was observed when the correct nucleotide dCTP was presented in both 85-mer and 84-mer. This result strongly agreed with our expectation that showed high nucleotide selectivity ($K_D^{dCTP} \ll K_D^{dTTP} < K_D^{dATP} \sim K_D^{dGTP}$). Meanwhile, an exceptionally tighter binding of Kf-exo was found for the FABP-modified sample relative to the control, i.e., the K_D of the 85-mer G1* and 84-mer G2* interactions were 8.3 and 5.6 fold higher than the corresponding native controls, respectively. Adduct-induced tighter binding affinity with Kf-exo has been reported9,20 and may be due to the interactions between the bulky FABP and the nearby hydrophobic amino-acid residues in the active site of the Kf-exo. In the ternary system, nucleotide selectivity was low. In particular, the K_D of the dCTP at the opposite G1* and G2* was only ~5- and ~2-fold tighter than the incorrect dATP, dGTP, and dTTP, respectively. This result is a strong lesion effect. We observed that the usual 1:1 model fittings did not achieve a clean fit of dCTP for G1* in the ternary system. This result might be due to the S/B conformational heterogeneity observed at G1*. Our steady-state kinetics results indicated the S/B-conformeric G1* was involved in competitive
inhibition. In other words, the S/B conformation at G1* was not as accommodating possibly because of some unfavorable interaction of the bulky FABP lesion with the incoming dCTP in a competitive manner. The unfavorable interactions may be caused by the competition of S-conformer with dCTP opposite of the guanine. However, the B-conformeric G2* accommodated an incoming nucleotide, and this situation resulted in non-competitive inhibition. The equal affinity (Km) between G2* and its control revealed that the B-conformation in the major groove may not affect the dCTP insertion process. This finding might explain the greater KD of dCTP at G1* over G2* and indicated a weaker binding affinity. As another possibility, the B-conformer did not interfere with the Watson–Crick (W–C) base pair, but the adduct in the B-conformation may have altered the native conformations or retarded the formation of phosphate diester bond. G2* operated as a non-competitive inhibitor. Meanwhile, G1* is a B- and S-conformeric mixture. The S-conformer cannot provide a perfect W–C base pair for regulation and replication. The S-conformation may need to convert back to the B-conformation to be replicated. Thus, the S-conformer may function as a competitive inhibitor for replication and block the replication. We observed a competitive-inhibition model for G1* but a non-competitive-inhibition model for G2*. These types of intermediate interactions may be a requisite step in the DNA polymerase proofreading mechanism.

SUMMARY

We carried out SPR and steady-state kinetics in vitro studies for the replication block with different conformations. In Manuscript I, the FABP-modified DNA achieved a
mixture of B and S conformations in the TG₁*G₂T (67%B:33%S) and exclusively B in the TG₁G₂*T sequence context. In our present work, as indicated by the Lineweaver–Burke enzyme inhibition model, the (16/10-mer) G₁* adduct exhibited a competitive-inhibition behavior, whereas the G₂* adduct served as a non-competitive inhibitor in the nucleotide insertion kinetics. These results revealed that the S-conformer may not have accommodated incoming dCTPs and exhibited a competitive behavior with incoming nucleotides and blocked the replication. By contrast, the B-conformer did not interfere with the W–C base pairing nor ultimately affected the dCTP insertion. As such, the B-conformer showed non-competitive-inhibition behavior. The SPR findings also implicated an adduct-induced tightened binding affinity with Kf-exo⁺ in a binary system that is consistent with our previous reports. Moreover, in a ternary system, nucleotide selectivity diminished when FABP modified G₁ and G₂. We observed the effect of bulky lesion-induced replication fork conformational heterogeneity. Future studies would include the bypass replication in bacterial and in mammalian cell systems.
REFERENCES

FIGURE LEGENDS

Figure 1. (a) The views of FABP-conformational motifs: B-, and S-conformers. ABP-red, modified dG-blue, complementary C-orange. (b) dG-C8-FABP.

Figure 2. (a) HPLC chromatogram of a reaction mixture of biotinylated-31-mer sequence (5'-Bio-CCTCTTCCCTCACCTCTTCTG1G2TCCTCATTC-3') with an activated FABP (N-Acetoxy-N-(trifluoroacetyl)-4’-fluoro-4-aminobiphenyl) and photodiode array UV spectra of unmodified, mono-adducts. (b) MALDI-TOF mass spectra of FABP modified biotinylated-31mer-TGGT: (a) 3’-enzyme digestion of peak 1 at 0, 1, 4, 6, 7, 8 and 10min. (b) 3’-enzyme digestion of peak 2 at 0, 1, 4, 6, 7, 8 and 10min. Insets show the theoretical MW of the corresponding fragments that should form after 3’-enzyme digestion.

Figure 3. (a) Hairpin template–primer oligonucleotide constructs of 85-mer G1 and 84-mer G2 for Kf-exo−; (b) Sensorgrams of binary complexes of Kf-exo− with 85-mer and 84-mer unmodified control, G1-FABP and G2-FABP modified sequences (1:1 binding fitted curves are overlaid as black lines); (c) K_a (K_a-modified / K_a-control) and K_d (K_d-modified / K_d-control) ratio, G1 and G2 represent the ratio of 85-mer FABP-G1/85-mer-control and 84-mer FABP-G2/84-mer-control, respectively.

Figure 4. Denaturing gel (15%) profiles of 84-mer and 85-mer ligated oligonucleotides, 31-mer, 53-mer and 54-mer non-ligated oligonucleotides.

Figure 5. Lineweaver – Burk model of the DNA Repair Reactions Catalyzed by the Kf-exo− at (a) 10-mer, G1-FABP and (b) 9-mer G2-FABP lesion sites with dCTP at steady-
state. According to the model, the behavior of G_1-FABP against with Kf–exo$^-$ showed as a competitive inhibitor, whereas the behavior of $TG_1G_2^*$T played as non-competitive.

Figure 6. dATP insertion efficiency results of (a) 8-mer to 9-mer and (b) 11-mer to 12-mer in control, $G_1^*G_2T$-FABP and $G_1G_2^*$T-FABP, respectively, in 10 min.

Figure 7. Sensorgrams of ternary Kf-exo$^-$ complexed with (a) 85-mer control, (b) 85-mer $TG_1[FABP]G_2T$, (c) 84-mer control and (d) 84-mer $TG_1G_2[FABP]T$ sequences in the presence of dNTPs (1:1 binding fitted curves are overlaid as black lines). dATP insertion efficiency results of (a) 8-mer to 9-mer and (b) 11-mer to 12-mer in control, $G_1^*G_2T$-FABP and $G_1G_2^*$T-FABP, respectively, in 10 min.
TABLE LEGENDS

Table 1. Steady-state kinetics parameters for insertion of dCTP opposite unmodified and FABP–dG adduct with Kf-exo⁻.

Table 2. SPR binding affinities, K_D (nM) of unmodified (TG₁G₂T) and FABP–dG adducts (TG₁[FABP]G₂T and TG₁G₂[FABP]T) with Kf-exo⁻ (steady-state affinity analysis) in the binary and ternary systems. Association and dissociation rate constants, k_a and k_d, in binary system are listed.

Table 3. Binding net stabilization energy of unmodified and FABP-adducts with Kf-exo⁻ in binary system (1:1 binding).
Figure 1:
Figure 2:

(a) [Diagram showing unmodified and two modified peaks]

(b) Table:

<table>
<thead>
<tr>
<th>mass</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>9803.1</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>9513.9</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>9209.7</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>8905.5</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>8592.3</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>8303.1</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>7998.9</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>7709.7</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>7420.6</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>7116.4</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>6787.3</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>6271.1</td>
<td>Bio-CCTTCCCTACACCTCTCTT</td>
</tr>
</tbody>
</table>

(c) Table:

<table>
<thead>
<tr>
<th>mass</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>9803.1</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>9513.9</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>9209.7</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>8905.5</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>8592.3</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>8303.1</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>7998.9</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>7709.7</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>7420.6</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>7116.4</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>6787.3</td>
<td>Bio-CCTTCCCTACACCTCTCTG, G, TCCCTATT</td>
</tr>
<tr>
<td>6271.1</td>
<td>Bio-CCTTCCCTACACCTCTCTT</td>
</tr>
</tbody>
</table>
Figure 3:

(a) 85-mer $\text{TG}_1\text{G}_2\text{T}$ 5'-Bio-CCTCTTCCTCAGCTCTCTGTGCGATCACCTTCCTGTGAGGAGCTGTAACCTGGAAGGTTG

84-mer $\text{TG}_1\text{G}_2\text{T}$ 5'-Bio-CCTCTTCCTCAGCTCTCTGTGCGATCACCTTCCTGTGAGGAGCTGTAACCTGGAAGGTTG

(b) 85mer-control 85mer-G$_1$-FABP

84mer-control 84mer-G$_2$-FABP

(c) K_a [G$_1$ G_2] K_d [G$_1$ G_2]
Figure 4:
Figure 5:
(a)

(b)

(c)

(d)
Figure 6:

(a)

(b)
Figure 7:

(a)

Control

- 8-mer
- 9-mer

FABP—$G_1^*G_2^*T$

FABP—$G_1G_2^*T$

(b)

Control

- 11-mer
- 12-mer

FABP—$G_1^*G_2^*T$

FABP—$G_1G_2^*T$
$f_{\text{ins}} = \frac{k_{\text{cat}}/K_m}{(k_{\text{cat}}/K_m)_{\text{unmodified control}}}$.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>K_m (µM)</th>
<th>k_{cat} (min⁻¹)</th>
<th>k_{cat}/K_m (µM⁻¹·min⁻¹)</th>
<th>f_{ins}</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABP-G₁</td>
<td>23.4</td>
<td>29.7</td>
<td>1.27</td>
<td>0.33</td>
</tr>
<tr>
<td>Control-G₁</td>
<td>7.4</td>
<td>28.8</td>
<td>3.87</td>
<td>1.00</td>
</tr>
<tr>
<td>FABP-G₂</td>
<td>5.7</td>
<td>5.5</td>
<td>0.97</td>
<td>0.24</td>
</tr>
<tr>
<td>Control-G₂</td>
<td>5.8</td>
<td>23.2</td>
<td>4.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Table 2:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>K_d (1/M) x 10^3</th>
<th>K_c (1/μs)</th>
<th>K_d (nM)</th>
<th>K_d of Ternary (nM)</th>
<th>dCTP</th>
<th>dATP</th>
<th>dGTP</th>
<th>dTTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-mer TG, G, T</td>
<td>15.90 (0.17)</td>
<td>0.170 (0.002)</td>
<td>1.050 (0.050)</td>
<td>0.200 (0.060)</td>
<td>1.17 (0.04)</td>
<td>1.08 (0.07)</td>
<td>1.08 (0.08)</td>
<td></td>
</tr>
<tr>
<td>85-mer control</td>
<td>9.59 (0.05)</td>
<td>0.840 (0.004)</td>
<td>8.740 (0.030)</td>
<td>0.022 (0.001)</td>
<td>14.90 (5.00)</td>
<td>11.40 (4.20)</td>
<td>5.14 (7.4)</td>
<td></td>
</tr>
<tr>
<td>84-mer TG, G, T</td>
<td>11.10 (0.07)</td>
<td>0.009 (0.000)</td>
<td>0.086 (0.001)</td>
<td>0.045 (0.006)</td>
<td>0.09 (0.00)</td>
<td>0.11 (0.00)</td>
<td>0.09 (0.01)</td>
<td></td>
</tr>
<tr>
<td>84-mer control</td>
<td>6.33 (0.04)</td>
<td>0.030 (0.002)</td>
<td>0.450 (0.030)</td>
<td>0.004 (0.000)</td>
<td>1.39 (0.02)</td>
<td>1.25 (0.01)</td>
<td>0.39 (0.04)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>k_d (1/s)</th>
<th>*Net stabilization Energy (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-mer control</td>
<td>0.84 (0.004)</td>
<td>0</td>
</tr>
<tr>
<td>85-mer TG$_1$[FABP]G$_2$T</td>
<td>0.17 (0.002)</td>
<td>0.95</td>
</tr>
<tr>
<td>84-mer control</td>
<td>0.03 (0.002)</td>
<td>0</td>
</tr>
<tr>
<td>84-mer TG$_1$G$_2$[FABP]T</td>
<td>0.009 (0.0001)</td>
<td>0.71</td>
</tr>
</tbody>
</table>

*Net stabilization energy (kcal/mol) = -RT ln(k_d)$_{modified}$ - [-RT ln(k_d)$_{unmodified}$]
MANUSCRIPT III

(has been accepted by Journal of ACS Omega)

Characterization of Byproducts from Chemical Syntheses of Oligonucleotides Containing 1-Methyladenine and 3-Methylcytosine

Qi Tang,†‡ Ang Cai,†‡ Ke Bian,† Fangyi Chen,†∥ James C. Delaney,§ Sravani Adusumalli,† Alvin C. Bach, II,† Fatemeh Akhlaghi,† Bongsup P. Cho,† and Deyu Li*,†

†Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States.
§Visterra Inc., Cambridge, Massachusetts 02139, United States
∥Xiamen University, Xiamen, Fujian 361005, P. R. China

Author Contributions

‡Q.T. and A.C. contributed equally to this work.

Corresponding Author

*E-mail: deyuli@uri.edu
ABSTRACT

Oligonucleotides serve as important tools for biological, chemical, and medical research. The preparation of oligonucleotides through automated solid-phase synthesis is well established. However, identification of byproducts generated from DNA synthesis, especially from oligonucleotides containing site-specific modifications, is sometimes challenging. Typical HPLC, Mass Spectrometry (MS), and gel electrophoresis methods alone are not sufficient for characterizing unexpected byproducts, especially for those having identical or very similar molecular weight (MW) to the products. We used a rigorous quality control procedure to characterize byproducts generated during oligonucleotide syntheses: 1) purify oligonucleotide by different HPLC systems; 2) determine the exact MW by high resolution MS; 3) locate modification position by MS/MS or exonuclease digestion with MALDI-TOF analysis; and 4) conduct, where applicable, enzymatic assays. We applied these steps to characterize byproducts in the syntheses of oligonucleotides containing important methyl DNA adducts 1-methyladenine (m1A) and 3-methylcytosine (m3C). In m1A synthesis, we differentiated a regioisomeric byproduct 6-methyladenine, which possesses identical MW to m1A. As for m3C, we identified a deamination byproduct 3-methyluracil, which is only 1 Dalton greater than m3C in the ~ 4,900 Dalton context. The detection of these byproducts would be very challenging if the abovementioned procedure were not adopted.
INTRODUCTION

Oligonucleotides synthesized chemically are widely used as drugs and research tools in biology, chemistry, and medicine. Solid phase synthesis of DNA and RNA oligonucleotides has been well developed and automated phosphoramidite-based chemical process has become highly efficient.\(^1-^3\) Phosphoramidites of regular and some modified nucleotides are commercially available and certain oligonucleotide strands could be readily obtained from commercial sources.\(^4-^7\) Besides the great development in the synthesis of oligonucleotides, the differentiation of byproducts from the product oligonucleotides, especially on those containing site-specifically modified structures, is sometimes ignored by the end users. If those byproducts or small impurities were not identified and removed, it could have devastating consequences for the corresponding biological assays and medical treatments.\(^8,^9\) For certain instances, it is challenging to identify some byproducts generated in the synthesis and deprotection steps, especially those byproducts that have identical or very similar MW to the desired product oligonucleotide.

We have synthesized various oligonucleotides containing modified structures in the past, focusing on alkyl or aryl DNA adducts, by using solid and solution phase DNA synthesis.\(^10-^14\) In the syntheses of oligonucleotides containing 1-methyladenine (m1A) and 3-methylcytosine (m3C), we observed byproducts are either regioisomer (identical MW) to the product or have 1 Dalton in MW greater than the product in a ~ 4,900 Dalton context (Figure 1a). m1A and m3C are formed by exogenous and endogenous alkylating agents mainly in single-stranded DNA and have been detected both \textit{in vitro}\(^15^-^21\) and \textit{in vivo}\(^15,20,22^-^29\). Both adducts are cytotoxic and block DNA replication, and are
the best substrates for the AlkB family DNA repair enzymes (Figure 1b). 30–34 m3C has also been proposed an epigenetic biomarker for cancer. 35

Most of our DNA syntheses successfully provided target oligonucleotides. However, some oligonucleotides contained side reaction contaminants generated during the synthesis or deprotection steps, requiring further purification and identification. To that end, we applied a rigorous quality control process which entails the following steps: i) Synthesize an adduct-containing oligonucleotide from the corresponding phosphoramidite; ii) purify the product oligonucleotide by both reverse phase and anion exchange HPLC; iii) measure the exact MW of the oligonucleotide by high resolution MS (HR-MS), certain impurities can also be detected by HR-MS; iv) determine the modification position by either MS/MS or exonuclease digestion with MALDI-TOF analysis; and v) test the biological activity of the adduct-containing oligonucleotide by appropriate enzymatic assays. We are assuming that the modified nucleotide has been extensively investigated for its stability under solid-phase chemical synthesis and deprotection beforehand; however, the strategy outlined above should confirm this.

Nuclear Magnetic Resonance (NMR; 1H, 13C, and 31P) is a powerful tool for structural integrity studies of the phosphoramidite on the milligram scale. 36–38 However, NMR becomes impractical for characterizing minor impurities within the modified structures in synthetic oligonucleotides due to increasing spectral complexity, as well as the final amount of material available (e.g. on a micro-mole or less scale). Below, we report the detailed characterization of byproducts in the syntheses of oligonucleotides containing m1A and m3C. The characterization and separation of those byproducts provides confidence in the quality of oligonucleotides used in further biological experiments.
RESULTS

Identification of m6A Byproduct from m1A Synthesis. We were trying to incorporate m1A into an oligonucleotide as a substrate for the AlkB repair reaction.34,39 A 16mer oligonucleotide containing m1A was prepared by using the commercially available phosphoramidite of m1A (Figure 1a). The final product was deprotected under standard conditions by treating the crude oligonucleotide with ammonium hydroxide at 80 °C for 3h. The oligonucleotide was then tested by both reverse phase and anion exchange HPLC (see Experimental Procedures for detailed conditions). The resulting chromatograms showed a single peak under both conditions (retention time 10.2 min in Figure 2a and 4.0 min in Figure S22). High resolution ESI-TOF MS analysis of the sample exhibited m/z at 1224.715 at its -4 charge state, which is in good agreement with the theoretical m/z 1224.711 expected of the product oligonucleotide (Figure 3a, S1 and Table 1).

Collision-induced-dissociation (CID) MS/MS analysis was used to determine the location of the alkyl adduct in the synthesis of m1A-containing 16mer oligonucleotide (Figure 4). The MS/MS results, presented in detail in the supporting information (Figures S5 and Tables S1), confirmed that modification occurred at the eighth position from the 3’ end of the oligonucleotide and the modified base had the same MW as m1A. Analysis of 3’ end fragmentations indicated that w_{15} to w_8 fragments all contain an extra methyl modification (Figure 4, Table S1 and Figure S10). On the other hand, w_7 to w_1 ions showed only standard DNA sequences without methyl modification (Table S1). These results suggested the modification is located between
w8 and w7, which is the eighth position from the 3’ end of the 16mer oligonucleotide. From the 5’ fragmentations, we observed the methyl modification in ions from (a15-C) to (a10-G), but no such modification from ion (a9-X) to (a2-A) (Figure 4, Figure S9 and Table S1). These results suggested the modification is located between (a10-G) and (a9-X), which is the ninth position from the 5’ end (Figure 4). The fragmentation patterns from both the 5’ and 3’ ends are consistent with the proposed m1A-containing DNA sequence (Figure 4).

To further confirm the location of the modified base, we performed enzyme-digestion coupled with MALDI-TOF MS analysis.11–13,40,41 The procedure has been widely used to confirm the location of lesion positions by determining the mass changes after partial digestion from the 3’ end by the exonuclease SVP.42–44 Figure 5 shows the positive ion MALDI-TOF MS spectra of the 3’ to 5’ SVP exonuclease digestion of the product oligonucleotide at different time intervals. The m/z of 4904.2 at 0 min (before digestion, as a control) indicated the 16mer DNA sequence contained a methylated DNA base (theoretical m/z = 4902.9 Dalton, herein theoretical m/z values are shown in parentheses after the observed m/z values). After 1 minute SVP digestion, while the product ion disappeared, three new lower masses appeared at m/z = 4615.7 (4614.8), 4326.7 (4325.8), and 4022.7 (4021.7), which correspond to the 15, 14, and 13mer fragments generated from 3’ cleavage, respectively (Figure 5). The signal intensity of three new peaks were significantly increased with the disappearance of the original product oligonucleotide ion at m/z = 4904.2.

Further digestion resulted in a number of smaller fragments. In 3 min digestion (Figure 5 and S17), the signal of m/z = 3075.1 (3074.6) matches the sequence for the
fragment that was cleaved one base before the lesion. The $m/z = 2746.4$ (2745.5, containing a methyl modification), represents the digestion occurring on the 3’ side of the modified adenine position (Figure 5), which also persisted in the 5 min digestion spectrum. The signal at 2419.1 (2418.5, no methyl modification) in the 3 and 5 min digestions represents the fragment generated after liberation of the deoxymethyladenosine 5’ monophosphate. Digestions practically stopped at $m/z = 1223.6/8$ (1222.3), which represent the m/z of a 4mer nucleotide of the 5’ end. Taken together, these results confirm that the modified structure is a methylated adenine and it is at the ninth position of the proposed oligonucleotide from the 5’ to 3’ direction.

The chromatographic and mass spectral evidence presented above indicates that the product oligonucleotide could have the MW expected for a 16mer containing the m1A adduct in the correct position. We then tested the repair of this product by the AlkB protein, which is an enzyme that repairs various alkylated DNA adducts (Figure 1b). The result showed the repair efficiency of this oligonucleotide by AlkB was very low, even when 2.5 uM of AlkB was incubated with 5.0 uM product oligonucleotide (Figure 6b and Figure S24). This observation was in contrast to the report that m1A is a good substrate of AlkB (eg. 0.2 µM of AlkB is able to repair 5.0 µM m1A completely in 1 h). We suspected that the structure in the product oligonucleotide may not be m1A, even though it had an identical MW to m1A. The reverse phase HPLC results also showed an anomalous phenomenon. For example, the positively charged m1A nucleobase should be more polar than the natural base adenine and thus have a shorter retention time on a C18 column. However, the opposite was observed: adenine has a shorter retention time than the product (Figure 2a and 2c). It
has been reported that 6-methyladenine (m6A) could be generated from a Dimroth rearrangement of m1A under basic conditions (Figure 1a and Table 1).34,45

We therefore conducted a new batch synthesis of m1A under a milder deprotection condition (25 °C for 16 h). The product oligonucleotide was eluted as a single peak in both HPLC columns (Figure 2b for C18 and Figure 6d for anion exchange). The HPLC retention time in reverse phase HPLC exhibited a shorter retention time (8.5 min, Figure 2b) than the non-modified control adenine (9.0 min, Figure 2c) or the previous product (10.2 min, m6A, Figure 2a), in good agreement with the theory that m1A should be more polar than both A and m6A.

The MW of the new product was characterized by HR-MS and had the correct \textit{m/z} of m1A at 1224.715 (1224.711) (Figure 3b, S2 and Table 1). The MS/MS results (e.g., the \textit{w}_7, \textit{w}_8, \textit{a}_9-X, and \textit{a}_{10}-G ions, Figure 4, Figure S6, S11, S12, and Table S2) demonstrated the modification is at the ninth position from the 5’ end and it is a methylated adenine. The exonuclease digestion with MALDI-TOF analyses (Figure S18 and S21a) also confirmed the location and identity of adduct. For example, the 2746.1 (before adduct) and 2418.8 (after adduct) peaks at 3 min digestion in Figure S18 were present. Finally, incubation with AlkB showed an excellent repair efficiency against the new product oligonucleotide: 5.0 \textmu M adduct was mostly repaired in 1 hr with 0.2 \textmu M enzyme (Figure 6e).10 Taken together, these results confirmed the newly synthesized product as a 16mer oligonucleotide containing m1A at the ninth position from the 5’ end (Figure 1a).

Identification of m3U Byproduct from m3C Synthesis. We also wanted to synthesize an oligonucleotide containing m3C as the substrate for the AlkB family DNA repair
after automated synthesis and standard deprotection (80 °C for 3h), the HPLC chromatogram from a C18 column showed two peaks with similar intensities (9.5 min and 11.6 min, Figure 2d), which were readily separated (Figure 2e and 2f). HR-MS analysis showed that the early eluting peak (9.5 min, Figure 2e) had an m/z value of 1218.703 at -4 charge state (Figure 3c and S3), which is in agreement with that of the m/z of the target m3C containing oligonucleotide (theoretical m/z 1218.709, Table 1). The second species at 11.6 min (Figure 2f) showed an m/z 1218.957 at its -4 charge state (Figure 3d and S4). Compared to the 9.5 min peak, the m/z value of the second species was 0.254 unit higher at the -4 charge state, indicating that the MW (4,879.850 Dalton) of the second species is 1.016 Dalton higher than the first one. This is consistent with the m/z value of an oligonucleotide containing m3U at its -4 charge state (1218.955, Table 1). m3U could potentially be generated from deamination of m3C under basic conditions (Figure 1a). The MS/MS results of the two oligonucleotides (e.g., the w7, w8, a9-X, and a10-G ions, Figure 4, Figure S7, S8, S13 to S16, Table S3, and S4) demonstrated the modifications are at the ninth position from the 5’ end. The exonuclease digestion with MALDI-TOF analyses (Figure S19, S20 and S21b) also confirmed the location and identity of the adducts. At 7 minute digestion, signature peaks were 2722.2 (before adduct) and 2418.8 (after adduct) for m3C (Figure S18); and 2723.3 (before adduct) and 2418.7 (after adduct) for m3U (Figure S19). The C18 HPLC retention time of the two species showed m3C containing oligonucleotide had a shorter retention time (9.5 min, Figure 2e) than m3U (11.6 min, Figure 2f). This result indicated m3C is more polar than m3U, which supports that m3C is positively charged at pH 7.0
The AlkB reaction (0.2 µM) on the m3C oligonucleotide showed a good repair efficiency: 5.0 µM m3C adduct was mostly repaired to cytosine after 1 h (Figure 6h). This was not the case for m3U containing oligonucleotides under a similar condition, which showed almost no repair to m3U (Figure 6k). These observations were consistent with the observations that m3C is a strong substrate but m3U is a weak substrate for AlkB under both in vitro and in vivo conditions.34,47

To avoid the formation of m3U, we carried out a second batch synthesis of m3C containing oligonucleotide under a milder deprotection condition (25 ℃ for 16 h). This time we observed only the m3C containing species in the HPLC chromatogram (similar to Figure 2e). The identity of the newly synthesized m3C was confirmed by the aforementioned spectroscopic and enzymatic tests. These results indicate that the formation of the byproduct m3U was from deamination of m3C catalyzed by harsh deprotection conditions (high temperature and alkaline).46,47 Serendipitously, the formation of m3U in the first batch of synthesis provides a new method for chemically preparing m3U-containing oligonucleotide.

DISCUSSION

Chemical synthesis of oligonucleotides is important for conducting various biological, chemical, and medical research including oligonucleotide drug development. The field of oligonucleotide synthesis has progressed such that DNA and RNA containing standard bases can be ordered from commercial sources. Most of these oligonucleotides are in high quality, but it is a good practice to perform quality control in order to confirm
the products have the correct sequences in high purity. A simple HPLC/MS analysis should be sufficient for most applications. However, a more rigorous and stringent quality control procedure48–50 should be adopted for site-specifically modified oligonucleotides, such as epigenetic marks, DNA adducts, and drug candidates. In some cases, byproducts are generated from side chemical reactions during standard automated synthesis and deprotection steps. For this reason, specific deprotection conditions may be required for preparation of oligonucleotide containing modifications, such as epigenetic biomarkers: 5-hydroxymethyl-dC, 5-formyl-dC, and 5-carboxy-dC.51,52

After synthesis and deprotection, it is even more important to carry out a thorough purification and characterization procedure to ensure 1) complete removal of protecting groups, 2) product having high purity, and 3) modification having the correct position and identity. In this study, we used a reliable and robust procedure to characterize byproducts from m1A and m3C syntheses.

m6A, a byproduct of m1A synthesis, exhibited identical MW and location to m1A. It is difficult to differentiate m1A and m6A without conducting bioassays and careful HPLC retention analysis. As for m3C, it was the m3U byproduct that showed a 1 Dalton difference in the \textasciitilde 4,900 Dalton context (Table 1). The two oligonucleotides could be eluted as a single species in HPLC under certain conditions, thus it is imperative to perform high resolution MS analysis and enzymatic reaction to distinguish the two products. For HPLC analysis of modified oligonucleotides, we used a combination of two different separation systems, such as reverse phase (e.g. C18) and anion exchange chromatography. For example, it is not easy to find a suitable condition for fully separating 16mer containing m1A and A with C18 columns (Figure 2b and 2c).
However, it is relatively easy to separate them with an anion exchange column, since m1A is positively charged at neutral pH but A is not (Figure 1a, 6d and 6f).34 On the other hand, it is not easy to distinguish m6A and A under anion exchange condition (Figure S22 and S23) because of their neutrality at pH 7.0, but it is possible to separate them on the C18 column (Figure 2a and 2c).

The MW of the oligonucleotide can be determined by HR-MS, and the location of the modification can be identified by MS/MS or exonuclease digestion with MALDI-TOF analysis. To further confirm the identity of the oligonucleotide from a biological activity perspective, we recommend running enzymatic reaction on the product. In this work, we used SVP exonuclease to digest all oligonucleotides formed in the syntheses. A specific enzyme for certain types of modification could greatly help elucidate the structure of modification. So we tested the repair efficiency of m1A and m3C and their byproducts by the AlkB repair enzyme.32,34 The AlkB protein in \textit{E. coli} is an α-ketoglutarate/Fe(II)-dependent dioxygenase that repairs various alkyl DNA adducts, including m1A and m3C (Figure 1).30–32,39,53–55 We found that m1A and m3C are good substrates but m6A and m3U are weak substrates of AlkB.34,47,53 For other modified structures, it is highly recommended that a biological or enzymatic assay should be adopted for identifying the product. The reason for adopting an enzymatic test is because a byproduct (e.g. m6A) may have an identical MW as the target product (e.g. m1A), which may be hard to differentiate by LC and MS analyses, including the MS/MS and exonuclease digestion with MALDI-TOF analysis.

EXPERIMENTAL SECTION
Synthesis of Oligonucleotides Containing m1A and m3C. Oligonucleotides (16mer) with the sequence 5’-GAAGACCTXGGCGTCC-3’ containing the lesions at X position were made by using solid-phase phosphoramidite chemistry on a MerMade-4 Oligonucleotide Synthesizer.10,34,56 The phosphoramidites were purchased from ChemGenes. The final cleavage and deprotection step was usually carried out by treating the oligonucleotide with concentrated aqueous ammonium hydroxide (28%) at 80 °C for 3 hours. The modified cleavage and deprotection step for minimizing the byproduct formation was at 25°C for 16 h. The concentration of an oligonucleotide was determined by measuring UV absorbance at 260 nm. The extinction coefficient (ε) of a certain adduct is calculated as its unmodified counterpart due to the slight variation between the values in the context of a 16mer DNA.

Purity Test of Oligonucleotides Containing m1A and m3C and Related Byproducts by HPLC. The purity of oligonucleotides was tested by both reverse phase (C18) and anion exchange HPLC methods. For the reverse phase test, liquid chromatographic separation was performed by using a Phenomenex Luna Semi-Preparative C18 column (9 x 250 mm, 5 µm) at a flow rate of 3 mL/min. Solvent A was 100 mM triethylammonium acetate in water and solvent B was 100% acetonitrile. A solvent gradient was carried out under the following conditions: 2.0% of B for 0.2 min, 2.0 to 9.0% of B over 0.3 min, 9.0 to 9.4% of B over 16 min, 9.4 to 70.0% of B over 0.5 min, 70.0% of B for 3 min, 70.0 to 2.0% of B over 0.5 min, and 2.0 % B over 4.5 min. The column oven was set at 40 °C. The UV signal at 260 nm was used to detect the oligonucleotide absorbance. For the anion exchange LC analysis, oligonucleotides were purified and tested by using a Thermo DNAPac PA-100 anion exchange column.
(4 x 250 mm, 13 µm) with solvent A as water and solvent B as 1.5 M ammonium acetate in water. A solvent gradient was carried out under the following conditions: 50.0% of B for 1 min, 50.0 to 52.0% of B over 2 min, 52.0 to 75.0% over 1 min, 75.0% of B for 2 min, 75.0 to 50.0% of B over 0.5 min, and 50.0% of B for 4.5 min. The flow rate was at 4.0 ml/min.

HPLC-MS Analysis. High resolution MS analyses of oligonucleotides were performed on AB Sciex triple quadrupole-TOF mass spectrometers (ABI4600 and ABI5600). ESI was conducted by using a needle voltage of 4.0 kV in a negative ion mode. A heated capillary was set at 600 °C. The nebulizer gas pressure was 40 psi; the heater gas pressure was 40 psi; the curtain gas pressure was 25 psi; the declustering potential was -220 V; and the collision energy was -10 V. Liquid chromatographic separation was performed using a Phenomenex Luna C 18 column (4.6 × 100 mm; 5 µm) at a flow rate 0.4 mL/min. Solvent A was 10 mM ammonium acetate in water and solvent B was 100% acetonitrile. A solvent gradient was carried out under the following conditions: 2.0% of B for 0.5 min, 2.0 to 17.4% of B over 11 min, 17.4 to 60.0% of B over 0.1 min, 60.0% of B for 2 min, 60.0 to 2.0% of B over 0.1 min, and 2.0 % B over 3.3 min.

MS/MS Analysis. Oligonucleotide fragmentation analyses were performed by manually injecting the oligonucleotide samples of 100 pmol/µl into AB Sciex triple quadrupole-TOF mass spectrometers (ABI4600 and ABI5600). The syringe flow rate was set at 10 µl/min. ESI was conducted by using a needle voltage of 4.5 kV in a negative ion mode. A heated capillary was set at 400 °C. The nebulizer gas pressure was 75 psi; the heater gas pressure was 25 psi; the curtain gas pressure was 25 psi; the
declustering potential was -100 V; and the collision energy was -15 V. The parent ion m/z for m6A, m1A, m3C and m3U were selected as 816.14 (-6 charge), 816.14 (-6 charge), 974.77 (-5 charge) and 974.96 (-5 charge), respectively. Data analyses were performed with the AB Sciex Analyst TF software 1.7.

Exonuclease Digestion with MALDI-TOF Analysis. The modified oligonucleotides were characterized by 3′-5′exonuclease digestion followed by MALDI-TOF analysis. In general, 1.0 μL of sample containing 200-250 pmol of a modified oligonucleotide was used for digestion. SVP (0.2 unit) was added together with 6.0 μL of ammonium citrate (100 mM, pH 9.4) and 6.0 μL of water for the 3′ to 5′ digestion. For the MALDI-TOF analyses, 1.0 μL of the mixture was used at a certain time point until the digestion was almost finished; the digestion was quenched by mixing with 1.0 μL of MALDI analysis matrix (3-hydroxypicolinic acid and di-ammonium hydrogen citrate in a 1:1 ratio). Samples were analyzed by a Shimadzu Axima Performance MALDI-TOF mass spectrometer using a 50Hz laser with a power setting of 90 in positive ion reflection mode with 500 shots collected.

Enzymatic Reaction with the AlkB protein and HPLC Analysis. All reactions were performed at 37 °C for 1 h in a reaction buffer containing 70.0 μM Fe(NH₄)₂(SO₄)₂·6H₂O, 0.93 mM α-ketoglutarate, 1.86 mM ascorbic acid, and 46.5 mM HEPES (pH 8.0). The reactions were quenched by adding 10.0 mM EDTA followed by heating at 95 °C for 5 min. Typically, 0.25 μM of the purified AlkB protein was incubated with 5.0 μM m6A and m1A in the presence of all cofactors in a 20 μL reaction volume. For the m3C and m3U, 0.18 μM of AlkB was incubated with 5.0 μM of
oligonucleotides. Samples were then analyzed under an HPLC condition that was able to separate the substrate and product.

To separate the starting material and product of the enzymatic reactions for the four lesions, different HPLC conditions were optimized by using either C18 or anion exchange columns. The UV detection was set at 260 nm. Specifically, (1) m6A and its repaired product A were analyzed by using a Phenomenex Luna Semi-Preparative C18 column (10 x 150 mm, 5 µm) under the following conditions: Solvent A was 100 mM triethylammonium acetate in water and solvent B was 100% acetonitrile. A solvent gradient was carried out under the following conditions: 2.0% of B for 0.2 min, 2.0 to 9.0% of B over 0.3 min, 9.0 to 9.4% of B over 16 min, 9.4 to 70.0% of B over 0.5 min, 70.0% of B for 3 min, 70.0 to 2.0% of B over 0.5 min, and 2.0% B for 4.5 min. The flow rate was at 3.0 ml/min. The column oven was set at 40 °C. This protocol was also used to analyze m3U and its repair product U. (2) m1A and its repaired product A were analyzed by using a Thermo DNAPac PA-100 anion exchange column (4 x 250 mm, 13 µm) with solvent A as water and solvent B as 1.5 M ammonium acetate in water. A solvent gradient was carried out under the following conditions: 50.0% of B for 1 min, 50.0 to 52.0% of B over 2 min, 52.0 to 75.0% over 1 min, 75.0% of B for 2 min, 75.0 to 50.0% of B over 0.5 min, and 50.0% of B for 4.5 min. The flow rate was at 4.0 ml/min. (3) m3C and its repaired product C were analyzed with a similar protocol to m1A/A analysis, except the solvent gradient was changed to the following conditions: 50.0% of B for 1 min, 50.0 to 57.0% of B over 1 min, 57.0% of B for 2 min, 57.0 to 50.0% of B for 0.5 min, then 50.0% of B for 4.5 min.
ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: TBD.

Tables of molecular weights and m/z values, ESI-TOF, MS/MS, and MALDI-TOF analyses (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: deyuli@uri.edu

Present Address

§Visterra Inc., Cambridge, Massachusetts 02139, United States

∥Xiamen University, Xiamen, Fujian 361005, P. R. China

Funding

The work in the paper was supported by an Institutional Development Award (IDeA) from the NIH/NIGMS under grant number 2 P20 GM103430, and a Medical Research Funds grant from the Rhode Island foundation (to D. L.). This work was in part supported by the National Institutes of Health grant CA098296 (to B.P.C.).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors want to thank the RI-INBRE program, its director Prof. Zahir Shaikh and the staff Ms. Kim Andrews and Ms. Patricia Murray for their kind help. We also want to thank Prof. John M. Essigmann, Prof. Bingfang Yan, Prof. David Rowley, and Ms. Kerri Bradshaw for helpful discussions.
REFERENCES

FIGURE LEGENDS

Figure 1. Oligonucleotide products and byproducts studied in this work. a) the structures of adducts and byproducts from chemical syntheses and b) the alkyl adduct m1A, as an example, is repaired in the presence of the AlkB enzyme and necessary cofactors.

Figure 2. Reverse phase HPLC chromatograms of 16mer DNA alkyl products and byproducts. The retention time of a modification-containing oligonucleotide is labeled on top of the corresponding chromatogram. The modifications are: a) m6A; b) m1A; c) A; d) mixture of m3C + m3U; e) m3C; and f) m3U.

Figure 3. High resolution ESI-TOF MS analyses of 16mer DNA oligonucleotides containing target modifications and byproducts. Data represent the -4 charge envelopes and the monoisotopic peak (all 12C, 14N, etc.) values are labeled above the first peak in each peak envelope. a) The oligonucleotide (containing m6A) generated from initial m1A synthesis; b) m1A; c) m3C; and d) m3U.

Figure 4. Predicted fragmentation pattern from collision-induced-dissociation of the 16mer oligonucleotide products from the m1A and m3C syntheses. X denotes the modified nucleotides.

Figure 5. Time-course MALDI-TOF analyses of SVP digestion products of the 16mer product oligonucleotide (containing m6A) generated from m1A synthesis. Theoretical masses are listed in the inset. The theoretical monoisotopic mass at 2745.5 is
highlighted in red because it is the smallest digestion product containing the modification.

Figure 6. HPLC profiles of the AlkB repair reactions on different alkyl substrates. The three chromatograms within each panel represent one set of repair reaction including the oligonucleotides of starting material, reaction mixture, and product. For example, in the panel containing chromatograms a, b, & c, a) represents the starting material m6A, b) represents the repair reaction of m6A by AlkB, and c) represents the pure product adenine synthesized separately. Chromatograms shown in a, b, & c relevant to m6A repair and in j, k, & l relevant to m3U repair were analyzed under reverse phase conditions. Chromatograms shown in d, e, & f relevant to m1A repair and in g, h, & i relevant to m3C repair were analyzed under anion exchange conditions (see Experimental Procedures for detailed information). a) m6A; b) m6A+AlkB; c) A; d) m1A; e) m1A+AlkB; f) A; g) m3C; h) m3C+AlkB; i) C; j) m3U; k) m3U+AlkB; and l) U.
TABLE LEGENDS

Table 1:

Calculated and observed monoisotopic molecular weight and \(m/z \) value of modified oligonucleotides. For m1A and m3C synthesis, the sequence of the 16mer was 5’-GAAGACCTXGGCGTCC-3’, where X indicates the position of the modified bases.
Figure 1:

a) Products and byproducts from m1A and m3C syntheses

5'-GAAGACCTXGGCGTCC-3' (X = adduct)

![Diagram showing the products of reactions involving m1A and m3C.]

b) AlkB repairs m1A

m1A → Repair by AlkB → Adenine

\[\text{m1A} \xrightarrow{\text{AlkB}} \text{Adenine} \]

\[\text{m1A} \xrightarrow{\alpha \text{KG/Fe(II)/O}_2} \text{Adenine} \]
Figure 2:

- a: m6A
- b: m1A
- c: A
- d: m3C + m3U
- e: m3C
- f: m3U
Figure 3:
Figure 4:
Figure 5:

Theoretical monoisotopic mass

\[[M+H]^+ \] sequence

4903.9 GAAGACCT XGGCGCTCC
4614.8 GAAGACCT XGGCGTC
4325.8 GAAGACCT XGGCGT
4021.7 GAAGACCT XGGCG
3892.7 GAAGACCT XGGG
3403.6 GAAGACCT XGG
3074.6 GAAGACCT XG
2745.5 GAAGACCTXX
2418.5 GAAGACCT
2114.4 GAAGACCC
1825.4 GAAGAC X = adduct
1536.3 GAAGA
1223.3 GAAG
Figure 6:
Table 1:

<table>
<thead>
<tr>
<th>Lesion or base</th>
<th>MW (calculated)</th>
<th>m/z (calculated) -4 charge peak</th>
<th>m/z (observed) -4 charge peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mer m6A</td>
<td>4902.877</td>
<td>1224.711</td>
<td>1224.715</td>
</tr>
<tr>
<td>16mer m1A</td>
<td>4902.877</td>
<td>1224.711</td>
<td>1224.715</td>
</tr>
<tr>
<td>16mer m3C</td>
<td>4878.866</td>
<td>1218.709</td>
<td>1218.703</td>
</tr>
<tr>
<td>16mer m3U</td>
<td>4879.850</td>
<td>1218.955</td>
<td>1218.957</td>
</tr>
</tbody>
</table>