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ABSTRACT

Biological processes are complex and can be modeled using combination of

linear and non-linear models. During the cell culture process, cells may change

or evolve and it is extremely important to understand the variability of the pro-

cess to manufacture consistent product. In order to maximize the output from

the process, process parameters need to be characterized and optimized. Data

from process involves linear and non-linear patterns and some of the parameters

are auto-correlated. One of the objectives of study was to compare Unsupervised

Dimesional Reduction methods to Supervised machine learning algorithms applied

to biopharmaceutical manufacturing process data and suggest a new 2-stage ap-

proach including a combination of unsupervised and supervised algorithms for

better predictability. Analytical methods are used to measure the quality of the

product. Main objective of methods transfer is to avoid release of product that

does not meet specifications as well as avoid rejection of good product. The effect

of sample size for establishing analytical method equivalency and comparison of

statistical methods during assay transfers was performed and criteria for out of

specification risk mitigation was recommended. Shelf life of a biopharmaceutical

product is typically based upon the stability data. Factors that impact stability

of a product and shelf life were studied in detail using multiple statistical models

and criteria for choosing the appropriate model was recommended.
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CHAPTER 1

INTRODUCTION

1.1 Background

Drugs manufactured from bio-technology based processes have been impor-

tant in treating chronic and rare diseases such as cancer and enzyme deficiency

disorders. Biopharmaceuticals are a major portion of pharmaceutical market. It is

now commonly reported that a growing percentage, now over 40%, of all pharma-

ceutical industry research and products in development are now biopharmaceutical

rather than small molecules. Progress in science have pushed biopharmaceutical

manufacturing into another domain of unpredictability as of late. The FDA has

approved at least 10 large molecules (biologics) in each of the past five years. Fur-

thermore, over 900 biologics were in development as of February 2013, suggesting

that there will be increased need for commercial production of biologics in the com-

ing years as seen in Figure 1[1]. Biologic medicines such as vaccines are complex

molecules made by or from living cells and are often infused or injected.

The emergence of biologics, which are complex than small molecule medicines

and are frequently gotten from living cells, has introduced incredible difficulties

to manufacturers. These molecules require multiple steps that entail the use of

robust technology to ensure purity, consistency, and quality. Research and devel-

opment, clinical and commercial manufacturing of these products require a good

understanding of chemistry, manufacturing and controls. Biopharmaceutical pro-

cesses are typically comprised of multiple processes operated in batch/continuous

mode to produce proteins, and have complex biological mechanisms that result in

non-linear and time-variant process dynamics. Manufacturers place a high empha-

sis on ways to improve the consistency and predictability of processes over time

to ensure product quality. Biopharmaceutical manufacturing process consists of
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Figure 1: Biologic drugs in development by category[1]

cell culture(upstream) and Purification(Downstream) operations. The upstream

process is defined as the entire process from early cell isolation and cultivation,

to cell banking and culture expansion of the cells until final harvest (termination

of the culture and collection of the live cell batch). Upstream process consists of

inoculum, media development, scale up of processes and optimization of growth so

that cells can grow and protein can be extracted. The downstream manufacturing

process purifies the protein from cell mass transferred and processed to meet pu-

rity and quality requirements. Downstream processing consists of cell disruption,

purification section and a polishing section.

Modeling the relation between input parameters, process conditions to the output

attributes require advanced analytical tools and complex models. After the man-

ufacturing of therapeutic proteins, shelf life or the stability time period need to be

established. Stability testing for biologics consists of more quality attributes and

stability profiles vary from product-to product and lot-to-lot, result in identifying

patterns and interpreting results more difficult. The measuring assays for biologics

2



are complex and may be more variable, making it difficult to interpret results. The

purpose of stability testing is to provide an understanding on how the quality of

an active substance or finished product varies with time under the influence of a

variety of environmental factors such as temperature, humidity, and light, and to

establish a re-test period for the active substance or a shelf life for the finished

product and recommended storage conditions. Stability testing thus evaluates the

effect of environmental factors on the quality of the drug substance or a formulated

product which is utilized for prediction of its shelf life, determine proper storage

conditions and suggest labeling instructions. Moreover, the data generated during

stability testing is an important requirement for regulatory approval of any drug

or formulation [3].

Major reason for stability testing is the concern for the well-being of the pa-

tient suffering from the disease for which the products is designed. The product

may degrade and lose its activity due to storage conditions and other factors re-

sulting in failure of therapy. Other reasons include ensuring the reputation of the

producer by guaranteeing that the item will hold stable for use as for all prac-

tically important qualities for whatever length of time that they are available.

Other benefits of stability studies at the developmental stage or of the marketed

products are to provide a database that may be of value in selection of adequate

formulations, excipients and container closure systems for development of a new

product, to determine shelf life and storage conditions for development of a new

product, preparation of registration dossier, to substantiate the claimed shelf life

for the registration dossier and to verify that no changes have been introduced in

the formulation or manufacturing process that can adversely affect the stability of

the product [3, 4]. Shelf life is commonly estimated using two types of stability

testing: real-time stability tests and accelerated stability tests. In real-time stabil-

3



ity testing, a product is stored at recommended storage conditions and monitored

until it fails the specification. In accelerated stability tests, a product is stored at

elevated stress conditions (such as temperature, humidity, and pH). Degradation

at the recommended storage conditions can be predicted using known relationships

between the acceleration factor and the degradation rate.

Analytical methods are used to measure the quality of the product. Typically,

similar to a manufacturing process, they are developed in a pre-commercial set-

ting and need to be transferred to commercial manufacturing. Main objective of

method transfer is to avoid release of product that does not meet specifications

(safety impact) often considered as Type I error as well as avoid rejection of good

product (business impact Type II error). Because of these potentially high-impact

implications, an assay cannot be used by the new lab until transfer is successfully

completed. Method transfer activity is the procedure of building up a qualified

diagnostic test methodology that begins in another facility. It documents that

method execution is comparable across sites. The assay transfer process involves

robust studies from the receiving and sending labs to establish equivalence. Similar

to method validation, analytical method transfers provide a snapshot of point in

time and should not be the single means to approve usage of the method. For a

successful method transfer, the criteria need to be statistically and scientifically

meaningful. Different statistical methods including significance tests, absolute ac-

ceptance criteria and equivalence tests are described and compared with detailed

examples. The processes may be dynamic and things might change over time.

Analytical method transfers should be used along with method validation or ver-

ification and continuous assay monitoring to establish robustness of the method.

Based upon the assessment of analytical procedure, statistical equivalence tests can

be used to establish equivalence between sending and receiving sites. Equivalence

4



tests include both practical equivalence limits and also take in to consideration of

statistical risks.

1.2 Statement of the Problem

The biologics supply chain consists of several processes, as shown in Figure 2.

Figure 2: Biologics Supply Chain

Bio-technology manufacturing processes are complex and consist of multiple

processing operations with numerous parameters including inputs and their corre-

lation structures impact the final output or productivity of the process. The first

two stages shown in Figure 2 are the manufacturing processes.

For the purpose of this study, research will be focused on upstream (cell cul-

ture) part of the manufacturing process. Cell culture is the goal of using recom-

binant technology to make cells convert one product into another. In most cases,

this is either a feedstock like glucose or aminoacids like glutamine. Compared

to chemical synthesis used in small molecule drugs where the ingredients tend to

be consistent, cells may change or evolve during the process and it is extremely

important to understand the variability of the process to manufacture consistent

product. Several parameters include inputs (Ex: pH, Oxygen, Glucose, Amino

acids, Temperature, pressure, agitation etc.,) that can be changed or adjusted

during the course of the process to achieve consistent quality. Statistical correla-

tions are computed to identify relation between inputs and output. Correlations
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were classified as time independent and time linked. Time independent correla-

tions are static i.e., they exist throughout the bioreactor run regardless of phase

or time period. Time independent correlations form the basis for observation wise

(also referred to as variable wise) modeling and are useful for identifying relation-

ship that are continuously present in direction and magnitude between process

parameters. Time linked correlations are dynamic i.e., they exert an impact at

one period of time and not another. Time linked correlations form the basis for

batch wise modeling and are very useful for highlighting time point in a bioreactor

run when one parameter exerts an influence on another parameter with variable

direction and/or magnitude.

Models were constructed by using multiple techniques: parsimonious curve-fitting,

partial least squares and support vector machine algorithm. Data from process

involves linear and non-linear patterns and some of the parameters are auto-

correlated.

The third step in the Biologics supply chain is quality control. Assays that measure

the quality of the product need to be transferred from development/validation lab

to production lab and sometimes the assays have to be transferred to contract man-

ufacturing labs. The purpose of the transfer is to demonstrate that the two labs

are comparable to avoid re-validation of the assay. Comparability and equivalency

between sending and receiving labs and the number of replicates that required for

establishing equivalence need to be optimized for resource efficiency and reducing

producers risk. Based upon current practices, means are compared between the

receiving lab results, to the average results of the sending site, considering send-

ing site as the reference value. Comparability should be established based upon

both accuracy (comparing the means between the sites) and also the precision

(comparing the variances) criteria. Some of the current statistical approaches for

6



establishing the comparability of accuracy criteria include using students t-test for

identifying any statistical mean difference between the sites or using equivalence

test/Two-one sided t-test(TOST) that takes into consideration any practical sig-

nificance. Determining the appropriate acceptance criteria is critical to decide the

appropriate study design and sample size required for method transfers. Literature

review suggests number of approaches are proposed for analytical method transfer.

This study will provide more details on establishing the acceptance criteria and

sample size required for successful method transfer optimizing patient and produc-

ers risk.

The process of establishing shelf life for new products and extension of shelf life for

existing products will be studied based upon the current regulations and statistical

techniques. This is the final step in the supply chain in Figure 2. Based upon Inter-

national Conference on Harmonisation(ICH) Q1E [5], for quantitative attributes

that are used for stability determination, linear and nonlinear regression and sta-

tistical modeling through poolability tests are used for determining the estimated

shelf life of a drug product. According to these guidelines, results from at least

three stability registration batches are obtained at pre-determined storage times.

A linear regression model can be used for common intercept and slope, separate

intercepts and common slope or separate intercepts and separate slopes for shelf

life determination. ICH guidelines suggest a fixed batch methodology to establish

a shelf life. This approach assumes that batches used in establishing shelf life are

representative of the products distribution in terms of the products manufacturing

process. This approach only considers within-batch variability into consideration

and batch to batch variability is ignored. The random effects measure the batch to

batch variability. Based upon the ICH guidelines, different factors will be included

in the study. These factors are poolability of data, worst case lot and fixed and
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random effects for establishing and extension of shelf life[6]. Criterion for selecting

an appropriate model( Full/Random/Mixed) will be defined and comparison of

shelf life using existing guidance and proposed methodology will be included for

justification of extension.

1.3 Significance of the study

Biological processes are complex and can be modeled using combination of

linear and non-linear models. During the cell culture process, cells may change or

evolve and it is extremely important to understand the variability of the process to

manufacture consistent product.In order to maximize the output from the process,

process parameters need to be characterized and optimized. Statistical methodolo-

gies can be applied to manufacturing process data to analyze the correlations for

process optimization. Data collected from biological manufacturing process is vast

and auto correlated. The data cannot be analyzed by linear regression methods

due to the nature of time varying and autocorrelation. Due to high dimension-

ality of the data, few methods such as Principal component analysis(PCA) and

Partial least squares (PLS) were chosen for dimensional reduction. PCA and PLS

methodologies belong to classification of unsupervised algorithms. Dimensionality

reduction is based upon the inherent structure in the data, in an unsupervised

manner (A model is prepared by deducing structures present in the input data) to

summarize or describe data using less information.

The same dataset will also be analyzed by supervised machine learning algo-

rithms like Symbolic Regression (SR) and Support vector machines (SVM). Su-

pervised learning can be explained by building a model through iterative training

process until the model achieves desired level of accuracy for predictions. The

present study compares machine learning supervised learning models, unsupervised

dimensional reduction techniques and suggests an alternate method of combining
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supervised and un supervised algorithm (2-stage) for better prediction purposes.

These predictions can be used for scheduling purposes for downstream processing

and also for capacity planning and scheduling optimization.

Shelf life of a biopharmaceutical product is typically based upon the stability data.

The shelf life of a pharmaceutical product is the maximum time at which the re-

sponse of a stability limiting characteristic for all parameters (or other unit) in

the batch does not exceed the specification limit. ICH Q1E provides general guid-

ance for establishing the shelf life based upon average of the results, but does not

provide any guidance on individual results. Also, there is no guidance provided

on extending shelf life of a product based upon historical data.ICH approach es-

timates shelf life indirectly by interval estimate on the mean. According to the

guidelines, shelf life for each individual batch is computed and a minimum value

is considered as the shelf life for the product. The approach might not address the

future batches and does not provide clarity around product meeting specifications.

Previous approaches considered batch as fixed factor and proposed approach will

consider batch as random effect to address future batches.

The process for establishing or extending shelf life depends upon a number of fac-

tors and hence it is essential to understand each of the factors in detail in order to

determine the appropriate statistical methodology. Some of the important factors

that need to be considered are poolability of lots, determination of Worst case

Lot (WCL) and the type of model (Full/Random/Mixed). Hence, it is required

to conduct a detailed study of the effect of these factors and then recommend the

best model based on defined criteria, which is the goal of this work.

Often, assay methods need to be transferred between development and validation

to commercial laboratories and also between contract manufacturing laboratories.

The accuracy and precision of the sending and receiving labs should be compa-
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rable and should not have statistical significant differences.There are no official

regulatory guidelines that exist for assay transfers.FDA guidance for validation of

bioanalytical methods which is assay transfer between labs is considered as partial

validation.However, no guidance regarding the protocol design, number of repli-

cates/samples required establishing equivalence and comparability is present in

neither agency guidelines nor ICH documentation [7]. Hence a detailed study of

the effect of sample size for establishing equivalency, comparison of methods for

establishing goal posts for equivalency and comparing accuracy, and precision will

be studied for practical applications.

1.4 Objectives and Deliverables of the study

• Objective 1: The First objective of this study was to compare Unsupervised

Dimensional Reduction methods to Supervised machine learning algorithms

applied to biopharmaceutical manufacturing process data and suggest a new

2-stage approach that includes a combination of unsupervised and supervised

algorithms for better predictability.

Deliverable: Comparison of two unsupervised dimensional reduction meth-

ods (PCA, PLS) to supervised machine learning methods (Symbolic regres-

sion, Support Vector regression) and suggest a Scores Based Symbolic Re-

gression methodology applied to penicillin fermentation process data.

• Objective 2: Second objective of the study was to identify and recommend

appropriate statistical methodology for establishing shelf life and extension

of shelf life for biopharmaceutical products.

Deliverable: Study the impact of factors like poolability of lots, determina-

tion of Worst case Lot (WCL) and the type of model (Full/Random/Mixed)

on shelf life determination. Selection of model using defined criterion will be

recommended.
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• Objective 3: Third objective of the study was to study of the effect of sam-

ple size for establishing equivalency and comparison of methods during assay

transfers and to recommend criterion for out of specification risk mitigation.

Deliverable: Analysis of sample size required at different levels of power and

Type I error will be performed. Optimal samples required for method trans-

fer will be recommended based upon balancing power and producers risk.

A better approach for analytical method transfers is proposed, that involves

process capability calculations that can avoid potential out of specification

results.

1.5 Structure of the study

Chapter two contains a background and literature review regarding bioreactor

process optimization, shelf life determination and extension of shelf life, analytical

method transfers and proposed criteria for establishing acceptance criteria.

Chapter three discusses the methodology considered and used in the study. It

describes the research methods, data collection and data analysis procedure.

Chapter four presents the results of the study and the practical implementation of

the findings.

Chapter five presents the conclusions of the study including its limitations. Sug-

gestions for further research is also discussed in this chapter.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Data from Biologics manufacturing processes are available since the start of

manufacturing drugs like penicillin, but tools and methodology to monitor and

analyze have only matured only in recent years. This has been brought about

by advances in detecting technology for capturing and storing multidimensional

data and faster computing technologies that has enabled complex transformations

and manipulations of the large datasets quickly and economically. Before review-

ing the literature, we discuss various statistical methodologies that were used for

monitoring and analyzing biologics processes, stability data analysis and method

transfers.

2.1 Statistical Methodologies for analyzing Process data
2.1.1 Partial Least Squares (PLS)

PLS is a regression methodology that is most suitable for data with high auto

correlation between cause variables. Partial Least Squares can be applied to batch

data where data can be divided into inputs (X variables) and outputs (Y variables).

The methodology works by selecting factors of input variables in a sequence which

successively maximizes the explained covariance between the input and output

variables. Based upon a matrix of input variables, X (of size m × nx, where m is

the number of observations and nx is the number of input variables), and output

data, Y (of size m × ny, where ny is the number of output variables), a factor of

the input data, tk (length m), and effect data, uk (length m), is evaluated, such

that:

X =

np<nx∑
k=1

tkp
T
k + E and Y =

np<nx∑
k=1

ukq
T
k + F (1)
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The vectors tk are mutually orthogonal. These vectors and the uk vectors are

selected to maximize the covariance between each pair (tk, uk). E and F are errors

and pk and uk are referred to as loading vectors as explained by O. Marjanovic

et al., [8]. Linear regression is performed between the tk and the uk vectors, to

produce the inner relationship, such that:

uk = bktk + εk (2)

where bk is a regression coefficient, and εk refers to the prediction error. PLS pro-

vides a mechanism: a model to select appropriate scores, latent variables/Principal

components and length of the model.Typically, relatively few principal components

can explain most of the variation in the input variables that impacts out vari-

ables. Required number of principal components can be selected by comparing the

amount of variation explained and how well the model can predict future obser-

vations. Cross-validation can also be applied to obtain optimized model.Process

Data encompassing multiple batches with associated variables changing with time

can be envisioned as a three-dimensional cube with batch, variable, and time repre-

sented by terms i, j, and k, respectively. Three dimensional spaces can be unfolded

to two dimensional space in three ways as shown by Lee et al. [2].

1. Batches × times for each specific variable (observation-wise unfolding)

2. Variables × time for each specific batch (batch-wise unfolding)

3. Batches × variables at each specific time (time-wise unfolding)

Each method is useful for addressing a variability. Observation-wise unfolding( also

referred to as variable-wise unfolding) can be used to obtain information about the

variability among the batch variables. This approach is useful for uncovering time

independent relationships between variables. Batch-wise unfolding facilitates the
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analysis of the variability among batches. This is a particularly useful method

when applied to understanding how process variability impacts process outcome.

The two unfolding methods depicted above are commonly used for batch process

monitoring and have been used extensively in this study and is depicted in Figure 3.

The third unfolding method time-wise unfolding is useful for analyzing variability

Figure 3: Depiction of batch-wise and variable-wise data unfolding [2]

among samples. Time-wise unfolding is more sensitive to detecting variations and

deviations from normality in process monitoring. It is not as useful for system

dynamic modeling involving variable to variable relationships or batch to batch

variation and has not been used in this study.

2.1.2 Symbolic Regression

Symbolic regression is an established method based on evolutionary computa-

tion for searching the space of mathematical expressions while minimizing various

error metrics. Unlike traditional linear and nonlinear regression methods that

fit parameters to an equation of a given form, symbolic regression searches both

the parameters and the form of equations simultaneously. Initial expressions are

formed by randomly combining mathematical building blocks such as algebraic

operators (+, , ,×), analytical functions (for example, sine and cosine), constants,
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and state variables. New equations are formed by recombining previous equations

and probabilistically varying their subexpressions. The algorithm retains equations

that model the experimental data better than others and abandons unpromising

solutions. After equations reach a desired level of accuracy, the algorithm ter-

minates, returning a set of equations that are most likely to correspond to the

intrinsic mechanisms underlying the observed system.

Eureqa software will be used for application of symbolic regression to the pro-

posed study of penicillin manufacturing process. Symbolic Regression has been

described in detail by V. Aryadoust [9]. Once the operators are selected, sym-

bolic regression uses evolutionary algorithms (EAs) that are similar to Darwins

evolution theory [10, 11]. The process starts with initialization phase, where first

generation of mathematical functions start fitting the data and solutions are ran-

domly generated. Potential solutions fit is evaluated comparing to one or more

fit indices[12]. Based on the results of the fit indices, most fit solutions are cho-

sen as primary solutions and modified further to reproduce new solutions for use

in successive iterations also called as generations. Evolutionary algorithm based

symbolic regression must maintain diversity in generations of solutions. If not,

the process will end in pre-mature convergence [13]. Stagnation based on con-

vergence of solutions without an optimal solution point is called a local optimum

and impacts the fit and precision of solutions. Multiple technical softwares were

developed to avoid pre-convergence and Eureqa is one of them and used in the

current research. The software uses three optimizations: Cross over, mutation and

agefitness pareto optimization.

In crossover optimization, two or more primary solutions are chosen to re-

produce one or more secondary solutions. Eureqa uses a one-point crossover: a

random point on each primary solution is taken, and divided into sections before
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and after the crossover point. All these sections are combined to two secondary

solutions and replace sub optimal solutions from the previous generations [14, 11].

Mutation is another optimization technique where a single solution is par-

tially or entirely modified to generate a better solution [12, 15]. Cross over is a

more commonly used technique compared to mutation. According to Michalski

and Ryszard [16], 50 % functions go through crossover, but only 1% follow mu-

tation. The technique helps in preventing pre-mature convergence by diversifying

the solutions.

The third optimization used in Eureqa to avoid premature convergence is

age-fitness pareto optimization, where evolving solutions are selected based upon

age of the solution and fit to the data [17, 18]. Age-fitness pareto optimization

selects the low aged and fittest solutions, and over iterations try to minimize error,

improve fit and maximize predictive capability. Schmidt and Lipson [18] indicated

that this optimization technique outperforms other available techniques such as

deterministic crowding and age-layered optimization. Multiple statistics can be

used to evaluate the effect of cross-validated solutions , but Eureqa uses Mean

absolute error, Mean squared error, Correlation coefficient and R2 goodness of fit.

Multiple fit statistics are used to assess the efficacy of cross-validated solutions,

as follows:

1. Mean absolute error (MAE): Assuming that error of measurement follows

a double exponential distribution, MAE estimates the difference between

predicted and observed values. The closer the MAE to zero, the higher the

precision.

2. Mean squared error (MSE): Like MAE, MSE estimates the difference between

the predicted and observed values. Unlike MAE, however, MSE assumes that

error of measurement is normally distributed. Lower MSE indices indicate
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higher precision.

3. Correlation coefficient (R): ranging between 0 and 1, the R index quantifies

the correlation between observed and predicted values. Values above 0.7

indicate significant correlation between model-estimated and actual output.

4. R2 goodness of fit: The R2 index indicates the percentage of output (values

of the dependent variable) that can be explained by the input or independent

variables. It ranges between 0 and 1, with values closer to 1 indicating higher

predictive power.

Eureqa assigns each operator in the solutions a numerical value indicating its

complexity. For example, addition and negation have a value of 1, whereas logistic

and step functions have a value of 4. The total complexity of each solution is the

sum of the complexity values of the operators used in that solution. As less complex

models with low errors of measurement are desirable, sometimes the researcher has

to make a trade-off between complexity and fit by choosing less complex models

over more complex models with slightly better fit statistics [13]. This decision can

also be based on the sensitivity of each input variable, that is estimated according

to its frequency of occurrence across all solutions, as well as the sensitivity or

relative impact of each input variable on the output within each model.

2.1.3 Support Vector Machines(SVM)

SVM is an excellent method aiming to optimize finite data points based on

statistical learning theory (SLT) [19, 20] advanced by Vapnik in 1990s. It adopts

the structure risk minimization (SRM) principle and avoids the complex computing

kernel function of low dimensions instead of dot-matrix of high dimensions space.

The main idea of SVM is described by Peng et al. [21] and documentation is

provided by Mathworks [22]. This is further discussed below.
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Linear SVM Regression: Primal Formula

Suppose we have a set of training data where xn is a multivariate set of N

observations with observed response values yn. To find the linear function f(x) =

x
′
β+b, and ensure that it is as flat as possible, f(x) is found with the minimal norm

value (β
′
β). This is formulated as a convex optimization problem to minimize

J(β) = 1
2
β
′
β,

subject to all residuals having a value less than ε; or in equation form

∀n : |yn − (x
′
nβ + b)| ≤ ε. It is possible that no such function f(x) exists to satisfy

these constraints for all points. To deal with otherwise infeasible constraints, slack

variables ξn and ξ ∗n are introduced for each point. Including slack variables leads

to the objective function, also known as the primal formula [23]:

J(β) = 1
2
β
′
β + C

N∑
n=1

(ξn + ξ
′
n),

subject to

∀n : yn − (x
′
nβ + b) ≤ ε+ ξn.

∀n : (x
′
nβ + b)− yn ≤ ε+ ξ∗n.

∀n : ξ∗n ≥ 0

∀n : ξn ≥ 0

The constant C is the box constraint, a positive numeric value that controls

the penalty imposed on observations that lie outside the epsilon margin (ε) and

helps to prevent overfitting (regularization). This value determines the trade-off

between the flatness of f(x) and the amount up to which deviations larger than ε

are tolerated. The linear ε-insensitive loss function ignores errors that are within

ε distance of the observed value by treating them as equal to zero. The loss is

measured based on the distance between observed value y and the ε boundary.

This is formally described by
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Lε =


0, |y − f(x)| ≤ ε

|y − f(x)| − ε, otherwise

Linear SVM Regression: Dual Formula

The optimization problem previously described is computationally simpler to

solve in its Lagrange dual formulation. The solution to the dual problem pro-

vides a lower bound to the solution of the primal (minimization) problem. The

optimal values of the primal and dual problems need not be equal, and the differ-

ence is called the “duality gap.” But when the problem is convex and satisfies a

constraint qualification condition, the value of the optimal solution to the primal

problem is given by the solution of the dual problem. To obtain the dual formula,

a Lagrangian function is constructed from the primal function by introducing non-

negative multipliers αn and α∗n for each observation xn. This leads to the dual

formula, where we minimize

L(α) =
1

2

N∑
i=1

N∑
j=1

(αi − α∗i )(αj − α∗j )x
′

ixj + ε
N∑
i=1

(αi + α∗i ) +
N∑
i=1

yi(α
∗
i − αi) (3)

subject to the constraints
N∑
n=1

(αn − α∗n) = 0

∀n : 0 ≤ αn ≤ C

∀n : 0 ≤ α∗n ≤ C

The β parameter can be completely described as a linear combination of the train-

ing observations using the equation

β =
N∑
n=1

(αn − α∗n)Xn (4)

The function f(x) is then equal to

f(x) =
N∑
n=1

(αn − α∗n)(XnX) + b (5)
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Karush-Kuhn-Tucker (KKT) complementarity conditions are optimization

constraints required to obtain optimal solutions. For linear SVM regression, these

conditions are :

∀n : αn(ε+ ξn − yn +X
′
nβ + b) = 0

∀n : α∗n(ε+ ξ∗n + yn −X
′
nβ − b) = 0

∀n : ξn(C− αn) = 0

∀n : ξ∗n(C− α∗n) = 0.

LSSVM is a modified version of SVM that was described by Suykens et al.[24]

and utilizes the equality constraints to replace the original convex quadratic pro-

gramming problem. In LSSVM for function estimate, the following optimization

problem is considered:

min
ω,b,ξ

J(ω, ξ) =
1

2
ωTω + γ

1

2

N∑
k=1

ξ2k, γ > 0 (6)

subject to the equality constraints:

yk = ωT .φ(ξk) + b + ξk, k = 1, 2, ....N where γ is the regularization parameter, εk

is the error between the real output and estimated value at the kth sample point.

Similar to the approach of ordinary least squares (OLS) and PLS, SVM also finds

a linear relation between the repressors (input variables, X) and the dependent

variables (y). The cost function (the function that is minimized to obtain the best

regression model) consists of a two-norm penalty on the regression coefficients, an

error term multiplied by the error weight, C, and a set of constraints. Using this

cost function, the goal is to simultaneously minimize both the coefficients size and

the prediction errors (function smoothness and accuracy). The ideology of the

LS-SVM method is very close to that of SVR, but in this case the more usual sum

of the squares of the errors is minimized, and no ε-based selection is made between

samples. This is common to all least square methods. This can make the final

model more accurate and less computationally expensive.
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2.2 Establishing stability/shelf life

The purpose of stability testing is to provide understanding on how the qual-

ity of an active substance or finished product varies with time under the influence

of a variety of environmental factors and to establish a re-test period for the active

substance or a shelf life for the finished product and recommended storage con-

ditions. Major reason for stability testing is the concern for the well-being of the

patient suffering from the disease for which the products is designed. The product

may degrade and lose its activity due to storage conditions and other factors and

thus leading to failure of therapy. According to International Conference Harmon-

isation(ICH) Q1E guidelines [5], appropriate statistical methodologies should be

used for stability data analysis. The significance of the analysis is to calculate with

high confidence, expiry date during which a quantitative attribute will maintain

with specifications for all future batches manufactured, and stored under similar

circumstances. Linear regression/regression analysis is considered an appropri-

ate statistical methodology for establishing shelf life. Based upon the ICH Q1E

guideline, an appropriate approach to retest period or shelf life estimation is to

analyze a quantitative attribute (e.g. assay, degradation products) by determining

the earliest time at which the 95% confidence limit for the mean intersects the

proposed acceptance criterion. If a parameter decreases with time, the lower one-

sided 95% limit should be compared to the acceptance criterion. If a parameter

increases with time, the upper one-sided 95% confidence limit should be compared

to the acceptance criterion. If a parameter either increases or decreases, or whose

direction of change is not known, two-sided 95% confidence limits should be cal-

culated and compared to the upper and lower acceptance criteria. The document

provides guidance for data analysis for a single batch, one-factor and multi-factor,

full-design, bracketing design, matrix studies including testing for poolability of
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batches. As per the guideline, an extrapolation of stability data assumes that the

same change pattern will continue to apply beyond the period covered by long-term

data. The correctness of the assumed change pattern is critical when extrapolation

is considered. Statistical methods can be applied to test the goodness of fit of the

data to the assumed line or curve. No such internal check is possible beyond the

period covered by long term data. Thus, a retest period or shelf life granted on the

basis of extrapolation should always be verified by additional long-term stability

data as soon as these data become available.

Analysis of covariance is the most commonly used statistical methodology

for stability data analysis. Analysis of covariance (ANCOVA) is an extension of

linear regression and an important kind of multiple regression that involves two

predictor variables: one continuous (e.g. time) and one categorical (e.g. batch of

material). Similar to simple linear regression, simple ANCOVA fits straight lines

to response measurements over time: one line for each level (i.e., batch) of the cate-

gorical variable. A key objective of ANCOVA is to determine whether the profiles

for all batches are best described as having a common-intercept-common-slope

(CICS) model, a separate-intercepts-common-slope (SICS) model, or a separate-

intercepts-separate-slopes (SISS) model. As per ANCOVA, models are chosen

based on comparing slopes or intercepts. US food and Drug administration rec-

ommends a p-value < 0.25 for significance for a model to estimate shelf life.

2.3 Analytical Method Transfers

Analytical method transfer is a process that involves transferring analytical

method from a sending lab to receiving lab to ensure that a method is executed

similar at both labs. Analytical method transfer is a key component of technology

transfer between process development laboratory to commercial manufacturing.

Regulatory agencies require that transfer between labs are documented and equiv-
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alence is established. The objective of the method transfer is to ensure that results

obtained by receiving lab are reliable and comparable to sending laboratory to meet

the specifications of a product and address any bias between the labs. Multiple

agencies proposed recommendations for transferring analytical methods including

ISPE (International society of pharmaceutical Engineers), WHO (world health or-

ganization), United States Pharmacopia(USP). All these recommendations are not

explicit and vary across agencies.

ISPE provided initial guidance on analytical transfers in 2003 as a part of

its technology transfer guideline [25]. According to the guideline, the scope of

a transfer if defined as follows: The Receiving Unit can routinely reproduce the

transferred product, process, or method against a predefined set of specifications

as agreed with the Sending Unit. Per the guideline, focus was on well-defined

documented process and should include knowledge transfer. It provides recom-

mendation on experimental design and acceptance criteria for different type of

assays and minimum number of batches required for establishing equivalency [26].

WHO published a guideline in 2011 [27], similar to ISPE guideline that in-

cludes outline of the transfer process, responsibilities of sending and receiving units

and documentation requirements. USP< 1224 > transfer of analytical procedures

does not describe details of experimental designs and acceptance criteria, but pro-

vides general requirements for the transfer process. Different types of transfer

methodologies were described. They are Comparative testing, Covalidation, Com-

plete or partial (re-)validation and Transfer waiver.

In the pharmaceutical industry, there is a continuing need to evaluate bias or

changes on test results to improve the test process performance. It is important

that any bias or change will have negligible effect on test results for a characteristic

of a material. Statistical hypothesis testing offers a rigorous, objective approach
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to distinguishing truly significant differences in measurements from noise. The

most familiar statistical test is the conventional Students t-test, which has been

used extensively for the evaluation of bias or changes. In a two-sample t-test,

two numerical test results are considered not equivalent when there is a signifi-

cant difference between the means of two. However, a nonsignificant result implies

only that equivalency cannot be ruled out. Consequently, the risk of incorrectly

concluding equivalence can be very high. Another common criticism of the conven-

tional t-test is that the strict definition of equivalence in Students t-test may result

in the detection of differences that are not functionally or practically meaningful

and do not identify the practically meaningful differences. An Equivalence Test is

a statistical technique used to demonstrate the equivalence between two test re-

sults based on the practical significance. Two test results are considered equivalent

when the mean difference is within prescribed limits, termed equivalence limits,

for which smaller differences are considered practically equivalent. The equivalence

limits are usually predetermined based on the potential impact and risk based on

scientific knowledge and clinical relevance.

Schuirmanns two one-sided test (TOST) [28] is used to conduct the equivalence

testing on numerical data from two sources. The standard practice for the TOST

is provided by ASTM International [29]. Two sample TOST is the statistical

methodology used to establish equivalency between the labs.

Benefits of TOST compared to 2-sample t test were described by Limentani,

Giselle et al. [30]. The two-sample t test allows comparison of the mean values of

two data sets by the calculation of the test statistic.

T =
y1 − y2√
s2p(

1
n1

+ 1
n2

)
(7)

The null hypothesis of the two-sample t test is that the mean values of the two data

sets are equal. Although it is an appropriate test for proving that two data sets are
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different, it has some problems using it for equivalence. One of the problems is that

an increase in pooled variance and decrease in n results in a smaller T-value and

make it difficult to prove that mean values are not equal. Other problem is that

the results of two-sample t test may lead to conclude that a statistically significant

difference exists between the mean values when the magnitude of the difference is

of no practical importance. This need to be justified with an explanation when

the difference is minor and has no practical significance. TOST is most suitable

for equivalence testing compared to two sample t test.

2.3.1 Two Sample TOST Statistical Hypotheses

The two sample TOST determines the equivalence of the means of test re-

sults from two testing processes. The data from two populations are assumed to

arise independently from normally distributed populations having distinct means,

denoted as µ1, µ2, and a common standard deviation, denoted as σ.

Unlike t-test, the null hypothesis of TOST is that the two population means

are not equivalent and the alternative hypothesis is that two means are equivalent.

The test is conducted by performing two separate one sided t tests on the difference

of two population means with the predetermined limit E in both directions.

The two null hypotheses H0 and corresponding alternative hypotheses Ha for

the two t tests are set up as follows:
Hypothesis on left hand side Hypothesis on right hand side

Null Hypothesis H01 : µ2 − µ1 ≤ −E H02 : µ2 − µ1 ≥ E
Alternative Hypothesis Ha1 : µ2 − µ1 > −E Ha1 : µ2 − µ1 < E

If both sides of the null hypotheses are rejected, it is asserted that

−E < µ2 − µ1 < E and the two population means are said to be equiva-

lent; otherwise, the two are deemed non-equivalent.
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2.3.2 Equivalence Limit

The value E, termed equivalence limit, is selected as the worst-case difference

between the two observed means from two populations with equivalent popula-

tion means. It should be predetermined for each parameter under test based on

scientific knowledge and potential risk. Higher risk should allow only small prac-

tical differences, thus a tight equivalence interval (-E,E) is required. Conversely,

lower risks should allow larger practical differences which leads to a wider interval

(-E,E). Scientific knowledge, product experience and clinical relevance should be

evaluated when justifying the risk.

2.3.3 Testing Procedure

The two sample TOST procedure is carried out using the data sampled from

the two populations. Let X1 and S1, and X2 and S2 denote the means and the

standard deviations from sample 1 and sample 2, respectively. Note that for the

assumption of common variance to be valid, the S values of the two data sets

should be similar. The equivalence limit E, the confidence level 1−α, and sample

sizes are determined based upon power and producer’s risk.

Let the mean difference D = X2 − X1, and its standard er-

ror SD = Sp
√

1
n1

+ 1
n2

, where the pooled standard deviation Sp =√
(n1 − 1)S2

1 + (n2 − 1)S2
2

(n1 + n2 − 2)
, with the degrees of freedom f = (n1 + n2 − 2). An

appropriate variance test, such as Levenes, should be used to further evaluate

significant differences in measurement precisions. If the sample size from two pop-

ulations are equivalent, i.e., n1 = n2 = n, then the standard error SD = Sp

√
2
n
,

where Sp =

√
S2
1 + S2

2
2 . There are two operationally identical methods to test the

equivalence. One method is to test the joint hypotheses that the mean difference is

not as large as the upper value of a specified range and not below the lower bound

of the specified range of equivalence. The t-statistics are t1 = E+D
SD

and t2 = E−D
SD

,
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for hypotheses on left-hand side and right-hand side, respectively. Both null hy-

potheses are rejected when t1 > t1−α,f and t2 > t1−α,f , where t1−α,f is the upper

(1 − α)th quantile of the Students t-distribution with f degrees of freedom. It is

equivalent to use the p-values calculated by t statistics under the null hypotheses.

The null hypotheses are both rejected if the p-values are less than α on both sides.

If both hypotheses are rejected, it is asserted that −E < µ2 − µ1 < E and

the two population means are said to be equivalent; otherwise, the two are deemed

non-equivalent.

Another method, which is easier to apply and understand, is to construct a

two- sided 100(1− 2α)% confidence interval for the difference between two means

and compare it with the equivalence limit. The reason the confidence interval is

100(1−2α)% and not the usual 100(1−α)% is because this method is tantamount

to performing two one-sided tests. For instance, using a 90% confidence interval

yields a 0.05 significance level for testing equivalence.

The upper (UCL) and lower (LCL) confidence limits for the 100(1 − 2α)%

two-sided confidence interval on the true difference are computed as follows:

UCL = D + t1−α,fSD

LCL = D − t1−α,fSD

where t1−α,f is the upper 100(1−α) % percentile of the Students t distribution with

the degrees of freedom (f = n1 + n2 − 2). If the confidence interval is completely

contained within the equivalence limits (-E,E), the equivalence is accepted, if not

rejected.

2.3.4 Lin’s concordance corelation coefficient(CCC)

Lins concordance correlation coefficient (CCC) is the concordance between a

new test or measurement (Y) and a gold standard test or measurement (X). This

statistic quantifies the agreement between these two measures of the same variable
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(e.g. chemical concentration). Like a correlation, CCC ranges from -1 to 1, with

perfect agreement at 1. It cannot exceed the absolute value of ρ, which is the

Pearsons correlation coefficient between Y and X. It can be legitimately calculated

on as few as ten observations. The coefficient and associated sample size formulas

are presented in [31, 32, 33].

According to Lin et al.[33], n observations (YK ,XK) are selected from a bivari-

ate population with means µY and µX , variances σ2
Y and σ2

X , and correlation ρ (the

Pearson correlation coefficient). Here, Y represents a measure from a receiving lab

and X represents the sending lab. The degree of concordance between the two

measures can be characterized by the expected value of their squared difference:

E[(Y −X)2] = (µY − µX)2 + σ2
Y + σ2

X − 2ρσY σX (8)

The concordance correlation coefficient (CCC) is defined as:

CCC = 1− E[(Y −X)2

E[(Y −X)2|ρ = 0

= 1−
(µY − µX)2 + σ2

Y + σ2
X − 2ρσXσY

(µY − µX)2 + σ2
Y + σ2

X

=
2ρσY σX

(µY − µX)2 + σ2
Y + σ2

X

= ρ


2

(µY − µX)2

σY σX
+
σY

σX
+
σX

σY


2.4 Literature Review

The impact of input variables to the final substrate concentration during the

manufacturing process for Pencilin has been studied using time-varying and mul-

tivariate statistical analysis. Nomikos and MacGregor [34] have developed a mul-
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tivariate statistical process control (MSPC) approach for monitoring batch pro-

cesses, based on multiway principal component analysis (MPCA). Partial Least

Squares(PLS) methodology can be applied where product quality data is avail-

able. PLS is a linear regression tool and therefore its application to non-linear,

time-varying processes, such as fed-batch fermentation systems is limited. To

overcome this problem, Nomikos and MacGregor [35] developed a modified PLS

approach, termed multi-way PLS. MPLS uses a technique referred to as unfolding

to re-arrange the cause data collected from the batch, which can be considered to

be a 3-dimensional array of size mx× nx× nb, where mx is the number of samples

taken during a batch, nx is the number of cause variables that are measured and

nb is the number of batches for which data is available. This 3-dimensional array

is unfolded into a 2-dimensional array, of size nb × (nx ∗mx).

Following the approach suggested, several techniques using multivariate sta-

tistical analysis have been developed and applied to industrial batch monitoring

[36, 37, 38, 39, 40, 41]. Lee et al.[2] presented a new on-line monitoring method

for a penicillin cultivation process. Traditional MPCA has some limitations and

application for on-line monitoring included estimating future values to the end of

the batch for each batch. This will result in poor monitoring performance, since

many measurements are unknown at initial stages. The approach proposed by Lee

et al. [2] includes combining batch-wise unfolding and variable-wise unfolding that

will solve the problem while still preserving the dynamic relations. Zhang et al.

[42] demonstrated the benefits PLS approach offers for fed-batch fermentation pro-

cess. The paper demonstrated that multi-way PLS can provide accurate inference

of quality variables, that are often difficult to measure using on-line sensors. It

also provided insight in to how PLS can be used to provide early fault detection

mechanism and isolation of fault conditions within the fermenter.
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Symbolic regression (SR) is utilized to find mathematical expressions of func-

tions that can fit the given information in view of accuracy, simplicity, and general-

ization. Unlike linear or nonlinear regression that proficiently advance parameters

in the prespecified model, Symbolic Regression tries to look for proper models and

their parameters simultaneously for a purpose of getting better insights into the

dataset. With no earlier learning of material science, kinematics, and geometry,

some natural laws described by mathematical expressions, such as Hamiltonians,

Lagrangians, and other laws of geometric and momentum conservation, can be

distilled from experimental data by the Genetic Programming (GP) method on

SR as described by Schmidt and Michael [43]. Symbolic regression based models

are well suited for fermentation process for multiple reasons. Similar to linear and

multiple linear regression models, SR models derive a quantitative relationship

between input and output variables. The major advantage of SR models is their

ability to deviate from standard assumptions like normality, collinearity and non-

linearity and still establish model accuracy and predictability. Symbolic regression

has been extensively used in different areas including financial services, aerospace,

manufacturing etc. Based upon the literature review symbolic regression has not

been applied to a fed batch fermentation process and will be studied extensively

as part of the proposed study.

Partial Least Squares (PLS) is the most used regression technique for monitor-

ing and prediction of Quality variables, where as application of other classification

and regression techniques like Support Vector machines (SVM) are hardly known.

SVMs can be very useful based upon ability to handle non-linear, global solutions

and its ability to optimize high dimensional input vectors. PLS models are used

often for chemometrics due to its simplicity to use and accessibility, but PLS has

limitations to handle non-linear relations. Centner et al. [44] researched multiple
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regression techniques and compared the application to chemometrics. Neural net-

works were used as an alternative to handle non-linear relations, but SVM offers

more functionality to deliver a global model that is capable of dealing with high

dimensional vectors. Thissen et al. compared multivariate calibration by PLS and

SVR on both the high-resolution and the low-resolution Raman spectra [45]. The

study concluded that application of SVR is very advantageous for spectral data,

because it can perform nonlinear regression efficiently for high dimensional data

sets. Furthermore, its solution is global. For this reason, SVR and PLS were com-

pared for two spectral data sets. In the first data set, it tested if low-resolution

Raman spectra could be used for the prediction of the monomer masses during

a reaction. In the second data set, the NIR spectra were affected by nonlinear

temperature-induced variation. For both cases, it was shown that the SVR clearly

outperforms PLS in both linear and nonlinear regression. Yi and Haiqing [46]

adopted least squares support vector machines (LSSVM) modeling for a penicillin

fed-batch fermentation, which improved the calculated speed. However, the prob-

lem of this method is that the pre-estimation result is not ideal in the initial stages

of the fermentation process. Xianfang Wang et al. [47] further studied applica-

tion of Least squares support vector machines to fermentation process that include

hybrid modeling. The hybrid model included modeling method by utilizing advan-

tages of LSSVM model and kinetics model of the fermentation process to improve

the limitations of single model.

David LeBlondi et al. [48] explained the application of Analysis of Covariance

(ANCOVA) model to establish shelf life for pharmaceutical products. The paper

illustrated different models (common slope, common intercept etc,) and how to

assess model adequacy using measures such as root mean square error (RMSE),

lack of fit and predicted R-square. Based upon the model selected, confidence
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intervals and prediction intervals can be calculated to determine shelf life. Multiple

methods to test for comparing regression coefficients were proposed in the literature

to determine poolability of batches. Ruberg and Stegeman [49] and Ruberg and

Hsu [50] discuss methods based on multiple comparison. Ruberg and Hsu [50]

assumed a common intercept and developed a method for pooling batches based

on simultaneous confidence intervals for the slopes, as compared with the worst

slope.

Liu et al.[51] developed an approach based upon confidence bands. Monte-

carlo simulation was used to determine the adjusted critical point in the study.

Modification of this approach was further studied by Liu et al.[52] using constant-

width simultaneous confidence intervals where critical point is computed from a

multivariate t-distribution. Yoshioka et al.[53] and Tsong et al.[54] introduced

a procedure based on the equivalence of shelf lives at a given acceptance crite-

ria of label claim. The concept of batch equivalence was provided by Tsong et

al.[54] based on mean assay content at a given target expiration date. Djira et

al. [55] further provided guidance on pooling batches in stability studies. The

paper explained a modification to Tsong’s approach, where a delta method will

approximate standard errors of the estimated shelf life. The approach proposed

by Djira indicates that pooling batches at a proposed shelf life does not requires

assumptions regarding equality of slopes or intercepts. Knezevic [56] explained

the WHO recommendations for Vaccines stability. Later in 2006, WHO published

“Guidelines for stability evaluation of vaccines” for stability testing of individual

vaccines, as part of WHO Technical Report Series [57], and provided a set of general

principles and a description of their application. The document provides guidance

for general considerations on stability evaluations, and stability of vaccines during

the manufacturing process and final product. Multiple options were recommended

32



to manufacturers for stability design and data analysis. One is the method based

upon compliance with shelf life determinations as the time point with last measure-

ment within the specification. Another method where expiration date is defined

through statistical evaluation and extrapolation of the data. Schofield [58] pro-

vided guidance on long-term and accelerated studies. Accelerated studies not only

support release specification, but also can be used to support evidence to recal-

culate product expiry when an unintended scenario happens. Schofield provided

multiple scenarios with evaluation of shelf life using single lot, multiple lots, com-

parability of degradation rates, and establishment of shelf life from worst-case lot.

Komka et al. presented modification of traditional approach for shelf life deter-

mination using data from long-term studies [59]. ICH guideline does not include

interval-to-interval variability and reproducibility effect is not estimated separately

from other variance components. Norwood [60] incorporated date of analysis in

the stability model, but parameterization was not adequate. The model developed

by Komka [59] improves Norwoods model applying a crossed design between the

batch and date of analysis instead of nested error. The model proposed that stor-

age time belongs to degradation rate and date scale combines interval -to-interval

reproducibility. The choice of the model affects the slope of the degradation line;

thus, the shelf life of the drug product.

Assays that measure the quality of the product need to be transferred from

development/validation lab to production lab and sometimes the assays have to be

transferred to contract manufacturing labs. The objective of the method transfer

is to ensure that results obtained by receiving lab are reliable and comparable to

sending laboratory to meet the specifications of a product and address any bias

between the labs. Regulatory agencies, such as the US Food and Drug Admin-

istration (FDA), requires that analytical method transfers to be documented to

33



ensure receiver is qualified to perform the methods on a routine basis. Rozet et

al. [7] provided recommendations on evaluation of method transfers, statistical

evaluation and experimental design of transfer. The paper only provides general

principles for transfer of certain assays and proposes a minimum sample size. No

recommendations on how to decide about the acceptability of the transfer or on

how to select an optimal sample size are provided. PDA Technical report [61]

provides guidance on analytical method transfers. Acceptance criteria should be

established and justified for the allowed difference(s) between the originating and

receiving laboratories prior to the transfer. Acceptable differences between labo-

ratories for the method performance characteristics of quantitative methods such

as Accuracy and Intermediate Precision should be estimated based on historical

data and/or previous AMV protocols/reports with respect to the specifications.

Don Chambers et.al [62]recommends establishing analytical method equivalency,

the choice of samples, acceptance criteria, data evaluation, and considering doc-

umentation. C. Agut et al.[63] proposed an updated transfer methodology. The

proposal was based on the principles of risk management, this updated methodol-

ogy brings a panel of strategies custom-tailored to the context from prior scientific

information. The paper recommends a panel of approaches based upon level of in-

curred risks, depending on the compound, the category of method, the criticality of

related attributes and the type of the transfer. The selection of an approach should

always be based on scientific knowledge and ultimately linked to the protection of

the patient.

Schuirmanns two one-sided test (TOST) [28] is used to conduct the equiva-

lence testing on numerical data from two sources. As an alternative, Lawrence

and Lin proposed methodology using concordance correlation coefficient (CCC)

[32], which was originally proposed [31] to assess the reproducibility of an assay
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compared to the gold standard assay. Bland and Altman [64] proposed that the

Pearson correlation coefficient is not a measurement of agreement because it de-

pends on the range of the true quantity in the sample set. Lin proposed total

deviation index (TDI) to access the control of individual differences [33]. TDIπ

is a product of the square root of mean squared error and a percentile of normal

distribution. TDIπ approximates boundary that 100π percent of the individual

differences are within the boundary. If the 95% upper confidence bound of TDIπ

is no more than the predefined boundary ∆, then the assay can be transferred.

Zhong and Shao [65, 66] proposed an approach that combined the mean and vari-

ances of individual difference into one statistics. Zhong et al. [67] proposed a

tolerance interval approach for method transfers. The proposed two one-sided tol-

erance limits approach provides the same limits to the proportion below the lower

specification. All the literature suggests multiple methods to establish equivalence

for assay transfers, but no recommendations on how to decide about the accept-

ability of the transfer or on how to select an optimal sample size are provided.

The proposed study will provide more details for optimal sample size based upon

pre-established criteria and Producer/Consumer risks.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

This chapter details out the research methodology for the present study. The

research objectives and applicable methodology to achieve those objectives as men-

tioned in Chapter 1 are explained here. This involved an exhaustive study of the

statistical methodologies applied for biopharmaceutical manufacturing process, as-

say transfers and stability studies used for shelf-life determination. In addition,

the study also assessed the impact of risk factors for implementation. This was

followed by model validation through cross-validation.

The research methodology must be robust to minimize errors in data collection

and analysis. Owing to this, simulations and historical data were chosen for data

collection. This chapter describes the pilot study, data collection, and data analysis

procedures of the entire study.

3.2 Research Process

The aim of the current research is to evaluate different statistical methodolo-

gies and recommend the appropriate methodology for optimizing a biopharmaceu-

tical manufacturing process, establishing shelf life and assay transfers. The first

study evaluates the manufacturing process and application of multivariate tech-

niques to understand the process variation and predict the outputs of the process.

The second study evaluates shelf life of finished products using existing guidance

and potential statistical methodologies for shelf life extension. The third study

evaluates establishing the acceptance criteria and sample size required for success-

ful method transfer optimizing patient and producers risk.
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3.2.1 Data Collection

The studies are aimed at optimizing biopharmaceutical manufacturing pro-

cesses, stability studies and assay transfers. The data for manufacturing process

is collected from a process simulator Pensim, developed by a research group in

Illinois Institute of Technology, USA [68]. Pensim is a modular simulation pack-

age for fed-batch fermentation: penicillin production. The simulator is structured

such that one may use different modules depending on the application needs of the

user. Pensim is a simulator originally developed in MATLAB 6.0 and modularized

functions were compiled into ANSI C codes and these C modules are further com-

piled to produce an executable stand-alone application file (A modular simulation

package for fed-batch fermentation: penicillin production).

The simulation software has been used and cited in more than hundred re-

search articles and represents the manufacturing process. The mechanistic model

of Bajpai and Reuss [69] was utilized as the basis of modeling efforts in the soft-

ware.The effects of environmental variables such as pH and temperature, and in-

put variables such as aeration rate, agitation power, feed flow rate of substrate on

biomass formation have been included in the model for completeness. The original

model has been extended by including additional input variables such as agitation

power and aeration rate. The functional relationships among the process variables

are summarized below:

• X=f(X, S, CL, H, T)

• S=f(X, S, CL, H, T)

• CL=f(X, S, CL, H, T)

• P=f(X, S, CL, H, T, P)

• CO2=f(X, H, T)
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• H=f(X, H, T)

where X is the biomass concentration

S is substrate concentration

CL is the dissolved oxygen concentration

P is the penicillin concentration

CO2 is the carbon dioxide concentration

H is the hydrogen ion concentration for pH ([H+]) and

T is the temperature.

All the inputs and outputs are listed in Figure 4.

Figure 4: Process input/output structure

Two PID (Proportional Integral Derivative) controllers are used to manipulate

the acid and base control values. The PID controllers were tuned for a certain range

of initial conditions considered to be the normal operation as seen in Table 1.
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Value
Initial conditions
Substrate concentration: S (g/l) 15
Dissolved oxygen concentration: CL(=CL∗

at saturation)(g/l)

1.16

Biomass concentration: X (g/l) 0.1
Penicillin concentration: P (g/l) 0
Culture volume: V(l) 100
Carbon dioxide concentration: CO2(mmol/l) 0.5
Hydrogen ion concentration:[H+](mol/l) 105.1

Temperature: T(K) 297
Heat generation: Qrxn(cal) 0

Kinetic parameters and variables
Feed substrate concentration: sf (g/l) 600
Feed flow rate of substrate: F (l/h)
Feed temperature of substrate: Tf (K) 298
Yield constant: Yx/s (g biomass/g glucose) 0.45
Yield constant: Yx/o (g biomass/g oxygen) 0.04
Yield constant: Yp/s (g penicillin/g glucose) 0.90
Yield constant: Yp/o (g penicillin/g oxygen) 0.20
Constant: K1 (mol/l) 10−10

Constant: K2 (mol/l) 7× 10−5

Maintenance coefficient on substrate: mx

(per h)

0.014

Maintenance coefficient on oxygen: mo (per

h)

0.467

Constant relating CO2 to growth: α1 (mmol

CO2/g biomass)

0.143

Constant relating CO2 to maintenance en-

ergy: α2 (mmol CO2/g biomass h)

4× 10−7

Constant relating CO2 to penicillin produc-

tion α3 (mmol CO2/l h)

10−4

Maximum specific growth rate: µx (per h) 0.092
Contois saturation constant: Kx (g/l) 0.15
Oxygen limitation constant: Kox, Kop (no

limitation)

0
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Oxygen limitation constant: Kox, Kop (with

limitation)

2× 10−2, 5× 10−4

Specific rate of penicillin production: µp (per

h)

0.005

Inhibition constant: Kp (g/l) 0.0002
Inhibition constant for product formation:

KI (g/l)

0.10

Constant: p 3
Penicillin hydrolysis rate constant: K (per h) 0.04
Arrhenius constant for growth: kg 7× 103

Activation energy for growth: Eg (cal/mol) 5100
Arrhenius constant for cell death: kd 1033

Activation energy for cell death: Ed

(cal/mol)

50000

Density× heat capacity of medium: ρCp (per

l ◦ C)

1/1500

Density × heat capacity of cooling liquid:

ρcCpc (per l ◦ C)

1/2000

Yield of heat generation: rq1 (cal/g biomass) 60
Constant in heat generation: rq2 (cal/g

biomass h)

1.6783× 10−4

Heat transfer coefficient of cooling/heating

liquid: a (cal/h ◦C)

1000

Cooling water flow rate: Fc (l/h) 0
Constant: b 0.60
Constants in Kla: α, β 70, 0.4
Constant in Floss: λ (per h) 2.5× 10−4

Proportionality constant: γ (mol [H+]/g

biomass)

10−5

Controller parameters (PID)
pH: (base) Kc, τI : (h), τd: (h) 8× 10−4 , 4.2,0.2625
pH: (acid) Kc, τI : (h), τd: (h) 1× 10−4, 8.4,0.125
Temperature: (cooling) Kc, τI : (h), τd: (h) 70, 0.5, 1.6
Temperature: (heating) Kc, τI : (h), τd: (h) 5, 0.8, 0.05

Table 1: Initial conditions, kinetic and controller parameters for nominal operation
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The maximum allowable acid and base additions were set to 0.01 and 100

ml/h, respectively. The initial pH is chosen arbitrarily as 5.0 for this particular

case. Due to the acid addition rate limitation, the pH reached its desired value in

almost 8 h of operation, then stayed within its control limits. A set point gap of

0.05 that can be adjusted by the users prior to simulation is defined for acid flow

rate controller to avoid excessive acid additions. Acid solution is only added if the

pH exceeds its set point value by 0.05.

The flowsheet of the penicillin process is illustrated in Figure 5.

Figure 5: Flow sheet of Penicillin cultivation process
[68]

Simulations are run under closed-loop control of pH and temperature while

controlling glucose addition. In bioprocesses, most of the important process vari-

ables such as biomass and penicillin concentrations are analyzed off-line by the

quality control laboratory resulting in a lag in process measurements.In a first

phase, the fermenter is operated in batch mode. Once the substrate concentration

drops below the threshold value of 0.3 g/L (after approximately 42 h of operation),
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the feed flow is initiated. The fermentation is terminated after 400 h once 25 L

of substrate is added. Based on the batch recipe, two main phases are identified:

a batch phase of about 44 h and a fed-batch phase with a length of roughly 356

h. During the fermentation, 11 sensors record the various concentrations, flows,

temperatures, and pH. Gaussian noise with the indicated standard deviation is

added to each sensor to represent measurement noise. The measured signals are

aligned and resampled to a length of 800 samples via indicator variables, identical

to the procedure employed by Undey et al. [70]. The first 89 samples correspond

to the batch phase of the fermentation, and the final 711 belong to the fedbatch

phase. The transformed time signal is added as an aligned variable. The quality

parameter is the penicillin concentration after batch completion [71]. A total of

150 NOC (i.e., fault-free) batches are simulated and used as historical training

data. For each batch, the initial substrate concentration, biomass concentration,

and culture volume are subject to small random variations to represent raw mate-

rial variability. This results in a data matrix X-variables of size 150× 1× 800 with

corresponding quality matrix Y-variables of size 150×1. To assess the influence of

each variable on the final quality, the set points of the five manipulated variables

are adjusted after 150 h of operation in each batch.The set point changes are small

to simulate actual test runs on a real installation.

The dataset collected based upon the simulation is huge and consists of 12000

rows and 17 columns. A subset of the complete dataset is included below in Figure

6.
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Figure 6: Subset of the data used

After the manufacturing of therapeutic proteins, shelf life or the stability time

period need to be established. The purpose of stability testing is to provide an

understanding on how the quality of an active substance or finished product varies

with time under the influence of a variety of environmental factors such as temper-

ature, humidity, and light, and to establish a re-test period for the active substance

or a shelf life for the finished product and recommended storage conditions. Ruberg

and Stegeman [49] and Ruberg and Hsu [50] discuss methods based on multiple

comparison for poolability of slopes and batch degradation. The first stability data

is taken from Ruberg and Stegeman [49] and is shown in Figure 7.
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Figure 7: Data used for stability analysis

There are six batches in this data and concentration for the batches is mea-
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sured over years.

Assays that measure the quality of the product need to be transferred from

development/validation lab to production lab and sometimes the assays have to

be transferred to contract manufacturing labs.The purpose of the transfer is to

demonstrate the two labs are comparable to avoid re-validation of the assay.Rick

Lung et al. [72] discussed statistical methods for the determination of equivalence

of automated test procedures. Dewe et al.[73] used total error as a decision criterion

in analytical method transfer.Assay transfers include a protocol including details

with scope, experimental design and statistical analysis, assay transfer criteria and

conclusions from the transfer.Transfer criteria includes comparison of accuracy,

precision and equivalency ranges. Data was collected for an assay transfer using

the methodology in Table 2.

As seen in the table, two analysts from site A will each perform the assay nine

times for the transfer samples on nine separate occasions. Two qualified analysts

from Site B will each perform the assay nine times for the transfer samples on nine

separate occasions.

Site Analyst
Transfer
Sample

Subtotal Total

A
Analyst 1 9 9

18
Analyst 2 9 9

B
Analyst 1 9 12

18
Analyst 2 9 9

Subtotal 36 Total 36

Table 2: Methodology for data transfer

The same lots of control and transfer sample (eighteen assays for each site)

will be used at both sites. Components for reagents used in the performance of

the assays at each site can be from the same or different lots, but they must be

stored at the testing site prior to use.
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3.2.2 Data Analysis Procedure

SAS, JMP, Eureqa, SIMCA-P, Matlab software were used for statistical analy-

ses. The data was collected as discussed in 3.2.1 and tabulated in Microsoft Excel.

Required analysis was done using the statistical packages mentioned above. The

statistical procedures used for the analysis of the research objectives of this study

are described below.

Analysis of Bio-pharma manufacturing process data

Data for an industrial scale fed batch process was generated using Pensim

Simulator. The data collected was analyzed using four different statistical method-

ologies : Partial Least Squares (PLS), Principal Component Analysis (PCA), Sym-

bolic Regression and Support Vector Machines (SVM). An extension of existing

statistical methodology using latent vector scores and Symbolic Regression called

Scores based Symbolic Regression(SBSR) is developed and compared to the other

methodologies mentioned above.

Methodology for computing SBSR is described below:

• Step 1: Using Latent Vector Scores: In the case of Penicillin manufac-

turing process, suppose n variables have been measured at p time intervals.

The information can be formulated in a matrix form as:

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp


where x1 = [x11x12...x1p] is the row vector containing the penicillin concen-

trations measured at p time intervals for the first lot, x2 is the row vector

containing the penicillin concentrations for the second sample and so on.

PCA creates new orthogonal variables (latent variables) that are linear com-

binations of the original x-variables. Singular value decomposition of the
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matrix can be used for X:

Xnxp = UnxpΛpxpP
′

pxp = TnxpP
′

pxp[74] (9)

U is the unweighted/normalized score matrix and T is the weighted /unnor-

malized score matrix. The new matrices contain the new variables. P is the

loading matrix and the column vectors are called eigen vectors. Elements of

matrix P are the loadings of original variables on each eigenvector.

• Step 2 : Apply Symbolic Regression for the latent scores obtained from Step

1

Root mean squared error (RMSE) was calculated for each methodology to

compare the prediction ability and efficiency of each regression model. Validation

set was constructed as one fifth of all samples and is representative of common cause

variation. Relative accuracy of each calibration model is estimated by calculating

the mean average error(MAE). Leave-one-out cross validation was used to optimize

the models parameters based on the root mean squared error of cross-validation

(RMSECV). Cross validation is a better evaluation method compared to residuals.

One of the constraints with residuals is that they do not provide predictions well for

data that the validation has not already seen. One way to overcome this problem is

to not use the entire data set when training a learner.Some of the data is removed

before training begins. Then when training is done, the data that was removed can

be used to test the performance of the learned model on “new” data. This is the

basic idea for a whole class of model evaluation methods called cross validation.

Leave-one-out cross validation (LOOCV) is K-fold cross validation taken to its

logical extreme, with K equal to N (the number of data points in the set). That

means that N separate times, the function approximator is trained on all the data

except for one point and a prediction is made for that point.
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As discussed previously, the Mean average error is computed and used to

evaluate the model. The evaluation given by leave-one-out cross validation error

(LOO-XVE) is good, but at first pass it seems very expensive to compute. Fortu-

nately, locally weighted learners can make LOO (Leave-one-out) predictions just

as easily as they make regular predictions. That means computing the LOO-XVE

takes no more time than computing the residual error and it is a much better way

to evaluate models. SIMCA-P software used for regression by default leaves out

1/7th of the data, which is a more stringent test. In cases of low n (< say 20) you

may change the number of groups used for cross validation to equal the number of

observations.In this way, the cross validation will be equivalent to “leave one out”.

For SVM based methods prediction error was calculated. RMSECV minimization

was used for optimization in all cases and for all models.

Stability Data Analysis

The statistical model used most often for comparing k batches is the analysis

of covariance (ANCOVA) given by

Yij = µ+ τi + βiXij + εij, (10)

where Yij is the jth response for the ith batch,

τi is the batch effects,

βi is the degradation rate of the ith batch,

Xij is the time of the stability sample corresponding to Yij,

εij is the random error corresponding to Yij. Here εij are independent normally

distributed random variables with mean zero and common variance σ2. The hy-

pothesis test of interest

H0 : βi = βj for all i, j

Ha : βi 6= βj for some i 6= j. (11)
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If H0 cannot be rejected, then a reduced model is used in which a common slope

(βi = β for all i) is estimated for all batches in Eq 10. If the condition in Eq 11

is rejected, then the FDA Guideline suggests that subsets of batches with similar

slopes may be considered together and retested as above, although no specific

methodology is proposed. Ultimately, shelf-lives are computed for each subgroup

of batches, and the shortest shelf-life is used for the drug product.

The sidedness of the interval also impacts the determination of shelf life.

ICHQ1E guideline suggests that for an attribute known to decrease with time,

the lower one-sided 95% confidence limit should be compared to the acceptance

criterion. For an attribute known to increase with time, the upper one-sided 95%

confidence limit should be compared to the acceptance criterion. For an attribute

that can either increase or decrease, or whose direction of change is not known,

two-sided 95% confidence limits should be calculated and compared to the upper

and lower acceptance criteria. This will result in longer shelf life for one-sided 95%

bound on mean and shorter shelf life for two-sided 95% bound on mean irrespective

of specifications.

The proposed methodology studied the impact of one-sided 95% bounds for

one-sided specification and two-sided 95% for two-sided specifications using mul-

tiple scenarios. This methodology evaluated the terms “Lot” and “Lot*Time” as

random effects and include random effects based on Akaikes Information Criterion

(AIC) to determine the model of best fit. AIC is used when control of Type I error

rate is most important and choosing a model that is too simple adversely affects

Type I error rate. Full model, Random Model and fixed models were constructed

to compare and a recommendation will be made based upon lowest AIC.
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3.2.3 Proposed Approach for establishing shelf life

The model selection will be based upon model of best fit using Akaikes In-

formation Criterion (AIC) [75] compared to selecting the model based upon sig-

nificance level. The model with smallest AIC will be recommended as the best

model. AIC is a measure of the relative quality of statistical models for a given set

of data. Based upon the models for a dataset, AIC can provide a basis for model

selection. Burnham and Anderson [76] proposed that, chosen model is the one

that minimizes the Kullback-Leibler distance between the model and the truth. It

is defined as:

AIC = −2(ln(likelihood))+2K where likelihood is the probability of a given

model fitting the data and K is the number of free parameters in the model.AIC

scores are often shown as ∆AIC scores, or difference between the best model (small-

est AIC) and each model (so the best model has a ∆AIC of zero).Guerin and Stroup

[77] suggested that AIC can be used as model selection criteria when control of

Type I error rate is most important.AICc(Corrected Akaikes Information Crite-

rion) and Bayesian Information Criterion (BIC) results are also included in the

analysis. The corrected Akaike’s Information Criterion (AICc) and the Bayesian

Information Criterion (BIC) are information-based criteria that assess model fit.

Both are based on −2LogLikelihood.

AICc is defined as follows:

AICc = −2Log(Likelihood) + 2k + 2k(k + 1)/(n− k − 1) (12)

where k is the number of estimated parameters in the model and n is the number of

observations used in the model. This value can be used to compare various models

for the same data set to determine the best-fitting model. The model having the

smallest value, as discussed in [75], is usually the preferred model.
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BIC is defined as follows:

BIC = −2Log(Likelihood) + kln(n) (13)

where k is the number of estimated parameters in the model and n is the number of

observations used in the model. When comparing the BIC values for two models,

the model with the smaller BIC value is considered better. The following models

will be used for comparison of AIC:

• Full Model

• Random Model

• Fixed Model

General Linear mixed models using SAS 9.2 will be used to build the models.

Notation for full models include : Yij = µ+ Li + (β +Bi)× tij + Eij, i = 1, 2, ...n

and j = 1, 2, ....Ti

where

• Yij is the response for lot i at time point j

• µ is the average y-intercept across all lots

• β is the average slope across all lots

• Li is a random variable that allows the y-intercept to vary from µ for a given

lot; Li has a normal distribution with mean 0 and variance σ2
L

• Bi is a random variable that allows the slope to vary from β for a given lot;

Bi has a normal distribution with mean 0 and variance σ2
B

• tij is the time point for measurement j of lot i
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• Eij is a random normal error term created by measurement error and model

misspecification with mean 0 and variance σ2
R

• n is the number of lots

• Ti is the number of responses obtained for lot i

• Li, Bi and Eij are jointly independent

Assay Transfers

Analytical transfer is a major and integrated step in the method life cy-

cle, within the analytical life cycle management.More specifically, inter-laboratory

studies conducted usually for transfer purpose enable to address a major com-

ponent of the robustness item required by industry guidelines on validation (ICH

Q2(R1) and FDA Guidance for Industry). The absence of an aligned regulation and

guidance from agencies regarding establishing the acceptance criteria, establishing

comparability and equivalence for method transfer leads to multiple approaches

that differ in validity of results. Acceptance criteria for comparability/equivalence

need to be established based upon the intended use of the method to be transferred.

Method transfers for less complex/critical assays can be justified if the results are

within the specification limits. Advanced statistical methods like statistical equiv-

alence tests, students t-test and Two one-sided t-test(TOST)need to be applied

for complex and critical assays. Equivalence tests provide a direct control of type

II error (consumers risk).

The goal of assay transfer is to show the equivalence between the two laborato-

ries. Hence, evidence of equivalence is needed to support the claim. One common

practice is based on the equivalence of the means between the two laboratories [28].

This approach has a prespecified (L, U) and will declare equivalence if the 90%

confidence bound of the mean difference (or percent difference for log-transformed
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data) falls within (L, U). By rejecting both null hypotheses, one establishes that

the mean difference is between L and U.

As an alternative, Lin et al. [32] proposed an approach using concordance

correlation coefficient (CCC), which was originally proposed [31] to assess the re-

producibility of an assay compared to the gold standard assay. CCC is a product

of two components of accuracy and precision.The precision component is the Pear-

son correlation coefficient. Bland and Altman [64] pointed out that the Pearson

correlation coefficient is not a measurement of agreement because it depends on

the range of the true quantity in the sample set and is invariant to change of scales

and systematic biases.Although the accuracy component of CCC allows CCC to

be sensitive to changes in scale and to systematic biases, CCC still highly de-

pends on the range of the true quantity in the sample set because of the precision

component.

The objective of the study was to study of the effect of sample size for es-

tablishing equivalency and comparison of methods during assay transfers and

to recommend criterion for out of specification risk mitigation.Equivalence test

(TOST) is commonly used for analytical method transfers. The power of Equiva-

lence test(TOST) is a probability that properly accept the equivalence at a given

true mean difference ∆. It may be alternatively stated in terms of the type-II error

β of falsely rejecting equivalence at a given value of ∆.

In order to achieve the desired power, the minimum number of test results

needed is calculated. Three parameters are required for this type of calculation:

• The equivalence limit E: The equivalence limit is set based on scientific

knowledge or historical data.

• The population standard deviation σ: The population standard devia-

tion σ represents the precision of the test method. In practice, σ is unknown
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at most of time. The long-term method performance data can be used to

establish the estimated standard deviation S which is an estimate of the

population standard deviation σ.

• The true difference parameter ∆: The true difference parameter ∆ is a

hypothetical value such that if the absolute value of the observed difference is

no more than ∆, there is a strong probability of concluding that the two data

sets represent equivalent results. The choice of ∆ is arbitrary. A practical

solution is to assign a value which is about half to two-thirds of the distance

E to ∆.

The following inequality is used to get the minimum number of test results n

to maintain a desired level of power 1− β of the TOST:

φ(
E −∆

σD
− Z1−α)− φ(

−E −∆

σD
+ Z1−α) ≥ 1− β (14)

where

• φ(.) is the standard normal cumulative distribution function,

• ∆ is the true difference parameter µ1 − µ2,

• σD is the standard error of the difference D, estimated by S ×
√

2
n

• Z1−α is the (1− α)th percentile of the standard normal distribution

The minimum number of n which satisfies the inequality above is defined as the

minimum number of independent test results in each of two populations. In the

other words, we need at least n results for population 1 and n results for population

2 (2n in total) to conduct an equivalence test between two means with the desired

power 1− β.
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3.2.4 Proposed Approach for Method Transfers

The most difficult part of the assay transfers is establishing the equivalence

margin. Most of the literature suggests use scientific judgement in establishing one

and recently there has been some publication about suggested ways to establish

one. According to USP <1010> [78] the equivalence margin can be established as

described below:

The acceptable difference, (δ), is calculated in the following manner:

A= LTI−LSL for LTI ≥ LSL

B= USL− UTI for USL ≥ UTI

Equivalence Margin (δ)= minimum (A, B) where

• LTI = Lower Tolerance Interval

• UTI = Upper Tolerance Interval

• USL = Upper Specification limit

• LSL = Lower Specification limit

This approach works if the specifications are large enough to have enough

space for subtracting the tolerance intervals to determine the equivalence margin.

In case of where the specifications are narrow and the variability of the methods are

higher, this might lead to a situation in which there is no difference between toler-

ance intervals and specifications. The proposed approach is to use the equivalence

margin based upon the confidence interval of difference in means:

E = (x1 − x2)± tCL

√σ2
1

n1

+
σ2
2

n2

 = ±tcL

(√
2σ2

n

)
= 2× tCL ×

√
2√
n
× σ (15)

where

• where (x1 − x2) is the difference between sample means,
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• where tCL is the upper (1 − α/2) critical value for the t distribution with k

degrees of freedom (with k equal to either the smaller of n1-1 and n2-1 or the

calculated degrees of freedom)

• If we assume treating the difference in means (x1− x2) = 0 and σ1 = σ2 and

n1 = n2

In order to include the comprehensive variability of assays, it is recommended

to use the upper confidence interval of the standard deviation to capture the un-

certainty of the derived standard deviation from a limited dataset. The equation

now becomes:

E = 2× tCL ×
√

2√
n
× S
√
N − 1√
χ2
α,N−1

(16)

where χ2
α is the critical value from the chi-square distribution with N1 degrees of

freedom.

3.2.5 Bootstrapped Equivalence Test (TOST)

Bootstrapping is a methodology that relies on random sampling with replace-

ment. The concept of bootstrapping is to perform computations on the data itself

to estimate the variation of statistics that are themselves computed from the same

data. The concept of bootstrap developed by Effron (1979) is described below:

• x1, x2,...xn is a data sample drawn from a distribution F.

• u is a statistic computed from the sample.

• F is the empirical distribution of the data (the resampling distribution).

• x1, x2, . . ., xn is a resample of the data of the same size as the original

sample n

• u is the statistic computed from the resample

56



Variation of u statistic depends upon the size of the sample. The concept of

bootstrapping can be applied to multiple statistics like mean, median, confidence

intervals when the original sample size is small and true population estimates can

be estimated.

Another method to establish equivalence, is to construct a two sided 100(1−

2α)% confidence interval for the difference between two means and compare it

with the equivalence limit. This is described in Chapter 2 in section 2.3.3. The

reason the confidence interval is 100(1 − 2α)% and not the usual 100(1 − α)% is

because this method is tantamount to performing two one-sided tests. For instance,

using a two sided 90% confidence interval yields a 0.05 significance level for testing

equivalence.

The upper (UCL) and lower (LCL) confidence limits for the 100(1 − 2α)%

two-sided confidence interval on the true difference are computed as follows:

UCL = D + t1−α,fSD

LCL = D − t1−α,fSD

where t1−α,f is the upper 100(1−α) % percentile of the Students t distribution with

the degrees of freedom (f = n1 + n2 − 2). The method proposed is an extension

of Two one-sided t test. In case of analytical method transfer, a small sample

size (n=18,24 etc.,) is used and equivalence is claimed based upon equivalence test

hypothesis.

The approach is described below:

• Step 1: Collect data from sending lab (x1) and Receiving lab (x2)

• Step 2: Simulate 10,000 sets of datasets of same size from sending and re-

ceiving lab using bootstrapping method

• Step 3: Compute the mean difference between averages for sending and re-

ceiving lab (x1 − x2) mean difference of a bootstrap sample (x1 − x2) *1 . .
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., (x1 − x2) *10000 times.

• Step 4: Compute the confidence interval of the mean difference based upon

10000 resamples

• Step 5: Compare the confidence intervals and compare it with the equivalence

limit.

• Step 6: If the confidence interval is completely contained within the equiva-

lence limits (-E,E), then accept equivalence. Otherwise, reject equivalence.

Also as part of the assay transfer, Process Capability needs to be calculated for

the sending lab before initiation of transfer process. A process where almost all

the measurements fall inside the specification limits is a capable process. This can

be represented by the plot below:

Figure 8: A capable process in which all the measurements fall in the specification
limits

Cpk statistic assumes that the population of data values is normally dis-

tributed. Assuming a two-sided specification, if x and σ are the mean and standard
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deviation, respectively, of the normal data and USL, LSL, the upper and lower

specification limits respectively, then the capability indices are defined as follows:

Cpk = min

{
USL− x

3σ
,
x− LSL

3σ

}
(17)

Table 3 below indicates CpK values and associated risk of failure. The greater

the CpK value, risk is further reduced. For practical implementation, a minimum

value of CpK is required such that future results are < 0.27% out of specifica-

tion(OOS) values.

Cpk Sigma level % out of specification PPM out of tolerance
0.33 1 31.73 317310.508
0.5 1.5 13.36 133614.403

0.67 2 4.55 45500.264
0.83 2.5 1.24 12419.331

1 3 0.27 2699.796
1.17 3.5 0.05 465.258
1.33 4.0 0.01 63.342
1.50 4.5 0.001 6.795
1.67 5.0 0.0001 0.573
1.83 5.5 0.000004 0.038
2.00 6.0 0.0000002 0.002

Table 3: Cpk values and the corresponding associated risk of failure which is de-
termined by the % out of specification.

If the process capability (CpK) of sending lab is less than 1.0, the transfer

of assay should not be initiated and assay needs to be remediated to improve

capability. The transfer between the labs can be initiated if capability is greater

than 1.0 and once the transfer is complete, capability at the sending lab need to be

calculated. The following equation is proposed for CpK calculation at the receiving

lab.

Cpk = min

{
x− LSL

3σ
,
USL− x

3σ

}
(18)
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where

x = x+ (2× tCL ×
√
2√
n
× S×

√
N−1

χ2
α,N−1

)

The proposed capability will include any potential bias that might be resulted

from the method transfer and will control any out of specification scenarios. Once

the testing at the receiving lab is completed, Process capability index needs to be

calculated and if the capability is > 1.0 and TOST results indicate equivalence,

the transfer can be claimed successful.

The flowchart of the proposed approach for assay transfer is shown in Figure

9

Figure 9: Flowchart of the proposed approach
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3.3 Summary

In this chapter, research design has been presented. The details of research

methodology, statistical methodologies, data collection are discussed. The research

questions and the formulation of hypothesis are also highlighted.
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CHAPTER 4

RESULTS AND ANALYSIS

This chapter summarizes the results and analysis of the data. The results are

presented and divided in three sections

1. Process Optimization

2. Analytical Transfer

3. Stability Data Analysis

4.1 Process optimization

Simulations are run using the simulation software Pensim V2.0 as described in

Chapter 3 under closed-loop control of pH and temperature since those variables

play an important role on the quality and quantity of the final product, whereas

glucose addition is performed under open-loop. In all runs, a batch culture is

followed by a fed-batch operation by the depletion of carbon source. In general,

the system switches to the fed batch mode after about 45 h. A constant glucose

feed is used during the fed-batch operation. A more detailed description of the

process including the state equations and simulation conditions is given by Birol et

al.[68]. The variables used in the modeling of Penicillin manufacturing simulation

are tabulated in Table 4.
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Variables Number Variable Name
1 Aeration rate(I/h)
2 Agitator Power (W)
3 Substrate feed rate(I/h)
4 Substrate feed temperature(K)
5 Dissolved oxygen concentration (g/l)
6 Culture volume (l)
7 Carbon dioxide concentration (g/l)
8 pH
9 Bioreactor temperature (K)
10 Generated heat (kcal)
11 Cooling water flow rate (l/h)
12 Substrate concentration (g/l)
13 Biomass concentration (g/l)
14 Acid Flow Rate (I/h)
15 Base Flow Rate
16 Penicillin concentration

Table 4: Variables used for Modeling of Penicillin Manufacturing process

The pH was varied between 4.95 − 5.0 in order to simulate the observed be-

havior of penicillin production by utilizing an on/off or a proportional-integral-

derivative (PID) controller. The pH is regulated by adding highly concentrated

(3 M) acid or base solution when necessary. Two PID controllers are used to

manipulate the acid and base control values. The PID controllers are tuned for

a certain range of initial conditions considered to be the normal operation. The

initial conditions are summarized in Table 5.
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Substrate Concentration 15g/L
Dissolved Oxygen Concentration 1.16 g/L

Biomass Concentration 0.1g/L
Penicillin Concentration 0 g/L

Culture Volume 100 L
Carbon Dioxide Concentration 0.5g/L

pH 5.0
Fermentor Temperature 298K

Table 5: Initial conditions for simulation

The duration of each batch is 400 h, comprising a preculture stage (about

45 h) and a fed-batch stage (about 355 h). All batches are assumed to be of the

same duration. The sampling interval is 0.5 h. Small variations were added to the

simulation input data to mimic the variations in the normal operating conditions

encountered in the real process. The ranges of the set points and scenarios with

setpoint variations are listed in Table 6. The set points were varied within the

range and 30 batches with five different combination of ranges were included in

the simulation to generate a total of 150 batches. As discussed in Chapter 3,

due to high dimensionality of data, few methods such as Principal component

analysis(PCA) and Partial least squares (PLS) were chosen to analyze the data

for dimensional reduction. PCA and PLS methodologies belong to classification of

unsupervised algorithms.

The statistical methodologies used for the current study are:

• Principal component analysis (PCA) (Unsupervised learning)

• Partial least Squares (PLS) (Unsupervised Learning)

• Symbolic Regression (Supervised Learning)

• Support Vector Regression (SVR) (Supervised Learning)
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Set points Range Condition
1

Condition
2

Condition
3

Condition
4

Condition
5

Aeration
Rate (g/h)

8− 9 8.6 8.7 8.8 8.9 9.0

Agitator
Power (W)

29-31 29.9 29 29.5 30 31

Substrate
feed flow
rate (l/h)

0.039-0.045 0.0426 0.039 0.041 0.043 0.045

Substrate
Feed
Tempera-
ture(K)

295-296 296 296 295 296 295

Bioreactor
Tempera-
ture (K)

297-298 298 298 297 298 297

pH 4.95-5.05 5 4.95 5 5.05 5

Table 6: Set point ranges and scenarios for simulation

The results obtained were compared to a 2-stage Scores based Symbolic

regression (SBSR) method.The results from each model depend on the model

parameters. RMSECV minimization was used for optimization in all cases and for

all models.

4.1.1 Results
Principle Component Analysis(PCA)

PCA gives an overview of the information in a data table. This summary

shows how the observations are related and if there are any deviating observations

or groups of observations in the data. Of particular interest in process data anal-

ysis is the ability of PCA to uncover both smooth time trends and sudden shifts

in the data. In addition, with PCA we also gain an understanding of the relation-

ships among the variables: which variables contribute similar information to the

PCA model, and which provide unique information about the observations. PCA

describes the correlation structure in X (all the 16 variables described in Table
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4). Geometrically, PCA finds lines, planes and hyperplanes in the K-dimensional

variable space that approximate the data as well as possible in the least squares

sense. Before analyzing the data, some of the variables were transformed due to

the skewness of the distribution. All variables are scaled to Unit Variance. The

table below shows the formulae for transformation of the two variables.

Variable Transform Formula
Substrate Concentration Log log10(x)

flb:Base flow rate Log log10(x+ 5e−006)

Table 7: Variable Transformation and the formulae used for transformation

PCA and PLS work best with normally distributed data. log transformation

can decrease the variability of data and make data conform more closely to the

normal distribution. The PCA model consists of 16 X-variables and 0 Y-variables.

Hence, the PCA can be written as PCA-X.

Table 8 shows the summary of the model.

Principal Component R2(X) R2(X)(cum) Eigenvalue Q2 Q2(cum)
1 0.509 0.509 8.14 0.468 0.468
2 0.188 0.697 3.01 0.258 0.605
3 0.0876 0.785 1.4 -0.0925 0.569
4 0.0833 0.868 1.33 0.243 0.673

Table 8: Summary of the PCA model

R2X is the percent of the variation of all the X explained by the model and

Q2 is the percent of the variation of all the X that can be predicted by the model.

Eigenvalues measure the amount of variation in the total sample, accounted for by

each factor.The number of principal components retained in the model are based

upon two criteria:
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1. Eigenvalue one criterion: Based on this criterion the first components with

eigenvalues higher than 1 are chosen.

2. Amount of explained variance: based on this, the chosen factors should ex-

plain 70 to 80% of the variance at least.

Based upon the above criterion, first 4 principal components were chosen for

the analysis. The PCA model explains 86.8% of variance between X variables.

Figure 10 below displays the cumulative R2 and Q2 for the X matrix, after

each component.

Figure 10: R2 and Q2 cum for each componentfor the X-matrix

Figure 11 shows a plot that displays the cumulative R2V (X) and Q2V (X) for

each X variable.
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Figure 11: Goodness of fit of the X variables
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X-axis denotes the variable and y-axis indicates the amount of variation.

R2V (X) describes the cumulative percent of the variation of the X variable ex-

plained by the model after the last component. R2 is a measure of fit, i.e. how

well the model fits the data. Q2V (X) describes the cumulative percent of the

variation of the X variable predicted by the model, after the last component, ac-

cording to cross validation. Q2 is a measure of how well the model predicts the

variable. The plot indicates that substrate feed, substrate concentration, biomass

concentration, CO2 concentration and generated heat contribute to the maximum

amount of variation.

Figure 12 shows a loading scatter plot P [2] vs P [1]. The scores are weighted

averages of the variables with weights p1(principal component) in the first dimen-

sion and p2(principal component) in the second dimension. These weights, the

loadings p, are computed from the correlation structure of the X’s.Loading scat-

terplot displays all the variables at the same time. Variables contributing similar

information are grouped together and are positively correlated. Variables that are

inversely correlated are positioned on opposite sides of the plot origin, in diagonally

opposed quadrants. Figure12 indicates that the Penicillin concentration is posi-

tively correlated to biomass concentration, culture volume and negatively related

to substrate feed and dissolved Oxygen concentration.
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Figure 12: Loading Scatter plot P(2) vs P(1)

Hence P2 vs P1 displays how the X variables correlate with each other and

contribute to the model. Points that are far away from the origin have a strong

impact on the model, whereas points that are closer to the center have a weaker

influence.

Partial Least Squares (PLS)

PLS is a method for relating two data matrices, X and Y, to each other by a

linear multivariate model. The PLS model has 16 variables, out of which 15 are X

variables and 1 is the Y variable. Table 9 shows all the variables used in the PLS

model.

The model is trained on a workset for which both X and Y are available. It

may then be applied to a prediction set of new observations. In this prediction,

known X data for the prediction set are utilized to predict the unknown Y data.

The PLS model may be interpreted to understand how the X variables influence

the Y variables. This information is useful when the goal is to modify the X

variables to achieve an improved profile among the Y variables. The PLS method

derives its usefulness from its ability to analyze data with many, noisy, collinear,

and even incomplete variables in both X and Y. In this study, all the variables are
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X variables Y variable
Aeration rate (l/h)

Penicillin concentration

Agitator power (W)
Substrate feed rate (l/h)

Substrate feed temperature (K)
Dissolved oxygen concentration (g/l)

Culture volume (l)
Carbon dioxide concentration (g/l)

pH
Bioreactor temperature (K)

Generated heat (kcal)
Cooling/heating water flow rate (l/h)

Substrate Concentration
Biomass Concentration
Acid Flow Rate (l/h)
Base Flow Rate (l/h)

Table 9: Variables used in the PLS model

denoted as X (observation variables) except penicillin concentration that will be

treated as Y (response variable). Before analyzing the data, some of the variables

were transformed due to the skewness of the distribution. PCA and PLS work best

with normally distributed data. Log transformation can decrease the variability

of data and make data conform more closely to the normal distribution Table 10

shows the transformed variables. All variables are scaled to Unit Variance.

Variable Transformation Formula
Substrate concentration Log log10(x)
Generated heat Log log10(x+ 0.01569)
Base flow rate Log log10(x+ 5e−0.006)

Table 10: Variables and the formulae used for transformation

Table 11 displays the data of cumulative R2 and Q2 for the Y matrix after

each component.
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Principal
Compo-
nent

R2(X) R2(X)(cum)Eigenvalue R2(Y ) R2(Y )(cum) Q2 Q2(cum)

1 0.465 0.465 6.97 0.86 0.86 0.86 0.86
2 0.0996 0.564 1.49 0.0827 0.943 0.0591 0.919
3 0.14 0.704 2.1 0.0204 0.963 0.0356 0.954
4 0.101 0.805 1.52 0.0103 0.973 0.00278 0.9574

Table 11: Data of the cumulative R2 and Q2

R2X is the percent of the variation of all the X explained by the model and

Q2 is the percent of the variation of all the X that can be predicted by the model.

R2Y is the percent of the variation of all the Y explained by the model and Q2

is the percent of the variation of all the Y that can be predicted by the model.

The above model explains that 97.3% variation and 95.75% of variation can be

predicted by the model.

The plot shown in Figure 13 shows the data in a graphical format.

Figure 13: Data and plot of R2(cum) and Q2(cum) for the Y-matrix for each
component

Here, R2V (Y ) describes the cumulative percent of the variation of the Y
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variable explained by the model after the last component. R2 is a measure of fit,

i.e. how well the model fits the data. Q2V (Y ) describes the cumulative percent of

the variation of the Y variable predicted by the model, after the last component,

according to cross validation. Q2 is a measure of how well the model predicts new

data.

Model Summary

A scatter plot of the X and Y weights (w* and c) is shown below.

Figure 14: Loadings w*c[1] vs. w*c[2]

The w* are PLS weights. These are the weights that in PLS combine the

original variables in X to form the new variables, scores t.“c” represent the weights

used to combine the Y’s to form the scores u.

Figure 14 shows the relation between the X variables and the Y variables, and

the relation within the X’s and the Y’s. Points that are far away from the origin

have a strong influence on the model, whereas points that are closer to the center

have a weaker influence. The loadings plot indicates that culture volume, CO2

concentration, biomass concentration and substrate concentration have stronger

influence on the model.
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Variable importance plot (VIP) can also be plotted as part of the PLS analysis.

The VIP plot reflects the importance of terms in the model both with respect to Y,

i.e., correlation to all the responses, and with respect to X (the projection). The

VIP values summarize the overall contribution of each X-variable to the PLS model,

summed over all components and weighted according to the Y variation accounted

for by each component. VIP is normalized, which means the average squared VIP

value is 1. Thus, terms in the model with a VIP > 1 are the most important. In

Figure 15 shown below, the variables that have a VIP > 1 are considered important

while the other variables are insignificant. The plot indicates culture volume, CO2

concentration, bio mass concentration, Substrate concentration, cooling generated,

acid added, substrate feed and generated heat are the most important terms in the

model.

Figure 15: The variables that have a VIP value > 1 are the only significant ones.
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Figure 16 shows the Observed vs. Predicted plot that displays the observed

values vs. fitted values for the Y-variable (i.e, Penicillin concentration), using

PLS model. The RMSEE (Root Mean Square Error of Estimation) indicates the

fit error of the observations to the model. RMSECV is a similar measure, but

estimated using cross validation.

Figure 16: Observed vs. Predicted plot of the Penicillin concentration for all the
150 batches. The different colors in the plot represent different batches.

As seen from the plot, the RMSE is low which indicates better predictability

for the Penicillin concentration.

Symbolic Regression(SR)

Symbolic regression analysis has 16 variables, out of which 15 are X variables

and 1 is the Y variable (penicillin concentration). The dataset collected from Pen-

sim simulator V2.0 is used for the analysis. The output from Eureqa consists of

series of equations that best fit the relation between X variables and Y variable. In

the output shown in Figure 17 below, the first column(size) indicates the complex-

ity measure, the second column indicates error measure and the solution column

indicates the corresponding candidate equation. Eureqa’s complexity metric(or

size) is measured both by the number of variables used within the solution as well
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as the relative weights of each of the building blocks used in the solution. The best

solution is the one that has the optimum balance between error and complexity.

Figure 17: The series of equations obtained from Eureqa Formulize.

Eureqa Formulize produces a series of equations and ranks each in terms

of goodness of fit. The highlighted equation can be considered as the optimum

solution obtained from the series of equations. After this point, increasing the

complexity resulted in the amount of errors that can be ignored due to the dis-

crepancies.

Figure 18 shows the mathematical solutions accuracy vs. its complexity. The

solution with a mean absolute error 0.03 and complexity of 29 was considered

as optimum solution. After this point, increasing the complexity resulted in the

amount of errors that were ignored due to the discrepancies. The stability and

percent converged of final solutions after 1.79× 103 generations were 1.977% and

97.3%, respectively.
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Figure 18: Error vs complexity obtained from the mathematical solutions

Ultimately based on the optimum point, the proposed mathematical solution

can be presented as:

(Penicillinconcentration) = 2.36 ∗ (CultureV olume) + 0.5781.1e −

5(Substrate.Concentration) − 164 − 7.12e − 5 ∗ (CultureV olume)2 −

8.60944211627824e− 6 ∗ (CultureV olume) ∗ (Substrate.Concentration)2

The parameters of the solution are summarized in the Table 12 below:

R2 goodness of fit 0.99034313
Correlation Coefficient 0.99542721
Maximum Error 0.48358019
Mean Squared Error 0.002019551
Mean Absolute Error 0.03344815
Coefficients 5
Complexity 29

Table 12: Summary of the solution
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Each of the terms in the table is described as:

• R2 Goodness of Fit: (1- SSres/SStot) where SStot is proportional to the total

variance, and SSres is the residual sum of squares.

• Maximum Error: Minimizes the single highest error of the residuals. It is

used to minimize the worst-case error or to force algorithm to model a small

residual feature.

• Mean Absolute Error: Minimizes the mean of the absolute value of resid-

ual errors, mean(abs(error)). Assumes noise follows a double exponential

distribution.

• Mean Squared Error: Minimizes the mean of the squared residual errors.

Assumes noise follows a normal distribution.

The solutions thus obtained are plotted against the data, that includes both train-

ing and validation data. The training data is a subset of the current data that is

used by Eureqa to search for solutions. The validation data is a second subset that

is used only to measure accuracy.

Figure 19 displays the correlation between actual observed values which ap-

pear in the training and validation data against the values predicted by the selected

model.
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Figure 19: Observed vs predicted data. The plot shows both training and valida-
tion data.

The plot indicates high correlation between observed and predicted values.

Also the solution summary indicates a high R2 value that explains more than 99%

of the variation by the model.

The plot shown in Figure 20 displays the size of the error for each point in

the training and validation data. As seen in the plot, the residual error is close to

0 for training and validation data.
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Figure 20: Residual Error plot for both training and validation data.

Figure 21 displays the receiver operating characteristic(ROC) Curve for the

data. ROC curves are used for classification models which predict target variables

Figure 21: ROC curve.

that always have a value of 0 or 1. This procedure is a useful way to evaluate

the performance of classification schemes in which there is one variable with two

categories by which subjects are classified. The ROC curve is plotted using True

Positive rate on y-axis and False Positive rate on x-axis. Area under the ROC
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curve is a good measure for the model. A larger area under the curve indicates a

better model.

Table 13 presents a sensitivity analysis over optimum solution. Sensitivity

means the relative impact that a predictor has on the target variable (Penicillin

Concentration).%Positive is the likelihood that increasing this variable will increase

the target variable; Positive Magnitude is when an increase in this variable leads

to an increase in the target variable, this is generally how big the positive impact

is. %Negative is the likelihood that increasing this variable will decrease the target

variable, and finally Negative Magnitude is when an increase in this variable leads

to a decrease in the target variable and this is generally how big the negative

impact is. The model is most sensitive to Substrate Concentration (sensitivity

= 12.82) even more than to culture volume (sensitivity = 0.597). Results show

that at 100% of time, Substrate Concentration will have negative impact with

magnitude of 12.82, and at 96% of times, culture volume will have positive impact

on forecasting penicillin concentration with a magnitude of 0.11763.

Variable Sensitivity % Positive Positive
Magnitude

% Negative Negative
Magnitude

Substrate
concentration

12.82 0% 0 100% 12.82

Culture Vol-
ume

0.5967 96% 0.61566 4% 0.11763

Table 13: Sensitivity report

81



Support vector regression (SVR)

SVR is a support vector machine (SVM) algorithm that is used to solve regres-

sion problems. This leads to an optimized generalization performance by maximiz-

ing a space that exists between two layers. Instances that are the most adjacent

to a hyperplane that has the maximum space or instances located at the shortest

distance from a plane are called support vectors. The SVR equation described by

Kim.et, al (2016) is shown as:

f(x) =
l∑

i=1

αitiK(xi.x) + b (19)

All the results calculated by using a kernel function K and a test sample x for

every xi having l support vector(s) are added together. α is a Lagrange multiplier,

t is an integer that represents the category, and b is a constant that represents the

location on the hyperplane.

The analysis has 16 variables, out of which 15 are X variables and 1 is the Y

variable (penicillin concentration). The dataset collected from Pensim simulator

V2.0 is used for the analysis.

SVR analysis was performed using WEKA and R software. Waikato Environ-

ment for Knowledge Analysis(WEKA) is a machine learning program developed

by the University of Waikato in New Zealand enabling the user to analyze data

and to perform prediction modeling by using various machine learning algorithms.

SMOreg (weka. classifiers. functions. SMOreg) was used in the study for develop-

ing regression model. Support vector machine for regression can be implemented

using SMOreg module of WEKA with arbitrary kernel functions. Nominal at-

tributes can be transformed in to binary form and SMO algorithm can replace all

missing values. This algorithm has number of features that includes fast learning

and better scaling properties. The fitness and the statistical significance of the

models developed in this study was assessed using the statistical parameters such
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as R, R2, MAE and RMSE.

Summary of results from linear-epsilon SVR Below is the summary of

results obtained using linear SVR.

Statistic Value
Corelation coefficient 0.9977
Mean absolute error 0.0448

Root mean squared error 0.0498
Relative absolute error 0.123684

Root relative squared error 0.115497

Table 14: Summary of results from SVR

The following classifier options are used:

• C: The complexity constant C. (default 1) item N: 0=normalize

• I: weka. classifiers. functions. supportVector.RegSMOImproved

• K: The Kernel to use: weka. classifiers. functions.supportVector.PolyKernel

• T: The tolerance parameter for checking the stopping criterion. (0.001)

• V: Use variant 1 of the algorithm when true, otherwise use variant 2. (true)

• P: The epsilon for round-off error. (1.0e−12)

• L: The epsilon parameter in epsilon-insensitive loss function. (1.0e−3)

• W: The random number seed. (1)

• D: Enables debugging output (if available) to be printed. (off)

• no-checks: Turns off all checks - use with caution! (checks on)

• C: The size of the cache (a prime number), 0 for full cache and -1 to turn it

off. (250007)
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• E: The Exponent to use. (1.0)

• L: Use lower-order terms. (no)

Complexity parameter controls the process flexibility for drawing the line to

fit the data. Another important aspect in SVR is the type of kernel to use. The

linear kernel is simplest that classifies data with a straight line or hyperplane.

Polynomial Kernel is used to fit non-linear data. Radial basis function kernel is

also used to learn complex shapes to fit training data.

In-order not to over fit the data and to detect the best cost parameter, SVR

algorithm was run multiple times by changing the cost from 0.1 to 1.0 in increments

of 0.1. Figure 22 shows how R2 changes based upon the change in cost parameter.

Figure 22: Cost Paramter vs pseudo R2

As seen in the plot, the Pseudo R2 increases with the cost parameter upto a

certain value. Beyond a cost parameter of approximately 0.5, the R2 remains fairly

constant. Since the cost parameter controls the trade-off between achieving a low

error on the training data and minimizing the weights, it need not be increased

beyond a certain value since a further increase in cost parameter only results in

84



the increase of the complexity of the hypothesis class.

Suggested Methodology: Scores Based Symbolic Regression

PCA Scores

In the case of Penicillin manufacturing process, suppose n variables have been

measured at p time intervals. The information can be formulated in a matrix form

as:

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp


where x1 = [x11x12...x1p] is the row vector containing the penicillin concentrations

measured at p time intervals for the first lot, x2 is the row vector containing

the penicillin concentrations for the second sample and so on. PCA creates new

orthogonal variables (latent variables) that are linear combinations of the original

x-variables. Singular value decomposition of the matrix can be used for X:

Xnxp = UnxpΛpxpP
′

pxp = TnxpP
′

pxp (20)

U is the unweighted/normalized score matrix and T is the weighted /unnor-

malized score matrix. The new matrices contain the new variables. P is the loading

matrix and the column vectors are called eigen vectors. Elements of matrix P are

the loadings of original variables on each eigenvector. Diagonal matrix is denoted

by L. The decrease in principal components explain decreasing amount of variabil-

ity in X.

Model Summary The analysis has 16 variables, out of which 15 are X variables

and 1 is the Y variable (penicillin concentration). The dataset collected from Pen-

sim simulator V2.0 is used for the analysis. In the case of Penicillin manufacturing

only the first 3 principal components were retained. The scores were calculated on
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the 3 principal components of X variables and calculated on the Y variables. The

data set for scores consists of 12000 rows and 4 columns. Due to large size of the

dataset used, only a subset of data is displayed below:

Figure 23: Subset of the data used for the suggested methodology

Symbolic Regression was applied to the scores using Eureqa Formulize soft-

ware. The output from Eureqa consists of series of equations that best fit the

relation between X variables and Y variable. This is shown in Figure 24, where
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the first column (i.e,size) indicates the complexity measure, second column indi-

cates error measure and the solution column indicates the corresponding candidate

equation. Eureqa’s complexity metric (or size) is measured both by the number

of variables used within the solution as well as the relative weights of each of the

building blocks used.

Eureqa Formulize produces a series of equation and ranks each in terms of

goodness of fit and are displayed in Figure 24.

Figure 24: Results obtained from Eureqa Formulize

The mathematical solutions accuracy vs its complexity is shown in Figure

25. The solution with a mean absolute error 0.15 and complexity of 64 as the

optimum point on the frontier was considered as optimum solution. After this

point, increasing the complexity amount of errors had ignorable discrepancies.
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Figure 25: Error as a function of complexity

The stability and percent converged of final solutions after 9.36× 105 genera-

tions were 5.05% and 100%, respectively. Ultimately, based on the optimum point,

the proposed mathematical solution can be presented as:

(PencillinConcentration.M2.t[1]) = 0.389736496840901 ∗ (M4.t[1]) +

0.373132243013773 ∗ (M1.t[5]) + 0.130101662986574 ∗ (M4.t[1]) ∗ sin((M4.t[1]) +

sin(0.442743055690672∗(M4.t[1])))−0.0890641626334202−0.0625878223198603∗

(M1.t[5])2

This solution is summarized in Table 15

R2 goodness of fit 0.9603151
Correlation Coefficient 0.98039149
Maximum Error 0.75668024
Mean Squared Error 0.039637283
Mean Absolute Error 0.15593035
Coefficients 6
Complexity 64

Table 15: Summary Parameters of the solution

These solutions are plotted against the data in which both training and vali-

dation data are shown. The training data is a subset of the data that is used by

Eureqa to search for solutions. The validation data is a second subset that is used

only to measure accuracy.
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Figure 26 displays the correlation between actual observed values which ap-

pear in the training and validation data against the values predicted by the selected

model. The plot indicates high correlation between observed and predicted values.

Also the solution summary indicates a high R2 that explains more than 96% of

the variation by the model.

Figure 26: Observed vs predicted data. Both the training and validation data are
shown

The size of the error for each point in the training and validation data is

plotted as seen in Figure 27. As seen from the plot, the residual error is close to

0 for training and validation data, that indicates that the model used is a more

accurate one.

The receiver operating characteristic(ROC) Curve for the data is plotted and

shown in Figure 28 and is used for classification models that predict target variables

that always have a value of 0 or 1. Area under the ROC curve is a good measure for

the model. A larger area under the curve indicates a better model. Unlike the ROC

curve from symbolic regression analysis seen in Figure 21, the ROC curve obtained

using the proposed model has a larger area under the curve which indicates that

this is a better model compared to the model that uses just symbolic regression
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Figure 27: Residual error plot for both training ans validation data

analysis.

Figure 28: ROC curve for the proposed model.

Table 16 presents a sensitivity analysis over optimum solution. Sensitivity

means the relative impact that a predictor has on the target variable (Penicillin

Concentration).

From the sensitivity report, it can be deduced that this model is more sensitive

to Principal component 1 compared to Principal Component 5. Also, 15% of the
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variable sensitivity %positive Positive
Magnitude

% Negative Negative
magnitude

(t[1]) 0.72092 85% 0.83508 15% 0.095281
(t[5]) 0.29591 100 % 0.29591 0% 0

Table 16: Sensitivity Report obtained using the proposed model

time, the principal component 1 will have a negative impact with magnitude of

0.72092 and at 100% of times, Principal component 5 will not have a positive

impact on forecasting penicillin concentration at all.

4.2 Summary

Multiple statistical approaches were applied to penicillin manufacturing pro-

cess and a new methodology was proposed that will improve the accuracy and

predictability of the process. A summary of the results obtained for all models is

shown in Table 17.

PCA methodology relies on linear assumptions and normality assumptions.

A statistic has scale invariance if changing the scale by a certain amount does not

change the system, function, or statistics shape or properties. PCA is not scale

invariant.

PLS has some limitations that include greater difficulty of interpreting the

loadings of the independent latent variables and significance of parameter estimates

cannot be estimated, since the distributional properties of estimates are not known.

Since the search space for symbolic regression can be large, SR algorithms

might take much longer time to find a suitable model and parametrization com-

pared to traditional regression methods. SR also need huge computational power.

SVR has high algorithmic complexity, extensive memory requirements and

requires choosing appropriately hyper parameters that will allow for sufficient gen-

eralization performance. Also, the design for multi-class SVR classifiers is complex.
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Table 17 indicates that other approaches like SVR and Symbolic regression

might be better than SBSR. For instance, the mean absolute errors are smaller

for both SR and SVR compared to SBSR. However these methods have several

limitations as discussed earlier. The proposed approach has multiple advantages,

which offset the limitations. Some of the several advantages of SBSR are discussed

below:

Symbolic Regression does not dependent on linearity assumptions. The algo-

rithms search for best model to fit the data including linear and nonlinear models.

Compared to PCA and PLS, results obtained from symbolic regression are easy to

interpret.

The other significant advantage of Scores based symbolic regression is that

the new variables are orthogonal (variables used are scores compared to actual

variables) and collinearity is no longer a concern, which is typically a problem

in the case of continuous manufacturing processes. Also, noise remains in the

residuals, since few principal components represent most of the variance. The

regression coefficients are more stable, since the eigen vectors are orthogonal. Since

the scores are already limited to first few principal components, applying symbolic

regression is computationally faster and will provide quicker results.Inversion of the

matrix is simple, similar to the situation where original variables are correlated.

Models R2 Mean absolute error RMSE
Principal Component Analysis(PCA) 0.868 N/A N/A
Partial Least Squares(PLS) 0.805 N/A 0.075
Symbolic Regression(SR) 0.99 0.033 0.045
Support Vector Regression(SVR) 0.99 0.045 0.05
Scores Based Symbolic Regression(SBSR) 0.96 0.156 0.19

Table 17: Summary of different models
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4.3 Analytical Method Transfer

Analytical method transfer is a process that involves transferring analytical

method from a sending lab to receiving lab to prove that a method is executed

similar at both labs. Analytical method transfer is a key component of technology

transfer between process development laboratory to commercial manufacturing.

Regulatory agencies require that transfer between labs are documented and equiv-

alence is established. The objective of the method transfer is to ensure that results

obtained by receiving lab are reliable and comparable to sending lab, to meet the

specifications of a product and address any bias between the labs. Two one sided

t-test(TOST) is used to establish equivalence of the results obtained by sending

and receiving labs. The objective of the study was to study of the effect of sample

size for establishing equivalency and comparison of methods during assay transfers

and to recommend criterion for out of specification risk mitigation.

4.3.1 Power and Sample size

An important step of TOST is determining the desired power and the cor-

responding sample size needed for conducting the test. The power of TOST is

defined as the probability of correctly accepting equivalence at a given true mean

difference between two populations. This may be alternatively stated in terms of

the type-II error β of falsely rejecting equivalence at a given true mean difference

between two populations.

Larger sample sizes give more power to the test. In order to achieve the

desired power, the minimum number of test results required is calculated. Four

parameters need to be specified in this calculation:

1. The desired power 1− β

2. The equivalence limit E
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3. population standard deviation σ

4. the true difference parameter ∆

The desired power is usually set to be 90%. Due to the cost of replicates, the

desired power can be decreased but should not be lower than 80%. The equivalence

limit E is set based on scientific knowledge. The population standard deviation

represents the precision of the test method. In practice, σ is unknown most of the

time. The estimated standard deviation S, calculated by the long-term method

performance data, can be used to estimate the population standard deviation σ.

The true difference parameter ∆ is a hypothetical value such that if the absolute

value of the observed difference is no more than ∆, there is a strong probability of

concluding that the two data sets represent equivalent results. The choice of ∆ is

arbitrary.

The following inequality is used to determine the minimum number of test

results n to maintain a desired level of power 1− β of the TOST:

φ(
E −∆

σD
− Z1−α)− φ(

−E −∆

σD
+ Z1−α) ≥ 1− β (21)

where

• φ(.) is the standard normal cumulative distribution function,

• ∆ is the true difference parameter µ1 − µ2,

• σD is the standard error of the difference D, estimated by S ×
√

2
n

• Z1−α is the (1− α)th percentile of the standard normal distribution

The minimum number of n which satisfies the inequality above is defined as

the minimum number of independent replicates in each of the two populations. In

other words, at least n results for population 1 and n results for population 2 (2n
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Transfer accepted Transfer not accepted
Acceptable Right Decision Rejecting an effective

transfer (Producer’s
risk)-Type I Error

Not Acceptable Approving ineffective
transfer (Consumer’s
Risk)-Type II Error

Right Decision

Table 18: Hypothesis testing for Analytical Transfer

in total) are required to conduct an equivalence test between two means with the

desired power 1 − β. It is not required but highly recommended that the sample

sizes from two populations are equivalent.

Table 18 describes consumer and producers risk for analytical method trans-

fers.

Power and Sample size calculation Results

The variation of sample size as a function of power was studied using equiva-

lence limit, standard deviation and the true difference for the analytical method.

The data collected for method transfer is described in Chapter 3. Based upon his-

torical data, the parameters for Analytical Method A for sample size calculation

are:

• s = 4%, the estimated standard deviation based on the long-term method

performance data

• α = 0.05, controlled type-I error which provides a 95% level of confidence

• E = 8%, the equivalence limit

• ∆ = 4%, true mean difference

• β = 0.10, controlled Type-II error which provides the power which is proba-

bility 1− β of properly accepting equivalence at a given value of ∆.
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The results obtained for sample size for Analytical method A with α = 0.05

and power=0.9 are shown in Figure 29.

(a) Power and sample size for α = 0.05 and
power 0.9

(b) Power Curve for α = 0.05 and power 0.9

Figure 29: Summary of the sample size results
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The analysis shows that, if the difference is 1, 7 observations are required

in each group to achieve a power of 0.9. A sample size of 7 gives a power of

approximately 0.91. If the difference is closer to lower equivalence limit or the

upper equivalence limit (-8 or 8), more observations are needed to achieve the

same power. For example, if the difference is 4, at least 18 observations are needed

in each group to achieve a power of 0.9. For any sample size, the power of the test

decreases and approaches a constant value for all the sample sizes, as the difference

approaches the lower equivalence limit or the upper equivalence limit.

Additional analysis was performed for varying the difference to detect and the

power to detect differences is calculated at α = 0.05 and summarized below in

Figure 30.

97



(a) Power and sample size results using the
2 sample equivalence test (b) Power curve

Figure 30: Summary of the analysis for α = 0.05
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Additional analysis was performed for varying the difference to detect and

the power to detect differences is calculated at α = 0.1 and summarized below in

Figure 31

(a) Power and sample size results using the
2 sample equivalence test (b) Power curve

Figure 31: Summary of the analysis for α = 0.1

99



Additional analysis to solve for sample size was performed for the following

scenarios at α = 0.15:

• Power: 0.8 , 0.85, 0.9 , 0.95 , 0.99

• Alpha: 0.15

• Group Allocation: Equal (N1 = N2)

• (Upper Equivalence Limit)|EU|: 4 , 8

• (Lower Equivalence Limit)|EL| : -Upper Limit

• D (True Difference): 0, 2, 4, 8

• SD (Standard Deviation): 2, 4

Figure 32 below shows the results for sample size at different power and Equiv-

alence limits and standard deviation levels.

The columns shown in the figure are defined as follows:

• Target Power is the desired power value (or values) entered in the procedure.

Power is the probability of rejecting a false null hypothesis.

• Actual Power is the power obtained in this scenario. Because N1 and N2 are

discrete, this value is often (slightly) larger than the target power.

• N1 and N2 are the number of items sampled from each population.

• N is the total sample size, N1 + N2.

• D is the true difference between the means.

• SD is the within-group standard deviation for the two groups.

• α = 0.05/0.1/0.15 controlled type-I error which provides a 95%/90%/85%

level of confidence
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Figure 32: Results of sample sizes for varying power, equivalence limits and stan-
dard deviation levels.

The lower and upper equivalence limits are the maximum allowable differences

that still result in equivalence.
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Figure 33 shows the variation of N1 with power for varying difference in means.

As seen from the figure, the sample size requirement increases as the power in-

creases. A power of 0.9 is an optimum balance for mitigating consumer’s risk.

Figure 33: N1 vs power for varying means

A contour plot is shown below for target power vs sample size. The darker

regions identify higher alpha risk. The contour levels reveal a peak centered in the

vicinity of sample size of 30 and power of 0.95. alpha risk in this peak region is

greater than 0.15. Similarly, for alpha risk at 0.05, to achieve a power of 0.9, a

minimum sample size of 36 is required.
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Figure 34: The contour plot of power as a function of sample size ( N1 + N2) for
varying alpha.

An equivalence test of means using two one-sided tests on data from a parallel-

group design with sample sizes of 18 in the sending lab and 18 in the receiving lab

achieves 90% power at a 5% significance level when the true difference between

the means is 4.0, the standard deviation is 4.0, and the equivalence limits are -8.0

and 8.0.

Based upon the analysis above, it can be deduced that increasing sample size,

widening equivalence margin, or reducing variability result in higher power, as

expected. The power of the test does NOT depend on where the center of the

distribution is, but is a function of the true difference between the group means.

The highest power was obtained when ∆ = 0. When ∆ = 0 and the goal post was

set to one standard deviation, i.e., E = s, the power of the test is simplified to a

function that is only dependent on sample size. When ∆ = 0, E and s cancel each

other from the formula. It can therefore be concluded from the table in Figure

32, that when 2s is used as the equivalence limit and there is a true difference in

means of 1s roughly 36 total samples are needed (18 each group if equal size) for

> 90% power. When ∆ 6= 0, E and s do not cancel each other in the formula, and
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hence, the difference powers for the same sample size depend on the values of E

and s.

For a fixed sample size, the power of the test is maximized at ∆ = 0, but may

not reach 100%. Type I error is maximized at ∆ = E, and eventually goes to zero

as ∆→∞.

4.3.2 Analytical Method Transfer Results

18 experiments at each lab were conducted to test for Equivalence. The data

from the experiments are tabulated below:

Replicate Sending Lab Receiving Lab
1 94.01 93.99
2 95.61 100.1
3 96.43 106.2
4 98.62 99.6
5 102.45 103.46
6 99.84 106.36
7 104.76 105.21
8 100.46 99.01
9 97.49 106.23
10 100.06 100.77
11 92.84 95.78
12 94.56 98.16
13 103.33 101.05
14 98.5 103.52
15 109.96 110.58
16 105.46 108.45
17 106.12 112.79
18 107.92 104.25

Table 19: Data for all the 18 experiments performed using Analytical Method
Transfer

The results of the test are shown in Figure 35. As seen in Figure 35b, the

90% confidence interval of mean difference (-5.4304, 0.19815) is well within the

equivalence margin (-8 ,8). Also, the greater of the two p-values is 0.001, which is
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less than the chosen α(0.05). These two results claim equivalence.

(a) Statistical parameters obtained from TOST

(b) 90% confidence interval of both the labs.

Figure 35: Result from Analytical Method Transfer
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4.4 Analytical method transfer using Lin’s CCC

The analysis below captures the power for several sample sizes of a study

designed to compare sending lab results to receiving lab based upon CCC. The

power was captured for several sample sizes of a study designed to compare sending

lab results to receiving lab. The minimum value of ρ that can be tolerated is 0.8.

The power was computed at ρ1 = 0.91,0.99, 0.999. The analysis is summarized

and shown in Figure 36 below:

The columns in the tables are defined as follows:

• X is the Sending lab results

• Y is the Receiving lab results

• Power is the probability of rejecting a false null hypothesis.

• Sample Size (n) is the number of measurement pairs (Sending - Receiving)

in the study.

• CCC0 is the value of Lin’s concordance correlation coefficient assuming H0.

CCC0 serves as a lower bound on acceptable values of CCC.

• CCC1 is the value of Lin’s concordance correlation coefficient assuming H1.

It is the value at which the power is calculated.

• ρ0 is correlation between the new measurement (Y) and the gold-standard

measurement (X) assuming H0. It serves as a lower bound on acceptable

values of ρ

• ρ1 is correlation between Y and X assuming H1. It is the value at which the

power is calculated
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Figure 36: CCC Analysis
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The results of the analysis is shown in Figure 37. As seen from the figure, the

sample size increases when H0 ,H1 and ρ0 and ρ1 are closer to each other. Sample

size increases as more power is required at different levels of CCC0 and CCC1.

Figure 37: Plot of n vs power for CCC0 = 0.8

The above plots show that using Lin’s concordance correlation coefficient to

compare the sending lab to receiving lab results, a minimum sample of 32 sub-

jects results in 0.9110 power to determine whether the new method is similar to

the sending lab method. The statistical test uses a one-sided z test with a 0.15

significance level.

4.4.1 Analytical Method Transfer Results based on CCC

The concordance correlation coefficient ρc [31, 33] evaluates the degree to

which pairs of observations fall on the 45◦ line through the origin. It contains a

measurement of precision ρ and accuracy Cb:

ρc = ρCb

where

• ρ is the Pearson correlation coefficient, which measures how far each obser-
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vation deviates from the best-fit line, and is a measure of precision, and

• Cb is a bias correction factor that measures how far the best-fit line deviates

from the 45◦ line through the origin, and is a measure of accuracy

Figure 38 shows a plot of receiving lab vs sending lab for 18 samples, and the

statistical parameters for these samples. (ρ) is the Pearson correlation coefficient,

which measures how far each observation deviates from the best-fit line, and is a

measure of precision.

Figure 38: Results of CCC Analysis
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There is no literature yet, giving a descriptive scale for the degree of agree-

ment for Lins Concordance Correlation coefficient, but McBride [79] suggests the

following descriptive scale for values of the concordance correlation coefficient:

Based upon the above recommendations, the level of agreement of 0.6306 indicates

Value of ρc Strength of agreement
< 0.90 Poor

0.90- 0.95 Moderate
0.95 - 0.99 Substantial
0.95 - 0.99 Almost Perfect

poor agreement between the sending and receiving labs.

4.4.2 Application of Bootstrapped Equivalence Test to Analytical
Method Transfer

18 experiments at each lab were conducted to test for Equivalence. The data

collected was tabulated in Table 19. Suggested methodology was applied to the

data collected and summary of results are included below. Specifications of the

parameter are 85-125.

Step 1: Cpk calculation of sending lab

Cpk has been calculated using Equation 18. This is illustrated in Figure 39

A Cpk calculation indicates a value of 1.48 based upon the specifications limit

range of 85-125. Hence, the analytical method transfer is initiated.

Step 2: Calculation of Equivalence Margin

The equivalence margin has been calculated using Equation 15. The values of

n = 18, α = 0.05 and σ = 5 were used in the equation that results an Equivalence

margin value of 5.8.
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Figure 39: Process capability of sending lab
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Step 3: Perform Bootstrapped Equivalence test based upon proposed equiva-

lence margin

(a) The proposed equivalence margin is (-5.8, 5.8)

(b) Simulate 10,000 sets of datasets of same size from sending and receiving lab

using bootstrapping (random selection with replacement)

(c) Confidence interval of the mean difference based upon 10000 resamples is

calculated. Confidence interval = ( -5.1973056, 0.1033611)

(d) Since the confidence interval is completely contained within the equivalence

limits (-5.8,5.8), Equivalence can be claimed.

Figure 40 below displays the histogram of mean differences for 10,000 resam-

ples based upon bootstrapping.

Figure 40: Histogram of mean differences

Step 4: Calculate Process capability using revised mean to control risk of Out

of Specification(OOS)
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The process mean is revised to include the potential for bias by adding the

equivalence margin to process mean and process capability is calculated based

upon the revised mean.

Figure 41: Process Capability of Receiving lab using the revised mean

The Cpk calculation indicates a value of 1.08 based upon specification limit

85-125. Hence the analytical method transfer can be claimed successful.

4.4.3 Summary of the current study using Analytical Method Transfer

The study analyzed the relation between sample size, power, and difference

in means to detect at multiple levels of Type I error and recommended optimum

samples size for the study with atleast 90% power to detect the differences. Two

different statistical methodologies that are used for analytical method transfers

were compared and an extension of Equivalence test using bootstrapping was pro-

posed to optimize producer risk and consumer risk while controlling the risk for

out of specification results. In a traditional two one-sided t test, confidence interval

of the mean difference is based upon single point estimate. Applying bootstrap-
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ping techniques provides better understanding of population mean differences and

provide a robust estimate for confidence interval. Equivalence between sending

and receiving labs can be claimed with more confidence. Also using the equiva-

lence margin for process capability computations provide better estimate of out of

specification risk and can be mitigated.

Below is a summary of the approaches used in the current study from a pro-

ducer/consumer risk perspective:

Figure 42: Summary from a producer/consumer risk persepctive

As seen from Figure 42, the proposed approach is the only one that addresses

both sample size and the risk of Out of specification

4.5 Stability Data Analysis

Stability studies are an essential component of biopharma manufacturing, al-

lowing evaluation of active pharmaceutical ingredient (API) stability or drug prod-

uct stability under the influence of a variety of environmental factors such as tem-

perature, humidity, and light. Data analysis from these evaluations will provide

guidance for recommended storage conditions, retest intervals and shelf lives to be

established. Ruberg and Stegeman [49] and Ruberg and Hsu [50] discuss methods

based on multiple comparison for poolability of slopes and batch degradation. The
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stability data is taken from Ruberg and Stegeman [49] and is included in Figure 7.

There are six batches in this data and concentration for the batches is measured

over years.

It is desirable to pool the data from different batches to set a single shelf life for

all the batches. The batches can only be pooled if there are no statistical significant

differences between slopes and intercepts. Current Food and Drug Administration

(FDA) guideline recommends using α = 0.25 for testing the poolability of batches.

The scenarios below are representative of a dataset where slopes can be pooled.

• Scenario 1 : Considering batch as fixed factor and α=0.25 (Poolable

slopes)

Figure 43 shows the results obtained considering batch as a fixed factor.

The p-value based upon the analysis above for model selection with α = 0.025

for the Time by Batch interaction (Time*Batch) is 0.359. Because the p-

value is greater than the α-level of 0.25, the model can be reduced. Both Time

and Batch are significant. Thus, the regression equations for each batch have

different intercepts and common slopes. Batch 6 has the smallest intercept,

99.723, which indicates that this batch had the lowest concentration at time

zero. The shortest shelf life estimate is 12.965 years, so the overall shelf life

for the product is estimated as 12.965 years.
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Figure 43: Results of analysis obtained using batch as fixed factor
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Figure 44 below shows both the residuals and the shelf life plots of the prod-

uct based upon ICHQ1E guideline. This model considers batch as a fixed

factor and assumes there is no future production.

(a) Shelf life plots

(b) Residual plots

Figure 44: Shelf life and residual plots treating batch as the fixed factor for α = 0.25

The residuals appear to be reasonably normal and randomly scattered about

zero. Thisindicates there are no outliers or unusual observations. Batch can

also be treated as random factor where all future production from comparable

processes can be treated similar. This is discussed in Scenario 2.
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• Scenario 2: Considering Batch as Random factor and α = 0.25

(Poolable Slopes)

Figure 45 shows the summary of the model when batch is treated as random

factor. When the batch factor is random, 95th percentile provides a better

estimate of shelf life compared to 50th percentile. Random factor takes

future batches in to consideration. The shelf life for the present data is

approximately 14.5434 years.

The coefficients table in Figure 45 shows the estimated coefficients for the

fixed effects in the model. These coefficients are the intercept (Constant)

and the slope (Month) for the marginal fitted equation 22, which predicts

the fitted value for any random batch.

Concentration(%) = 101.79− (0.329×month) (22)
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Figure 45: Results of analysis obtained using batch as random factor and α=0.25
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The table of random effect predictions in Figure 45 shows the predicted

values for the random terms. With these predicted values, intercept and the

slope for the conditional fitted equations can be determined, which predict

the fitted values for the specific batches.

The plots shown in Figure 46 below show the shelf life and residuals plot of

the product based upon ICHQ1E guideline.

(a) Shelf life plots

(b) Residual plots

Figure 46: Shelf life and residual plots treating batch as a random factor for
α = 0.25

The marginal residual plots for concentration% in Figure 46b show that the

marginal residuals may not be normally distributed with constant variance.

The histogram is flatter than the normal distribution, and the points in

the normal probability plot do not follow the line well. One reason for the
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non-normal behavior of the marginal residuals is that, the variance of the

marginal residuals depends on the time variable and may not be constant.

• Analysis for non-poolable batches at α = 0.25

Another scenario that uses data with non-poolable batches is also discussed.

In this case, a different data set has been used and is shown in Figure 47.

Figure 47: Data used for analysis. In this case, non-poolable batches have been
used.
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4.6 Proposed approach

The following notation will be used for the Full Model:

Yij = µ+ Li + β +Bi + tij + Eij,∀i = 1, 2, ..n; andj = 1, 2, ...Tj (23)

Here,

• Yij is the response for lot i at time point j

• µ is the average y-intercept across all lots

• β is the average slope across all lots

• Li is a random variable that allows the y-intercept to vary from µ for a given

lot; Li has a normal distribution with mean 0 and variance 2
L

• Bi is a random variable that allows the slope to vary from β for a given lot;

Bi has a normal distribution with mean 0 and variance σ2
B

• tij is the time point for measurement j of lot i

• Eij is a random normal error term created by measurement error with mean

0 and variance σ2
E

• n is the number of lots

• Ti is the number of responses obtained for lot i

• Li, Bi , Eij are jointly independent

The dataset used for the analysis is included in Figure 47. Results from the

analysis are included in Figure 48.
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(a) Fixed model results

(b) Random Model Results

(c) Full Model Results

Figure 48: Results from different models

All the models were analyzed using SAS PROC Mixed procedure. In this

case, batch is identified as a classification variable and has 6 levels. Fit statistics

has the estimates for Akaikes Information Criterion (AIC), AICC and BIC.

AIC criteria is summarized in Table 20:

Model AIC
Fixed 10.5
Random 16.3
Full 16.8

Table 20: Summary of the AIC criteria for the three models used
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Based upon the results, as seen from the table, the AIC criteria is the smallest

for the fixed model. Hence, fixed model is recommended for shelf life determina-

tion of the product. According to the ICHQ1E guideline, if there is a significant

difference in slopes among batches, it is not appropriate to combine the data from

all batches. The shelf life for individual batches in the stability study can be

estimated by using individual intercepts and individual slopes. If the lots have

similar slopes and intercepts, overall process lot mean can be used to determine

the shelf life. If the lots have different slopes or intercepts, worst case lot(WCL)

is recommended to determine the shelf life.

Three linear degradation models are fit, and the three models are the following:

• Model 1 : Different slopes and different intercepts for the batches

• Model 2: Common slope and different intercepts for the batches.

• Model 3: Common slope and common intercept for the batches.

The recommended model is determined by the following procedure:

1. Model 1 is used to fit with the time effect coming first in the model, followed

by the batch effect, and then the interaction. Using Type I (Sequential) sums-

of-squares, a test for equal slopes was performed (Source C in the output).

• If the p-value is less than 0.25, the slopes are assumed to be different

across batches. The procedure stops and Model 1 is used to estimate

the expiration date.

• If the p-value is greater than or equal to 0.25, the slopes are assumed

to be common across batches. The procedure continues to Step 2.
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2. If the conclusion from Step 1 is common slopes, then a test for equal inter-

cepts is performed using Type I (Sequential) sums-of-squares from Model 1

(Source B in the output).

• If the p-value is less than 0.25, the intercepts are assumed to be different

across batches, and Model 2 is used to estimate the expiration date.

• If the p-value is greater than or equal to 0.25, the intercepts are assumed

to be common across batches, and Model 3 is used to estimate the

expiration date.

When Model 1 (different slopes and different intercepts) is used for estimating

the expiration date, the MSE (mean squared error) is not pooled across batches.

Prediction intervals are computed for each batch using individual mean squared

errors, and the interval that crosses the specification limit first is used to estimate

the expiration date. Figure 49 gives the summary of the output.

The test for equal slopes has a p-value of 0.1861. Because this is smaller than

a significance level of 0.25, the test was rejected, and it can be concluded that the

degradation slopes are not equal between batches.

The test for equal intercepts and slopes has a p-value of < 0.0001. Because this

is smaller than a significance level of 0.25(ICHQ1E recommends a p-value<0.25 for

significance), the test was rejected, and it can be concluded that the intercepts are

different between batches. Using the p-value criteria <0.25 will cause the expiry

to shorten and favor the consumer/patient with shortened shelf life.
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Figure 49: Summary of the output obtained based on different slopes and intercepts
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Because the test for equal slopes and the test for equal intercepts was rejected,

the chosen model is the one with different intercepts and different slopes. The best

model accepted at the significance level of 0.25 has different intercepts and different

slopes. Figure 50 shows a graph of concentration % vs time when different slopes

and intercepts were used. Based upon the plot, the model suggests the earliest

crossing time is 3.509979 years with 95 percent confidence. ICH Guidelines indicate

an expiration time of 3.509979 years. The plot indicates where the 95% confidence

interval intersects the specification and the intersection point is the shelf life of

product based upon ICHQ1E.

Figure 50: Different slopes and different intercepts(two-sided interval)

Figure 51 shows a graph of concentration % vs time when common slopes and

intercepts were used.

If the common slope and Common intercept model was used, the 95% con-

fidence interval of the mean slope intersects the specification and hence the shelf

life in this case is determined as 6.57 years.
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Figure 51: Common slopes and intercepts(two-sided interval)

The above methodology fits a 2-sided interval for a parameter with one-sided

specification and that will result in a shorter expiration date/shelf life.

The proposed approach is to fit a one-sided confidence interval for a parameter

with one-sided specification. Also, more appropriate method for establishing shelf

life is to fit a 95% one-sided confidence interval for the worst case lot (WCL), that

represents the true shelf life. Results from the analysis are shown in the Figure 52

below:
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Figure 52: Results from the analysis using 95% one-sided confidence interval for
the WCL ( worst case lot )
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Based upon the above analysis, Batch 5 has the steepest slope and is con-

sidered the worstcase lot. The shelf life will be based upon the earliest time at

which the 95 percent confidence limit for the mean intersects the specification limit

(lower specification limit=90) in the dataset.

Figure 53: Worst case lot with one-sided lower confidence interval and estimation
of shelf life

As seen from Figure 53, the analysis suggests a shelf life of 4.3 years com-

pared to 3.5 years for the same study based upon applying appropriate confidence

interval.

Shelf life determination is a key component in the overall strategy for bio-

pharmaceutical products. Current guidelines were reviewed and new methods

were proposed to improve the determination of shelf life. The proposed methods

include consideration of sidedness of intervals based upon one-sided specification

or two-sided specification, selecting the model based upon AIC criteria instead of

a given significance level and based upon poolability of slopes using the worst case

lot to determine the shelf life. As demonstrated in the analysis, shelf life can be

extended or shortened based upon the statistical methodology used.
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CHAPTER 5

Conclusion

This chapter concludes the current study and future work.

5.1 Conclusion

Bio-technology manufacturing processes are complex and consist of multiple

processing operations with numerous parameters including inputs and their corre-

lation structures impact the final output or productivity of the process. Modeling

the relation between input parameters, process conditions to the output attributes

require advanced analytical tools and complex models. Shelf life of a biophar-

maceutical product is typically based upon the stability data. The shelf life of a

pharmaceutical product is the maximum time at which the response of a stability

limiting characteristic for all parameters (or other unit) in the batch does not ex-

ceed the specification limit. ICH Q1E provides general guidance for establishing

the shelf life based upon average of the results, but does not provide any guidance

on individual results. Analytical methods are used to measure the quality of the

product.

Typically, like a manufacturing process, they are developed in a pre-

commercial setting and need to be transferred to commercial manufacturing. Main

objective of methods transfer is to avoid release of product that does not meet speci-

fications (safety impact) often considered as Type I error as well as avoid rejection

of good product (business impact- Type II error). Because of these potentially

high-impact implications, an assay cannot be used by the new lab until transfer is

successfully completed. The assay transfer process involves robust studies from the

receiving and sending labs to establish equivalence. There are no official regulatory

guideline exists for assay transfers. FDA guidance for validation of bioanalytical
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methods, assay transfer between labs is considered as partial validation.

One of the objective of this work is to compare multiple statistical approaches

to model fermentation process for penicillin manufacturing process and propose

a new methodology that is more appropriate for auto correlated and continuous

data. A comprehensive review of available statistical models was conducted in

Chapter 2. All the methods were associated with certain advantages and disad-

vantages and complex to implement. A new method, which is a combination of

Principal components analysis and Symbolic regression was proposed in Chapter 4.

Advantages of proposed method is that new variables are orthogonal and address

the concern for collinearity and variance is explained by the principal components

and noise remain in the residuals.

Another objective of the study is to analyze current practices for analytical

method transfers and propose a more robust methodology to avoid out of specifica-

tion results. Statistical approaches two-one sided t test (TOST) and Concordance

Correlation Coefficient(CCC) were compared to establish equivalence. An impor-

tant step of TOST and CCC analysis is determining the desired power and the

corresponding sample size needed for conducting the test. The power is defined as

the probability of correctly accepting equivalence at a given true mean difference

between two populations.

A detailed analysis with sample sizes and power was summarized and optimal

sample size based upon the cost and resources balancing power is recommended. A

new methodology was proposed for establishing equivalence margin and incorpo-

rated Process capability in to analytical method transfer to avoid risk for potential

out of specification results and summarized in Chapter 4. Another objective of

the study is to study the current regulations and statistical methodologies for es-

tablishing shelf life of biopharmaceutical products. Different factors were included
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in the study including poolability of data, worst case lot and including fixed and

random effects for establishing and extension of shelf life. Different statistical mod-

els were built to establish the best suitable model for the data. A new method

was proposed for selecting the best model that fits the data based upon Akaikes

Information Criterion. The proposed method also included usage of appropriate

sided-ness of confidence intervals based upon the specifications. i,e; using a two-

sided confidence interval for a two-sided specification and one-sided upper or lower

confidence intervals for one-sided specification. Comparison of shelf life using ex-

isting guidance and proposed methodology was summarized in Chapter 4.

5.2 Future work

A practical optimization methodology for Penicillin manufacturing process

was developed in this work. The methodology was compared to and tested with

various other techniques. A natural extension of this work will be to implement

this for an actual biopharmaceutical manufacturing process and a comparison of

the results with those obtained from the simulations used in this work. The data

was used to build the models and predict the performance of the process after

manufacturing is completed. This methodology can be used for real-time monitor-

ing and predicting the process performance by comparing the current batch with

models built with historical data. Multiple statistical methods were compared to

establish the equivalence during method transfers and a new method was proposed

to control the risk of out of specification results. This can be further expanded

to incorporate the effects of accuracy and precision of the measurement systems

to determine the equivalence margin before initiating the transfer. Measurement

system Analysis like Gage R&R studies need to be performed to quantify accuracy

and precision and variance components to understand the variability of the ana-

lytical method. The proposed methodology of establishing shelf life is based upon
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the data collected in the literature and studied under normal operating conditions.

The study can be further expanded for accelerated storage conditions like expos-

ing the drug substance to heat, humidity to study the impact of environmental

conditions on shelf life.

Also, when random effects are considered, best linear unbiased predictors

(BLUPs) can be calculated and used for shelf life determination. BLUPs provide

more accurate predictions for the observed values that are outputs from random

processes. The methodology can be further expanded to combine drug substance

and drug product stability studies to come up with a overall shelf life /specifications

for the product.
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