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ABSTRACT 

 

Nucleic acid based drugs such as plasmid DNA (pDNA), small interfering RNA 

(siRNA), short hairpin RNA (shRNA), micro RNA (miRNA), and both antisense and 

antigene oligonucleotides, are potentially potent and specific compounds for therapeutic 

applications. Many major life threatening ailments might be treated using these 

molecules, and many polynucleotide products are currently in advanced clinical 

development. However, their successful therapeutic application is hindered due to limited 

delivery to their site of action in either the cytosol or the nucleus of a cell. Some of the 

barriers in the path of successful delivery of these biomolecules to their site of action 

have been addressed. However, endosomal entrapment followed by maturation to 

lysosomes and degradation of these compounds inside the cell is one remaining major 

hurdle. This dissertation describes two novel siRNA delivery techniques which present 

distinct advantages in their respective areas of application while, at the same time, 

constitute promising platforms for developing therapeutic biologicals. Chapter 2 focuses 

on liposomal delivery vehicles containing hydrophobic nanoparticles in their bilayers, 

which encapsulate the nucleic acid based drugs and promote endosomal escape by 

nanoparticle induced fusion with the endosomal membranes. Specifically we use metal 

nanoparticles in specialized liposomes for the efficient delivery of small interfering RNA 

(siRNA). Manuscript 2 focuses on novel chiral cationic polymers – polyethyleneimines 

(PEIs) – that form complexes with the negatively charged nucleic-acid based drugs and 

promote endosomal escape via a proton sponge effect. Specifically we use of chiral 

cationic polyamines for two intriguing applications: fabrication of chiral covalently-



 

 

linked microcapsules, and enantiospecific delivery of siRNA to Huh 7 cells. We found 

that two of the designed polymers improved transfection efficiency relative to 

commercially available transfection reagents with lower cell toxicity. In total this 

dissertation presents work that demonstrates novel and efficient delivery strategies that 

promote endosomal escape and enhance the intracellular activity of nucleic acid based 

drugs. 
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PREFACE 

 

This dissertation has been written in a manuscript format. Chapter 1 includes brief 

background material on the current state of the art regarding delivery methods for nucleic 

acid based drugs. Chapter 2 is in manuscript format of the journal American Chemical 

Society and is pending submission to the journal. Chapter 3 is in manuscript format of the 

journal Bioorganic & Medicinal Chemistry Letters and has been published. Chapter 4 

focuses on Future Work for manuscript 1. Chapter 5 includes brief summary and 

conclusions tying the two manuscripts into a single whole. The appendices include work 

conducted by the author but unrelated to the dissertation theme. The Bibliography lists all 

the sources used or consulted in writing the entire dissertation in the style of American 

Chemical Society format in alphabetical order by the last name of the first author. 
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INTRODUCTION 

 

Pharmaceutical research, in both academia and in industry, is increasingly focused 

on the development of biotechnology-derived and genetically-engineered nucleic acid 

based drugs such as plasmid DNA (pDNA), small interfering RNA (siRNA), short 

hairpin RNA (shRNA), micro RNA (miRNA), and antisense- and antigene-

oligonucleotides as potential therapeutics. These molecules can be highly target-specific 

and potent, and they may be used to treat various life-threatening ailments{Alvarez-Salas, 

2008 #67}. Allied Market ResearchTM has predicted that the global siRNA therapeutics 

market alone is expected to reach $1.2 billion by the year 2020. While promising as 

therapeutic agents, the delivery of these molecules is one of the most challenging aspects 

of their development. Nucleic acid based drugs are very hydrophilic, are of high 

molecular weight, are often chemically and enzymatically unstable, and are highly 

charged molecules{Oliveira, 2006 #65}. These molecules face many hurdles before they 

reach their target site of action, such as rapid renal clearance, serum degradation, 

opsonization, reticuloendothelial system (RES) uptake and metabolism, insufficient tissue 

and cell internalization, endosomal degradation, and immunosensitization.{Wang, 2010 

#69} Hence, in order to use these drugs therapeutically, it is necessary to develop 

vehicles and methods for their efficient delivery to their site of action.  

Among various potential delivery approaches, the use of self-assembling lipids in 

order to develop vesicular delivery vehicles has proven to be one of the successful and 

feasible approaches.5 In particular, small unilamellar vesicles (SUVs) such as liposomes 
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are popular carriers for nucleic acid based drugs because of their favorable characteristics 

such as biocompatibility, biodegradability, spontaneous self-assembly, the ease of large-

scale production, and suitability for clinical application.{Musacchio, 2011 #71} Some of 

the barriers in the path of efficient delivery of nucleic acid based drugs to their site of 

action have been addressed using liposomal delivery systems{Schroeder, 2010 #70}. For 

instance, the stability and plasma half life of liposomes may be enhanced by adding 

neutral or charged lipids, cholesterol, and polyethylene glycol (PEG) to the formulation. 

The lipids stabilize the liposomal bilayer by reducing repulsion between similar charges, 

and by inducing steric hindrance to the liposome surfaces. Similarly, cholesterol embeds 

in the hydrophobic domains of the bilayer and enhances structural rigidity and facilitates 

cellular uptake by improving endosomal internalization. PEG chains extend out of the 

lipid bilayer and provide a shield of steric hindrance on the positive charge that prevents 

interaction with opsonins and subsequent RES uptake. However, PEG chains also 

interfere with cellular uptake and endosomal escape. Hence, transient PEG coating 

strategies have been utilized, wherein exchangeable or reducible PEG linkages such as 

PEG-ceramide, disulfide-PEG, and orthoester-PEG lipids are used{Romberg, 2008 #72}. 

Moreover, the attachment of targeting ligands at the distal end of PEG moieties has 

assisted in cell specific uptake. However, despite many efforts and advances in these 

delivery vehicles, endosomal degradation of their cargo remains one of the pivotal 

challenges{Varkouhi, 2011 #73}. Hence, there is a pressing need to develop novel 

techniques to promote the endosomal escape of biologics before they are degraded in 

endosomes. In this investigation we evaluated novel methods to promote the endosomal 

escape of liposome-encapsulated polynucleotides to address this issue. 
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Another option for cellular deliveries, specifically of negatively charged 

polynucleotides and nucleic acids based drugs are cationic polymers{Tamura, 2010 #81}. 

Among these cationic polymers, polyethylenimines (PEIs) are most popular due to their 

relatively higher transfection efficiency. Under physiological conditions, PEIs are 

protonated and can form ionic complexes with nucleic acids, which are then taken up by 

the cells via caveolae- or clathrin-mediated pathways, resulting in efficient 

transfection{Gunther, 2011 #82}. The transfection efficiency of PEIs is also attributable 

to their facilitated endosomal escape due to a proton sponge effect{Behr, 1997 

#84;Boussif, 1995 #83;Sonawane, 2003 #85}. The proton sponge effect takes place due 

to the acidification of endosomes after internalization that leads to protonation of the 

amine groups of the PEIs, which causes an influx of additional protons and chloride ions. 

Consequently, water molecules enter the endosome to equilibrate the resulting osmotic 

imbalance, resulting in rupture of endosomal membranes due to inflation{Tseng, 2009 

#86}. Although there are many reported examples of PEIs used for siRNA and DNA 

delivery, many of these delivery vehicles suffer from high cytotoxicity. The 

physicochemical properties of the PEIs play an important role in determining their 

relative efficiency and toxicity. For example, increased molecular weight of polyethylene 

imines (PEIs) increases their cytotoxicity, whereas very low molecular weight PEIs 

depict poor transfection efficiency{Fischer, 1999 #88;Godbey, 1999 #87}. Thus, the 

development of PEI delivery agents, which exhibit both delivery efficacy and minimal 

toxicity, remains a challenge.  In this investigation we evaluated novel chiral PEIs as 

efficient and relatively less toxic delivery vehicles.  
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ABSTRACT 

In this work we describe novel compositions and methods of use of formulations 

designed for the efficient delivery of nucleic acid-based drugs to their site of action.  We 

discovered that the incorporation of hydrophobic metal nanoparticles into the membranes 

of vesicular delivery vehicles, such as liposomes, enhance the endosomal membrane 

fusogenicity and endosomal escape of these delivery vehicles. This observed 

enhancement in fusogenicity is attributed to nanoparticle-mediated promotion of inverted 

hexagonal phase formation in lipid bilayers. As a result, the vesicular delivery vehicles 

more readily fuse with the endosomal bilayer, thereby leading to enhanced endosomal 

escape of the vesicular delivery vehicle, thus facilitating the delivery of biologically 

active molecules to their sites of action. We successfully demonstrated inverted 

hexagonal phase formation due to the presence of hydrophobic nanoparticles of gold or 

silver in the bilayers using 31P-NMR spectroscopy. The promotion of inverted hexagonal 

phase formation was greater for higher concentrations and larger sized nanoparticles were 

incorporated into the liposomes. The enhancement in transfection efficiency due to the 

presence of nanoparticles was demonstrated for pDNA and siRNA for eGFP expression 

using fluorescence microscopy and FACS analysis, whereas that for pDNA of mFXRa1 

was shown using Western blot. 

 

1. Introduction 

Pharmaceutical research, in both academia and in industry, is increasingly focused 

on the development of biotechnology-derived and genetically-engineered nucleic acid 
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based drugs such as plasmid DNA (pDNA, small interfering RNA (siRNA), short hairpin 

RNA (shRNA), micro RNA (miRNA), antisense, and antigene oligonucleotides as 

potential therapeutics. These molecules are highly specific and potent and can be used to 

treat various life-threatening ailments.1 Allied Market ResearchTM has predicted that the 

global siRNA therapeutics market alone is expected to reach $1.2 billion by the year 

2020. While promising as therapeutic agents, the delivery of these molecules is one of the 

most important and challenging aspects of their development, and is the focus of 

extensive industrial and academic research efforts.2 Nucleic acid-based drugs are very 

hydrophilic, are of high molecular weight, are often chemically- and enzymatically 

unstable, and are highly charged molecules.3 If administered naked, these molecules face 

many hurdles before they reach their target site of action, such as rapid renal clearance, 

serum degradation, opsonization, RES uptake and metabolism, insufficient tissue and cell 

internalization, and endosomal degradation, as well as immunosensitization.4 Hence, in 

order to use these drugs therapeutically, it is necessary to develop vehicles for their 

efficient delivery to their site of action. Among various potential formulation methods, 

the use of self-assembling lipids and polymers in order to develop vesicular delivery 

vehicles such as lipsomes and polymersomes has proven to be one of the successful and 

feasible approaches. Despite many efforts and advances in these delivery vehicles, 

endosomal degradation of their cargo remains one of the pivotal challenges. Hence, there 

is a pressing need to develop novel techniques to promote endosomal escape of biologics 

before they are degraded in the endosome. The present investigation describes a novel 

method designed to address this need. 
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Liposomal delivery systems are popular carriers for nucleic acid-based drugs 

because of their favorable characteristics such as biocompatibility, biodegradability, 

spontaneous self-assembly, the ease of large-scale production, and suitability for clinical 

application5. Some of the barriers in the path of efficient delivery of nucleic acid based 

drugs to their site of action have been addressed using liposomal delivery systems6. For 

instance, the stability and plasma half life of liposomes may be enhanced by adding 

neutral lipids, cholesterol, and polyethylene glycol (PEG) to the lipid formulation. The 

neutral lipids stabilize the liposomal bilayer by reducing repulsion between similar 

charges. Similarly, cholesterol embeds in the hydrophobic domains of the bilayer and 

enhances structural rigidity as well as facilitates cellular uptake by improving endosomal 

internalization. PEG chains extend out of the lipid bilayer and provide a shield of steric 

hindrance on the surface of the liposome which reduces interactions with opsonins and 

subsequent RES uptake. However, PEG chains also interfere with cellular uptake and 

endosomal escape. Hence, transient PEG coating strategies have been utilized, wherein 

exchangeable or reducible PEG linkages such as PEG-ceramide, disulfide-PEG, and 

orthoester-PEG lipids are used7. Moreover, the attachment of targeting ligands at the 

distal end of PEG moieties has improved cell-specific uptake. 

 

Endosomal degradation is still one of the major barriers to the efficient delivery of 

nucleic acid-based drugs8. Various approaches, such as fusion in the endosomal 

membrane, a proton sponge effect, pore formation in the endosomal membrane, and 

photochemical disruption of the endosomal membrane have been assessed in order to 

address this issue9. From among these strategies, the fusion of the liposomal and 



 

8 
 

endosomal membranes and the subsequent release of the liposomal cargo into the cytosol 

has been perhaps the most promising one10. This membrane fusion occurs via inverted 

hexagonal (HII) phase formation between liposomal and endosomal bilayers. The HII 

phase formation can be enhanced by increasing negative interfacial curvature of the 

liposomal bilayer using lipids with appropriate critical packing parameters11. For 

instance, by using lipids with higher unsaturation in their chains generates a kink that 

assists in HII phase formation by increasing negative interfacial curvature12-14. A packing 

frustration is generated in the hydrophobic domains of the lipids while the HII phase is 

being formed due to creation of voids around the hydrophilic channels of the HII phase15. 

In this investigation we hypothesized that the presence of free flowing hydrophobic 

nanoparticles (NPs) in the liposomal bilayers would increase their negative interfacial 

curvature as well as satisfy the packing frustration during HII phase formation by filling 

up the voids in the hydrophobic domains. Hence, various hydrophobic metal NPs of 

different sizes were incorporated into the liposomal bilayers at different concentrations, 

and the enhancement in fusogenicity and subsequent increase in transfection efficiency of 

these NPs-containing liposomal delivery vehicles was demonstrated in this work. 

 

Materials 

The eGFP expressing plasmid DNA (pDNA) was obtained from Origene, eGFP specific 

silencing siRNA from Qiagen and mouse FXRa1 protein expressing plasmid construct 

from Dr. Mathew Stonner (Biomedical and Pharmaceutical Sciences, University of 

Rhode Island). The non-ionic lipid DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), 

the cationic lipid DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane 
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chloride salt), and the anionic lipid (1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine 

sodium salt) were obtained from Avanti Polar Lipids, Inc. (Alabama, USA). Oleic acid-

coated hydrophobic SPIO maghemite NPs (5 nm, 24 mg mL−1, or 187.9 mM Fe2O3) 

dispersed in chloroform were purchased from Ocean Nanotech (Springdale, AR, USA). 

Dodecanethiol-coated hydrophobic gold (2 nm) and silver (4 nm) NPs dispersed in 

hexane were obtained from Nanocomposix (San Diego, CA, USA). The transfection 

reagent GenJet-II and the cell culture medium, Gibco’s OPTIMEM-1 (Reduced FBS), 

was obtained from ThermoFisher Scientific.  Huh-7 cells were purchased from ATCC 

and primary antibody for mouse FXR (H-130) (SC-13063) and mouse GAPDH from 

Santacruz Inc. Negative control siRNA (20 nmol) was purchased from Qiagen.  

 

2. Methods 

2.1. Preparation of liposomes 

Liposomes were prepared by  thin film hydration method.16 Briefly, a chloroform 

solution of cationic lipid DOTMA and non-ionic lipid DSPC at an equal molar ratio 

with/without hydrophobic NPs at various ratios of lipid molecules : NPs was prepared in 

a glass vial. A thin uniform film was then prepared by rapidly evaporating the organic 

solvent under vacuum for 2 hours in order to remove the trace solvent. This film was then 

hydrated using 0.5 ml phosphate buffer saline (PBS) with/without nucleic acid (pDNA or 

siRNA) by vortexing for 30 seconds. The resulting dispersion was then sonicated using a 

bath sonicator for 30 minutes. The total lipid concentration in the liposomes was 2 mM. 

The total pDNA concentration was 40 ng/µl and that of siRNA was 400 nM, respectively, 

in the liposomes containing corresponding nucleic acids. 
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2.2. Preparation of multi lamellar vesicles (MLVs) 

MLVs were prepared by a thin film hydration method in order to study potential 

fusogenicity enhancement. Briefly, a chloroform solution of cationic lipid DOTMA and 

anionic lipid DPPS at an equal molar ratio with/without hydrophobic NPs at various 

ratios of lipid molecules : NPs was prepared in a sterile glass vial. A thin uniform film 

was then prepared by rapidly evaporating the chloroform under vacuum for 2 hours in 

order to remove the excess solvent,. This film was then hydrated using 2 ml (for AgNPs-

containing MLVs) or 4 ml (for AuNPs-containing MLVs) of citrate buffer (10 mM in 

10% D2O, pH 4.0) by vortexing for 30 seconds. The total lipid concentration was 15 

mM. The resulting dispersion was then sonicated using a bath sonicator for 30 minutes. 

The morphology of the liposomes was observed using cryo-TEM (JEM-2100F, Jeol USA 

Inc., MA, USA) and the phase transition was detected using 31P-NMR (Varian 500 MHz, 

Agilent Technologies, CA, USA) analysis. 

 

2.3. Dynamic light scattering (DLS) 

A Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire, UK) was used 

to perform DLS experiments in order to measure the size of liposomes. A suspension of 

each liposome preparation (0.5 ml) was deposed into disposable polystyrene cuvettes 

(Sarstedt AG & Co., Newton, NC, USA) having a 1 cm path length. The temperature was 

set to 25 °C for the analysis and samples were allowed to equilibrate for 60 seconds 

before the measurement. The particle size was then determined at a manual setting of 15 
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counts with 10 seconds per count and a measurement angle of 173° Backscatter (NIBS 

Default). 

 

2.4. Cryogenic transmission electron microscopy (Cryo-TEM) 

Cryo-TEM was performed in order to determine the morphology of the 

liposomes. The samples were prepared at 37 °C using a Vitrobot (FEI Company), a PC-

controlled robot for sample vitrification. Quantifoil grids were used with 2-µm carbon 

holes on 200 square mesh copper grids (Electron Microscopy Sciences, Hatfield, PA). 

After immersing the grid into the sample, it was then removed, blotted to reduce film 

thickness, and vitrified in liquid ethane. Imaging was performed in a cooled microscopy 

stage (Model 915, Gatan Inc., Pleasanton, CA) at 200 kV using a JEOL JEM-2100F TEM 

(Peabody, MA). 

 

2.5. Phosphorus-31 nuclear magnetic resonance spectroscopy 

The 31P-NMR spectra were acquired on an Agilent NMRS 500 NMR 

spectrometer operating at 202.3 MHz using a 5-mm OneNMR probe. NMR data were 

collected for 60 K scans with a 35.7-kHz sweep width using 131 K data points. 

Acquisition time was 1.3 s with a relaxation delay of 0.5 s. The data were processed with 

Mnova program V8.1 Mesterlab research SL. A line broadening of 50 Hz was applied to 

all spectra. All spectra were indirectly referenced to H3PO4 set to 0 ppm. Data were 

acquired without spinning. 
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2.6. Cell transfection 

Huh-7 cells at 2x105 cells/well concentration were seeded in 12 well plates and 

transfected in the presence of 1 ml/well OPTIMEM-1 using 50 µl/well liposomes for 

eGFP expressing pDNA experiments. For mFXRa1 protein expressing pDNA 

experiments, Huh-7 cells were seeded at 4x105 cells/well concentration in 6 well plates 

and transfected in the presence of 2 ml/well OPTIMEM-1 using 100 µl/well liposomes. 

For eGFP specific silencing siRNA experiments, 12 well plate conditions as described 

above were used and Huh-7 cells were first transfected with eGFP expressing pDNA at 2 

µg/well concentration using GenJet. The medium was then replaced after 12 hours in 

order to remove left-over GenJet reagent and the cells were transfected using 50 µl/well 

liposomes comprising eGFP specific silencing siRNA. 

 

2.7. Fluorescence microscopy 

Cells transfected using eGFP expressing pDNA or eGFP silencing siRNA were 

observed 48 hours after transfection under a fluorescence microscope (Eclipse TE2000-E, 

Nikon Instruments Inc., NY, USA) at a 10x magnification set up in order to detect the 

eGFP fluorescence in the cells. Images were taken in order to observe the relative eGFP 

fluorescence in the cells. 

 

2.8. FACS analysis 

FACS analysis was performed in order to count eGFP-expressing cells using a 

flow cytometer (BD FACSVerseTM, BD Biosciences, CA, USA). The well plates were 

removed from the incubator 48 hours after transfection and the medium was discarded. 
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The cells were then washed twice with 1 ml of PBS equilibrated at 37 °C. The cells were 

then trypsinized using 1 ml of trypsin equilibrated at 37 °C.  DMEM (1 ml) containing 10 

% FBS, 1 % NEA, and 1 % PS equilibrated at 37 °C was added into the wells. The plate 

was then shaken and the contents (total 2 ml) were transferred to 15 ml tubes. The tubes 

were then centrifuged  for 5 minutes at 1000 rpm and 5 °C, supernatant was discarded, 

and 2 ml of PBS stored at 5 °C was added to these tubes. This step was repeated one 

more time and then 2 ml of room temperature PBS was added to the tubes. The cells were 

then suspended by pipetting up and down and then analyzed using the flow cytometer 

with laser set up for counting eGFP expressing cells. 

 

2.9. Western blot 

The Western blotting technique was used in order to determine the protein levels 

of mFXRa1 protein from the Huh7 whole cell lysates. Cells were ground 48 hours after 

transfection in 1x sucrose-Tris buffer using a mechanical homogenizer. The whole cell 

lysate was then centrifuged at 15000g for 15 minutes to obtain the clear lysate. The 

protein concentration was determined using the Micro-BCA method from Thermo-

Fischer’s Pierce Protein protocol. Thirty µg of protein was loaded onto an SDS PAGE gel 

followed by a semi-wet transfer of the separated proteins from the gel to a PVDF 

membrane. The membrane containing proteins were blocked in 5% milk/TBST buffer for 

3 hours followed by treatment with the primary antibody of mFXRa1 (1:1000) in 5% 

milk/TBST overnight at 4 °C. The membrane was then washed and incubated with the 

secondary antibody (1:4000) in 5% milk for 1 hour at room temperature on a lab shaker. 

The membranes were washed three times using 1x Tris-sucrose buffer containing (10%) 
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Triton X-100 (TBST) and were then imaged using the chemi-luminescent substrate from 

Thermo-Fischer Scientific. Protein expression was quantified using a Typhoon 9000-FLA 

imager and normalized against GAPDH, as an internal housekeeping gene. 

 

3. Results and Discussion 

3.1. Schematic, size, and morphology of liposomes 

Figure 1 depicts the chemical structures of the materials used and the schematic of 

liposomes manufactured in this work. As shown in Figure 1, the hydrophobic NPs made 

of gold (Au) and silver (Ag) are coated with hydrophobic chains of dodecanethiol 

(Figures 1a and 1b, respectively). The chemical structures of the cationic lipid DOTMA, 

the non-ionic lipid DSPC, and the anionic lipid DPPS are shown in Figures 1c, 1d, and 

1e, respectively. Figure 1e shows the schematic of model liposomes examined in this 

study, comprising active agents or therapeutic agents inside the aqueous core and 

hydrophobic NPs in the bilayer. Since a typical liposomal bilayer width is 5 nm, 

hydrophobic NPs of up to 5 nm diameter can be incorporated into this bilayer, which may 

lead to bulging in the liposomal bilayer. Moreover, the presence of hydrophobic NPs in 

the bilayer may increase the negative interfacial curvature of the bilayer and enhance its 

fusogenicity by satisfying packing frustration during HII phase formation, subsequently 

increasing the transfection efficiency of the liposomes. However, it is important to 

determine the impact of incorporating the NPs into the bilayer on the size and 

morphological characteristics of the liposomes. The size of liposomes manufactured in 

this work was measured using DLS and their morphological characteristics were 

observed using cryo-TEM. A representative DLS plot and cryo-TEM image of AuNPs-
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containing liposomes are shown in Figure 2. The size and shape of the liposomes was not 

affected due to the incorporation of hydrophobic AuNPs into the bilayer. The size of the 

liposomes with or without hydrophobic AuNPs was 203-225 nm and the polydispersity 

index was 0.277-0.299. Similar results were obtained for liposomes comprising AgNPs or 

MNPs with and without loading pDNA or siRNA. 
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Figure 1.(a) AuNPs and (b) AgNPs coated with dodecanethiol. The chemical structures of  

(c) DOTMA, (d) DSPC, and (e) DPPS. The schematic of a model liposome comprising 

active agents or therapeutic agents (“cargo”) inside the aqueous core, with hydrophobic 

NPs incorporated into the bilayer (f). 
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Figure 2. (a) the size distribution of liposomes with and without AuNPs. Cryo-TEM 

images of liposomes without (b) and with (c) AuNPs. The size and shape of the 

liposomes was not affected due to the incorporation of hydrophobic AuNPs into the 

bilayer. 
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3.2. Enhancement in bilayer fusogenicity due to presence of NPs 

The release of liposome content into the cytosol is problematic due to the 

entrapment of liposomes and their contents within the endosomal compartments after 

endocytosis. One of the major pathways for endosomal escape of the liposomal cargo 

depends on the fusion between liposomal and endosomal bilayers. This fusion occurs via 

HII phase formation (Figure 3a). As described herein, we hypothesized that after 

endocytosis of hydrophobic NPs-containing liposomes, the presence of hydrophobic NPs 

in the liposomal bilayer will promote fusion, thereby enhancing the release of liposomal 

cargo into the cytosol. This mechanism of action has been illustrated in Figures 3b and 

3c. Briefly, free flowing hydrophobic NPs present in the liposomal bilayer would be 

expected to occupy the voids generated during HII phase formation between liposomal 

and endosomal bilayers that would relax the packing frustration and ease the fusion 

process. 
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Figure 3. The liposomes taken inside the cell by endocytosis are entrapped in the 

endosomal membranes, followed by endosomal escape.   The liposomes then release their 

cargo into the cytosol by fusing with the endosomes (a). This fusion between liposomal 

and endosomal membranes occurs via inverted hexagonal (HII) phase formation that 

generates packing frustration in both the bilayers (b). The presence of hydrophobic 

nanoparticles relaxes this packing frustration and promotes fusion via HII phase formation 

(c). 

 

The enhancement in fusogenicity was assessed by measuring the HII phase 

transition temperature and by 31P-NMR analysis. The morphology of MLVs produced for 

this measurement has been depicted in Figure 4a. As shown in Figure 4b, these MLVs 

depicted a characteristic 31P-NMR profile with a high field peak and a low field shoulder 
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pattern, which transformed into a low field peak and a high field shoulder upon transition 

to the HII phase. As illustrated in Figures 4b and 4c, the phase transition temperature was 

reduced a from 50 °C to 40 °C upon incorporating 2 nm AuNPs at 10,000:1 lipid 

molecules : NPs ratio into the bilayers. Although the phase transition temperature was not 

further reduced, the intensity of the low field peak was higher for a 5,000:1 lipid 

molecules : NPs ratio at 40 °C for this system (Figure 4d). Moreover, the phase transition 

temperature was further reduced to 35 °C upon the incorporation of 4 nm AgNPs at a 

10,000:1 lipid molecules : NPs ratio into the bilayers (Figures 4e). These data suggest 

that the phase transition from bilayer to HII was induced not only by increasing the 

concentration of the NPs but also by an increase in their size. 

 

3.3. Hydrophobic NPs improved transfection efficiency 

The expression of eGFP was significantly increased by using liposomes 

containing AuNPs as compared to those without NPs. As depicted in Figure 5a, no 

fluorescence was detected in cells transfected using blank liposomes, whereas the 

positive control cells transfected using the commercial reagent Genjet exhibited a 

substantial number of cells with green fluorescence. The number of cells showing green 

fluorescence was higher for AuNPs-containing liposomes as compared to those using 

liposomes without NPs. In order to quantify this effect, the cells showing green 

fluorescence were measured using FACS analysis that confirmed the enhancement in 

transfection efficiency due to the presence of AuNPs. As shown in Figure 5b, the number 

of  cells showing eGFP fluorescence were 1.28 times higher when transfected using 

AuNPs-containing liposomes as compared to those transfected using liposomes without 
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AuNPs. Student-t test was conducted in order to determine the statistical significance 

with a p-value of 0.02. 

 

Figure 4. (a) Cryo-TEM image of MLVs simulating endosomal entrapment condition. 

The HII phase transition for MLVs (b) without NPs, (c) with 10,000:1 lipid molecules : 

AuNPs, (d) 5,000:1 lipid molecules : AuNPs, and (e) 10,000:1 lipid molecules : AgNPs 
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Figure 5. (a) fluorescence microscopic images and (b) bar chart summarizing the number 

of cells with eGFP fluorescence counted using FACS for cells transfected with pDNA 

using liposomes with and without AuNPs. 

 

The enhancement in transfection efficiency of eGFP expressing pDNA due to the 

presence of NPs in the liposomal bilayer was dependent on the size of the NPs and 

correlated well with the results of 31P-NMR spectroscopy. As was revealed by 31P-NMR 

spectroscopy, membrane fusogenicity was increased by increasing the size of NPs. It 

might therefore be inferred that liposomes containing relatively larger NPs in their bilayer 

would likely exhibit higher transfection efficiency. The dot plots obtained by FACS 

analysis, shown in Figure 6a, illustrate the number of cells without eGFP fluorescence 

(depicted as blue dots) as compared to those with eGFP fluorescence (depicted as pink 

dots). The cells transfected using blank liposomes do not show any pink dots, whereas the 

positive control cells transfected using commercial reagent GenJet depicted a significant 

number of pink dots. Similarly, liposomes without any NPs showed very few pink dots as 
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compared to those for AgNPs-containing liposomes in their corresponding dot plots. 

After counting these eGFP expressing cells, it was determined that the transfection 

efficiency of eGFP expressing pDNA was enhanced 8-fold by incorporating 4 nm AgNPs 

into the pDNA-containing liposomes (Figure 6b) as compared to a 1.28-fold increase by 

incorporating 2 nm AuNPs (Figure 5b). Thus, liposomes containing the larger AgNPs 

that displayed higher fusogenicity also exhibited higher transfection efficiency as 

compared to liposomes containing smaller AuNPs. 

 

 
Figure. 6 (a) Dot plots generated using FACS and (b) bar chart representing the number 

of cells displaying eGFP fluorescence, counted using FACS for cells transfected with 

pDNA using liposomes with and without AgNPs. 

 

The enhancement in transfection efficiency for pDNA was further confirmed by 

Western blotting. As shown in Figure 7a, pDNA transfected Huh-7 cells using liposomal 

formulations containing AuNPs in their bilayers depicted higher protein expression of 
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mFXRa1 as compared to those transfected using liposomes without NPs. The mFXRa1 

protein expression on the Western blot was normalized using the housekeeping gene 

GAPDH. When the protein expression was quantified it was noted that the transfection 

efficiency of AuNPs-containing liposomes was twice that of liposomes without NPs 

(Figure 7b). Thus, it was confirmed not only by using two different genes (eGFP and 

mFXRa1) but also by using two different bio-analytical techniques (FACS and Western 

blot) that the presence of NPs in the liposomal bilayers enhanced the transfection 

efficiency of the corresponding pDNA. 

 

Figure 7. (a) Western blot image and (b) bar plot of the quantification of mFXRa1 protein 

for cells transfected with mFXRa1 expressing pDNA using liposomes with or without 

AuNPs. 

 

Another nucleic acid-based, bioactive compound, siRNA, was also investigated in 

order to confirm the enhancement in transfection efficiency due to NPs-induced 

fusogenicity of the liposomal bilayers. The eGFP specific silencing siRNA can inhibit the 
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expression of eGFP protein. As shown in Figure 8, the number of cells showing eGFP 

fluorescence as measured by FACS analysis was lower for NPs-containing liposomes as 

compared to liposomes without NPs. These results also correlated well with the increase 

in fusogenicity and eGFP expression noted in pDNA experiments. For example, AuNPs 

with a 2 nm diameter exhibited lower fusogenicity (Figures 4c and 4e)  and lower 

transfection efficiency for pDNA (Figures 6a and 6b) as well as siRNA (Figure 8) as 

compared to that for larger sized AgNPs with a 4 nm diameter. Although 5 nm MNPs 

were  larger than AgNPs of 4 nm diameter, AgNPs containing liposomes exhibited higher 

transfection efficiency than liposomes containing MNPs of 5 nm diameter. This 

discrepancy could be explained due to difference in the hydrophobic coating material of 

the NPs.  The AuNPs and AgNPs used in this work were coated with dodecanethiol 

chains, whereas the MNPs were coated with oleic acid chains. The dodecanethiol chain is 

shorter, with only 12 carbon atoms, as compared to oleic acid chains, with 18 carbon 

atoms. Further, the dodecanethiol chain is completely saturated whereas the oleic acid 

chain has one double bond that generates a kink in the chain. Thus, it might be inferred 

that the longer chain with a kink may restrict the motion of MNPs in liposomal 

membranes, and reduce their capacity to relax packing frustration, which might lead to 

lower fusogenicity as compared to AgNPs. However, the nature of this observation could 

not be assessed using 31P-NMR spectroscopy due to the magnetic nature of the MNPs, 

which is incompatible with this analytical technique. 
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Figure 8. Bar chart for number of cells with eGFP fluorescence counted using FACS for 

cells transfected with pDNA using GenJet followed by siRNA using liposomes with and 

without NPs. 

 

5. Conclusions 

Upon entering a cell, liposomes containing nucleic acid-based bioactive 

molecules tend to be taken up by endocytosis, and their therapeutic action depends upon 

escape from these endosomes into the cytosol. As demonstrated in this work, NPs 

incorporation into liposomal membranes induced fusogenicity in the liposomal bilayers 

and led to higher transfection efficiency and biological activity for two major nucleic acid 

based drugs - pDNA and siRNA. These phenomena might be attributed to the use of 

hydrophobic NPs in liposomal membranes as a novel method of endosomal escape. This 

approach could further benefit currently popular strategies such as magnetically guided 

delivery of nucleic acid-containing liposomes to their target tissues and enhance the 
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therapeutic effect due to NPs induced higher efficiency. Further, techniques such as 

radio-frequency heating or laser excitation might further enhance the fusogenicity of 

these metal NPs-containing liposomes due to the generation of heat and also due to the 

rupture of endosomal membranes resulting from laser-induced vibration of membrane-

encapsulated metal NPs. 
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Abstract 

Reported herein is the use of chiral cationic polyamines for two intriguing 

applications: fabrication of chiral covalently-linked microcapsules, and enantiospecific 

delivery of siRNA to Huh 7 cells. The microcapsules are easily fabricated from 

homochiral polymers, and the resulting architectures can be used for supramolecular 

chiral catalysis and many other potential applications. Enantiospecific delivery of siRNA 

to Huh 7 cells is seen by one ‘enantiomer’ of the polymers delivering siRNA with 

significantly improved transfection efficiency and reduced toxicity compared to the 

‘enantiomeric’ polymer and commercially available transfection reagents. Taken 

together, the use of these easily accessible polyamine structures for diverse applications 

is highlighted in this Letter herein and can lead to numerous future research efforts. 

Graphical abstract 
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Polyamine; Chirality; siRNA; Transfection. 
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Polyethyleneimines (PEIs) are a well-studied class of polymers.1,2 These polymers 

are synthesized commercially via the ring opening of aziridine (Scheme 1, Reaction 2),3–

5 although this process leads to highly branched polymers6 with significant 

polydispersity indexes. The controlled synthesis of linear PEIs occurs via the cationic 

ring opening of oxazolines,7–9 followed by hydrolysis of the resulting formamides 

(Scheme 1, Reaction 1). Using chiral oxazolines as substrates for the polymerization 

reaction provides straightforward access to homochiral PEIs,10–12 with chiral centers at 

every polymer repeat unit. 

Scheme 1 

 

General synthetic methods for linear and branched polyethyleneimine (PEI) 

The significant interest in PEIs is driven largely by various applications of PEIs in 

fields including chiral catalysis,13–16 drug delivery,17,18 and oligonucleotide 

complexation and delivery.19,20 PEIs have also been covalently linked to form PEI-

derived microcapsules,21 which have been used for site-isolated catalysis.22,23 In one 



 

34 
 

example, the Lewis basic PEI catalyzed a reaction in the same reaction vessel as a Lewis 

acidic nickel catalyst, which was used to catalyze the second reaction.24,25 

Use of the same PEI scaffold for multiple applications has rarely been reported, 

although such multi-purpose polymers would have significant operational advantages. 

Reported herein is the use of a single PEI scaffold for two purposes: the fabrication of 

covalently-linked chiral microcapsules, and the efficient delivery of siRNA to Huh7 

cells.26 

The chiral PEIs were synthesized via the cationic polymerization of 4-benzyl-2-

oxazoline (1a) (both R and S configurations), followed by the hydrolysis of the initially 

formed polyformamide (Scheme 2). The resulting polymers were characterized by 1H 

NMR spectroscopy, and the results were in agreement with literature-reported 

spectra.11 Using this methodology, polymers with 13 and 30 repeat units were formed, 

with both R and S configured side chains. 

 

Scheme 2 
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Scheme 2 Synthesis of chiral polymers 2a 

Once synthesized, the homochiral PEIs were cross-linked to form homochiral 

microcapsules following the procedure developed by McQuade and co-

workers.22 Briefly, polymers 2a were dissolved in methanol, and added to a solution of 

2% Span 85, followed by the addition of 2,4-tolylene diisocyanate (TDI, compound 7) 

(Equation 1), which cross linked the microcapsules to form a polyurea coating.25 The 

resulting polyurethane-type structures have been shown to be stable in a variety of 

aqueous media.27,28After thorough solvent evaporation, chiral microcapsules were 

obtained. 

 

Equation 1 

 

Equation 1 Synthesis of chiral covalently-linked microcapsules 

 

The resulting microcapsules were imaged using transmission electron microscopy 

(TEM), and some images are shown in Figure 1. The diameters of the particles ranged 

from 57 nm–250 nm, with an average diameter of 141 nm (± 35 nm; 62 particles 

measured). These new supramolecular architectures contain narrow size distributions and 
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uniform structures, in good agreement with literature-reported results for achiral 

microcapsule analogues.21 

 

Figure 1 

 

 

Figure 1 TEM images of chiral microcapsules 8(Blue line represents a 500 nm scale) 

 

The newly formed microcapsules contain a variety of features that make them 

particularly amenable to supramolecular chiral catalysis, including: (a) multiple chiral 

centers, covalently confined in a small space; (b) multiple amino groups that can be 

protonated or deprotonated over a wide pH range;29 and (c) a hydrophobic core resulting 

from the hydrophobic benzyl side chains.30 
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To investigate the effect of capsule formation on the resulting supramolecular chiral 

environment, the newly synthesized chiral microcapsules were used as catalysts for the 

transamination reaction of ketoacids to amino acids (Equation 2). Obtaining good 

enantioselectivities in such transamination reactions has been an ongoing research 

problem.10 Preliminary results indicate that the microcapsule-catalyzed reactions 

proceeded with significantly higher enantioselectivities compared to the polymer-

catalyzed reactions (up to 20% enantiomeric excess (ee) obtained for the synthesis of L-

valine, under conditions where the polymer itself yielded 4% ee). Efforts to optimize the 

reaction conditions are in progress.  

 

Equation 2 

 

 

Equation 2 Enantioselective transamination of ketoacids 9 to amino acids 11 

 

Interestingly, the chiral PEIs also functioned as efficient siRNA delivery agents. 

Although there are many reported examples of PEIs used for siRNA and DNA 

delivery,31–33 many of these delivery vehicles suffer from high cytotoxicity.34 The 
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development of gene delivery agents that are both effective and less toxic remains a 

highly relevant research objective. 

 

The following 4 polymers were investigated as potential siRNA delivery agents: R-

2a-13; S-2a-13; R-6-13; and S-6-13, where the R/S designation refers to the chirality of 

the side chain and the number 13 refers to the number of repeat units in the polymers. 

The efficacy of these polymers in transfecting an Alexa488-labeled control siRNA 

sequence35 to Huh7 cells36 was measured by determining the intracellular fluorescence 

24 hours post-transfection. The results obtained using the chiral polyamines were 

compared to results obtained using commercially available transfection reagents: Genjet 

siRNA Transfection Reagent (SignaGen Laboratories); HiPerFect Transfection Reagent 

(Qiagen Laboratories);37 and Lipofectamine 2000 (Invitrogen Technologies).  

 

Figure 2 shows a graph of the intracellular fluorescence of Huh7 cells following 

their incubation with Alexa-labeled siRNA with various delivery reagents. The 

intracellular fluorescence obtained with compounds S-6-13 and S-2a-13 is substantially 

higher than the fluorescence observed with positive controls Lipofectamine and Genjet, 

indicating the polymers’ ability to transfect siRNA efficiently (Table 1). More 

interestingly, compounds R-2a-13 and R-6-13, which are identical except for the three-

dimensional configuration of the benzyl group, transfect siRNA with approximately the 

same efficiency as Lipofectamine and Genjet, and substantially lower than the 

“enantiomeric” polymers. 
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Figure 2 

 

 

Chart of the intracellular fluorescence of Huh7 cells after transfection with siRNA 

(all PEIs were used at a 1000 nM final concentration) 
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Table 1 

 

Transfection 
agent 

Intracellular fluorescence (normalized to 1.00 for cells 
alone) 

S-6-13 1.26 

S-2a-13 1.30 

Lipofectamine 1.05 

Genjet 1.04 

R-2a-13 1.06 

R-6-13 1.05 

 

Table 1 Transfection efficiencies of chiral PEIs and commercial transfection agents 

 

The chirality of the side chains of the PEIs thus has a direct and measurable effect on 

the ability of PEIs to transfect siRNA efficiently: S chiral centers (compounds S-6-13 

and S-2a-13) transfect siRNA more efficiently than the R analogues. Such a result may 

seem intuitive: that the interaction of two chiral macromolecules (chiral PEI and chiral 

siRNA) depends on the three-dimensional configuration of both molecules. This intuition 

is borne out by the results of this study, which is the first direct proof that the chirality of 

a polyamine directly impacts its transfection efficiency. Similar effects of the chirality on 

transfection efficiency were recently observed for the lipid delivery agent 1,2-dioleoyl-3-
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trimethylammonium-propane (DOTAP).39 In that report, the R enantiomer performed 

better than either the S enantiomer or the racemic DOTAP mixture. 

 

The toxicity of the newly synthesized PEIs was tested using an MTT assay.40 After 

24 hours of incubation, the absorbance of the cells was quantified and the cell viability 

was calculated. Using 1000 nM of S-2a-13 reduced the cell viability to 88%, and 1000 

nM of S-6-13 reduced it to 82%. By comparison, Lipofectamine reduced cell viability to 

89%, and compounds R-2a-13 and R-6-13 reduced viability to 78% and 71%. Thus, the 

toxicity of the chiral PEIs, like the transfection efficiency, depends on the three-

dimensional configuration of the benzylic side chains. 

 

The differences in transfection efficiency and toxicity mean that the S- and R-

configured PEIs likely have fundamentally different three-dimensional architectures. The 

relationship between the chirality of individual stereocenters and the overall polymer 

configuration has been studied for related polymers using circular dichroism 

spectroscopy.41–43 These differences in chirality affect the polymers’ solubility44 and 

their interactions with DNA,45 and as shown here, their transfection efficiencies. 

 

In summary, chiral polymers 6 and 2a were synthesized via straightforward, well-

precedented procedures. These polymers were used for two novel applications: the 

fabrication of chiral, covalently-linked microcapsules, and the transfection of siRNA to 

Huh7 cells. The chiral microcapsules can be used for a number of potential applications 

in supramolecular chiral catalysis and in supramolecular enantiomer separations. The 
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chirality-dependent siRNA transfection also provides an intriguing platform for further 

investigation. In particular, polymer S-2a-13 demonstrated good transfection efficiency 

and limited toxicity, and will be used for further biochemical investigations. The results 

of these and other experiments will be reported in due course. 
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CHAPTER 3 

 

FUTURE WORK 

 

In the current dissertation work we demonstrated that the fusogenicity of 

liposomal delivery vehicles could be enhanced by incorporating hydrophobic NPs in their 

bilayers. The enhancement in fusogenicity of the liposomal bilayers was depicted by 

promotion of HII phase formation using both gold and silver NPs coated with 

dodecanethiol chains. The transfection efficiency of eGFP expressing pDNA, mFXRα1 

expressing pDNA, and eGFP specific siRNA in Huh-7 cells was significantly enhanced 

due to incorporation of gold, silver, and magnetic NPs in the liposomal bilayers. Thus, 

this enhancement could be attributed to the NP-induced fusogenicity in the bilayer. The 

fusogenicity was slightly increased by increasing the concentration of NPs in the bilayer 

and was significantly increased by incorporating larger sized NPs. The NP size induced 

increase in fusogenicity could be correlated with enhanced transfection efficiency of 

eGFP expressing pDNA as well as eGFP specific siRNAs for the corresponding 

liposomal formulations. 

 

We hypothesize that the fusogenicity can be further enhanced by using radiation 

and the future work will be focused on this aspect. MNPs exhibit Brownian and Neel 

relaxations upon exposure to the alternating radiofrequency radiations that lead to 

rotation of the entire particle and change in the direction of its magnetization, 

respectively {Nedelcu, 2008 #10}. These relaxations cause movement of the MNPs in the 
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surrounding medium as well as increase in their temperature {Fortin, 2008 #11}. Thus, 

the MNPs can fill up the voids generated during HII phase formation thereby satisfying 

the packing frustration. Moreover, the enhanced temperature and vibration of the MNPs 

can induce rapid pore formation in the endosomal membrane during HII phase formation. 

Similarly, upon exposure to the near infra-red and UV radiation, AuNPs demonstrate 

increase in temperature {An, 2013 #12}. In the proposed future work the hydrophobic 

NPs such as MNPs and AuNPs will be incorporated into the bilayer of liposomes 

containing nucleic acid based drugs. These liposomes will be used to transfect the cells. 

The cells will then be exposed to the radiofrequency and near infra red/UV radiation for 

MNPs and AuNPs containing liposomes, respectively. The enhancement in transfection 

efficiency due to the radiation will be determined by running the same experiment 

without exposure to the radiation. The cells will be exposed to the radiation post 

transfection at different starting time points and the optimum time and duration of 

exposure will be determined. Further, in-vivo experiments will be conducted in mice by 

dosing them with these specialized liposomes containing nucleic acid based drugs via tail 

vein injection. The animals will then be exposed to the radiation and the enhancement in 

protein production with or without radiation exposure will be compared. Fluorescent 

labeled lipids and nucleic acid based drugs will be used in order to determine the location 

of the liposomes and exposure to the radiation will be initiated when the fluorescence is 

detected in the endosomes as tiny dots in the cells. Thus, homogeneous spreading of the 

fluorescence in the cells post radiation exposure may indicate endosomal escape. 
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Mammalian hepatocytes express asialoglycoprotein receptor (ASGP-R) 

exclusively and in high numbers {Ashwell, 1982 #13}. The human ASGP-R is a 

transmembrane protein with two homologous subunits (H1 and H2), which recognizes 

and binds desialylated glycoproteins with terminal galactose or N-acetylgalactosamine 

residues {Ashwell, 1982 #13}. The uptake of receptor-ligand complex by the hepatocytes 

occurs via receptor-mediated endocytosis after the binding process. The ASGP-R is then 

recycled back to the surface, whereas the ligand is degraded into the lysosomes by the 

enzymes {Geffen, 1992 #14}. The ASGP-R has been used for liver specific delivery for a 

long time due to its abundant and exclusive expression on the hepatocytes and highly 

efficient uptake via endocytosis {Wu, 2002 #15}. The major ligands for ASGP-R are 

galactose, N-acetylgalactosamine and glucose and the key factors affecting ligand-

receptor binding include isomeric forms of sugar, galactose density and branching, spatial 

geometry and galactose linkages {D'Souza, 2015 #16}. Akinc et al. developed liver 

targeting approach using an exogenous ligand containing a multivalent N-

acetylgalactosamine (GalNAc)-cluster, which binds with high affinity to the ASGP-R 

{Akinc, 2010 #18}. In this work the GalNAc moiety was conjugated to the distal end of a 

2,000 MW polyethylene glycol (PEG) utilizing a distearyl (C18) lipid (GalNAc–PEG–

DSG) providing a stable hydrophobic anchor for the targeted PEG–lipid to the iLNP. 

Such PEG-lipids with targeting ligand to the distal end of the PEG will be used in our 

specialized liposomes containing hydrophobic NPs in order to target the liver. 

 

In the third part of the future work, liver targeting approach using our specialized 

liposomes will be combined with controlled radiation exposure. Typically process of 
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ASGP ligand-receptor binding occurs within 8.7 minutes followed by cell internalization 

in next 2.3 minutes {Schwartz, 1982 #19}. The dissociation of ASGP-R and its return to 

the cell membrane then takes place in next 4.2 minutes {Schwartz, 1982 #19}. Hence, we 

hypothesize that the hepatocyte targeting liposomes containing NPs will be taken up by 

the cells in approximately 11 minutes post transfection and if the cells are exposed to the 

radiation it may lead to endosomal escape and highly efficient transfection of nucleic acid 

based drugs. Therefore, in-vitro work in intact hepatocytes will be conducted in order to 

test the proof of concept using specialized liposomes containing targeting moiety and 

NPs followed by in-vivo work using fluorescently labeled lipids/nucleic acid based drugs. 
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SUMMARY AND CONCLUSIONS 

 

Despite of the significant potential of nucleic acid based drugs as therapeutic 

agents for several life threatening ailments, their successful application is majorly limited 

due to insufficient delivery of these drugs to their site of action. One of the major barriers 

in the path of their delivery is endosomal degradation, which occurs followed by cellular 

uptake. Liposomal vehicles such as SNALPs (stable nucleic acid lipid particles) 

developed by Tekmira is one of the leading strategies for therapeutic application due to 

its feasibility of large scale and cGMP manufacture, storage stability for up to 2 years, 

lower in-vivo toxicity, and higher potency and encapsulation efficiency. On the other 

hand, poly-cationic polymers are majorly used in intact cells for transfection in order to 

evaluate initial effectiveness of nucleic acid based drugs during discovery stages as well 

as to understand the etiology of diseases. These poly-cationic polymers are highly 

efficient in cellular uptake via interaction with negatively charged cell membrane and 

endosomal escape via proton sponge effect mechanism, however, exhibit higher toxicity. 

In this work we demonstrated that the efficiency of SNALP type vehicles was 

significantly enhanced using hydrophobic NPs, which could be attributed to the ability of 

these vehicles in efficiently delivering the cargo to the site of action via improved 

endosomal escape. Whereas, our novel chiral polyamines exhibited higher transfeciton 

efficiency as well as lower toxicity. Thus, our novel liposomal- and chiral polyamine 

based vehicles could be beneficial in improving the efficiency of nucleic acid based drugs 

for therapeutic application and discovery purposes, respectively. 
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In manuscript 1 we demonstrated that the fusogenicity of liposomal delivery 

vehicles could be enhanced by incorporating hydrophobic NPs in their bilayers. The 

enhancement in fusogenicity of the liposomal bilayers could be depicted by promotion of 

HII phase formation using both gold and silver NPs coated with dodecanethiol chains. The 

transfection efficiency of eGFP expressing pDNA, mFXRα1 expressing pDNA, and 

eGFP specific siRNA in Huh-7 cells was significantly enhanced due to incorporation of 

gold, silver, and magnetic NPs in the liposomal bilayers. Thus, this enhancement could 

be attributed to the NP-induced fusogenicity in the bilayer. The fusogenicity was slightly 

increased by increasing the concentration of NPs in the bilayer and was significantly 

increased due to using larger sized NPs. The NP size induced increase in fusogenicity 

could be correlated with enhanced transfection efficiency of eGFP expressing pDNA as 

well as eGFP specific siRNAs for the corresponding liposomal formulations. This 

approach could further benefit currently popular strategies such as magnetically guided 

delivery of nucleic acid-containing liposomes to their target tissues and enhance the 

therapeutic effect due to NPs induced higher transfection efficiency. Further, techniques 

such as radio-frequency heating or laser excitation might further enhance the fusogenicity 

of these metal NPs-containing liposomes due to the generation of heat and also due to the 

rupture of endosomal membranes resulting from laser-induced vibration of membrane-

encapsulated metal NPs. 

 

In manuscript 2 we showed that Chiral Polyamines presented another efficient 

technique for the delivery of siRNA with less toxicity post cell transfection. chiral 
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polymers 6 and 2a were synthesized via straightforward, were used for two novel 

applications: the fabrication of chiral, covalently-linked microcapsules, and the 

transfection of siRNA to Huh7 cells. The chirality-dependent siRNA transfection also 

provides an intriguing platform for further investigation. In particular, polymer S-2a-13 

demonstrated good transfection efficiency and limited toxicity, and will be used for 

further biochemical investigations. The results of these and other experiments will be 

reported in due course. 
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APPENDICES 

 

The first part of the Appendix focusses on investigating role of Nuclear receptors 

Farnesoid X Receptors (FXR) and Estrogen Receptors in transcriptional regulation of 

Bile Salt Export pump (BSEP). The human Bile Salt Export pump (BSEP) is a key player 

in maintaining the overall Bile acid homeostasis of the body and is regulated by 

Farnesoid X Receptors (FXR) in an isoform-dependent manner. Disruption of BSEP 

leads to development of severe pathological conditions such as Intrahepatic Cholestasis 

of Pregnancy (ICP) and Hepatocellular Carcinoma (HCC) showing increased serum bile 

acid levels in the body. The goals of the proposed research focuses on investigating the 

underlying mechanisms involved in the etiology of Hepatocellular Carcinoma by 

establishing the connection between FXR, the key Bile acid regulator and Estrogen 

Receptors and its variants in the Intrahepatic Cholestasis of Pregnancy (ICP).  

The final part of the appendix presents a published manuscript that focusses on 

evaluation of biological molecules (chalcones, flavones and chromenes) in development, 

as potent farnesoid x receptor (FXR) antagonists. 
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Manuscript 1: Estrogen and Estrogen Receptor-α-Mediated Trans repression of Bile Salt 

Export Pump.   
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Abstract 

Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most 

prevalent disorder with elevated serum bile acid levels. We have previously shown that 

estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an 

interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and 

transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic 

cholestasis of pregnancy. Currently the mechanistic insights into such transrepression are 

not fully understood. In this study, the dynamics of coregulator recruitment to BSEP 

promoter after FXR activation and E2 treatment were established with quantitative 

chromatin immunoprecipitation assays. Coactivator peroxisome proliferator-activated 

receptor-γ coactivator-1 was predominantly recruited to the BSEP promoter upon FXR 

activation, and its recruitment was decreased by E2 treatment. Meanwhile, recruitment of 

nuclear receptor corepressor was markedly increased upon E2 treatment. Functional 

evaluation of ERα and ERβ chimeras revealed that domains AC of ERα are the 

determinants for ERα-specific transrepression on BSEP. Further studies with various 

truncated ERα proteins identified the domains in ERα responsible for ligand-dependent 

and ligand-independent transrepression. Truncated ERα-AD exhibited potent ligand-

independent transrepressive activity, whereas ERα-CF was fully capable of 

transrepressing BSEP ligand dependently in vitro in Huh 7 cells and in vivo in mice. Both 

ERα-AD and ERα-CF proteins were associated with FXR in the coimmunoprecipitation 



 

61 
 

assays. In conclusion, E2 repressed BSEP expression through diminishing peroxisome 

proliferator-activated receptor-γ coactivator-1 recruitment with a concurrent increase in 

nuclear receptor corepressor recruitment to the BSEP promoter. Domains AD and CF in 

ERα mediated ligand-independent and ligand-dependent transrepression on BSEP, 

respectively, through interacting with FXR. 

Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy (ICP) is the 

most prevalent disorder (1,–3) in pregnant women. ICP predominantly occurs in the late 

stages of pregnancy and spontaneously recovers after birth (3). Although ICP is a 

relatively mild disorder for the mother, it poses significant risks of complications to the 

fetus, including preterm delivery, respiratory stress, and prenatal mortality (1,–4). One of 

the characteristic clinical manifestations of ICP is markedly elevated levels of serum bile 

acids, indicating the disruption of bile acid homeostasis in ICP patients (5,–7). 

Bile acid homeostasis is achieved through a tightly regulated enterohepatic circulation of 

bile acids. Canalicular secretion of bile acids through bile salt export pump (BSEP) is the 

rate-limiting step in such circulation (8, 9). Modulation of BSEP expression or function 

by inherited or acquired factors has a profound impact on the biliary and intrahepatic bile 

acid levels. Indeed, the impairment of BSEP expression or function has been directly 

linked to such diseases as progressive familial intrahepatic cholestasis type 2 (10, 11), 

benign recurrent intrahepatic cholestasis (12, 13), and ICP (14,–16). 

Under physiological conditions, BSEP expression is coordinately regulated by distinct 

but related transactivation pathways (17,–21), notably the bile acids/farnesoid X receptor 

(FXR) signaling pathway (17, 18). Activation of FXR by bile acids strongly induces 
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BSEP expression in vitro and in vivo (17, 18). Such feed-forward regulation of BSEP by 

bile acid/FXR is considered a major mechanism for preventing excessive accumulation of 

toxic bile acids in hepatocytes. 

We previously reported that BSEP expression was significantly repressed in the late 

stages of pregnancy in mice and inversely correlated with serum estrogen 17β-estradiol 

(E2) levels (22). Further studies showed that E2 repressed BSEP expression in vitro and 

in vivo through estrogen receptor (ER)-α, and such repression was resulted from a cross 

talk between the E2/ERα and bile acids/FXR signaling pathway. It is thus concluded that 

E2-mediated transrepression of BSEP represents an etiological contributing factor to ICP. 

However, the underlying mechanisms of such transrepression are not fully understood. 

In this study, we demonstrated that E2 repressed BSEP expression through decreasing 

recruitment of coactivator peroxisome proliferator-activated receptor gamma coactivator-

1 (PGC-1) with a concurrent increase in recruitment of nuclear receptor corepressor 

(NCoR) to the BSEP promoter. Further studies revealed that domains AD and CF in ERα 

mediated ligand-independent and ligand-dependent transrepression on BSEP, 

respectively, through interacting with FXR.  
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Abstract 

Bile salt export pump (BSEP) is responsible for biliary secretion of bile acids, a rate 

limiting step in the enterohepatic circulation of bile acids and transactivated by nuclear 

receptor farnesoid x receptor (FXR). Intrahepatic cholestasis of pregnancy (ICP) is the 

most prevalent disorder among diseases unique to pregnancy and primarily occurs in the 

third trimester of pregnancy with a hallmark of elevated serum bile acids. Currently, the 

transcriptional regulation of BSEP during pregnancy and its underlying mechanisms and 

involvement in ICP are not fully understood. In this study, the dynamics of BSEP 

transcription in vivo in the same group of pregnant mice before, during and after gestation 

were established with in vivo imaging system (IVIS). BSEP transcription was markedly 

repressed in the later stages of pregnancy and immediately recovered after parturition, 

resembling the clinical course of ICP in human. The transcriptional dynamics of BSEP 

was inversely correlated with serum 17β-estradiol (E2) levels before, during and after 

gestation. Further studies showed that E2 repressed BSEP expression in human primary 

hepatocytes, Huh 7 cells and in vivo in mice. Such transrepression of BSEP by E2 in vitro 

and in vivo required estrogen receptor α (ERα). Mechanistic studies with chromatin 

immunoprecipitation (ChIP), protein co-immunoprecipitation (Co-IP) and bimolecular 
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fluorescence complementation (BiFC) assays demonstrated that ERα directly interacted 

with FXR in living cells and in vivo in mice. In conclusion, BSEP expression was 

repressed by E2 in the late stages of pregnancy through a non-classical E2/ERα 

transrepressive pathway, directly interacting with FXR. E2-mediated repression of BSEP 

expression represents an etiological contributing factor to ICP and therapies targeting the 

ERα/FXR interaction may be developed for prevention and treatment of ICP. 

Keywords: BSEP, Bile acids, 17β-estradiol, FXR, ERα 
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Highlights 

• New series of chalcone and chromene are first reported as potent FXR 

antagonists. 

• A chromene compound (11c) significantly reduce the plasma and hepatic 

triglyceride level and plasma ALT level in KKay diabetic mice. 

• Pharmacological role of FXR antagonist and its potential in the disease treatment 

is revealed. 

 

Abstract  

Farnesoid X receptor (FXR), a nuclear receptor mainly distributed in liver and intestine, 

has been regarded as a potential target for the treatment of various metabolic diseases, 

cancer and infectious diseases related to liver. Starting from two previously identified 

chalcone-based FXR antagonists, we tried to increase the activity through the design and 

synthesis of a library containing chalcones, flavones and chromenes, based on 

substitution manipulation and conformation (ring closure) restriction strategy. Many 
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chalcones and four chromenes were identified as microM potent FXR antagonists, among 

which chromene 11c significantly decreased the plasma and hepatic triglyceride level in 

KKay mice.  
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