Air-soil diffusive exchange of PAHs in an urban park of Shanghai based on polyethylene passive sampling: Vertical distribution, vegetation influence and diffusive flux

Ying Liu
Shuya Xie
Lirong Zheng
Tongtong Li
Yajie Sun

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

Citation/Publisher Attribution
Liu, Ying; Xie, Shuya; Zheng, Lirong; Li, Tongtong; Sun, Yajie; Ma, Limin; Lin, Zhifen; Grathwohl, Peter; Lohmann, Rainer. Air-soil Diffusive Exchange of PAHs in an Urban Park of Shanghai Based on Polyethylene Passive Sampling: Vertical Distribution, Vegetation Influence and Diffusive Flux. Sci Tot Environ 2019, 689, 734-742. doi: 10.1016/j.scitotenv.2019.06.500
Available at: https://doi.org/10.1016/j.scitotenv.2019.06.500

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.
Air-soil diffusive exchange of PAHs in an urban park of Shanghai based on polyethylene passive sampling: Vertical distribution, vegetation influence and diffusive flux

Authors
Ying Liu, Shuya Xie, Lirong Zheng, Tongtong Li, Yajie Sun, Limin Ma, Zhifen Lin, Peter Grathwohl, and Rainer Lohmann

The University of Rhode Island Faculty have made this article openly available.

Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/gsofacpubs/696
Air-soil Diffusive Exchange of PAHs in an Urban Park of Shanghai Based on Polyethylene Passive Sampling: Vertical Distribution, Vegetation Influence and Diffusive Flux

YING LIU†*, SHUYA XIE†*, LIRONG ZHENG‡, TONGTONG LI†, YAJIE SUN‡, LIMIN MA†, ZHIFEN LIN#, PETER GRATHWOHL§, RAINER LOHMANN‖

† State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
‡ China Meteorological Administration Key Laboratory of Cities’ Mitigation and Adaptation to Climate Change (Shanghai Meteorological Bureau), IESD, Tongji University, Shanghai 200092, China
ϕ Shanghai Shangde Experimental School, 1688 Xiuyan Road, Shanghai 200092, China
Shanghai Key Lab of Chemical Assessment and Sustainability, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
§ Center for Applied Geoscience, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
‖ Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882-1197, United States.

* To whom correspondence should be addressed
E-mail address: liu_ying@tongji.edu.cn (Y. Liu)
HIGHLIGHTS

- Gas deposition for phenanthrene and volatilization for benzo[b]fluoranthene.
- Impact of vegetation on vertical pattern of PAHs was observed only in growing season.
- Vertical eddy diffusivity in air was calculated by local micrometeorological conditions.
- Diffusive flux of gaseous PAHs in air-soil exchange was compared from two approaches.
ABSTRACT:
Compared with dry and wet deposition rates, air-soil exchange fluxes cannot be directly measured experimentally. Polyethylene passive sampling was applied to assess transport directions and to measure concentration gradients in order to calculate diffusive fluxes of polycyclic aromatic hydrocarbons (PAHs) across the air-soil interface in an urban park of Shanghai, China. Seven campaigns with high spatial resolution sampling at 18 heights between 0 and 200 cm above the ground were conducted in 2017 - 2018. Air-to-soil deposition was observed, e.g. for phenanthrene, and soil-to-air volatilization for high molecular weight compounds, such as benzo[b]fluoranthene. Significant linear correlations between gaseous PAH concentration and log-transformed height were observed. Influence of vegetation on vertical concentration gradients of gaseous PAHs was insignificant in most cases except during the growing season. Local micrometeorological conditions resulted in a directional eddy diffusion in air and then influenced vertical diffusion of gaseous PAHs. Furthermore, the vertical eddy diffusivity was estimated as a function of distance to the air-soil surface. Air-soil exchange fluxes based on the Mackay’s fugacity approach were calculated and confirmed by diffusive fluxes within air layer based on vertical concentration gradient of PAHs and eddy/molecular diffusion. Polyethylene passive sampling technology provides a useful tool to investigate air-soil exchange process.

KEYWORDS:
LDPE, gas exchange, eddy diffusion, molecular diffusion, fugacity, uncertainty analysis.
1. INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous class of semi-volatile organic pollutants mainly originating from the combustion of organic matter and fuels (Liu et al., 2015), and are widespread all over the world (Casal et al., 2018). Consequently, the earth surface (e.g. soil and vegetation) becomes a critical sink of these hydrophobic pollutants via atmospheric deposition and direct application e.g. by sewage sludge (Feng et al., 2017; Zheng et al., 2015). After primary pollutant sources were reduced or eliminated in air, soils may become secondary sources of accumulated semi-volatile organic compounds depending on air-surface exchange rates (Bao et al., 2015; Degrendele et al., 2016).

To assess air-soil exchange, many studies quantified gradients in air and soil fugacities based on model predictions or field measurements. The latter include active air sampling (e.g. low-volume air samplers) (Degrendele et al., 2016; Kurt-Karakus et al., 2006; Tasdemir et al., 2012; Wang et al., 2015) and more recently passive sampling technologies to measure the air fugacity based on polyurethane foam, low-density polyethylene (LDPE) and other materials (Donald and Anderson, 2017; Dumanoglu et al., 2017; Wang et al., 2017; Zhang et al., 2011). Also, concentrations measured in soil samples were converted to fugacities based on air-soil partitioning coefficients and ambient temperatures (Cetin et al., 2017a; Cetin et al., 2019; Qu et al., 2019; Tasdemir et al., 2012; Wang et al., 2017; Zhang et al., 2011). However, large uncertainties exist in estimating air-soil partitioning coefficients and because of soil heterogeneity, e.g. during soil sampling vertical concentration gradients are disturbed leading to misinterpretation on soil fugacity (Ali et al., 2015; Davie-Martin et al., 2015;
Donald and Anderson, 2017). Alternative in situ technologies have been
developed to directly monitor the soil air, namely the gas phase in soil pores. For
example, active fugacity samplers were designed to sample the air close to the
soil surface (Cabrérizo et al., 2009; Degrendele et al., 2016; Wang et al., 2015).
Donald and Anderson (2017) designed a soil air fugacity sampler based on
passive sampling using polyethylene. In addition to assessing the fugacity
gradient between soil and air phases, vertical concentration gradients in air can
serve as an alternative indicator and reflect the driving force of the air-soil
exchange. For example, Kurt-Karakus et al. (2006) mounted active air samplers at
the heights of 5, 20, 72, and 200 cm above ground. Lammel et al. (2011) also
actively collected air samples from 1.1 and 2.3 m above the soil surface. To not
disturb the atmospheric concentration gradients caused by active sampling,
Zhang et al. (2011) and Wang et al. (2017) deployed PUF air passive samplers at
various heights above the surface.

Many studies focused only on assessing transport direction of air-soil diffusive
exchange based on fugacity ratio of air and soil (Cetin et al., 2017a; Cetin et al.,
2017b; Degrendele et al., 2016; Tian et al., 2016; Wang et al., 2015; Zhu et al.,
2017). However, only in few studies exchange fluxes were calculated based on
fugacity gradients between soil and air, following the Mackay fugacity approach
(Koblizkova et al., 2009; Pokhrel et al., 2018; Tasdemir et al., 2012; Wang et al.,
2017; Zhang et al., 2011) or Fick’s law of diffusion (Donald and Anderson, 2017).
If the influence of vegetation on air-soil is negligible, the diffusive flux within air
layer overlying the soil surface would be equal to the air-soil diffusive exchange
rates. This prompted us to deploy more passive samplers with high spatial
resolution in the topsoil and air at various heights above ground, in order to
estimate and compare the diffusive fluxes from the two methods. Low density polyethylene (LDPE) passive samplers were placed in heights of 5 - 200 cm above the soil surface during 2017 - 2018. The objectives of this study were to (a) investigate vertical distribution of gaseous PAHs within air phase and determine their transport direction in air-soil exchange process, (b) assess influence of vegetation on the vertical distribution of gaseous PAHs, (c) quantify eddy diffusivities and estimate diffusive fluxes of gaseous PAHs at different heights above the surface based on local micrometeorological conditions, and (d) compare diffusive fluxes within air phase and in the air-soil exchange interface.

2. MATERIALS AND METHODS

2.1 Study site.

The monitoring site was located in a green space in the city center of Shanghai, China, ~60 meters from the Inner-ring Elevated Road (see Figure S1). This field was selected to investigate the main atmospheric transport pathway for anthropogenic emissions from the densely populated and highly urbanized area in the Eastern China. The green space is a typical receptor of urban pollutant emissions, in particular traffic-related emissions. During sampling, local temperature ranged from 3-40°C and average wind speed was <1.5 m s\(^{-1}\) with the maximum of 5.5 m s\(^{-1}\).

2.2 Samplers and sampling design.

Commercial 51 \(\mu\)m-thick low-density polyethylene (LDPE) was cut into strips of 40 cm × 10 cm. The strips were cleaned and spiked with performance reference compounds (PRCs, more details in the SI) (Liu et al., 2016). The sharpest
variations in meteorological variables with height occur within the surface roughness layer (< 100 cm above ground in this study). Air samplers were deployed as an array along a gradient of 17 heights from 5 cm to 200 cm above ground, and were fixed non-uniformly at 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, and 200 cm above ground (see Figure S2). To avoid individual samplers blocking each other, they were sequentially distributed in four directions. Meanwhile, three soil samplers (50 cm × 13 cm × 2 cm) were deployed immediately adjacent to the air samplers (< 1 m²). The soil sampler (a LDPE strip was protected by a metal grid) was vertically inserted into topsoil (<15 cm deep), and stainless steel boxes were placed over the LDPE passive samplers. Seven sampling campaigns of 2 - 8 weeks were performed from Match of 2017 to September of 2018. Detailed information on air/soil samplers and temporal coverage is provided in the SI (see Figures S2-S3 and Table S1).

2.3 Sample analysis and QA/AC.

After sampling, LDPE samples were wiped clean by pure water and hexane to remove the particles and soil dust absorbed on the surface of LDPE strips, and analyzed for PAH concentrations. The LDPE samples were treated according to a method published previously (Liu et al., 2016). Briefly, all LDPE sheets were spiked with surrogate standards (five deuterated PAHs) to assess recovery, and then extracted overnight in dichloromethane and hexane, sequentially. After extracts were concentrated, an injection standard (deuterated fluorene) was added before GCMS analysis. No additional sample cleanup was performed for air samples, while soil samples were passed through a silica gel and sodium sulfate column for cleanup. 16 US EPA PAHs were quantified using an Agilent GC 7890A.
with a HP-5 MS fused silica capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness) equipped with an Agilent 5975C MSD in EI+ selected ion monitoring (SIM) mode. PAH concentrations in LDPE samples were corrected for surrogate standard recoveries and blank-subtracted using field blanks in the same sampling batch. PAH concentrations in field blanks were < 10% of measured concentrations in samples for 3 - 4 rings PAHs, and < 20% for 5 - 6 rings PAHs, except naphthalene (30%) and dibenz [a,h] anthracene (47%) (see Table S2). PRC concentrations in field and lab blanks from each batch were used to quantify initial concentrations of PRCs in deployed samples. Measured concentrations in LDPE were used to calculate (equivalent) gaseous concentrations of PAHs in air (or soil) based on LDPE-air partition coefficients corrected to ambient temperature (Liu et al., 2016; McDonough et al., 2014). The calculation is based on the assumption that the uptake rate of target PAHs from ambient environment to the LDPE sheet is equal to the loss rate of PRCs from the LDPE sheet (Booij and Smedes, 2010). Equilibrium percentages of target PAHs were calculated from the quantities of PRCs remaining in each sample. More analytical details and calculations are shown in the Supporting Information (see Tables S2 and S3).

Procedural blanks and field blanks were performed during each campaign to assess the potential contamination for quality assurance. Limits of detection of PAHs were < 1 ng m⁻³ in air and soil air except naphthalene and acenaphthene. Average recoveries of surrogate standards were 45 - 81% and average relative standard deviation percentages of target PAHs were 10 - 25%. Sampling rates were 16 m³ day⁻¹ in air and 4.7 m³ day⁻¹ in soil, respectively. More information on quality assurance and quality control is in the Supporting Information (Tables S1-2 and S4).
2.4 Air-soil diffusive exchange flux of PAHs.

The mass flux \(F_{a/s} \), in ng m\(^{-2}\) day\(^{-1}\), is driven by the difference in target’s chemical activity between air and soil matrixes, and the Mackay’s surface soil fugacity approach was employed for the calculation (Mackay, 2001), see Equation 1.

\[
F_{a/s} = \frac{(C_{pe,a} - C_{pe,s})}{K_{PE-a}} \times v_{a/s}
\]

where \(C_{pe,a} \) and \(C_{pe,s} \) are the equilibrium concentrations of PAHs in PE matrix deployed in air and soil, respectively, and \(K_{PE-a} \) is the air temperature-corrected PE-air partition coefficient. Details on estimating overall mass transfer velocity in air-soil diffusive exchange of PAHs (\(v_{a/s} \), in m day\(^{-1}\)) from the volume fractions of soil water and soil air are provided in the Supporting Information, and the calculated \(v_{a/s} \) and \(F_{a/s} \) values are presented in Table S5.

2.5 Vertical diffusive flux of PAHs within the air layer.

Both random molecular motion and turbulence promote mixing within the air layer. The vertical diffusive flux \(F_{Dual} \), in ng m\(^{-2}\) day\(^{-1}\), consists of two parts, namely the vertical eddy diffusive flux and the molecular diffusive flux \(F_{Eddy} \) and \(F_{mol} \), in ng m\(^{-2}\) day\(^{-1}\). Based on Fick’s first law, the mass fluxes are driven by a vertical gradient of PAH concentrations \(\frac{dC}{dH} \), and related to molecular diffusivity \(D_h \), in m\(^2\) day\(^{-1}\) and vertical eddy diffusivity \(E_z \), in m\(^2\) day\(^{-1}\) of PAHs in air; as shown in Equation 2. \(E_z \) was estimated only from measured heat fluxes; the contribution of momentum flux was ignored as the horizontal wind vector
was small in this study (< 1.5 m s⁻¹) (Kurt-Karakus et al., 2006; Schwarzenbach et al., 2002). Typically, \(D_A \) is around 0.05 cm² s⁻¹, while in this study \(E_z \) was in the range of 0.01 – 0.6 cm² s⁻¹ in time-integrated average. Details on estimating the vertical eddy diffusivity and vertical diffusive flux within air phase are provided in the Supporting Information, and the calculated \(E_z \), concentration gradient, and \(F_{Dual} \) values are listed in Table S6-S8.

\[
F_{Dual} = F_{Eddy} + F_{mol} = (E_z + D_A) \frac{dc}{dh} \tag{2}
\]

2.6 Uncertainty analysis on the calculated fluxes.

Error propagation analysis was applied to estimate uncertainty of the air-soil diffusive exchange flux of PAHs \((F_{a/s}) \), errors in PE-air partition coefficients \((K_{PE-a}) \), overall mass transfer velocities \((v_{a/s}) \), concentrations of PAHs in PE strips deployed in air and soil \((C_{PE,a} \text{ and } C_{PE,s}) \) were considered, as shown in Equation 3.

Five parameters, including vertical eddy diffusivity \((E_z) \), molecular diffusivity in air \((D_A) \), height difference \((h) \), concentration of PAHs at different heights \((C_{up} \text{ and } C_{down}) \), were included to estimate uncertainty of vertical diffusive fluxes within the air layer \((F_{Dual}) \) in Equation 4.

\[
\frac{\delta F_{a/s}}{F_{a/s}} = \sqrt{\left(\frac{\delta K_{PE-a}}{K_{PE-a}}\right)^2 + \left(\frac{\delta C_{PE,a}^2 + \delta C_{PE,s}^2}{(C_{PE,a} - C_{PE,s})^2}\right)^2 + \left(\frac{\delta v_{a/s}}{v_{a/s}}\right)^2} \tag{3}
\]

\[
\frac{\delta F_{Dual}}{F_{Dual}} = \sqrt{\left(\frac{\delta E_z^2 + \delta D_A^2}{(E_z + D_A)^2}\right)^2 + \left(\frac{\delta C_{up}^2 + \delta C_{down}^2}{(C_{up} - C_{down})^2}\right)^2 + \left(\frac{\delta h}{h}\right)^2} \tag{4}
\]
3. RESULTS AND DISCUSSION

3.1 Vertical concentration profiles of gaseous PAHs in air and transport direction of air-soil exchange.

The vertical concentrations of gaseous PAHs on the air side exhibit distinct concentration gradients in space, and directly reveal the transport direction of PAHs. The vertical concentration distributions of PAHs in air are shown exemplary for campaign ADH04 (2017/6/14 - 2017/6/30) in Figure 1. Gaseous concentrations of phenanthrene (see Figure 1.a) increased with the height, from 16 ng m\(^{-3}\) at 5 cm to 45 ng m\(^{-3}\) at 50 cm above ground, where it remained stable (47 - 51 ng m\(^{-3}\)) within the 1 - 2 m. This indicates gas deposition of phenanthrene from an upper air layer to a lower one close to ground. Turbulence also varied with height, which affected both uptake of PAHs and release of PRCs, and in general, the sampling rate increased with height (see Figure 1.f). Gaseous concentrations of phenanthrene have been corrected based on equilibrium percentage of PRCs observed (see Equations S1-S2). The equivalent gaseous concentrations of phenanthrene in topsoil ranged from 1.62 - 2.1 ng m\(^{-3}\), which is significantly \(p < 0.01\) lower than in air (16 - 51 ng m\(^{-3}\)). Consequently, transport direction of phenanthrene is confirmed as air-to-soil deposition.

A similar deposition behavior was observed for fluoranthene as shown in Figure 1.b. In contrast, some 4 - 6 rings PAHs showed an unusual volatilization from soil to air, e.g., benzo[b]fluoranthene and benzo[ghi]perylene (Figure 1.c, d, and e); the spatial trend of chrysene in air was unclear, a possible explanation of which is that chrysene reached or approached equilibrium in air-soil exchange process. The downward deposition of lower molecular weight PAHs (especially phenanthrene) indicates a significant emission in Shanghai urban space and on-
going accumulation of the gaseous PAHs in urban topsoils, whereas the upward volatilization of higher molecular weight PAHs (e.g., 5-6 rings PAHs) is different with the general expectation (deposition) and reported observations (Cetin et al., 2017a). We ever suspected the LDPE soil samplers and air samplers at lower heights were more vulnerable to be associated with fine soil dust. In the improved experimental process, the LDPE trips were cleaned up by deionized water and swabbed with a hexane-soaked wiper to ensure that only absorbed molecules into the LDPE samplers would be quantified. Interestingly, passive samplers did ‘see’ the unusual process. The observed volatilization is possibly attributed to local high legacy pollution or a long-term accumulation from dry and wet deposition (ever-increasing soil fugacity is even greater than the air fugacity) in topsoils and the soil acting as a secondary source of the air PAHs.

In this study, strong linear correlations were obtained by fitting a relationship of gaseous concentration as a function of log-transformed height. Fitted results (solid line) are presented in Figure 1 ($R > 0.68$), which were significantly correlated ($p < 0.01$) for most PAHs except chrysene. Kurt-Karakus et al. (2006) reported a volatilization gradient of DDT in a historically treated agricultural soil in Canada and a similar logarithmic function between height and gas concentration. Wang et al. (2017) observed a deposition gradient of organochlorine pesticides in the pasture of the central Tibetan Plateau, but used a power function to fit the relationship. The curve is related to wind speed (Majewski et al., 1990), or to be more precise, to vertical turbulence. The slopes derived here are further used to quantify vertical concentration gradient at different heights and estimate diffusive flux of PAHs within the air layer (see below). Although different functions were used to fit, interestingly, mathematical
expressions are similar based on derivative of the two functions (dC/dH) to
describe vertical concentration gradient, e.g., 12.97 H\(^{-1}\) for phenanthrene in this
study and 4.97 H\(^{-0.87}\) for DDT from Wang et al (2017).

3.2 Influence of vegetation during the growing season on vertical
concentration distribution of gaseous PAHs.
Vegetation has been considered as a globally important compartment in
scavenging and storing atmospheric pollutants and transferring them into soil
through falling litter (Odabasi et al., 2015), or back into the air by re-
volatilization (Bao et al., 2016; Terzaghi et al., 2017). Many studies reported
urban vegetation as an air pollutant collector based on large scale modeling
(Simonich and Hites, 1994; Terzaghi et al., 2017). Furthermore, a lack of
experimental investigation has been recognized (Setala et al., 2013). The study
here provides an empirical-based evidence on influence of urban vegetation on
gaseous PAHs.
Vertical distributions of gaseous PAHs before (February), during (March) and
after (May - September) the growing season are compared in Figure 2. Gaseous
concentrations of phenanthrene, fluoranthene and benzo[b]fluoranthene were
normalized to a common condition of 25 °C and 1 atm for comparison over time,
due to gaseous concentrations of PAHs varying with air temperature and
pressure. Field vegetation grew up from ~5 cm height above ground before the
growing season to ~30 cm height after the growing season. Overall,
concentrations of PAHs decreased over time, e.g. phenanthrene from 50 ng m\(^{-3}\) in
February to 15 ng m\(^{-3}\) in September. This time trend of gaseous PAHs is similar as
air pollution in Shanghai (see Figure S3). Clearly, PAH concentrations are linked
to overall air quality, however these vertical patterns of PAHs are similar in
different campaigns except B2 (in March), especially for phenanthrene at the
heights of 10 - 35 cm in Figure 2.a. The differences of PAH patterns before, during
and after growing seasons are attributed to absorption by vegetation during the
growing season. For phenanthrene and fluoranthene deposition in the growing
season (B2) resulted in markedly lower concentrations in the vegetation layer
than in the upper air layer. However, the adsorption by vegetation was not
observed after the growing season.

Klingberg et al. (2017) observed substantially lower gaseous PAH levels in
parks than adjacent areas near traffic. Ghasemian et al. (2017) reported that the
dense canopy improved the near-road air quality. However, the effect remains
controversial. Setala's result (2013) suggested a minor capability of urban
vegetation to remove air pollutants in northern climates. Moreover, Viippola et al.
(2016) and Yli-Pelkonen (2018) reported higher gaseous PAH levels under tree
canopies than adjacent open area in southern Finland and northeast China,
associating with the trapping of polluted air under canopies and re-volatilization
from soil back to the air. Our results support the removal effect of air pollutants
by vegetation, but the influence was observable only during the growing season
(emergence of new and clean biomass), and the influence faded away after the
growing season.

3.3. Air-soil diffusive exchange of PAHs.

Air-soil diffusive exchange is an interphase transfer process, which is usually
characterized by the Whitman two-resistance mass transfer coefficient approach
(Schwarzenbach et al., 2002). Quantification of the diffusive flux in an air layer
close to the surface by micrometeorological approach is an alternative method. In this study, the micrometeorological approach focused on an air layer with a specific thickness (100 cm), in which air turbulence or eddy diffusion as well as random molecular motion together drive pollutant transfer. In the thin layer close to the air-soil interface, eddies tend to be dampened and movement to and from the interface occurs only by molecular diffusion (Mackay, 2001). Both methods were applied to estimate comprehensively on the air-soil diffusive exchange flux in this study.

3.3.1 Estimation of vertical eddy diffusivity within the air layer close to the air-soil surface.

Molecular diffusivity is commonly isotropic, while eddy diffusivity in the vertical direction is usually much lower than horizontal diffusion (Schwarzenbach et al., 2002). Vertical eddy diffusion can strongly influence PAH transfer in air-soil exchange process. Vertical eddy diffusivity can be calculated from heat and momentum fluxes, more specifically, from temperature profile and horizontal wind vector, respectively (Kurt-Karakus et al., 2006). Due to a lower wind speed in this case, the vertical eddy diffusivity was linked only to the vertical temperature profile close to the surface.

Taking temperature profile within specific three days (including sunny, rainy and cloudy days) for example, the vertical eddy diffusivities (E_z) at the heights of 0 - 5 cm, 5 - 20 cm, 20 - 60 cm, and 60 - 100 cm were calculated from the temperature profile mentioned above, and results are presented in Figure 3. First of all, spatial and temporal variations of air temperature were notable. Especially during sunny days, air temperature varied drastically over time due to solar
radiation, and changed with height above the surface. Moreover, air temperature was much higher than soil temperature during sunny days, while the both temperatures were similar on a rainy day and at nighttime. In addition, vegetation layer was believed to have a significant influence on vertical temperature profile (Daemei et al., 2018). During the deployment period of this study, the height of vegetation layer reached up to ~20 cm above the surface. It was covered by a dense grass layer, meanwhile the temperature difference between soil and air above vegetation in the sunny day was > 10 °C. Consequently, for monitoring real-time temperature profiles in subsequent work, three temperature sensors were deployed in air above vegetation, vegetation layer and soil surface, respectively. Such temperature profile led inevitably to a great heterogeneity in vertical eddy diffusivity based on the micrometeorological approach, as shown in Figure 3.b. When temperature rose constantly in the morning on a sunny day, air masses warmed up, resulting in an updraft and a negative value of E_z. After temperature reached a peak value at noon, it decreased continually until night and air masses cooled down causing a downdraft and a positive value of E_z. Therefore, vertical eddy diffusion is a vector with a direction (updraft or downdraft). Figure 3.b demonstrates a remarkable variation of eddy diffusivity over time, in magnitude and direction. We calculated the average time-integrated eddy diffusivities of updraft and downdraft, respectively, similar as the E_z values in Figure 4.a and b. Generally speaking, the magnitude of E_z varied with distance to the air-soil surface. The closer to the surface, the smaller E_z value was, and even lower than molecular diffusivity of PAHs in air. The vertical pattern of eddy diffusivity is in line with the above statement that eddy diffusion tends to be damped in a thin
layer close to the surface.

As a consequence, solar radiation and vegetation cover control temperature vertical profile and finally influence vertical eddy diffusivity in local micro-environment close to ground.

3.3.2 Estimation of diffusive flux of gaseous PAHs within the air layer based on the micrometeorological approach.

Random molecular motion and vertical eddy motion promote vertical transferring of gaseous PAHs within the air layer close to ground. The diffusive flux, hence, depends on a vertical gradient of PAH concentration \((dC/dH) \), vertical eddy diffusivity \((E_z) \) and molecular diffusivity \((D_{\text{m}}) \) of PAHs in air. The slopes \((dC_{\text{air}}/d \ln(H)) \) in Figure 1 and Table S7 were used to calculate the vertical concentration gradient \((dC/dH) \) at different heights above the surface (see Figure 4.a and b). Molecular diffusivity in air is constant at specific condition, e.g. \(D_{\text{PhA}} \) = 0.053 cm\(^2\) s\(^{-1}\) for phenanthrene at 25 °C and 1 atm, while vertical eddy diffusivity in air varies with the height above the air-soil surface, as estimated above and shown in Figure 4.a and b. Additionally, the vertical eddy diffusivity is an instantaneous vector with an upward (negative value) or downward (positive) direction. If the direction of vertical eddy diffusivity was the same as the concentration gradient, gaseous PAHs transfer from high to low concentrations. If not, there is no net PAH deposition during an upward eddy flux. In order to estimate the eddy diffusive flux, we calculated the updraft and downdraft eddy diffusivities in time-integrated average during each sampling campaign, respectively (see Table S6). Eddy diffusive fluxes and molecular diffusive fluxes at the heights < 1 m above the surface were calculated (see Table S8) and results of
phenanthrene and benzo[b]fluoranthene as examples of deposition and volatilization are shown in Figure 4. Since phenanthrene deposited from air to soil, the positive eddy diffusivities (downward) were used for calculation, as presented in Figure 4.a. The values of E_z close to the surface (height < 0.1 m) were lower than molecular diffusivity of phenanthrene in air (0.053 cm2 s$^{-1}$). With the increase in height, the E_z values increased up to ~0.61 cm2 s$^{-1}$ at the height of 1 m, 10 times greater than the molecular diffusivity in air. As for volatilization of benzo[b]fluoranthene from soil to air, the negative eddy diffusivities (upward) were used for calculation. Vertical eddy diffusive flux (F_{Eddy}) and total diffusive flux ($F_{Total} = F_{Eddy} + F_{molecular}$) were estimated based on average updraft/downdraft eddy diffusivity, molecular diffusivity and vertical concentration gradient. The results of phenanthrene and benzo[b]fluoranthene are shown in Figure 4.c and d, respectively. In the region close to the air-soil surface (e.g., < 0.1 m), molecular diffusion dominated the mass transfer and percentages of eddy flux to total diffusive flux were < 50% for the two PAHs, as well as uncertainties of the both fluxes were greater than in higher air layer. With increasing distance to the surface, the percentage raised to > 80% at the height > 0.5 m (above vegetation layer).

3.3.3 Estimation of air-soil diffusive exchange flux based on the Mackay’s fugacity approach.

To maintain mass balance, the air-soil exchange flux should be equal or similar to the diffusive flux within the air layer. The air-soil exchange fluxes of gaseous PAHs were estimated based on the Mackay’s fugacity approach with the Whitman two-resistance model (Mackay, 2001; Schwarzenbach et al., 2002). The exchange
flux is related to the concentration difference between two compartments and overall mass transfer velocity of PAHs in air-soil exchange process. The transfer velocity is linked primarily to PAH molecular diffusivities in the atmosphere, soil air and soil water, the boundary layer thicknesses in atmosphere and soil, soil porosity, volume fraction of air and water in soil, soil temperature and Henry’s law constant of PAHs. The air-soil exchange transfer velocities and mass fluxes of PAHs are listed in Table S5, and more calculation details in the SI. The mass transfer velocities of PAHs were estimated as 76 - 106 cm day$^{-1}$ in this study.

When calculating the air-soil exchange fluxes based on gradients in air and soil fugacities, Tasdemir et al. (2012) placed air sampler on the roof of a building, Donald et al. (2017) deployed passive sampler at the height of ~1.5 m above ground, and Wang et al. (2017) chose the air at 0 - 3 cm above ground to calculate the flux. Since gaseous PAHs levels tended to stable over 50 cm above the surface in this study, air concentrations at the heights of 100 cm and 5 cm were used to calculate the air-soil exchange fluxes (namely F_{100} and F_{5}, listed in Tables S5), respectively. Taking data from the sampling campaign ADH04 for example, the air-soil exchange fluxes and diffusive fluxes within the air layer were compared in Table 1. For example, for phenanthrene and fluoranthene, the diffusive fluxes within the air layer were 63.2 ng m$^{-2}$ day$^{-1}$ and 3.62 ng m$^{-2}$ day$^{-1}$, respectively and thus slightly greater than the calculated air-soil exchange fluxes (13.3 - 43.6 ng m$^{-2}$ day$^{-1}$ and 0.19 - 1.62 ng m$^{-2}$ day$^{-1}$, respectively). While in the soil-to-air volatilization process (e.g. chrysene, benzo[b]fluoranthene, and benzo[ghi]perylene), the air-soil exchange fluxes were slightly higher than their diffusive fluxes within air layer. But broadly speaking, the two calculated fluxes are comparable based on the two methods, namely the micrometeorological
approach and the Mackay fugacity approach.

In terms of air-soil exchange flux, the values of F_{100} are closer to the diffusive fluxes within air layer in comparison to the F_5 values, but not indicating that F_{100} is recommended. First of all, because of the assumed air boundary thickness of 4.75 mm in the Mackay's fugacity approach (2001), the air concentration should be measured in the air layer as possible as close to the air-soil surface (e.g. 5 cm), and so F_5 would be recommended rather than F_{100}. Second, both of them would be underestimated, but F_{100} is closer to the diffusive flux within air layer due to the greater concentration difference between two compartments. Overall mass transfer velocities ($v_{a/s}$) of gaseous PAHs in air-soil exchange process were estimated based only on their molecular diffusion here. In fact, day-night change (solar radiation) leads to soil temperature variation, which results in different atmospheric boundary layers and different eddy diffusivities of pollutants in air. The calculated transfer velocity, hence, might be underestimated because of the neglect of eddy diffusion in air.

As for air-soil exchange diffusive fluxes in the whole study, observed deposition fluxes were 9.8 ng m$^{-2}$ day$^{-1}$ for fluorene, 31.4 ng m$^{-2}$ day$^{-1}$ for phenanthrene, and 2.5 ng m$^{-2}$ day$^{-1}$ for fluoranthene on average. The other PAHs presented a volatilization flux (e.g. - 0.31 ng m$^{-2}$ day$^{-1}$ for benzo[\textit{b}]fluoranthene) or approached equilibrium (e.g. pyrene and perylene, see Table S5).

4. CONCLUSIONS

In this study, both air-to-soil deposition and soil-to-air volatilization were observed for different PAHs in an urban micro-environment based on their vertical concentration gradients. Concentration-height relationships were
linearized by plotting log-transformed height and gaseous concentrations of PAHs. Influence of vegetation on vertical distribution of PAHs was observable only in the growing season, but insignificant in other seasons. Concentration gradient and micrometeorological condition controlled diffusion of gaseous PAHs. Eddy diffusion dominated the transfer of gaseous PAHs in higher air layer, and was dampened in the layer close to the air-soil surface. Eddy diffusivity was directional and depended mainly on changing vertical profiles of air and soil temperatures. The total diffusive flux within the air layer close to the surface (including vertical eddy diffusive flux and molecular diffusive flux) and air-soil exchange flux based on the Mackay’s fugacity approach were comparable to a large extent.

This work demonstrated that monitoring vertical concentrations of gaseous PAHs based on LDPE passive sampling technology is vital to assess transport direction and quantify diffusive fluxes in air-soil exchange process. Although there may be differences in air/soil fugacities between passive and active sampling technologies, passive sampling is a logical choice for better observing vertical concentration distribution with a high spatial resolution and without air disturbance of sampling. Due to its low cost, no power requirement, and easy deployment in air and soil compartments, passive sampling provides a useful tool for monitoring air-soil diffusive exchange process, but field correction for non-equilibrium compounds is needed and yet considerable uncertainties in field measurement are unavoidable.

ASSOCIATED CONTENT

Supporting Information
Detailed information on sampling design and flux calculation can be found along with calculated overall mass transfer velocity, eddy diffusivity, and diffusive flux in the estimated site.

AUTHOR INFORMATION

Corresponding Author.

* E-mail: liu_ying@tongji.edu.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENTS

We acknowledge funding from the National Natural Science Foundation of China (No.: 21876126); the Major Science and Technology Program for Water Pollution Control and Treatment of China (No.: 2018ZX07109-001-004), and the Science and Technology Commission of Shanghai Municipality (Nos.:16ZR1438100 and 17DZ1200103).

REFERENCES

Cabrerizo, A., Dachs, J., Barcelo, D., 2009. Development of a Soil Fugacity Sampler for...

Viippola, V., Rantalainen, A.L., Yli-Pelkonen, V., Tervo, P., Setala, H., 2016. Gaseous polycyclic aromatic hydrocarbon concentrations are higher in urban forests than adjacent open areas during summer but not in winter - Exploratory study. Environmental Pollution 208, 233-240.

FIGURES CAPTIONS

Figure 1. Vertical gas phase concentration profiles of selected PAHs (a - e) and sampling rate (f) at height 5 - 200 cm above ground. (Deployment period: June 14 - 30, 2017)

Figure 2. Effect of vegetation on the vertical gas phase concentration distribution of (a) phenanthrene, (b) fluoranthene and (c) benzo[b]fluoranthene from topsoil to the air layer close to ground in February (B1), March (B2), May (B3), June (B4), July (B5), and September (B7).

Figure 3. Vertical pattern of temperature and eddy diffusivity from topsoil to 1 m height air.

Figure 4. Pattern of vertical eddy diffusivity, concentration gradient, and diffusive fluxes (b) of phenanthrene (PhA) and benzo[b]fluoranthene (BbF).
Table 1. PAH mass flux a (ng m\(^{-2}\) day\(^{-1}\)) within the air layer close to the ground and in air-soil exchange process.

<table>
<thead>
<tr>
<th>PAHs</th>
<th>Diffusive flux within air layer</th>
<th>Air-soil exchange flux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ng m(^{-2}) day(^{-1})</td>
<td>F(_{100}) b</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>63.2±13.6</td>
<td>43.6±31.6</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>3.62±0.76</td>
<td>1.62±1.25</td>
</tr>
<tr>
<td>Chrysene</td>
<td>-0.17±0.03</td>
<td>-0.39±0.27</td>
</tr>
<tr>
<td>Benzo([b])fluoranthene</td>
<td>-0.03±0.01</td>
<td>-0.15±0.10</td>
</tr>
<tr>
<td>Benzo([ghi])perylene</td>
<td>-0.04±0.01</td>
<td>-0.08±0.05</td>
</tr>
</tbody>
</table>

a: data from the sampling campaign ADH04. Positive values indicate net deposition, while negative values reflect volatilization from soil to air.

b: F\(_{100}\) and F\(_{5}\) denote fluxes calculated based on the difference of concentrations between the soil surface and the air at a height of 100 cm above ground, and 5 cm above the ground.
Figure 1. Vertical gas phase concentration profiles of selected PAHs (a - e) and sampling rates (f) at height 5 - 200 cm above ground. (Deployment period: June 14 - 30, 2017)
Figure 2. Effect of vegetation on the vertical gas phase concentration distribution of (a) phenanthrene, (b) fluoranthene, and (c) benzo[b]fluoranthene from topsoil to the air layer close to ground in February (B1), March (B2), May (B3), June (B4), July (B5), and September (B7).
Figure 3. Vertical pattern of temperature and eddy diffusivity from topsoil to 1 m height air.
Figure 4. Pattern of vertical eddy diffusivity, concentration gradient, and air diffusive fluxes of phenanthrene (PhA) and benzo[b]fluoranthene (BbF).