
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

2017 

Characterization of a H4K20ME2 Methyl-Binding Domain in the Characterization of a H4K20ME2 Methyl-Binding Domain in the 

Fanconi Anemia Protein FANCD2 Fanconi Anemia Protein FANCD2 

Karissa Lynn Paquin 
University of Rhode Island, karissa_neira@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Paquin, Karissa Lynn, "Characterization of a H4K20ME2 Methyl-Binding Domain in the Fanconi Anemia 
Protein FANCD2" (2017). Open Access Dissertations. Paper 648. 
https://digitalcommons.uri.edu/oa_diss/648 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/648?utm_source=digitalcommons.uri.edu%2Foa_diss%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


CHARACTERIZATION OF A H4K20ME2 METHYL-BINDING DOMAIN IN THE 

FANCONI ANEMIA PROTEIN FANCD2 

 BY 

KARISSA LYNN PAQUIN 

 

 

 

 

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN 

CELL AND MOLECULAR BIOLOGY 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2017 

  



 
 

DOCTOR OF PHILOSOPHY DISSERTATION 
 

OF 
 

KARISSA LYNN PAQUIN 
 
 
 
 
 
 
 
 
 
 
 

APPROVED:  
 

Dissertation Committee: 
 

Major Professor Niall Howlett 
  

    Jodi Camberg 
 
 Abraham Kovoor 

 
Nasser H. Zawia 

     DEAN OF THE GRADUATE SCHOOL 
 
 
 
 
 
 
 

UNIVERSITY OF RHODE ISLAND 
2017 



 

ABSTRACT 

 Fanconi anemia (FA) is a rare genetic disease that results on early onset bone 

marrow failure, congenital defects, and increased cancer susceptibility.  It is caused by 

mutation in any one of twenty two genes, whose protein products work in conjunction as 

part of the FA-BRCA pathway, a DNA repair pathway that specifically repairs DNA 

interstrand crosslinks (ICLs).  One of the key steps in pathway activation is the 

monoubiquitination of the FANCD2 protein.  Upon pathway activation, FANCD2 is 

recruited to sites of DNA damage, where is interacts with downstream repair protiens to 

promote DNA repair via  homologous recombination (HR).  How FANCD2 recognizes 

DNA damage in condensed compact chromatin, however, has remained unknown.  Here, 

we uncover a FANCD2 methyl-binding domain, which specifically binds for H4K20me2 

in order to recruit FANCD2 to sites on DNA damage and promote homologous 

recombination, support cell survival and maintain genomic integrity. 
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PREFACE 

The following dissertation has been prepared in manuscript format. Chapter 1, “The 

role of histone H4 lysine 20 Dimethylation (H4K20me2) in the repair of DNA double 

strand breaks” was prepared for publication in Nucleic Acids Research and is a review on 

the regulation, role, and recognition of dimethylated H4K20 in DNA double strand break 

repair. Chapter 2, “FANCD2 binding to H4K20me2 via a methyl-binding domain is 

essential for efficient DNA crosslink repair” was prepared for publication in Proceedings 

of the National Aacademy of Sciences.  
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Abstract 

Chromatin is a highly compact structure that must be rapidly rearranged in order for 

DNA repair proteins to access sites of damage and facilitate timely and efficient repair. 

Chromatin plasticity is achieved through multiple processes, including the 

posttranslational modification of histone tails.  In recent years, the impact of histone 

posttranslational modification on the DNA damage response has become increasingly 

well recognized, and chromatin plasticity has been firmly linked to efficient DNA repair. 

One particularly important histone posttranslational modification is the methylation of 

H4K20. Here we discuss the regulation and function of H4K20 methylation (H4K20me) 

in the DNA damage response: we describe the writers, erasers, and readers of this 

important chromatin mark, and discuss combinatorial histone posttranslational 

modifications that modulate H4K20me recognition. Finally, we discuss the central role of 

H4K20me in determining whether DNA double-strand breaks are repaired by the error-

prone nonhomologous DNA end joining or error-free homologous recombination 

pathways.  

 

Introduction 

Chromatin is a highly organized and condensed structure that allows billions of base pairs 

of DNA to be tightly packaged into the nuclei of eukaryotic cells.  The basic subunit of 

chromatin is the nucleosome, an octamer of histones around which 146 bp of DNA is 

wrapped almost twice.  Each nucleosome contains two copies each of histones H2A, 

H2B, H3, and H4. Histones are highly conserved amongst eukaryotes, emphasizing their 

importance (1).  Chromatin cannot be a rigid and unchanging structure, however.  It is 
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highly dynamic in order to facilitate DNA replication, transcription, and repair.  

Chromatin plasticity is a necessity, as without it, DNA interacting proteins would not be 

able to access this tightly condensed structure.  Chromatin plasticity is facilitated by 

nucleosome repositioning, histone exchange, and the post-translational modification 

(PTM) of histone tails. Nucleosome repositioning involves the physical sliding of 

nucleosomes along the DNA or their eviction.  In histone exchange, histone variants are 

substituted for the canonical histones H2A, H2B, H3 or H4. For example, H2A can be 

substituted for the variant H2AX upon the formation of DNA double-strand breaks 

(DSBs) (2). Histone PTM is the addition of small molecules, such as acetyl-, methyl-, and 

phospho-groups, or small proteins, such as SUMO (small ubiquitin-like modifier) and 

ubiquitin to the tails of histones, which extend from the core nucleosome.  These PTMs 

change chromatin structure in several ways, for example, by modulating the strength of 

histone-DNA interactions, and by facilitating the recruitment of chromatin reader 

proteins and/or chromatin remodeling complexes, which can lead to marked changes in 

chromatin structure and compaction. Single and combinatorial PTMs can have distinct 

signaling and cellular outcomes. Combinatorial marks add to the variability and 

complexity of chromatin recognition and plasticity (3,4). In this review, we will focus on 

one aspect of chromatin plasticity, namely histone PTM. Specifically, we will discuss the 

methylation of histone H4 lysine 20 and how this particular PTM has become 

increasingly recognized as a major determinant of DNA repair. 
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DNA Double-Strand Break Repair 

DNA damage can arise as a result of endogenous agents, such as reactive oxygen species, 

a byproduct of normal cellular processes, or by exogenous means, such as exposure to 

UV light.  DNA damage must be repaired in an efficient and timely manner in order to 

continue normal cellular processes like replication and transcription.  While there are 

many types of DNA damage, here we will focus on DNA double-strand breaks (DSBs). 

DSBs arise upon cellular exposure to ionizing radiation and as a consequence of 

replication fork collapse. DSBs can also arise transiently during DNA repair processes, 

including nucleotide excision repair and interstrand crosslink repair (5).  Upon DSB 

formation, free ends of broken DNA are recognized by the MRN (MRE11-RAD50-

NBS1) complex, which recruits the ATM (ataxia telangiectasia mutated) kinase (6,7).  

ATM phosphorylates a histone variant called H2AX on serine 139, forming γH2AX 

(8,9). γH2AX was one of the first recognized histone PTMs, and has been extensively 

studied in relation to DSB repair (8). MDC1 (mediator of DNA damage checkpoint 1) 

recognizes γH2AX via its BRCT (BRCA1 C-Terminus) domain (10). MDC1 

subsequently recruits additional molecules of ATM via its FHA (forkhead-associated) 

domain; ATM phosphorylates additional H2AX molecules thereby amplifying the 

γH2AX signal up to two megabases proximal to the DSB site (10-12) (Figure 1A).  As 

one of the first steps in DSB repair, H2AX phosphorylation is widely used as a marker 

for DSB formation.  

DSBs are repaired by one of two ways: homologous recombination (HR) or non-

homologous DNA end joining (NHEJ).  Homologous recombination is an error-free 

repair pathway that uses a homologous DNA sequence as a template to repair damaged  
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Figure 1.  Recognition of the double strand break (DSB), homologous 

recombination, and nonhomologous DNA end joining.  Upon DSB formation, 

MRE11, RAD50, and NBS1 recognize the free naked ends of DNA, and recruit ATM.  

ATM phosphorylates H2AX to form γH2AX.  MDC1 then recognizes γH2AX, and 

recruits subsequent molecules of ATM, which in turn phosphorylate additional H2AX.  

This cascade reaches outward from the broken ends up to 2 megabases of DNA (A). 

After recognition of DNA damage and phosphorylation of H2AX, BRCA1, CtIP, and 

EXO1 are all recruited to DSBs, where they promote end resection.  Exonuclease 

activity results in 3’ ssDNA overhangs.  RAD51 coats the ssDNA, and scans the sister 

chromatid for a homologous sequence.  BRCA1, RAD51, and its associated proteins 

invade the sister chromatid, forming the displacement loop.  New DNA is synthesized 

off of the sister chromatid, and Holliday junctions are resolved, repairing the broken 

DNA in an error free manner (B). In the absence of BRCA2, 53BP1 is recruited to 

DSB sites.  It blocks CtIP, and therefore end resection. Ku70/Ku80 are then recruited 

to these sites, where they signal Artemis and LIG4 localization.  The broken ends are 

then ligated together to repair the break (C). 
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DNA (13).  It is a cell cycle-dependent pathway, occurring primarily during S-phase due 

to the presence of homologous DNA in the sister chromatid.  Briefly, upon γH2AX 

phosphorylation, the MRN complex, CtIP (CtBP-interacting protein), EXO1 

(exonuclease 1), and DNA2 (DNA replication/helicase protein 2) all promote 5’-3’ DNA 

end resection, resulting in the generation of 3’ single-stranded overhangs on each strand 

(ssDNA) (14-18). These ssDNA overhangs are first coated by RPA (replication protein 

A) to protect against nucleolytic degradation. The major DNA strand recombinase, 

RAD51, is subsequently loaded onto ssDNA in a process facilitated by functional 

homologs of the yeast Rad52 epistasis group and the BRCA2 protein (19-21). RAD51 

forms a nucleoprotein filament coating the ssDNA and a displacement loop (D-loop) is 

formed upon invasion of the ssDNA into the complementary sister chromatid duplex, 

referred to as the synaptic complex (19-23).  New DNA is then synthesized using the 

sister chromatid as a template, and Holliday junctions (DNA intermediates that contain a 

crossover between newly synthesized DNA on the invading strand and the template 

strand) are resolved, resulting in a duplicate of the sister chromatid (gene conversion), 

with no loss of genetic information (13) (Figure 1B). 

On the other hand, NHEJ is typically an error-prone pathway that simply ligates the free 

ends of broken DNA. NHEJ occurs in all phases of the cell cycle, and can result in 

catastrophic events such as deletions and translocations. In brief, again MRN is recruited 

to DSBs after damage. Additionally, 53BP1 (p53 Binding Protein 1) is recruited to DNA 

damage sites, and blocks HR proteins and end resection (24,25). Ku70 (Lupus Ku auto 

antigen p70) and Ku80 (Lupus Ku auto antigen p86) recognize the DSB ends and 

together with DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis,  
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XRCC4 (X-ray repair cross-complementing protein 4), and LIG4 (DNA ligase 4), 

directly ligate the free ends of the DSB (26-30) (Figure 1C). Often, there is no specificity 

for which ends are ligated, which can result in translocations if ends from two distinct 

DSBs are rejoined (31,32).   

There are many factors that determine whether HR or NHEJ is used to repair a DSB.  

While cell cycle plays an important role in DNA repair pathway decision, there are 

multiple factors that influence HR vs. NHEJ, and the dynamics of this decision have not 

been fully elucidated. Two proteins that play a major role in determining if HR or NHEJ 

is initiated are BRCA1 and 53BP1. While the MRN complex plays a key role in both HR 

and NHEJ, its binding partners determine whether BRCA1 or 53BP1 becomes loaded 

onto DSB ends (33). The regulation of this process will be discussed in greater detail later 

in the review. Depletion of Brca1 results in increased NHEJ and decreased HR (34). 

Depletion of both Brca1 and 53bp1, however, restores normal levels of HR in mice (25).  

This, along with evidence that 53BP1 physically blocks end resection, indicates that 

BRCA1 may play a role in 53BP1 removal from DSB sites, allowing HR to proceed (33). 

 

H4K20me2 

KMT5A 

Prior to H4K20 di- or tri- methylation, H4K20 must first be monomethylated (35-37).  

The enzyme responsible for H4K20 monomethylation is KMT5A (lysine 

methyltransferase 5A), a SET-domain (Su(var)3-9, Enhancer-of-zeste and Trithorax) 

containing methyltransferase. It has recently been shown that KMT5A prefers the entire 

nucleosome as its substrate, rather than individual H4 histones or peptides, and that it 
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interacts with H2A and H2B in order to monomethylate H4K20 (38-41).  Loss of Kmt5a 

in both fly and mouse results in embryonic lethality (42,43). Studies have shown that 

with knockout of Kmt5a, H4K20 di- and tri- methylation are down regulated (42). In 

HeLa cells, KMT5A knockdown results in reduced 53BP1 recruitment to DSBs. (44,45). 

Additionally, Kmt5a knockout embryonic stem cells and KMT5A depleted HeLa and 

U2OS cells display increased DSBs and γH2AX formation, even in the absence of DNA 

damaging agents (42,46,47). This is likely an accumulation of spontaneous damage 

throughout the cell cycle, that remains unrepaired due to lack of H4K20 methylation (42). 

KMT5A depleted U2OS cells have increased cell cycle checkpoint activation, decreased 

cell cycle progression, and accumulate in S-phase, also in the absence of DNA damage 

(47). 

 

KMT5B/C 

The H4K20me2 mark has been shown to be involved in DNA repair.  This histone mark 

is found throughout the nucleus, however it has been reported to be enriched at sites of 

DNA damage (48).  Globally, Kmt5b and Kmt5c are responsible for dimethylation and 

trimethylation, respectively. (49). KMT5B/C has been shown to enzymatically catalyze 

dimethylation more efficiently than trimethylation in vitro (35,36,50).  This suggests that 

additional proteins are necessary for efficient H4K20 trimethylation, or that another HMT 

catalyzes this reaction (35,49).  While in vitro studies show that SMYD3, a SET domain 

containing methyltransferase, is capable of recognizing H4K20me2 and catalyzing the 

addition of an additional methyl group, depletion of KMT5B/C results in complete lack 

of H4K20me3 (49,51). KMT5B and KMT5C are unique in that they have leucine and 
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cysteine substitutions in the two conserved tyrosine residues that regulate substrate 

specificity in other SET domain containing methyltransferases. However, KMT5B and 

KMT5C still maintain the characteristic SET-domain structure (35,36). Like many 

methyltransferases, they require a SAM (S-adenosyl-L-methionine) cofactor to donate a 

methyl group to the substrate (35,36,49). These enzymes regulate H4K20 dimethylation, 

and knockdown of Kmt5b/c in fly and Kmt5b/c -/- double knockout MEFs results in 

decreased H4K20me2/3 (but not H4K20me1) (50). Cells depleted of KMT5B/C and 

kmt5b/c-/- double knockout MEFs exhibit delayed 53BP1 foci formation, one of several 

proteins that binds H4K20me2 (50,52,53). The Kmt5b/c methyltransferases have also 

been linked to DNA repair and genome instability, and play a role in telomere length 

maintenance and the regulation of heterochromatin compaction. Kmt5b/c-/- double 

knockout mice also experience perinatal lethality (52). Kmt5b/c-/- null MEFs show 

decreased cell cycle progression, increased sensitivity to DNA damaging agents, altered 

chromatin structure and increased chromosomal aberrations, indicating that Kmt5b/c 

plays an important role in maintaining genome stability.  

 

MMSET 

Recent studies have also implicated the MMSET (Multiple Myeloma SET Domain 

Containing Protein) HMT in H4K20 dimethylation. HeLa cells depleted of MMSET lack 

H4K20me2 enrichment at DSBs. Additionally, 53BP1 foci formation is impaired in these 

cells (48,54). MMSET is known to bind to γH2AX and MDC1 in order to localize to 

damage sites (48).  Multiple groups have since brought to light more evidence that 

KMT5B/C are primarily responsible for H4K20 dimethylation and 53BP1 foci formation 



 12 

(53,55). It remains possible that both MMSET and KMT5B/C catalyze H4K20 

dimethylation under different cellular conditions: KMT5B/C is likely to be responsible 

for the bulk of genome wide H4K20me2 while MMSET may be responsible for localized 

enrichment of H4K20me2 at DSBs.     

 

H4K20me2 Binding Proteins 

53BP1 

There are multiple proteins known to bind to H4K20me2. 53BP1 is one of these 

chromatin readers (56). 53BP1 is a large protein, which is known to promote NHEJ of 

DSBs. The balance between 53BP1 and BRCA1 dictates NHEJ vs HR during S and G2 

phases, and evidence shows that 53BP1 must be removed from DSBs in order to HR to 

proceed. This is facilitated by the chromatin remodeler SMARCAD1 (SWI/SNF-related 

matrix-associated actin-dependent regulator of chromatin subfamily A containing 

DEAD/H box 1) (see H2AK127ub section) (57). 53BP1 first recognizes γH2AX via its 

BRCT domains, and then subsequently binds to H4K20me2 using its tandem tudor 

domains, which are comprised of β-sheet folds (58-62). The binding affinities of the 

53BP1 tandem tudor domains for H4K20me2 and H4K20me1 are 19.7 and 52.9 µM, 

respectively. They show an affinity of >1mM for unmodified and trimethylated H4K20. 

Disruption of the 53BP1 tandem tudor domains results in loss of H4K20me2 binding and 

loss of 53BP1 foci formation (56). 53BP1 also contains a UDR (ubiquitination-dependent 

recruitment motif), which mediates binding to H2AK15ub (see below) (63). Importantly, 

disruption of the 53BP1 UDR also results in loss of 53BP1 foci formation and impaired 

NHEJ (63) (Figure 2A).   
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Figure 2. 53BP1 recruitment to DNA DSB breaks.  Upon damage, KMT5B/C 

methylate H4K20me1, forming H4K20me2.  53BP1 recognizes H4K20me2 via its 

tandem tudor domains.  Additionally, RNF8 and RNF168 facilitate the ubiquitination 

of H2AK15.  53BP1 recognizes H2AK15ub via its UDR domain.  53BP1 is a bivalent 

reader of modified histones (A). Prior to damage, existing molecules of H4K20me2 

are occupied by L3MBTL1 (B) and JMJD2A (C), which recognize H4K20me2 via 

their MBT and tudor domains, respectively.  Upon DNA damage, RNF168 

polyubiquitinates L3MBTL1 and JMJD2A, and VCP facilitates its removal and 

subsequent degradation by the proteasome.  This leaves free H4K20me2, which can be 

recognized by 53BP1. 
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JMJD2A 

 JMJD2A (Jumonji domain-containing protein 2A) also binds to H4K20me2 via its 

tandem tudor domains, although its specific function in binding H4K20me2 remains 

unknown.  JMJD2A is a histone demethylase with specificity for H3K9me2/3 and 

H3K36me2/3(64). Upon DNA damage, JMJD2A is ubiquitinated by RNF8 (RING finger 

protein 8) and RNF168 (RING finger protein 168), and then degraded in a VCP (Valosin-

containing protein) dependent manner. Removal of JMJD2A from H4K20me2 results in 

the subsequent recruitment of 53BP1(65). These findings indicate that DNA damage 

leads to both de novo H4K20me2 synthesis as well as the unmasking of this mark. The 

tudor domains of JMJD2A bind to H4K20me2 with a KD of 2.0 µM, which represents an 

~10-fold increased affinity over 53BP1, at least in vitro. Additionally, overexpression of 

JMJD2A abrogates 53BP1 foci formation, while knockdown of JMJD2A rescues 53BP1 

foci formation in RNF8- and RNF168-depleted cells (65). These data suggest that 

JMJD2A may outcompete 53BP1 for H4K20me2 occupancy and must be removed in 

order for 53BP1 to bind. This same study demonstrated that the catalytic JmjC (Jumonji 

C) domain of JMJD2A is not required for blocking 53BP1 recruitment, indicating that 

53BP1 recruitment is not dependent on JMJD2A demethylase activity (65) (Figure 2C). 

 

L3MBTL1 

L3MBTL1 (Lethal (3) malignant brain tumor-like protein 1) binds to H4K20me1 and 

H4K20me2 via its triple MBT (malignant brain tumor) domains in order to condense 

chromatin and repress transcription (66). Upon exposure to ionizing radiation, one study 

found as much as a 40% decrease in L3MBTL1 signal at DSBs. It was found that RNF8 
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and RNF168 ligase activity was indispensible for this reduction (67). While L3MBTL1 

was shown to be ubiquitinated, it has yet to be determined if it is a substrate of RNF8 and 

RNF168. Acs et al. also found that L3MBTL1 is also degraded via VCP, and that 

L3MBTL1 ubiquitination and VCP catalytic activity are both required for reduction of 

L3MBTL1 DSB localization. Finally they showed that VCP is required for 53BP1 foci 

formation, and that RNF8 and RNF168 are required for VCP activity. They suggest that 

L3MBTL1 must be removed via VCP from H4K20me2 in order for 53BP1 to bind (67) 

(Figure 2C). Further studies into the relationship between 53BP1, L3MBTL1, and 

H4K20me2 are required to determine if 53BP1 binding to H4K20me2 is dependent on 

removal of L3MBTL1. 

 

MBTD1 

MBTD1 (malignant brain tumor domain-containing protein 1) binds to H4K20me2 via its 

four-MBT repeat domain (68,69). MBTD1 was recently identified as a component of the 

NuA4 chromatin-remodeling complex, which contains the histone acetyltransferase 

TIP60 (60 kDa Tat-interactive protein). Depletion of MBTD1 using siRNA results in 

persistent γH2AX foci formation following exposure to DNA damaging agents, 

indicating that MBTD1 is required for the timely repair of DNA damage. Additionally, 

depletion of MBTD1 leads to compromised HR and increased NHEJ.  In vitro studies 

showed that MBTD1 can outcompete 53BP1 for H4K20me2 binding (70).  In vivo, 

depletion of MBTD1 leads to persistent 53BP1 foci formation, attributed to inefficient 

removal of 53BP1 after damage. This group also found that TIP60 is responsible for  
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Figure 3. TIP60 recruitment to H4K20me2 and H2AK15 acetylation.  Upon 

damage, KMT5B/C again catalyze H4K20 dimethylation.  MBTD1 recognizes 

H4K20me2 via its MBT domains.  As part of the NuA4/TIP60 complex, it recruits 

TIP60, which acetylates H2AK15.  This acetylation blocks H2AK15 ubiquitination, 

and subsequent recognition by 53BP1 (A). After damage recognition, and H4K20 

dimethylation by KMT5B/C, FANCD2 reads H4K20me2 via its MBD.  TIP60 is 

recruited to FANCD2, where it acetylates H4K16.  This blocks 53BP1 recognition of 

H4K20me2 and promotes HR (B). 
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acetylating H2AK15 (see H2AK15ac section), which also impacts 53BP1 binding to 

H4K20me2, discussed in more detail below (70) (Figure 3A).  

 

FANCD2 

Our lab recently published findings that FANCD2 (Fanconi Anemia group D2) binds in 

vitro and in vivo to H4K20me2 via a methyl-binding domain. FANCD2 association with 

H4K20me2 increases in the presence of DNA damaging agents. FANCD2 is part of the 

Fanconi Anemia/Breast Cancer (FA/BRCA) DNA repair pathway, which removes 

interstrand crosslinks (ICLs) and promotes homologous recombination. Upon ICL 

damage, FANCD2 is monoubiquitinated and associates with chromatin and recruits HR 

repair proteins (71,72). FANCD2 has been shown to associate with the MRN complex in 

vivo and in vitro, and loss of any of the MRN complex members results in loss in 

FANCD2 foci formation (73). FANCD2 also relies on the presence of BRCA1 for foci 

formation (74,75). FANCD2 is required for CtIP localization to DSB sites, and its 

reduction results in reduced end resection and single strand DNA formation (76,77). 

FANCD2 monoubiquitination is also required for TIP60 recruitment, which acetylates in 

H4K16 (see H4K16ac section) (78,79) (Figure 3B). Finally, FANCD2 harbors a CUE 

(coupling of ubiquitin to ER degradation) domain, which binds to a currently unknown 

ubiquitin substrate. Mutation of this domain results in loss of FANCD2 chromatin 

localization, and increased cellular sensitivity to ICL-inducing agents (80). Disruption of 

the methyl-binding domain results in loss of FANCD2 foci formation, and increased 

53BP1 chromatin and H4K20me2 association. FANCD2 promotes homologous 

recombination, and indeed, disruption of the methyl-binding domain leads to increased 
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NHEJ markers and chromosomal aberrations associated with loss of HR and repair via 

NHEJ.   

 

ORC1 

ORC1 (origin recognition complex subunit 1), while not a DNA repair protein, also 

associates with H4K20me2 via its BAH (bromo adjacent homology) domain.  It was 

shown to preferentially bind to dimethylated H4K20 over the mono- or tri- methylated 

forms, and disruption of the BAH domain results in loss of H4K20me2 binding. ORC1 

mediates replication licensing and forms a pre-replication complex alongside the MCM 

proteins. ORC1 BAH mutants also display decreased cell cycle progression, indicating 

that this domain is important of ORC1 function in replication. Disruption of the ORC1 

BAH domain diminishes its ability to bind to chromatin at replication origins and affects 

cell cycle progression (81,82).   

 

Histone Modifications that Impact Binding to H4K20me  

H2AK15ub 

As previously mentioned, 53BP1 not only binds to H4K20me2 via its tandem tudor 

domains, but also binds to H2AK15ub via its UDR. Disruption of the UDR results in loss 

of 53BP1 foci formation, indicating that both H4K20me2 and H2AK15ub are necessary 

for efficient 53BP1 recruitment (56,63). H2AK15 ubiquitination is catalyzed by RNF8 

and RNF168, which are both required for 53BP1 accumulation at DNA damage sites (83-

86). Following γH2AX and MDC1 foci formation, RNF8 recognizes MDC1 via its FHA 

domain, and then polyubiquitinates histone H1, a histone found within linker DNA 
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between nucleosomes (83,87). RNF168 then recognizes the K63-linked 

polyubiquitination of H1, and subsequently monoubiquitinates H2AK15 (84-87). Loss of 

RNF168 results in abrogation of 53BP1 foci formation. Recognition of both H2AK15ub 

and H4K20me2 by 53BP1 is necessary for efficient NHEJ.  Interestingly, FAAP20, 

(Fanconi anemia core complex-associated protein 20) which promotes FANCD2 nuclear 

foci formation and HR, binds to Ub chains and requires RNF8 activity for its chromatin 

localization (88). However, the ubiquitinated substrate to which FAAP20 binds remains 

unknown (88,89). Finally, as previously touched upon, FANCD2 contains a CUE 

ubiquitin-binding domain and the ubiquitinated substrate to which it binds has yet to be 

determined (80). An intriguing possibility is that FANCD2 and 53BP1 may compete for 

bivalent recognition of both H4K20me2 and H2AK15ub.  

 

H2AK15ac 

H2A can be acetylated on lysine 15 (H2AK15ac) as well.  The switch between H2AK15 

ubiquitination and acetylation may regulate DNA repair pathway choice. Additionally, 

nucleosomes can be bivalently modified, so that H2AK15ac co-occur on nucleosomes 

containing H4K20me2. The NuA4/TIP60 complex acetylates H2AK15, precluding its 

ubiquitination, thereby preventing 53BP1 chromatin binding. As previously mentioned, 

MBTD1 recognizes H4K20me2 as part of the NuA4/TIP60 complex. Analysis of 

MBTD1 CRISPR/Cas9 knockout clones shows a modest reduction in H2AK15 

acetylation, and MBTD1 overexpression slightly increases H2AK15ac levels, however 

the requirement of MBTD1 for H2AK15ac needs to be more closely examined. 

H2AK15ac appears most predominantly in G2/M phase, potentially overlapping with HR 
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in early G2, and continuing to evict 53BP1 throughout mitosis (70). In general, histone 

acetylation is downregulated after DNA damage, however H2AK15 acetylation was 

shown to increase after DNA damage, indicating the role of H2AK15 acetylation in DNA 

damage repair (70). While the authors suggest this mark is associated with HR, regulation 

of this mark and MBTD1 in pathway choice has yet to be studied. 

 

H2AK127Ub 

As mentioned above, upon damage recognition, MRN complex recruitment, and H2AX 

phosphorylation, CtIP is recruited to DSBs during homologous recombination in order to 

catalyze end resection. In BRCA1-deficient cells, 53BP1 blocks end resection, and NHEJ 

takes place. However, in BRCA1-proficient cells, HR is favorable during S-phase (33). 

BRCA1 recruits its heterodimeric binding partner, BARD1 (BRCA1- associated RING-

domain protein), and unknown E2-ubiquitin conjugating enzyme(s), and then acts as an 

E3- ubiquitin conjugating enzyme to catalyze H2AK127 ubiquitination (90). 

SMARCAD1 (SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily A containing DEAD/H box 1), a member of the chromatin 

remodeling family of SWI/SNF proteins, then localizes to sites of damage.  SMARACD1 

contains a CUE ubiquitin-binding domain, and its chromatin recruitment is dependent on 

both its CUE domain and BARD1 expression.  It was shown that the SMARCAD1 CUE 

domain can bind to H2A-ub fusion proteins in vitro, which suggests that SMARCAD1 is 

recruited to chromatin via its CUE domain binding to H2AK127ub. However this 

remains to clearly established. Upon SMARCAD1 recruitment, histone remodeling 

complexes reposition and evict nucleosomes, ultimately evicting 53BP1 from DNA  
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Figure 4. BRCA1-BARD1 and H2AK127 ubiquitination. Upon damage, BRCA1-

BARD1 are recruited to DSB sites.  Together they form an E3-ubiquitin ligase, and 

monoubiquitinate H2AK127.  SMARCAD1, which is part of the SWI/SNF chromatin 

remodeling complex, recognizes H2AK127ub via its CUE ubiquitin binding domain. 

SWI/SNF remodels the chromatin, and evicts/blocks 53BP1 from H4K20me2 sites, 

promoting HR. 
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damage sites.  MRN and CtIP then promote end resection, and HR moves forward (57). 

This evidence is suggestive that SMARCAD1 binds to H2AK127Ub in order to 

reposition 53BP1, supporting previous work that shows that BRCA1 is involved in 

53BP1 repositioning, and ultimate repair pathway choice (Figure 4).  Much remains to be 

determined about the dynamics, regulation and molecular function of this particular 

chromatin mark. 

 

H4K16ac 

In addition to catalyzing H2AK15 acetylation, TIP60 also catalyzes the acetylation of 

H4K16 (91). In the absence of FANCD2, or more specifically FANCD2 

monoubiquitination, TIP60 nuclear foci formation and overall levels of H4K16 

acetylation are markedly reduced (79). In vitro binding experiments show that acetylation 

of K16 of a H4 peptide dimethylated at K20 results in decreased 53BP1 binding (53). In 

vivo, acetylation of H4K16 blocks 53BP1 recognition and chromatin recruitment 

(53,79,92). How H4K16 acetylation affects other H4K20me2 binding proteins such as 

MBTD1 and FANCD2 remains to be determined. 

 

 

Conclusions 

H4K20me2 joins a growing list of histone PTMs that play a major role in the 

coordination of DNA repair processes (Table 1). Until recently, γH2AX was one of the 

few posttranslationally modified histones with a well-characterized role in the DNA 

damage response. However, the importance of chromatin plasticity and, in particular, 
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histone PTMs for the orchestration of DNA repair has become increasingly well 

recognized. Many questions on the function and regulation of H4K20 methylation 

remain: For example, are the H4K20me writers and erasers differentially regulated in 

different tissue types? Do the different H4K20 methylation states have a role in the 

orchestration of loci-specific repair? In addition to H4K20 methylation, H3K9 and 

H3K27 methylation have also recently been shown to play key roles in the DNA damage 

response. Deciphering how the combinatorial modification of these marks and others 

coordinately contribute to DNA repair will be a considerable molecular challenge. While 

much remains to be answered, it is clear that the recognized roles for histone PTMs in the 

DNA damage response will continue to expand. As many of the writers, erasers, and 

readers of histone PTMs are druggable targets, a greater understanding of their 

homeostasis is highly likely to lead to the development of more targeted and effective 

combination cancer chemotherapy regimens.      
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Table 1. H4K20me2 binding proteins. Overview of proteins 
which bind to H4K20, and their roles in DNA damage repair. 
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Protein Binding 
Partner Role Comments 

KMT5A H4K20 Writer Methylates H4K20 to form H4K20me1 

KMT5B/C H4K20me Writer Methylates H4K20me1 to form 
H4K20me2/3 

MMSET H4K20me Writer Methylates H4K20me1 to form 
H4K20me2 

53BP1 
H4K20me2 

Reader Blocks CtIP and inhibits end resection; 
promotes NHEJ H2AK15ub 

JMJD2A H4K20me2 Reader Specific H4K20me2 binding function 
unknown; removed by VCP after DSB 

L3MBTL1 H4K20me1/2 Reader Binds to repress transcription; removed 
by VCP after DSB 

MBTD1 H4K20me2 Reader Part of NuA4/TIP60 complex, which 
acetylates H2AK15; promotes HR 

FANCD2 H4K20me2 Reader Recruits ICL repair proteins and 
TIP60; promotes HR 

ORC1 H4K20me2 Reader Mediates Replication Licensing 

RNF8 and 
RNF 168 

H2AK15 
Writer 

Monoubiquitinates H2AK15 
JMJD2A Polyubiquitinates to signal removal of 

JMJD2A and L3MBTL1 L3MBTL1 
BRCA1 and 

BARD1 H2AK127 Writer Ubiquitinates H2AK127; read by 
SMARCAD1 and evicts 53BP1 

TIP60 H4K16 Writer Acetylates H4K16, blocking 53BP1 
binding to H4K20me2 
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Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure 

and increased cancer risk. FA is caused by mutation of any one of 22 genes, and the 

FA proteins function cooperatively to repair DNA interstrand crosslinks (ICLs). A 

central step in the activation of the FA pathway is the monoubiquitination of the 

FANCD2 and FANCI proteins, which occurs within chromatin. How FANCD2 and 

FANCI are anchored to chromatin remains unknown. In this study, we identify and 

characterize a FANCD2 histone-binding domain (HBD) and embedded methylated 

lysine-binding domain (MBD) and demonstrate binding specificity for H4K20me2. 

Disruption of the HBD/MBD compromises FANCD2 chromatin binding and nuclear 

foci formation and its ability to promote error-free DNA interstrand crosslink 

repair, leading to increased error-prone repair and genome instability. Our study 

functionally describes the first FA protein chromatin reader domain and establishes 

an important link between this human genetic disease and chromatin plasticity. 

 

Significance  

Fanconi anemia (FA) is a genetic disease characterized by atypically early-onset bone 

marrow failure and cancer. FA has strong genetic and biochemical links to hereditary 

breast and ovarian cancer. The FA proteins function to repair DNA damage and maintain 

genome stability. The FANCD2 protein functions at a critical stage of the FA pathway 

and its posttranslational modification is defective in >90% of FA patients. However, the 

domain structure, function, and regulation of FANCD2 remain remarkably poorly 

characterized. In this study, we describe the discovery of a novel chromatin-binding 

mechanism for FANCD2: FANCD2 contains a methyl-lysine binding motif with 
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specificity for H4K20me2. Disruption of this motif compromises FANCD2 chromatin 

binding; leading to defective DNA repair and increased genome instability. 

 

Nucleosomes, the fundamental unit of chromatin, play a dynamic and instructive role in 

many cellular processes, including transcription, replication, and DNA repair. One 

mechanism by which nucleosomes instruct DNA repair is via the posttranslational 

modification (PTM) of histone tails. These modifications modulate the strength of 

noncovalent interactions between histones and DNA, and serve as binding sites for 

chromatin-interacting proteins, also known as chromatin readers. Many important DNA 

repair proteins have been shown to harbor reader domains that are critical for their repair 

function, examples of which include the tandem Tudor domains of 53BP1 and the 

chromodomain of KAT5/TIP60 (1-3).  

Fanconi Anemia (FA) is a genetic disease characterized by congenital abnormalities, 

progressive pediatric bone marrow failure, and heightened cancer risk in early adulthood 

(4). FA is caused by mutation of any one of 22 genes (5, 6). The FA proteins orchestrate 

the repair of DNA interstrand crosslinks (ICLs), lesions that block the replication and 

transcription machineries, and can lead to structural and numerical chromosome 

aberrations if repaired erroneously (7, 8). A central step in the activation of the FA 

pathway is the site-specific monoubiquitination of the FANCD2 and FANCI proteins, 

which occurs within chromatin (9-12). However, the mechanism(s) by which FANCD2 is 

tethered to chromatin, and whether FANCD2 displays specificity for particular histone 

PTMs, is unknown. Indeed, no reader domains have been identified for any of the FA 

proteins to date.  
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In this study, we describe the identification and characterization of a FANCD2 histone-

binding domain (HBD) and embedded methyl-lysine-binding domain (MBD). We 

establish that the FANCD2 MBD can bind to mono-, di-, and tri-methylated H4K20 in 

vitro, and exhibits specificity for H4K20me2 in cellula. Knockdown of KMT5A, the 

histone methyltransferase responsible for H4K20 monomethylation, which primes 

H4K20 for subsequent di- and tri- methylation, results in decreased FANCD2 foci 

formation and increased sensitivity to the DNA interstrand crosslink (ICL) inducing 

agent mitomycin C (MMC). Guided by sequence conservation and in silico modeling, we 

generated several HBD/MBD missense variants and stably transduced FA-D2 (FANCD2-

/-) patient-derived cells. Our functional analyses reveal that disruption of the HBD/MBD 

compromises FANCD2 chromatin binding and nuclear foci formation and its ability to 

effectively promote ICL repair. Consequently, upon exposure to ICL-inducing agents, 

error-prone DNA repair pathways, including nonhomologous DNA end joining (NHEJ), 

are employed, resulting in increased cytotoxicity and chromosome structural aberrations. 

Our studies uncover a novel and key mechanism by which FANCD2 is anchored to 

chromatin and functionally link this important human genetic disease to chromatin 

plasticity. 

 

Results 

FANCD2 has a histone-binding domain and embedded methyl-lysine-binding 

domain. A BLASTp search using short fragments of human FANCD2 uncovered amino 

acid sequence homology between FANCD2 and the Drosophila melanogaster p55 

protein, a histone H4 binding protein and component of the NuRD, NuRF, and CAF1 



 48 

nucleosome remodeling complexes (13-16) (Fig. S1A). This region of FANCD2 is highly 

evolutionarily conserved among vertebrates (Fig. S1A). Using an in silico molecular 

modeling approach, the histone H4 tail from the p55-H4 structure (PDB ID: 3C9C) was 

docked into murine Fancd2 (PDB ID: 3S4W) using AutoDock Vina (17), illustrating 

favorable predicted binding energies between the H4 tail and the histone-binding domain 

(HBD) (Fig. S1B). Further examination of the FANCD2 HBD uncovered a highly 

conserved putative methyl-lysine (Kme)-binding domain (MBD) with sequence 

homology to the methyl-binding chromodomains of HP1α, TIP60, and CBX8 (Fig. 1A 

and B). A GST-tagged FANCD2-HBD/MBD fragment (amino acids 604-1194) was 

purified and, in a histone peptide array screen, bound to a H4 17-mer harboring 

unmodified, K20me1, K20me2, and K20me3 (data not shown). These findings were 

verified in an in vitro histone peptide pulldown assay (Fig. S1C and D). Using a similar 

approach, a smaller GST-tagged FANCD2-MBD fragment (amino acids 1069-1142) 

bound to H4K20me1, H4K20me2, and H4K20me3, but not unmodified H4 or 

H3K27me3 (Fig. 1D). MBD-Kme binding involves the docking of Kme into an aromatic 

cage and the formation of cation-π interactions with delocalized electrons of aromatic 

residues (18). Highly conserved aromatic amino acids within the FANCD2 Kme binding 

cage include F1073, W1075, and F1078 (Fig. S1E). Using calf thymus histones, we 

observed a modest decrease in binding of a MBD-W1075A fragment to H4K20me2 and 

me3, compared to the wild-type MBD (Fig. S1F). Finally, using proximity ligation assay 

(PLA), we observed preferential binding of FANCD2 to H4K20me2 in cells, and 

stimulation of H4K20me binding upon MMC exposure (Fig. 1E and S1G). Binding of 

53BP1 to H4K20me was used as a positive control for our PLA assay (Fig. S1H). Taken  
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Fig. 1. FANCD2 contains a MBD that exhibits specificity for H4K20me2. (A) 

Schematic of the known FANCD2 domains: N, Nuclear localization signal (49); CUE, 

Coupling of ubiquitin conjugation to endoplasmic reticulum degradation (41); P, 

PCNA-interaction motif (PIP-box) (50); HBD, Histone binding domain (aa 604-1194); 

MBD, Methyl lysine-binding domain (aa 1069-1142); T, Tower domain (51). (B) 

Clustal omega multiple sequence alignment (MSA) of the FANCD2 MBD and known 

methyl lysine-binding chromodomains. Predicted key aromatic residues are indicated 

by an asterisk, W1075 in blue. (C) Clustal omega zoo MSA of the FANCD2 MBD 

illustrating strong evolutionary conservation. (D) Streptavidin sepharose pulldown of 

biotinylated histone peptides incubated with purified GST-MBD. (E) Quantification of 

proximity ligation assay (PLA) results with FANCD2 and H4K20me1, me2, me3, and 

H3K27me3 in U2OS cells. Nuclei with >20 PLA spots were considered positive. 

Experiments were performed three times with similar results. Error bars represent the 

standard errors of the means from three independent experiments. At least 300 nuclei 

were scored per biological replicate. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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together, our results demonstrate that FANCD2 interacts directly with methylated H4 via 

its HBD/MBD, and suggest that the chromatin recruitment of FANCD2 is mediated via 

an interaction between the HBD/MBD and H4K20, similar to that recently described for 

other important DNA repair proteins, e.g. 53BP1 and TIP60 (1-3, 19).  

 

The histone methyltransferase KMT5A is necessary for efficient activation of the 

FA pathway and ICL repair. The KMT5A histone methyltransferase catalyzes the 

monomethylation of H4K20, a prerequisite for di- and tri-methylation (20, 21). To 

determine if KMT5A plays a role in the regulation of the activation of the FA pathway, 

we depleted KMT5A in HeLa cells using siRNA and examined FANCD2 

monoubiquitination and nuclear foci formation. While depletion of KMT5A did not 

impact spontaneous or DNA damage-inducible FANCD2 or FANCI monoubiquitination 

(Fig. 2A), KMT5A knockdown resulted in a significant decrease in FANCD2 nuclear 

foci formation following exposure to MMC and aphidicolin (APH), a replicative DNA 

polymerase inhibitor (Fig. 2B and C). Similar findings were observed for the 

nontransformed mammary epithelial line MCF10A (Fig. S2A and B). In addition, similar 

to FA patient-derived cells, cells depleted of KMT5A exhibited increased basal and ICL-

inducible chromosome aberrations, including gaps, breaks and radial formations (Fig. 2D 

and E). These results establish that H4K20 methylation is necessary for efficient 

activation of the FA pathway and ICL repair. 

  

The FANCD2 MBD is required for efficient chromatin binding and nuclear foci 

formation. To examine the functional importance of the FANCD2 HBD/MBD, we next  
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Fig. 2. The histone methyltransferase KMT5A is necessary for efficient activation of 

the FA pathway and ICL repair. (A) HeLa cells were incubated with control non-

targeting siRNA (siControl) or siRNA targeting KMT5A (siKMT5A) for 72 h. Cells 

were then treated with 200 nM mitomycin C (MMC) or 1 µM aphidicolin (APH) for 

16 h and whole-cell lysates analyzed by immunoblotting. L:S ratio, ratio of 

monoubiquitinated to nonubiquitinated FANCD2 or FANCI. (B) Representative 

images of FANCD2 foci in MMC-treated HeLa cells. Cells were treated as described 

in (A). D, DAPI; D2; FANCD2; M, merge. (C) Quantification of FANCD2 foci 

formation for (B). Nuclei with > 10 FANCD2 foci were considered positive. At least 

300 nuclei were scored per biological replicate. (D) HeLa cells were incubated with 

siControl or siKMT5A for 72 h. Cells were then treated with 10 nM MMC for 16 h 

and metaphase chromosomes were analyzed for the presence of structural aberrations. 

50 metaphases were scored per treatment. These experiments were performed twice 

with similar results. Error bars represent the standard errors of the means. *, P < 0.05; 

**, P < 0.01; ***, P < 0.001. (E) Representative chromosome images from (D). M, 

mitomycin C.   
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generated a series of FANCD2 variants harboring missense mutations in the HBD/MBD, 

and stably expressed these mutants in FA-D2 (FANCD2-/-) patient-derived cells (22). In 

contrast to the monoubiquitination-defective mutant FANCD2-K561R (10), all 

HBD/MBD missense mutants remained competent for DNA damage-inducible 

monoubiquitination (Fig. 3A). These findings indicate that mutations in the HBD/MBD 

do not perturb overall protein structure or stability, or the propensity for 

monoubiquitination by the multi-subunit FA core complex ubiquitin ligase. Using a 

chromatin enrichment assay, similar to wild type FANCD2, the HBD/MBD mutants were 

capable of localizing to chromatin (Fig. S3A). However, the interactions between the 

HBD/MBD mutants and chromatin were more sensitive to increasing salt concentrations 

than wild type FANCD2, leading to release of the mutants at lower salt concentrations 

(Fig. 3B and S3C). These results are suggestive of a reduced affinity of the mutants for 

chromatin. Moreover, similar to FANCD2-K561R and unlike wild type FANCD2, 

FANCD2-H1056A and FANCD2-W1075A failed to assemble into discrete nuclear foci 

following ICL exposure (Fig. 4A and C). Consistent with previous studies showing a 

dependency between FANCD2 and FANCI nuclear foci formation (11, 12), FANCI 

nuclear foci formation was also markedly impaired in cells expressing the HBD/MBD 

mutants (Fig. 4B). We next analyzed the interactions between FANCD2 and H4K20me in 

FA-D2 cells expressing wild type FANCD2 or the W1075A mutant using PLA. While 

wild type FANCD2 interacted strongly with H4K20me2 - and much less so with 

H4K20me1, H4K20me3, or H3K27me3 - this interaction was markedly impaired for the 

W1075A mutant (Fig. 4D). We simultaneously performed PLA with 53BP1 and 

H4K20me1, me2, me3, and H3K27me3 and observed a modest, yet statistically  
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Fig. 3. FANCD2 MBD mutants are proficient for monoubiquitination but exhibit 

decreased affinity for chromatin. (A) FA-D2 cells stably expressing LacZ, wild type 

FANCD2, FANCD2-K561R, FANCD2-H1056A, and FANCD2-W1075A were 

incubated in the absence or presence of 200 nM mitomycin C (MMC) or 200 µM 

hydroxyurea (HU) for 24 h, and whole-cell lysates were analyzed by immunoblotting. 

L:S ratio, ratio of monoubiquitinated to nonubiquitinated FANCD2 or FANCI. (B) 

FA-D2 cells stably expressing wild type FANCD2, FANCD2-H1056A, and 

FANCD2-W1075A were incubated in the absence or presence of 200 nM MMC for 24 

h and nuclear fractions were extracted in buffers containing the indicated NaCl 

concentrations. Gels were stained with SimplyBlue SafeStain to confirm equal fraction 

loading. 
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significant, increase in 53BP1 binding to H4K20me2 and me3 in FA-D2 cells expressing 

FANCD2-W1075A, compared to cells expressing wild type FANCD2 (Fig. S4). Taken 

together, our results indicate that FANCD2 preferentially binds to H4K20me2 in cells, 

and that binding is mediated by the HBD/MBD domain. In addition, our results suggest 

that decreased binding of H4K20me2 by FANCD2 may lead to increased H4K20me2 

binding by 53BP1. 

 

The FANCD2 HBD/MBD is required for efficient conservative ICL repair. To 

determine the impact of disruption of the HBD/MBD on ICL repair, we cultured cells in 

the absence and presence of MMC and examined γH2AX nuclear foci formation, a 

marker of DNA double-strand break (DSB) formation (23). Unlike FA-D2 cells 

expressing wild type FANCD2, cells expressing FANCD2-H1056A and -W1075A 

exhibited prolonged elevated γH2AX nuclear foci formation following ICL exposure 

(Fig. 5A). We also examined 53BP1 and DNA-PKcs pS2056 nuclear foci formation in 

our FA-D2 cell series, both markers of error-prone NHEJ DSB repair (24-27). Similar to 

that observed for γH2AX, persistent elevated levels of 53BP1 and DNA-PKcs pS2056 

nuclear foci were observed in cells expressing FANCD2-H1056A and -W1075A, in 

contrast to cells expressing wild type FANCD2 (Fig. 5B and S5B). We also measured 

cell survival and metaphase chromosome aberrations in HBD/MBD mutant expressing 

cells. Similar to FANCD2-K561R, and unlike wild type FANCD2, the FANCD2-

H1056A and -W1075A mutants failed to fully rescue the ICL sensitivity of FA-D2 

patient cells (Fig. 5C). Chromosomes from cells expressing FANCD2-H1056A and -

W1075A also exhibited greater numbers of aberrations, including gaps and breaks and  
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Fig. 4. FANCD2 MBD mutants fail to assemble into nuclear foci or interact with 

H4K20me2. (A and B) FA-D2 cells stably expressing wild type FANCD2, FANCD2-

K561R, FANCD2-H1056A, and FANCD2-W1075A were incubated in the absence or 

presence of 200 nM mitomycin C (MMC) for 24 h. Cells were fixed and stained with 

anti-FANCI (green) and anti-V5 (red) antibodies and counterstained with DAPI (blue). 

(A) Quantification of FANCD2 nuclear foci. (B) Quantification of FANCI nuclear 

foci. Nuclei with >5 V5 (FANCD2) or FANCI foci were considered positive. (C) 

Representative images from (A) and (B). (D) Quantification of proximity ligation 

assay (PLA) results with FANCD2 and H4K20me1, me2, me3, and H3K27me3 in 

FA-D2 cells stably expressing wild type FANCD2 or FANCD2-W1075A. Nuclei with 

>20 PLA spots were considered positive. Experiments were performed three times 

with similar results. At least 300 nuclei were scored per biological replicate. Error bars 

represent the standard errors of the means from three independent experiments. *, P < 

0.05; **, P < 0.01; ***, P < 0.001. 
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radial formations, compared with cells expressing wild type FANCD2 (Fig. 5D and 

S5A). Stable expression of FANCD2-H1056A and -W1075A had no observable impact 

on cellular growth rate (Fig. S5C). Taken together, our findings indicate that H4K20me2 

binding by the FANCD2 HBD/MBD is essential for the promotion of error-free 

conservative ICL repair, and link chromatin plasticity to activation of an important tumor 

suppressor pathway.   

 

Discussion 

In this study, we describe the identification and functional characterization of a methyl-

lysine binding domain in the FANCD2 protein that exhibits specificity for H4K20me2. 

Disruption of this domain results in a decreased affinity for chromatin and an inability to 

assemble into discrete nuclear foci, presumed sites of active ICL repair (10). 

Consequently, cells expressing FANCD2 MBD mutants demonstrate evidence of 

persistent DSBs and an increased dependence on error-prone ICL repair pathways, 

including NHEJ. This, in turn, leads to increased sensitivity to ICL-inducible 

chromosome structural aberrations and cytotoxicity. A role for the FA proteins in 

suppressing erroneous NHEJ repair has previously been described (24). Consistent with 

an important role for the H4K20me2 chromatin mark in facilitating efficient activation of 

the FA pathway and ICL repair, depletion of the KMT5A H4K20 monomethyltransferase 

markedly reduced FANCD2 nuclear foci formation following ICL exposure. Mutation of 

the MBD and depletion of KMT5A did not, however, impact FANCD2 or FANCI 

monoubiquitination. This is consistent with several reports demonstrating the uncoupling 

of monoubiquitination from nuclear foci formation (10, 28-31). Collectively, these  
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Fig. 5. The FANCD2 HBD/MBD is required for efficient conservative ICL repair. (A 

and B) FA-D2 cells stably expressing LacZ, wild type FANCD2, FANCD2-K561R, 

FANCD2-H1056A, and FANCD2-W1075A were incubated in the absence or 

presence of 200 nM mitomycin C (MMC) for 24 h and allowed to recover for an 

additional 24 h. Cells were fixed and stained with anti-γH2AX (A) or anti-53BP1 (B) 

antibodies and the numbers of nuclei with >10 γH2AX (A) or >20 53BP1 (B) foci 

were scored. At least 300 nuclei were scored per biological replicate. (C) The same 

cells were incubated in the presence of various concentrations of MMC for 7-10 days 

and surviving cells were stained with crystal violet and % survival scored relative to 

untreated cells. (D) The same cells were incubated in the absence (NT) or presence of 

16 nM MMC for 24 h and metaphase chromosomes analyzed for structural 

aberrations, including gaps, breaks and radial formations. Representative chromosome 

aberrations from MMC-treated FA-D2 cells expressing FANCD2-H1056A and 

FANCD2-W1075A are shown. All experiments were performed three times with 

similar results, except for (D), which was performed twice. Error bars represent the 

standard errors of the means. For (D), 80 metaphases were scored per treatment. *, P < 

0.05; **, P < 0.01; ** 
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studies indicate that monoubiquitination is necessary but not sufficient for nuclear foci 

formation, and that the ability of FANCD2 to assemble into nuclear foci is essential for 

effective ICL repair. Moreover, our findings indicate that one critical determinant of 

FANCD2 nuclear foci formation is the ability to interact directly with H4K20me2. 

 The importance of the H4K20me2 chromatin mark for efficient DNA repair has 

become increasingly well recognized (32). Loss of KMT5A (PR-SET7/SET8), or the 

KMT5B (SUV4-20H1) and KMT5C (SUV4-20H2) methyltransferases - which mediate 

di- and tri-methylation of H4K20 - results in widespread genome instability across the 

evolutionary spectrum (33-36). H4K20me2 has been shown to be an important factor for 

the chromatin recruitment of 53BP1. 53BP1 promotes NHEJ and suppresses homologous 

recombination (HR) by negatively regulating 5’-3’ DNA strand resection, a critical 

initiating step of HR (25, 27). 53BP1 binds to H4K20me2 via its tandem Tudor domains 

(1). Similar to our findings for the FANCD2 MBD, disruption of the Tudor folds 

compromises the recruitment of 53BP1 to sites of DNA damage (37). However, while 

delayed, Suv4-20h-double-null MEFs support 53bp1 nuclear foci formation following 

exposure to ionizing radiation (IR) (36), highlighting the multifactorial nature of its 

chromatin recruitment. For example, binding to H2AK15ub via its ubiquitination-

dependent recruitment motif (UDR) also promotes 53BP1 chromatin binding (38). 

Conversely, TIP60-mediated H2AK15 and H4K16 acetylation inhibits 53BP1 chromatin 

binding (39, 40). While much less is known about mechanistic aspects of FANCD2 

chromatin recruitment, we predict a similar scenario with the existence of multiple 

determinants of chromatin targeting. Our studies indicate that FANCD2 binding to 

H4K20me2 is necessary for stable association and site-specific accumulation within 
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chromatin. We also previously established that FANCD2 has an ubiquitin-binding 

domain: an amino-terminal CUE (for coupling of ubiquitin conjugation to endoplasmic 

reticulum degradation) domain (41). While the CUE is required for efficient chromatin 

targeting, the ubiquitinated protein to which the CUE domain binds has yet to be 

identified. The RNF8 and BRCA1-BARD1 E3 ubiquitin ligases have also been shown to 

be required for the efficient chromatin recruitment of FANCD2 (10, 29, 42, 43), leading 

us to predict that FANCD2, like 53BP1, may also function as a bivalent chromatin 

reader. Interestingly, we observed a modest increase in 53BP1 binding to H4K20me2 

upon mutation of the FANCD2 MBD, suggesting that FANCD2 and 53BP1 may compete 

for binding to the H4K20me2 mark. FANCD2 has been shown to promote the 

recruitment of TIP60 and the acetylation of H4K16 (44), which would be expected to 

decrease the affinity of 53BP1 for chromatin binding. The relationship between 53BP1 

and FANCD2 remains to be clearly elucidated: while FANCD2 is generally thought to 

promote HR and restrict NHEJ (24, 45-47), combined deletion of murine 53bp1 and 

Fancd2 results in increased ICL-inducible genomic instability compared to deletion of 

Fancd2 alone (29). Studies of ICL repair using Xenopus egg extracts have established 

that FANCD2 is required for nucleolytic incisions proximal to the ICL (48), and the 

absence of FANCD2 may thus preclude the generation of an optimal initiating structure 

for both HR and NHEJ. Future studies of the interplay between FANCD2 and 53BP1, the 

chromatin modifications that dictate their functions, and the chromatin remodeling 

complexes with which they interact, will be essential for improving our understanding of 

ICL repair, the molecular basis of FA, and the development of effective therapeutic 

options for FA.  
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Materials and Methods 

Cell Culture  

FA-D2 (FANCD2-/-) cells were grown in DMEM supplemented with 15% v/v fetal 

bovine serum, 1% v/v L-glutamine, and 1% v/v penicillin/streptomycin. Cells were stably 

infected with pLenti6.2/V5-DEST (Invitrogen) harboring wild type or mutant FANCD2 

cDNAs. Stably infected cells were grown in DMEM complete medium supplemented 

with 2 µg/mL blasticidin.  

 

NaCl Extraction 

Cells were plated at a density of 3 x 106 cells in 15 cm2 dishes.  Cells were treated with 

200 nM MMC for 24 h.  Cells were harvested in ice-cold PBS, and a portion was set 

aside for the whole-cell lysate.  The remaining pellet was lysed in CSK buffer and the 

supernatant containing soluble proteins was collected.  The remaining pellet was split 

into three and lysed in salt extraction buffer (20 mM HEPES, pH 7.9, 0.5 mM TCEP, 1 

mM PMSF, 1.5 mM MgCl2, and 0.1% Triton-X-100) containing 150, 250, or 500 mM 

NaCl.  

 

In vitro Histone Peptide Binding Assays 

GST-fusion proteins were incubated with biotinylated histone peptides (Epicypher) 

overnight at 4°C overnight in Binding Buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 

0.05% v/v NP-40).  Samples were incubated for 1 h at 4°C with Streptavidin sepharose 

(GE) (previously washed in in Binding Buffer). After incubation, samples were washed 
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4x with Wash Buffer (50 mM Tris-HCl pH 7.5, 200 mM NaCl, 0.1% v/v NP-40) and 

eluted in 2x LDS/10% v/v β-mercaptoethanol with boiling. Proteins were resolved on 4-

12% w/v Bis-Tris gels (Invitrogen), and either silverstained using the Silver Stain for 

Mass Spectrometry kit (Thermo), or immunoblotted with antibodies against GST 

(Invitrogen).  
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APPENDIX-I 

Conclusion 

Upon DNA interstrand crosslink (ICL) formation, a core complex of FA proteins 

comes together to form an E2 and E3 ubiquitin ligase.  This complex monoubiquitinates 

FANCD2, which is localized to sites of DNA damage.  Monoubiquitinated FANCD2 

then recruits downstream proteins to the break site, which are involved in removal of the 

ICL, and repair via homologous recombination (HR).  The mechanism behind FANCD2 

chromatin localization has remained poorly understood.     

While histone posttranslational modification had been studied extensively in 

recent years, its role in damage repair has only just become evident.  The H4K20me2 

modification has been heavily implicated in DNA damage repair of double strand breaks, 

and is recognized by proteins involved in both error free repair via homologous 

recombination, and the error prone nonhomologous end joining pathway.   

The focus of my dissertation has been elucidating how FANCD2 localizes to 

chromatin.  Using in silico analysis, we determined that FANCD2 contained a histone 

binding and embedded methyl-binding domain.  We confirmed that FANCD2 could bind 

to methylated H4K20 in vitro using purified FANCD2 in peptide and nucleosome 

pulldown assays.  In vivo, we determined that FANCD2 associated with H4K20me2 upon 

ICL formation.  Knockdown of the KMT5A enzyme, which monomethylates H4K20 

(and is required for future dimethylation), is required for efficient FANCD2 chromatin 

localization and repair of ICLs.  Using transformed patient cell lines which stably 

expressed wildtype or MBD mutant FANCD2, we determined the MBD is necessary for 

FANCD2 chromatin localization and tethering, and association with H4K20me2. 
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Additionally, mutation in the MBD resulted in increased, prolonged DNA damage, and 

increased presence of nonhomologous end joining markers, compared to wildtype 

expressing cells.  Finally, MBD mutant cells failed to rescue sensitivity to MMC, shown 

by decreased cell survival and increased chromosomal aberrations compared to wildtype 

expressing cells.  Our results indicate that upon ICL damage, FANCD2 is localized to 

sites of DNA damage via its MBD, where is binds specifically to H4K20me2 found at 

these sites.  
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APPENDIX-II 

 

Supplemental information for Manuscript-II: “FANCD2 binding to H4K20me2 via a 

methyl-binding domain is essential for efficient DNA crosslink repair” 

 

Supplementary information: 

Materials and Methods 

siRNA, Immunoblotting, and Antibodies 

ON-TARGETplus SMARTpool siRNA against KMT5A (Dharmacon, L-031917-00-

0005) was used for siRNA studies. HeLa cells were plated in six-well dishes at a density 

of 2 x 105 cells per well. The following day, cells were transfected with siRNA specific 

for KMT5A or control non-targeting siRNA using Lipofectamine 2000. Sixty-four h 

following transfection, cells were incubated in the absence or presence of 200 nM MMC 

or 1 µM APH for 16 h and harvested for analysis.  For immunoblotting analysis, cell 

suspensions were washed in ice-cold PBS and lysed in SDS lysis buffer (2% v/v SDS, 50 

mM Tris-HCl pH 7.4, 10 mM EDTA) with sonication. Proteins were resolved on 

NuPAGE 3-8% w/v Tris-Acetate or 4-12% w/v Bis-Tris gels (Invitrogen) and transferred 

to polyvinylidene difluoride (PVDF) membranes. The following mouse monoclonal 

antibodies were used: anti-GST (136700, Invitrogen), anti-γH2AX (05-636, Millipore), 

anti-α-Tubulin (MS-581-P1, NeoMarkers), anti-H4K20me1, anti-H4K20me2, anti-

H4K20me3, anti-H3K27me3 and anti-V5 (R960-25, Invitrogen). Rabbit polyclonal 

antibodies used were: anti-53BP1 (sc-22760, Santa Cruz Biotechnology), anti-DNA-
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PKcs pS2056 (ab18192, Abcam), anti-FANCD2 (NB100-182, Novus Biologicals), anti-

FANCI (A300-212A and A300-254A, Bethyl Laboratories), anti-V5 (D3H8Q, Cell 

Signaling Technology), anti-H2A (07-146, Upstate), and anti-H3 (ab1791, Abcam). 

 

Plasmids 

Mutant cDNAs were generated using the Quikchange II site directed mutagenesis kit 

(Stratagene). The forward and reverse oligonucleotide sequences used are as follows: 

H1056A FP 5’ CCAGGAGTGAAAGTTCAGGAGTACGCCATAATGTCTTCCTGC 

3’; H1056A RP 5’ 

GCAGGAAGACATTATGGCGTACTCCTGAACTTTCACTCCTGG 3’; W1075A FP 

5’ CATGGGCTTTTTGCTGCGAGTGGATTTTCTCAACCTG 3’; W1075A RP 5’ 

CAGGTTGAGAAAATCCACTCGCAGCAAAAAGCCCATG 3’.  The histone-binding 

domain (HBD) and methyl-binding domain (MBD) fragments were cloned into the 

pGEX-6P-1 plasmid using restriction enzyme cloning.  The forward and reverse 

oligonucleotide sequences used are as follows: HBD FP 5’ 

ATAGAATTCATGGATGAGCAGTGCACACAG 3’; HBD RP 5’ 

TATCTCGAGTCACTCTGTGTGCTCCAGGTA 3’; MBD FP 5’ 

ATAGAATTCATGTTTCATGGGCTTTTTG 3’; MBD RP 5’ 

TATCTCGAGTCACAAAATAACCATCAAAAG 3’.   

 

Protein Purification 

GST-fusion proteins were expressed in BL21 Rosetta2 (DE3) pLysS cells following 

induction with isopropyl β-D-1-thiogalactopyranoside (IPTG) at 16°C. Cells were 
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pelleted, lysed in Buffer A (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 1 mM 

PMSF, 1 mM DTT, 0.5% v/v NP-40, plus protease inhibitor cocktail tablets (Roche)) and 

flash frozen. The following day, cells were thawed on ice and lysed using a French press. 

Lysates were spun at 12,000 g for 30 min at 4°C and the supernatant filtered using a 0.45 

µm filter. Glutathione agarose (Invitrogen) was applied to a column, and washed with 

deionized H2O and Buffer A. Filtered supernatant was applied to the column. The column 

was washed in Buffer B (50 mM Tris-HCl pH 8.0, 750 mM NaCl, 0.5% v/v NP-40), and 

then Buffer A. Proteins were eluted at room temperature in Buffer C (50 mM Tris HCl 

pH 8.0, 150 mM NaCl, 0.5% v/v NP-40, and 20 mM reduced glutathione).  Elution 

samples were resolved on NuPAGE 4-12% w/v Bis-Tris gels and stained with 

SimplyBlue SafeStain (Invitrogen). Protein-containing fractions were pooled and 

dialyzed against Buffer D (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.05% v/v NP-40). 

 

Chromatin Enrichment 

Cells were plated at density of 3 x 106 cells in 15 cm2 dishes. The following day, cells 

were treated with 200 nM mitomycin C (MMC) for 24 h. Cells were harvested and 

resuspended in ice-cold PBS. A portion of the pellet was set aside as the whole-cell 

lysate. The remaining pellet was lysed in ice-cold cytoskeletal buffer (CSK) (300 mM 

Sucrose, 100 mM NaCl, 3 mM MgCl2, 0.5% v/v Triton-X-100, 1 mM EGTA, 10 mM 

PIPES, pH 6.8). The supernatant was collected as the soluble portion. The remaining 

pellet and whole-cell pellets were lysed in SDS lysis buffer with sonication.  

 

Immunofluorescence Microscopy 
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Cells were plated at a density of 3 x 105 cells per well of culture slides (BDFalcon).  The 

following day, cells were treated with 200 nM MMC for 24 h. Cells were pre-

permeablized in permeabilization buffer (0.3% v/v Triton-X-100 in PBS pH 7.4) and 

fixed on ice in fixing buffer (4% w/v paraformaldehyde, 2% w/v sucrose, in PBS pH 7.4) 

for 15 min. Cells were permeabilized for 10 min, and blocked in antibody dilution buffer 

(ADB) (5% v/v Goat Serum, 0.1% v/v NP40 in PBS pH 7.4) for 30 min. Cells were 

stained for 1 h in primary antibody diluted in ADB, washed with PBS and 

permeabilization buffer, and stained with fluorescent secondary antibodies for 30 min in 

ADB. Cells were washed in PBS and permeablization buffer, and counterstained with 

4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI). Foci were analyzed using a 

Zeiss AxioImager.A1 upright epifluorescent microscope with AxioVision LE 4.6 image 

acquisition software. Proximity ligation assays (PLA) were performed similar to the 

immunofluorescence microscopy protocol up to the secondary antibody step. The 

remainder of the PLA protocol was carried out according to the manufacturers 

instructions (DUO92101, 

Sigma Aldrich).   

 

Mitomycin C Cell Survival Assay 

Cells were plated at a density of 1.5 x 104 cells per well in 6-well dishes. The following 

day, cells were treated with varying concentrations of mitomycin C (MMC) for 7-10 

days. Cells were washed in PBS and fixed in fixing buffer (10% v/v methanol, 10% v/v 

acetic acid). Cells were then stained with crystal violet (1% w/v crystal violet in 

methanol). The following day, the crystal violet was dissolved in dissolving solution 
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(0.02% v/v SDS in methanol) for 2 h.  Solutions were transferred to 96 well dishes, and 

the OD570 was read using a 96-well Bio-Rad 680 microplate reader. 

 

Chromosome Breakage Assay 

For chromosome breakage assays, cells were grown in the absence or presence of 10 or 

16 nM MMC for 24 h. Prior to harvesting, cells were treated with 0.1 µg/ml colcemid 

(Gibco/Invitrogen) for 2 h. Cell pellets were incubated in 0.075 M KCl at 37°C for 18 

min, followed by fixation in Carnoy’s fixative (3:1 methanol:glacial acetic acid) with 

multiple changes. Cells were dropped onto chilled slides and air-dried prior to staining 

with 3% v/v Giemsa solution (Sigma). Metaphases were analysed using a Zeiss 

AxioImager.A1 upright epifluorescent microscope with AxioVision LE 4.6 image 

acquisition software. 

 

In Vitro Bulk Histone Binding Assays 

Glutathione agarose (Invitrogen) was blocked in NETN150 (20 mM Tris-HCl pH 7.5, 

150 mM NaCl, 0.25% v/v NP-40, 1 mM EDTA) plus 1% w/v BSA, washed in NETN150 

and added to GST-fusion proteins overnight at 4°C.  Histones purified from calf thymus 

(Sigma) were pre-cleared with glutathione agarose at 4°C overnight. Precleared calf 

thymus histones were added to bead-bound GST-fusion proteins and incubated at 4°C for 

1 h.  Beads were washed 4x in NETN150 and bound proteins were eluted in 2x LDS/10% 

v/v β-mercaptoethanol with boiling.  Bound proteins were resolved on 4-12% w/v Bis-

Tris gels (Invitrogen) and stained with SimplyBlue SafeStain (Invitrogen), or 

H4K20me1, H4K20me2, or H4K20me3 antibodies. 
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Fig. S1. FANCD2 contains a putative histone-binding domain. (A) A BLASTp 

alignment of a short fragment of FANCD2 (aa 953-968) reveals homology with the 

histone H4 binding domain of Drosophila p55. A Clustal omega zoo multiple 

sequence alignment (MSA) of the FANCD2 histone-binding domain (HBD) illustrates 

strong evolutionary conservation. (B) AutoDock Vina molecular modeling was used to 

dock the H4 tail (taken from the p55-H4 crystal structure (PDB ID: 3C9C)) into the 

HBD of murine Fancd2 (PDB ID: 3S4W), indicating favorable H-bonding and 

electrostatic interactions between the H4 tail and the FANCD2 HBD. (C) Silver stain 

from an in vitro streptavidin sepharose pulldown assay with biotinylated histone 

peptides and GST-Empty and GST-D2-HBD. *, Non-specific bands present in all 

lanes, including bead only and no peptide controls. (D) Anti-GST immunoblot of (C). 

(E) Representative images of the FANCD2 methyl-lysine binding domain (MBD) 

aromatic cage with Kme2 manually docked. (F) Glutathione agarose pulldown of 

GST-tagged wild type MBD (GST-D2-MBD) and MBD-W1075A (GST-D2-MBD-

W1075A) fragments incubated with purified histones from calf thymus (CTH). (G) 

Representative images of the proximity ligase assay (PLA) between FANCD2 and 

H4K20me1, me2, and me3. (H) Quantification of PLA results with 53BP1 and 

H4K20me1, me2, me3, and H3K27me3 in U2OS cells. Nuclei with >20 PLA spots 

were considered positive. At least 300 nuclei were scored per biological replicate. 

Experiments were performed three times with similar results. Error bars represent the 

standard errors of the means from three independent experiments. *, P < 0.05; **, P < 

0.01; ***, P < 0.001.  
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Fig. S2. The histone methyltransferase KMT5A is necessary for efficient activation of 

the FA pathway. (A) MCF10A cells were incubated with control non-targeting siRNA 

(siControl) or siRNA targeting KMT5A (siKMT5A) for 72 h. Cells were then treated 

with 200 nM mitomycin C (MMC) or 1 µM aphidicolin (APH) for 16 h and whole-

cell lysates analyzed by immunoblotting. L:S ratio, ratio of monoubiquitinated to 

nonubiquitinated FANCD2 or FANCI (B) Representative images of FANCD2 foci in 

MMC-treated MCF10A cells. Cells were treated as described in (A). D, DAPI; D2; 

FANCD2; M, merge. (C) Quantification of FANCD2 foci formation for (B). Nuclei 

with > 10 FANCD2 foci were considered positive. At least 300 nuclei were scored per 

biological replicate. Experiments were performed twice with similar results. Error bars 

represent the standard errors of the means from three independent experiments. *, P < 

0.05; **, P < 0.01; ***, P < 0.001. 
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Fig. S3. FANCD2 MBD mutants are proficient for monoubiquitination but exhibit 

decreased affinity for chromatin. (A) FA-D2 cells stably expressing wild type 

FANCD2, FANCD2-H1056A, and FANCD2-W1075A were incubated in the absence 

(-) or presence (+) of 200 nM mitomycin C (MMC) for 24 h. A chromatin enrichment 

fractionation was performed and soluble and chromatin-enriched fractions were 

analyzed by immunoblotting. (B) The same cells were treated as for (A) and nuclear 

fractions were extracted in buffers containing varying NaCl concentrations (see Fig. 

3B). Whole-cell lysates from this experiment are shown. (C) Quantification of the 

protein band intensities from Fig. 3B calculated from three independent experiments. 

The Y-axis depicts the ratios of band intensities compared to the band from FA-D2 

cells expressing wild type FANCD2 at the equivalent NaCl concentration. 



 89 

 



 90 

 
	  

Fig. S4. Mutation of the FANCD2 MBD leads to increased association between 

53BP1 and H4K20me2 and me3. Quantification of proximity ligation assay (PLA) 

results with 53BP1 and H4K20me1, me2, me3, and H3K27me3 in FA-D2 cells stably 

expressing wild type FANCD2 or FANCD2-W1075A. Nuclei with >20 PLA spots 

were considered positive. At least 300 nuclei were scored per biological replicate. 

Experiments were performed three times with similar results. Error bars represent the 

standard errors of the means from three independent experiments. *, P < 0.05; **, P < 

0.01; ***, P < 0.001.  
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Fig. S5. The FANCD2 HBD/MBD is required for efficient conservative ICL repair. 

(A) FA-D2 cells stably expressing LacZ, wild type FANCD2, FANCD2-K561R, 

FANCD2-H1056A, and FANCD2-W1075A were incubated in the absence (NT) or 

presence (+MMC) of 16 nM mitomycin C (MMC) for 24 h and metaphase 

chromosomes analyzed for structural aberrations, including gaps, breaks and radial 

formations. Representative metaphases are shown. Blue arrows depict gaps and breaks 

while red arrows depict more complex radial formations. (B) The same cells were 

incubated in the absence (NT) or presence (MMC) of 200 nM MMC for 24 h and 

allowed to recover for an additional 24 h. Cells were fixed and stained with anti-DNA-

PKcs pS2056 antibodies and the numbers of nuclei with >5 foci were scored. At least 

300 nuclei were scored per biological replicate. *, P < 0.05; **, P < 0.01; ***, P < 

0.001. (C) A growth curve was carried out with the same cells with cell counts taken 

every 24 h over a 96 h period. Experiments were performed three times with similar 

results. Error bars represent the standard errors of the means from three independent 

experiments. 
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DNA double-strand breaks (DSBs) can arise through exposure to exogenous DNA 

damaging agents such as ionizing radiation, as well as through endogenous means; for 

example, via DNA replication fork collapse. Irrespective of the source, the physical 

severing of the sugar-phosphate backbone represents an acute threat to organismal 

viability and genome stability. Hanahan and Weinberg describe genome instability and 

mutation as an enabling characteristic of cancer.1 Indeed, chromosome structural 

rearrangements, which are pervasive in cancer, invariably arise from DSB repair gone 

awry. To deal with this threat, all cells have evolved 2 principal means to repair DSBs: 

homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). HR is 

predominantly a conservative and error-free process, employing a homologous template, 

usually the sister chromatid, to repair the break. RAD51, the eukaryotic ortholog of 

bacterial RecA, is the major HR protein. Conversely, NHEJ is typically error-prone, and 

rejoins the break without regard for the state of the ends, often resulting in loss of 

nucleotides or the re-joining of noncontiguous ends. Exemplifying the importance of HR, 

many key tumor suppressor genes encode central HR players, e.g. BRCA1 and BRCA2. 

Furthermore, several genetic diseases characterized by increased cancer risk are caused 

by mutations in HR genes, one example of which is Fanconi anemia (FA).  

FA is clinically characterized by congenital defects, bone marrow failure, and 

increased cancer risk.2 FA is caused by mutation of any one of 20 known genes, which 

encode proteins that function cooperatively in the FA-BRCA pathway to promote HR.3 

The molecular links between FA and HR are an area of active investigation. Evidence 

presented in this volume of Cell Cycle points to a novel noncanonical connection 

between enzymes involved in the major regulatory step of the FA-BRCA pathway and a 
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key HR effector.4 This regulatory step is the site-specific monoubiquitination of the 

FANCD2 and FANCI proteins. The E2 ubiquitin-conjugating enzyme FANCT/UBE2T 

and the E3 ubiquitin ligase FANCL catalyze the forward step of this reaction. The reverse 

step - deubiquitination - is catalyzed by the USP1 deubiquitinating enzyme (DUB) and its 

heterodimeric binding partner UAF1.5,6  

In a large-scale global proteomic screen of DUB-interacting networks, Sowa et al. 

previously determined that the USP1- UAF1 heterodimer interacts with the RAD51AP1 

protein.7 RAD51AP1 is a vertebrate specific accessory factor for RAD51 that promotes 

the assembly of the synaptic complex and D (displacement)-loop, key HR intermediate 

structures (Fig. 1). However, the functional significance of this interaction was not 

examined. In the accompanying Cell Cycle manuscript, Cukras et al. have tackled this 

important question.4 The authors verified this interaction and, by depleting UAF1 using 

siRNA, established that the interaction between USP1 and RAD51AP1 is UAF1-

dependent. The authors also established that the UAF1 WD40 repeats as well as its 

SUMO-like domains (SLDs) are necessary for RAD51AP1 binding. Previous studies had 

demonstrated that USP1 regulates the stability of the ID (inhibitor of DNA binding) 

proteins. Similarly, Cukras et al. show that depletion of USP1 or UAF1 leads to 

destabilization of RAD51AP1. 

 Cukras et al. next sought to map the region of RAD51AP1 that binds to UAF1. 

Serial truncations and mutagenesis analysis established that residues D133-L137 are 

required for efficient RAD51AP1-UAF1 binding. Accordingly, deletion of this UAF1 

binding region (DDYLDL) resulted in decreased RAD51AP1 stability, supporting the 

theory that USP1-UAF1-RAD51AP1 form a stable protein complex. Interestingly,  
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Figure 1. Speculative schematic of the role of the USP1-UAF1-RAD51AP1 complex 

in HR. UAF1 binds to USP1through its WD40 domain, and RAD51AP1 through its 

SLD1/ 2 domains. In the absence of either UAF1 or USP1, RAD51AP1 is degraded by 

the proteasome. Following RAD51 nucleofilament formation, RAD51AP1 is required 

for synaptic complex and D-loop formation. This is promoted by the presence of 

UAF1, however the role of USP1 in this process remains unclear. On the right side of 

this figure, USP1 is depicted in gray font to signify its uncertain role in this process. 
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mutation of RAD51AP1 K139, previously shown to be a site of ubiquitination, 

did not affect interaction with UAF1. To explore the functional significance of the 

RAD51AP1-UAF1 interaction, Cukras et al. expressed wild type or RAD51AP1-

DDYLDL in U2OS cells depleted of endogenous RAD51AP1. In contrast to wild type 

RAD51AP1, the DDYLDL mutant failed to correct cellular ICL sensitivity. Furthermore, 

RAD51AP1-DDYLDL expressing cells exhibited persistent DNA damage-inducible 

RAD51 nuclear foci, suggesting that the USP1-UAF1-RAD51AP1 complex may promote 

the efficient and timely resolution of a key HR intermediate structure.  

A recent complementary study in Cell Reports by Liang et al. provides further 

insight into the functional significance of the RAD51AP1-UAF1 interaction.8 Similar to 

Cukras et al., Liang et al. establish that the UAF1 SLDs mediate interaction with 

RAD51AP1. While mutation of these SLDs compromises interaction with RAD51AP1, 

these mutants are proficient for interaction with USP1 and stimulation of its DUB activity 

toward FANCD2. Importantly, Liang et al. also establish that UAF1 alone stimulates the 

ability of RAD51AP1 to promote synaptic complex and D-loop formation in vitro, and 

this stimulation depends on the formation of the RAD51AP1-UAF1 complex. These 

assays indicate that UAF1-stimulated RAD51AP1 activity is largely USP1-independent. 

While Cukras et al. clearly show that USP1 forms a complex with UAF1 and 

RAD51AP1, a role for enzymatic deubiquitination has not been established. Taken 

together, these studies reveal a novel and critical function for UAF1 in promoting HR 

that appears to be independent of USP1 deubiquitinating activity. However, it remains to 

be determined how RAD51AP1 is removed from RAD51 nucleoprotein filaments 

enabling the dissolution of HR intermediates - ubiquitination remains a plausible 



 102 

mechanism. In conclusion, these studies uncover important mechanistic insight into the 

molecular biology of HR and FA and suggest the existence of more FA genes linked to 

the regulation of RAD51 function.  
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