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ABSTRACT

Considerable progress in computing technology in the past decades did not al-

leviate difficulty inherent in simulating complex dynamical systems. Reduced order

models (ROMs) can be used to unburden these systems of redundant computations.

While a variety of methods have been developed for reduced order modeling, they

cannot be used for parametric study of nonlinear and complex systems, wherein

we constantly change the parameters, input values, and energy levels. Parametric

study is essential to determine the dynamics of complex systems. Only robust and

persistent reduced order models, which remain stable with these changes, can be

used for parametric study.

In this dissertation, we develop a framework which measures the robustness

and persistency of reduced order models. The framework quantifies the changes

in the reduced models and singles out the most robust and persistent ones. The

main advantage of this methodology is that it is applicable to the majority of data-

based model reduction methods. The approach begins with specifying a range of

system’s initial states, parameters, and inputs for the parametric study. The data

is collected from simulations of the system with the parameters chosen randomly

within that range. The dominant structures of data are then identified using the

multivariate analysis methods such as proper orthogonal decomposition (POD) and

smooth orthogonal decomposition (SOD). The framework identifies the persistent

and robust structures and combines them to obtain the models suitable for para-

metric study within the specified range.

Our aim is to investigate the fidelity of the framework for persistent model or-

der reduction of large and complex dynamical systems. The framework is validated

using several numerical examples including a large linear system and two complex

nonlinear systems with material and geometrical nonlinearities. While the method



is used for identifying the robust subspaces obtained from both POD and SOD,

the results show that SOD outperforms POD in terms of stability, accuracy, speed,

and robustness. Also, showing that SOD-based ROMs are robust, we no longer

need to simulate full-scale models for many parameters. We only need to do few

simulations using the full-scale model to build ROMs.

In addition, we extend the application of the proposed approach to model order

reduction of nonlinear control systems. We use SOD to identify the dynamically

relevant modal structures of the control system. The identified SOD subspaces

are used to develop persistent ROMs. Performance of the resultant SOD-based

ROM is compared with POD-based ROM by evaluating their robustness to the

changes in system’s energy level. Results show that SOD-based ROMs are valid

for a relatively wider range of the nonlinear control system’s energy when compared

with POD-based models. In additions, the SOD-based ROMs show considerably

faster computation time compared to the POD-based ROMs of the same order.

For the considered dynamic system, SOD provides more effective reduction in

dimension and complexity compared to POD.
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CHAPTER 1

Introduction

1.1 Introduction

Considerable progress in computing technology in the past few decades did not

alleviate difficulty inherent in simulating complex dynamical systems. Examples

of such systems are large-scale finite difference/element, multi-body dynamics, or

geometrically nonlinear models, and molecular dynamics simulations [1, 2, 3, 4,

5, 6]. A reduced order model (ROM) for these systems can be used to significantly

reduce redundant computations and data storage requirements [7]. In particular,

persistent ROMs, which are robust to the changes in initial conditions, system

parameters, and loading conditions, can be used in parametric studies that are

prohibitive when using a full-scale model.

While a variety of methods for model order reduction (MOR) have been de-

veloped, very few of them provide persistent ROMs. Often emphasis is only on

the accuracy of the ROMs and their ability to capture the dynamics of the full-

scale models for a fixed set of parameters, and operating and loading conditions.

However, the importance of the robustness of a ROM to the changes in those pa-

rameters is often not accentuated. We consider a ROM to be persistent if it is

robust to changes in a full-scale model’s energy, forcing, and parameters. Data-

based reduced order modeling with no persistency is of limited scope; ROMs built

on the data generated from the simulations of a full-scale model can only be used

for simulating the same exact configuration of the model. This ROM might still

be of great utility if we can study the long-time dynamics of a system (e.g., pro-

tein folding), but cannot be utilized in parametric studies, wherein we repeatedly

change the parameters, input values, and energy levels.

In this dissertation, we present a new framework for obtaining persistent
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ROMs, which are valid within a defined range of the system’s energy, which is

imposed by changing the input parameters. Our framework can be applied to all

data-based MOR methods. We make use of data from simulations or experiments

to develop the ROMs. Our goal is to ensure that the obtained persistent ROMs

are robust and can be used for simulating the system with any chosen parameter

from the defined range.

1.1.1 Background and Prior Work

Persistent MOR for linear systems has not attracted extensive research focus

since the linear modal structure is not dependent on the energy of a system. As

a result, if a ROM is properly developed for one energy level of a linear system,

it should also be valid for the other energy levels. The methodologies for MOR

for these systems are mostly projection based, where the linear subspaces used in

the projection can be related to the modal space which is span by linear normal

modes (LNMs). For example, the modes identified using proper orthogonal decom-

position (POD) (also known as singular value decomposition, principal component

analysis, or Karhunen-Loève expansion) [8, 9, 10, 11, 12] approximate the LNMs

for systems with uniform mass distribution [13]. In [14], a method for combining

POD and a Hessian-based model reduction approach is proposed. Other popular

methodologies for the MOR of linear systems include the Galerkin reduction using

linear normal modes (LNMs) [15, 16], Krylov subspace projections [17], Hankel

norm approximations [18, 19], and truncated balance realizations [20, 21].

A recent survey published by Benner et al [22] is a good read for reviewing

the projection-based model reduction methods for parametric studies. According

to this work, which is mostly focused on linear systems, the model order reduc-

tion theory in the case of nonlinear systems is much less developed. In another

work [23], parametric ROMs are developed for thermal modeling of electric motors.

2



The simulation time for these models are reduced by a factor of 500, however, the

considered models are linear. In [24], the authors suggest an interpolation method-

ology which is applied to the POD basis. Using this methodology, they estimate

aeroelastic damping ratio coefficients to within 10% accuracy. A parametric model

reduction approach proposed in [14, 25], is applied to a convection-diffusion model

which is parametrized by the initial conditions. In these cases, the authors state

the limitation of the method regarding the lack of an explicit connection to the

transient observability gramian for nonlinear cases.

Nonlinearity, the integral part of complex dynamical systems, makes the de-

velopment of persistent ROMs a much harder problem. Many approaches for

nonlinear MOR are based on the extending methodologies used for linear MOR.

For example, linearization about an equilibrium point was used for the reduction

of weakly nonlinear systems [26, 27]. Many other approaches are derived from

POD [8, 28, 11, 29, 30, 9], and some from balanced truncation [31, 32, 33]. Other

approaches include neural networks [34], Volterra theory [35], and inertial manifold

approximation [36]. More recently, a method called Proper Generalized Decompo-

sition (PGD) has been developed as a generalization of POD in order to construct

a priori ROM [37, 38, 39, 40]. This method has a potential for solving multidimen-

sional problems since it does not require any knowledge of the solution [39, 41].

The interested reader can find a review on PGD-based MOR techniques in [42].

In summary, a majority of the methodologies commonly used for MOR of

nonlinear systems can be categorized into two groups. In the first group, nonlinear

normal modes (NNMs) or their approximations [43, 44, 45, 46, 47, 48, 49] are

used. In the second group, combined with the Galerkin projection, linear subspaces

obtained from spatiotemporal decompositions such as POD and smooth orthogonal

decomposition (SOD) are utilized [2, 50, 10, 30, 9, 51]. Linear subspaces are of

3



considerable current interest because they are computationally tractable and do

not neglect the nonlinearity of the original vector-field [8], while, in general, the

calculation of NNMs is difficult [52, 53, 54, 55]. Also, MOR based on NNMs suffers

from another major drawback related to changes in the NNMs with the variation

in system’s level of energy [56, 53]. The dependence of the NNMs on the energy

level causes an insufficient robustness of the corresponding NNM-based ROMs to

the changes in the system’s energy level. Thus, NNM-based ROMs cannot be

considered truly persistent.

1.1.2 Our Approach to Persistent Reduced Order Modeling

Our approach is based on identifying robust subspaces which embed NNMs

and do not change drastically as the system changes its energy level. Note that

linear subspaces used for MOR are to be identified in such a way that the active

NNMs are embedded in them [13]. These subspaces may still change as the NNMs

change with the system’s level of energy [56]. However, depending on the decom-

position method, some particular subspaces may be robust to variations such as

changes in initial conditions, external excitations, energy levels, or systems param-

eters. Our hypothesis is that while an individual NNM may change with energy, a

linear subspace embedding this mode may not undergo any considerable change.

Identifying such linear subspaces would enable us to obtain the persistent ROMs

that are robust to a relatively wide range of system parameters and operating

conditions.

The new framework for persistent MOR of large, complex systems based

on the concepts of subspace robustness and dynamical consistency is investigated

[57, 58, 2]. Subspace robustness characterizes how a linear subspace changes un-

der different conditions of the system, which can be used for complex systems to

identify the subspace characteristics that lead to a persistent MOR. Dynamical

4



consistency evaluates the deterministic properties of the full-scale system’s trajec-

tory projection onto the corresponding linear subspace. It indicates the ability of

the identified subspace to potentially—but not necessarily—result in a stable and

accurate ROM.

The utility of our framework will be initially evaluated by applying it to the

POD subspaces since they are widely used for MOR. POD’s drawback for deter-

ministic systems is that it only considers the statistical (i.e., spatial) characteris-

tics of the data [59]. It only prioritizes the maximal variances in the multivariate

data and may disregard important dynamical features that have small variances.

Changing the energy level of a system may drastically alter dynamic features that

previously had small variances, which will not be reflected in the identified POD

modal structure. Therefore, POD, while providing an optimal reduction—in the

least squares sense—for a system with fixed set of parameters and forcing, might

not be a suitable choice for the persistent MOR of complex systems. For example, a

nonlinear Euler-Bernoulli beam exhibits small-amplitude longitudinal oscillations

as the input energy level increases. These oscillations may not affect the dynamics

structure identified by POD. The subspace obtained from SOD, which was first

used in 2005 for vibration mode identification [59], will also be considered within

our framework. SOD can be viewed as an extension of POD, which acquires the

ability to separate multivariate data based on inherent characteristic frequencies.

In other words, it not only considers the spatial statistics, but also looks at the

temporal characteristics of data. Thus, SOD subspaces are likely to be less sensi-

tive to the changes in the energy and properties of the system, and may provide

for the persistent MOR.

The focus of this study is on complex, nonlinear dynamical systems. However,

a lightly damped linear system will be considered first. The rationale behind this
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consideration is twofold: (1) the assertion that POD recovers LNMs for systems

with uniform mass distribution [13] has been only tested on fairly low-dimensional

systems, with fairly long time series; and (2) while SOD does not require uniform

mass distribution for convergence to the LNMs [59], it has not been tested on

large scale systems. Since the LNM structure does not vary with the changes

in energy or initial conditions—the corresponding subspaces are robust to these

changes—we can use a large-scale linear model to test both the POD and SOD

methods’ ability to identify LNMs with limited data in different loading scenarios.

In addition, we can also evaluate the ability of these methods to provide robust

subspace identification for a system that actually possesses this robustness in all

LNMs.

Following the example of the linear systems, MOR of three large-scale, com-

plex nonlinear systems will be studied as the main subject of this work. POD

and SOD will be used for multivariate analyses of the associated ill-conditioned

data matrices from these systems. The POD- and SOD-spanned subspaces will be

tested using the framework to identify the robust subspaces for persistent ROM

development. The resultant ROMs subjected to different energy levels will be

simulated using several numerical examples. The validity of the results will be

investigated in terms of the stability and accuracy of the ROMs.

This dissertation is organized as follows. In the current chapter, the procedure

for projection-based nonlinear model reduction is reviewed. Multivariate analysis

methods using POD and SOD are reviewed and demonstrated using geometri-

cal interpretations. Chapter 2 describes the developed framework for persistent

MOR. In Chapter 2, we obtain the metrics for subspace robustness and dynamical

consistency, which are used as the basics of persistent MOR framework. In Chap-

ter 3, we apply the framework to a large-scale linear system. Chapter 4 focuses
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on obtaining persistent ROMs for nonlinear systems. Chapter 5 intoduces sepa-

rated multivariate analysis for model order reduction. In Chapter 6, we extend the

idea of persistent MOR using SOD to control systems. Chapter 7 concludes this

dissertation, highlights the main finding, and suggests future work.

1.2 Nonlinear Model Reduction

The full state-space model of a deterministic, nonlinear dynamical system has

the following general form:

ẏ = f(y, t), (1)

where y ∈ R2n is a dynamic state variable, n ∈ N is the number of the system’s

degrees of freedom, f : R2n × R→ R is some nonlinear flow, and t is time.

As mentioned earlier, there are two approaches used for model order reduction

of a dynamical system. The first and the most common one, which is the underlying

idea of this dissertation, is based on projecting the dynamical system onto a lower

dimensional linear subspace of the state space to yield a reduced order model. In

the other approach, the state variable of the system is mapped onto some lower-

dimensional nonlinear manifold using a nonlinear coordinate transformation [60,

61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]. In the next section, both approaches

are reviewed.

1.2.1 Model Reduction using Galerkin Projection

There are several methods to identify a linear subspace for dynamical systems.

In case of linear systems, LNMs [74, 69] are suitable as the basis. A basis can be also

identified using multivariate analysis. The state variable trajectory data can be

arranged in the matrix Y = [y1,y2, . . . ,y2n]. Multivariate analysis methods, as it

will be outlined in section 1.3, will be applied to this data matrix to identify a basis

for model reduction. As an output for these analysis, the dominance of each basis
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vector or mode is given by its corresponding principal value. The most dominant k-

dimensional basis vectors are arranged in the matrix Pk = [e1, e2, . . . , ek] ∈ R2n×k.

We neglected the non-dominant (or submissive) basis vectors, thus, k ≤ n. The

reduced state variable is obtained using the following coordinate transformation:

y = Pkq. (2)

The coordinate transformation is plugged into Eq. (1) to yield:

Pkq̇ = f(Pkq, t). (3)

Multiplying both sides by P†k one obtains:

q̇ = Pk
†f(Pkq, t) (4)

where (·)† indicates the pseudoinverse of (·). Eq. (4) is the reduced order model

for the full-scale model described by Eq. (1), and can be stated in terms of new

vector-valued function g:

q̇ = g(q, t). (5)

Eq. (5) provides the k-dimensional ROM described in the state-space form. For

the ROM, k differential equations are needed to be simulated versus n equations

in the full-scale model. Since k ≤ n, the reduced-order model is expected to be

faster. The simulation results of the reduced-order model can be collected in a

snapshot matrix Q = [q1,q2, . . . ,qk]. Eq. (2) transforms a k-dimensional point

q to an n-dimensional point y. The snapshot matrix Ŷ can be obtained using a

similar transformation:

Ŷ = Q Pk
T . (6)

The computational cost of this transformation to obtain the full-scale model’s

snapshot data is negligible compared to the total simulation time.
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for the best possible approximation in the
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Nodal measurements are the columns of matrix Y

Figure 1: A scalar field

1.3 Multivariate Analysis

Multivariate analysis is based on the statistical principle of multivariate statis-

tics, which involves the process of simultaneously analyzing multiple independent

variables using matrix algebra [75, 76]. It is being used as a method to identify the

modal structure of dynamical systems. The extracted modes from the multivariate

analysis can be used for MOR. This section begins with the description of POD,

and SOD as an extension to POD. This includes the mathematical formulations as

well as geometrical interpretations for both methods, which are provided for finite

dimensional cases.

POD and SOD are applied to the recorded measurements of a scalar field.

Scalar field, by definition, associates a scalar value to every point in a space,

and is coordinate-independent, meaning that any two observer will agree on the

value of the measurement. For example, for a beam shown in Fig. 1, the scalar

field consists of position and velocity of the nodal points. The measurements can

be taken from the scalar field using sensors, or obtained by computations. The

recorded measurements form the data matrices for the multivariate analysis.

1.3.1 Proper and Smooth Orthogonal Decomposition for Finite-
Dimensional Cases

The state variable measurements of the full-scale system are recorded to form

position and velocity data matrices X ∈ Rr×n and V ∈ Rr×n, respectively. X is

composed of r snapshots of n position state variables. Similarly, V is composed
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of r snapshots of n velocity state variables. Thus, data matrix Y, which we will

refer to as full data matrix throughout this dissertation, is formed by combining

X and V together, i.e., Y = [X V].

The time derivative of X is V. To obtain a time derivative of V or an accel-

eration data matrix K, we can use a full model of our dynamical system, Eq. (1).

Alternatively, it can be approximated by K ≈ DV, where D is the matrix form of

some differential operator such as forward difference given as

D =
1

∆t


−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 −1 1 0
−0 · · · 0 0 −1 1

 . (7)

Therefore, an ensemble of time derivative of Y will be Ẏ = [V K]. Provided that

Y and Ẏ are zero mean, the corresponding auto-covariance matrices can be formed

by

Σyy =
1

r − 1
YTY , Σẏẏ =

1

r − 1
ẎTẎ . (8)

1.3.2 POD

In POD, we are looking for a basis vector φ ∈ R2n such that a projection of

the data matrix onto this vector has maximal variance. The description of POD

translates into the following constrained maximization problem:

max
φ
‖Yφ‖2 subject to ‖φ‖ = 1,

or

max
φ

{
λ̂(φ) = φTYTYφ

}
subject to φTφ = 1.

Plugging Eq. (8) into the above problem, and defining λ(φ) = λ̂(φ)
r−1

, one obtains:

λ(φ) = φTΣyyφ. (9)
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Using the problem side constraint, we can rewrite Eq. (9) as follows:

λ(φ) =
φTΣyyφ

φTφ
. (10)

We take the first derivative of λ(φ) with respect to φ and equate it to zero, in

order to maximize λ(φ):

∂λ(φ)

∂φ
=

2
(
φTφ

)
Σyyφ− 2φ

(
φTΣyyφ

)(
φTφ

)2 = 0. (11)

As a result,

Σyyφ = φ
(
φTΣyyφ

)
. (12)

Using Eq. (9), Eq. (12) is simplified to obtain the solution to the POD problem in

terms of the solution to the eigenvalue problem of the auto-covariance matrix Σyy:

Σyyφk = λkφk , (13)

where λk are proper orthogonal values (POVs), φk ∈ R2n are proper orthogonal

modes (POMs), and proper orthogonal coordinates (POCs) are columns of Q =

YΦ, in which Φ = [φ1,φ2, . . . ,φ2n] ∈ R2n×2n. POVs are ordered such that λ1 ≥

λ2 ≥ . . . ≥ λ2n, and reflect the variances in Y data along the corresponding POMs.

1.3.3 Geometric Interpretation of POD

In order to illustrate POD using a simple example, let us consider a scalar field

Y that consists of the mean-shifted measurements y1(t) and y2(t) of a two-degree-

of-freedom system. Plotting these data points results in a zero-mean cloud of data

shown in Fig. 2. We aim to obtain two POMs as the solution of an optimization

(maximization) problem for the two-dimensional case. The norm of the projection

of the data onto POMs must be the maxima. The i-th data point yi = (y1(t), y2(t))

is specified by a red dot. An arbitrary vector φ and its direction are also specified.
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Figure 2: Geometrical Interpretation of POD

The norm of the projection of all the data points is going to be maximized by

changing the direction of the unit vector φ. As can be interpreted from the figure,

the (global) maximum will be obtained as vector φ approaches φ1, the first POM.

The maximization problem has also another (local) maximum at φ = φ2, the

second POM. However, the second POM is the trivial solution since it is imposed

by the eigenvalue problem in Eq. (13) that φ1 and φ2 are orthogonal to each other.

Also, due to the side constraint of the problem φ1 and φ2 are normal vectors, and

as a result, orthonormal.

It is apparent that the data points have the maximum variance along the first

POM. The null space of the first POM is span by other POMs. For example, for

the two-dimensional case, the null space is span by the second POM which is only

one trivial vector as the solution. For a three-dimensional case, the null space of

the first POM is the second and the third POMs. The solution to the maximization
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problem looks for the second POM within the null space. Once the second POM

is found, the third POM is the null space of matrix [φ1, φ2].

Associated with each POM is a POV, denoted by λk, which is related to the

norm of the data projection onto φk. Thus, it reflects the variances in Y data

along the vector φk. The greatest POV comes with the first POM along which

the data variances is maximum. The second greatest POV comes with the second

POM along which the variances are (locally) maximum, and so on. Therefore,

each POV represents the amplitude dominance of its corresponding mode.

It is common to refer to POVs as the energy of the modes in engineering

context. In fluid mechanics with velocity measurements, POV can be related to

the kinetic energy. Chatterjee [77] discusses that in structural dynamics problems

with both position and velocity measurements, thinking of POVs as modal energies

is not correct. However, throughout this dissertation they are referred as energies

since they are an implicit combination of potential and kinetic energy of the system.

1.3.4 SOD

In SOD, we are looking for a basis vector ψ ∈ R2n such that a projection of the

data matrix onto this vector has both maximal variance and minimal roughness

(i.e., maximal smoothness). Roughness can be defined as the L2 norm of the rate of

change of data. Thus, the roughness of a one-dimensional scalar filed Ẏψ is equal

to ‖Ẏψ‖. This description of SOD is translated to the following mathematical

form:

max
ψ
‖Yψ‖2 subject to min

ψ
‖Ẏψ‖2,

which can be stated as maximizing the following function:

λ(ψ) =
‖Yψ‖2

‖Ẏψ‖2
. (14)
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We rewrite the above equation in the following form:

λ(ψ) =
ψTYTYψ

ψT ẎT Ẏψ
. (15)

Substituting Eq. (8) in Eq. (15), one obtain:

λ(ψ) =
ψTΣyyψ

ψTΣẏẏψ
. (16)

In order to maximize λ(ψ), we set the first derivative equal to zero:

∂λ(ψ)

∂ψ
=

2(ψTΣẏẏψ)Σyyψ − 2(ψTΣyyψ)Σẏẏψ

(ψTΣẏẏψ)2
= 0. (17)

As a result, Eq. (17) can be simplified using Eq. (16)

Σyyψk = λkΣẏẏψk. (18)

Eq. (19) is the generalized eigenvalue problem of the matrix pairs Σyy and

Σẏẏ which yields the solution to the SOD problem. In this equation, scalars

λk are smooth orthogonal values (SOVs), and vectors ψk ∈ R2n are smooth

projection modes (SPMs). A matrix that contains all the SPMs has the form

Ψ = [ψ1,ψ2, . . . ,ψ2n] ∈ R2n×2n, and a matrix that contains all the SOVs has the

form Λ = diag([λ1, λ2, . . . , λ2n]) ∈ R2n×2n. Using these definitions, Eq. (19) can be

summarized into the following matrix form:

ΣyyΨ = ΣẏẏΨΛ. (19)

A matrix of smooth orthogonal modes (SOMs), Φ can be defined to satisfy

the following biorthogonality condition:

ΨTΦ = I, (20)

where I is identity matrix, and as a result Φ = Ψ−T . Smooth orthogonal coordinates

(SOCs) are defined as the projection of the data onto SPMs given by:
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Q = YΨ. (21)

While the modes obtained from SOD are not orthogonal, its coordinates are or-

thogonal. A proof, using Eq. (21), follows that:

QTQ = ΨTYTYΨ = ΨTΣẏẏΨ. (22)

One of the properties of the generalized eigenvalue decomposition given by Eq.

(19), is that SPMs are orthogonal with respect to Σẏẏ. Thus, SOCs are orthogonal

and the corollary is proved.

The degree of coordinates’ smoothness is described by the magnitude of the

corresponding SOV. Thus, the greater in magnitude the SOV, the smoother in

time is the corresponding coordinate. It should be noted that if we were to replace

Σẏẏ with the identity matrix, the formulation will yield POD.

1.3.5 Geometric Interpretation of SOD

We consider a scalar field Y consisting of the mean-shifted measurements y1(t)

and y2(t) of a two-degree-of-freedom system with the sampling rate of ∆t = 1.

Plotting these data points results in a zero-mean cloud of data shown in Fig. 3.

We aim to obtain two SOMs, φ1 and φ2, as the solution of an optimization

(maximization) problem for the two-dimensional case. We indicate two consecutive

data points yi = (y1(t), y2(t))i and yi+1 = (y1(t), y2(t))i+1 in the figure. The first

derivative of the i-th data point or the vector of data evolution is approximated by

yi+1−yi

∆t
. We refer to this vector as the velocity vector and depict it between data

(i) and (i+ 1) in the figure. The projection of this vector onto φ1 is also shown.

We assume that φ1, the first SOM, is wandering in the 2D space of the data.

By definition of SOD, we aim to maximize the norm of the projections of data

onto this vector. However, we also aim to minimize the norm of the projection
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Figure 3: Geometrical interpretation of smooth orthogonal decomposition.

of the velocity of each data point. This optimization problem has two solutions,

φ1 and φ2. Unlike POD, the orthogonality condition is relaxed and SOMs are

not necessarily orthogonal1 to each other. φ2 is not an obvious solution as the

orthogonal vector to φ1.

Associated with each SOM is a SOV, denoted by λk, which reflects the ratio of

variances in Y data to variances in their first derivatives Ẏ along ψk. The greatest

SOV comes with the first SOM along which the ratio is maximum. Compare this

to the first POM along which only the variance of data is maximum. The sec-

ond greatest SOV comes with the second SOM along which the ratio is (locally)

maximum, and so on. Therefore, each SOV represents the dominance of its cor-

responding mode in terms of overall spatial variation and temporal smoothness of

the coordinate.

1SOCs are orthogonal to each other
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In a sense data Y comes from the consecutive mapping of a system’s state

onto another state using a vector-valued function (flow) f . POD only considers the

spatial geometric consequences of the mapping and neglects the temporal flow un-

der which the states have undergone. SOD considers both the states and the flows

in terms of overall spatial variation and temporal smoothness of the coordinate.

1.4 POD and SOD based model order reduction

For POD based model reduction, we form a matrix of most dominant POMs,

Φk = [φ1, . . . , φk] ∈ R2n×k, using the solution to Eq. (13). Here we have a

particular case of the general procedure described in Section 1.2.1, wherein the

reduced state variable is obtained using the coordinate transformation, y = Φkq.

The coordinate transformation is plugged into Eq. (1) to yield:

Φkq̇ = f(Φkq, t). (23)

The k-dimensional subspace Φk is orthogonal. Thus, we multiply both sides by

ΦT
k :

q̇ = ΦT
k f(Φkq, t). (24)

For SOD based model reduction, we obtain the matrix of SPMs, Ψ and the

matrix of SOMs, Φ as the solution to Eq. (19). Since Φ and Ψ are biorthogonal,

their k-dimensional representatives, Φk and Ψk are also biorthogonal. We use the

coordinate transform y = Φkq as SOD reduced state variable in Eq. (1). This

yields:

Φkq̇ = f(Φkq, t). (25)

Multiplying both sides by ΨT
k , one obtains:

q̇ = ΨT
k f(Φkq, t). (26)
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truncation for model reduction of nonlinear control systems,” International
journal of robust and nonlinear control, vol. 12, no. 6, pp. 519–535, 2002.

[33] M. Condon and R. Ivanov, “Empirical balanced truncation of nonlinear sys-
tems,” Journal of Nonlinear Science, vol. 14, no. 5, pp. 405–414, 2004.

[34] F. D. Marques and J. Anderson, “Identification and prediction of unsteady
transonic aerodynamic loads by multi-layer functionals,” Journal of Fluids
and Structures, vol. 15, no. 1, pp. 83–106, 2001.

[35] D. J. Lucia, P. S. Beran, and W. A. Silva, “Reduced-order modeling: new ap-
proaches for computational physics,” Progress in Aerospace Sciences, vol. 40,
no. 1, pp. 51–117, 2004.

20



[36] P. Brunovsky, “Theory of invariant manifolds and its applications to differen-
tial equations,” UTMS 93, vol. 41, pp. 93–41, 1993.

[37] A. Nouy, “A priori model reduction through proper generalized decomposition
for solving time-dependent partial differential equations,” Computer Methods
in Applied Mechanics and Engineering, vol. 199, no. 23, pp. 1603–1626, 2010.

[38] M. Chevreuil and A. Nouy, “Model order reduction based on proper general-
ized decomposition for the propagation of uncertainties in structural dynam-
ics,” International Journal for Numerical Methods in Engineering, vol. 89,
no. 2, pp. 241–268, 2012.

[39] F. Chinesta, A. Ammar, and E. Cueto, “Recent advances and new challenges
in the use of the proper generalized decomposition for solving multidimen-
sional models,” Archives of Computational methods in Engineering, vol. 17,
no. 4, pp. 327–350, 2010.

[40] E. Pruliere, F. Chinesta, and A. Ammar, “On the deterministic solution of
multidimensional parametric models using the proper generalized decomposi-
tion,” Mathematics and Computers in Simulation, vol. 81, no. 4, pp. 791–810,
2010.
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CHAPTER 2

Persistent Reduced Order Models

The core of the Galerkin projection-based model reduction is the selection

of a suitable linear basis. The linear basis spans a linear subspace for the state

space and can be LNMs, POMs, SOMs, etc. In common approaches, the number

of modes (i.e., the dimension of the linear subspace) is gradually increased until

the ROM adequately captures the full-scale model’s dynamics. In this chapter,

we propose a systematic approach for selecting the linear subspaces for model

reduction.

This dissertation focuses on ROMs based on linear subspace of the system’s

full phase space or its nonlinear extensions. In both cases, this subspace should

satisfy two basic requirements to provide useful ROMs: (1) it needs to embed or

capture the active NNM manifold, and (2) this embedding needs to be robust to the

changes in initial conditions, system parameters, and forcing functions. Here, we

evaluate a subspace selection criterion based on the two new concepts of dynamical

consistency and subspace robustness.

The appropriate subspace for model reduction can be selected based on newly

developed criteria [1, 2, 3]. These criteria quantify two concepts: dynamical

consistency—which demonstrates how well the linear subspace embeds the non-

linear manifold, and subspace robustness—which explains the sensitivity of the

subspace to changes in system’s level of energy.

2.1 Subspace Robustness

We would require that the selected model reduction subspace be robust with

respect to the variations in the data used for its estimation. For example, all LNM

subspaces are robust since they are unique and not data based, but POMs can vary
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Figure 4: Schematic of a nonlinear dynamical system

with respect to initial conditions, system parameters, and forcing function [4]. For

example, POMs capturing maximal energy for a deterministic steady state motion

will be generally different from POMs for a stochastically excited system.

For models based on multivariate data analysis, the corresponding subspaces

are identified using a finite set of simulated (or experimental) trajectory points of

Eq. (1). Since the flow f is nonlinear, the simulated trajectories can be sensitive to

the initial conditions and parameters. The response will also depend on the type

of forcing used during simulation/testing. The model reduction subspace should

not be sensitive to these variations that are expected in practice; otherwise the

corresponding ROM might be invalid for some initial conditions, or for perturbed

system and forcing parameters.

2.1.1 Robustness of Modal Subspaces

In order to quantify the subspace robustness, we provide a model of nonlinear

dynamical system adopted from [5]. The system, shown in Fig. 4, consists of 5

weightless links with the length of 2l which are connected to each other by torsional

springs and dampers. Springs and dampers are not drawn for the sake of clarity.

The coordinate θi measures the angular position of the i-th link as shown in the
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figure.

A nonlinear system can exhibit different behaviors based on its level of en-

ergy, which include both approximately linear behavior near the stable equilibrium

points and nonlinear behavior far from those equilibrium points. Our system shows

similar behavior. This will be discussed in detail in Chapter 6. Closer to the equi-

libria the system is described by LNMs, while as we get farther the system evolves

on the NNM manifold, which may also change shape as system energy changes.

Therefore, as energy increases not only the angle of the linear subspace that we

get from multivariate analysis of the data changes, but we may also need a higher

dimensional subspace to capture the NNM of the system. Different data sets from

the system simulations with different inputs or initial conditions have different

energy level. Therefore, their extracted modal matrices and the corresponding

lower-dimensional subspaces may be different.

One of the ways of preparing data sets for multivariate analysis is subjecting

the simulated system to random forcing. In order to illustrate the changes in the

modal structure, we excite our nonlinear system by the white noise with a chosen

cut-off frequency. We expect that as we increase the forcing amplitude, the higher

frequencies in the system’s response come into account. As a result the modal

structure of the system, indicated by the corresponding subspaces, need to be

altered to account for higher frequencies.

We need a metric that measures the difference in the modal structure of two

different data sets which have different energy levels. One possibility is to mea-

sure the minimal angle between their corresponding subspaces using the following

definition.

Definition: The minimal angle for two nonzero subspaces P1, P2 ∈
Rk is defined to be the number 0 ≤ θ ≤ π

2
that satisfies:

cos θ = max
{
vTu : u ∈ P1, v ∈ P2, and ‖u‖ = ‖v‖ = 1

}
.
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Figure 5: This figure shows how the angle of a 2D subspace changes with different
energy levels. The energy levels are controlled by the initial conditions, assuming
that all initial conditions except for θ1(0) and θ̇1(0) are set to zero. The angles
of the corresponding 2D subspaces are calculated with respect to a reference 2D
subspace.

For example, we generate data sets with different energy levels by changing

the initial condition of the unforced links system. This way, we can control the

energy level of the system. The initial angular position and velocity of all links

except the first one are set to zero. The initial conditions for the first link is

selected from the range −5 ≤ θ1(0) ≤ 5 and −2 ≤ θ̇1(0) ≤ 2. The data set for each

individual selection of θ1(0) and θ̇1(0) is simulated and recorded. POD and SOD

are applied to each data set to extract the corresponding modal matrices P. Using

the minimal angle between two subspaces1, we can estimate the changes in the

k-dimensional subspaces of the estimated modal matrices for different data sets.

Figure 5 shows the angle between the 2D subspaces within the selected range

for the initial conditions of the first link. We calculate the angles with respect to a

reference 2D subspace, which is the subspace obtained from the point (−1.5, −0.2)

in the map. The color of the map indicates the angle of data set generated for its

1While there are other angles between two different subspaces, we only measure the principle
angles which serves for our purpose of qualitative visualization of their dissimilarity.
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Figure 6: Subspace map in three dimensions

corresponding initial condition. For POD, the blue region is limited to two small

regions in which the subspace is not changing. A sudden change in the subspace

angle occurs when we increase the energy level and enter the red region. However,

for SOD the blue region is bigger and the changes in the subspace angle is less

abrupt when we pass the borders of the region. When we increase the subspace

dimension, as depicted in Fig. 6, the size of the blue region for POD does not

change. The color of the red region for POD changes to cyan. The blue and cyan

regions still have a distinct border indicating a sudden change in the subspaces with

the increase in energy level. For SOD, in contrast, we observe that the increase in

the subspace dimension spreads the blue region through the space.

We observe that we obtain different modal subspaces for different energy levels

of the systems which are imposed by changing initial conditions or external forcing.

One of the goals of MOR in our work is to obtain a global subspace which is

suitable for a range of variations in the energy level of a system under investigation.

The conventional method for proper subspace identification for MOR is based on

selecting those subspaces which capture most of the system’s energy. However, this

method would not assure that the subspace is suitable for ROM for an energy-
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varied system. Therefore, a new metric is required to measure if the obtained

subspace is robust or not to the variations in systems’ energy. In the following, we

discuss a metric to measure the robustness of different subspaces with respect to

each other.

2.1.2 Metric for Subspace Robustness

We can change the system’s subspaces obtained from multivariate analysis by

changing its energy level in two ways: (1) changing the initial conditions of an

unforced; and (2) changing the external forcing. For example, we can vary the

external forcing by changing its frequency content and/or forcing amplitude.

Regardless of how we change the system’s energy, we do s simulations or exper-

iments and assemble the corresponding data matrices. We apply the intended mul-

tivariate analysis to the data and obtain s different modal spaces, P1, P2, . . . , Ps

corresponding to each simulation. The k-dimensional subspaces P ik and Pjk of the

modal space are considered linearly dependent if the minimal angle between them,

denoted by θij, is equal to zero. On the other hand they are said to be linearly

independent, if θij = π
2
.

Each subspace Pk consists of k dominant modes. While these k individ-

ual modes can be totally different between two data sets, the subspace spanned

by them can still be linearly dependent. For example, we need two LNMs to

span a plane containing a damped linear oscillator degree-of-freedom in the 2n-

dimensional vector space of a system. However, these modes are not unique—their

linear combination would also span the same plane, which means that as the modes

of system change with its energy level, they can still span the same subspace. Here,

we propose a subspace robustness metric which determines if the MOR subspace

is robust for a range of energy levels. The metric is a quantification of changes in

the subspaces for the range of energies. For the subspace robustness close to one
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we can argue that the subspace is robust to the changes in energy level.

In case of s simulations it is difficult to simply use the angles between all the

subspaces to develop a metric for subspace robustness. Here we propose to use

singular values of all combined subspaces. Let us assume that k columns of matrix

Pi
k span the k-dimensional subspace P ik. We look at the vectors spanning the

subspaces as data which live in the 2n-dimensional space and apply the singular

value decomposition to find the principal directions within the data. We form the

subspace robustness data matrix S by arranging the subspaces in the following

order:

S =

[ p1
1, . . . , p1

k

]︸ ︷︷ ︸
P1
k from 1st simulation

,
[

p2
1, . . . , p2

k

]︸ ︷︷ ︸
P2
k from 2nd simulation

, . . . ,
[

ps1, . . . , psk
]︸ ︷︷ ︸

Ps
k from sth simulation


T

ks×2n

. (27)

From singular value decomposition of matrix S, we obtain 2n direction vectors φi in

the 2n-dimensional space of data. The standard deviation of subspace data along

vector φi is given by σi = ‖Sφi‖. We define rk =
k∑
i=1

σiφi to be the extension vector

of the subspace data in the k-dimensional space. Then Ker(rk) =
2n∑

i=k+1

σiφi is the

extensiuon vector in the null space of the k-dimensional subspace. Thus, the total

extension vector in the 2n-dimensional space is r2n = rk+Ker(rk). The magnitude

of the kernel extension vector, ‖Ker(rk)‖, measures the leak of the data into the

null space of the k-dimensional space. We compare this magnitude to that of the

k-dimensional extension vector, ‖rk‖. Therefore, the leak into higher dimensional

space is evaluated by the angle of extension vectors in the k-dimensional space and

its kernel as follows:

αk = tan−1 ‖Ker(rk)‖
‖rk‖

= tan−1

√√√√√√√√
2n∑

i=k+1

σ2
i

k∑
i=1

σ2
i

. (28)

We define a lower bound for αk by taking the assumption that all the vectors
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spanning the subspaces are equally distributed in the space. In this case all singular

values of matrix S are equal, i.e., σi = σ. Thus, a lower bound for the k-dimensional

subspace, ᾱk, is:

ᾱk = tan−1

√√√√√√√√
2n∑

i=k+1

σ2

k∑
i=1

σ2

= tan−1

√
2n− k
k

. (29)

Using ᾱk we map the angle ᾱk ≤ αk ≤ π
2

to 0 to 1 to define γk as follows:

γk =
ᾱk − αk
ᾱk

, (30)

which we call the subspace robustness of the k-dimensional subspace. Alter-

natively, if we don’t consider a lower bound, we can use the following equation

[1, 2, 3]:

γks =

∣∣∣∣∣1− 4

π
tan−1

√√√√√√√√
2n∑

i=k+1

σ2
i

k∑
i=1

σ2
i

∣∣∣∣∣. (31)

2.1.3 Geometric Interpretation of Subspace Robustness

Fig. 7 depicts a schematic for a geometric interpretation of subspace robustness

in a three-dimensional space. We assume that the modal space of the dynamical

flow has three dimensions. Ps
i ∈ R3 spans the modal space of the s-simulation

data. We show the vectors spanning different subspaces as data points indicated

by blue dots.

Singular value decomposition is applied to the whole data to obtain three

components of the extension vectors shown in the figure. As an example, r2 =

σ1φ1 + σ2φ2 is the two-dimensional covariance vector of data. Ker(r2) = σ3φ3 is
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Figure 7: Geometric interpretation of subspace robustness: The vectors start from
the origin and end at the positions shown by the blue dots. σi and φi, i = {1, 2, 3},
are singular values and vectors of these data indicating three principle directions.

the kernel covariance vector. We calculate the angle between the two-dimensional

subspace and its kernel using Eq. (28):

α2 = tan−1

√
σ2

3

σ2
1 + σ2

2

. (32)

A lower bound for two dimensional subspace of a three-dimensional space is defined

via Eq. (29):

ᾱ2 = tan−1

√
1

2
. (33)

. Now we can determine the robustness of our two-dimensional subspace via Eq.

(30).

2.2 Dynamical Consistency

Unfolding of an attractor used in delay coordinate embedding [6] is the under-

lying idea of dynamical consistency. It can be determined by the premise behind

a method of false nearest neighbors [7]. A linear subspace used for reduced order

modeling is said to be dynamically consistent if the resultant trajectories are deter-

ministic and smooth. We quantify the dynamical consistency of a reduced-order,

k-dimensional flow g which is defined in Eq. (5) as the projection of the original
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flow f onto a k-dimensional subspace. We estimate the number of false nearest

neighbor (FNN) points since they are caused by folding of or intersections in a

trajectory. The data points consisting the phase space trajectory can be neighbor

because they are temporally close to each other ( i.e, qi and qi+1 as two consec-

utive data points), or due to the geometric structure of the flow. Another reason

for being neighbor is the folding of trajectories in a phase space. In the latter case

they are considered as FNNs and will possibly separate if the dimension of g is

increased to k + 1.

The metric for dynamical consistency is defined as the ratio of the number of

false nearest neighbors (FNN) over the total number of nearest neighbor pairs in

a particular k-dimensional subspace:

ζk = 1− Nk
fnn

Nnn

, (34)

where Nk
fnn is the estimated number of FNNs in k-dimensional subspace due to

projection, and Nnn is the total number of nearest neighbor pairs used in the

estimation. If ζk is close to unity, then that k-dimensional subspace is dynamically

consistent.

The nearest neighbor search for each test point is accomplished by utilizing a

kd-search algorithm [8]. Nk
fnn is estimated by comparing the distance between the

temporally uncorrelated nearest neighbors in a k-dimensional space to the distance

between the same points in the (k + 1)-dimensional space. If the change in the

distance is one order of magnitude larger than the original k-dimensional distance,

then these points are denoted as FNNs in k-dimensional space.
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CHAPTER 3

Large-Scale Linear Systems

In this chapter, we consider a large-scale linear system with uniform mass

distribution for applying the persistent MOR framework. It is shown that in this

case, given enough data from long time series, POD is able to recover LNMs

[1], and SOD does not require uniform mass distribution for convergence to the

LNMs [2]. Yet we need to test the performance of both methods for a large scale

systems with limited data in different loading scenarios.

3.1 Derivation of the full-scale model

The linear system under investigation is an n-degree-of-freedom mass-spring-

damper system shown in Fig. 8, where n blocks of masses are connected in series

to each other as well as both sides of the support by linear dampers and springs.

The masses can vibrate in x-direction with no friction. The system is described

by the following governing differential equations:

miẍi + (ci + ci+1)ẋi − ci+1ẋi+1+

(ki + ki+1)xi − ki+1xi+1 = fi(t) , for i = 1 ;

miẍi − ciẋi−1 + (ci + ci+1)ẋi − ci+1ẋi+1

−kixi−1 + (ki + ki+1)xi − ki+1xi+1 = fi(t) , for 2 ≤ i ≤ n− 1 ;

miẍi − ciẋi−1 + (ci + ci+1)ẋi − kixi−1+

(ki + ki+1)xi = fi(t) , for i = n ,

(35)
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Figure 8: Schematic of the linear system

where n ∈ N is the number of the system’s degrees of freedom and fi(t) is the

external forcing applied to the i-th mass. Defining z = [{xi}ni=1, {ẋi}ni=1]T as the

vector of 2n state variables, the full state-space model of the system can be obtained

as follow:

ż =

[
0 I

−M−1K −M−1C

]
z + fe(t) , (36)

where fe(t) =
[
[0, . . . , 0]1×n , [1, . . . , 1]1×n

]T
; 0 ∈ Rn×n is a zero matrix; I ∈ Rn×n

is an identity matrix; and M, K, and C are n × n mass, stiffness, and damping

matrices, respectively.

3.2 Application of Subspace Robustness and Dynamical Consistency

The MOR objective is to develop persistent ROMs for harmonically excited

systems considered here. The linear system will be excited by a force with a

frequency close to its first natural frequency. Modal subspaces for model reduction

can be obtained from different types of excitations, including both harmonic and

random. With random forcing, we are more likely to explore nearly all the state-

space of a dynamical system and excite its all dominant frequencies. However, the

particular forcing function has to be carefully selected, especially for the systems

that have combined slow and fast dynamics. This is to limit the contamination of

the identified modes by forcing that can obscure the true modal structure of the

system.

The white noise is used to excite the system because there is no relatively

fast dynamics in the presence of a slow dynamics. We perform 12 independent
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Figure 9: Subspace robustness (left) and dynamical consistency (right) for ran-
domly driven linear system

simulations for the linear system subjected to external stochastic excitations. The

obtained time series from each simulation had different levels of energy imposed

by changing the amplitude of forcing. For fair comparison purposes, we need to be

consistent with the selection of the total simulation time. Thus, each simulation

was done for a total time equal to 100 cycles of a harmonic forcing, with the

frequency equal to 110% of the first natural frequency of the linear system. With

the chosen parameters, the total simulation time was equal to 709.8 s. We recorded

100 data samples in each cycle of applied external forcing. Therefore, a total of

10,000 data points were recorded from each simulation.

In each case, POD and SOD were used to extract the modes out of each data

set using the procedure explained in Chapter 1, Section 1.3. The first k dominant

modes identified from each simulation independently, spanning 12 k-dimensional

subspaces, were concatenated into the matrix S as explained in Section 2.1.2.

Singular value decomposition was applied to matrix S in order to extract the

singular modes and the corresponding singular values. Using singular values and

Eq. (31), the robustness of the k-dimensional subspaces were evaluated for each

model and decomposition scheme.
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Figure 10: POD-based ROMs of the linear system for Ω = 5.52 Hz and q0 = 1:
full-scale (blue); POD (red)

The corresponding singular modes were used to obtain projections of the full-

scale models’ harmonically excited trajectories onto them. Using the procedure

outlined in Section 2.2, the dynamical consistency of the resulting trajectories

for all the k-dimensional subspaces in the full n-dimensional vector space were

obtained. Please note that no matter how we obtain the subspace for model

reduction, the calculation of the dynamical consistency is meaningful only for

the deterministic trajectories. The dynamical consistencies were obtained for five
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Figure 11: SOD-based ROMs of the linear system for Ω = 5.52 Hz and q0 = 1:
full-scale (blue); SOD (red)

deterministic trajectories, each corresponding to different forcing amplitudes, and

then averaged out. In case both subspace robustness and dynamical consistencies

of the extracted modes were close to unity, we considered them as suitable for

persistent MOR.

3.3 Numerical Example

The parameters of the linear system were fixed as follows:

n = 100,
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Figure 12: Captured energy vesus number of the modes for the linear system

m = 1 kg,

k = 1000 N/m,

c = 0.048 Nm/s .

The obtained POMs and SOMs for this system are used to get the subspace ro-

bustness and dynamical consistency of the ROM subspaces. For the randomly

driven linear system, as depicted in Fig. 9, the SOD subspace robustness metric

reaches and stays close to unity for k ≥ 3. POD subspace robustness is close to

unity at k = 2 and k = 3. It drops at k = 4 and again reaches unity at k = 25 in

a non-monotonic manner.

The POD subspace robustness does not behave monotonically and does not

stay close to unity once it reaches it. Therefore, in the cases considered, POMs

cannot approximate fixed LNMs in a robust manner, except maybe few lower

modes. This shows that POMs are not robust under constraints of limited time-

history of high-dimensional data, which makes it unreliable for persistent MOR.

In contrast, the SOD subspace robustness monotonically increases, reaches unity

for a low dimension, and does not fluctuate thereafter.

Figure 9 also shows the dynamical consistency of POD- and SOD-based sub-

41



spaces for the randomly driven linear system. For both POD and SOD, the dy-

namical consistencies are similar reaching unity at k = 2 for SOD and k = 5

for POD. This means that the projection of the linear system’s deterministic tra-

jectories onto the five-dimensional POD-based or the two-dimensional SOD-based

dominant subspaces have no singular point or intersection with itself—or they do

not violate the uniqueness of the deterministic evolution.

The linear system subjected to harmonic excitation was simulated using the

POD- and SOD-based ROMs via Eq. (58). The phase portraits for the vibrations

of the thirtieth mass are depicted in Fig. 10 and Fig. 11. The ROM simulations

results shows a very good visual correspondence to the full-scale system using both

POD and SOD. Both methods are able to capture the dynamics in two- and three-

dimensional ROMs and none of them outperformed the other irrespective of the

robustness of the corresponding subspaces.

A question arises as to why some relatively non-robust POD subspace-based

ROMs like four-dimensional model still correlate with the full-scale model. It

should be noted that the subspace robustness metric is of more importance for

lower dimensions since they possess most of the energy of the system. The two-

and three-dimensional POD subspaces for the linear system are robust and capture

most of the system’s energy, thus, they provide for good ROMs of the system.

Increasing the dimension of the ROM reduces the robustness of the associated

POD subspace to 0.85 but it does not affect its accuracy or stability. This is

mainly due to the fact that the fourth POM does not capture enough associated

energy to have sizable effect on the corresponding ROM. This also explains why

robustness of MOR based on POD has not been much of research concerns for

linear systems. As shown in Fig. 12, POD captures most of the energy in the

very first few modes, which are robust to the changes in the energy of the system.
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Therefore, any suitably developed POD-based ROM could probably account for

other similar conditions.
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CHAPTER 4

Complex Nonlinear Dynamical Systems

Complexity in dynamical systems can arise for different reasons. In nonlinear

dynamical systems, it is related to the size, nonlinearity, weak coupling between the

DOFs resulting in simultaneous presence of slow and fast dynamics, or a combina-

tion of them. In this chapter, we study three different complex dynamical systems:

a system with nonlinear spring coupling, a nonlinear Euler-Bernoulli beam, and a

mass-spring-grid system.

4.1 System with Nonlinear Spring Coupling

The first nonlinear system used here is obtained by adding a nonlinear spring

to the linear system as shown in Fig. 13. In this case, the complexity is caused by

the large size as well as the material nonlinearity.

The system dynamics is described by the following full state-space equations

of motion:

ż =

[
0 I

−M−1K −M−1C

]
z + fe + fnonlinear(z) , (37)

where everything is the same as the linear system described in Chapter 3 ex-

cept nonlinear term fnonlinear(z) ∈ R2n, which has only one nonzero element:

[fnonlinear(z)]2n = −αz3
n.

4.1.1 Reduced Order Models

As we discussed, with a random forcing we are more likely to explore nearly

all the state-space of the system and excite all dominant frequencies. There is no

relatively fast dynamics with the presence of slow dynamics. Thus, we use white

noise to excite the system.

We applied 12 different external stochastic excitations with different energy
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Figure 13: Schematic of the system with nonlinear spring coupling

level, imposed by changing the forcing amplitude, in order to obtain data for mul-

tivariate analysis. Each simulation was done for a total time equal to 100 cycles of

a harmonic forcing with the frequency equal to 110% of the first natural frequency

of the corresponding linearized system. The total simulation time was equal to

495.1 sec. We recorded 100 data samples in each cycle of applied external forcing.

Therefore, a total of 10,000 data points were recorded from each simulation.

POD and SOD were used to extract the modes out of each data set and matrix

S was formed as explained in Section 2.1.2, the similar procedure that we used for

the linear system. Subspace Robustness was calculated using Eq. (31) and the

dynamical consistency using Eq. (34). Similar to the linear system, the dynamical

consistencies were obtained for five deterministic trajectories, each corresponding

to different forcing amplitudes, and then averaged out.

ROMs for nonlinear systems are expected to be more sensitive to the ro-

bustness of the corresponding MOR linear subspaces. Therefore, in case the low-

dimensional subspaces have good robustness, non-robust higher dimensional sub-

space may destabilize the numerical scheme for the model or at least adversely

affect its accuracy.

For investigation of the system with nonlinear spring coupling, the number of

DOFs was set to 60 and the other parameters were fixed as follows:

m = 1 kg,

k = 3600 N/m,
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c = 720 Nm/s,

α = 2 .

This results in a rich dynamic response with two stable and one unstable static

equilibrium points. The bifurcation diagram, shown in Fig. 14, is plotted for the

amplitude of the 30th mass, obtained from the full scale model of the system.

The system is subjected to a harmonic forcing with the frequency Ω = 9.97 Hz,

which is 110% of the first natural frequency of the corresponding linearized system.

The forcing amplitude is used as a bifurcation parameter, which increases with

an increment size of 0.002. For each forcing amplitude, the first 25 cycles of

the system’s response are neglected in order to remove the effect of transient.

For the steady-state response, x30 is recorded at a fixed phase, the end of each

cycle of the applied harmonic force, for a total of 25 cycles. Before increasing

the forcing amplitude by one increment, this process is repeated three times with

different initial conditions to ensure that all branches of the bifurcation diagram

are obtained. Our particular aim for the persistent ROM is to reproduce these

bifurcation results, which will demonstrate robustness of the ROM to a range of

forcing amplitudes or different input energy levels.

The subspace robustness and dynamical consistency for this system are de-

picted in Fig. 15. The robustness for the SOD subspaces reaches unity at k = 4,

while for POD it does not happen until the very end. POD subspace robustness

is fluctuating and sometimes getting worse as the subspace dimension increases.

These fluctuations are of greater importance for lower dimensional subspaces since

most of the system’s response energy is captured in these subspaces. The dynam-

ical consistency for both methods is similar and reaches unity at k = 2. At k = 5,

however, the dynamical consistency of the SOD method slightly drops, which may

affect the accuracy of the corresponding ROM.
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Figure 14: Bifurcation diagram for full scale nonlinear system for harmonic forcing
with ω = 9.97 Hz

While two- and three-dimensional POD subspace robustness are relatively

close to unity, they do not account for a significant portion of the system’s to-

tal energy to provide stable ROMs. The robustness of the four-dimensional POD

subspace is low, which causes the diverging results of the corresponding ROM

simulation. The five-dimensional POD subspace has better robustness, and the

simulations showed that it provides stable ROM, yet is not robust enough to accu-

rately reproduce the bifurcation diagram. The six-dimensional POD-based ROM

has better robustness and captures more energy, thus, it results in stable and

accurate simulations.

One- through three-dimensional SOD subspaces do not result in stable ROMs

because their subspace robustness is relatively low and also they do not capture

enough energy of the system. Four- and higher-dimensional SOD subspaces are ro-

bust and provide persistent ROMs capable of reproducing the bifurcation diagram
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Figure 15: Subspace robustness (left) and dynamical consistency (right) for ran-
domly driven nonlinear system

of the full-scale system.

The lowest dimensional ROM which provides accurate and robust results is

four-dimensional for SOD and six-dimensional for POD. The corresponding bifur-

cation diagrams are shown in Fig. 16 and Fig. 17. These ROMs are more than fifty

times faster in simulation than the full scale model. Thus, we used a four-time finer

increment size for the forcing amplitude to provide more details in the bifurcation

diagrams of the system. Visual Comparison of these diagrams with the reference

diagram shown in Fig. 14 indicates that there is a close match between those of

the six-dimensional POD and the full scale model. For the SOD, the bifurcation

diagram is little shrunk around q0 = 0.33. While this bifurcation diagram is not

strictly accurate, it still provides a reliable qualitative description the full-scale

system’s dynamics. In addition, the results for the six-dimensional SOD are as

good as the six-dimensional POD, while the test shows that the four-dimensional

POD is not even stable, which is consistent with the significant drop of its subspace

robustness at k = 4.

In Fig. 18, six-dimensional POD and four-dimensional SOD ROMs are com-

pared to the full-scale model driven by the harmonic forcing with Ω = 9.97 Hz and
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Figure 16: Bifurcation diagram for four-dimensional SOD-based ROM of th non-
linear system for harmonic forcing with ω = 9.97 Hz.

amplitudes of 0.05, 0.14, 0.28, and 0.35. The four-dimensional SOD model suc-

cessfully competes with the six-dimensional POD model. For smaller amplitudes,

four-dimensional SOD even outperforms the six-dimensional POD. In addition,

Fig. 19 shows how the relative accuracy of the SOD-based ROMs drops for k = 5

as compared to k = 4 and 6. This may be explained by the drop in the dynamical

consistency of SOD for k = 5, which was shown in Fig. 15.

4.2 Geometrically Nonlinear Systems
4.2.1 Nonlinear Euler-Bernoulli Beam

The mathematical model of a nonlinear Euler-Bernoulli beam shown in Fig. 20

is described in classical books devoted to spatial objects dynamics [1, 2]; here only

the governing differential equations are given:
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Figure 17: Bifurcation diagram for six-dimensional POD-based ROMs of the non-
linear system for harmonic forcing with ω = 9.97 Hz.


ρA∂2u

∂t2
+ d2

∂u
∂t
− EA

(
∂2u
∂x2

+ ∂w
∂x

∂2w
∂x2

)
= 0,

ρA∂2w
∂t2

+ EI ∂
4w
∂x4

+ d1
∂w
∂t
− EA

(
∂u
∂x

∂2w
∂x2

+ ∂w
∂x

∂2u
∂x2

+ 3
2
∂2w
∂x2

(
∂w
∂x

)2
)

= q(x, t),

(38)

where ρ is density, E is Young’s modulus of elasticity, A is the area of beam

section, I is moment of inertia, d1 and d2 are damping coefficients, and q(x, t) is

the transverse forcing. Also, u(x, t) and w(x, t) denote for axial and transverse

vibrations, respectively. The beam under investigation is fixed-fixed at its ends

with the following boundary conditions that are attached to Eq. (38):

w(0, t) = w(a, t) = u(0, t) = u(a, t) =
∂w(x, t)

∂x

∣∣∣∣
x=0

=
∂w(x, t)

∂x

∣∣∣∣
x=a

= 0. (39)
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Figure 18: Phase portraits of the 30-th mass of the nonlinear system obtained
from full scale (blue) and reduced order models (red): six-dimensional POD-based
ROMs (left); four-dimensional SOD-based ROMs (right)

In this case, both transverse and longitudinal displacements at beam’s ends, as

well as tangents to the slope at its ends are equal to zero. Besides, the following

initial conditions are considered for the beam:



w(x, t) = w0(x, t),

u(x, t) = u0(x, t),

∂w(x,t)
∂x

= ẇ0(x, t),

∂u(x,t)
∂x

= u̇0(x, t).

(40)

For small transverse vibrations, the equations given in Eq. (38) reduce to one

linear equation, which only accounts for transverse vibrations. In this case, axial

vibrations are very small and negligible. For large deflections, axial displacements
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Figure 18 (Cont.)

are taken into account, which introduces geometrical nonlinearity to the system.

There is no exact analytical solution for the nonlinear system; however, a finite-

dimensional state-space model of the system can be solved numerically using finite

difference method.

The full-dimensional state-space model of the system in matrix form can be

obtained using finite difference method (FDM). The space coordinate of the beam,

as shown in Fig. 21, is meshed using M nodes. The parameters ui and wi indicate

axial and transverse displacements of the i-th node. The space derivatives in Eq.

(38) are substituted by their second order finite difference approximation O (∆x2)

which are given as follows:

∂u

∂x
=
ui+1 − ui−1

2∆x
,
∂2u

∂x2
=
ui+1 − 2ui + ui−1

∆x2
,
∂w

∂x
=
wi+1 − wi−1

2∆x
,

∂2w

∂x2
=
wi+1 − 2wi + wi−1

∆x2
,
∂4w

∂x4
=
wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

∆x4
,

(41)
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Figure 19: Phase portraits of the 30-th mass of the nonlinear system obtained from
full scale (blue) and SOD-based ROMS (red)

 

Figure 20: Schematic of the nonlinear Euler-Bernoulli beam

where ∆x is space mesh size. After simplifying, this leads to the following systems

of ordinary differential equations:


ẅi + αẇi = Hi(u,w, t)

for i = 1, 2, . . . ,M ;

üi + βu̇i = Gi(u,w, t)

(42)

where α = d1
ρA

, β = d2
ρA

, and Gi and Hi are nonlinear function of axial and transverse

nodal displacements and time.

The boundary and initial conditions can be treated using two fictitious space

layers, which are illustrated in Fig. 21. Therefore, using finite difference approxi-

mation one obtain:

wi(0) = wi0; ẇi(0) = ẇi0;ui(0) = ui0; u̇i(0) = u̇i0. (43)

By introducing the state-variables as zi = wi, zM+i = ui, y2M+i = ẇi for i =
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Figure 21: Numerical scheme for the Euler-Bernoulli beam

1, . . . ,M , the system can be written as 4M -dimensional first-order equation in

z = [wi, ui, ẇi, u̇i]
T ∈ R2n, n = 2M as:

ż = Tz + g(z, t) (44)

in which g(z, t) = [01×2M , H1(z, t), . . . , HM(z, t) , G1(z, t) , . . . , GM(z, t)]T ∈ Rn is

the vector of nonlinear functions. The matrix T2n×2n has the following form:

T =


0 0 I 0
0 0 0 I
0 0 −αI 0
0 0 0 −βI

 (45)

where 0 ∈ RM×M is a zero matrix and I ∈ RM×M is an identity matrix. Eq.

(44) represents the full-dimensional mathematical model of the system and is to

be solved by numerical methods.

4.2.2 Numerical Example for Nonlinear Euler-Bernoulli Beam

The performances of POD- and SOD-based ROMs will be evaluated in terms

of stability and accuracy of the ROMs. For evaluating the accuracy phase portraits
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Figure 22: transverse vibrations of the middle of beam: q0 = 760 (left), q0 = 3900
(right)

of the ROMs will be contrasted with those of the full-scale models.

The space coordinate of the beam is meshed using M = 29 nodes. Thus,

the full state space model is 116-dimensional, which means that 116 equations are

needed to be solved simultaneously. The beam is assumed to be made of aluminum

with density ρ = 2710 kg/m3 , Youngs Modulus E = 69 GPa, dissipation ratios

α = 1.845 and β = 0. The beam’s dimensions are 0.01 m×0.01 m×1 m. A harmonic

transverse force q = q0 sin Ωt is applied to the beam. The forcing frequency is

selected as Ω = 31.8 Hz. The value for ∆t of the numerical scheme is equal to

1.2× 10−6 sec.

The solutions (transverse vibrations of the middle node) for q0 = 760 and

q0 = 3900 obtained using the full-dimensional model are depicted in Fig. 22. The

axial vibration of the farthest end nodes has larger magnitude than other nodes.

The phase space portrait of the farthest left node, for the same values as in Fig. 22,

are depicted in Fig. 23. It can be seen that their magnitudes are much smaller

than those of the transverse vibrations. Therefore, the full-dimensional state space

vector space has big variances in the coordinates corresponding to the transverse
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Figure 23: axial vibrations of the most far left node on the beam: q0 = 760 (left),
q0 = 3900 (right)

vibrations, but small variances for those corresponding to axial vibrations. POD-

based MOR only considers the variances while SOD-based MOR not only considers

the spatial variances but also looks at the temporal characteristics of the trajec-

tories in the full-dimensional state-space model. Thus, we expect SOD to capture

the dynamic of the system in a lower-dimensional subspace. In next section, the

results of both POD-and SOD-based MOR are discussed.

4.2.3 ROMs for Nonlinear Euler-Bernoulli Beam

To identify the modal structure using both POD and SOD, the beam is excited

by white noise for 3.14 s. This guarantees that nearly all the state space is explored

and all dominant frequencies of the beam are covered. The state-variable data from

the beam vibration are calculated using the numerical integration. A total number

of 2600000 snapshots are recorded with the rate of ∆t of the numerical scheme and

stored in the data matrix Y. POD and SOD are applied to the data matrix to

extract the modes as described in Section 1.3.

A set of thirty randomly driven trajectory data is used to estimate the sub-

spaces robustness using the aforementioned procedure. Fig. 24 illustrates the sub-
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Figure 24: Subspace robustness for randomly driven Nonlinear Euler-Bernoulli
Beam

space robustness for all k-dimensional subspaces of the full-scale model. Each quan-

tity in this figure gives a measure of sensitivity of its corresponding k-dimensional

subspace to different forcing conditions. According to this figure, for k ≥ 13,

SOD subspace robustness is close to unity. The POD subspace robustness is not

monotonic. It reaches unity at k = 58, however, suddenly drops by increasing the

number of the modes.

The dynamical consistency is shown in Fig. 25 for both POD- and SOD-

based ROMs. To estimate the dynamical consistency, the k-dimensional subspaces

obtained from randomly driven data are used to project full-dimensional space

of harmonic data. POD subspaces are dynamically consistent for all dimensions,

except for k = 1, 11, 12 and 13. According to the figure, SOD subspaces are

consistent for all dimensions, except for k = 1, 4 and 12.

This figure demonstrates that results for dynamical consistency of POD and

SOD are similar, except for k = 4, 11 and 13, where POD subspaces are more

consistent.

Now, the extracted modes can be used for building the POD- and SOD-based
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Figure 25: Dynamical consistency for randomly driven Nonlinear Euler-Bernoulli
Beam

ROMs to simulate the solution of the full-scale model under harmonic forcing.

The dimension of the lowest dimensional SOD-based ROM that is stable is 47.

Fig. 26 depicts the results for POD- and SOD-based ROMs for harmonic forcing

with q0 = 10. Comparison with the full-scale model trajectories shows that POD-

based ROM is not stable. To get a stable POD-based ROM, it has to be at least

65-dimensional.

In Fig. 27, the POD- and SOD-based ROM, obtained for a range of forcing

amplitudes, are compared to full-scale model trajectories. It can be seen that

SOD-based ROMs capture dynamic in a lower dimension. A 49-dimensional SOD-

based ROM is able to reproduce good results while POD-based ROM needs at

least 65 dimensions for that. POD-based ROM with dimension lower than 65

are not stable. Some SOD-based ROM with dimension lower than 49 had fairly

good correlation with the full-scale model, however, failed after very few cycles of

harmonic forcing.

The instability of lower dimensional ROMs is most likely to be due to the
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Figure 26: Full-scale and ROM trajectories for periodic loading with q0 = 10 and
Ω = 31.8 Hz ; Full-scale model (left), 47-dimensional SOD-based ROM (middle),
47-dimensional POD-based ROM (right)

explicit nature of the FDM, which was used for solving both full-scale and reduced

order models. However, another possibility, which could explain this problem, is

the weak coupling between axial and transverse displacement of the nodes. This

results in small magnitude of the data corresponding to state variables of the axial

nodes in the full dimensional state space. Therefore, it might be difficult for both

POD and SOD to identify the corresponding subspaces of these data properly.

Nevertheless, SOD was shown to have a better performance in identifying these

subspaces.

4.2.4 Mass-Spring-Grid System

Another geometrically nonlinear system that we consider will be called mass-

spring-grid system throughout this dissertation. The schematic of this system is

shown in Fig. 28. The system is allowed to vibrate in both x and y directions

as a grid of equidistant masses, dampers, and springs. Each spring is assumed to

have a corresponding damper acting in parallel, which are not shown for clarity.

The springs are pinned to the masses or the walls allowing for their motions as

the masses displace in both directions. As we will see, unlike the nonlinear Euler-
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Figure 28: Schematic of the mass-spring-grid system with geometric nonlinearity

Bernoulli beam, the space coordinates of the mass-spring-grid system can be model

analytically. This removes any numerical instability related to meshing the space

coordinates. Therefore, studying this system allows us to better investigate the

performance of the “persistent MOR” methodology.

In case the system is forced only in x-direction, Eq. (35) is sufficient to describe

it. However, any small deviation from x-directional oscillation will cause geometric

nonlinearity in the motion. For the purpose of this section, we only excite this

system in y-direction. The governing differential equations for the i-th mass are

as follows:
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miẍi + (ci + ci+1)ẋi − ci+1ẋi+1 + (ki + ki+1)xi−

ki+1xi+1 + (ki − ki+1)a− ki lli(a+ ∆xi)+ for i = 1

ki+1
l

li+1
(a+ ∆xi+1) = 0

miẍi − ciẋi−1 + (ci + ci+1)ẋi − ci+1ẋi+1 − kixi−1+

(ki + ki+1)xi − ki+1xi+1 + (ki − ki+1)a− for 2 ≤ i ≤ n− 1

ki
l
li

(a+ ∆xi) + ki+1
l

li+1
(a+ ∆xi+1) = 0

miẍi − ciẋi−1 + (ci + ci+1)ẋi − kixi−1+

(ki + ki+1)xi + (ki − ki+1)a− ki lli(a+ ∆xi)+ for i = n

ki+1
l

li+1
(a+ ∆xi+1) = 0

(46)



miÿi + (ci + ci+1)ẏi − ci+1ẏi+1 + (ki + ki+1)yi−

ki+1yi+1 − ki lli∆yi + ki+1
l

li+1
∆yi+1 = Fy,i(t) for i = 1

miÿi − ciẏi−1 + (ci + ci+1)ẏi − ci+1ẏi+1 − kiyi−1+

(ki + ki+1)yi − ki+1yi+1 − ki lli∆yi+ for 2 ≤ i ≤ n− 1

ki+1
l

li+1
∆yi+1 = Fy,i(t)

miÿi − ciẏi−1 + (ci + ci+1)ẏi − kiyi−1+

(ki + ki+1)yi − ki lli∆yi + ki+1
l

li+1
∆yi+1 = Fy,i(t) for i = n

(47)
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where a is the initial distance between the masses, l is the free length of the springs,

li =
√

(a+ ∆xi)2 + (∆yi)2, and ∆xi and ∆yi and are given as follows:

∆xi =


xi for i = 1

xi − xi−1 for 2 ≤ i ≤ n

−xi−1 for i = n+ 1

(48)

∆yi =


yi for i = 1

yi − yi−1 for 2 ≤ i ≤ n

−yi−1 for i = n+ 1

(49)

We should note that here only linear damping is considered for the system.

The state-space vector to model this system is a vector of 4n variables defined

as z = [{yi}ni=1, {xi}ni=1, {ẏi}ni=1, {ẋi}ni=1]T ∈ R4n. Thus, Eq. (46) and Eq. (47) can

be rewritten as follows:

ż =


0 0 I 0
0 0 0 I

−M−1K 0 −M−1C 0
0 −M−1K 0 −M−1C

 z +


0n×1

0n×1

fn,y
fn,x

+ fe , (50)

where 0, I, M, K, and C are n × n zero, identity, mass, stiffness, and damping

matrices, respectively.

Reduced Order Models

For the mass-spring-grid system consisting of twenty masses, specifying the

following parameters will result in a rich dynamical behavior:

n = 20,

m = 1 kg,

k = 1000 N/m,

c = 4.23 Nm/s,
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Figure 29: Subspace robustness (left) and averaged dynamical consistency (right)
for randomly driven nonlinear mass-grid system

a = 1.01 m,

l = 1 m .

The subspace robustness for POD-based MOR of this system is close to unity for

k = 1, . . . , 4 and drops to 0.6 at k = 5, as shown in Fig. 29. For SOD, sub-

space robustness starts at near 0.85 for k = 1, monotonically increases with the

increase in the dimension and saturates at 1 near k = 20. Also, three- and higher-

dimensional POD-based ROMs are dynamically consistent, while for SOD five and

higher dimensional subspaces are dynamically consistent. The importance of sub-

space robustness and dynamical consistency metrics for identifying the optimal

MOR subspace is reflected in Fig. 30, where POD-based ROMs lose their stability

as subspace robustness drops after k = 5. While five-dimensional ROM is still

stable, for the k = 6, 7, or 8 it loses its stability. The importance of monotoni-

cally increasing subspace robustness for SOD-based ROMs is illustrated in Fig. 31.

These ROMs become and remain stable as the robustness metric approaches unity

and stays there.
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ẋ
1
0

POD dimension=5

−1.5 −1 −0.5 0 0.5 1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

x10

ẋ
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Figure 30: Phase portraits of the 10-th mass of the nonlinear mass-grid system
obtained from full scale model (blue) for Ω = 28.2 Hz and q0 = 1 compared to 1-
through 8-dimensional POD-based ROMs (red)
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CHAPTER 5

Separated Smooth Orthogonal Decomposition

5.1 Introduction

In the previous chapter we showed that SOD outperformed POD in obtaining

low-dimensional ROMs. However, the data matrices associated with many dynam-

ical systems are ill-conditioned. This may destabilize the low-dimensional ROMs

or reduce their performance. For instance, in Section 4.2.1 we observed that some

low-dimensional POD- and SOD-based ROMs were not stable for the nonlinear

Euler-Bernoulli beam[1].

The data matrices from the full state-space models are composed of measured

data corresponding to position and velocity state variables. Position and velocity

data have a lower condition number, i.e. they can form better conditioned matrices

separately. Therefore, we propose to perform the multivariate analysis separately

to identify the so-called position and velocity modes. Following the identification

of these modes, we can put them together to span the modal subspace for MOR.

In this chapter the mathematical formulation of the separated POD- as well

as the separated SOD-based MOR methods are provided. We apply these methods

to the nonlinear spring coupling system described in Section 4.1.

5.2 Separated Multivariate Analysis for Reduced Order Models

The full data matrices in many dynamical systems are ill-conditioned. There-

fore, extracting the modes out of these data using the aforementioned multivariate

analysis methods may result in noisy modes. These modes have many unnecessary

sign changes and may not account for the true modal structure of the system. Here

we propose to do the multivariate analysis on position and velocity data matrices

separately, since they have a lower condition number.
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Figure 32: Bifurcation diagram for full scale nonlinear system for harmonic forcing
with ω = 9.97 Hz

We consider the position and the velocity data matrices X and V, as described

in section 1.3.1. The separated multivariate analysis as its name suggests will be

done on X and V separately. The solution of separated POD analysis on position

data matrix is given by:

Σxxφ
x
k = λxkφ

x
k (51)

Likewise, the solution of separated POD analysis on velocity data matrix is given

by:

Σvvφ
v
k = λvkφ

v
k (52)

In the above equations, Σxx and Σvv are autocovariance matrices of position and

velocity data. Also, the superscript x and v denote that the corresponding scalar

or vector is related to the position and velocity data matrices, respectively. The
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Figure 33: Subspace robustness metric for separated POD

obtained φxk’s and φvk’s are arranged to form the position modal matrix Φx =

[φx1 , φ
x
2 , ..., φ

x
n] ∈ Rn×n and the velocity modal matrix Φv = [φv1, φ

v
2, ..., φ

v
n] ∈ Rn×n.

After choosing l dominant position modes given in the matrix form Φx
l as well as

r dominant velocity modes given in the matrix form Φv
r , they can be put together

to, at last, yield the modal matrix:

Φk =

[
Φx
l 0n×r

0n×l Φv
r

]
2n×k

(53)

where k = l + r is the dimension of the modal matrix.

For separated SOD analysis, we need to solve the following generalized eigen-

value problems on position and velocity data and their time derivatives. For posi-

tion data, one has:

Σxxψ
x
k = λxkΣẋẋψ

x
k (54)

similarly for velocity data, one obtain:

Σvvψ
v
k = λvkΣv̇v̇ψ

v
k (55)

in which Σẋẋ and Σv̇v̇ are autocovariance matrices of velocity and acceleration

70



0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Subspace Dimension

S
u
b
sp
a
ce

R
o
b
u
st
n
es
s

 

 

Robustness of Position Modes
Robustness of Velocity Modes

1 2 3 4
0.9

0.95

1

 

 

Figure 34: Subspace robustness metric for separated SOD

data, respectively. Similar to POD, the modal matrix Ψ will be composed of

l-dimensional Ψx
l and r-dimensional Ψv

r . Thus, one get:

Ψk =

[
Ψx
l 0n×r

0n×l Ψv
r

]
2n×k

. (56)

5.3 Numerical Example

As a numerical example, we consider the system with nonlinear spring coupling

provided in section 4.1. The number of DOFs is 60 and other parameters of the

system are set as follows:

m = 1 kg,

k = 3600 N/m,

c = 720 Nm/s,

α = 2.

This will result in a rich dynamic response with two equilibrium points. Subjected

to harmonic forcing with Ω = 9.97 Hz, which is close to the frequency of the first

linear normal mode, the bifurcation diagram is plotted using the full scale model

of the system as shown in Fig. 32. We aim to reproduce these results using ROMs.
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Figure 35: Phase portraits of the 30-th mass of the nonlinear system obtained
from full scale (blue) and reduced order models (red): seven-dimensional POD-
based ROMs (left); seven-dimensional separated POD-based ROMs (right)

While any type of data obtained from the system oscillations could be used for

multivariate analysis, the data from random excitation would be the best choice for

MOR subspace identification. With random forcing, we are more likely to explore

nearly all phase space of the system and awake most of its dominant modes.

Therefore, to get the data matrices, the white noise is applied to the system

for a total time of 272 seconds. The response of the system is obtained using

Runge-Kutta method with the sampling time of 2.178× 10−3 sec. Thus, a total of

125000 data will be recorded to form position and velocity data matrices. These

data will be processed using POD, SOD, separated POD and separated SOD as

the multivariate methods.
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Figure 35 (Cont.)

5.4 Results

We excited the system by the white noise with 12 different amplitudes to

get 12 independent cases. For each case, we record the data matrices and apply

separated multivariate analysis. The resultant modes were mixed using Eq. (53)

and Eq. (56). The obtained modes are then used for ROMs.

For optimal selection of the modes, we apply the subspace robustness metric

to position and velocity modal matrices obtained from separated POD and SOD.

The results are depicted in Fig. 33 and Fig. 34, for POD and SOD, respectively.

Fig. 33 shows that three-dimensional POD position and four-dimensional POD

velocity subspaces have robustnesses close to one. Therefore, we select three modes

to span the position subspace and four to span the velocity subspace. We combine

these subspaces (or modes) using Eq. (53) to obtain the seven-dimensional modal

subspace for separated POD-based MOR. Similarly, according to Fig. 34, two-
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Figure 36: Phase portraits of the 30-th mass of the nonlinear system obtained
from full scale (blue) and reduced order models (red): four-dimensional SOD-based
ROMs (left); four-dimensional separated SOD-based ROMs (right)

dimensional position and velocity modes for SOD are robust. Thus, using Eq. (56),

we obtain a four-dimensional modal subspace for separated SOD-based MOR.

The 120-dimensional full-scale model of the system can be reduced down to

a five-dimensional full POD-based ROM. The full POD-based ROMs were not

stable for the dimensions lower than five. Yet, the full-scale model of the system

is reduced to a seven-dimensional full POD-based ROM, since five-dimensional

models did not correlate well with the full-scale model. For full SOD, four- and

higher dimensional models were stable and had a good correlation with the full-

scale model. These results match the subspace robustness metrics.

The results from the full POD- and SOD-based ROM simulations are depicted

in the left columns in Fig. 35 and Fig. 36. These results correspond to the harmonic

excitation amplitudes of [0.05, 0.12, 0.22, 0.35]. While both POD and SOD have
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a reasonable accuracy, the four-dimensional full SOD-based model has a slightly

better performance than the seven-dimensional full POD-based model. This is

consistent with the previous work done on SOD-based MOR [1, 2], where SOD-

based ROMs were shown to capture the dynamics of the nonlinear systems using

lower dimensional models.

An interesting result is the effect of separating the data matrices on stabilizing

the low-dimensional POD-based ROMs. Now not only the separated POD-based

ROMs are stable for all dimensions, but also the performance of the models is

improved. This is illustrated in Fig. 35, where seven-dimensional POD-based and

seven-dimensional separated POD-based ROMs are compared. The figure shows

that the ROM simulation results are slightly improved.

The performance of separated SOD-based ROMs is also investigated and re-

ported via Fig. 36. The figure shows that separated SOD-based MOR improves
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Figure 37: Bifurcation diagram for ROMs : of the nonlinear system ; for harmonic
forcing with ω = 9.97 Hz : seven-dimensional POD (top left); seven-dimensional
separated POD (top right); four-dimensional SOD (bottom left); four-dimensional
separated SOD (bottom right)

the results. In some cases the results do not change much and in some cases, e.g.

q0 = 0.12, the performance of the ROM significantly increases. In this particular

case, the ROM is able to distinguish similar, neighbor trajectories.

With a more than 50 times faster ROM, we are able to reproduce the bifurca-

tion diagrams in more details. Fig. 37 shows the bifurcation diagrams obtained for

the four methods. It can be observed that there is a slight improvement in the di-

agram of the separated POD-based MOR compared to that of the full POD-based

MOR. For instance, there is better match for the forcing amplitude in the range

of 0.2 to 0.25 for the separated POD diagram with that of the full-scale model

in Fig. 32. Although this improvement is not significant, it shows the improving

nature of the separated POD-based reduced order modeling.

The bifurcation diagram of four-dimensional full SOD-based ROM is consis-
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tent with that of the full scale model. However, it is little shrunk around the

forcing amplitude of 0.31. The diagram of four-dimensional separated SOD-based

ROM is improved for higher amplitudes.
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CHAPTER 6

Persistent ROMs for control Systems

6.1 Introduction

A high-fidelity mathematical model is essential to control a complex nonlinear

dynamical system. These models are often high-dimensional, which means that

complex differential equations are needed to describe them. Therefore, in many

cases, they may not be computationally tractable. This makes the real-time control

difficult to implement. A ROM of a complex system can result in a computationally

tractable, accurate model for the control system [1].

Computationally complex dynamical systems usually evolve on a lower-

dimensional curved nonlinear manifold embedded in a higher dimensional state

space of the system. Geometric structures of nonlinear manifolds have not been

extensively incorporated in nonlinear control theory since identification of high-

dimensional manifold is difficult [2, 3, 4]. Also, even if we overcome this problem,

the stability and accuracy of the reduced model is still guaranteed only for a small

range of operating conditions or modal parameters [4].

In this chapter, we use SOD [5, 6, 7] as a new tool for MOR for nonlinear

control systems [8]. Our method is categorized under Galerkin projection based

reduced order modeling which projects the high-dimensional nonlinear system onto

an appropriate linear subspace to yield a lower-dimensional system. We also eval-

uate the persistency of the identified linear subspaces. Since persistent linear

subspaces are robust to the changes in system’s operating conditions, they expand

regions within the system’s state space in which the ROMs are valid. We aim

to obtain a persistent ROM which allows the control system to globally operate

within a region of interest.

Projection onto the linear subspace does not negate the nonlinearity of the
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original system [9]. While the resultant ROM for the control system is still nonlin-

ear, its corresponding state is lower dimensional which makes the control system

computationally manageable.

For nonlinear control systems, however, we examine the output of the persis-

tent ROM for a given input in comparison to the output of the full-scale control

model. For the input we use a set of impulse functions as random input. This ap-

proach has two advantages: (1) under random input it would be difficult to stay in

a limited region of the space; and (2) random input imitates the non-deterministic

impulses generated by the control scheme as inputs to the system.

For the purpose of this work we consider the model presented in [1]. We

describe and apply SOD as a new reduced order modeling method for nonlinear

control systems. We also formalize the subspace robustness as a metric to iden-

tify the persistent subspaces for reduced order control models in such a way that

they are globally valid for a range of the system’s energy. Finally, the developed

methodology in this chapter will be tested using numerical simulations of a non-

linear control system.
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6.1.1 Background and Prior Work

Within the realm of complex dynamical systems, reduced order modeling is

being extensively used to reduce the redundant computations and data storage

requiremenst [10, 7, 11, 12, 13, 14, 15]. The methodologies for MOR of complex

dynamical systems were discussed in Chapter 1.

The research on MOR of control systems is extensive. It includes well under-

stood, and established theories and methodologies for reduction of linear control

systems. Examples of these methods are POD, used for instance to design control

systems for PDEs [16, 17] and optimal control of fluids [18], Hankel norm approx-

imation [19, 20, 21], and balanced truncation [22] which was proposed by Moore

[23]. The reader may review other methods for MOR for linear control system in

Refs. [22, 24, 25].

Model reduction of nonlinear control systems is not as well understood as

for linear systems. For example, POD is being frequently used [26], however,

it suffers from some limitations that are discussed in [27]: POD-based models

are very sensitive to the data used [9] and may become unstable even near stable

equilibrium points [28]. Another method is balanced truncation which is developed

for nonlinear control system in two distinct approaches: one is based on energy

function used in the works by Scherpen [29, 30, 31, 32] and the other is proposed

by Lall based on empirical balanced truncation [1].

6.2 Model Reduction Using Galerkin Projection

We consider a nonlinear control system in the form:

ẏ(t) = f(y(t) ,u(t))

z(t) = h(y(t)) ,

(57)

where y ∈ R2n is state vector of the system, n is number of degrees-of-freedom, t is

time, f : R2n×Rp → R2n is a nonlinear flow function describing the dynamics of the
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system, u(t) ∈ Rp is the input to the system, and z(t) ∈ Rw is the system output or

the state vector which is based on the desired observation, h : R2n → Rw. The goal

of the control system is to control the output z(t), however, if the system is large-

scale or highly nonlinear, we will aim to obtain a reduced order nonlinear control

model. A reduced order control model is easier to implement and is essential for a

real-time and accurate control.

Galerkin projection based MOR methods are based on transforming the 2n-

dimensional state vector y to a k-dimensional state vector q, given that k < 2n.

The transformation is performed by a full-rank projection matrix Pk ∈ R2n×k in

the form q = P†ky, with (.)† defined as the pseudoinverse of (.), to yield the reduced

order model:

q̇(t) = P†kf(Pkq(t),u(t)) ,

z(t) = h(Pkq(t)) .

(58)

Matrix P represents a description of the modal space of a dynamical system.

Matrix Pk is the k-dimensional modal subspace formed by k dominant modes

of the modal space. While it can be analytically obtained for linear dynamical

systems using linear normal modes theory, another method to obtain P, regardless

of system’s linearity or nonlinearity, is using multivariate analysis of its response.

Multivariate analysis is applied to the data matrices from the full model simulations

or experiments. In this work, all the data matrices are obtained from simulations.

We present an example of a nonlinear control system derived from the work by

Lall et al. [1] in which they developed the balanced truncation method for nonlinear

control systems. In next section, we obtain persistent reduced-order control models

for this system.
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Figure 39: Phase portraits of the fifth link for different forcing amplitude values

6.3 Mathematical Model of Nonlinear Control System

In this section, we model the system adopted from [1]. The system, shown in

Fig. 38, consists of 5 weightless links with the length of 2l which are connected to

each other by torsional springs and dampers. Springs and dampers are not drawn

for the sake of clarity. The first link is pinned to the ground and driven by a torque

as the input to the system. The coordinate θi measures the angular position of the

i-th link as shown in the figure. We obtain the governing differential equation of

the system using the Lagrange’s equation:

d

dt

(
∂T

∂θ̇i

)
− ∂T

∂θi
+
∂V

∂θi
= Fi, (for i = 1, . . . , n) (59)

where V and T are potential and kinetic energy, and Fi is the generalized forcing

term. Now we consider y = [θ1, . . . , θ5, θ̇1, . . . , θ̇5]T to be the state vector. By

substituting the state vector in the equations of motion, we obtain its state space
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Figure 40: This figure shows the subspace robustness of both POD and SOD
for different energy levels imposed by different random forcing. SOD subspace
robustness is alway close to one while POD subspace robustness fluctuates.

form:

M
(
y(t)

)
ẏ(t) = Ly(t) + fn(y(t)) + u(t) , (60)

in which M
(
y(t)

)
is the time-varying mass matrix and L is the matrix of the linear

terms. Both are given in Appendix A. Also, fn is the vector of the nonlinear terms

and u(t) is the single input to the system. The output of the system is defined as

the horizontal position of the tip of the 5th link

z = 2l
5∑
i=1

sin yi (61)

and is to be controlled.

We simulate Eq. (60) as a full-scale model of the control system using harmonic

excitation, u(t) = f0 sinωt. Fig. 39 depicts the phase portraits of the fifth link for

different forcing amplitude values. It shows how the system is in the approximately

linear regime for f0 = 1 and transitions into the nonlinear regime for higher f0

values. The periodicity of the results is shown by Poincaré maps in the figures.

The system has an indication of chaos for f0 = 40, indication of quasiperiodicity

for f0 = 50, and is periodic for the other amplitudes. To obtain this figure, the
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Figure 42: ROM on output of the control system using SOD for k = 4: full model
(blue), SOD (red)

system is excited with frequency of 1 Hz, which is close to the third linear modal

frequency. The oscillations are recorded for 500 sec which is equal to 500 cycles of

harmonic forcing, however, only the last 50 cycles are shown in the phase portraits

in order to get rid of the transient behavior in the visualizations.

6.4 Reduced Order Nonlinear Control System

In order to construct ROM, we first randomly or stochastically drive the full-

scale model to collect the required data from s different simulations. We use

multivariate analysis to obtain the modal structure from each simulation. Then

we apply the subspace robustness to the modal structures to select the dimension of

the persistent subspace that can be used for the global reduced model, as described

in Section 2.1, Chapter 2. Using the obtained subspace we construct the model
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Figure 43: ROM on output of the control system using POD for k = 8: full model
(blue), SOD (red)

and compare it to the full-scale model.

While any record of the system states can be used as data for multivariate

analysis, we use random excitation as the system input and collect the response

of the system in the data matrices. This way we ensure that all neighbors of

data points within the space of the system has been covered and that the modal

structure we obtain from the analysis of data will be a better representation of

the important dynamical characteristics of the system. Since we aim to build a

relatively global reduced order control system which is valid for a range of energy

levels, we do 12 simulations with different energy levels. To impose the changes

in the energy, we only change the amplitude of the excitation while keeping the

frequency content similar for all cases.

The link system has a linear modal frequency range up to 3 Hz. We limit

the frequency of the random excitation to 5 Hz to assure that all linear modes are

covered while data are not contaminated by noise. We select 12 equally distributed

choices of the random forcing amplitude from the range of 0.1 ≤ q0 ≤ 3. We excite

the link system by the random forcing to obtain 12 data matrices Y1, Y2, . . . , Y12.

We identify the modal structure of each data set using POD and SOD. We cal-

culate the subspace robustness of POD and SOD modes using Eq. (30). Fig. 40

shows the subspace robustness of POD and SOD for each dimension. The POD
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subspace robustness for k = 1 is very close to unity which means that the first

dominant POMs from all the simulations are linearly dependent. The POD sub-

space robustness is also close to one for k = 7, 8 and 10. On the other hand, the

SOD subspace robustness is always close to one. A subspace robustness closer to

one suggests few changes occur in subspaces from different simulation. This means

that there is less leakage to the higher dimensional subspaces and the subspace

is persistent to changes in system’s energy level. Therefore, SOD subspaces, are

more persistent compared to those of POD.

Following the identification of dimension for which the subspaces are robust

and persistent, in order to obtain the global reduced order control model, we

combine all the data matrices together to obtain a large response matrix, Y, as

follows:

Y =

Y1
...

Y12

 . (62)

We extract the corresponding POMs and SOMs, as the modal space given by P,

and its k-dimensional representation of the k dominant modes given by Pk. In

case k is the dimension of persistent subspace, we expect Pk via Eq. (58) to result

in a persistent ROM within the range of energies of the nonlinear control system.

Please note that for POD, POMs (denoted by Φ) are orthogonal and thus, Pk = Φk

and P†k = ΦT
k . For SOD, however, SOMs and SPMs are bi-orthogonal (ΦTΨ = I),

thus, Pk = Φk and P†k = ΨT
k .

Also, from matrix Y we can extract POVs and SOVs to measure the domi-

nance of the modes. Fig. 41 depicts the POVs and SOVs. We look for the drops

in their values in order to identify the low-dimensional control models. There is no

significant drop in the POVs for lower k values as we observe that they gradually

decrease. The POV after k = 8 drops more drastically. However, SOVs come in
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pairs and the drops are distinguishable. A clear drops occur at k = 2, k = 4, and

k = 6. Yet, we do not expect a good control model for k = 2 from SOD since the

higher dimensional modes still have a significant SOV.

The full scale nonlinear control system will be controlled by a sequence of unit

inputs. The proper choice of input merely depends on the design on the controller

and the control method. Therefore, a good ROM for nonlinear control system is

expected to mimic the output of the full scale model excited by a random input

since we have no further knowledge about the specific controller.

We generate a filtered random input with the frequency content up to 5 Hz.

We excite both full-scale and ROM control systems by this input and compare their

outputs, which are in this case the horizontal positions of the 5th link. For SOD, all

the ROMs except for the three- and five-dimensional are stable, although the lowest

dimensional ROM which provides good results is four-dimensional. In Fig. 42, we

compare the output of the full-scale and the 4-dimensional SOD based ROM control

system. These figures illustrate three different realization of random inputs. As

we can see in the figures, the SOD control model closely follows the output of the

control system. These results are consistent with the subspace robustness, which

is always close to 1 for SOD, and the changes in SOVs in terms of the drop at

k = 4.

POD ROMs are not stable for k = 4, 5, 6 and 7. The lower dimensional POD

models are stable, though not able to closely follow the output. The 8-dimensional

POD model may result in acceptable tracking as we can see in Fig. 43. In this

figure we compare the output of the eight-dimensional POD model with that of

the full-scale control system for the same random inputs that we used for the SOD

models. Unlike four-dimensional SOD model, the eight-dimensional POD model

outputs precedes the full control model outputs and their amplitudes are bigger.
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This confirms the results of the subspace robustness metric for the POD subspace.

In Fig. 44, we show the computation speed of the reduced control models and

compare it to the full scale model of the control system. For both POD and SOD,

the computation speeds of the unstable models are estimated by interpolation.

We observe that the eight-dimensional POD model computation time is close to

the full scale control model, while its performance is not as good. Nine- and ten-

dimensional models are even slower than the full-scale model. We note that the

ten-dimensional POD model is just a POD realization of the full-scale model with

the same dimension. On the other hand, the four-dimensional SOD control model

is more than 6 times faster than the full-scale model of the control system.

We also notice that the computation time of the SOD models, unlike POD,

increases almost linearly. More interestingly, even a 10-dimensional SOD model,

which has the same dimension as the full-scale model, is about twice faster, while

it provides a perfect tracking of the output. We did not expect to get these results,

however, at this point we speculate that since we used MATLAB ode45 solver for

numerical integration which adjusts the sampling rate based on the smoothness

of the flow, and since SOD provides a smoother realization of the full-scale model

of the control system, it results in speeding up the integrations. We will further

investigate this effect in our future work.
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CHAPTER 7

Conclusions

A persistent MOR for dynamical systems was investigated for one example of

a large linear system and two examples of large and complex nonlinear systems. A

framework based on subspace robustness and dynamical consistency was shown to

be successful in identifying the robust subspaces for the development of persistent

ROMs. To verify the performance of the framework, it was applied to several

examples of linear and nonlinear systems. The results showed that SOD subspaces

are robust for lower dimensional subspaces. Once the robustness is achieved, SOD

subspaces remain robust as the subspace dimension is increased. However, POD

subspaces are unable to achieve robustness for lower dimensions. Their robustness

approaches unity in a fluctuating pattern as the dimension is increased. These

measurements under persistent model reduction framework match the simulation

results of the ROMs which are needed to reproduce full scale models simulations.

In particular, SOD-based ROMs outperformed the POD-based ones in terms of the

stability and robustness of the model. Also, the obtained persistent ROMs could

be successfully used to study the dynamics of computationally expensive complex

models for a relatively wide range of parameters and conditions.

In Chapter 5, we proposed the separated multivariate analysis using POD and

SOD to deal with the rank-deficiency of nonlinear dynamical systems. Following

the mathematical formulation of the separated POD- and SOD-based MOR, a

nonlinear mass-spring-damper was studied. The full-scale state-space model of the

system was obtained and the data matrices were extracted. The performance of

four methods for MOR including POD, SOD, separated POD and separated SOD

was investigated in terms of stability and accuracy. The results confirmed that
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SOD was able to capture the dynamics of the system in a lower dimensional space.

Separated multivariate analysis was shown to improve the accuracy and stability

of the POD- and SOD-based MOR.

In Chapter 6, a new approaches for MOR of nonlinear control systems was

presented. An example of a system with five inverted links was used to examine

our approach. The modal subspaces which were identified using projection based

reduced order modeling methods were shown to be dependent on the system’s en-

ergy. The subspace robustness metric was proposed to obtain robust and persistent

reduced order control models. These models were aimed to be valid for a range

of the system’s energy. The developed metric was used to evaluate for POD- and

SOD-based subspaces. POD subspaces were shown persistent only for the high

dimensional models. SOD subspaces were persistent for all the dimensions. The

resultant reduced order control models were tested using different random inputs.

Low-dimensional POD-based ROMs were not stable and the high dimensional

ones were not as accurate as the low-dimensional SOD ROMs. A four-dimensional

SOD ROM closely tracked the output of the nonlinear control system to differ-

ent random inputs. These results were consistent with the subspace robustness

metric. The accurate SOD ROMs were shown to be six times faster than the

full-scale model. These ROMs outperformed the best POD ROM, which was not

significantly faster than the full-scale control system. Also, we showed that the

smoothing effect of SOD may speed up the full-scale model simulations, as we ob-

served that the 10-dimensional full-scale SOD model was as accurate as, but two

times faster than the original full-scale system.

7.1 Future Work

The persistent MOR framework presented in this dissertation can be used

for improving all the projection-based methods and has a good performance for
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parametric studies within their domain of interest. However, the parametric study

is only limited to the defined range of parameters and the persistent model is ex-

pected to be valid only in this range. In our study, we focused on a relatively

wide range of parameters where the complex systems exhibit interesting dynam-

ics, which includes linearity, nonlinearity, periodicity, intermitence, and chaos. In

future work, one needs to study the validity of persistent ROMs outside the do-

main of interest. Future efforts may focus on increasing the size of the domain for

persistent MOR.
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APPENDIX

Appendix A

M =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 52

3
14 cos(y1−y2) 10 cos(y1−y3) 6 cos(y1−y4) 2 cos(y1−y5)

0 0 0 0 0 14 cos(y1−y2) 40
3

10 cos(y2−y3) 6 cos(y2−y4) 2 cos(y2−y5)

0 0 0 0 0 10 cos(y1−y3) 10 cos(y2−y3) 28
3

6 cos(y3−y4) 2 cos(y3−y5)

0 0 0 0 0 6 cos(y1−y4) 6 cos(y2−y4) 6 cos(y3−y4) 16
3

2 cos(y4−y5)

0 0 0 0 0 2 cos(y1−y5) 2 cos(y2−y5) 2 cos(y3−y5) 2 cos(y4−y5) 4
3


(A.1)

L =



0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
−2k
mL2

k
mL2 0 0 0 −2b

mL2
b

mL2 0 0 0
k

mL2
−2k
mL2

k
mL2 0 0 b

mL2
−2b
mL2

b
mL2 0 0

0 k
mL2

−2k
mL2

k
mL2 0 0 b

mL2
−2b
mL2

b
mL2 0

0 0 k
mL2

−2k
mL2

k
mL2 0 0 b

mL2
−2b
mL2

b
mL2

0 0 0 k
mL2

−k
mL2 0 0 0 b

mL2
−b
mL2


(A.2)

fn =



0
0
0
0
0

−14y2
7 sin (y1 − y2)− 10y2

8 sin (y1 − y3)− 6y2
9 sin (y1 − y4)− 2y2

10 sin (y1 − y5)
14y2

6 sin (y1 − y2)− 10y2
8 sin (y2 − y3)− 6y2

9 sin (y2 − y4)− 2y2
10 sin (y2 − y5)

10y2
6 sin (y1 − y3) + 10y2

7 sin (y2 − y3)− 6y2
9 sin (y3 − y4)− 2y2

10 sin (y3 − y5)
6y2

6 sin (y1 − y4) + 6y2
7 sin (y2 − y4) + 6y2

8 sin (y3 − y4)− 2y2
10 sin (y4 − y5)

2y2
6 sin (y1 − y5) + 2y2

7 sin (y2 − y5) + 2y2
8 sin (y3 − y5) + 2y2

9 sin (y4 − y5)


(A.3)
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transform,” Nonlinear Dynamics, vol. 41, no. 1, pp. 111–128, 2005.

Glover, K., “All optimal hankel-norm approximations of linear multivariable sys-
tems and their l,-error bounds,” International journal of control, vol. 39, no. 6,
pp. 1115–1193, 1984.

Grolet, A. and Thouverez, F., “Computing multiple periodic solutions of nonlinear
vibration problems using the harmonic balance method and groebner bases,”
Mechanical Systems and Signal Processing, vol. 52, pp. 529–547, 2015.

Gugercin, S. and Antoulas, A. C., “A survey of model reduction by balanced
truncation and some new results,” International Journal of Control, vol. 77,
no. 8, pp. 748–766, 2004.

Hsieh, S., Shaw, S., and Pierre, C., “Normal modes for large amplitude motions
of a cantilever beam,” International Journal of Solids and Structures, vol. 31,
no. 14, pp. 1981–2014, 1994.

Ilbeigi, S. and Chelidze, D., “Model order reduction of nonlinear euler-bernoulli
beam,” in Nonlinear Dynamics, Volume 1. Springer, 2016, pp. 377–385.

Ilbeigi, S. and Chelidze, D., “Reduced order models for systems with disparate
spatial and temporal scales,” in Rotating Machinery, Hybrid Test Methods,
Vibro-Acoustics & Laser Vibrometry, Volume 8. Springer, 2016, pp. 447–
455.

Ilbeigi, S. and Chelidze, D., “Persistent model order reduction for complex dynami-
cal systems using smooth orthogonal decomposition,” Mechanical Systems and
Signal Processing, vol. 96, pp. 125–138, 2017.

Ilbeigi, S. and Chelidze, D., “Persistent models for complex control systems,” in
Nonlinear Dynamics, Volume 1. Springer, 2017, pp. 167–175.

Jiang, D., Pierre, C., and Shaw, S., “Large-amplitude non-linear normal modes
of piecewise linear systems,” Journal of Sound and Vibration, vol. 272, pp.
869–891, 2004.

99



Jiang, D., Pierre, C., and Shaw, S., “The construction of nonlinear normal modes
for systems with internal resonance,” International Journal of Nonlinear Me-
chanics, vol. 40, pp. 729–746, 2005.

Kennel, M. B., Brown, R., and Abarbanel, H. D., “Determining embedding dimen-
sion for phase-space reconstruction using a geometrical construction,” Physical
review A, vol. 45, no. 6, p. 3403, 1992.

Kerschen, G., Feeny, B., and Golinval, J.-C., “On the exploitation of chaos to
build reduced-order models,” Computer Methods in Applied Mechanics and
Engineering, vol. 192, no. 13, pp. 1785–1795, 2003.

Kerschen, G., Golinval, J.-c., Vakakis, A. F., and Bergman, L. A., “The method
of proper orthogonal decomposition for dynamical characterization and order
reduction of mechanical systems: an overview,” Nonlinear dynamics, vol. 41,
no. 1-3, pp. 147–169, 2005.

Kerschen, G., Peeters, M., Golinval, J.-C., and Vakakis, A. F., “Nonlinear normal
modes, part i: A useful framework for the structural dynamicist,” Mechanical
Systems and Signal Processing, vol. 23, no. 1, pp. 170–194, 2009.

Kudryavtsev, M., Rudnyi, E., Korvink, J., Hohlfeld, D., and Bechtold, T., “Com-
putationally efficient and stable order reduction methods for a large-scale
model of mems piezoelectric energy harvester,” Microelectronics Reliability,
vol. 55, no. 5, pp. 747–757, 2015.

Kuether, R. J., Brake, M. R., and Allen, M. S., “Evaluating convergence of re-
duced order models using nonlinear normal modes,” in Model Validation and
Uncertainty Quantification, Volume 3. Springer, 2014, pp. 287–300.

Kuether, R. J., Deaner, B. J., Hollkamp, J. J., and Allen, M. S., “Evaluation of
geometrically nonlinear reduced-order models with nonlinear normal modes,”
AIAA Journal, pp. 1–13, 2015.
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