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ABSTRACT

This dissertation primarily focuses on understanding the canonical problem of

vortex-induced vibration (VIV), a self-excited vibration of bluff bodies caused by

the instability of the bluff-body wake. In this work, dynamic response and active

control of low mode number flexible cylinders undergoing vortex-induced vibra-

tions are addressed which has potential to significantly impact the development of

predictive models for flow-induced-vibrations, a topic of critical importance to the

offshore oil and gas industry and important to the cost-effective development of

new ocean structures, such as floating offshore wind platforms and offshore wind

energy systems.

In the tests, first, dynamic response of a tensioned flexible cylinder is inves-

tigated in a recirculating flow channel. Different than hysteresis in the amplitude

response, the idea of mode hysteresis is introduced. A transition in the amplitude

of the response of a flexible cylinder undergoing vortex-induced vibrations is shown

to be related to the transition between fluid coupled structural modes excited by

the flow. Also, due to the symmetric drag loading across cylinder’s span, the hy-

pothesis of being unable to sustain a asymmetric excitation (even mode excitation)

in in-line is discussed. To understand more about this fluid-structure interactions,

tensioned flexible cylinder data is used for multivariate analysis. It is shown that

traditional reduced order models such as proper orthogonal decomposition and

recently introduced smooth orthogonal decomposition methods help to identify

nonlinear mode interactions in the flexible cylinder’s response. Later, mode shape

effect in VIV and the idea of being unable to sustain asymmetric modes in a

uniform flow is considered. In the tests, three bending-dominated cylinders are

tested with varying stiffness in the cross-flow and in-line directions of the cylinder

in order to produce varying structural mode shapes associated with a fixed 2:1



(in-line:cross-flow) natural frequency ratio. Then, the structural mode excitation

of bending-dominated flexible cylinders undergoing vortex-induced vibrations is

investigated using multivariate analysis of excited empirical modes. Both the an-

alytic and experimental results show that for excitation of low mode numbers, the

cylinder is unlikely to oscillate with an even mode shape in the in-line direction

due to symmetric drag loading, even when the system is tuned to have an even

mode at the expected frequency of vortex shedding. Later, to understand the ef-

fect of three-dimensional wake on an oscillating flexible cylinder in VIV, a novel

experimental method is introduced. Finally, the idea of active control of flexible

cylinders in VIV using piezo stripe actuators is discussed. Piezo stripe actuators

are bonded at the anti-nodes of a flexible cylinder in the in-line direction to con-

trol low vibration modes (i.e. first, second and third). Experiments show that

upto 75% of amplitude reduction is possible in cross-flow where large vibrations

occur. In addition to vibration suppression, vibration enhancement is also possible

if piezos are activated before an apparent amplitude jump.
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PREFACE

This dissertation, Dynamic response and active control of flexible cylindrical

structures undergoing vortex-induced vibrations, is constructed in the manuscript

format and consists of four manuscripts.

The first manuscript (chapter 2), Mode excitation hysteresis of a flexible cylin-

der undergoing vortex-induced vibrations was published in Journal of Fluids and

Structures, 69 (2017) 308-322.

The second manuscript (chapter 3), Multivariate analysis of vortex-induced

vibrations in a tensioned cylinder reveal nonlinear modal interactions, is accepted

to be published as a conference proceeding in the proceedings of 10th International

Conference on Structural Dynamics, EURODYN 2017.

The third manuscript (chapter 4) is Structural mode effects on bending dom-

inated flexible cylinders undergoing vortex-induced vibrations. This work will be

submitted to Journal of Fluids and Structures.

The fourth manuscript (chapter 5), Underwater vibration control of flexible

cylinders using piezo stripe actuators, will be submitted to Journal of Sound and

Vibration.
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CHAPTER 1

Introduction

Vortex-induced vibration (VIV) is an inherent problem seen in many engi-

neered structures such as offshore risers, electric cables, transmission lines, bridges,

stacks, engines, heat exchangers and many more hydrodynamic applications. It

occurs due to the asymmetric vortex formation behind a bluff body where wake

formation depends on the body motion and body motion depends on the formation

of the wake. Due to this complex time varying fluid-structure interaction, VIV is

a significant issue in offshore structures where it can give fatigue related damages

and may cause a catastrophic failure if neglected in design.

Many real life long offshore structures behave similar to flexible cylinders

underwater. Therefore, in this dissertation, the effect of vortex-induced vibration

on flexible cylinders are extensively studied. A short review of the each manuscript

is given below:

In Chapter 2, dynamic response of a tensioned flexible cylinder is investigated

in a recirculating flow channel. Cylinder is attached horizontal to incoming fluid

flow, and response analysis is done using high speed cameras and motion tracking.

Different than hysteresis in the amplitude response, the idea of mode hysteresis

is introduced. A transition in the amplitude of the response of a flexible cylin-

der undergoing vortex-induced vibrations is shown to be related to the transition

between fluid coupled structural modes excited by the flow. Estimates of the hy-

drodynamic forces based on a simple modal system equation show that transitions

in the sign of the effective added mass of the system and distribution of excitation

forces are consistent with phasing changes in the force associated with transitions

in phasing of the relative motion of the body and vortices in the wake. Also, due to

1



the symmetric drag loading across cylinder’s span, the hypothesis of being unable

to sustain a asymmetric excitation (even mode excitation) in in-line is introduced.

Chapter 3 focuses on multivariate analysis based on the tensioned flexible

cylinder data. Detailed explanation of different multivariate analysis methods are

described and focus is given to smooth orthogonal decomposition method for vi-

bration mode identification. It is shown that traditional reduced order models

such as proper orthogonal decomposition and recently introduced smooth orthog-

onal decomposition methods help to identify nonlinear mode interactions in the

flexible cylinder’s response. In addition, smooth orthogonal mode decomposition is

found to be more accurate identifying bifurcations and the hysteretic region asso-

ciated with those bifurcations. Being able to clearly identify unstable regions and

the corresponding bifurcations is of utmost importance to the development of the

reduced-order models capable of predicting non-linear fluid-structure interactions.

The idea of being unable to sustain asymmetric modes in a uniform flow and

mode shape effect in VIV are considered in Chapter 4. An experiment is designed

to understand the modal interactions in the cylinder’s response. Three bending-

dominated cylinders are tested with varying stiffness in the cross-flow and in-line

directions of the cylinder in order to produce varying structural mode shapes asso-

ciated with a fixed 2:1 (in-line:cross-flow) natural frequency ratio. Then, the struc-

tural mode excitation of bending-dominated flexible cylinders undergoing vortex-

induced vibrations is investigated using multivariate analysis of excited empirical

modes. Measured responses are compared with the analytic response of a beam

subjected to a uniform loading. Both the analytic and experimental results show

that for excitation of low mode numbers, the cylinder is unlikely to oscillate with

an even mode shape in the in-line direction due to symmetric drag loading, even

when the system is tuned to have an even mode at the expected frequency of
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vortex shedding. Results confirm the observations from previous field and labo-

ratory experiments while demonstrating how structural mode shape is affected by

vortex-induced vibrations.

In chapter 5, the idea of active control of flexible cylinders using piezo stripe

actuators is discussed. Piezo stripe actuators are bonded at the anti-nodes of a

flexible cylinder in the in-line direction to control low vibration modes (i.e. first,

second and third). To suppress the VIV motion, piezo stripes are actuated before

a mode change, thus tripping the frequency and forcing cylinder to excite with a

higher vibration mode. Experiments show that upto 75% of amplitude reduction

is possible in cross-flow where large vibrations occur. In addition to vibration

suppression, vibration enhancement is also possible if piezos are activated before an

apparent amplitude jump. In this case, piezo actuators provides additional energy

input and forces cylinder to oscillate with a larger amplitude response earlier than

the natural response. As a result, this study successfully demonstrates the ability

to suppress and/or enhance VIV motion through the use of piezo stripe actuators.

Finally, conclusions and some possible future research ideas are given in Chap-

ter 6.
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Abstract

A series of experiments was performed to investigate the modal excitation of a

tensioned flexible cylinder in a uniform flow due to flow-induced vibrations. Exper-

iments were conducted in a recirculating flow channel using a flexible cylinder with

relatively low aspect ratio such that low structural mode numbers were excited.

The spanwise motion of the cylinder was measured using standard motion tracking

techniques with high-speed cameras. Hysteresis is observed in the response of the

cylinder dependent on whether the flow speed is increased or decreased from the

previous experiment. This observation differs from predictions in the literature re-

garding hysteresis and is attributed to hysteresis in the transition between excited

structural modes coupled with the cylinder wake. It is also found that the flexible

cylinder is unable to sustain excitation of asymmetric modes in the in-line direction

unless the fluid-structure interaction excites a 1:1 frequency response between the

in-line (IL) and cross-flow (CF) directions, resulting in a pedaling mode response.

The inability to excite asymmetric modes is consistent with the response of lin-

ear systems undergoing a symmetric drag load and is consistent with the cylinder

undergoing a preferred figure eight shape motion when excited. Distributed fluid

forces are derived from the structural characteristics and body motions illustrating

the transition of the distribution of added mass and excitation forces on the body.

2.1 Introduction

Vortex-induced vibrations (VIV) are a fundamental fluid-structure interaction

problem in many engineered systems (e.g. offshore structures, mooring systems,

heat exchangers, etc.). The non-linear interaction between a circular cylinder in a

uniform current and the vortex shedding in the wake of the cylinder is dependent

on a large number of variables [1]. In order to study the phenomenon of VIV,

simplifications are often made when conducting experiments in order to limit the

5



number of variables that may affect the observed response. This often leads to

observed differences between the responses of different systems undergoing VIV.

For example, an elastically mounted, rigid cylinder undergoing VIV in an exper-

imental water channel [2] will inherently display different response features than

the multi-mode excitation of a flexible pipe in a sheared current in the ocean [3, 4].

Differences may simply occur based on the experimental setup due to differences in

surface roughness, free stream turbulence, or blockage effects. One of the observed

non-linear behaviors of VIV, particularly for experiments conducted in confined

channels, is hysteresis.

In the context of vortex-induced vibrations, hysteresis is typically associated

with the amplitude response of the structure as a function of reduced velocity.

For example, if one conducts an experiment with an elastically mounted circular

cylinder in a water channel with a uniform current, one may observe different

responses of the structure by varying the flow speed. The variation in flow speed is

related to a change in both the reduced velocity of the system and a change in the

Reynolds number. As one increases the flow speed, one may observe a transition

from a large amplitude response to a lower amplitude response. In contrast, if the

flow speed is reduced, one may observe a transition from low amplitude response

to high amplitude response, however this transition may not occur at the same

reduced velocity, hence a hysteretic response. This type of response is common

in non-linear systems and has been observed in vortex-induced vibrations under a

variety of experimental and simulation conditions.

Hysteresis in vortex-induced vibrations is known to be related to blockage and

Reynolds number effects, often being observed in experiments and simulations with

high blockage ratios and low Reynolds numbers. It has been observed in both free

vibration conditions and forced vibration conditions, where transitions between
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wake modes become dependent on whether flow speed is increased or decreased

from the previous experimental condition. Bishop and Hassan [5] observed hys-

teresis in a series of forced vibration experiments, where the cylinder was forced

to oscillate in the cross-flow direction with a prescribed frequency. In these ex-

periments, Reynolds numbers ranged from 4 × 103 to 11 × 104 and the blockage

ratio was 8.3. In order to understand the parameters which affect hysteresis in

VIV, Stansby [6] conducted a systematic series of forced cylinder experiments in

air in which blockage ratio was varied, demonstrating hysteresis for higher block-

age ratios. Khalak and Williamson [7] reported hysteresis in freely-vibrating rigid

cylinder experiments where the cylinder was allowed to oscillate only in the cross-

flow direction for low mass ratio and damping and relatively low Reynolds numbers

between 2 × 103 − 13 × 103. Klamo et al. [8] conducted a systematic set of rigid

cylinder experiments in order to examine the effects of damping on the response

of the cylinder, where the cylinder was only allowed to oscillate in the cross-flow

direction. In these experiments, a hysteretic region was observed for low Reynolds

numbers between 525 and 2600.

Prasanth et al. [9] developed a general characterization map for hysteresis,

defining a critical blockage ratio region as a function of mass ratio. The map, based

on a comprehensive set of low Reynolds number simulations with varying blockage

ratio and mass ratio, shows that for a freely vibrating rigid circular cylinder, at

low mass ratios and low blockage ratios, a region exists where hysteresis will not

be observed. The map is compared with a number of experiments and simulations

to demonstrate that it holds for a variety of conditions. Although the simulations

are performed at very low Reynolds number, in the laminar boundary layer and

laminar wake region, the map still compares well with experiments performed at

Reynolds numbers with turbulent wakes. In addition, Prasanth et al. [9] shows
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good prediction of hysteresis conditions for rigid cylinder experiments [7, 8] and

flexible cylinder experiments [10, 11].

Although the experiments of Brika and Laneville [10] and Triantafyllou et

al. [11] were performed with flexible cylinders in a wind tunnel and water tunnel

respectively, these experiments still demonstrate many response features similar

to the vibration of an elastically mounted rigid cylinder, since neither experiment

observed a multi-modal response of the cylinder. For example, the pinned locations

of the flexible cylinder in Brika and Laneville [10] required a characterization of

the excited structural mode such that the peak response at the center of the test

section could be reconstructed from measurements of vibrations of the flexible

cylinder outside of the wind tunnel. This center point measurement only gives

information about the response of the cylinder at a single point and the resulting

hysteresis of the response at that single point. Similarly, the response of the flexible

cylinder in Triantafyllou et al. [11] is only measured at the center point and the

cylinder only displays a first mode response at the center point.

A significant number of experiments have been performed to characterize the

multi-mode responses of long, flexible cylinders, particularly with interest in model-

ing the characteristics of ocean structures. Often, these experiments are performed

in the field to capture characteristics typical of operating conditions for offshore

structures [4, 12, 13, 3], however field experiments introduce many additional ex-

perimental parameters that are difficult to control. This introduces a need for

conducting controlled laboratory experiments to help limit variables in the experi-

ment. Recent controlled laboratory experiments have characterized the response of

flexible structures undergoing VIV with low mode number and high mode number

excitations [14, 15, 16, 17], where the response of the structure follows excitation of

distinct modes or combinations of modes. However, conducting laboratory experi-
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ments with flexible structures introduces questions about hysteresis, as laboratory

experiments are typically conducted in confined water channels or towing tanks.

In the above mentioned flexible cylinder experiments, hysteresis was not observed.

In this paper, results are reported for the observed vortex-induced vibration

of a low mode number, tensioned flexible cylinder. In contrast to previous studies,

a hysteretic effect on the dynamic response of the body is observed. In contrast

to rigid cylinder experiments, this hysteretic effect is observed to be related to the

transition between mode excitation, rather than a transition between upper and

lower branch responses. When compared with the critical blockage map predicted

by Prasanth et al. [9], the structural characteristics and blockage characteristics

place the cylinder directly in the middle of the “no hysteresis” region. The funda-

mental difference in the present experiment from the requirements of the critical

blockage map in Prasanth et al. [9] is the possibility of multi-mode excitation of

the structure.

2.2 Experimental Description

Experiments were conducted in a uniform recirculating water channel located

on the Narragansett Bay Campus of the University of Rhode Island. The flow

channel has a test section with dimensions 38 cm wide by 48 cm tall. The test

section of the flow channel consists of three glass walls on the sides and bottom,

with the top of the channel open. The flow channel can be operated at speeds

between 0.1 to 1.3 m/s, although the present experiments were limited to speeds

between 0.1 and 0.6 m/s. Figure 1 shows a schematic drawing of the experimental

set-up inside the flow channel. A flexible cylinder made of rubber was stretched

horizontally across the width of the tunnel and submerged at half the depth of the

tunnel (30 diameters above the tunnel floor). The cylinder was cut to be slightly

shorter than the width of the tunnel, such that when stretched, the cylinder was
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under tension with an initial tension of 0.15 N . The ends of the cylinder were

attached to two universal joints to allow a simply supported end condition at the

end of the cylinder. The universal joints were then connected to suction cups that

adhered to the glass tank walls. Circular end plates with a diameter ten times

larger than the test cylinder diameter were connected to the universal joints at

the wall side and positioned to align with the pivot point on the universal joint in

order to avoid end effects due to the joint and suction cups.

As illustrated in Figure 1, two high speed cameras (Phantom V10) were used

to capture the motion of the cylinder. One of the cameras was placed underneath

the flow channel in order to capture the cylinder displacement in the direction of

the fluid flow and the second camera was placed behind the flow channel, looking

through a streamwise facing viewing window, in order to capture the cross-flow

displacement of the cylinder. The cameras used a frame rate of 250 Hz with a

viewing window size of 2400×560 pixels. The cylinder was marked with 25 white

dots with a regular spacing of 1 cm along the span of the cylinder and motion

tracking software (Pro Analyst) was used to track the location of the cylinder

markings, giving a spatially resolved measurement of the in-line and cross-flow

body motions. Figure 2 shows the cross-wise view of the test cylinder to illustrate

the marking pattern on the cylinder. Specific structural characteristics of the test

cylinder and camera specifications are given in Table 1, where D is the cylinder

diameter, L is the cylinder length, E is the modulus of elasticity, T is the initial

tension of the cylinder, H is the water tunnel height, m is the cylinder mass, ρ is

the water density, and fn is the fundamental natural frequency in air.

To perform motion tracking on the cylinder, the cameras were aligned and

calibrated in a orthogonal reference frame. A laser level was used to orient the

cylinder in a horizontal position with respect to gravity. Camera’s 1 and 2 were
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Figure 1: Experimental test setup showing isometric view at the top and top view
at the bottom. Flow is coming from left to right.

Figure 2: Example image of test cylinder with markings for motion tracking.

Table 1: Test cylinder structural characteristics and fixed experimental parameters

Test Cylinder Material Urethane Rubber

Cylinder Diameter D = 6.35 mm

Modulus of Elasticity E = 1.146 MPa

Initial Tension T = 0.15N

Fundamental Natural Frequency in Air fn = 3 Hz

Aspect Ratio AR = L
D = 41

Blockage Ratio B = D
H = 1.66

Mass Ratio m∗ = 4m
ρπLD2 = 3.76

Damping Ratio ζ = 0.04
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oriented under and behind the flow channel using levels to keep the camera views

close to orthogonal. A calibration plate with regular circular markings located at

known distances was used to take a reference picture from each camera, where the

calibration plate was mounted to a fixture to ensure orthogonality in each camera

frame. A pinhole camera assumption, where all light rays are traced back through

a single point at the cameras lens, was used to calibrate the resulting images and

correct for slight misalignment of the cameras and lens distortion, such that the

resulting calibrated images were planar and orthogonal to one another.

The motion tracking algorithm follows white dots marked on the black back-

ground of the test cylinder. Two different lenses were used for each direction in

order to maximize the resolved motion of the cylinder from the two different cam-

era locations. For the in-line direction a Nikon Nikkor 50 mm f/1.2 lens was used

and for the cross-flow direction, a Nikon Nikkor 105 mm f/2 lens was used.

The motion tracking method requires the identification of an object of interest

(in this case, a white dot), which is identified in the first image in a time series.

The algorithm then determines the cross-correlation of the reference feature with

subsequent images to determine the new location of the feature. With a feature

that is spread over multiple pixels, tracking of the cross-correlation enables sub

pixel accuracy in tracking the centroid of the feature. In the experiment, each dot

was composed of between 6 to 10 pixels (in-line direction features vary between 8 -

10 pixels, and cross-flow direction features vary between 6 - 8 pixels) depending on

the specific feature along the span. Through statistical analysis of the feature pixel

dimensions over the different flow speeds tested, it was found that the characteris-

tics of the pixel size was not dependent on the flow speed in this setup, indicating

that the relative error in determining feature location is similar at different flow

speeds. It was observed that there was little to no variation in feature intensity or
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size as a function of time as well, due to the small amplitude of motion and consis-

tent light conditions. Using the calibrated resolution and observed variation in dot

size, the dots on the cylinder could be tracked to within an error of 0.035 ± 0.005

cylinder diameters in the cross-flow direction and 0.027 ± 0.004 cylinder diameters

in the in-line direction. With sub-pixel interpolation of the determined centroid

of features, this error is significantly lower. Even using the mean estimated error

based on the pixel resolution of the images, 0.035 diameters is significantly smaller

than the observed vibration amplitudes (on the order of 1 diameter), giving good

confidence in this technique for motion tracking.

For the experimental test matrix, the cylinder’s motion was measured at 25

different flow speeds ranging from 0.1 to 0.6 m/s under two separate conditions.

In the first set of experiments, the flow speed was increased by small increments

throughout the test matrix range, maintaining a constant tunnel speed for at least

5 minutes before collecting images at the speed. The same procedure was repeated

for decreasing flow speeds with small decrements between each flow speed. At

each flow speed, motion tracking of the markings on the cylinder give a time

dependent measurement of the cylinder at the 25 marked locations along the span

of the cylinder, in both the cross-flow direction and in-line direction. Although the

measured motions are generally periodic, the motion of the cylinder was treated

as a random process, such that the amplitude of the response is reported as an

average of the top ten percent of measured peak values. In the reported results,

the amplitude of motion in the cross-flow direction, Ay, and amplitude of motion

in the in-line direction, Ax, are normalized by the cylinder diameter, D. Details

of the test matrix and governing non-dimensional parameters are given in Table 2,

where U is the flow speed and ν is the kinematic viscosity.
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Table 2: Test matrix dimensional and non-dimensional parameters

Flow Speed U = 0.1− 0.6 m/s

Reynolds Number Re = UD
ν = 650− 3500

Nominal Reduced Velocity Vrn = U
fnD

= 5− 27

2.3 Results
2.3.1 Averaged Maximum Amplitude Response

The maximum amplitude response of the cylinder along the span is shown

in Figure 3 as a function of the nominal reduced velocity for both in-line (IL)

and cross-flow (CF) directions. The local maximum at each tracking point is

determined as the average of the top ten percent of the local maxima. The spanwise

maximum amplitude is then determined as the largest local maximum over the

span. At first inspection, the response appears to demonstrate a super upper

branch response transitioning to a lower branch response, similar to what might

be seen in a rigid cylinder experiment [18]. This is not the case, however, since the

present test cylinder undergoes multi-mode excitation. Huera-Huarte [19] shows

that in the multi-mode excitation of a flexible cylinder, when structural mode

frequencies are close to one another, as with a tensioned string, the structure will

display an initial upper branch excitation that then transitions to a new upper

branch excitation at the next mode. The transitions in the measured maximum

amplitude response in Figure 3 at Vrn = 14.4 and Vrn = 21 come from excitation

of additional higher modes, as shown later through modal decomposition.

A second observation can be made from Figure 3, where there is a distinct

difference between the response of the structure when the flow speed is increased

and when the flow speed is decreased. In Figure 3, the response measured for

increasing flow speeds is distinguished from the response measured for decreasing

flow speeds. The transition point between the low amplitude response and high

14



amplitude response is indicated by arrows, showing that the transition occurs at

different nominal reduced velocities, dependent on whether the speed is increasing

or decreasing. As the flow speed is increased, the response amplitude grows to a

maximum of 1.22D at Vrn = 13.3 before transitioning to a lower amplitude of 0.7

at Vrn = 14.4. For decreasing flow speeds, this transition is delayed, where the

transition from low amplitude to high amplitude motion occurs at Vrn = 10.5. As

seen in Figure 3c and 3d, this hysteretic transition is accompanied by a frequency

jump in the response. There is also a large IL amplitude response at V rn = 11.5

for the decreasing flow speed case which is explained further in Sections 2.3.3 and

2.4.2.

2.3.2 Modal Decomposition of the Cylinder Response

The frequency jumps seen in Figure 3 occur consistent with transitions be-

tween excited modes in the response of the test cylinder. In order to investigate

the modal excitation of the cylinder, the motion of the cylinder is decomposed

into modal components. This decomposition is done using the standard Proper

Orthogonal Decomposition (POD) method. While in the structural analysis of a

simply-supported beam, analytic decomposition of modes may be obtained based

on sinusoidal functions, in this system, the presence of the dense fluid with a low

mass ratio system, results in coupled dynamics between the fluid and structure.

The modal response is then dependent on both the structural characteristics and

behavior of the surrounding fluid and it is not possible to define an analytic modal

decomposition that includes the fluid’s contribution to the mode. POD is therefore

used to decompose the modal response of the cylinder based on energy, where the

resulting modes do not oscillate at the structural natural frequencies, but rather

at effective natural frequencies that incorporate effects of the fluid. The goal in

using POD in this context is to identify the dominant modes being excited by the
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Figure 3: Measured maximum amplitude response of the flexible cylinder
along the span. (a) Non-dimensional maximum cross-flow amplitude. (b) Non-
dimensional maximum in-line amplitude. (c) Cross-flow and in-line normalized
frequencies measured for increasing flow speeds. (d) Cross-flow and in-line normal-
ized frequencies measured for decreasing flow speeds. Hysteretic response region
shown with arrows and vertical dotted lines. Transition between large amplitude
and small amplitude response is accompanied by a jump in frequency. Blue shows
decreasing Reynolds number, red shows increasing Reynolds number.
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Figure 4: Energy fraction of each possible modes in cross-flow and in in-line
directions for V rn = 14.4. Dashed line separates the first three modes from the
higher subspace dimensions.

system and their corresponding energies, not specifically to identify higher order

modes of the structure. It is found that this method successfully identifies the

dominant modes in the transition region in both IL and CF directions, and shows

transitions to second and third mode components. For simplicity in discussing

the POD modes, the mode shapes are analogized with the structural mode shapes

that occur in a vacuum, but the POD modes do not perfectly match sinusoidal

mode shapes. A description of the POD method used for decomposing the cylinder

motion is given in 4.9.

Figure 4 shows the energy fraction of the identified dominant modes using

POD for an example reduced velocity. The decomposition shows that the over-

whelming majority of energy in this particular example is contained within the

first three modes and these three modes are sufficient to describe the total motion

of the structure with very small error as illustrated in Table 3. As shown in Figure

4, the energy associated with the first Proper Orthogonal Mode (POM) in both

in-line and cross-flow directions is higher than the other POMs, representing the

most dominant mode. The contribution of the energy decreases as the subspace

dimension increases. The root mean square error (RMSE) between reconstructed

motion based on the POD and the observed oscillations are shown in Table 3 show-
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ing that as the sum of the contribution of the POMs increase, relative error in the

convergence decreases. RMSE IL 1 is the RMSE value between the original IL

signal and first POM in the IL direction, RMSE IL 2 is the RMSE value between

the original IL signal and sum of first two POMs in IL, and RMSE IL 3 indicate

RMSE value between the original IL signal and sum of first three POMs in IL.

The analogy is the same for the cross-flow RMSE calculations.

Table 3: Root mean square error (RMSE) between the original measured signal
and decomposition of the signal using the first, second, and third modes in the
cross-flow and in-line directions. Comparisons are made for both increasing and
decreasing flow speeds for measurements in the studied hysteresis region.

Root Mean Square Error (RMSE)
Increase 1 CF 1,2 CF 1,2,3 CF 1 IL 1,2 IL 1,2,3 IL
V rn = 10.5 0.001 0.0006 0.0001 0.0008 0.0003 5e-05
V rn = 11.5 0.0013 0.0006 0.0001 0.0012 0.0004 9e-05
V rn = 12.6 0.001 0.0005 0.0001 0.001 0.0003 7e-05
V rn = 14.4 0.0057 0.0003 0.0001 0.0015 0.0009 5e-05
Decrease
V rn = 10.5 0.0009 0.0004 0.0001 0.0006 0.0003 4e-05
V rn = 11.5 0.0034 0.0001 0.0001 0.0038 0.0001 5e-05
V rn = 12.6 0.0036 0.0002 0.0001 0.0012 0.0004 4e-05
V rn = 14.4 0.0134 0.0003 0.0001 0.0029 0.0012 7e-05

Consider Y (z, t) to be the time dependent motion response data set in the

CF direction, where z is the spanwise spatial coordinate. In the experiments,

the first three terms of the singular values (σ1, σ2, σ3) are used to give the best

three-term approximation to Y (z, t), capturing more than 90 percent of the total

oscillation energy . The modal contribution of the first three dominant modes are

computed for both increasing and decreasing flow speed cases. Figure 5 shows the

contribution of first, second and third POMs in the CF and IL directions computed

from the measured response time histories.

Figure 5 shows that as the flow speed increases, the first mode in the CF

direction is dominant for nominal reduced velocities up to 14 with a contribution
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of approximately 85% of the total response. The second mode becomes dominant

above a nominal reduced velocity of 14 with approximately 75% contribution to

the total response. With decreasing flow speeds, the CF response displays a dom-

inant second mode for nominal reduced velocities greater than 10.5, with the first

mode only becoming dominant for nominal reduced velocities lower than 10.5. The

nominal reduced velocity at which the dominant mode transitions from first mode

to second mode is the same as the transition point observed between a large am-

plitude response and small amplitude response in Figure 3. In this case, the third

mode in the CF direction is not excited for the region of flow speeds tested.

Figure 5 also shows the modal contributions from the IL response. In con-

trast to the CF response, the IL response indicates a prominent excitation of the

first mode with almost equal contributions of the second and third modes. For in-

creasing flow speeds, when the CF response transitions from first mode to second

mode, the IL response decreases with the first mode contribution and the second

and third mode contributions becomes stronger. The second mode contribution

is slightly stronger than the third mode in the hysteresis region, while the third

mode becomes stronger after the hysteresis region. As the flow speed is decreased,

hysteresis is seen in the first and third mode contributions to the response, however

the second mode follows roughly the same contribution except at one point, where

Vrn = 11.5. In this case, a very different time-dependent response of the cylinder is

observed. This different response is highlighted in the discussion of the cylinder’s

orbital response, demonstrating an unusual condition where the response has a

dominant second mode in both CF and IL directions.

2.3.3 Response in the Hysteresis Region

Four reduced velocities are chosen in order to further characterize the response

of the flexible cylinder in the hysteresis region. Specifically, Vrn = 10.5 and
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14.4 are on the edge of the hysteresis region, just outside the hysteresis region,

while Vrn = 11.5 and 12.6 are in the hysteresis region. These reduced velocities

are chosen as representative points lying across the region over which hysteresis

occurs. Comparisons are made for responses at each reduced velocity for both the

increasing and decreasing flow conditions.

Figure 6 shows the maximum spanwise amplitude response in IL and CF

directions for the chosen reduced velocities in the hysteretic region. One can see

the dominant mode shape of the response, where a dominant first mode shows a

single peak over the span, while a dominant second mode shows two peaks over

the span of the cylinder. For increasing flow speeds, the spanwise response initially

shows a dominant first mode spatial excitation of the cylinder in both IL and CF
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directions. Although the spatial mode resembles the first structural mode, it is

important to note that the frequency response in the IL direction is twice the

frequency as in the CF direction. This is demonstrated with the Lissajous figures,

which show the orbital response of the cylinder at three span locations along the

cylinder. A figure eight orbital response is seen in these cases with the cylinder

moving upstream at the top and bottom of its motion. This response is sometimes

referred to as a counterclockwise orbit [20] since the motion of the top of the figure

eight is clockwise in a left to right flowing current.

When the cylinder response in the CF direction transitions from a domi-

nant first mode excitation to a dominant second mode excitation, the IL motion

transitions from a first mode excitation with twice the CF frequency to a multi-

mode excitation with a prominent third mode component. This can be seen by

three slight bumps in the IL spanwise amplitude response in Figure 6 at the high-

est shown reduced velocity. This multi-mode combination, however leads to very

small, irregular motions in the IL direction.

For decreasing flow speeds, an additional response type is observed for the

single reduced velocity of Vrn = 11.5. At higher flow speeds, the CF spanwise

mode shape is primarily second mode while the IL mode shape is multi-mode. The

dominant frequencies, however, have a ratio of 2:1 (in-line:cross-flow), although

additional frequency content exists in the IL direction. At the reduced velocity

Vrn = 11.5, a transition occurs in the IL direction, where the system takes on

a second mode shape in the IL direction and maintains a second mode shape

excitation in the CF direction. When this occurs, the frequency of oscillation in

both directions becomes equal, with a value 1.5 times the fundamental natural

frequency of the structure. In contrast to the typical figure eight or crescent

shaped motions of a structure undergoing VIV, this response resembles a pedaling
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mode (similar to rotating bicycle pedals), where the anti-nodes of the structure are

rotating with an oval motion and the motion at the anti-nodes has a 180 degree

phase difference.

Figure 6 also shows the phase between in-line and cross-flow motion, θxy. This

phase is illustrative of the orbit shape observed for the cylinder motions over the

span of the cylinder. Consider sinusoidal in-line and cross-flow motions with a

phase shift in the in-line direction:

y = Aysin(ωyt) (1)

x = Axsin(ωxt+ θxy) (2)

The phase angle θxy between the in-line (x) and cross-flow (y) can be computed

using the inner product [21] as long as x and y are synchronized:

θxy = cos−1

(
〈x, y〉
‖x‖‖y‖

)
(3)

The phase between IL and CF motion shows that when a dominant first mode

is excited in both directions, the phase is nearly constant over the span of the

cylinder. When asymmetric modes are excited, however, the asymmetry requires

that the phase between in-line and cross-flow motion changes over the span, as can

be seen at the highest reduced velocities shown. In the case of the pedaling mode,

a significant change in phase occurs since a node exists at the center of the span.

Figures 7, 8, 9, and 10 show the time history of the spanwise response for the

four example test cases in the hysteresis region, for both increasing and decreasing

flow speeds. The frequency content of the spanwise response is also shown. Figure

7 shows the responses for Vrn = 10.5. When the flow speed is increased, the

spanwise response exhibits a standing wave with predominant first mode shape in
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both IL and CF directions. The frequency in the IL direction is observed to be

twice the frequency in the CF direction with some first mode frequency content.

The case for decreasing flow speed shows a similar response. Figure 8 shows the

time history of the spanwise response for Vrn = 11.5. In this case, the increasing

flow speed response is similar to the previous speed, however the decreasing flow

speed demonstrates the pedaling mode, where the IL and CF directions have the

same frequency and both demonstrate a second mode shape. For Vrn = 12.6 (see

Figure 9), the increasing flow speed response is still similar to the previous speeds,

while the decreasing flow speed response demonstrates a second mode excitation in

the CF direction and a multi-mode excitation in the IL direction. The frequency

in the IL direction is closest to the third structural natural frequency. At the

fourth speed of interest, Vrn = 14.4, the increasing and decreasing conditions both

demonstrate similar responses with a dominant second mode excitation in CF and

a multi-mode excitation in IL.

2.3.4 Fluid Force Estimates

Although forces were not directly measured in the experiments, if one assumes

an equation of motion for the body with known structural characteristics, tension,

and body motions, the hydrodynamic forces may be estimated through the equa-

tion of motion [22]. Assuming small body motions, one can treat the cylinder as a

tensioned beam with cross-flow forces described as:

m
∂2y

∂t2
+ b

∂y

∂t
− ∂

∂z

(
T
∂y

∂z

)
+

∂2

∂z2

(
EI

∂2y

∂z2

)
= fy (z, t) (4)

where y is the cross-flow displacement with respect to time, m is cylinder mass

per length, b is the structural damping, E is the modulus of elasticity, I is the area

moment of inertia, t is time, and z is the spanwise spatial dimension. This equation

can only give an approximation of the spanwise hydrodynamic forcing since in
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Figure 7: Time history and frequency content of spanwise response for increasing
and decreasing flow speeds at Vrn = 10.5. First row: Increasing flow speed, CF
spanwise response (left) and CF frequency response (right). Second row: Increasing
flow speed, IL spanwise response (left) and IL frequency response (right). Third
row: Decreasing flow speed, CF spanwise response (left) and CF frequency response
(right). Fourth row: Decreasing flow speed, IL spanwise response (left) and IL
frequency response (right).
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Figure 8: Time history and frequency content of spanwise response for increasing
and decreasing flow speeds at Vrn = 11.5. First row: Increasing flow speed, CF
spanwise response (left) and CF frequency response (right). Second row: Increasing
flow speed, IL spanwise response (left) and IL frequency response (right). Third
row: Decreasing flow speed, CF spanwise response (left) and CF frequency response
(right). Fourth row: Decreasing flow speed, IL spanwise response (left) and IL
frequency response (right).
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Figure 9: Time history and frequency content of spanwise response for increasing
and decreasing flow speeds at Vrn = 12.6. First row: Increasing flow speed, CF
spanwise response (left) and CF frequency response (right). Second row: Increasing
flow speed, IL spanwise response (left) and IL frequency response (right). Third
row: Decreasing flow speed, CF spanwise response (left) and CF frequency response
(right). Fourth row: Decreasing flow speed, IL spanwise response (left) and IL
frequency response (right).
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Figure 10: Time history and frequency content of spanwise response for increasing
and decreasing flow speeds with Vrn = 14.4. First row: Increasing flow speed, CF
spanwise response (left) and CF frequency response (right). Second row: Increasing
flow speed, IL spanwise response (left) and IL frequency response (right). Third
row: Decreasing flow speed, CF spanwise response (left) and CF frequency response
(right). Fourth row: Decreasing flow speed, IL spanwise response (left) and IL
frequency response (right).
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the real non-linear structure, deformation of the body can affect the tension and

structural characteristics of the body. Since the tension is not measured directly,

the tension is assumed to be constant based on the initial tension. This analysis

is not intended to provide accurate force estimates over the span, but rather to

estimate the sign, order of magnitude, and distribution of the excitation/damping

force and added mass.

Assuming the hydrodynamic force acting on the cylinder is a phase shifted

sinusoid and that the body undergoes periodic motion, the linear portion of the

fluid force may be decomposed into the non-dimensional force in phase with ve-

locity, Clv, that governs the excitation of the structure, and the non-dimensional

force in phase with acceleration, Cla that governs the effective mass of the system.

When Clv is positive, there is a positive energy transfer from fluid to the structure

(excitation) whereas when Clv is negative, energy is transferred from structure to

the fluid (damping). Knowing the motion of the body and spanwise non dimen-

sional force Cl, as determined from Equation 4 and 5, the forces in phase with

acceleration and velocity may be computed according to the inner product [23]:

Cl(z) =
fy(z, t)

1
2
ρU2LD

(5)

Clv =

√
2

T

Cl(t) · ẏ(t)√
ẏ(t) · ẏ(t)

(6)

Cla =

√
2

T

Cl(t) · ÿ(t)√
ÿ(t) · ÿ(t)

(7)

where T is the window length of the inner product and Cl is the non-

dimensional lift coefficient. The same form of equations may be applied for de-

termining force coefficients associated with IL motions using the fluctuating force
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component in the IL direction to determine Cdv. The added mass coefficient for

each point along the length of the cylinder is computed by equating the force in

phase with acceleration to an effective added mass times acceleration of the body,

which gives Equation 8. Again, a similar formulation may be applied to compute

the added mass coefficient in the IL direction, Cmx.

Cmy =
−ClaV r2D

2π3Ay
(8)

Figure 11 shows the variation of computed force and added mass coefficients

along the length of the cylinder for the same reduced velocities in the hysteresis

region. For the lowest reduced velocity, the lift and fluctuating drag in phase

with velocity are symmetric over the length of the cylinder, consistent with the

symmetric excitation at the first mode shape. When the cylinder transitions to a

second mode excitation in the cross-flow direction, the lift in phase with velocity

shifts to being negative at one end of the cylinder and positive at the other end.

This indicates that the power in region for the cylinder shifts with the change in

mode. The fluctuating drag in phase with velocity shifts from a first mode shape

to a symmetric shape similar to a third mode.

The added mass in both the in-line and cross-flow directions show relatively

large magnitudes, which may not be realistic due to an under resolved calculation

of the spatial derivatives of the cylinder, however the signs of the added mass and

relative distribution of the added mass seem reasonable and are consistent with

the observed dynamic behavior of the system. It should be noted that in the

in-line direction, the added mass is always negative, except for the single case of

Vrn = 11.5 for decreasing flow speeds, when the system undergoes the pedaling

mode. For this case, since the in-line response is very similar to the cross-flow

response, the distribution and magnitude of the in-line added mass is similar to
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the cross-flow added mass distribution. In contrast, when the structure undergoes

first mode excitation in both directions, the added mass is observed to be nearly

constant over the length of the cylinder.

2.4 Discussion

Two significant observations may be made from the present experiments: 1)

a strong hysteretic effect is observed in the response of the flexible cylinder and

2) a limited asymmetric response of the structure is seen in the in-line direction.

These two behaviors are unusual based on observations from previous experiments,

however an understanding of the differences between the present experiments and

previously observed systems are crucial in understanding the observed excitation

of a flexible cylinder in a uniform free-stream.

2.4.1 Hysteretic Effect

Prasanth et al. [9] gives a systematic characterization of hysteresis based on

blockage ratio for a rigid cylinder in a uniform free stream. The study shows how

hysteresis is affected by Reynolds number, blockage ratio, and mass ratio, demon-

strating regions where hysteresis will or will not occur for different combinations

of parameters. In the present experiments, the structural characteristics of the

test cylinder were chosen such that the cylinder lies in the middle of the “no-

hystersis” region identified by Prasanth et al. [9], however hysteresis still occurs.

Additionally, Prasanth et al. [9] compares this systematic study with several flex-

ible cylinder experiments that show consistent hysteresis effects with the mapped

hysteresis regions. The question then remains as to why the present experiments

demonstrate hysteresis while the mapped response regions from Prasanth et al. [9]

predict that no hysteresis should occur.

The simulations performed by Prasanth et al. [9] were for an elastically
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mounted rigid cylinder. In the case of a rigid cylinder, the observation of hys-

teresis is related to the transition of the wake, as the wake switches from ‘2S’ to

‘C(2S)’ modes such that the phasing between the motion of the structure and the

wake-induced force changes. Delay of this mode transition results in a delay in the

change of the amplitude response as flow speed is changed, and Prasanth et al. [9]

demonstrates how this response is related to blockage and mass ratio. When the

cylinder is flexible, however, mode transitions may occur for the structure in ad-

dition to mode transitions in the wake. In the case of Brika and Laneville [10], the

flexible structure is pinned in such a way that only the first mode of the structure

is excited in the experiment. The experiment very closely resembles the response

of a rigid cylinder and follows the hysteretic behavior predicted by Prasanth et al.

[9].

In contrast, the present study shows a hysteretic response that is related to

the transition of the fluid coupled structural mode that is being excited, which

could not previously be observed in the response of a rigid cylinder. As shown in

Figure 5, hysteresis in the present study is related to the transition between the

first and second modes in the cross-flow direction. This is fundamentally different

than the hysteresis observed in Prasanth et al. [9], since the transition is not only

related to a change in the wake or the phasing of forcing on the structure. It must

be noted that flow visualization was not performed in the present study, and since

this study shows the response of a fluid-structure coupling, there is likely some

resulting change to the wake associated with the observed hysteresis that could

not be observed. Additional parametric studies like the comprehensive study of

Prasanth et al. [9] may be necessary to fully characterize hysteretic behavior in

flexible structures undergoing vortex-induced vibrations.
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2.4.2 Limited Asymmetric Response

The second main observation from the present experiments is that in uniform

flow conditions, asymmetric modes, such as the second mode, are not observed

to be easily excited, and a strong asymmetric mode in the in-line direction is

only observed to exist in very limited conditions, dependent on the response in

the cross-flow direction. Vandiver and Jong [4] observed an interesting behavior in

field experiments on a taut cable undergoing vortex-induced vibration in a uniform

current, where when the cross-flow motion of the test cylinder was excited at the

second mode, the in-line motion was observed to have a third mode shape excited

at the fourth mode frequency, rather than excitation of the fourth mode shape.

This is attributed to an inertia controlled response and is explained based on the

distribution of loading in the drag direction. Since the distribution of the drag

load in a uniform current is symmetric over the structure, it will not excite an

asymmetric mode and instead a forced motion at the next lower symmetric mode

occurs. The same behavior is observed in the present experiments for nearly all

cases, however the hysteretic region displays one flow condition that differs from

this behavior.

For decreasing flow speeds in the hysteresis region, Figure 6 shows one condi-

tion where both the cross-flow and in-line modes are excited with a second mode

shape at a frequency directly in between the first and second structural mode nat-

ural frequency. This case is likely a marginally stable dynamic condition, where

the added mass in each direction drives the excitation frequency to have a value

of f ∗ = 2. Since this condition is only observed for a single experimental test case

and flow visualization was not performed for the test case, it is unclear exactly how

this particular mode excitation is chosen by the system, although slight changes

to the flow speed, result in a dramatically different system response. The resulting
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“pedaling” mode was only observed to be present for decreasing flow speeds in the

hysteresis region, however it was observed to be repeatable by repeating the exper-

iment four times at this speed, and it may be possible that this response is a result

of the non-linear system transition that occurs from a low amplitude response to

a high amplitude response as the flow speed decreases. Further detailed analysis

of the full dynamic system would be necessary to demonstrate this.

Although an asymmetric response is observed to be limited in the present

experiments, other experiments on flexible cylinders have noted significant asym-

metric mode excitation when undergoing a uniform current. Sanaati and Kato

[24] shows significant excitation of the fourth mode in the in-line direction with

a second mode cross-flow excitation for a horizontally towed flexible cylinder in

a uniform current. In this case, the aspect ratio of 200 is much larger than the

present experiments. Additionally, small asymmetries to the experimental setup

may lead to excitation of even modes as well. For example, orienting the same

cylinder as in the present experiment vertically in the flow channel, such that the

cylinder intersects the free surface would induce a slight asymmetry to the loading.

It is expected that such an orientation would result in a different system response

that may include more contribution from even modes. Similarly, loading of the

flexible structure in a sheared flow would introduce asymmetry to the excitation

force, leading to excitation of even modes.

The presence of different mode combinations also appears to have a significant

effect on the structural response, at least for the low mode number experiments in

the present experiment. For example, as the second mode is excited in the cross-

flow direction, the response becomes much smaller with significantly less excitation

in the IL direction. This is significant, since large figure eight type responses

are connected with significantly larger high harmonic forces acting of the body
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[20], which have the potential for increasing fatigue damage on structures [25].

This would imply that some mode excitations may be more susceptible to higher

harmonic forcing than others.

Finally, although the presented force estimations have error due to calculation

of derivatives based on limited spatial measurements over the length of the cylinder,

the sign and relative distribution of forces are consistent with the observed motions

of the body. For example, as the second mode in the cross-flow direction becomes

excited, it is necessary for an asymmetry to exist in Clv, since one side of the

cylinder must act as an energy source and the other side must act as a sink to

balance excitation and damping over the span [26]. This behavior is observed

where for first mode excitation, Clv is only negative for the large peak motions

at the center of the cylinder, taking on a symmetric distribution, while for second

mode excitation, Clv varies from negative to positive over the length of the cylinder,

taking on an asymmetric distribution.

2.5 Conclusion

For the present experiments, a transition in the amplitude of the response of

a flexible cylinder undergoing vortex-induced vibrations is shown to be related to

the transition between fluid coupled structural modes excited by the flow. For

increasing or decreasing flow speeds in a recirculating water channel, the transition

is observed to occur at different flow speeds, indicating hysteresis in the response.

It is shown that the hysteretic response associated with the modal excitation of the

tensioned flexible cylinder undergoing vortex-induced vibrations is a function of the

spanwise mode transition of the structure as opposed to a pure mode transition in

the wake. A mode transition in the wake likely occurs in concert with the observed

structural transition, however wake measurements were not made in the present

experiments, so mode transitions in the wake were not quantified. Estimates of
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the hydrodynamic forces based on a simple model system equation show that

transitions in the sign of the effective added mass of the system and distribution of

excitation forces are consistent with phasing changes in the force associated with

transitions in phasing of the relative motion of the body and vortices in the wake.

Additionally, it is observed that the cylinder does not demonstrate excitation

of even modes in the in-line direction when undergoing a uniformly distributed

drag loading. This is consistent with previously published observations, indicat-

ing that asymmetric modes are not typically excited under symmetric loading of

the structure. In the hysteresis region, a single instance is observed where the

asymmetric second mode is excited in the in-line direction in combination with

the asymmetric second mode being excited in the cross-flow direction. This results

in a “pedaling” mode, where both directions are excited at the same frequency

and the anti-nodes oscillated with a slanted oval motion 180 degrees out of phase

with one another. This single instance is hypothesized to be an intermediate re-

sponse condition within the transition of the non-linear dynamic system from low

amplitude response to higher amplitude response in the hysteresis region.
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2.6 Appendix A. Proper Orthogonal Decomposition (POD)

This appendix explains how the POD method is applied in the current study.

Consider Y (z, t) to be the time dependent motion response data set in the CF

direction, where z is the spanwise spatial coordinate. The motion response can be

approximated as a modal sum as follows:

Y (z, t) ≈
N∑
k=1

ak(t)Φk(z) (9)

where,ak(t) is the modal contribution matrix (weights of the spatial modes),

Φk(z) is the spatial modal shape matrix, k is the mode number and N is the total

number of modes.

Equation 9 is a discrete approximation of the modal decomposition of the

signal Y . This discrete approximation can be computed using singular value de-

composition (SVD). The signal Y can be decomposed as:

Y (z, t) = UΣV T (10)

where U is an M × M orthogonal matrix representing the proper orthogonal

modes (POM), V is an N × N orthogonal matrix representing the time evaluation

of the signal, and Σ is an M × N diagonal matrix of the singular values of Y

representing the energy captured in each POM.

Using the POD, one can approximate the full rank N data matrix using the

singular values Σ (σ1, σ2, ..., σk) and find a low dimensional rank k matrix (where

k � N) of the original matrix to represent the total motion with a certain accuracy.

The accuracy of the approximation depends on the matrix of Σ. This matrix

is representative of the energy captured by the kth singular vector and can be

used to compute the contribution of each mode to total motion, where Ek is the

percentage of energy associated with the kth mode.
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Ek =
σk

2∑N
i=1 σi

2
(11)
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Abstract

The modal structure of a tension-dominated flexible cylinder undergoing

vortex-induced vibrations in a uniform current is investigated through multivari-

ate analysis. Experiments are performed in a recirculating flow channel where a

flexible cylinder is mounted across the flow channel and subjected to a uniform

current. The cylinder response is measured using motion tracking with two high

speed cameras, allowing for the measurement of both in-line and cross-flow motions

of the cylinder. The recorded motion of the cylinder is analyzed in its measured

phase space using smooth orthogonal decomposition (SOD) and proper orthogonal

decomposition (POD). Both decompositions show that most of the motion energy

is captured in a six-dimensional subspace; however, the corresponding modal struc-

tures are different between the decompositions. While SOD-based modes are per-

sistent regardless of whether the flow speed is increasing or decreasing, the POD

modes do not maintain this consistency. For example, the dominant (i.e., most

energetic) POD mode appears to be dependent on the hysteric response, leading

to a different mode shape depending on whether the flow speed is undergoing an

increase or decrease. This inconsistency leads to a variability in the modal en-

ergy that is affected by hysteresis if the POD method is used. Modal frequency

response curves show the corresponding variance of the modal response versus the

reduced flow velocity. SOD-based plots show hardening spring behavior in the first

mode oscillations, which are dominant at low reduced velocities and have negligible

amplitude at high reduced velocities. Second mode oscillations are negligible at

low reduced velocities but undergo subcritical Hopf bifurcation at higher reduced

velocities. The associated hysteresis behaviors are observed over the same range of

reduced velocity values for both modes. POD analysis also detects this behavior,

but it is less pronounced and leaks into higher-order modes.
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3.1 Introduction

Vortex-induced vibrations (VIV) are a self-limiting fluid-structure interaction

caused by vortex shedding in the wake of a flexible structure. The coupling of the

flexible structure’s wake with the motion of the structure can lead to a wide band

motion response and large amplitude motions that can contribute to fatigue dam-

age in many engineering applications (e.g. bridges, marine cables, risers, transmis-

sion lines, heat exchangers, etc.). A significant volume of work has been devoted to

understanding this problem, particularly through simplifications studying the in-

teraction of single-degree-of-freedom, elastically-mounted rigid cylinder subjected

to a cross-flow as discussed in a variety of reviews [1, 2, 3]. Sarpkaya [1] discusses

the significant complexities of the problem in continuous systems, highlighting

the large number of factors that contribute to this fluid-structure interaction in a

continuous system.

Recent studies have illustrated the significance of studying combined IL and

CF motion of continuous structures, due to the presence of large high-harmonic

forces associated with figure eight type motion of a continuous structure’s cross-

section [4, 5], which can significantly contribute to fatigue damage in structures.

While a large number of studies on continuous, flexible structures have character-

ized the multimode response of flexible structures undergoing VIV in field exper-

iments [6, 7, 8, 9] and laboratory scale experiments [10, 11, 12, 13], the analysis

of the structural mode response has often been limited to a linear Fourier analysis

of the system. While a Fourier analysis of structural modes in this highly nonlin-

ear phenomenon can give a base estimate of the dominant response shapes and a

characterization of the multiple frequency response of the system, these methods

are not capable of characterizing the general underlying nonlinear behavior of the

system. This is particularly important where the interaction of specific modes in
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the IL and CF direction may result in a different overall nonlinear behavior of the

structure.

The present study aims to characterize the nonlinear response of a low-mode

and low-mass ratio flexible cylinder, particularly when highly nonlinear behaviors

(e.g., hysteresis) appear in the overall response of the system. A tensioned, flexible

cylinder placed in a uniform free stream is used as the test apparatus, while mul-

tivariate analysis is used to characterize the underlying nonlinear behavior of the

continuous system. The multi-mode dynamic response of the cylinder is analyzed

in its phase space using smooth orthogonal decomposition (SOD) as described in

[14] and compared with traditional proper orthogonal decomposition (POD) to

illustrate the importance of using empirical modes in characterizing the nonlinear

response of the system. Since the fluid-structure interaction in VIV is inherently

nonlinear, there is no physical basis to argue that the modal response of the cylin-

der must consist of sinusoidal Fourier modes. These multivariate data analysis

methods allow for the determination of the empirical spatial mode shapes associ-

ated with the energy in the system, with the first mode being the most energetic

and so on. Applying both decomposition methods reveals that most of the motion

energy is captured in a six-dimensional subspace of the phase space. More in-

terestingly, SOD-based decomposition clearly identifies the hardening spring type

behavior and subcritical Hopf bifurcation in first and second mode oscillations,

respectively; whereas POD analysis also detects this behavior, but it is less pro-

nounced and leaks into higher-order modes.

3.2 Experiments in Flow Channel

Experiments were carried out in a re-circulating flow channel at the University

of Rhode Island. The flow channel has a cross section of 38 × 48 cm and gener-

ates uniform flows up to 1 m/s. Fig. 12 shows a schematic of the experimental
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Figure 12: Left image: Schematic of the experimental setup; (a) Top view. Camera
1 is located in front of the flow channel; (b) Side view of cylinder cross-section.
Camera 2 is located underneath the flow channel. Flow is from left the right. Right
image: Priori RMSE Amplitude response for increasing and decreasing Reynolds
number values. Red boxes show different amplitude responses obtained (c) in CF
and (d) in IL respectively.

setup. The cylinder was placed horizontal to the incoming flow, and marked with

25 evenly spaced white dots to capture the motion response of the cylinder over

the entire length. Two Vision Research Phantom V-10 high speed cameras were

used to capture high speed video of the vibrating cylinder at a frame rate of 250

frames per second. One of the cameras was placed behind the flow channel to

measure CF motion of the cylinder and the second camera was placed underneath

the flow channel to measure IL motion of the cylinder as shown in Fig. 12.

Table 4: Test cylinder and experimental

parameters

Variable Values Units

D 6.35 mm
T 0.15 N
fn 3 Hz
U 0.1–0.54 m/s
Re 650–3500 –
m∗ 3.76 –
AR 41 –

ProAnalyst motion tracking soft-

ware was used to track the dot fea-

tures in the video using the cross-

correlation of subsequent images to

track the markings on the test cylin-

der. The flow speed in the water chan-

nel was varied between 0.1–0.54 m/s.

Separate measurements were made for

increasing and decreasing flow speeds

in the flow channel to observe potential hysteric behavior of the system. The right
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image in Fig. 12 shows the RMSE amplitude response for increasing and decreas-

ing nominal reduced velocity, Vrn = U/fnD. This plot shows there is a region

where the system undergoes different oscillation amplitudes and a different modal

response depending on whether the speed is increasing or decreasing, indicating

hysteresis. Physical characteristics of the test cylinder are shown in Table 1 and a

more detailed description of the experimental system can be found in Gedikli and

Dahl [15].

3.3 VIV Modes and Multivariate Analysis

In linear modal analysis, a simply supported flexible beam can be shown to

have sinusoidal spatial mode shapes corresponding to the natural frequencies of

the continuous system, with a first mode shape appearing as a half sine, a second

mode shape as a full sine, and so on. These mode shapes satisfy the structural

equation of motion for the linearized structural systems; however, in fluid-structure

interaction problems where a dense fluid surrounds a light structure (i.e. low mass

ratio systems), the interaction of the fluid wake with the vibration of the structure

leads to large variability of the mass, damping/excitation, and stiffness properties

of the total fluid-structure system, such that the effective resonant properties of the

system may change with the excitation provided by the fluid wake [15]. This highly

nonlinear behavior alters the resonant behavior of the system as the linear Fourier

modes of the system only account for the structural properties of the system and

do not account for fluid effects on the system response frequencies and modes. If

the system is nonlinear, as in VIV, the modal response of the system will be altered

by the interaction with the fluid wake and characterization of the modal response

will require an analysis of the empirical modes of the system. These empirical

modes do not follow a sinusoidal function shape, however they may resemble to

the linear modes, for example, taking on a shape similar to a half sine or full sine
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wave over the length of the cylinder.

3.3.1 POD and SOD Analysis

For multivariate analysis, the IL and CF motion tracking (ie., displacement)

data X ∈ RM×2N (M indicates the number of total time samples, and N indicate

the number of measurement points) is used to estimate the corresponding IL and

CF velocities V = DX ∈ RM×2N using the forward difference method. The data

is then arranged into a matrix Y = [X, V ] ∈ RM×4N describing the measured

phase space trajectory. The corresponding time derivatives are assembled into

an additional matrix DkY = [DkX,DkV ] ∈ RM×4N , where k is the order of the

differentiation.

POD, at each k-dimensional realization, provides the best possible approxima-

tion to the original matrix Y in the least squares sense. POD of Y can be solved

by its economical singular value decomposition Y = PΣXT , where superscript

T indicates matrix transpose. Columns of PΣ ∈ RM×4N are proper orthogonal

coordinates (POCs), the diagonal matrix Σ ∈ R4N×4N contains singular values

or square roots of proper orthogonal values (POVs), and columns of orthogonal

matrix X ∈ R4N×4N are proper orthogonal modes (POMs).

Geometrically, points in the matrix Y can be pictured as a cloud of points in

a 4N -dimensional space. POD fits the best ellipsoid to this cloud of points in the

least square sense. The directions of the semi-principal axes of this ellipsoid give

the POMs. The squared magnitudes of the semi-principal axes correspond to the

variance of the projected points on the subspace span by the corresponding axes

and represent POVs, which are square of the corresponding singular values of the

matrix Y . Therefore, POD provides an energy optimal order reduction.

SOD identifies projective vectors ψ, such that the corresponding projections

q = Y ψ have minimal roughness and maximal variance. The roughness of the
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projection can be expressed as:

h(ψ; k) = M−1(DkY ψ)TDkY ψ , (12)

where Dk is the kth order derivative matrix based on forward difference. The

choice of k is application dependent, and in the present analysis, k = 3 was used.

The SOD then translates into the following optimization problem:

max
ψ

qT q = max
ψ

(Y ψ)TY ψ, (13)

subject to

min
ψ

(
Dkq

)T
Dkq = min

ψ

(
DkY ψ

)T
DkY ψ (14)

This optimization problem is solved by the economical generalized singular

value decomposition:

Y = UCΦT = QΦT , DkY = V SΦT = DkQΦT , (15)

where U and V are unitary, and C and S are diagonal matrices; columns of the

square matrix Φ contain smooth orthogonal modes (SOMs), columns of Q = UC

are smooth orthogonal coordinates (SOCs), λi = Cii/Sii are smooth orthogonal

values (SOVs), and Ψ = Φ−T are smooth projective modes (SPMs) , which are

bi-orthogonal to SOMs.

In summary, SOD identifies the SOM subspaces where the scalar field projec-

tions are maximally smooth. SOMs are linearly independent but not orthogonal

to each other. They span smooth modal subspaces (Y = QΦ). SPMs form a

bi-orthonormal set with SOMs and are used to obtain SOCs (Q = YΨ). These

SOCs are orthogonal to each other (i.e., their covariance matrix is diagonal) and

invariant under invertible linear coordinate transform of data matrices.
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3.4 Results

Gedikli and Dahl [15] initially used POD analysis of the present data set on

the individual CF and IL observed motions, where data recorded at each reduced

velocity value were analyzed individually. It was observed that the dominant

first two empirical modes in CF and dominant first three empirical modes in IL

correspond to∼ 90 % of the total oscillation. This analysis showed that a hysteresis

is observed in the response of the system that appears in the transition between

dominant POD modes of the system.

Here, global POD and SOD analysis is applied to the displacement-time ma-

trix over all experiments and all reduced velocities such that multivariate response

analysis is performed for the total response. POD and SOD are applied to the

whole data record for the entire range of flow speeds, only separating the data by

whether the flow speed was increasing or decreasing. The IL and CF displacements

of each data point along the cylinder’s span were concatenated into one large data

matrix YM×4N where M now represents the total time samples and N represents

the total displacement points.

Energy fraction is calculated using both POD and SOD methods and shown

in the left plot in Fig. 13 as a function of subspace dimension for increasing and

decreasing flow speeds. Calculated motion energy shows that the sum of the first

six modes corresponds to more than 95% of the total system response.

The subfigures on the right in Fig. 13 show the first six global POMs and

SOMs. POD decomposition shows that the first dominant POM in CF resembles

a full sinusoidal shape (corresponding to the second structural mode) and the

second dominant POM in CF resembles a half sinusoidal shape (corresponding to

the first structural mode) for both increasing and decreasing flow speeds. This

is unusual, since a frequency analysis of the response indicates that the system
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Figure 13: Left Plot: Motion energy fraction versus subspace dimension. Right
Plots: First six dominant global SOMs and POMs for all tested reduced velocities:
(a)–(f) show the SOMs, and (g)–(l) show the POMs.
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Figure 14: Frequency response function of first four dominant components as a
function of nominal reduced velocity using SOD (a,c) and POD (b,d). (a-b) First
two dominant components using SOD and POD. (c-d) Third and fourth dominant
components using SOD and POD, respectively.

oscillates at a frequency near the fundamental natural frequency in the CF direction

for low reduced velocities and transitions to a frequency near the second structural

natural frequency as reduced velocity increases. In contrast, the order of the

decomposed modes in SOD are more consistent with the order of the structural

natural modes. For example, the first and second CF SOMs resemble the first

and second structural natural modes, respectively. In both cases, the relative

contribution of the IL motion is very small, and higher order POMs and SOMs

demonstrate higher frequency components or asymmetrical structures that have

significantly less energy content.

Figure 14 illustrates the decomposed frequency response functions as a func-
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tion of nominal reduced velocity for the first four dominant modes using SOD

(a,c) and POD (b,d). From SOD, as the nominal reduced velocity increases, the

dominant first mode (Fig. 3(a), blue circles) variance increases until the reduced

velocity of V rn = 14, where it suddenly drops below 0.5. When the flow velocity

decreases, the first SOC amplitude stays near 0.5 until V rn = 11 (see Fig. 3(a);

yellow squares), before jumping to a larger amplitude. This hysteresis loop asso-

ciated with the first SOC mode reproduces a typical hardening spring frequency

response behavior. In contrast, with increasing flow speed, the second dominant

SOC amplitude (see Fig. 3(a); red circles) stays close to zero until the jump in

amplitude at V rn = 14. For decreasing flow speeds a drop in amplitude of the

second SOC (see Fig. 3(a); purple squares) is observed at V rn = 11. This hysteric

behavior in the second SOC corresponds to a subcritical Hopf bifurcation type of

structural response, where the system transitions from a stable point to a limit

cycle. For both first and second modes, there is an unstable region in between the

reduced velocities of 11 and 14, where depending on the increasing or decreasing

flow speed, the system can experience two different responses. This is significant

since this hysteresis is observed in the first two empirical modes of the system, but

the type of nonlinear response is different depending on which mode is dominant.

For the third and fourth SOCs (see Fig.14c), the amplitudes stay low and do not

exhibit any hysteric behavior. However, there is small energy leakage from the first

SOC to the third SOC when the flow speed is increased. In the present experi-

ments, limitations of the experimental apparatus prevented observations of similar

bifurcations that may occur for higher mode transitions since the flow speed did

not reach high enough velocities to generate vortex shedding frequencies near the

third structural mode in CF.

The POCs are also shown in Fig. 14(b,d) for both increasing and decreasing
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flow speeds. The POD results are similar to SOD, however the ordering of the

dominant modes are switched as mentioned previously. POD does still capture

the same hysteric behavior of the first two modes; however, there is significant

energy leakage from the second POC to the third for both increasing and decreasing

speeds, leading to increased magnitude of the third mode. This energy leakage is

also apparent in Fig. 13 where second and third POMs both resemble to a half

sinusoidal shape, whereas second and third SOMs are distinctly different. This

leakage is observed in the fourth mode as well, indicating that the POD method

is not independently separating the physical CF response in the second mode

from the other lower modes, which leads to the reordering of modes as compared

with the SOD method. In addition, all the POD modes show gradual increase in

the amplitude, while SOD modes do not for the third and higher modes. As a

final remark, SOD method surprisingly captures a real physical characteristic of

pedaling motion [15], which is the single peak in Fig.14(c); however, POD method

is not able to capture this particular case. In this particular case, cylinder in IL

and CF directions have the same frequency and both demonstrate a second mode

shape.

3.5 Summary and Conclusion

The multivariate methods such as POD and SOD identify underlying nonlin-

ear response behavior that is present in the tensioned flexible cylinder undergoing

VIV. Different than local POD analysis, global multivariate analysis provides more

insight into the physical dynamics underlying the overall response behavior as a

function of frequency. For example, global SOD analysis clearly identifies bifurca-

tions and the hysteretic region associated with those bifurcations in the first two

modes, whereas global POD analysis cannot limit the corresponding bifurcation

curves to just the first two dominant vibration modes, due to energy leakage into
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high mode components. SOD is more suitable to define the hysteresis loops and

the corresponding bifurcations in the current problem. In the present experimental

study, where multiple structural modes are present, it was found that with increas-

ing and decreasing flow speed, there is a significant bifurcation region which causes

system to have different responses, dependent on which mode is excited, that may

not be predicted using a standard structural modal analysis of the system. Be-

ing able to clearly identify unstable regions and the corresponding bifurcations is

of utmost importance to the development of the reduced-order models capable of

predicting these types of fluid-structure interactions.
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Abstract

The structural mode excitation of bending-dominated, flexible cylinders un-

dergoing vortex-induced vibrations is investigated using multivariate analysis of

the excited empirical modes. The response of the bending-dominated cylinders

is compared with the response of a tension-dominated cylinder using the same

analysis technique. Experiments were conducted in a recirculating flow channel

with a uniform free stream with Reynolds numbers between 650 and 5500. Three

bending-dominated cylinders were tested with varying stiffness in the cross-flow

and in-line directions of the cylinder in order to produce varying structural mode

shapes associated with a fixed 2:1 (in-line:cross-flow) natural frequency ratio. A

fourth cylinder with natural frequency characteristics determined through applied

axial tension was also tested. The spanwise in-line and cross-flow responses of the

flexible cylinders were measured through motion tracking with high-speed cam-

eras. Global smooth-orthogonal decomposition was applied to the spatio-temporal

response for mode identification. Measured responses are compared with the ana-

lytic response of a beam subjected to a uniform periodic loading. Both the analytic

and experimental results show that for excitation of low mode numbers, the cylin-

der is unlikely to oscillate with an even mode shape in the in-line direction due

to the symmetric drag loading, even when the system is tuned to have an even

mode at the expected frequency of vortex shedding. In addition, no mode shape

changes were observed in the in-line direction unless a mode change occurs in the

cross-flow direction, implying that the in-line response is a forced response depen-

dent on the cross-flow response. An even mode oscillation (i.e. second mode) in

the in-line direction is observed to be excited in the tensioned cylinder, however

this is only observed in a hysteretic response region. The results confirm obser-

vations from previous field and laboratory experiments, while demonstrating how
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structural mode shape is affected by vortex-induced vibrations.

4.1 Introduction

The vortex-induced vibration (VIV) of long, flexible structures is a complex

problem due to the large number of variables that can contribute to the coupled

response of the structure with the surrounding fluid [1]. While a significant number

of experimental studies have been devoted to characterizing the fundamental fluid-

structure interaction for an elastically mounted rigid circular cylinder undergoing

vortex-induced vibrations [2, 1, 3, 4], the spanwise effects of flexible structures

have been more difficult to quantify due to the complexity of additional variables

associated with flexible, continuous systems that are capable of multi-modal re-

sponses.

In the single degree of freedom spring-mass-dashpot model for vortex-induced

vibrations, the forcing function resulting from vortex shedding may be represented

as a phase shifted harmonic function to the first order approximation [1]. Assuming

a sinusoidal response to the system, one can show that the amplitude and frequency

of a cylinder undergoing vortex-induced vibrations in purely cross-flow excitation

are functions of the motion of the cylinder and the resulting forces acting on the

cylinder in phase with the acceleration and velocity of the body. The force in phase

with acceleration alters the effective mass of the system, while the fluid force in

phase with velocity alters the effective damping of the system. Since these fluid

force terms are functions of the motion of the body, the frequency at which the

body oscillates may constantly change in time, however this frequency is often

fairly constant when observed in laboratory experiments. Using integral quantities

of the forces in phase with velocity and acceleration, one can consider the system

to have an effective natural frequency that is dependent on the fluid force in phase

with acceleration.
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In contrast to a single degree of freedom system, the natural frequencies of a

continuous system are not only related to the stiffness and mass of the physical

structure, but also are dependent on the particular spanwise shape of the oscil-

lating structure. For example, an infinite string contains an infinite number of

natural frequencies with each frequency corresponding to a particular spanwise

shape. In VIV, the relative motion of vortices shed from the structure in rela-

tion to the motion of the body determines the phasing and magnitude of forces

exerted on the body, hence for a continuous structure, the particular shape of the

structure oscillation must have an effect on the resulting forces exerted on the

structure. If we model a continuous system undergoing VIV similar to the 1 DOF

system undergoing VIV, this would imply that the mode shapes corresponding to

particular natural frequencies of the structure must be excited when that natural

frequency is excited (or slightly modified by the added mass). The problem with

this assumption is that since the fluid forces are dependent on the body oscillation

and vice versa, there is no guarantee that the resulting fluid forces will drive a

motion that is consistent with the analytic structural mode shape in a vacuum.

This paper attempts to systematically test the effects of vortex-induced vibrations

on the expected modal response of a flexible body by tuning several beams to have

specific frequency properties for specific structural mode shapes. The purpose of

these experiments is to illustrate differences in the response of a flexible struc-

ture from an elastically-mounted rigid structure due to the spanwise excitation of

the flexible structure. Comparisons are made with a bending-dominated structure

and tension dominated structure, with the modal response analyzed empirically

through multivariate analysis.

The complexity of the flow-induced vibration of flexible cylinders is evident

in the variety in the types of responses that are observed for these types of struc-
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tures. For instance, the flow-induced vibration of flexible structures may undergo

complex three-dimensional vibrations, experiencing traveling waves [5] and chaotic

motions [6]. Sarpkaya [7] discusses such complexities and effects of additional

VIV parameters on the dynamic response. A variety of studies on marine risers

[8, 9, 10, 11] have shown that long, flexible structures exhibit similar forcing from

vortex shedding as that observed for rigid cylinders, where vortex shedding leads

to an oscillating drag force with a dominant frequency that is twice the oscillat-

ing lift force frequency. The laboratory experiments conducted by Passano et al.

[12], Huera-Huarte et al. [13] and field experiments conducted by Vandiver et

al. [11], Vandiver and Jong [14] showed that for long flexible structures subjected

to vortex-induced vibrations, it is possible to excite different modes in in-line and

cross-flow directions separately, as observed from the frequency of the response and

reconstructions of the spatial shape of the structure. In particular, Huera-Huarte

et al. [13] examined very low mass ratios ∼1, where the response frequency can

vary significantly due to forcing in phase with the acceleration of the body.

In an effort to model the effects of different modal excitations in flexible cylin-

ders, Dahl et al. [15] investigated the effect of differing natural frequency ratios

(in-line to cross-flow) on an elastically mounted rigid cylinder. The cylinder was

allowed to oscillate both in cross-flow and in-line directions while the natural fre-

quency in each direction was tuned with different values in an attempt to model

a long structure excited with different structural modes in each direction. These

experiments demonstrated response behaviors that consisted of preferred figure-

eight type motions where the cylinder moves upstream at the top and bottom of

its orbital motion, which can contribute to large third harmonic forcing of the

structure in the lift direction [16]. Similar studies by Srinil et al. [17] and Kang

and Jia [18] have demonstrated similar behaviors and expanded understanding of
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frequency ratio effects on a rigid cylinder response for frequency ratios less than

one, where tear drop shape motions may be observed with multifrequency exci-

tation of the structure in the in-line direction. Dahl et al. [19] observed similar

behaviors for rigid cylinders at supercritical Reynolds numbers.

In the studies of Dahl et al. [15] and Kang and Jia [18], the effect of natural

frequency ratio is modeled by tuning natural frequencies on a rigid cylinder, hence

the mode shape of the cylinder does not play a role in the excitation of the body.

A problem persists; however, for a cylinder that may be excited with an odd mode

cross-flow and an even mode in-line. For example, consider a tensioned infinitely

long string, where the natural frequencies are multiples of a fundamental frequency.

If the first mode of the structure is excited in the cross-flow direction and the second

mode with twice the fundamental frequency is excited in the in-line direction, the

anti-nodes of the second mode may move with a figure eight orbital pattern under

the right flow conditions. However, since the mode shape in the in-line direction

is a sine curve, the two anti-nodes must move in opposite directions, with one

figure eight moving downstream at the top and bottom of the orbit (referred to

as clockwise motion in the literature) and the other moving upstream at the top

and bottom of the orbit (counter-clockwise motion). The observations from Dahl

et al. [16], indicate that there is a natural preference for the figure eight to move

upstream at the top and bottom of the orbit, so if these frequencies of the structure

are truly excited, which anti-node, if any, will move with this motion?

In the present study, several low mode number flexible cylinders are designed

and tested to understand the dynamic relationship between the cylinder’s struc-

tural characteristics and the modal response. Assuming that one can control the

modal response of a flexible cylinder by controlling the structural characteristics

(this is a significant assumption since the fluid-structure interaction will inherently
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change these effective properties), it is possible to excite the flexible cylinder with

a particular mode shape. For example, in the present experiments, a long rect-

angular shaped beam (aluminum or plastic) with a particular cross-section and

material characteristics is used to tune the structural mode characteristics, en-

couraging the cylinder to oscillate with a desired mode shape when the frequency

of that particular mode shape is reached by anticipating the forcing frequency in

the in-line direction to be twice the frequency in the cross-flow direction.

Under these conditions, one may expect a cylinder to oscillate with first mode

shape (half sinusoidal) when it is excited with a forcing function at the first mode

frequency, and second mode shape (full sinusoid) when it is excited with the second

mode frequency; however, if the flow is uniform, can even modes (asymmetric

modes) in the direction of fluid flow be truly excited? Vandiver and Jong [14] argues

that these modes will not be excited due to the distribution of forcing function. If

these even modes cannot be excited, what body motions will be observed and which

frequencies will dominate the motion? The present paper aims to systematically

understand this behavior through a set of experiments using specifically crafted

model cylinders. Three different rectangular shaped plastic beams are designed

and molded in the center of a flexible urethane cylinder in order to create three

cylinders with specific structural mode shape properties with a fixed 2:1 frequency

relation between the in-line and cross-flow directions. The cylinders are placed in

a uniform flow to observe the resulting response over a range of reduced velocities.

The results are compared with experiments for a tension-dominated system [20]

(see Fig. 15a) in which the experimental setup is identical to the current system.

4.2 Methods

Experiments are conducted in a recirculating flow channel that is located at

the University of Rhode Island’s Narragansett Bay campus. The channel test sec-
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tion is glass and also features a downstream viewing window, allowing for visual

motion tracking of the test apparatus within the test section. Tests in the present

study are conducted for flow speeds between 0.1-0.7 m/s, where free surface dis-

turbances due to the operation of the flow channel are not observed.

Figure 15 shows an idealized schematic the test cylinders that are mounted

across the viewing walls of the flow channel. Fig.15(a) shows the tension dominated

cylinder and Fig.15(b) shows the second mode excitation of a bending dominated

cylinder as an example response. Example cross-section of the beam is also illus-

trated in the same figure. In the sketch, T represents the applied tension and U

represents the flow speed. Flow is uniform and moves from left to right.

U

T

T

Suction cup

(a)

Plastic Beam

(b)

U UU

U-joint ball

Suction cup

U-joint ball

Figure 15: Top view of the flow channel. Idealized in-line even mode excitation for
(a) tension [20] and (b) bending dominated cylinder under a symmetric loading.
T is the initial tension applied both ends.

4.2.1 Test cylinders and Experimental Setup

Dahl et al. [19] showed that in combined in-line and cross-flow oscillations,

in-line frequency of motion naturally adjusts to be twice the cross-flow frequency

over a large of non-dimensional flow speeds. The motion of the body can be char-
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acterized by a singular frequency in the cross-flow direction while the in-line has

twice the cross-flow frequency. The beam characteristics in the present study were

chosen so that there would be a 2:1 (in-line to cross-flow) structural natural fre-

quency ratio between the structural mode shapes to be excited. This was achieved

by varying the cross-sectional dimensions of a beam that was then molded inside a

urethane cylinder. To investigate the effects of the combined in-line and cross-flow

spatial modal response, the tuned structure’s in-line mode shape is varied while

keeping the cross-flow structural mode constant. In this case, cylinder 1 is tuned

to have a first mode shape in the in-line direction and first mode shape in the

cross-flow direction with an in-line natural frequency twice the cross-flow natu-

ral frequency. Cylinder 2 is tuned to have a first mode shape in the cross-flow

direction and second mode shape in the in-line direction with the in-line natural

frequency twice the cross-flow natural frequency. Similarly, cylinder 3 is tuned to

have a first mode shape in cross-flow and a third mode shape in in-line with a 2:1

in-line:cross-flow natural frequency ratio as illustrated in Fig.16. Cylinder 4 is a

tensioned rubber cylinder with no beam inside it with characteristics as described

in Gedikli and Dahl [20].

Beam dimensions were chosen assuming a simply-supported tensioned beam

with natural frequencies as below:

fn =

√
EIπ2n4

4ML4
+

Tn2

4ML2
(16)

where E is the elasticity modulus, I is the area moment of inertia, n is the

mode number, M is the mass per unit length, and T is the initial tension applied.

For cylinders 1-3, in the experiments, the applied tension is very small, and the

second term in Eq.16 can be neglected such that:
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fn =
πn2

2

√
EI

ML4
(17)

Beam modeling

In Eq. 17, E, L and M are roughly constant, n varies depending on the

desired mode number, and I varies depending on the orientation of the beam with

respect to incoming fluid flow. Therefore, the area moment of inertia in the in-line

direction and cross-flow direction must be different to achieve the desired frequency

characteristics of the beam. Using Eq.18, one can calculate the required beam sizes

for a specific combination of modes. The calculated cylinder characteristics and

dimensionless parameters are shown in Table 5 for each cylinder.

I =
ML4

E

(
4f 2

s

π2n4

)
, where I → Ix =

bh3

12
, Iy =

b3h

12
(18)

The ideal structural mode shapes for each cylinder with the corresponding

beam orientation are shown in Figure 16.

U

b

h

Transverse

In-Line

Transverse Transverse

In-Line In-Lineb

h

b

h

U U

Cross-section

z

y Cross-section Cross-section

z

x

(i) (ii) (iii)

Figure 16: Idealized mode oscillations. (i) First mode in-line, first mode transverse,
(ii) Second mode in-line, first mode transverse, (iii) Third mode in-line, first mode
transverse. Flow is in the x−direction.

To mount the cylinder in the flow channel, a universal ball joint was attached

to a suction cup on each end of the test cylinder. End-plates were mounted at

the location of the u-joint in order to inhibit flow irregularities at the ends of the

cylinder. The suction cups allowed the test cylinder to be mounted horizontally

in the flow channel by mounting directly to the glass walls. The test cylinders
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Table 5: Cylinder characteristics and dimensionless parameters.

Parameter (Abbrv., Unit) Equation Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4
Cylinder Type - Bending Bending Bending Tension

Cylinder Material - Urethene Urethene Urethene Neoprene
Beam Material - Plastic Plastic Plastic None

Diameter (D,mm) - 6.35 6.35 6.35 6.35
Cylinder Length (L,mm) - 250 250 250 250

In-line beam width (h,mm) - 1.27 2 2.25 None
Cross-flow beam width (b,mm) - 2.5 0.04 0.508 None

Initial Tension (T,N) - - - - 0.15
Blockage Ratio (BR) T/H 1.66 1.66 1.66 1.66

Aspect Ratio (AR) L/D 41 41 41 41
Mass Ratio (m) 4m/(ρπLD2) 1.1 1.05 1.02 3.7

Reynolds Number (Re) UD/ν 1500-5500 1700-5400 1600-4700 650-3500
Sampling frequency (fsamp, Hz) - 250 250 250 250

In-line natural frequency (fIL, Hz) Mode 1 34 7 1.82 3
Mode 2 136 28 7.3 6
Mode 3 306 63 16.4 12

Cross-flow natural frequency (fCF , Hz) Mode 1 17 14 8.2 3
Mode 2 68 56 32.8 6
Mode 3 153 126 73.8 12

were aligned with respect to the still water free surface using a laser. Each test

cylinder was marked with 23− 25 white dots, evenly distributed with spacings of

1 cm along the span. The cylinder motion was captured using two synchronized

Phantom V10 high speed cameras at a frame rate of 250Hz. Motion tracking

software (ProAnalyst) was used to determine the displacement of each data point

in the in-line and cross-flow directions. The program works based on sub-pixel

accuracy where mean position of each data point is tracked with an error margin

less than 1% in all directions. A more detailed description of the experimental

setup and details of the motion tracking routine are documented in [20].

4.3 Amplitude Response

Fig. 17 shows the maximum RMS amplitude response for each tested cylinder

as a function of the reduced velocity. In the figure, top image shows the cross-flow

RMS response and the bottom image shows the in-line RMS response.

As seen in Fig.17, the tension dominated cylinder 4 (red diamond) was ob-

served to have the highest cross-flow RMS amplitude response among all the cylin-

ders tested, reaching a maximum amplitude at reduced velocity of 7.6, near the
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Figure 17: Maximum RMS amplitude response over the span as a function of re-
duced velocity. Colors indicate separate test cylinders. Black circle shows cylinder
1, purple square shows cylinder 2, blue triangle shows cylinder 3 and red diamond
shows the tensioned cylinder (cylinder 4).

highest flow speed tested. Alternately, cylinder 1 (black circle) and cylinder 2

(purple square) reached maximum cross-flow RMS amplitude at reduced velocities

of 6.3 and 6, respectively, over the same range of tested flow speeds. Although the

tests were performed over a similar range of flow speeds with parameters tuned

to achieve similar reduced velocities, cylinder 3 (blue triangle) was observed to

oscillate in a very narrow band region between reduced velocity values of 5.3 and

5.65. The observed maxima in the response curves typically occur at the highest

flow speeds, where additional tests could not be conducted at higher speeds due

to limitations of the flow channel.

The in-line amplitude responses show similar trends to the cross-flow responses

where cylinders 1 and 2 have increasing amplitude responses with increasing re-

duced velocity. However, unlike the cross-flow response, cylinder 1 reaches a higher

amplitude response in the in-line direction than cylinder 2, opposite from the ob-
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served cross-flow response. This is likely due to changes in phasing between the

in-line and cross-flow responses due to the different frequency characteristics of the

beams.

The cylinder 3 response consists of two distinct region of clustered points in

the cross-flow response, indicating two separate types of response. One region lies

in between the RMS amplitudes of 0.25 and 0.35. In this region, the cylinder

oscillates with 2:1 (in-line:cross-flow) frequency ratio and has a typical figure eight

type of response. The second region is apparent between the RMS amplitudes

of 0.1 and 0.2. In this region, the cylinder oscillates with 1:1 (in-line:cross-flow)

frequency ratio, and the response motion resembles a tear drop shape. These

responses are discussed in more detail in subsequent sections.

The cylinder 4 response also consists of two response regions, with the regions

more distinct in the in-line response for reduced velocities in between 7.2 and 7.7.

Unlike cylinder 3, the two response regions in the motion of cylinder 4 is due to a

mode transition and change in response along the span of the cylinder. Below a

nominal reduced velocity of 7.2, the cylinder oscillates with a dominant first mode

in both directions, and above the nominal reduced velocity of 7.2, the dominant

first mode switches to second mode in cross-flow and to some combination of second

and third mode in in-line.

4.4 Frequency Analysis

In this section, the normalized frequency response in the in-line and cross-flow

directions are shown as a function of normalized reduced velocity for each cylinder.

The top two images in Fig.18 show frequencies for cylinder 1 and the bottom

two images in Fig. 18 show frequencies for cylinder 2 in the cross-flow and in-

line directions. In the cross-flow direction, the frequency analysis shows that he

dominant frequency increases with flow speed and does not level off at the natural
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(i)

(ii)

(iii)

(iv)

Figure 18: Frequency spectra as a function of nominal reduced velocity for cylinder
1 and cylinder 2. All spectra are normalized by the respective cylinder’s funda-
mental frequency in the cross-flow direction. (i) Frequency response for cylinder
1 in cross-flow. (ii) Frequency response for cylinder 1 in in-line. (iii) Frequency
response for cylinder 2 in cross-flow. (iv) Frequency response for cylinder 2 in in-
line. Red dashed lines indicate the structural natural frequencies in the respective
directions of each individual plot. Number indicator on right side of plot indicates
which in-line or cross-flow structural mode is associated with that frequency.
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frequency, consistent with observed responses for low mass ratio cylinders. In

addition, there are second and third harmonic frequency components present. In

the in-line direction, the dominant frequency is twice the frequency in the cross-flow

direction for all the flow speeds tested, and there are lower frequency components

present in the response at higher reduced velocities, which may come from bleeding

of the frequency content from the cross-flow direction.

Similar to cylinder 1, the frequency content for cylinder 2 displays a 2:1 (in-

line:cross-flow) dominant frequency ratio that is observed for all flow speeds tested.

There is also higher harmonic frequency content present in the cross-flow direction

at higher reduced velocity. Additional frequency content in the in-line direction

is not observed for cylinder 2. It should be noted that, since all frequencies in

Fig. 18 are normalized by the fundamental natural frequency in cross-flow, then

frequencies can be compared directly across plots, such that the in-line frequencies

are typically observed to be twice the cross-flow frequency. Dotted lines indicate

the structural natural frequencies that were tuned for each cylinder in order to

achieve desired structural mode shapes with specific frequency combinations. For

the cylinder responding with frequency content near a particular dashed line, one

may expect the cylinder to take on the particular structural mode shape associated

with that frequency; however, multivariate analysis of the spatial response of the

cylinders will show that this is not the case, despite the clear presence of a 2:1

frequency relationship between the in-line and cross-flow directions for both of

these cylinders.

Figure 19 shows the cylinder 3 (top two images) and cylinder 4 (bottom two

images) frequency content in the in-line and cross-flow directions normalized by the

cross-flow fundamental natural frequency. Similar to cylinder 1 and cylinder 2, the

dominant frequency for cylinder 3 in the cross-flow direction increases as the flow
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(ii)
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(iv)

Figure 19: Frequency spectra as a function of nominal reduced velocity for cylinder
3 and cylinder 4. All spectra are normalized by the respective cylinder’s funda-
mental frequency in the cross-flow direction. (i) Frequency response for cylinder
3 in cross-flow. (ii) Frequency response for cylinder 3 in in-line. (iii) Frequency
response for cylinder 4 in cross-flow. (iv) Frequency response for cylinder 4 in in-
line. Red dashed lines indicate the structural natural frequencies in the respective
directions of each individual plot. Number indicator on right side of plot indicates
which in-line or cross-flow structural mode is associated with that frequency.
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speed increases without leveling at the structural natural frequency due to the low

mass ratio. Additionally, there are some higher harmonic frequency components

present, although they are not particularly strong in the cross-flow direction. In the

in-line direction, at very low reduced velocity, the dominant frequency is equal to

the frequency in cross-flow up to the nominal reduced velocity of 7.3. For higher

reduced velocities, the dominant in-line frequency becomes twice the cross-flow

frequency. It should be noted that cylinder 3 was designed with the intention of

exciting the third structural mode shape in the in-line direction and first structural

mode in the cross-flow direction. In the in-line direction, the dominant frequency

is never observed to take the third -in-line mode value (at two times the cross-flow

first mode value) where frequency jumps over third mode as flow speed increased.

The system avoids oscillating at this frequency as clearly seen in the frequency

jump that occurs at nominal reduced velocity of 7.3. Instead, the system oscillates

with a lower frequency in the in-line direction, then switches to a higher frequency,

avoiding the third mode altogether. This illustrates the significance of specific in-

line and cross-flow mode combinations, as complex interactions between the wake

and structure can significantly alter the expected response of the system.

The bottom two images in Fig.19 show the frequency spectra for cylinder 4

(tensioned cylinder) which is based on the displacement data from [20]. In contrast

to the three bending dominated cylinders, cylinder 4 shows significant regions with

multi-frequency content. Additionally, it should be noted that the tested range

of reduced velocities for this cylinder was much larger due to the lower natural

frequencies, hence a larger region of the frequency response is shown. In particular,

cylinder 4 displays first and second mode frequency components at the same time

up to the nominal reduced velocity of 14, where the in-line and cross-flow excitation

frequencies start to get close to the second structural mode frequencies. Above a
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reduced velocity value of 14, the cylinder displays different response characteristics

due to a mode change in the cross-flow direction, this is accompanied by a distinct

change in the excitation frequencies, where a jump occurs in the in-line direction.

4.4.1 Dynamic response relationship between in-line and cross-flow

To gain a more complete understanding of the total cylinder response, the in-

line and cross-flow spanwise response, phase angle between in-line and cross-flow

along the span, center point frequencies, and center point Lissajous figures are

given for selected reduced velocities of each cylinder. Phase angle distribution was

calculated using the inner product method as described in Gedikli and Dahl [20].

Cylinder 1

In this case, the test cylinder was tuned to attempt to excite the first structural

mode in both directions (in-line and cross-flow) under a 2:1 (in-line:cross-flow)

excitation frequency.

The frequency response in Fig.18 showed that cylinder 1 vibrates near the

frequency associated with the fundamental modes in both directions. Two separate

flow speed cases are selected to expand on characterizing the dynamic response of

the cylinder. V rn = 4.6 is chosen as the observed response frequencies lie below the

structural first mode frequency and V rn = 6.8 is chosen as the observed response

frequencies lie above the structural first mode frequency, as indicated with the

dotted line in Fig. 18. The spanwise response and Lissajous figures for the center

points are shown in Fig. 20 for both of these cases.

As expected, the cylinder oscillates with a shape similar to a dominant first

mode in both in-line and cross-flow directions. In these cases, the Lissajous figure

at the center point is similar to a figure eight shape with a phase angle close to

zero at the center point of the cylinder, with slight changes to the phase as one
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Figure 20: Spanwise response of cylinder 1, showing the frequency spectrum for the
center point in cross-flow and in-line directions, the maximum spanwise response in
the cross-flow and in-line directions, the computed phase between in-line and cross-
flow motions, and the Lissajous figure of the center point. Top image: V rn = 4.6.
Bottom image:V rn = 6.8.

moves outwards from the center. The figure eight orbital motion of the cylinder is

consistent with the type of motion observed for rigid elastically mounted cylinders

[15]. This is an expected observation, since the excited spanwise mode shape in

the in-line direction was tuned to be the same as in the cross-flow direction in this

case.

Cylinder 2

In this case, cylinder 2 was tuned to attempt to excite the first structural

mode shape in the cross-flow direction and the second structural mode shape in

the in-line direction under a 2:1 (in-line:cross-flow) excitation frequency. Based on

Fig.18, the frequencies of the cylinder response lie very close to the structural mode
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frequencies that the system was tuned to oscillate near. It was expected that the

system would therefore oscillate with a first mode shape in the cross-flow direction

and a second mode shape in the in-line direction. V rn = 5.6 and V rn = 8.6 are

chosen as example points in Fig. 21 to demonstrate the spanwise response when

the oscillation frequency was below or above the tuned structural frequency.
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Figure 21: Spanwise response of cylinder 1, showing the frequency spectrum for the
center point in cross-flow and in-line directions, the maximum spanwise response in
the cross-flow and in-line directions, the computed phase between in-line and cross-
flow motions, and the Lissajous figure of the center point. Top image: V rn = 5.6.
Bottom image:V rn = 8.6.

The sets of images in Fig. 21 show the spanwise response of cylinder 2 at

V rn = 5.6 and V rn = 8.6 along with the Lissajous figures at the center point. At

these flow speeds, a 2:1 oscillation frequency ratio is observed between in-line and

cross-flow motion, as evident in the curved figure eight Lissajous figures. The phase

between in-line and cross-flow motion is observed to be near zero in both cases.
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Of note, is that although the cylinder is excited with a first mode in the cross-

flow direction as expected, the response in the in-line direction is different than

anticipated. Although the frequency of the response in the in-line direction is twice

the frequency of the cross-flow direction, the spanwise shape of the response in the

in-line direction is primarily a first mode type shape, with only slight asymmetries

near the end points. In these cases, the mean deflection of the cylinder due to

drag has been removed, such that these responses only show the magnitude of the

oscillation in the in-line direction.

This behavior was observed to be consistent for all reduced velocities tested,

such that the in-line response of cylinder 2 was never observed to take on a second

mode shape. Since higher speeds could not be tested, it is unclear if this behavior

would hold at speeds where the second mode in the cross-flow direction begins to

be excited. It is important to not, however that based on this case, representing

vortex-induced vibrations as a resonant vibration occurring separately in the in-

line and cross-flow directions would be incorrect, since the second structural mode

shape is not excited. Instead, it appears the the cylinder undergoes a forced in-line

motion, which happens to occur near the second mode natural frequency, but due

to the spanwise uniform loading of the cylinder in drag, the second mode shape

is not excited. This observation is consistent with observations by Vandiver and

Jong [14] where a similar behavior was observed in the field testing of a long cable

in a uniform current.

Cylinder 3

In this case, cylinder 3 was tuned to attempt to excite the first structural

mode shape in the cross-flow direction and the third structural mode shape in

the in-line direction under a 2:1 (in-line:cross-flow) excitation frequency. Since it

was found with cylinder 2 that an asymmetric second mode could not be excited
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under the experimental conditions, it was hypothesized that by tuning the in-line

direction to be excited with a higher odd mode shape, the system may respond

with an excitation resembling the structure natural modes. Analytic modeling of

the structural characteristics for cylinder 3 indicated that the cylinder may pass

through modes up to the fourth structural mode in-line while still exciting the

cross-flow direction with frequencies close to the first mode frequency.

Figure 22 shows the spanwise response of cylinder 3 at three different normal-

ized reduced velocity values, V rn = 7.3, V rn = 8.4, and V rn = 14.1. The lowest

reduced velocity is in a region, as indicated by Fig. 22, where the response fre-

quency in the in-line direction is equal to the frequency in the cross-flow direction.

The other two cases show the response just after the dominant frequency in the

in-line direction switches and the response at the highest reduced velocity tested.

The top image for Fig. 22 shows the response at V rn = 7.32 where the in-line

and cross-flow response frequencies are equal. The Lissajous figure in this case

shows a squished tear drop shape response, where the in-line motion is slightly

larger at the bottom of the orbit than at the top. This type of asymmetric re-

sponse has been observed previously in experiments on elastically mounted rigid

cylinders, where the in-line natural frequency is tuned to have a frequency lower

than the cross-flow natural frequency [18]. Based on the relation between the nat-

ural frequencies of the cylinder in the in-line direction, the frequency of oscillation

for this case ends up being closest to the second mode frequency in the in-line di-

rection, which is equal to the first mode frequency in the cross-flow direction. This

results in a response with frequencies being the same in both directions, although

the second spanwise mode shape is not excited in the in-line direction.

The middle image in Fig. 22 shows the spanwise response of cylinder 3 at

nominal reduced velocity of 8.43 where the cylinder has transitioned to oscillate
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Figure 22: Spanwise response of cylinder 3, showing the frequency spectrum for the
center point in cross-flow and in-line directions, the maximum spanwise response in
the cross-flow and in-line directions, the computed phase between in-line and cross-
flow motions, and the Lissajous figure of the center point. Top image: V rn = 7.3.
Middle image: V rn = 8.4. Bottom image:V rn = 14.1.

with a 2:1(in-line:cross-flow) frequency relation. Figure 19 shows that cylinder os-

cillates with a frequency closest to the third mode in the in-line direction and a

frequency closest to the first mode in the cross-flow direction at this reduced veloc-

ity. Similar to cylinder 2, the expected frequency relation is achieved in exciting
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the response of the cylinder, but again, the spanwise response of the cylinder does

not follow the structural mode shape if the system were undergoing resonance at

these frequencies. The cylinder again displays a spanwise shape similar to a half

sine in both the in-line and cross-flow directions, rather than having a third mode

shape in the in-line direction.

The bottom image in Fig.22 shows the spanwise response of cylinder 3 at

nominal reduced velocity of 14.1. This case is similar to the previous case, demon-

strating a 2:1 frequency relation between the in-line and cross-flow motion, but a

half sinusoid spanwise shape. The resulting cross-flow frequency for this reduced

velocity is directly between the first and second mode frequencies of the structure.

If higher flow speed tests were possible with this setup, it is anticipated that the

second mode of the structure in the cross-flow direction would be excited with the

fifth mode in-line being the closest structural mode to the in-line excitation fre-

quency. With the relatively short span cylinder tested and optical motion tracking

techniques, higher mode excitation of the cylinder is not observed based on obser-

vation, so multivariate analysis techniques are employed to quantify the empirical

mode excitation of the structure.

Cylinder 4 - Tensioned cylinder

Figure 23 shows the spanwise response of cylinder 4 for the increased flow

speed experiments that are the same as in [20]. The top image in Fig.23 shows

the response at V rn = 10.65 and bottom image shows the response at V rn =

18.1. These two reduced velocity values were selected based on the frequency

response shown in Fig.19 where at V rn = 10.65, the test cylinder oscillates with two

dominant frequencies in both the in-line and cross-flow directions. The multiple

dominant frequencies observed for this case are the same in both the in-line and

cross-flow directions and are partly a function of the slight asymmetry in the
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response of the cylinder, as evident in the Lissajous figure. The spanwise response

in both in-line and cross-flow directions demonstrate a first mode shape based

on simple observation of the magnitude fo the spanwise response, although some

asymmetry does exist over the span. Since the dominant frequencies at these flow

speeds lie closest to the first mode of the structure in the cross-flow direction, it

is expected that the spanwise shape in the cross-flow direction resembles a first

mode, however, similar to cylinder 2, the frequency in the in-line direction lies

closest to the second mode, yet the spanwise shape does not strongly demonstrate

a second mode shape.
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Figure 23: Dynamic response of cylinder 4. Top image: Dynamic response at
V rn = 10.65. Bottom image: Dynamic response at V rn = 18.11

The bottom image from Fig.23 shows the spanwise response for cylinder 4

at V rn = 18.1. At this flow speed, the excitation frequency in the cross-flow

direction is close to the second mode structural natural frequency and the response
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in the cross-flow direction has changed to resembling a second mode shape in the

cross-flow direction. The response in the in-line direction appears to have second

and third mode components based on the shape of the response, despite a single

dominant frequency for the response. Multivariate analysis is used to further

elucidate the modal excitation of the structure based on empirical modes.

One important observation from all the cylinders tested, is that even though

cylinder has a frequency that may correspond to a higher structural mode in the

in-line direction (second mode for example), if there is no change in the cross-flow

spanwise mode as flow speed is increased or if the response of the structure is at a

frequency that is closest to the first mode frequency, there is no observed spanwise

mode shape change in the in-line direction. For example, as with cylinder 4, a

change in the shape of the in-line direction response is only observed after the

cross-flow motion has undergone a spanwise mode shape change due to excitation

of a higher structural mode. These results are only observed for the low mode

number flexible cylinders that are tested in the current experiments, however care

has been taken to maintain a uniform current and uniform loading of the structure

in the flow channel by performing the experiments horizontally in the flow channel.

Vertical orientation of the cylinder could introduce asymmetries to the loading

through gravitational effects or effects of the free surface.

In addition to higher modes in the in-line direction being delayed based on

the mode excitation in the cross-flow direction, the present experiments show that

it is difficult to excite asymmetric mode shapes in the in-line direction under a

uniform current loading, although asymmetric mode shapes can be excited in the

cross-flow direction. It is not possible to claim that this observation is true under

all flow conditions, especially since slight asymmetries to an experiment or typical

asymmetries that may exist in a field experiment could possibly excite asymmetric
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modes.

These findings are based primarily on analysis of the observed maximum re-

sponse over the span. In order to further understand which dominant modes are

excited, particularly in the in-line direction, it is necessary to decompose the ob-

served responses into dominant empirical modes hence one may clearly see the

contribution of each mode in the total response. Empirical modes are chosen to

characterize the spanwise response of the cylinders in order to avoid requiring par-

ticular mode shapes for a phenomenon that is well known to be nonlinear. For this

purpose, the recently developed smooth orthogonal decomposition (SOD) is used

to characterize the modal response of the different cylinders.

4.5 Multivariate analysis - SOD based VIV mode analysis

Proper orthogonal decomposition (POD) has been widely used in structural

vibration modal identification and is shown to converge to the actual vibration

modes if the mass distribution in the linear dynamical systems is uniform (i.e.,

when structural modes form an orthogonal basis for the linear system’s phase

space) as shown by Feeny and Kappagantu [21]. Alternatively, if the actual mass

matrix is known, POD can identify the true vibration modes by premultiplying

the motion data by the mass matrix. Due to the uniform distribution of the mea-

surement dots along the beam, the mass distribution of the corresponding discrete

system is expected to be uniform in the air (i.e., one expects a uniform diagonal

mass matrix). However, when placed in a fluid, the mass matrix is no longer uni-

form or constant due to the spanwise added mass effect, and the structural modes

are no longer expected to form an orthogonal basis. In contrast, Chelidze and

Zhou [22] showed that smooth orthogonal decomposition (SOD) does not require

the knowledge of mass distribution to converge to the actual vibration modes and

is expected to be better at resolving structural modes responsible for the fluid
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structure interaction.

The main difference of such multivariate methods than traditional Fourier

based mode decomposition is that Fourier based mode decomposition assumes a

base modal shape. The empirical multivariate methods used in the present paper

do not require any prior knowledge of the mode shape as an input parameter. The

resulting empirically determined mode shapes may be similar to a sinusoidal mode

shape depending on the loading of the cylinder and for highly non-linear systems,

such as low mode number flexible cylinders with multiple excited modes, these

methods can be advantageous for identifying the dominant empirical modes.

Previously, Gedikli and Dahl [20] applied local POD analysis and Gedikli et al.

[23] applied global POD and SOD to a similar VIV dataset, comparing the results

of these two techniques on the analysis of a flexible cylinder undergoing VIV. In the

local analysis [20], the POD method was applied to individual cylinder responses

to obtain empirical mode shapes for each individual reduced velocity values. In

the global analysis [23], the method is applied to all cylinder time histories over all

reduced velocities, creating one large input data matrix, to obtain a single global

response describing the system modes. In both studies, the methods identified the

cylinder’s most dominant empirically determined mode shapes; however, Gedikli

et al. [23] showed that by applying the global SOD method, the proper ordering of

empirical modes based on energy content could be achieved. Therefore, this study

applies the global SOD method for empirical modal analysis of the cylinders.

4.5.1 Description of smooth orthogonal decomposition (SOD)

In the SOD method, the displacement data matrix, X, is constructed from all

the experimentally measured time histories from the cross-flow and in-line measure-

ments. X ∈ Rm×2n, where X is the combined in-line and cross-flow data matrix,

m is the number of total time samples, and n is the number of points recorded
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along the span of the cylinder. Using the forward difference method, one can con-

struct a new data matrix V = DX ∈ Rm×2n which includes in-line and cross-flow

velocities. With the new velocity data matrix, the phase space representation of

the total response can be obtained as Y = [X, V ] ∈ Rn×4n.

SOD identifies the subspaces (ψ) where the scalar field projection q = Y ψ is

maximally smooth, while having maximal variance. As explained in Gedikli et al.

[23], if one defines the smoothness of the projection as

h(ψ; k) =
1

M
(DkY ψ)TDkY ψ (19)

where Dk is the kth order derivative matrix based on forward difference (k = 3

for this application), SOD translates into the following optimization problem:

max
ψ

q(ψ)T q(ψ) = max
ψ

(Y ψ)TY ψ, (20)

subject to

min
ψ

(
Dkq(ψ)

)T
Dkq(ψ) = min

ψ

(
DkY ψ

)T
DkY ψ . (21)

The corresponding SOD problem can be solved by generalized singular value

decomposition:

Y = UCΦT = QΦT , DkY = ZSΦT = DkQΦT , (22)

where U and Z are unitary matrices; C and S are diagonal matrices; columns of the

square matrix Φ contain smooth orthogonal modes (SOMs); columns of Q = UC

are smooth orthogonal coordinates (SOCs); λi = Cii/Sii are smooth orthogonal

values (SOVs); and Ψ = Φ−T are smooth projective modes (SPMs) that form a

bi-orthogonal set with SOMs.
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4.5.2 Energy contribution and empirical VIV modes

In section 4.4, Fig.18 and Fig.19 showed the frequency responses of the test

cylinders and frequency values for the desired mode shapes. Later in section 4.4.1,

it is shown that, for test cylinder 1, designed mode shape and frequency value

matches very well. However, preliminary results showed that same is not true for

the other test cylinders.

In order to see the contribution of each VIV modes to total response and

identify the higher order empirical modes which may correspond to higher order

frequencies, we use SOD method. The main question here is: Is it possible that a

multivariate analysis method such as SOD can capture the desired modal responses

in a higher dimension? To understand this, the following procedure is followed:

First, designed mode change in in-line is identified for each test cylinder (red dashed

lines in Figures 18 and 19) except cylinder 1 because no mode change was predicted

for cylinder 1. For cylinder 2,3 and 4, the mode change should occur at V rn = 5.5,

V rn = 9.5, and V rn = 15, respectively. So, to see if the SOD method is going to

capture these desired mode responses in a higher dimension for these cylinders, we

need to separate each of the frequency response plots (in-line and cross-flow) into

two parts: part (a) and part (b) so that part (a) will include the response before

the mode change, and part (b) will include the response after the mode change.

As an example, part (a) for cylinder 2 will include all the reduced velocities up

to 5.5 where first mode shape is expected and part (b) will include the remaining

reduced velocities, 5.5 and above where second mode in the in-line and first mode

in cross-flow is expected. Frequency response plots show that there is also higher

order frequency content which leaks to the second mode (see Fig.18). So, when

SOD method is applied to these two separate parts, we can obtain so-called smooth

orthogonal modes (SOMs) and match them with the required frequencies. Here,
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Figure 24: (i) Energy fraction in first 10 subspace dimensions, (ii) First 6 SOMs
for cylinder 1 where input data matrix includes the dataset for all the reduced
velocities tested. Red is cross-flow, blue is in-line.

the only remaining question would be at which subspace dimension we can achieve

this goal. These SOMs are different than the vibration mode shapes where it is

traditionally defined using sinusoidal shapes, but due to the nature of the system,

the resulting SOMs should have a sinusoidal shape as well.

Figure 24 shows the energy fraction and first 6 subspace dimension of cylinder

1’s modal response after SOD method is applied. Fig.24 (i) shows that first four

modes make 99 % of the total oscillation and Fig.24 (ii) shows first 6 SOMs. First

two dominant SOMs in cross-flow is similar to first mode shape and there is almost

no in-line motion. Also, combination of first two modes constitute around 80% of

the total oscillation. Third dominant mode consists of second mode in cross-flow

and first mode in in-line, and contribution of combined in-line and cross-flow mode

is around 10%. Fourth dominant mode is similar to first mode in both directions

with %9 of the total energy. Fifth and sixth mode make less than 1% of the total

oscillation, therefore modes higher than fourth mode have very little effect on the

motion in terms of reconstructing the total motion with lower dimensions.
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Figure 25: (i) Energy fraction in first 10 subspace dimension, (ii) First 6 SOMs for
cylinder 2 where input data matrix includes the dataset up to V rn = 5.5. (iii) First
6 SOMs for cylinder 2 where input data matrix includes dataset after V rn = 5.5.
Red is cross-flow, blue is in-line.

Figure 25 shows energy fraction and first 6 dominant SOMs of cylinder 2.

Different than cylinder 1 response, SOD is applied to two different regions: to

the motion response dataset below V rn = 5.5 and to the motion response dataset

above V rn = 5.5. Figure 25 (i) shows the energy fraction of these two regions

where a within the Fig. 25 (i) represents the energy contribution of the motion

up to the reduced velocity of 5.5 and b represents the energy contribution after

this reduced velocity. SOD analysis of the first half (V rn < 5.5) shows that first

three modes constitutes 99 percent of the total oscillation, but when the same

method is applied to the second half (V rn > 5.5), first 5 modes constitute 99% of

the total oscillation. SOD of the first half shows that first four dominant modes
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make up to 99% of the total oscillation and SOD of the second half shows that

first five modes make up to 99% of the total oscillation. So, there is an extra mode

that contributes the motion in the second half. Figures 25 (b) and (c) illustrate

the first 6 SOMs of cylinder 2 when the method is applied to these two regions

separately. Figure 25 (ii) indicates that first mode is the most dominant mode in

cross-flow upto the fifth mode, and there is very small contribution of the second

mode in the sixth mode. In the second half of the analysis as shown in Fig. 25, first

mode is still the most dominant mode in both directions, but second mode in the

cross-flow starts to appear in the third subspace dimension. In this particular case,

contribution of the second mode is still very small with a contribution rate less

than 1%. Ignoring this motion, there is no existing second mode contribution in

the cross-flow direction within the first 6 SOMs which normally constitutes 99.9%

of the total motion. It should be remembered that second mode oscillation was

expected as a natural response for cylinder 2 due to beam characteristics in the in-

line; however, first three dominant SOMs do not show any in-line contribution (or

show little first mode contribution) but then second mode starts to appear at the

fourth mode in in-line skipping the first mode shape. This means that second mode

is the most dominant mode in in-line, and second dominant mode is the first mode

which appears at fifth and sixth mode levels. Since the contribution of the fifth

and sixth modes are significantly low (< 0.5%), we can conclude that global in-line

response resembles to the second mode for cylinder 2 after the reduced velocity of

5.5. However, since the contribution of this response (second SOM in in-line) is

very small (making upto only 5%), global in-line response becomes insignificant.

Figure 26 shows the energy fraction and first 6 SOMs of test cylinder 3. SOD

is applied to the response dataset before (abbreviated as a) and after (abbreviated

as b) the reduced velocity of 9.5. Figure 26 (i) illustrates the contribution of first 10
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Figure 26: (i) Energy fraction in first 10 subspace dimension, (ii) First 6 SOMs for
cylinder 3 where input data matrix includes the dataset up to V rn = 9.5. (iii) First
6 SOMs for cylinder 3 where input data matrix includes dataset after V rn = 9.5.
Red is cross-flow, blue is in-line.

SOMs to total response. It clearly shows that first 4 modes constitute 99 % of the

total motion if the method is applied to the cylinder 3 dataset before V rn = 9.5,

whereas when it is applied to the dataset after V rn = 9.5, first 6 modes constitute

99% of the total motion. So, there are extra two modes needed to fully reconstruct

the motion with the same accuracy as in the first half. Similar to cylinder 2,

Figure 26 (ii) represents the SOMs before V rn = 9.5, and illustrates that first

two dominant modes in cross-flow is similar to first mode then there is very small

contribution of second mode in the third SOM. Figure 26 represents the SOMs after

V rn = 9.5, and illustrates that first two dominant modes constitute 90% of the total

oscillation, and these modes are similar first modes in both directions. In this case,
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cross-flow motion response is much larger than the in-line response. Second mode

in cross-flow appears in the third SOM, but similar to cylinder 2, this additional

third mode only adds 1% to total motion, therefore it is not significant. Second

mode in in-line appears in the fourth SOM where in-line response is stronger than

cross-flow response, therefore small 5% jump in the energy fraction at the fourth

mode level is thought to be due to this in-line response.
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Figure 27: (i) Energy fraction in first 10 subspace dimension, (ii) First 6 SOMs for
cylinder 4 where input data matrix includes the dataset up to V rn = 15. (iii) First
6 SOMs for cylinder 4 where input data matrix includes dataset after V rn = 15.
Red is cross-flow, blue is in-line.

Figure 27 shows the energy fraction and first 6 SOMs of test cylinder 4. In the

Figure 27 (i), it is clear that in the first 10 SOMs contribution to total response,

first three SOMs before V rn = 15 ( Fig. 27 (i, a)) consitute 99% of the total motion

and first 6 SOMs after V rn = 15 consitute 99% of the total motion. Previously,
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similar results were shown using the local POD method [20]. In the current study,

SOD method is applied to the dataset before and after V rn = 15. Figure 27 (ii)

illustrates the first 6 SOMs for the dataset before V rn = 15. It shows that first

SOM is similar to first mode shape and is the most dominant SOM among first

three SOMs in both directions constituting 78% of the total motion; then, second

dominant SOM is similar to second mode shape in cross-flow and first mode in

in-line constituting 7% of the total motion. Third SOM is some first-third mode

combination in cross-flow and pure first mode in in-line. Figure 27 (iii) illustrates

the first 6 SOMs for the dataset after V rn = 15. It shows that first SOM is similar

to second mode shape in cross-flow with no in-line motion, second SOM is some

combination of first-second mode in cross-flow with very small in-line; third SOM

is large second mode in-line response with small third mode cross-flow, and fourth

mode is large third mode in cross-flow with second mode in-line. Other higher

modes constitute only 4% of the total motion.

In summary, this study shows that SOD based vibration mode identification is

a possible statistical toolbox in vortex-induced vibration dynamic response analy-

sis. This method enables one to decompose the signal to best possible and smooth

fits with lowest possible dimension in comparison with traditional POD method.

This comparison is also discussed in quite detail in Gedikli et al. [23]. For example,

when POD method is used, one will need at least first 8 sub-dimensions in a 25

dimensional space (which represents the number of points along cylinder’s span)

to fully reconstruct the original motion with 99% accuracy, but with SOD one can

achieve the same goal using only the first 6 sub-dimensions or less.
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4.6 Euler-bernoulli elastic beam response under uniform load and lim-
ited asymmetric response

General equation of motion for the steady-state transverse response of a

pinned-pinned viscously damped euler elastic Bernoulli beam subjected to a time

varying load can be written as;

EIy′′′′ + µÿ + cẏ = f(x, t) (23)

where y is the transverse displacement of the beam, EI is the flexural rigidity

of the beam, µ is the mass per unit length of the beam, and c is the coefficient of

external damping of the beam. Right side of the equation represents the forcing

function in time.

By solving the eigenvalue problem for a pinned-pinned uniform beam with a

uniformly distributed sinusoidal loading varying with time, one can easily find the

natural modes of the Euler beam (see Appendix 4.9).

In this section, we test three different cases solving Eq. 28 where a symmetric

loading is applied to the Euler beam equation. Since there is n2 relationship

between mode shapes, we test the frequency ratios of f/fn = 1, 4, 9 where up to

third mode is allowed. In the simulations, damping ratio is kept constant at 0.04

and resulting mode shapes are compared.

Left image in Figure 28 shows uniform sinusoidal loading on a beam and the

corresponding spatial response. As clearly seen, when the oscillation frequency is

equal to first mode natural frequency, the resulting shape resembles a symmetric

first mode. The center image shows the second mode excitation where the oscilla-

tion frequency is four times the first mode natural frequency. The resulting shape

still resembles to the first mode shape, only bended close to the end points. Right

image shows the response of a beam where frequency of oscillation is 9 times the

natural frequency. The resulting shape resembles to third mode as predicted. As
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Figure 28: Top image (i): Symmetrically distributed uniform loading with fre-
quency ratio (f/fn = 1) where cylinder oscillates one time the natural frequency.
Bottom image (ii): Resulting motion shape at different time traces.

a result, analytic solution to Euler Bernoulli beam illustrates that a beam under

symmetric loading is not capable of oscillating with even modes (second, fourth,

and so on) and only oscillates with odd modes (first, third, fifth, and so on).

Idealized cylinder 2 oscillation is modeled so that cylinder‘s oscillation is four

times the first mode natural frequency. In other words, loading is symmetric but

desired spanwise response is asymmetric. As a result, center image in Figure 30

shows that even though cylinder has second mode frequency, the spatial response

still resembles to a first mode shape; however, different than idealized cylinder 1

response, the shape is bended at the quarter locations and resembles to a first

mode shape.

In Cylinder 3 model, oscillation frequency of the system is nine times the first

mode natural frequency. As shown in right image in Figure 30, when the cylinder

is exposed to the same uniform loading, the system this time allows cylinder to

93



0 0.2 0.4 0.6 0.8 1
z/L

-0.1

0

0.1

D
is

pl
ac

em
en

t

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.1

-0.05

0

0.05

0.1
D

is
pl

ac
em

en
t

A
0
cos(2ωt)

ζ
1
 = 0.04

(i)

(ii)

Figure 29: Top image (i): Symmetrically distributed uniform loading with fre-
quency ratio (f/fn = 4) where cylinder oscillates four times the natural frequency.
Bottom image (ii): Resulting motion shape at different time traces.

oscillate with the desired third mode shape which is also symmetric.

4.7 Discussion

In comparison, the tension-dominated and bending-dominated systems in this

study demonstrate one common behavior: despite frequency excitation in cross-

flow that is twice the frequency in the in-line direction and tuning natural frequen-

cies to have specific mode shapes, it is difficult or not possible to significantly excite

an asymmetric second mode shape in the in-line direction. There are a couple im-

portant aspects of this phenomenon that always should be remembered: 1) This

phenomenon is thought to be possible only under symmetric loading conditions

(i.e. uniform loading). 2) Cylinder has to have a symmetric mass distribution i.e.

has to be as smooth as possible with no dimples on it. 3) Mass ratio should be

small (close to 1) therefore the gravity effect (i.e natural sagging of the cylinder)

on the cylinder becomes minimum. 4) These results were only observed when the
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Figure 30: Top image (i): Symmetrically distributed uniform loading with fre-
quency ratio (f/fn = 9) where cylinder oscillates nine times the natural frequency.
Bottom image (ii): Resulting motion shape at different time traces.

cylinder was totally submerged underwater and placed horizontal in the in-line

direction. However, it is thought that if the cylinder is placed vertical (perpen-

dicular to incoming fluid flow), and intersects the water level at the top, then this

condition might create an asymmetry in the response. If this is the case, even

mode excitation becomes possible.

Vandiver and Jong [14] observed a similar behavior in field experiments, at-

tributing this behavior to the symmetric distribution of the drag force over the

cylinder in a uniform flow. Later, Gedikli and Dahl [20] observed this phenomenon

in tensioned cylinder experiments that were conducted in a uniform recirculating

flow channel. If one considers a uniform distribution of force over the span of a

simply-supported beam, where the amplitude of the force is a harmonic function

applied with a frequency equal to the second mode natural frequency, one finds

that the structure will have a symmetric shape similar to the first mode shape
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(see Fig. 29). In fact, for any frequency associated with an even mode, the span-

wise shape will be similar to the next lowest odd mode shape. Even modes could

certainly be excited in the case of sheared flow, where an asymmetry of the flow

speed would result in an asymmetry to the distributed drag load. This is also

significant to the flexible cylinder studies conducted vertically in a towing tank or

water tunnel. In conditions where a flexible cylinder pierces the water surface, a

slight asymmetry may occur in the loading of the structure, which would demon-

strate asymmetric mode excitation that would not typically occur if the loading

was purely symmetric (for example if the cylinder is oriented horizontally in the

water column). This has general relevance in understanding responses observed in

field or lab experiments studying the response of flexible cylinders.

In the particular experiments mentioned, additional interesting behaviors are

observed. For example, cylinder 3 is tuned so that the first mode in-line will corre-

spond with the forcing frequency from vortex shedding in the transverse direction,

while the third structural mode will correspond with the vortex shedding frequency

in the in-line direction. Despite this tuning, the in-line direction undergoes reso-

nant response with dominant first mode shape (due to the loading distribution as

described above). This is interesting, however, since in order to oscillate with the

observed frequency and mode, a linear treatment of the frequency response and

adjustment of the effective natural frequency would require an extremely large

negative added mass, since the frequency of oscillation in the in-line direction is so

far from the natural frequency associated with the first mode. This is highly un-

likely and the frequency transitions observed for cylinder 3 are more likely to stem

from non-linear resonant conditions from the coupling of vortex shedding effects on

the cross-flow and in-line response. It is necessary to investigate forces and wake

structures on these flexible structures in order to understand this relationship.
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Finally, the transition between 1:1 mode shape response and 2:3 mode shape

response seen in the tensioned cylinder is not necessarily unique to the tensioned

cylinder, since the natural frequency relation for the bending-dominated cylinder

requires the natural frequencies to be further spaced from one another. Due to

the limitations of the flow channel, higher speeds could not be tested to see if

the transition to higher modes would follow a similar behavior for the bending-

dominated systems.

4.8 Conclusion

The main objective of the current study was to study the cylinder’s mode

effects on the total response. Previously, Vandiver and Jong [14] in field experi-

ments, and Gedikli and Dahl [20] in laboratory experiments showed that a flexible

cylinder is not capable of oscillating with even modes if the fluid loading on the

body is distributed uniformly along its span. This study also allows us to test this

hypothesis, since we systematically control the cylinder oscillations by molding

rectangular shaped plastic beams through the center of the cylinder. Each of these

test cylinders have unique characteristics so that varying the in-line mode shape

from one to three and keeping the cross-flow mode shape constant would allow the

in-line response effect to total coupled response.

This systematic study has showed that even though a flexible cylinder is tuned

to oscillate with an asymmetric mode shape (i.e. second mode) in in-line, it is not

possible to have an asymmetric mode shape due to symmetric loading. However,

asymmetric mode shape is possible if drag force distribution is not symmetric as

discussed above. Multivariate analysis approach is used to analyze the contribution

of higher order VIV empirical modes. Especially, apart from POD, SOD method

is showed to be an effective method in this study to analyze the non-linear modes.

An effort is given to understand if it is possible to match the higher order SOMs
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with the designed mode shapes (i.e. cylinder 2 does not oscillate with second

mode in in-line but at what sub-dimension it oscillates if SOD method is used?).

It is found that even though cylinder primarily oscillates with odd mode shapes,

there are even modes that are present in the first 6 SOMs if multivariate analysis

approach is applied. If one needs to model this fluid-structure phenomenon, instead

of ignoring the even modes in in-line, higher order SOMs approach can be used to

fully reconstruct the real motion with substantially lower dimensions.
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4.9 Appendix A. Euler-Bernoulli elastic beam response under uniform
load

This appendix explains how the euler-bernoulli beam theory is applied in the

current study. Extensive studies clearly explain how the Euler-Bernoulli beam can

be solved for different boundary conditions [24, 25, 26, 27] and this appendix is a

simple summary for the current problem.

Let consider the equation of motion for the current problem be Equation 23.

Assuming the forcing function can be written in the form of separating vari-

ables;

f(x, t) = A0F (x)G(t) (24)

where A0 is the initial response amplitude, F (x) is the spatial portion of the

forcing function, and G(t) is time dependent portion of the forcing function. A0

will have different values depending on different combinations of spatial and time

dependent portion of the forcing functions.

The normal mode functions for this end conditions (pinned-pinned) can be

written as;

Yn(x) =
√

2sin(βnx) (25)

where the eigenvalues are βnx = nπ. Equation 17 shows the relationship

between the eigenvalues and the natural frequencies for Euler-Bernoulli beam.

Damping ratio may be introduced as ζ1 =
c

2µω1

where ωn = 2πfn. Since we are

interested in different combination of mode shapes, damping ratios in the higher

modes can be described as ;

ζiωi = ζ1ω1 where i = 2, 3, 4, ... (26)
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which shows that as the system excites higher modes, damping ratios decrease.

Introducing a new variable u(x, t) for the displacement, the exact solution for

Eq. 23 becomes;

u(x, t) =
∞∑
n=1

qn(t)Yn(x) (27)

where Y (x) are the normal modes of an undamped/unforced beam and q(t)

is time dependent coordinate of the beam. After substitution of equations 25 and

27 into the general equation of motion 23 and applying the orthogonal conditions

to Eq. 23, one can get the final equation of motion of a beam subjected to an

external loading as;

q̈n + 2ζnωnq̇n + ω2
nqn =

A0Fn
µ

G(t) n = 1, 2, ... (28)

Let G(t) be a harmonic forcing function that is described by;

G(t) = cosωt (29)

where ω is the forcing frequency. Then, the steady-state response of the Eq. 28

can be written in the complex plane as;

qn(t) =
A0Fn
µω2

n

|Hn(jω)|cos(ωt+Hn∠(jω)) (30)

where

Hn(jω) =
1

1− (ω/ωn)2 + 2jζn(ω/ωn)
n = 1, 2, ... (31)

which represents the imaginary part of the complex frequency response.

Therefore, Eq.27 can easily be solved by substituting Equations 30, 31 to the

equation.
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Abstract

In this study, piezo stripe actuators were used to control the vibrations of

flexible cylinders underwater. In the tests, piezo stripes were attached at the anti-

nodes of a rectangular plastic beam in the in-line direction (in the direction of

fluid flow) and then molded using urethane rubber material to give the test beam

a circular shape. In-line direction was chosen simply because the resulting motions

are generally lower than cross-flow motions in vortex-induced vibrations (VIV) and

therefore require lower energy input to control. Through the use of high voltage

signal generator, two separate cases were investigated. In the first case, piezo

stripe actuators were activated right before spatial mode change, thus tripping

the frequency and forcing the cylinder to excite with a higher mode (vibration

suppression). In the second case, piezo actuators were activated right before an

apparent amplitude increase, forcing cylinder to jump to the higher amplitude

response regime (vibration enhancement). In the tests, the beam was designed

to oscillate up to third mode in in-line keeping the cross-flow response constant

at first mode. Experiments were first carried out in air to characterize the piezo

responses, and then similar experiments were carried out in the recirculating flow

channel that is located at the Narragansett Bay campus of the University of Rhode

Island. This study presents two important observations: 1) piezo actuators can

possibly trip the response frequency and force cylinder to oscillate with a different

mode, thus reducing the total response amplitude significantly, 2) it is also possible

to increase the response amplitude if piezos are activated right before an apparent

jump in the response amplitudes.

5.1 Introduction

Vortex-induced vibration is an inherent problem in engineered structures that

are subject to a fluid flow. Especially slender structures in water such as offshore
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risers, offshore wind turbines, underwater cables, horizontal pipeline span, etc. are

prone to such motions. When a bluff body is subjected to an incoming flow, it

creates vortices shedding downstream. These vortices have a particular frequency

associated with them, i.e. vortex shedding frequency. When the vortex shedding

frequency gets close to one of the natural frequencies of a long structure (lock-in),

large vibrations might occur. These vibrations can be very dangerous; they may

affect the fatigue life or may even give significant damages to the structure if not

carefully monitored.

Previously, high harmonic forcing has been demonstrated to be associated

with large amplitude figure-eight type of motion of cylinders undergoing VIV [1].

This high harmonic forcing can potentially reduce fatigue life estimates on flexible

structures undergoing VIV by orders of magnitude [2]. Recent studies on flexible

cylinders have demonstrated that specific mode combinations on a flexible cylinder

are more or less likely to produce figure eight-type motions [3, 4]. Therefore,

predicting and suppressing these undesirable motions of such systems is of utmost

importance to the offshore industry for many years.

Different control techniques have been developed in the past to control vortex-

induced vibrations. One of them is the passive control mechanism where the

main goal is to give a disturbance to the flow downstream through changing the

geometry of the structure. In this method, there is no external energy input to

the structure, and can be a very effective tool to cancel the vibration [5, 6, 7, 8].

Popular systems for suppressing the VIV of subsea tubulars may include helical

strakes, strouts, or fairings that are fitted along the span of the structures. Such

systems disturb the flow around the structure, break up the correlation of vortices

along the tubular, and cause random forces. Therefore, they can be very effective

at reducing vortex-induced vibrations for a wide range of applications. On the
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other hand, addition of such systems usually increases the drag force acting on the

structure. Another control technique that is widely mentioned in the literature

suppressing the vibration includes active control mechanisms. In this case, an

energy input is required to give a disturbance to fluid-structure interaction through

use of open-loop or closed-loop control techniques. In an open-loop system, an

actuator (i.e., piezo stripe actuator) driven by an external energy source can be

used to disturb the motion [9], or in a closed loop system, a feedback mechanism

can be used [10, 11]. Both of these methods have been proven to be successful

to reduce the vibration amplitudes in a fluid-structure interaction. In addition to

above menioned active control mechanisms, there are vortex-shedding suppression

and wake control methods that are considered as active flow control mechanisms

with regards to vortex-induced vibration oscillation control. Some of these methods

have been recently reviewed and discussed more in detail in Rashidi et al. [12].

Active and passive control mechanisms can also be used to enhance the vibration

[13, 14].

The main purposes of this study are: first, to develop an experimental system

and test if it is possible to change the mode shape of a flexible cylinder through

the use of piezo stripe actuators (i.e. trip the oscillation frequency and cause mode

switch), which is vibration suppression; second, to test if it is possible to increase

the amplitude, hence vibration enhancement. This study: includes 1) the use of

piezo stripe actuators for energy input to perturb the motion and consequently

active control mechanism, 2) in-air measurements, 3) in-water measurements. In

air a shaker-rail mechanism is designed to find out at what input signal frequencies,

piezo stripe results in the highest amplitude. Also, this system helps to find out

if it is possible to trip the frequency to one above energy level (one above mode

shape) and thus decrease the motion amplitude. Second part of the study includes
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the experiments in water where the designed experimental apparatus allows one to

attach the cylinder vertically in the flow direction. In the tests, cylinder’s moving

part is completely submerged and symmetrically attached at the top and bottom

of the tank. This configuration reduces the asymmetry in the water column due

to wave formation after a certain flow speed and allows cylinder to have uniform

loading across its span.

In this paper, a through introduction is given in section 5.1, experimental

apparatus in air is described in section 5.2, then experimental apparatus in water

is described in section 5.3. The major findings are introduced in section 5.4. A

brief summary and conclusion is given in section 4.5.

5.2 Test cylinder and experiments in air using shaker-rail apparatus

h

b
U

x

y

Figure 31: Cross section

of the test cylinder with

beam. Water flows from

left to right. x repre-

sents in-line, y represents

cross-flow

.

In the experiments a rectangular beam was placed

through the center of a circular cylinder as sketched in

Figure 31 where b represents the width of the beam,

h represents the height of the beam, U represents the

flow speed. Test beam was designed to oscillate up to

third mode in in-line keeping the cross-flow mode shape

constant. To find the correct size of beam, the natural

frequency equation for a fixed-fixed beam was used:

fn =
λ2
n

2π

√
EI

ML4
(32)

where λn = (2n + 1)π
2
, E is the elasticity of mod-

ulus, I is the area moment of inertia, n is the mode number, M is the mass per

unit length, L is the beam length.

Table 6 gives the detailed information about the beam characteristics and

experimental parameters where D is the cylinder diameter, fn is the natural fre-
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quency of the cylinder in air in the in-line direction, m∗ is the mass ratio and AR

is the aspect ratio of the test cylinder.

Table 6: Test cylinder and experimental

parameters

Variable Values Units

h 0.635 mm
b 3 mm
D 9.525 mm
fn 5 Hz
m∗ 1.15 –
AR 40 –

Shaker experiments were con-

ducted using a basic shaker-rail ap-

paratus (see Fig. 33). Tests were

performed: 1) using the base exci-

tation only over a range of frequen-

cies to characterize the base system

response, 2) using the piezo actuation

only to characterize the forced input

from piezos over a range of frequen-

cies, 3) using the shaker excitation and piezo excitation simultaneously.

Figure 32: Multiple piezo stripes

actuated by high voltage signal

generator.

In the experiments, piezo stripes were

bonded at the anti-nodes of the test beam in

in-line and molded using flexible urethene rub-

ber material from Smooth-on to give a circu-

lar shape. In-line direction was chosen sim-

ply because the resulting motions are gener-

ally lower than cross-flow motions in vortex-

induced vibrations (VIV) and therefore require

lower energy input from piezo actuators to con-

trol. Each piezo stripe actuator has a total length of 49 mm, width of 2 mm, and

thickness of 0.80 mm. The manufacture lists the maximum deflection of the stripe

actuator to be larger than 1.6 mm and resonance frequency to be around 110Hz.

Figure 32 illustrates the example image of piezo stripes that are connected with

cables to a high voltage signal generator.
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Left image in Figure 33 shows the picture of the experimental setup which

includes a shaker (VTS- Vibration Test Systems) for base excitation, a function

generator (Wavetek) to control the shaker, laser displacement sensors (Keyence)

to measure the displacement of the beam at certain locations, a high voltage signal

generator to control the piezo stripe actuators, and a National Instruments DAQ

card for signal analysis. Right image in Figure 33 illustrates the detailed sketch of

the experimental setup to emphasize the main equipment used in the experiments.

AC power supply is a Compact Power Titan MAC-02 with MOS-01 plug-in. The

plug-in is a manual oscillator with knobs, but it also accepts input from an external

function generator.

Table 7: Experimental test matrix for the

shaker-rail system

Parameters Range Spacing Units

A Constant 2 mm
fshaker 6 - 24 1 Hz
fpiezo 14 - 110 2 Hz

In the experiments, sinusoidal ex-

ternal base excitation was provided by

the shaker and the test cylinder was

attached to the moving part (rail) of

the test system with fixed-fixed end

conditions. Shaker was controlled us-

ing the function generator for a spe-

cific range of amplitudes and frequencies. Laser displacement sensor was used to

measure the displacement of the beam at the center and at L/4 from the top where

L is the cylinder length. Table 7 shows the experimental test matrix for the shaker-

rail system where A is the shaker amplitude, fshaker is the shaker frequency, fpiezo

is the piezo frequency. Two set of experiments were conducted to characterize the

response of the cylinder. First, cylinder was excited using the shaker only for the

range shown in Table 7 keeping the piezo frequency off. By doing that, natural

response of the cylinder to the given base excitation was identified. Secondly, only

piezo excitation was recorded with no base excitation within the frequency range
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given in Table 7. Therefore, natural response of the cylinder to the piezo was

also identified. Last, previously identified maximum response of the cylinder to

base excitation was controlled using the maximum piezo response identified in the

second step.

Shaker

Function Generator
Fsin(ωt)

Computer 

LDS Laser

AC Power Supply

PZT

Clamp

Rail

x

z

Figure 33: Left image: Picture of the shaker table. Right image: Detailed sketch
of the shaker-rail apparatus.

5.3 Water tunnel experiments

Experiments were conducted in a flow visualization water tunnel that is lo-

cated at the Narragansett Bay campus of University of Rhode Island. The water

tunnel is a closed circuit system that has 38 cm wide by 51 cm high by 152 cm

long test section. The test section has three viewing windows at the sides and at

the bottom of the tank, and there is an extra window in the downstream with a

section of 38 cm by 38 cm for axial viewing. Flow tunnel is capable of operating

flow speeds between 0.1 m/s to 1.3 m/s whereas current experiments were limited

upto 0.6 m/s to decrease the effect of water level drop. Test apparatus includes a

free surface suppression wall which perfectly eliminates the formation of the water

waves for the tested flow speed range and provides similar end conditions at the

top and bottom of the cylinder. Figure 34 shows the experimental apparatus (left

image) with sketch of the downstream view of the test cylinder (right image).

In the experiments, two Phantom V10 high speed cameras with two Nikon
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piezoelectric patches

Beam

L/4

L/4

L/4

L/4

Signal Generator

V(t)=Vpp* sin(wt)

Cylinder

Free Surface Suppression Wall

End plate

End plate

Figure 34: Left image: Experimental apparatus in flow channel. Cameras are
orthogonal with respect to each other. Flow is from left to right. Right image:
Sketch of the downstream view of the test cylinder.

Nikkor 50 mm f/1.2 lenses were used for motion tracking. One of the cameras

was placed at the side of the tank to capture the motion of the cylinder in the

flow direction (in-line), and the other was placed downstream side of the tank to

capture the motion of the cylinder perpendicular to flow direction (cross-flow).

Test cylinder was marked with 21 circular equally spaced (1.6 cm apart) white

dots along its span. Two lights were placed at the sides of the tank to increase

the visibility of the markers on the cylinders. Each circular dot had a diameter of

2 mm which was identified to be sufficient enough to be captured by the motion

tracking for the entire set of experiments.

Motion tracking software used in the experiments works based on subpixel

accuracy and identifies the location of the dots with less than 1% error similar to

those in Gedikli and Dahl [4]. For detailed information about the software (with

error analysis) and how the process is performed, the reader is encouraged to read

Gedikli [15] and Gedikli and Dahl [4].

Table 8 shows the experimental parameters for water tunnel experiments

where fnw represents the natural frequency of the test cylinder in water in in-

line, U represents the flow speed range, Re represents the Reynolds number range
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and St represents the Strouhal number. As expected, natural frequency obtained

from the decay tests in water was lower than the ones in air.

Table 8: Experimental parameters

Variable Values Units

fnw 4.2 Hz
U 0.1–0.54 m/s
Re 900–5200 –
St 0.19 –

There are two main objectives of

this study. First objective is to see

if it is possible to trip the frequency

of oscillation thus force cylinder to

change its modal response and de-

crease the response amplitude (vibra-

tion suppression). Second objective is

to see if it is possible to actuate the piezo stripes right before an apparent ampli-

tude jump, thus force cylinder to increase the vibration amplitude earlier than the

natural response (vibration enhancement).

5.4 Results

In-air experiments were concentrated on the response of the test cylinder in the

in-line direction, and cross-flow motion (motion perpendicular to shaker direction)

was not captured. Therefore, two laser displacement sensors were located in front of

the shaker apparatus and measured the response in the direction of the shaker (see

Fig. 33). Displacement of the cylinder was sampled at 1000 Hz and experiments

were contained minimum of 8-10 seconds of data.

5.4.1 Piezo characterization using shaker-rail apparatus and proof of
concept

To measure the natural response of the test cylinder, pluck tests were per-

formed and resulting motion was captured using laser displacement sensors. Fig-

ure 35 shows the time history of the response of the test cylinder in in-line (left

image) and the corresponding frequency plot (right image) obtained from pluck-

tests. According to the frequency analysis, natural frequency of the test cylinder
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Figure 35: Left image: Time history of the center point cylinder motion obtained
from decay tests. Right image: Frequency plot of the center point cylinder motion
obtained from decay tests.
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Figure 36: Top image: Piezo only response of the test cylinder at center. Bottom
image: Piezo only response of the test cylinder at L/4 from the top of the cylinder.
Red represents the increased high voltage signal (abbreviated as AC) frequency.
Blue represents the decreased AC frequency.
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was around 5 Hz. In the tests, test cylinder was molded with urethene rubber to

give a circular shape.
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Figure 37: Top image: Shaker only response of the test cylinder at center. Bottom
image: Shaker only response of the test cylinder at L/4 from the top of the cylinder.

Figure 36 illustrates the response of the test cylinder when only piezo was

activated without moving the shaker. Top image in Fig. 36 shows the piezo-only-

response at center point of the test cylinder for increased and decreased shaker

frequency values and bottom image in Fig. 36 shows the similar response at L/4

from the top. This analysis clearly shows that around shaker frequency of 38-40

Hz, cylinder reached to maximum non-dimensional amplitude in in-line with a

value of 0.12 at the center and 0.1 at L/4, and fluctuated at a lower amplitude

pace as the shaker frequency increased. Hysteretic behavior in the response was

observed in between the amplitude responses (i.e. cylinder oscillated with higher

amplitudes when the AC frequency increased, and oscillated with lower amplitudes
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when the AC frequency decreased).

Figure 37 shows the shaker-only-response as a function of non-dimensional

response amplitude in in-line direction without piezo actuation. This response is

important, because it actually shows at what shaker frequency cylinder reaches

the maximum response amplitude and then decreases again. Similar to Figure 36,

experiments were conducted for increased and decreased shaker frequency values.

Since these experiments were carried out as a proof of concept, shaker amplitude

kept constant, and only shaker frequency was varied within the range of 4 - 25 Hz.

Figure 37 shows that cylinder’s maximum non-dimensional amplitude response

at center point location reached the value of 4.1 at shaker frequency of 6 Hz for

increased shaker frequencies, and reached maximum non-dimensional amplitude

response of 3 at shaker frequency of 5 Hz when it was decreased. Experiments

were conducted three times to see if this result represents a pure and stable re-

sponse of the test cylinder to the base excitation. Interestingly, in all cases two

different responses were observed for increased and decreased shaker frequencies

hence hysteresis. Similar results were also obtained at location L/4 from the top

(see bottom image in Fig. 37).

18 20 22 24 26 28 30 32 34 36 38 40
Time [s]

-2

-1

0

1
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A
x/D

at L/2
at L/4

Figure 38: Piezo controlled response with piezo frequency 40 Hz at shaker fre-
quency of 6 Hz. Blue represents the response at cylinder location L/2. Red
represents the response at cylinder location L/4 from the top.

After identifying the maximum shaker response and piezo responses sepa-
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rately, additional tests were performed to see if it was possible to trip the frequency

of oscillation and decrease the amplitude response. Since cylinder reached the max-

imum response amplitude at shaker frequency of 6 Hz (increased frequency case),

this particular response was chosen to control with the piezo stripes. In the test,

cylinder first oscillated at non-dimensional amplitude of 4.1 with shaker frequency

of 6 Hz, and then piezo stripe actuators were actuated with a frequency of 40 Hz.

Figure 38 illustrates the cylinder’s response at L/2 and at L/4 after piezo

stripes were actuated with frequency of 40 Hz. Initially, the cylinder oscillated

with 6 Hz of shaker frequency and maximum non-dimensional amplitude of 4.1,

however after the piezo stripes were activated, significant reduction (up to 90 %)

in the amplitude was observed.
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Figure 39: Top image: RMS amplitude response in cross-flow. Bottom image:
RMS amplitude response in in-line. Red square represents increased Reynolds
number values. Blue circle represents decreased Reynolds number values.
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5.4.2 Flow channel experiments

Similar to shaker-rail experiments in air, experiments in re-circulating flow

channel were conducted for increased and decreased flow speeds between the

Reynolds number values of 900 - 5200.

RMS Amplitude response

Figure 39 shows the rms amplitude response of the test cylinder for increased

and decreased Reynolds number values. Top image of Fig. 39 illustrates the

cross-flow response amplitudes, and bottom image illustrates the in-line response

amplitudes.

According to this amplitude response analysis, three different amplitude re-

sponses (or three different response amplitude regimes) were observed. Until the

reduced velocity of 4.25, large in-line and cross-flow, between the reduced velocities

of 4.25 and 6 very small in-line and cross-flow, and after the reduced velocity of

6, gradually increasing large in-line and cross-flow amplitude responses for all the

reduced velocities were tested.

In this set of experiments, mode hysteresis as in Gedikli and Dahl [4] was

not observed. However, different amplitude responses were observed at different

reduced velocities.

Spanwise motion response

Different rms amplitude response regimes shown in Fig. 39 correspond dif-

ferent spanwise responses. Experiments showed that until the reduced velocity of

4.25 (first rms amplitude response regime), cylinder oscillated similar to first mode

(half sinusoidal shape) in both in-line and cross-flow directions. In the second rms

amplitude response regime (V rn = 4 − 5.9), cylinder oscillated similar to second

mode (full sinusoidal shape) in in-line with very small amplitude, and first mode
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in cross-flow. After the reduced velocity of 6 (at V rn = 6, 6.3, 6.5 ), multi-mode

(combination of first, second and third mode) with some traveling wave was ob-

served in in-line and similar to first mode shape was observed in cross-flow. Lastly,

dominant first mode only response was observed in both in-line and cross-flow

directions between the reduced velocities of 7 and 12.5.

Figures 40,41 and 42 show example dynamic responses of the test cylinder in

in-line and cross-flow directions at V rn = 3.75, 4.25, 5.5, 6, 6.3 and 9.53.
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Figure 40: Top image: Maximum motion amplitude at V rn = 3.75. Bottom image:
Maximum motion amplitude at V rn = 4.25
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Top image in Figure 40 displays the dynamic response of the test cylinder

at V rn = 3.75 and corresponding Lissajous shapes at three different locations

(L/4, L/2, 3L/4) along the span. At this reduced velocity, maximum amplitude

in in-line reached the non-dimensional diameter of 0.2, and maximum amplitude

in cross-flow reached the non-dimensional diameter of 0.4. Observed response

was similar to first mode in both directions and motion resembled figure eight

type of motion across its span. Bottom image in Figure 40 displays the dynamic

response of the test cylinder at V rn = 4.25 and corresponding Lissajous shapes at

three different locations along the span. This time, maximum amplitude in in-line

switched its spatial mode shape and displayed a mode similar to second mode with

smaller maximum amplitude. Cross-flow response displayed a mode shape similar

to first mode as the previous case with smaller amplitude. Motion resembled to a

line shaped response in cross-flow with very small in-line response.

Top image in Figure 41 shows the dynamic response of the test cylinder at

V rn = 5.5 and corresponding Lissajous shapes at three different locations along

the span. At this reduced velocity, very small in-line motion was observed, and

maximum cross-flow response reached the non-dimensional diameter of 0.4. Ob-

served response was similar to first mode in cross-flow and total motion resembled

to a line shaped response in cross-flow with very small in-line response as in at

V rn = 4.25. Bottom image in Figure 41 displays the dynamic response of the

test cylinder at V rn = 6 and corresponding Lissajous shapes at three different

locations along the span. This time, maximum amplitude in in-line switched its

spatial mode shape and displayed a mode similar to second mode with traveling

wave. Cross-flow response displayed a mode shape similar to first mode as the

previous case with larger amplitude. In the experiments, cylinder reached maxi-

mum non-dimensional response amplitude of 0.4 in in-line and 0.8 in cross-flow.
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Figure 41: Top image: Maximum motion amplitude at V rn = 5.5. Bottom image:
Maximum motion amplitude at V rn = 6
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Resulting motion resembled to crescent shaped response across the cylinder’s span.
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Figure 42: Dynamic response of the test cylinder at V rn = 9.53 and resulting
Lissajous shapes at three different locations across it’s span.

Figure 42 shows the dynamic response of the cylinder in in-line and cross-

flow at V rn = 9.53. As mentioned earlier, this motion falls into the regime where

first mode is dominant in both directions. At this flow speed, cylinder reached

maximum non-dimensional response amplitude of 0.6 in in-line and 1.3 in cross-

flow, and response shape resembles to first mode in both directions, resulting in a

figure eight type of response.

Frequency analysis

Frequency analysis was carried across the cylinder’s span for all the flow speeds

tested. In this paper, focus was given to the individual reduced velocities that have

been introduced in the previous section.

Left image in Figure 43 illustrates the spanwise frequency response of the

cylinder in in-line and right image illustrates the spanwise frequency response in

cross-flow at V rn = 3.75. In both images, frequency response was distributed

similar to modal response (first mode) with frequency ratio of 2:1 (in-line:cross-
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flow).
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Figure 43: Frequency response along the span at V rn = 3.75. (i) In-line frequency
response. (ii) Cross-flow frequency response.

Left image in Figure 44 illustrates the spanwise frequency response of the

cylinder in in-line, and right image illustrates the spanwise frequency response in

cross-flow at V rn = 4.25. As mentioned earlier, cylinder displayed a motion similar

to second mode in in-line and first mode in cross-flow at this reduced velocity.

Spanwise frequency plot at this flow speed demonstrates a similar behavior; the

amplitude of the frequency distribution in in-line resembles to second mode with a

constant frequency of 10.4 Hz. Again, cross-flow frequency distribution is similar

to first mode with frequency of 3.5 Hz. So, different than the previous case, in-line

to cross-flow frequency ratio is constant with a value 3:1. It should be noted that,

this motion at V rn = 4.25 comes right after the cylinder’s motion at V rn = 3.75,

which means that when cylinder changes its spanwise response from first mode to

second mode in in-line, in-line to cross-flow frequency ratio suddenly changes from

2:1 to 3:1.

Left image in Figure 45 illustrates the spanwise frequency response of the

cylinder in in-line and right image illustrates the spanwise frequency response in

cross-flow at V rn = 5.5. As shown in the top image of Figure 41, cylinder displayed

very small motion in-line and first mode type of behavior in cross-flow. In-line
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Figure 44: Frequency response along the span at V rn = 4.25. (i) In-line frequency
response. (ii) Cross-flow frequency response.

spanwise frequency plot at this flow speed produces a noisy response due to very

small in-line motion, but frequencies are distributed along the span at reduced

velocities of 4.5, 8.9, and 11.3, respectively. Cross-flow frequency distribution

across the span is constant with a value of 4.5 Hz.
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Figure 45: Frequency response along the span at V rn = 5.5. (i) In-line frequency
response. (ii) Cross-flow frequency response.

Left image in Figure 46 illustrates the spanwise frequency response of the

cylinder in in-line and right image illustrates the spanwise frequency response in

cross-flow at V rn = 6. As shown in the bottom image of Figure 41, the cylinder

displayed multi-mode type of behavior in in-line with some traveling wave and

first mode type of behavior in cross-flow. In-line spanwise frequency plot at this
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flow speed has a frequency distribution similar to first mode with larger frequency

amplitudes at frequency of 8.7 Hz, and there is also contribution of higher or-

der frequency content at 12.3 Hz with a frequency distribution similar to second

mode. However, at 12.3 Hz, the amplitudes of the frequency distribution are much

smaller than the ones at 8.7 Hz. Cross-flow frequency distribution across the span

is constant with a value of 4.35 Hz which again yields a 2:1 (in-line:cross-flow)

frequency ratio if dominant frequencies are taken into consideration.
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Figure 46: Frequency response along the span at V rn = 6. (i) In-line frequency
response. (ii) Cross-flow frequency response.

Left image in Figure 47 illustrates the spanwise frequency response of the

cylinder in in-line and right image illustrates the spanwise frequency response in

cross-flow at V rn = 9.53. At this particular flow speed, cylinder oscillated similar

to first mode in both in-line and cross-flow directions (see Fig. 42). Spanwise

frequency response distribution displays a similar behavior; it has a large amplitude

frequency at the center and small amplitude responses at the edges with a constant

frequency of 13.4 Hz in in-line and 6.6 Hz in cross-flow.

5.4.3 Active control with piezo actuator
Vibration suppression

In the tests, in-line mode shapes were varied significantly within the flow

speed range tested whereas no significant mode shape variation was observed in
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Figure 47: Frequency response along the span at V rn = 9.53. (i) In-line frequency
response. (ii) Cross-flow frequency response.

the cross-flow direction. Different dominant in-line mode responses were observed

at low reduced velocity values up to 6.5 where cylinder oscillated with first mode,

second mode and some combination of first and second mode with a traveling wave.

Then at higher flow speeds, modal response was settled having a first mode shape.

On the contrary, spatial cross-flow response was always similar to dominant first

mode within the same flow speed range.

Since the apparent mode switch was occurred in the in-line direction between

the reduced velocity of 3.75 and 4.25, we chose the motion at V rn = 3.75 as an

example illustration. At this flow speed, cylinder has large in-line and cross-flow

oscillations.

Figure 48 shows the original (black) and piezo activated (red) response plots

at the reduced velocity of 3.75 and corresponding Lissajous shapes at locations

L/4, L/2 and 3L/4. In the tests, piezo frequency was actuated at 40 Hz since

the maximum response had occurred at this frequency as shown in shaker-rail

experiments (see Fig. 37). Experiments showed that after the piezo activated, it

resulted in a dramatic mode change and significant reduction in both in-line and

cross-flow motion of the body (75% in cross-flow only). Also, natural figure eight

type of response changed to very small cross-flow response across the span.
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Figure 48: Piezo activated dynamic response of the test cylinder at V rn = 3.75
and resulting Lissajous shapes at three different locations across it’s span. Black
motion response indicates the motion before the piezo actuation, and red motion
response indicates the motion after the piezo actuation.
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Figure 49: Left image: Time history and frequency response at V rn = 3.75 . Right
image: Time history and frequency response at V rn = 4.25. Data represents the
point at L/4 from the top.
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Left image in Figure 49 shows the time history and frequency response of

the original motion of the cylinder at V rn = 3.75. As seen, cylinder oscillates

with frequency of 3 Hz in cross-flow, and with 6 Hz in in-line causing cylinder

to have 2:1 (in-line:cross-flow) frequency ratio. Right image in Figure 49 shows

the time history and frequency response of the piezo activated cylinder’s response.

Resulting dominant in-line frequency was 40 Hz which was the piezo frequency,

but cross-flow frequency was 3.8 Hz. In these plots, the motion data represents

the point at L/4 from the top.

Vibration enhancement
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Figure 50: Piezo activated dynamic response of the test cylinder at V rn = 5.5
and resulting Lissajous shapes at three different locations across it’s span. Black
motion response indicates the motion before the piezo actuation, and red motion
response indicates the motion after the piezo actuation.

Figure 39 showed that there is an apparent amplitude jump after V rn = 5.5

from low RMS amplitude of 0.1 to large amplitude of 0.17 in cross-flow and from

very little motion of 0.01 to 0.05 in in-line. Since the apparent mode increase was

occurred between the reduced velocity values of 5.5 and 6, we chose the motion at

V rn = 5.5 as an example illustration. At this flow speed, cylinder has very small
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in-line motion and large cross-flow motion.

Figure 50 shows the original (black) and piezo activated (red) response plots

at the reduced velocity of 5.5, and corresponding Lissajous shapes at locations

L/4, L/2 and 3L/4. Similar to previous vibration suppression method, piezo fre-

quency was actuated at 40 Hz since the maximum response had occurred at this

frequency (see Fig.37). Experiments showed that, after piezo activated, it resulted

in a dramatic amplitude increase in both in-line and cross-flow motion of the body

(100% in cross-flow). Also, the natural response of the body switched from small

only cross-flow response to large tilted figure eight type of response.
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Figure 51: Left image: Original time history and frequency response at V rn = 5.5.
Right image: Piezo actuated time history and frequency response at V rn = 5.5.
Data represents the point at L/4 from the top.

Left image in Figure 51 shows the time history and frequency response of the

original motion of the cylinder at V rn = 5.5. As seen, cylinder oscillates with

frequency of 4.35 Hz in cross-flow, and with frequencies 4.5, 8.9, and 11.3 Hz in

in-line. Right image in Figure 51 shows the time history and frequency response of

the piezo activated cylinder’s response. Resulting dominant in-line frequency was

8.7 with an additional frequency contribution at 12.1 Hz, and cross-flow frequency

was 4.5 Hz. In these plots, the motion data represents the point at L/4 from the

top.
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5.5 Discussion

Current study can be discussed based on two different aspects: first, the

cylinder’s dynamic response without piezo actuation, and second, active control of

flexible cylinder through the use of piezo actuators.

5.5.1 Multimode in-line and traveling wave response

Dynamic response of the beam-dominated cylinder experiments showed that

an asymmetric response (even mode excitations) is possible in in-line at low

Reynolds number values despite the earlier findings of [4, 3, 16]. However, it

is important to remember that even though cylinder is attached symmetrically

at the top and bottom of the cylinder, piezo attachment and cable connections

within the cylinder provide an asymmetric mass distribution which in turn breaks

the total symmetric fluid loading on the cylinder. Therefore, natural symmetric

loading provided by the recirculating uniform flow channel does not exist in this

set-up.

In the tests, at low reduced velocity values, cylinder oscillated with different

in-line motions while keeping the cross-flow response constant at first mode. Fre-

quency of these low reduced velocity motions showed that despite the fact that

cylinder oscillated with 2:1 (in-line:cross-flow) mode shape, motion settled with

3:1 (in-line:cross-flow) frequency ratio at all the 2:1 modal responses. This obser-

vation is significant, because it shows that multi-mode in-line oscillations may be

associated with a different frequency ratio which in the current tests is 3:1. This

is a common result of highly non-linear flexible cylinder responses in VIV.

To explain such relationship, interaction of in-line and cross-flow responses can

be investigated. Figure 52 shows the relationship between normalized vortex shed-

ding frequency and the normalized reduced velocity in the current tests. Generally,

a cylinder undergoing VIV oscillates with the shedding frequency in cross-flow and
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Figure 52: Plot of normalized vortex shedding frequency versus normalized reduced
velocity (V rn). Vortex shedding frequency (StU/D) is normalized with the first
natural frequency in water where shedding frequency is the assumed shedding
frequency based on cylinder St.

twice the shedding frequency in in-line. However, non-linear interactions between

in-line and cross-flow may produce an excitation in in-line which is the sum of the

in-line excitation (twice shedding frequency) and cross-flow (shedding frequency)

excitation; namely, three times the shedding frequency. In the current tests, this

result has been observed for the reduced velocity values of 4.25 and 4.7 and caused

cylinder to have large cross-flow response with very small in-line response (i.e.,

motion resembles to a line motion in cross-flow with very small in-line motion).

Traveling wave is another result of such interaction. Between the normalized re-

duced velocities of 6 and 7, cylinder oscillated with one dominant frequency in

cross-flow which is close to the shedding frequency (see Fig. 52), and two frequen-

cies in in-line, in which case one of them is twice the shedding frequency hence

excitation frequency (see Fig.46), and another one is three times the shedding

frequency which is caused by the non-linear interaction between in-line and cross-
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flow. Figure 53 shows such example traveling wave at V rn = 6 that is bouncing at

the top and bottom of the cylinder in in-line direction and cross-flow response is

similar to standing wave response. Resulting motion is similar to crescent shape

across cylinder’s span (see Fig. 41).
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Figure 53: Time history of the spanwise response at V rn = 6. Top image: First
mode standing wave in cross-flow. Bottom image: Second mode with traveling
wave in in-line.

5.5.2 Active control in VIV

Understanding the motion of flexible cylinders undergoing vortex-induced vi-

brations and being able to control them are of utmost importance to the offshore

industry. In terms of controlling the motion, different methods were explained in

Section 5.1. In the current study, focus was given to understanding the modal

interactions and controlling the motion through controlling the mode variations.

The main observation from the present experiments is that in uniform flow

conditions, cylinder could excite with different modes in in-line direction keeping

the cross-flow motion constant at first mode, and these mode variations in in-line
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may be controlled through the use of piezo stripe actuators.

Previously, Baz and Kim [10] used a flexible cylinder with clamped-free bound-

ary condition in air and bonded the piezo actuators at the bottom of the cylinder

to control the dominant mode of vibration. Later, Cheng et al. [9] used piezo ac-

tuators as an external energy source on a rigid square cylinder which was allowed

to move only in cross-flow direction in air. In the current study, the experimen-

tal approach to control the VIV response was carried out in two ways: 1) piezo

stripe actuators were activated before a spatial mode change thus tripping the

frequency and forcing the cylinder to excite with a higher mode hence vibration

suppression, 2) piezo actuators were activated right before and apparent amplitude

increase, thus forcing the cylinder to jump to higher amplitude response regime

hence vibration enhancement.

Results of this study show that a flexible cylinder vibration in VIV can be

significantly reduced through spatial mode change. In the experiments, piezo exci-

tation provided additional energy input in in-line and forced cylinder to change it’s

spatial mode shape. Since the cylinder’s response was coupled both in in-line and

cross-flow, this approach resulted a large amplitude decrease in cross-flow as well.

However, it should be emphasized that in-line response was selected to control the

motion since controlling the in-line response is easier than cross-flow. It is easier

because mode variations appears at low flow speeds and therefore there is less drag

contribution in the direction of fluid flow. In addition to vibration suppression,

similar analogy was used for vibration enhancement so that piezo actuators were

activated before an apparent amplitude jump, thus forcing the cylinder to jump

to higher amplitude response regime.
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CHAPTER 6

Concluding remarks

6.1 Dynamic and wake response analysis of vortex-induced vibration
of flexible cylinders

Motivation: A large majority of past research on VIV has characterized the

behavior of rigid cylinder undergoing VIV to classify fundamental characteristics of

this phenomenon. However, there are not many studies characterizing the behavior

of a flexible cylinder in ocean, which is a more realistic representation of an offshore

structure. This study focuses on this nonlinear fluid structure interaction, with

emphasis on understanding the physics underlying VIV, nonlinear dynamics and

their applications towards developing mathematical tools for VIV prediction.

Methodology: Focus is given to understand the dynamic response of ten-

sioned and bending dominated flexible cylinders. Flexible cylinder fluid-structure

interactions are analyzed using high-speed cameras. This approach allow to char-

acterize spatial mode shapes, and show how they change depending on the flow

speeds. In addition, a novel experimental system is designed to connect wake and

structural responses in an attempt to understand complex coupled fluid-structure

interactions (see Appendix A).

Major contributions:

• Dynamic response of flexible cylinder experiments showed that, a flexible

cylinder can have different amplitude and modal responses at the same

Reynolds number values depending on increased and decreased flow speeds.

More importantly, it is found that there is a hysteretic region, which is gov-

erned by both the wake and the structural characteristics, affects the mode

shape (the idea of mode hysteresis), frequency characteristics and amplitude

response. This result is significant, because previously proposed prediction
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methods and computational approaches to the problem indicated that there

should not be any hysteretic response in the same parametric region. This

indicates that the problem is very complicated and fluid-structure interaction

depends on many variables; simplified predictions are not always a reliable

source and need to be updated with the current findings.

• It is observed that if a cylinder is attached horizontal to the incoming flow

under uniform flow conditions such that drag load is distributed symmet-

rically across cylinder’s span, cylinder is unable to sustain an asymmetric

excitation (even mode excitation) in in-line direction.

• A carriage mechanism is developed and an experimental procedure is intro-

duced to create a three-dimensional reconstruction of cylinder’s wake. Using

this system, stereoscopic PIV measurement of velocity field at various two-

dimensional slices along the cylinder length was obtained. Then, applying

phase averaging method, three-dimensional wake response is reconstructed

(see Appendix A).

• It is shown that a flexible cylinder can have different responses than expected

in VIV due to nonlinear fluid-structure interactions. To build off of previ-

ous research, multivariate analysis methods are applied to identify nonlinear

mode interactions in the flexible cylinder’s response. It is found that specific

mode combinations on a flexible cylinder are likely to produce figure eight

type of motions.

• The idea of being unable to sustain asymmetric modes in a uniform flow is

investigated through molding beams into the cylinders. In the tests, three

bending-dominated cylinders are tested with varying stiffness in the cross-

flow and in-line directions of the cylinder in order to produce varying struc-
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tural mode shapes associated with a fixed 2:1 (in-line:cross-flow) natural

frequency. Both analytic and experimental results confirm that cylinder is

unlikely to oscillate with an even mode shape if the loading is distributed

symmetrically across the cylinder’s length.

6.2 Active control of flexible cylinders undergoing vortex-induced vi-
brations using piezo stripe actuators

Motivation: To build off of the previous work, active control of flexible

cylinders is considered.

Suppression of the VIV is a major concern for the offshore industry since large

VIV motions may give significant damage to the structures. These structures

include but not limited to deep water offshore risers, long underwater cables or

offshore wind turbines. The scientific question we are trying to answer is ”Can we

apply control strategy to avoid high fatigue conditions from vibrations by altering

which mode is being excited?”.

Methodology: This research includes active control of flexible cylinders un-

dergoing VIV using piezo-stripe actuators that are bonded at the anti-nodes of a

flexible cylinder to control low vibration modes (i.e. first, second and third) in

the in-line direction. The goal is to change the spatial mode shape of a cylinder

through the activation of piezo-stripe actuators which may result either an increase

(vibration enhancement) or decrease (vibration suppression) in the amplitude re-

sponse.

Major contributions:

• Using multiple actively controlled piezo actuators has been demonstrated to

be effective at both changing the excited mode and reducing the response un-

dergoing flow-induced vibrations (vibration suppression). Experiments show

that upto 75% amplitude reduction is possible in cross-flow direction using
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this method.

• It is observed that significant vibration enhancement in the amplitude is also

possible if there is an apparent jump in the amplitude response within the

tested flow speed range.

• Control method is observed to work for both high (air) and low (water) mass

ratio systems. Therefore, the application of this method can be extended to

be used in different industries such as defense industry or renewable energy

industry.

6.3 Future work

In this dissertation, vortex-induced vibration of flexible cylindrical structures

was studied. Focus was given to understand the dynamic response of flexible struc-

tures, non-linear modal interactions and how to control them to prevent and/or

suppress large VIV motions. While this dissertation has provided valuable insights

on the response of flexible structures, and active control methods, many oppor-

tunities for extending the scope of this dissertation remain. This section presents

some of these directions.

• To have a broader understanding of the modal interactions, higher order

modes should be studied. Investigating the additional modes will certainly

help to understand the effect of mode shape to the total oscillation since real

structures have very high mode numbers.

• Wake measurements should be done across the cylinder’s span along with

the dynamic response measurements. This will help to characterize the wake

and help to understand complex coupled fluid-structure interactions.

• When using the optical methods for dynamic response analysis, additional
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sensors (i.e., accelerometers, strain gauges) can be embedded into the struc-

tures for comparison, and these sensors can provide a direct measurement

of the fluid forces at that sensor location. Therefore, fluid force estimations

across the cylinder can be updated using these results.

• Multivariate methods were shown to be very effective identifying non-linear

modal interactions in VIV. These methods can be applied to the wake to

create a mapping of the non-linear empirical modes of the wake. Resulting

motions can be used to construct a non-linear fluid force model for vortex-

induced vibration prediction.

• Piezo stripe actuators used for active mode control is not the best stripe

actuators, and does not provide a lot of energy to the structure due to low

amplitude response. However, using a strip actuator that have a larger am-

plitude response can provide more energy to the structural response, and

may cause a mode change for a broader range of reduced velocity values.

• In this study, piezoelectric patches were attached to a beam in the in-line

direction. However, piezo control orientation can be altered and be applied

in cross-flow direction or both in in-line and cross-flow directions. Therefore,

one can have flexibility to change a mode in the desired direction.

• A computational model can be developed based on the active-control-

experiments to predict VIV.

• Flow visualization of the wake can be done along with the piezo control

experiments to fully characterize the fluid-structure-piezo interaction.

• Passive control can be applied using an electrical circuit to damp the oscil-

lations through electro-mechanical coupling.
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• In a broad range of reduced velocities, cross-flow amplitude is the largest

amplitude for a cylinder response, and recently, the addition of in-line is

found to increase the total response amplitudes. Therefore, one can extract

more energy from vibrations of flexible structures and convert it to electrical

power. Therefore, similar to the proposed method in Chapter 4 for active

control, piezoelectric patches can be used for energy harvesting from flexible

cylinders.
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3D flow visualization of the wake of a flexible cylinder undergoing
vortex-induced vibrations using digital particle image velocimetry
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This appendix includes an updated version of the above report that introduces a

novel experimental system to connect the wake and the structure.
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Abstract

Vortex-induced vibrations (VIV) have been studied for years due to problems

they pose for marine structures that make use of long, cylindrical cables such as

oil rigs and offshore wind energy systems. Due to the high cost and difficult im-

plementation of obtaining 3D datasets, the wake of a cylinder undergoing VIV has

typically been visualized using seperate 2D slices oriented perpendicular to the

vibrating cylinder. This method is limited to detecting vorticity within the sam-

pled plane, and only provides data representing a single location along its length.

In order to create a 3D reconstruction of such a cylinder’s wake, we used Stereo-

scopic Digital Particle Image Velocimetry (DPIV) to obtain 2D vorticity fields of

the flow at several different locations. Since the slices were recorded at different

times, motion tracking of the cylinder was used to find the periodicity of the vi-

brations, allowing both the cylinder’s motion and the shape of the water flow to be

averaged across many cycles (or phase-averaged). Slices of the wake are recorded

at 20 locations, spaced 1 cm apart along a cylinder with a diameter of 0.635 cm.

Currently, a phase-averaged wake representing a typical cycle has been assembled

using the z-component of vorticity, as in previous 2D experiments. The methods

developed here, however, may be used to find vortices in other directions, and will

ultimately allow for more accurate analysis of a range of similar experiments aimed

at characterizing the shape of the wake of a flexible cylinder undergoing VIV.

A.1 Introduction

Both the durability and cost-effectiveness of marine structures including off-

shore oil rigs and wind energy systems, tow lines, and mooring lines stand to be

improved by a more comprehensive understanding of Vortex-Induced Vibrations.

The problem of VIV includes many different interrelated issues, including the mode

shape and frequency of the cylinder, the pattern of the wake it creates, the forces
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acting between the cylinder and the fluid, and how all of these are connected to

one another. The shape of the 2D wake, specifically, has been studied extensively,

resulting in the classification of vortex shedding modes [1]. Many different meth-

ods have been explored, from smoke visualizations [2] to DPIV. Other experiments

such as [3] have used motion tracking software to visually track features on the

cylinder, while yet others, e.g. [4], make use of accelerometers and load meters to

simultaneously track the cylinder and its wake. What the majority of experimental

studies have in common is that they only present 2D information on the wake at

any moment in time, and as such mostly deal with vorticity in only one direction

(usually parallel to the cylinder).

There are multiple techniques used to obtain similar data in three dimensions,

such as Volumetric 3D Velocimetry [5], which requires a specialized triple-aperture

camera, and the hydrogen bubble method [6], which uses bubbles generated by the

cylinder itself. Stereoscopic DPIV, a technique already widely used to obtain data

within a 2D plane, has the potential to provide a 3D visualization across larger

volumes and without extra equipment.

DPIV is a technique that uses neutrally buoyant particles to track water move-

ment; before DPIV there were much slower PIV methods used for similar purposes

[7]. Neutrally buoyant particles are mixed into the water, at a concentration that

will allow accurate particle tracking; a laser, converted into a laser sheet with a

cylindrical lens, illuminates the particles within its plane. Two high-speed cameras

with slightly differing perspectives (making the process stereoscopic) take images as

the experiment is carried out. The positions of particles in consecutive images are

compared using cross correlation to obtain velocities for each of the interrogation

windows the images are divided into, producing a velocity field of the illuminated

plane. The differing perspectives of the two cameras allow velocities perpendic-
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ular to the plane to be calculated, as well. DPIV, if stereoscopic, yields velocity

fields with components in three spatial directions, but is limited to providing 2D

vorticity fields.

This work uses phase-averaging techniques on Stereoscopic DPIV produced

velocity and vorticity fields to construct a 3D visualization of a flexible cylinder’s

wake over a typical cycle. By tracking the motions of the cylinder simultaneously,

these methods will provide 3D vorticity data that may be visualized to better

understand how the shape of such a cylinder’s wake corresponds to its behavior.

Additionally, continuous 3D velocity fields will potentially reveal vorticity compo-

nents in multiple directions, creating a more accurate complex picture of a VIV

associated wake.

A.2 Methods
A.2.1 Setup and initial testing

Data were collected using a recirculating open water flow channel with glass

viewing walls providing side, bottom, and head-on views such that both in-line and

cross-flow movements could be observed. A black 30A neoprene rubber cylinder,

diameter 0.635 cm with 25 round white dots at 1 cm intervals along its length

was stretched horizontally across the channel and affixed to the side of the flow

channel with suction cups. In order to allow motion perpendicular to the cylinder’s

orientation (but not along the cylinder), the suction cups are joined to the cylinder

at either end with U-joints. Round plastic plates, with a diameter ten times that

of the cylinder, were situated between the U-joints and suction cups to provide a

flat surface for vortices to end on. All trials were conducted with the flow set at

0.17 m/s, and images of the cylinder and wake were recorded at a speed of 250

Hz by two high-speed Vision Research Phantom V10 cameras.

Given that DPIV requires both cameras capturing images of the same plane,
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preliminary tests were conducted using one camera to capture the cross-flow motion

of the cylinder and the other to capture in-line motion. The white markers were

placed on the surface of the cylinder at right angles (2 at each distance), so that

the footage of both the in-line and cross-flow motion would include features that

can be used for motion analysis. Footage was captured for a period of 8 s, and

then exported from LaVision software as .avi files. The motion of the cylinder was

tracked using ProAnalyst to obtain a typical cycle of motion.

A.2.2 Stereoscopic DPIV

DPIV uses a time-series of images to calculate the velocity field of a 2D plane.

Stereoscopic DPIV, as is used in these experiments, uses the differing perspectives

of two cameras to obtain velocity components within this plane as well as compo-

nents perpendicular to it, though the locations of data points are still confined to

the plane. In order to obtain these components for the entire 3D volume of the

cylinder’s wake, stereoscopic DPIV was carried out for multiple planes lining up

with the 20 marked locations along the cylinder’s length.

A class 4 laser with a wavelength of 532 nm was situated underneath the flow

tank, illuminating the seeded particles at an angle so as to minimize the cylinder’s

shadow across the wake. Additionally, changing either the distance between the

laser sheet and the cameras or the ratio of water to air between them renders the

software’s calibration inaccurate. To deal with this, the laser and both cameras

were held at a constant distance from one another on a structure that allowed the

position of the entire system to be adjusted. To solve the problem of the water-

to-air ratio, the cameras were directed not at the tank’s viewing window but at an

angled, underwater mirror in a smaller, adjacent tank. The picture of the entire

setup is shown in Fig. A.1 and detailed description of the setup is diagrammed in

Fig. A.2. Images were again recorded for a duration of 8 s at each plane with a
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frame rate of 250 Hz. Due to the angle of the cameras and the size of the suction

cups, the last 5 dots were not visible, so there are only data on the first 20 points,

starting on the far side of the tank.

Cameras

Carriage 
mechanism

Laser system

Adjacent 
aquarium &
angled mirror

Flow
channel

Test
cylinder

Figure A.1: Image of the experimental setup.

A.2.3 Data analysis and visualization

LaVision DPIV software was used to obtain a 2D vorticity field for each of the

20 slices; this only included the vorticity’s z-components since a spatial derivative

in the z-direction (across multiple slices) is required for x- or y-components. In

order to compile planes of data taken at different times into a single representative

cycle of motion, they must be phase-averaged using known characteristics of the

cycle.
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Figure A.2: Left image: Sketch of the stereoscopic DPIV setup, viewed from the
side with the water flowing into the paper. Right image: Sketch viewed from the
top, with the water flowing from bottom to the top of the diagram.

A.2.4 Obtaining phase and phase averaging

Fig. A.4 depicts an example image taken as part of the time-series for each

slice. The smaller white dots are the seeding particles; the laser reflecting off the

edge of the cylinder results in the larger white smudge. Whereas PIV software uses

particle-tracking of the seeding particles to produce velocity and vorticity fields,

using the simpler ProAnalyst to track the cylinders crescent in a time series of PNG

images exported from LaVision can provide information about the periodicity of

the whole process. To this end, filters were applied to the original image, making

the crescent more distinct and therefore more easily tracked (right image in Fig.

A.4). A calibration was also applied that set the origin of the tracking data in

the same location as in the PIV data, using the axes included in the exported

image series as a guide. This tracking process was repeated for each of the twenty

2000-frame time series corresponding with their respective planes.

The resulting tracking data were then used to assign a phase value between
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Figure A.3: Left image: An example frame taken during the DPIV process. The
white crescent indicates where the laser is reflecting off the edge of the cylinder.
The edges of the image are skewed because the frame is calibrated to provide a
head-on perspective (as opposed to the original, angled view of the camera) Right
image: The same frame, with filters applied so the crescent is more easily tracked.

−π and π to each frame of the corresponding time-series. These phase values were

converted to degrees (from 0◦ to 360◦) and divided into 10◦ sections, resulting in

36 phase bins. The vorticity data from every frame assigned a phase within a

given bin were averaged with all of the other data falling within that phase bin.

For instance, 75 out of the 2000 images might fall within the first bin for a given

slice’s time series, and the average of their data provides a single representative

beginning to the cycle. Due to time constraints, only every tenth data point was

included and this was carried out just for slices 7 to 17.

A.2.5 Visualization

The cylinder tracking data for each slice were similarly phase-averaged and as-

sembled to provide the cylinder’s shape and position at each phase of the averaged

cycle. As with vorticity, slices were phase-averaged separately from one another

and all of the data for a given phase combined into a 3D representation of the

cylinder’s position at that phase. This revealed which positions in the cylinder’s

cycle correspond with specific stages of its wake.

Due to small variations in the cylinder’s position at each slice, however, the

combined segments did not produce a coherent mode shape without significant

adjustments. Rather than use absolute position coordinates, it proved more prac-

tical to instead visualize how each segment oscillated around a given center point
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(i) (ii)

(iii) (iv)

Figure A.4: (i) The path traced by the cylinder’s 9th cross section’s movement in
the xy−plane, over the entire recording. This contrasts to the figure-eight crescent
shape seen in other slices’ orbitals. (ii) The result of attempting to phase-average
this orbital. (iii) The path traced by the 12th cross section’s movement, which
has a much more recognizable pattern and is more representative of the rest of the
cylinder. (iv) The phase-averaged orbital of the 12th slice.
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at which the whole cylinder presumably takes the shape of a straight, completely

horizontal line. The preliminary tests in which the full cylinder’s motion was

tracked allowed for this position, and the phase at which it occurs, to be found,

then, phases were assigned to each of the 2000 positions of the cylinder. The phase

values with the lowest standard deviation of point positions along the cylinder were

recorded.

Finally, the position of each segment at the bin in which most of these phase

values fall was subtracted from all of that segment’s data. For instance, if most

of the phase values with low standard deviations fell between 70-80 phase degrees,

each segment was normalized according to its position during the 8th bin. In order

to make sure the relative positions of the cylinder and the wake were correct, the

coordinates of the vorticity field data are given the same offsets as the cylinder

segments.

Additionally, the position given by the tracking data was shifted for each

cylinder upwards by a distance of the radius of the cylinder and at an angle of

π/4. While assuming the tracked point was located exactly on the bottom left

edge of the cylinder was not very precise, fitting a circle of the correct radius to

some of the crescents and finding their coordinates confirmed that this method

caused no major anomalies.

The final, adjusted cylinder and wake data were written into 36 V TK un-

structured grid and structured grid files, respectively (one for each phase), and

loaded into Paraview software, where the averaged cycle of both may be viewed

either as individual images or animated.

A.3 Results

All phase-averaged cylinder orbitals except for slice 9 confirm that this pro-

cedure can give reasonable and synchronized data. Whereas most other points

151



had distinctive, expected curved figure-8 shapes, the motion occurring when the

data at slice 9 were taken appears to have been much more erratic (Fig. A.4a).

This results in a nearly meaningless average cycle (Fig. A.4b). In contrast, slice

12, a typical representation of the rest of the data, traces a slightly varying but

consistent orbital (Fig. A.4c). This results in a reasonable looking and more useful

average cycle (Fig. A.4d). Therefore, the actions of the ninth cylinder segment in

the positions of segments 8 and 10. When the orbitals for all slices are compared

(Fig. A.5), including this virtual 9th point, it is easy to see that they all represent

similar behavior.

Figure A.5: Phase-averaged orbitals for every recorded slice, with slice 9 adjusted
to be the average of slices 8 and 10.

The entire cross-flow motion as recorded in the initial tests is depicted in

gray in Fig. A.6, with the length of the cylinder on the horizontal axis and its
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oscillation amplitudes on the vertical. The 20 frames with the lowest standard

deviation of amplitude are highlighted in black, demonstrating the center position

of a typical cross-flow oscillation. The phases of these 20 frames are plotted against

all phases (Fig. 8) and are shown to all occur roughly at the same point in the

cycle, supporting this as an accurate strategy to normalize the cylinder’s position

data.

Figure A.6: The transverse movements of the cylinder are plotted, with the dis-
tance along the cylinder on the horizontal axis and its displacement perpendicular
to the flow on the vertical. Each line represents the cylinder’s position in one
frame; the highlighted black lines are those with the lowers standard deviation in
vertical positions across the length of the cylinder.

Figure A.7: Each frame is assigned a phase-value between 1 and 360, so at the end
of each cycle the phase value returns to 1, producing this saw-tooth pattern. The
phases of the frames with the highlighted center positions (Fig. A.6) are indicated
on the graph with circles, showing they all occur at the same stage in the cycle.

When the 36-frame time series of the cylinder is loaded into Paraview software,

the cylinder’s motion appears exactly as expected; the first mode is observed in

153



both the cross-flow and in-line directions, as was observed visually and in the

preliminary motion tracking data, and the frequency in the in-line direction is

roughly twice that in the cross-flow direction.

The wake data was reconstructed based on the time series of the original

motion using the Paraview. Fig. A.8 shows the resulting wake motion in time.

Figure A.8: 3D reconstructed wake based on the cylinder’s motion. Colors show
vorticity.

A.4 Discussion

For future visualizations, experiments should be conducted to ensure that

the behavior of the cylinder during the data collection at each plane remains the

same. Slice 9 in these experiments, for instance, presented an entirely different

cycle of motion than other slices, and even the more similar orbitals had some

differences. Many papers on VIV discuss the effects of hysteresis, in which changing

or disturbing the flow speed between trials can result in certain non-reversible

cycles [8, 9]. Additionally, these methods should be tested with different flow

speeds to determine whether the observed irregular motion is a result of 0.17 m/s

being a transition point between cylinder modes or frequencies.
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Future projects should also focus on calculating a 3D vorticity field from

similarly assembled velocity fields, since this is one of the most important potential

products of attempting such a visualization in the first place.

This project has confirmed that tracking the illuminated crescent provides

accurate information on the motion of the cylinder, although a better method for

finding the necessary shift to apply to the tracked point is a worthwhile goal. It

is possible that this method could be used to track, in addition to the crescent,

a virtual point created in ProAnalyst at the location of the cylinder’s center. If

an additional high-speed camera is available, however, it may be more fruitful to

simply take images of the cylinder’s cross-flow motion and analyze these separately.

One setback to this last suggestion, and the main reason this was not attempted

here, is that all cameras would need to be completely synchronized so that the

motion tracking and wake data line up with each other correctly. Finally, the

structure of the V TK file format caused some difficulties in making MATLAB

analysis more efficient. A potentially faster approach than the one used here would

be to write in the data of each slice to the file as it is calculated; given the V TK

organization, it was instead necessary to save all data points for every slice and

every phase before writing the files for visualization in Paraview.

Overall, the phase-averaging techniques attempted here have potential to be

extremely useful in studying the properties of vortex-induced vibrations, though

many important details will need to be worked through before a viable procedure

is produced.
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APPENDIX B

Recirculating flow channel flow velocities

Measured Flow Velocities
Motor Speed [Hz] Velocity [m/s]
1 0.01
2 0.0275
3 0.05
4 0.06625
5 0.08
6 0.1
7 0.12
8 0.13375
9 0.15
10 0.17
11 0.1875
12 0.2025
13 0.22
14 0.24
15 0.2525
16 0.27375
17 0.2925
18 0.30875
19 0.325
20 0.345
21 0.3625
22 0.38125
23 0.3975
24 0.4175
25 0.43875
26 0.45875
27 0.47875
28 0.4975
29 0.51625
30 0.53625
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APPENDIX C

Equipment used in the experiments

C.1 High-speed cameras

Two phantom V10 type high speed cameras were used for motion tracking.

Cameras are capable of recording continues images up to 480 frames per second

using the full resolution of 2400 × 1800 pixel CMOS imaging sensor array. User

can specify other aspect ratios to increase the speed or extend recording times [1].

Figure C.1: Example image of phantom V10 high-speed camera [1].

C.2 Test cylinder molding

Test cylinders were molded using clear flex - urethane rubber material from

Smooth-On. To give the cylinder black outlook, black tints were used. After

molding, cylinder was marked with white dots equally spaced across it’s span.

Left image in Figure C.2 shows an example image of the test cylinder that

was molded inside an acrylic tube, and right image in Figure C.2 shows circular

white markers placed across cylinder’s span.
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Figure C.2: Cylinder molding process.

C.3 Motion tracking

Motion tracking was done using ProAnalyst software which works based on

sub-pixel accuracy. The software is capable of tracking a specified marker (in

this case dots) in 1-Dimension (line tracking) and/or in 2-Dimensions (feature

tracking). Software takes .avi files as an input and continuously track the location

of a specific marker that is identified in the video.

In the tests, cylinders were marked with white dots for tracking. Therefore,

the quality of the tracking depends on the resolution of the dots after traditional

filtering methods are being applied. These methods are available in the interface

of the software and were discussed in more detail in [2]. In order to enhance the

quality of the tracking, additional lights can be used to brighten the camera view.

Figure C.3 shows an example image of the filtered cylinder. It should be

remembered that if the filtering is clean (i.e. white dots are distinct and background

is completely black), the processing is more successful; otherwise, user manually

need to track the dots for high accuracy tracking. This was not a problem in the

current experiments. However, in the earlier experiments of [2], wave formation at
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Figure C.3: Example image of the filtered cylinder using the ProAnalyst.

high flow speeds resulted generating bubbles at the surface of the water, and that

required manual tracking (because this makes filtering very hard and results the

software not to be able to separate the white dots and the water particles). This

problem is prevented in this work by either not doing the experiments at high flow

speeds, or making an experimental apparatus that allow no wave formation for

certain flow speed range.

Figure C.4 shows the example image of the ProAnalyst window. Each dot is

tracked in two dimensions (in-line (x) and cross-flow (y)). Boxes around the dot

represents the search window specified within the software and it should cover the

total displacement of that point in both directions. In addition to motion tracking,

software also allows one to monitor the frequency and time history in real time for

the desired point across the cylinder’s span.
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Figure C.4: Example image of the ProAnalyst window in 2D tracking.

C.4 Lased displacement sensor

Laser displacement sensor (LDS) was used to characterize the motion of the

test cylinders in air. LDS used in the experiments is a Class 2 laser Keyence

LK-081, and works with a 24 V DC power supply. The sensor measures the dis-

placement of a desired location within the range of 80 mm and measures the

maximum displacement of 30 mm [3]. Figure C.5shows the image of the LDS head

and laser controller.

Figure C.5: Keyence LK-081 laser displacement sensor head with laser controller.
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C.5 Shaker and function generator

Figure C.6 shows the function generator (top image) and shaker (bottom im-

age) used in-air experiments for the manuscript 4. Function generator is a Wavetek

FG3C, and is capable of generating sinusoidal motions within the frequency range

of 0.3 Hz to 7 MHz with a distortion rate less than 1%. Shaker is a Vibration

Test Systems (VTS) single vibrator VTS 100 system. Rated force for this shaker

is 100 lbf and is capable of oscillating within the frequency range of 2-6500Hz.

(i)

(ii)

Figure C.6: (i) Function generator from Wavetek. (ii) Shaker from VTS.
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