
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2015 

Vulnerable Web Application Framework Vulnerable Web Application Framework 

Nicholas J. Giannini 
University of Rhode Island, ngiannini@my.uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Giannini, Nicholas J., "Vulnerable Web Application Framework" (2015). Open Access Master's Theses. 
Paper 629. 
https://digitalcommons.uri.edu/theses/629 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/629?utm_source=digitalcommons.uri.edu%2Ftheses%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


VULNERABLE WEB APPLICATION FRAMEWORK 

BY 

NICHOLAS J. GIANNINI 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

COMPUTER SCIENCE AND STATISTICS 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2015 



 

MASTER OF SCIENCE THESIS 
 

OF 
 

NICHOLAS GIANNINI 
 
 
 
 
 
 
 
 
 
 
 

APPROVED:  
 

Thesis Committee: 
 

Major Professor Victor Fay-Wolfe 
 
   Lisa DiPippo 
 
   Haibo He 
 
   

    
      Nasser H. Zawia 

   DEAN OF THE GRADUATE SCHOOL 
 
 
 
 
 
 
 

UNIVERSITY OF RHODE ISLAND 
2015 

 



 

 

ABSTRACT 

Utilizing intentionally vulnerable web applications to teach and practice cyber 

security principles and techniques provides a unique hands-on experience that is 

otherwise unobtainable without working in the real world.  Creating such applications 

that emulate those of actual businesses and organizations without exposing actual 

businesses to inadvertent security risks can be a daunting task.  To address these 

issues, this project has created Porous, an open source framework specifically for 

creating intentionally vulnerable web applications.  The implementation of Porous 

offers a simplified approach to building realistic vulnerable web applications that may 

be tailored to the needs of specific cyber challenges or classroom exercises. 

 

 

 

 

 



 

iii 
 

ACKNOWLEDGMENTS 

None of the work in this thesis would have been possible without the constant 

support of my family, friends, and colleagues.  I would like to especially thank Dr. 

Victor Fay-Wolfe for the opportunities he has provided me over the years as both an 

undergraduate and graduate student at the University of Rhode Island.  He has not 

only prompted my interest in the fields of digital forensics and cyber security but 

through his guidance and encouragement has inspired me both academically and 

personally. 

I would also like to thank the members of the Digital Forensics and Cyber 

Security Center and all those involved with the Department of Computer Science and 

Statistics.  Namely, I would to thank Dr. Lisa DiPippo who has also exhibited 

guidance and support throughout the entirety of my collegiate career.  In addition, I 

would like to thank Jacob Fonseca for never asking the easy the questions and for 

always challenging me to do better.  His advice and extensive knowledge has been an 

invaluable resource over the years. 

Most importantly, I would like to thank my parents who despite having to put up 

with me have always been there to steer me in the right direction or to provide the 

support I needed while pushing me to succeed. 

 

 

 



 

iv 
 

TABLE OF CONTENTS 
 

           
ABSTRACT .................................................................................................................. ii 

ACKNOWLEDGMENTS .......................................................................................... iii 

TABLE OF CONTENTS ............................................................................................ iv 

LIST OF TABLES ..................................................................................................... vii 

LIST OF FIGURES .................................................................................................. viii 

CHAPTER 1 ................................................................................................................. 1 

INTRODUCTION ........................................................................................................ 1 

1.1 Statement of the Problem ............................................................................... 1 

1.2 Justification for and Significance of the Study .............................................. 2 

1.3 Goals .............................................................................................................. 3 

1.4 Summary of Accomplishments ...................................................................... 3 

CHAPTER 2 ................................................................................................................. 4 

REVIEW OF LITERATURE ..................................................................................... 4 

2.1 Web Application Frameworks ....................................................................... 4 

2.1.1 Full-Stack Frameworks ............................................................................ 5 

2.1.2 Micro Frameworks ................................................................................... 6 

2.1.3 Monolithic Frameworks ........................................................................... 7 

2.2 Related Works ................................................................................................ 7 

2.2.1 Open Cyber Challenge Platform .............................................................. 7 

2.2.2 Open Web Application Security Project .................................................. 9 

2.2.2.1 OWASP Site Generator 9 

2.2.2.2 OWASP Top 10 10 

2.2.2.3 OWASP Testing Project 12 

2.2.3 Damn Vulnerable Web Application (DVWA) ....................................... 12 

2.3 Technologies Used ....................................................................................... 13 



 

v 
 

2.3.1 LAMP Stack ........................................................................................... 13 

2.4 Target Audiences ......................................................................................... 14 

2.4.1 Framework Developers .......................................................................... 14 

2.4.2 Application Developers .......................................................................... 14 

2.4.3 Application Users ................................................................................... 14 

CHAPTER 3 ............................................................................................................... 16 

METHODOLOGY ..................................................................................................... 16 

3.1 Framework Architecture .............................................................................. 16 

3.1.1 Framework Core..................................................................................... 18 

3.1.1.1 Dependency Injection Container 19 

3.1.1.2 Routing Layer 26 

3.1.2 Primary Components .............................................................................. 30 

3.1.2.1 Cookie Jar 31 

3.1.2.2 Session Manager 34 

3.1.2.3 Database Manager 36 

3.1.3 Auxiliary Components ........................................................................... 39 

3.1.3.1 Event Manager 39 

3.1.3.2 Logger 40 

3.1.3.3 Cryptography 41 

3.1.3.4 Validation 42 

3.1.3.5 Template Engine 42 

3.2 Testing Procedures ....................................................................................... 43 

3.2.1 Primary Component Vulnerability Tests ............................................... 43 

3.2.1.1 Cookie Jar Tests 45 

3.2.1.2 Session Manager Tests 46 

3.2.1.3 Database Manager Tests 49 



 

vi 
 

CHAPTER 4 ............................................................................................................... 50 

FINDINGS .................................................................................................................. 50 

4.1 Primary Component Vulnerability Results .................................................. 50 

4.1.1 Cookie Jar Results .................................................................................. 51 

4.1.1.1 Testing for Cookie Attributes (OTG-SESS-002) 51 

4.1.1.2 Testing for Information Leakage (Segment of OTG-SESS-001) 51 

4.1.1.3 Testing for Tamper Resistance (Segment of OTG-SESS-001) 52 

4.1.2 Session Manager Results ....................................................................... 54 

4.1.2.1 Testing for Cookie Attributes (OTG-SESS-002) 54 

4.1.2.2 Testing for Information Leakage (Segment of OTG-SESS-001) 54 

4.1.2.3 Testing for Tamper Resistance (Segment of OTG-SESS-001) 55 

4.1.2.4 Testing for Cross Site Request Forgery (OTG-SESS-005) 56 

4.1.2.5 Testing for Session Validity (Includes OTG-SESS-007) 57 

4.1.3 Database Manager Results ..................................................................... 57 

4.1.3.1 Testing for SQL Injection (OTG-INPVAL-005) 58 

DISCUSSION ............................................................................................................. 59 

5.1 Conclusions .................................................................................................. 59 

5.2 Future Work ................................................................................................. 63 

5.2.1 Further Evaluation .................................................................................. 64 

5.2.2 Additional Components and Implementations ....................................... 64 

5.2.3 Intrusion Detection System .................................................................... 64 

5.2.4 Command Line Interface........................................................................ 65 

5.3 Conclusion ................................................................................................... 65 

BIBLIOGRAPHY ...................................................................................................... 66 

 



 

vii 
 

LIST OF TABLES 
 

TABLE                 PAGE 

Table 1. Comparison of Dependency Injection Containers ......................................... 26 

Table 2. Summary of Primary Component Tests ......................................................... 44 

Table 3. Summary of Primary Component Tests Results ............................................ 50 

Table 4. Testing for Information Leakage Comparison ............................................... 52 

Table 5. Cookie Data before Modification .................................................................. 53 

Table 6. Cookie Data after Modification ..................................................................... 53 

Table 7. Comparison of Stored Session Data .............................................................. 55 

Table 8. OWASP Top 10 Vulnerabilities Exposed and Mitigated .............................. 61 

 



 

viii 
 

LIST OF FIGURES 
 

FIGURE                 PAGE 

Figure 1. Sample Architecture of a Full-Stack Framework ........................................... 5 

Figure 2. Sample Architecture of a Micro Framework .................................................. 6 

Figure 3. Sample Architecture of a Monolithic Framework .......................................... 7 

Figure 4. OCCP Network Diagram ................................................................................ 8 

Figure 5. Architecture of the Porous Framework......................................................... 18 

Figure 6. Managing Class Dependencies with IoC ...................................................... 22 

Figure 7. DI Container with DIP Principle Applied .................................................... 24 

Figure 8. Diagram of Components Registered to Container ........................................ 25 

Figure 9. Flow of a HTTP Transaction ........................................................................ 27 

Figure 10. Stack of Middlewares Decorating Application........................................... 29 

Figure 11. Routing Flow through Application ............................................................. 30 

Figure 12. Architecture of Cookie Jar Component ...................................................... 32 

Figure 13. Architecture of Session Manager Component ............................................ 35 

Figure 14. Subset of Fluent Query Builder State Machine .......................................... 38 

Figure 15. Architecture of Database Manager Component ......................................... 39 

Figure 16. Architecture of Cryptography Component ................................................. 41 



 

1 
 

CHAPTER 1 

 

INTRODUCTION 

 

In today’s era of digital information, web applications, which commonly act as 

publicly facing entities for many businesses and organizations, are often the target of 

malicious attacks by hackers who wish to steal customer data or pivot their way 

deeper into an organization’s internal network.  It is essential that education and 

training for industry professionals has intentionally vulnerable web applications for 

realistic training in how to secure those applications. 

1.1 Statement of the Problem 

There are some web applications available that are designed to be deliberately 

vulnerable for training purposes.  However, many of these vulnerable web applications 

are either outdated, not configurable, are of limited utility for realistic training, or 

consist of static content that limits them to a single time use in training.  Furthermore, 

most training web applications are created from scratch – a very time-consuming and 

difficult task with little to no re-use of the development effort shared amongst 

developers.  To solve this problem, this project implemented a web application 

framework called Porous that simplifies the process of developing configurable 

vulnerable web applications for training purposes by abstracting out the common 

structure and functionalities that are found in a typical web application.  By using 

Porous, application developers will be able to better focus on developing the aspects 



 

2 
 

of an individual web application that makes it unique rather than devoting effort to the 

basic structure of the vulnerable web application. 

1.2 Justification for and Significance of the Study 

According to the Website Security Statistics Report published by Whitehat 

Security [1], an organization that provides website risk management solutions, 

approximately 86% of all surveyed websites have at least one serious vulnerability, 

with most having far more.  Of the vulnerabilities found, only 61% were resolved and 

required an average of 193 days to resolve from the date of first customer notification.  

In addition, only 57% of surveyed organizations said they provide some form of 

software security training to their programmers.  These statistics illustrate the 

overwhelming amount of vulnerabilities that are present in today’s web applications as 

well as the lack of qualified security professionals working within organizations. 

There are two use cases for creating intentionally vulnerable web applications 

within the context of cyber security education.  The first use case, tutorials, require 

stand-alone web applications that reinforce individual lessons or allow students to 

practice a particular technique.  The second use case, for which the Porous framework 

was developed, is cyber challenges.  A cyber challenge is an interactive learning 

environment where students are given hands-on experience practicing cyber security 

skills without the legal or moral implications that are often associated with using such 

techniques in the real world.  The role of web applications within cyber challenges is 

that they simulate the web applications of realistic businesses and organizations.  

Since the individual needs of a business or organization vary drastically, it can be a 



 

3 
 

difficult and time consuming task to build custom web applications for each cyber 

challenge scenario. 

1.3 Goals 

The goal of this project is to create a web application framework that may be used 

to develop intentionally vulnerable web applications.  In order to accomplish this goal, 

the framework must: 

1. Simplify the development of vulnerable web applications 

2. Provide configurable security features 

3. Be evocative of current web application security concerns 

4. Be extensible 

1.4 Summary of Accomplishments 

The result of this project was the creation of the Porous web application 

framework that may be used to develop intentionally vulnerable web applications.  

The Porous framework met the goals specified above in Section 1.3 by implementing 

an extensible structure that allows for the configuration of security features within the 

components that are commonly found in web applications. 

 



 

4 
 

CHAPTER 2 

 

REVIEW OF LITERATURE 

 

This chapter serves to elaborate on material, both conceptual and technical, that 

has assisted in the development of the web application framework that corresponds to 

the goals of Section 1.3 by providing context, inspiration, and foundational 

information to this research.  The chapter will begin by first defining what exactly a 

web application framework is and how they assist in the development of web 

applications.  Next, it will discuss related works that have had either similar goals or 

are complementary to this project.  Afterwards, there is a discussion of the 

technologies used in the development of the web application framework for this 

project. And lastly, the target audiences that this framework is intended for are 

defined. 

2.1 Web Application Frameworks 

A web application framework is a specific type of software framework that is 

designed for easing the development of web applications and services.  Software 

frameworks are able to ease the development process by providing developers with a 

structured abstraction that contains interfaces to functionalities common to the types of 

applications the framework was built to develop.  In the case of a web application 

framework, the framework may provide interfaces to common web application 

functions such as routing, cookies, session management, and database management.  

The benefit of using such a framework is that code reusability is encouraged thereby 



 

5 
 

facilitating the rapid development of web applications by allowing the application 

developer to focus on the business logic of the application instead of the common 

components.  Web application frameworks and software frameworks in general, can 

be further broken down into Full-Stack, Micro, and Monolithic categories based on 

how influential they intend to be on the structure of the application and how much 

they intend to assist the developer.  I now describe each of those framework 

categories. 

2.1.1 Full-Stack Frameworks 

A full-stack framework is a framework that attempts to provide nearly 

everything that a developer could possibly need to build an application.  It likely 

includes components that may not be needed by the majority of applications, but by 

having them available makes it easier for new features to be integrated.  Examples of 

full-stack web application frameworks include Symfony (PHP) [2], Laravel (PHP) [3], 

Ruby on Rails (Ruby) [4], and Django (Python) [5]. 

 

Figure 1. Sample Architecture of a Full-Stack Framework 

 



 

6 
 

2.1.2 Micro Frameworks 

A micro framework is a framework that attempts to provide only the 

components that are absolutely necessary for a developer to build an application; or it 

may focus on providing the functionality of one particular area very efficiently.  Micro 

frameworks tend to be better-suited for smaller applications or for applications that are 

within the very specific purpose for which the framework was designed.  In the case of 

web application frameworks, a micro framework may be specifically designed for 

building the public application programming interfaces (APIs) for another service or 

application.  Micro frameworks often need to be extended with additional components 

in order to make them provide the functionalities required for the web application 

being developed.  Examples of micro web application frameworks includes Slim 

(PHP) [6], Silex (PHP) [7], Sinatra (Ruby) [8], and Flask (Python) [9]. 

 

Figure 2. Sample Architecture of a Micro Framework 

 

 



 

7 
 

2.1.3 Monolithic Frameworks 

A monolithic framework is a framework in which the components cannot be 

easily swapped out for different implementations or extended.  Both full-stack and 

micro frameworks can be monolithic, however it is a more common trait in smaller 

micro frameworks.  Slim [6], for example, was developed as a monolithic framework 

until more recently.  The main objective of Slim was to remain lightweight and fast, 

which was accomplished by having a highly optimized code base.  However, this 

came at the cost of having tightly coupled code that could not easily be extended or 

modified without affecting the rest of the framework. 

 

Figure 3. Sample Architecture of a Monolithic Framework 

 

2.2 Related Works 

2.2.1 Open Cyber Challenge Platform 

As mentioned in Section 1.2, one of the motivating factors for developing a web 

application framework is developing intentionally vulnerable web applications for use 

in cyber challenges. Incidentally, creating cyber challenges themselves is a difficult 

and time-consuming task due to the high level of technical ability required to create 



 

8 
 

and implement an individual scenario to be used as a challenge.  To help address this 

problem, researchers at the University of Rhode Island are actively developing the 

Open Cyber Challenge Platform (OCCP) [10], which is an open-source platform for 

building cyber challenges that aims to be extensible, modular, and reusable.  

Considering the similar goals of both projects, the project being completed for this 

these can be seen as a complementary asset to the OCCP.  As the OCCP aims to 

simplify the development of cyber challenges, the framework described in this thesis 

aims to simplify the development of web applications to be used within those 

challenges.  The figure below displays a sample network that the OCCP may generate 

for a scenario.  The web applications developed using the framework may be placed 

within a web server within such a network design. 

 

Figure 4. OCCP Network Diagram 

 



 

9 
 

2.2.2 Open Web Application Security Project 

The Open Web Application Security Project (OWASP) [11] is a community 

dedicated to the creation of tools, documentation, and technology relating to web 

application security.  For this reason, several of OWASP’s projects were reviewed 

during the completion of this thesis project with the three most significant: The 

OWASP Site Generator, the OWASP Top 10, and the OWASP testing project, 

described below. 

2.2.2.1 OWASP Site Generator 

The OWASP Site Generator [12] project was created and sponsored by 

Foundstone and SPI Dynamics during the OWASP Spring of Code in 2007.  The 

project had intentions of creating a tool that could create dynamic websites using 

predefined vulnerabilities and web architectural elements based on an XML 

configuration file.  The web applications generated by this tool were written in 

Microsoft’s .NET languages. Later efforts sought to expand to include other language 

options.  The project had similar goals of simplifying the development of web 

applications with configurable security features, however it fell short due to other 

design decisions.  First, the sites that it generated were based on predefined templates, 

which limited the customization of the websites being developed.  Second, the tool 

was created as a Windows desktop application and generated websites intended to run 

on Microsoft’ IIS web servers.  This introduced a dependency on the Windows 

operating system that could have severely limited the user base of the tool and limited 

the tool’s utility for use in cyber challenges by specifying a platform for deployment.  



 

10 
 

As of 2008 the project status had changed to inactive, although later efforts to revive 

the project occurred and failed in 2009. 

2.2.2.2 OWASP Top 10 

OWASP categorizes its projects as being in different stages of maturity with the 

most mature projects reaching flagship status, which indicates that the project is not 

only extremely mature but also has the direct support of OWASP as an organization to 

continue to maintain and develop.  Perhaps its most venerated flagship project is the 

OWASP Top 10 [13], which is a list of the top ten most statistically common web 

security concerns.  For each of these security concerns, the OWASP provides example 

vulnerabilities, attacks, reference materials, and suggestions on how to avoid such 

weaknesses.   I used this list as a reference for the types of vulnerabilities to include in 

Porous. 

The most recent list of security flaws at the time of this writing comes from the 

2013 OWASP Top 10, which includes: 

A1. Injection 

Any flaw that allows for untrusted data to be sent to an interpreter as part of a 

command or query, which allows for a malicious user to execute unintended 

commands or access data without authorization.  Example attacks that exploit 

these flaws include SQL injection, operating system command injection, and 

LDAP injection. 

 

 

 



 

11 
 

A2. Broken Authentication and Session Management  

Any flaw associated with the authentication of authorized users and the 

management of sessions.  Example attacks that exploit these flaws include 

password attacks, session fixation, and session hijacking. 

A3. Cross-Site Scripting (XSS) 

Any flaw that allows for data to be sent to a client web browser without 

proper validation or escaping, which allows an attack to execute malicious 

scripts. 

A4. Insecure Direct Object References 

Any flaw that exposes a reference to the internal implementation of an artifact 

or asset without proper access controls.  These flaws could allow an attacker 

to view and/or manipulate directories, files, keys, etc. 

A5. Security Misconfiguration 

Any flaw associated with having configuration settings in an application, 

database, server, or other entity that are insecure either by default or by a 

developer’s decision. 

A6. Sensitive Data Exposure 

Any flaw that exposes sensitive data such as customer information, financial 

data, session identifiers, etc. by not properly handling information or not 

encrypting it during rest or while in transit. 

A7. Missing Function Level Access Control 

Any flaw that allows non-privileges users to have access to functions that 

should only be available to authorized users. 



 

12 
 

A8. Cross-Site Request Forgery (CSRF) 

Any flaw that allows an attacker to trick authenticated users into performing 

unintended actions through the use of forged HTTP requests.  

A9. Using Components with Known Vulnerabilities 

Any flaw that results in the exploitation of an application caused by the use of 

vulnerable libraries, components, frameworks, or software.   

A10. Unvalidated Redirects and Forwards 

Any flaw that allows an attacker to take advantage of a redirect or forwarding 

feature in a web application to send a victim to a malicious site or to access 

unauthorized resources. 

2.2.2.3 OWASP Testing Project 

The OWASP Testing Project [14] is another flagship project that aims to 

provide guidelines for the testing of web applications.  The project claims to have 

developed a complete testing framework that can be used as a template for testing 

applications or to qualify the testing processes or others.  It includes testing 

methodologies for each stage of development, as well as recommended procedures for 

testing various parts of a web application.  I used tests from the OWASP Testing 

Project to test the components of Porous.  

2.2.3 Damn Vulnerable Web Application (DVWA) 

The Damn Vulnerable Web Application (DVWA) [15], developed by 

RandomStorm, is an open-source PHP/MySQL web application organized into 

modules associated with specific vulnerabilities, many of which correspond to those 



 

13 
 

described in the OWASP Top 10.  Each of these modules contains a low, medium, and 

high security example implementation that portrays the vulnerability.  I reviewed the 

modules of the DVWA when building the components of Porous.  

Unfortunately, when I worked with them, several of the modules in the DVWA 

had incorrect methods for securing against vulnerabilities [16].  In addition, some 

modules secured against entirely different vulnerabilities than they claimed.  For 

example, the supposed secure implementation of the Brute Force DVWA module still 

allows for brute force attacks.  Furthermore, the low and medium security 

implementations of it do not even portray a brute force attack but rather a SQL 

injection flaw.  Due to these aforementioned reasons, I disregarded the DVWA as a 

reliable source of information for this thesis project. 

2.3 Technologies Used 

2.3.1 LAMP Stack 

According to W3Techs [17], who conduct surveys based on the Alexa top one 

million websites [18], approximately 82% of website whose underlying technologies 

are known are written in PHP.  Additionally, 58.4% use Apache as the web server and 

52.2% use Linux as the operating system on which the server runs.  While no exact 

statistics are provided, MySQL is also claimed to be the most popular open-source 

relational database management system used to store web application data. 

The combination of these technologies make up what is known as the LAMP 

stack (Linux, Apache, MySQL, PHP), which, based on these statistics, is the most 

popular set of technologies used for the development and deployment of web 



 

14 
 

applications.  Consequently, I used these technologies as the basis for the development 

of Porous. 

2.4 Target Audiences 

Based on the goals of this project, three target audiences have been identified as 

potential users of the Porous framework: Framework Developers, Application 

Developers, and Application Users. 

2.4.1 Framework Developers 

Framework developers are users who may contribute to the development of the 

web application framework or its components by extending or modifying it.  In order 

to contribute to the framework and its components, framework developers must have 

advanced knowledge of object-oriented programming and have the necessary security 

knowledge to correctly implement components without introducing inadvertent 

vulnerabilities. 

2.4.2 Application Developers 

Application developers are users who develop web applications using the 

Porous framework.  In order to efficiently develop applications using Porous, 

application developers must have had experience developing web applications with 

other web application frameworks. 

2.4.3 Application Users 

Application users are users who interact with the web applications built using 

the framework.  These users may include students or professionals participating in a 



 

15 
 

cyber security course or a cyber challenge.  Depending on the course or challenge, 

application users may be asked to interact with an application in different manners by 

possibly exploiting or patching the application.  Subsequently, the expected 

knowledge of an application user is dependent on how they will be interacting with the 

application.



 

16 
 

CHAPTER 3 

 

METHODOLOGY 

 

This chapter consists of two sections.  The first section, framework architecture, 

delves into the design decisions and implementation details of the framework’s 

structure. It also introduces any concepts or patterns that were employed in its 

construction.  The second section, testing procedures, describes the experiments and 

any metrics, both qualitative and quantitative, which were used to measure how 

effectively the framework was able to satisfy the goals of this project as defined in 

Section 1.3. 

3.1 Framework Architecture 

The architecture of the framework can be divided into three conceptual areas: the 

core, primary components, and auxiliary components.  The core is responsible for 

bootstrapping, configuring, and running a web application.  It also provides the 

extensibility mechanisms necessary for integrating both the primary and auxiliary 

components.  On its own, the core is actually a fully functional micro framework 

comparable to the likes of Silex [7] or Slim [6].  Together with the primary and 

auxiliary components, it lies closer to being a full-stack framework.  I had to make the 

design decision whether to either build on top of one of these existing frameworks or 

to build an entirely new one.  When I was considering building on top of Slim, I 

discovered that it was too restrictive to meet the goals of the project.  Slim aims to be 

as small as possible and therefore did not offer the extensibility or features that were 



 

17 
 

necessary for Porous to meet the goal of section 1.3.  When considering Silex, which 

is built entirely of Symfony components, I decided that a curation of components from 

different members of the open-source community would offer greater flexibility.  

Details of which components I chose, and why, can be seen in Section 3.1.1.   

When designing the framework architecture, I made a distinction between primary 

components, which are directly essential for Porous to meet its goals, and auxiliary 

components, which are not essential for Porous to meet its goals.  I created a different 

implementation of each of the primary components in order to provide both a 

vulnerable and secure version.  These implementations may also include configuration 

options to fine tune their security features.  Conversely, I either developed auxiliary 

components or took them from the community to provide supporting features for the 

application developer, or to act as dependencies for the core or primary components. 

The following diagram displays the overall architecture of the Porous framework.  

The top section shows the architecture of the framework’s core.  The bottom section 

displays a few of the primary and auxiliary components that are included with the 

framework.  Lastly, the middle section shows how these primary and auxiliary 

components connect to the framework’s core.  The subsections that follow will look 

further into the implementation details of the framework’s core, the primary 

components, and the auxiliary components. 

 
 



 

18 
 

Figure 5. Architecture of the Porous Framework 

 

3.1.1 Framework Core 

As previously mentioned, the framework core provides the functionality for 

bootstrapping, configuring, and running a web application.  The core is implemented 

as a class called Application, which is the main entry point into any web application 

built using the framework.  An application developer builds applications by calling 

methods from this class.  The Application class contains properties and methods for 

interacting with the rest of the framework’s components, as well as additional helper 

methods for the application developer.  The core’s subcomponents, which were taken 

from the open-source community, include a dependency injection container and a 



 

19 
 

routing layer, which are important aspects in supporting the Porous framework’s 

extensibility 

3.1.1.1 Dependency Injection Container 

Together, the Application class and the dependency injection container act as 

the cornerstone of the framework’s core by being the connective “glue” that binds the 

primary components, the auxiliary components, and any configuration settings 

together in the framework.  The Dependency Injection Container allows for new 

features to be added and for existing components to be swapped out for different 

implementations.  This allows application developers to choose between different 

vulnerable and secure implementations of components at their own discretion, and is 

vital to meeting the goals of the thesis by enabling the framework to be extensible and 

modular. 

In order to fully comprehend the dependency injection container’s role in the 

framework, it is first necessary to understand the related object-oriented design 

principles that it was built to employ.  First is the concept of inversion of control (IoC) 

[19], which is the delegation of control over the program flow to some entity.  A basic 

example of this concept is event driven programming, where instead of being executed 

sequentially, certain instructions are executed upon the arrival of different events.  In 

the case of the framework, the concept of inversion of control is implemented through 

dependency injection, which is a design pattern [19] where the responsibility of 

locating or constructing dependencies is separate from the code that uses those 

dependencies.  The dependency injection pattern can be implemented by either 



 

20 
 

inverting control to a service locator or to a dependency injection container; the latter 

of which is done in the framework. 

Both service locators and dependency injection containers act as a central 

repository for dependency definitions and instructions for their construction.  Service 

locators can in certain circumstances be considered an anti-pattern [20] however, since 

every component that uses the locator is aware of its existence.  Therefore, the locator 

itself is a dependency that must be included in these components.  Conversely, with a 

dependency injection container the components are unaware of the container’s 

existence.  Instead, the application uses reflection, which is the ability for a program to 

inspect itself at runtime, to determine what dependencies need to be constructed and 

injected. 

An example of how these patterns work can be seen in the diagrams of Figure 

6 below.  Diagram A: Class Dependency Map shows the relationship of the classes in 

the secure implementation of the session manager component in which the 

SessionManager class depends on a SessionHandler, which depends on an Encrypter.  

Diagram B: Service Locator shows how the injection of these dependencies would 

work when using the service locator pattern.  The session manager would first ask the 

service locator to locate the session handler.  When the session handler is found it asks 

the locator to locate the encrypter.  Diagram C: Dependency Injection Container 

shows how the injection of these dependencies would work when using the 

dependency injection container pattern.  Here, the application would ask the container 

to construct a session manager.  Using reflection, the container would recognize that 

the session manager requires a session handler parameter to be constructed.  The 



 

21 
 

container then checks the service definitions it stores and constructs a session handler.  

This process is repeated when the container recognizes that the handler requires an 

encrypter. 



 

22 
 

Figure 6. Managing Class Dependencies with IoC 

 



 

23 
 

To further augment the benefits of using a dependency injection container the 

dependency inversion principle is also employed.  The dependency inversion 

principle, which is one of the five basic object-oriented programming and design 

principles as identified by Robert C. Martin [21], states that both high-level and low-

level components should rely on abstractions, rather than concrete implementations.  

The significance of this is that by having components depend on an interface or 

abstract class rather than a specific implementation, the component can be constructed 

using any other component that adheres to the interface or extends the abstract class.  

The diagram in Figure 7 portrays the dependency injection principle being 

employed within the dependency injection container.  This example is identical to that 

of Diagram C in Figure 6 with the exception that the SessionHandler and Encrypter 

classes have been abstracted to interfaces. 

 



 

24 
 

Figure 7. DI Container with DIP Principle Applied 

 

 

Figure 8 shows the relationship between sample component implementations 

and the provider classes that define their construction details, which are then registered 

in the container for use in the framework. 



 

25 
 

Figure 8. Diagram of Components Registered to Container 

 

When determining which dependency injection container to use in the 

framework, the following contenders from the open-source community were 

considered: 

• Illuminate Container [22]: Created by Taylor Otwell and used in the 

Laravel and Lumen [23] frameworks 

• Pimple  [24]: Created by Fabien Potencier of SensioLabs and used in the 

Silex framework 

• Container  [25]: Created by Phil Bennett and released through The League 

of Extraordinary Packages (The PHP League) 

To decide between these different containers, they were compared for: the 

features they provided, the completeness of their documentation, the state of their 

development, the complexity of their use, and overall size of the code base including 

any dependencies.  This comparison is shown in Table 1.  From it, Phil Bennett’s 

Container was chosen. 



 

26 
 

Table 1. Comparison of Dependency Injection Containers 

Package Features Documentation Development Complexity  Size 

Container      

Illuminate Container      

Pimple      

 

3.1.1.2 Routing Layer 

Web applications operate through the Hypertext Transfer Protocol (HTTP) 

[26], which expresses the conventions for a transaction of messages between a client 

and server using a stateless request-response pattern.  More specifically, the procedure 

for a HTTP transaction is that a user interacts with a client, typically a web browser, to 

send a request message containing a Uniform Resource Identifier (URI) that identifies 

both the server being contacted and the resource being requested.  The contacted 

server then attempts to locate the resource and returns an appropriate response 

message to the client that is typically a HTML document rendered to the user. This 

interaction is shown in Figure 9. 

 



 

27 
 

Figure 9. Flow of a HTTP Transaction 

 

In the traditional architecture of a web application, requests to resources within 

the application are handled by individual script files that handle any tasks and return a 

response.  The Porous framework uses an alternative approach called the front-

controller pattern, where all requests are handled at a centralized point and the 

resource itself is either programmatically generated or delegated to by the central 

application.  The role of the routing layer is to handle the request-response process 

from the entry point to the web application.   

The routing layer was created using a combination of open-course components.  

The backbone of this layer consists of the Symfony HttpFoundation [27] component 

and the HttpKernelInterface from the Symfony HttpKernel component [28].  These 

components, amongst others, are part of a set of decoupled libraries used in the 

Symfony framework.  These specific components are also used in other popular 



 

28 
 

frameworks and projects including Silex, Laravel, Lumen, Drupal [29], and phpBB 

[30]. 

In native PHP, data from HTTP request and response messages are stored 

across several of the language’s built-in superglobals, which are predefined variables 

that are accessible everywhere in an application, including in all scopes.  These 

superglobals however, do not conform to the HTTP specification for HTTP request 

and response messages and therefore require developers to address any gaps on their 

own.  As a result, the PHP Framework Interoperability Group (PHP-FIG) [31], which 

is a group of representatives from various projects that creates and votes on standards 

that are used to promote the reusability and sharing of code between each other’s 

projects, has recently voted to accept the PHP Standard Recommendation 7 (PSR-7) 

[32]. PSR-7 defines a set of HTTP message interfaces, therefore providing a common, 

reusable layer for interacting with the HTTP protocol in an object-oriented manner.  

The HttpFoundation component was largely influential in the creation of this standard 

and provides implementations of these interfaces. Furthermore, by using the 

HttpKernelInterface the framework is obligated to handle HTTP transactions by 

accepting a request object and returning a response object. 

The additional impact of using this standardized layer is that project-agnostic 

middleware for hooking into the request-response process can be used by any 

framework or project that implements these components.  Specifically, any project that 

uses the HttpKernelInterface can integrate middleware using the decorator pattern.  

Igor Weidler’s Stack library [33] has been included with the routing layer and 

simplifies the composition of HttpKernelInterface middleware by modeling them as 



 

29 
 

layers being pushed onto a stack.  An example of this can be seen in Figure 10.  The 

request object enters the stack and is processed by each middleware that decorates the 

application. The response object is then processed in a similar fashion. 

 

Figure 10. Stack of Middlewares Decorating Application 

portrays  

 

The actual handling of the request and response objects created using the 

HttpFoundation component is performed by Phil Bennett’s Route package [34].  The 

Route package allows for the definition of resource controllers by specifying a HTTP 

request method and a Uniform Resource Locator (URL).  The package’s router 

inspects incoming requests to obtain this information and passes it to the dispatcher, 

which then interprets this information to locate and dispatch the controller that then 

builds and returns a response.  As opposed to Figure 9, which shows the flow of HTTP 

messages through a basic HTTP transaction, Figure 11 shows the flow of HTTP 

messages as they traverse the routing layer of the application. 

 



 

30 
 

Figure 11. Routing Flow through Application 

 

 

3.1.2 Primary Components 

The primary components of the framework are those that are necessary to provide the 

dynamic logic of a web application.  These components include a cookie jar, a session 

manager, and a database manager. 

This section will examine both the overall architecture and implementation 

details of each of these components.  Since the goals of the Porous framework 

included being evocative of current vulnerabilities and to provide configurable 

security features, there are two implementations of each component: a base 

implementation with no security features and is therefore vulnerable; and a secure 

implementation with configurable security features to fine tune how secure the 

component is.  When discussing the vulnerabilities exposed or mitigated by these 

components, the associated category from the OWASP Top 10 is referenced in 

parenthesis by its list identifier (A1 – A10). 



 

31 
 

3.1.2.1 Cookie Jar 

The cookie jar component deals with the creation and management of HTTP 

cookies.  HTTP cookies are small pieces of data (limited to 4096 bytes) that are sent in 

the headers of a HTTP response message to be stored as a text file in a client web 

browser.  They are also sent back to the server on each request in the headers of a 

request message.  The data stored in a cookie may vary based on the individual use 

cases of the web application.  Most commonly, cookies are used to store 

personalization settings, tracking information from advertisers, remember-me tokens 

for logging a user back in, and session identifiers, which are used to authenticate users 

of the web application.  Other sensitive information may be stored in a cookie at the 

discretion of the web application developer.  For these reasons, cookies can often be 

the target of malicious users. 

The cookie jar component is the simplest of the three primary components.  It 

is implemented as an abstract class that defines methods for managing instances of the 

Symfony Cookie class, which is part of the HttpFoundation component.  The 

vulnerable and secure implementations of the cookie jar extend this abstract class and 

are required to implement methods for creating cookies and reading cookie data, as 

shown in Figure 12. 

 



 

32 
 

Figure 12. Architecture of Cookie Jar Component 

 

 

A cookie consists of a name, a value, and a number of attributes that are given 

default values if not specified.  It should be noted that cookie attributes are not sent 

back to the server but are only used by the browser to determine if the cookie should 

be deleted and if the cookie name and value should be sent to the server.  The areas of 

interest regarding the security of cookies includes the value and the attributes.  The 

value of the cookie is the actual data being stored.  The attributes include the 

following: 

• expires – The time the cookie expires set as a Unix timestamp.  If omitted 

or set to zero, the cookie will expire when the client browser closes. 

• domain – The domain or subdomain the cookie is available to. Defaults to 

the domain and all of its subdomains. 

• path – The path on the server the cookie is available to. Defaults to ‘/’, 

which indicates that the cookie will be available within the entire domain. 



 

33 
 

• httponly – Whether or not the cookie is accessible by client-side scripting 

languages such as JavaScript.  Defaults to true. 

• secure – Whether or not the cookie should only be transmitted over a 

secure HTTPS connection.  Defaults to false. 

 

The vulnerable cookie jar implementation creates cookies whose values are 

stored in a plaintext format, which is human readable.  It also leaves all of the 

attributes with their default settings. 

The secure cookie jar implementation is slightly more complex in that it has 

configuration settings to optionally encrypt and optionally sign a cookie’s value using 

the Cryptography auxiliary component described in Section 3.1.3.3.  Encrypting the 

cookie’s value obfuscates its data into ciphertext that is no longer human readable.  In 

order to read the cookie’s value it would first need to be decrypted back to plaintext 

using the same cipher and key used to encrypt it.  Encrypting the cookie’s value 

mitigates possible attacks due to sensitive data exposure (A6).  Signing the cookie’s 

value creates a unique digital signature of the data.  Any change to the cookie’s data 

would result in a different digital signature.  By appending this signature to the cookie 

value the cookie jar component can check if a cookie’s data has been altered by 

unauthorized sources.  This mechanism mitigates cross-site scripting (XSS) (A3) 

attacks in which a malicious user would store JavaScript to be executed in the browser 

inside of the cookie.  Lastly, the secure implementation enables the httponly attribute 

by default, which also mitigates XSS (A3) attacks by preventing scripting languages 

from accessing the cookie. 



 

34 
 

3.1.2.2 Session Manager 

HTTP is a stateless protocol, meaning that data is not preserved when making 

subsequent requests to a web application.  In order to maintain state, sessions are 

employed, which store an identifier cookie on the client side that refers to the actual 

session data stored on the server side.  The session manager component is therefore 

responsible for supervising how both the session identifiers and session data are 

stored.  The data stored in sessions is typically used to authenticate users within a web 

application.  The security of session data is therefore imperative as authenticated users 

may have access to sensitive information or may be given the authorization to perform 

additional functions not intended for unauthorized users.  

The session manager has two parts, the manager itself and the session handlers.  

The manager acts as a wrapper around the functions PHP provides for working with 

sessions, and also provides additional helper methods that allow the application 

developer to add additional security mechanisms.  The manager is implemented as an 

abstract class that is extended by the vulnerable and secure manager implementations.  

The vulnerable implementation simply calls the built-in PHP functions, while the 

secure implementation adds additional logic that is considered to be best practices 

when working with these functions.  For instance, when starting a session on a new 

request, the secure implementation can optionally regenerate the session identifier, 

which can help prevent session fixation attacks since the old identifier is no longer tied 

to the session data.  Additionally, both implementations include methods for the 

application developer to optionally expire a session after a period of idleness, bind a 

session to the IP address and/or user agent of a client, and generate a cross-site request 



 

35 
 

forgery (CSRF) token.  The diagram in Figure 13 shows the architecture of the session 

manager component.  It should be noted that additional abstract session handlers exist, 

however only the AbstractFileSessionHandler is shown for simplicity.  Additional 

information regarding these session handlers is provided in the text that follows. 

 

Figure 13. Architecture of Session Manager Component 

 

 

 The actual storage of session data and construction of session identifiers is 

controlled by PHP’s session handlers, whose methods are kept internal and are not 

exposed to developers.  The functions PHP provides for developers call these internal 

methods to perform their prescribed tasks.  As of PHP 5.4.0, the 

SessionHandlerInterface was introduced, which allows developers to create custom 

session handlers by overriding these internal methods.  The session manager is 

constructed by first passing in an implementation of the SessionHandlerInterface.  

These custom handlers allow developers to control where and how the data is stored 

and how the session identifier cookie is created.  The Porous framework provides four 



 

36 
 

custom session handlers. These include both a vulnerable and secure implementation 

of a file-based handler, and a vulnerable and secure implementation of a database-

based handler.  The secure implementations of the file and database handlers can be 

optionally configured to encrypt the session data and can optionally encrypt, sign, and 

set attributes to the session identifier cookie similarly to what was discussed in the 

previous section.  Additionally, the storage path of file-based sessions can be set. 

The security mechanisms described in this section can help mitigate 

vulnerabilities of sensitive data exposure (A6), flaws due to broken authentication and 

session management (A2), and cross-site request forgery attacks (A8). 

3.1.2.3 Database Manager 

As explained by Anthony Ferrara, a Developer Advocate at Google, a common 

model for web applications is to present them as a union of n-tiers [35] that are 

responsible for conceptually different processes.  Almost all web applications utilize at 

least two tiers that enable their dynamic nature.  The first tier is the application server 

that controls the logical operations of the web application.  The second tier is the 

database that is used to store the actual data used by these logical operations.  The 

database manager component acts as an abstraction layer for communication between 

the application logic and the data stored in the database. 

The implementation of the database manager consists of three subcomponents: 

the database connector, the query builder, and the compiler.  The database connector 

employs the factory pattern to create data source names (DSN), which are formatted 

strings that describe a connection to a data source.  The connector passes this DSN to a 

PHP Data Object (PDO) to create a database connection.  PDO supports drivers for a 



 

37 
 

number of different database types; however the factory only supports creating DSNs 

for MySQL, PostgreSQL, and SQLite at this time. 

The query builder is the main subcomponent with which application 

developers interact.  It is implemented as a fluent interface in which methods are 

chained together to build an object whose properties represent the different clauses of 

a structured query language (SQL) statement.  The utilization of a fluent interface 

gives developers a readable API for building queries.  The query builder is also 

responsible for passing compiled queries to the database connection to be executed.  

The query builder is also implemented as an abstract class whose subclasses are 

responsible for determining how the query is to be executed.  The vulnerable 

implementation uses the PDO’s query method, which simply takes a raw SQL 

statement and executes it on the database server.  The secure implementation uses 

PDO’s prepare and execute methods for creating prepared statements and then binding 

the values of variables to these statements that are then executed.  A prepared 

statement is analogous to a template that is precompiled in the database driver, and 

therefore cannot be modified when variables are passed into it.  As a result, prepared 

statements are immune to SQL injection vulnerabilities (A1), which can cause 

sensitive data exposure (A6) by allowing malicious users to execute statements that 

may read or modify data in the database. 

Below, Figure 14 presents a subset of the state machine for the fluent query 

builder.  Each state represents a method that is chained onto the requisite methods.  

Each query begins by specifying the table you are working with.  There are then 

numerous methods that may be chained together to specify the data you are working 



 

38 
 

with.  A query is completed by calling a method that indicates what is to be done with 

the data. 

 

Figure 14. Subset of Fluent Query Builder State Machine 

 

 

The last subcomponent is the compiler, which takes the properties of a query 

object and translates them into a SQL statement.  The compiler consists of an interface 

that describes the methods needed to generate different types of SQL queries.  The 

vulnerable and secure implementations implement these methods to return raw SQL 

statements and prepared statements with bound parameters, respectively.   

The overall architecture of the database manager component can be seen in 

Figure 15, which also shows the relationships between the database manager’s 

subcomponents.  To recap, the ConnectionFactory creates an implementation of an 

AbstractConnector, which specifies a data source to be used when creating a PDO 

connection.  Query objects are then generated using a fluent interface from an 

implementation of the AbstractQueyBuilder.  These objects are then compiled to SQL 

statements by an implementation of the AbstractCompiler and executed.  



 

39 
 

Figure 15. Architecture of Database Manager Component 

 

3.1.3 Auxiliary Components 

The last part of the framework’s architecture is the addition of auxiliary 

components that act as either dependencies for other components in the framework or 

provide supplementary functionality for application developers to use. These auxiliary 

components include the Event Manager, Logger, Cryptography, Validation, and 

Template Engine. 

3.1.3.1 Event Manager 

The event manager component allows application developers to hook into the 

web application by using the Publish-subscribe design pattern for event-driven 

programming.  By default, the Porous framework has event listeners registered to 

listen for events that occur during the request-response cycle - including when a 



 

40 
 

request is received, a response is created, and when a response is sent back to the 

client.  The event manager may be used to automate logging when events occur, or to 

support the business needs of more complex applications. 

The event manager used in the Porous framework is the open-source package 

aptly called Event, which was developed by Frank de Jonge [36].  Other event 

managers considered for inclusion in the framework included Symfony’s Event 

Dispatcher [37] and Sabre’s Event Emitter [38].  Symfony’s Event Dispatcher is by 

far the most popular solution as it is used by the Symfony framework.  However, it 

introduces several dependencies that would substantially increase the overall size of 

the Porous framework.  Comparatively, neither Event nor Sabre’s Event Emitter 

require any additional dependencies.  I chose Event over Event Emitter due to its more 

exhaustive documentation and due to having more than double the install base 

(~81,000 installations vs ~39,000 at the time of this writing). 

3.1.3.2 Logger 

The logger component was included to allow developers to log different events 

that occur within a web application.  Specific use cases may include to record error 

messages, track data, or to provide and audit trail for different actions.  The log files 

generated by a web application could be used to support application users participating 

in a cyber challenge or to help provide additional information for cyber challenge 

moderators. 

The logging package chosen for inclusion in the framework is Monolog [39], 

which was developed by Jordi Boggiano.  Monolog is the most popular logging library 

available in PHP. 



 

41 
 

3.1.3.3 Cryptography 

The cryptography component is the only auxiliary component that was 

developed rather than taken from the open-source community.  This component is a 

dependency for the secure implementations of both the cookie jar and session manager 

components.  The component includes interfaces for encryption and hashing methods 

as well as an implementation of each interface, as shown in Figure 16. 

 

Figure 16. Architecture of Cryptography Component 

 

 

The included Encrypt class acts as a wrapper around PHP’s MCrypt extension 

[40] that can be configured to perform the different types of encryption supported by 

MCrypt.  By default, the Encrypt class is configured to perform encryption using the 

Rijndael algorithm [41], which is used by the Advanced Encryption Standard (AES) 

[42] selected by the U.S. National Institute of Standards and Technology (NIST). 

The included Hash class acts as a wrapper around PHP’s hash, hash_hmac, 

and password_hash functions and includes helper methods for comparing hash values.  



 

42 
 

The hash function creates a digital signature of data, the hash_hmac function creates a 

keyed-hash message authentication code (HMAC), which can be used to sign data, 

and the password_hash function is used specifically for hashing passwords using the 

bcrypt algorithm, which is based on the Blowfish cipher [43].  By default, the Hash 

class is configured to use the SHA-256 algorithm [44] for both the hash and 

hash_hmac functions.  While the password_hash function uses bcrypt, the Hash class 

can override the method to use a less secure hashing algorithm such as MD5 in order 

to introduce vulnerabilities for applications built using this framework. 

3.1.3.4 Validation 

The implementations of the primary components are able to introduce and 

mitigate a wide range of vulnerabilities.  However, they do not support any form of 

data validation, which can be imperative when properly securing a web application.  

Since the validation of data is reliant on the context and type of data being validated, it 

is left to the application developer to properly perform.  To secure a web application it 

is expected that all user input is filtered when output.  The validation library I chose 

for inclusion in the Porous framework is Respect’s Validation developed by Henrique 

Moody [45].  According to Chris Cornutt, PHP security expert and member of 

Hewlett-Packard’s Global Cyber Securtiy Group, Respect’s Validation library has 

become one of the de-facto standards for doing data validation in PHP [46]. 

3.1.3.5 Template Engine 

A template engine was included in the framework to assist application 

developers in creating the HTML documents for their web applications.  Three 



 

43 
 

different template libraries were considered for the framework including SensioLab’s 

Twig [47], Illuminate’s Blade [48], and the PHP League’s Plates [49].  Both Twig and 

Blade are compiled templates, while Plates is a native template engine that was 

inspired by Twig. When considering these options, size was a major determining 

factor in choosing which engine to include. With its dependencies Illuminate’s Blade 

is ~3 MB in size, Twig ~1 MB, and Plates only ~40 KB.  Ultimately, I chose Plates for 

the Porous framework due to its size and minimal learning curve.  

3.2 Testing Procedures 

The previous section described the methodologies used to implement the Porous 

web application framework.  This section will identify the experiments that were 

conducted and how they were used to evaluate the effectiveness of this solution in 

meeting the goals defined in Section 1.3. 

3.2.1 Primary Component Vulnerability Tests 

The first set of experiments conducted were used to assess the presence of 

vulnerabilities in the framework’s primary components.  Each of these experiments, 

unless otherwise noted, were conducted twice: once for the vulnerable 

implementation, and once for the secure implementation with its security features 

configured.  In order to test for vulnerabilities in these components, tests directly from 

the OWASP Testing Guide (OTG) [14] were used when applicable.  These tests are 

referenced by their identifier in the form of OTG-CATEGORY-###.  It should be 

noted that in many cases only portions of an OTG test were completed since a 

considerable amount of them rely on an application’s business logic rather than a 



 

44 
 

component’s implementation.  In cases where no OTG test was available to assess a 

vulnerability, additional procedures were established by considering information from 

the OWASP Top 10 or through general understanding of security principles and the 

underlying technologies. 

A summary of these tests can be seen in the table below: 

 

Table 2. Summary of Primary Component Tests 

Cookie Jar Tests 
Test Description 

Testing for Cookies Attributes (OTG-SESS-002) Tests the appropriate setting of 
cookie attributes. 

Testing for Information Leakage (Segment of 
OTG-SESS-001) 

Tests the human readability of 
cookie data. 

Testing for Tamper Resistance (Segment of 
OTG-SESS-001 

Tests for the ability to modify 
cookie data.  

Session Manager Tests 
Test Description 

Testing for Cookies Attributes (OTG-SESS-002) Tests the appropriate setting of 
session cookie attributes. 

Testing for Information Leakage (Segment of 
OTG-SESS-001) 

Tests the human readability of the 
session identifier and stored 
session data. 

Testing for Tamper Resistance (Segment of 
OTG-SESS-001 

Tests for the ability to modify 
session cookie data.  

Testing for Session Fixation (Segment of OTG-
SESS-003) 

Tests the regeneration of session 
identifiers. 

Testing for Cross Site Request Forgery (OTG-
SESS-005) 

Tests for possibility of CSRF 
attacks. 

Testing for Session Validity (OTG-SESS-007) Tests the ability to verify a 
session’s authenticity. 

Database Manager Tests 
Test Description 

Testing for SQL Injection (OTG-INPVAL-005) Tests the possibility of SQL 
injection. 



 

45 
 

3.2.1.1 Cookie Jar Tests 

To test for vulnerabilities in the different implementations of the cookie jar 

component the following experiments were performed: 

3.2.1.1.1 Testing for Cookie Attributes (OTG-SESS-002) 

The purpose of this experiment was to verify that appropriate default settings 

for cookie attributes were applied to cookies generated by the cookie jar component.  

More specifically, this experiment tested for the enabling of the httponly attribute, 

which when enabled, prevents access to cookies from client-side scripting languages 

such as JavaScript.  The omission of this attribute introduces a vulnerability to cross-

site scripting (XSS) attacks. 

It should be noted that the referenced test OTG-SESS-02 also recommends 

testing the secure, domain, path, and expires attributes.  However, the setting of these 

attributes is dependent on the context of the cookie within the application, and is 

therefore left to the application developer to implement correctly.  Therefore, rather 

than testing for an appropriate default setting, I tested the ability to set these attributes 

instead. 

To perform this experiment, a web application was created that generated a 

cookie.  The attributes and their values were then inspected by observing the HTTP 

response headers sent by the web application using the OWASP Zed Attack Proxy 

(ZAP) [50], an intercepting proxy and web application penetration testing tool. 

3.2.1.1.2 Testing for Information Leakage (Segment of OTG-SESS-001) 



 

46 
 

The purpose of this experiment was to check for the possibility of information 

leakage by storing the cookie’s data in plaintext, a human readable format.  The 

storing of data in plaintext introduces a vulnerability to sensitive data exposure 

through network eavesdropping or local machine access. 

To perform this experiment a web application was created that generated a 

cookie with a name of “foo” and a value of “bar”.  Using ZAP, the HTTP response 

headers were inspected to check the readability of the cookie’s value. 

3.2.1.1.3 Testing for Tamper Resistance (Segment of OTG-SESS-001) 

This purpose of this experiment was to test a cookie’s resistance to malicious 

attempts of modification.  A lack of resistance to such modification introduces a 

vulnerability to an exploit known as cookie tampering (also known as cookie 

poisoning), which may be used to perform a variety of attacks. 

To perform this experiment, a web application was created that generated a 

cookie named “foo” with a value of “bar”.  The web application then rendered the 

value of the cookie by printing it in the client web browser, Google Chrome.  The 

value of the cookie was then modified using the Google Chrome extension 

EditThisCookie.  Once modified, the resource that rendered the cookie’s value was 

refreshed and the value printed in the browser was inspected. 

3.2.1.2 Session Manager Tests 

The tests in this section were performed to test for vulnerabilities in the session 

manager component and its session handlers.  Additionally, tests were performed to 



 

47 
 

verify that the helper methods provided for application developers were functioning 

properly. 

3.2.1.2.1 Testing for Cookie Attributes (OTG-SESS-002) 

The purpose and procedure of this experiment is identical to that of experiment 

3.2.1.1.1, but within the context of a session cookie, which is handled independently 

of the cookie component.  In addition to the httponly attribute, the configuration of the 

secure attribute was tested. 

3.2.1.2.2 Testing for Information Leakage (Segment of OTG-SESS-001) 

The purpose and procedure of this experiment is identical to that of experiment 

3.2.1.1.2, but within the context of a session cookie.  In addition, the possibility of 

information leakage of session data stored on the server was tested by its readability as 

plaintext.  Depending on the handler, the data was inspected either in the session files 

or the database table in which sessions were stored. 

3.2.1.2.3 Testing for Tamper Resistance (Segment of OTG-SESS-001) 

The purpose and procedure of this experiment are identical to that of 

experiment of 3.2.1.1.3, but within the context of a session cookie. 

3.2.1.2.4 Testing for Session Fixation (Segment of OTG-SESS-003) 

The purpose of this experiment was to test if sessions are vulnerable to fixation 

attacks.  A session fixation attack occurs when an attacker forces a session identifier 

for a web application upon a victim. When the victim authenticates themselves with 

the web application, the same session identifier is used.  Since the attacker knows 



 

48 
 

what the identifier is, the attacker is able to hijack the session by using the now 

authenticated identifier. 

To perform this experiment, a web application was created that requires a user 

to authenticate themselves using a predetermined set of credentials to access an 

administrative area.  Firefox was then used to access the application and start a 

session.  The session cookie was then copied into Google Chrome.  The application 

was then logged into from Chrome using the predefined credentials.  It was then 

checked if the administrative area could be accessed through Firefox. 

3.2.1.2.5 Testing for Cross Site Request Forgery (OTG-SESS-005) 

The purpose of this experiment was to test for the possibility of cross site 

request forgery (CSRF) attacks by verifying a web application’s trust in requests from 

users that are made to it.  Specifically, this experiment tests the Session Manager’s 

methods for generating and verifying a CSRF token that is stored in a session’s data. 

To perform this experiment a web application was created that allows 

authenticated users to delete a database entry by submitting a form.  After logging into 

the application a second web application was accessed that contained a hidden form 

that forges a request to the first application.  It was then checked if the first web 

application honored the request and deleted the database entry. 

3.2.1.2.6 Testing for Session Validity (Includes OTG-SESS-007) 

The purpose of this experiment was two-fold: to test the session manager’s 

ability to identify a user based on their user-agent and/or IP address and to test the 



 

49 
 

session manager’s ability to invalidate a session after a defined period of inactivity.  

This functionality provides a rudimentary defense against session hijacking attacks. 

To perform this experiment, a web application was created that starts a session.  

Using OWASP ZAP, HTTP requests were then created that contained headers with 

user-agents and IP addresses that were different than the ones that started the session.  

It was then checked if the web application invalidated the session due to these 

changes.  Additionally, the timeout functionality was tested for correctness by setting 

a predefined idle time and checking for a timeout after the prescribed amount of time. 

3.2.1.3 Database Manager Tests 

To test for vulnerabilities in the different implementations of the database 

manager component the following experiments were performed: 

3.2.1.3.1 Testing for SQL Injection (OTG-INPVAL-005) 

The purpose of this experiment was to determine if the queries compiled by the 

database manager component were vulnerable to SQL injection attacks, which could 

allow malicious users to read or modify the contents of a database potentially exposing 

sensitive data or causing harm to an organization. 

To perform this experiment, a web application was created with the 

functionalities to create, read, update, and delete data from a database containing 

dummy data.  Each of these operations were tested using SQLMap [49], an open-

source penetration testing tool that automates the detection and exploitation of SQL 

injection flaws. 



 

50 
 

CHAPTER 4 

 

FINDINGS 

 

This chapter presents the results that were gathered by performing the experiments 

described in Section 3.2. 

4.1 Primary Component Vulnerability Results 

This set of experiments set out to assess the presence of vulnerabilities in the 

proposed vulnerable and secure implementations of each of the primary components.  

A summary of these results is shown in the table below followed by individual results 

for each of these experiments. 

 

Table 3. Summary of Primary Component Tests Results 

Cookie Jar Tests 
Test Pass / Fail 

Testing for Cookies Attributes (OTG-SESS-002) Pass 
Testing for Information Leakage (Segment of OTG-SESS-001) Pass 
Testing for Tamper Resistance (Segment of OTG-SESS-001 Pass 

Session Manager Tests 
Test Description 

Testing for Cookies Attributes (OTG-SESS-002) Pass 
Testing for Information Leakage (Segment of OTG-SESS-001) Pass 
Testing for Tamper Resistance (Segment of OTG-SESS-001 Pass 
Testing for Session Fixation (Segment of OTG-SESS-003) Pass 
Testing for Cross Site Request Forgery (OTG-SESS-005) Pass 
Testing for Session Validity (OTG-SESS-007) Pass 

Database Manager Tests 
Test Description 

Testing for SQL Injection (OTG-INPVAL-005) Pass 
 



 

51 
 

4.1.1 Cookie Jar Results 

To revisit the exact details of each of the following experiments for the cookie 

jar component refer to section 3.2.1.1. 

4.1.1.1 Testing for Cookie Attributes (OTG-SESS-002) 

This experiment set out to verify that the appropriate default configuration 

settings for cookie attributes were applied to each implementation of the cookie jar 

component.  The results of this experiment were gathered by visual inspection of the 

HTTP response headers sent by the web application using the OWASP ZAP tool.  

Upon inspection of these headers, I determined that each vulnerable and secure 

implementations set the httponly attribute by having it set to false and true, 

respectively.  Additionally, both implementations able to correctly set the secure, 

domain, path, and expires attributes on demand.   

As a result of this experiment, I concluded that the vulnerable and secure 

implementations of the cookie jar component can accurately expose and mitigate 

vulnerabilities associated with setting of cookie attributes including certain instances 

of XSS attacks (A3). 

4.1.1.2 Testing for Information Leakage (Segment of OTG-SESS-001) 

This experiment set out to check for the possibility of information leakage 

caused by the storage of data in a cookie’s value in a human readable plaintext format.  

The results of this experiment were gathered by visually inspecting the HTTP 

response headers using the OWASP ZAP tool.  Upon inspection of these headers I saw 

that the vulnerable implementation of the cookie jar showed the expected value of 



 

52 
 

“bar”.  Contrarily, the secure implementation obfuscated the data by utilizing the 

Cryptography component to encrypt and encode the cookie’s value.  The exact values 

that were stored in the cookies tested during this experiment are in the table below. 

 

Table 4. Testing for Information Leakage Comparison 

Implementation Cookie Value 
Vulnerable bar 
Secure GmNegLfvVYlhG1gde4vs5NVIrkw01WUv2FEWcGuuI0c%

3D 
 

As a result of this experiment, I concluded that the vulnerable and secure 

implementations of the cookie jar component can accurately expose and mitigate 

sensitive data exposure vulnerabilities (A6) associated with the storing of cookie data 

in plaintext. 

4.1.1.3 Testing for Tamper Resistance (Segment of OTG-SESS-001) 

This experiment set out to determine if a cookie was resistant to malicious 

attempts of modification.  The results of this experiment were gathered by visually 

inspecting the output of the web application that rendered the cookie value in the web 

browser.  Upon inspection of the rendered web page I saw that a cookie created using 

the vulnerable implementation could be modified and have its value rendered as 

normal.  Contrarily, the value of a cookie created using the secure implementation was 

not rendered in the browser.  Instead, the web application simply ignored the cookie 

altogether.  This was due to the fact that the signature generated from the modified 

data could not be validated against the signature that was generated by the original 

data.  In order to successfully modify a cookie’s data an attacker would need to 



 

53 
 

reverse engineer the algorithm used to create the signature.  By default, the cookie jar 

component uses an HMAC code to sign the data that would require the attacker to also 

gain access to the key used in the algorithm.  However, the cookie jar can also be 

configured to use a weaker algorithm such as MD5, which is easily recognizable.  If 

recognized, the attacker could then modify the cookie.  The values rendered in the 

browser for the cookie data before and after modification are in the tables below. 

Table 5. Cookie Data before Modification 

Implementation Stored Value Value Displayed 
Vulnerable bar bar 
Secure (HMAC) bar--

14b473a0d902a7a38187d2b2bc2
e092d63050b110c9d9fe04be342
cf97581eb5 

bar 

Secure (MD5) bar--
37b51d194a7513e45b56f6524f2
d51f2 

bar 

 

Table 6. Cookie Data after Modification 

Implementation Stored Value Value Displayed 
Vulnerable qux qux 
Secure (HMAC) qux  
Secure (HMAC) qux--

14b473a0d902a7a38187d2b2bc2
e092d63050b110c9d9fe04be342
cf97581eb5 

 

Secure (MD5) qux--
37b51d194a7513e45b56f6524f2
d51f2 

 

Secure (MD5 – 
Recognized) 

qux--
d85b1213473c2fd7c2045020a6b
9c62b 

qux 

 As a result of this experiment, I concluded that the vulnerable and secure 

implementations of the cookie jar component accurately expose and mitigate 

vulnerabilities associated with the tampering of cookie data at a granular level. 



 

54 
 

4.1.2 Session Manager Results 

To revisit the exact details of each of the following tests for the session 

manager component, refer to section 3.2.1.2. 

4.1.2.1 Testing for Cookie Attributes (OTG-SESS-002) 

This experiment set out to verify that the appropriate default configuration 

settings were set for the attributes of a session cookie.  The results of this experiment 

are nearly identical to those found in Section 4.1.1.1.  The exception to these results is 

due to the additional requirement that the secure implementations of the session 

handlers are configured to have session cookies sent over an encrypted connection by 

enabling the secure attribute.  Upon visual inspection, I determined that the setting of 

this attribute was correct for both the vulnerable and secure implementations of the 

session handlers. 

As a result of this experiment, I concluded that the vulnerable and secure 

implementations of the session handlers can correctly expose or mitigate 

vulnerabilities associated with the cookie attributes of a session cookie.  These include 

possible vulnerabilities due to broken authentication and session management (A2), 

XSS (A3), and sensitive data exposure (A6). 

4.1.2.2 Testing for Information Leakage (Segment of OTG-SESS-001) 

This experiment set out to identify the possibility of information leakage by 

both the session cookie and the session data stored on the server.  The results 

pertaining to the session cookie are identical to those in Section 4.1.1.2.  The results of 



 

55 
 

testing for information leakage in the session data was concluded in a similar manner 

by visually inspecting the location in which the session data was stored.   

The vulnerable implementations of the session handlers store session data as 

key-value pairs in a human readable plaintext format.  Conversely, the secure 

implementations of the session handlers store data in an obfuscated format that has 

been serialized as well as encrypted and encoded like the secure cookies.  The exact 

data stored by the session handlers can be seen in the table below. 

 

Table 7. Comparison of Stored Session Data 

Implementation Session Data 
Vulnerable s:52:"username|s:7:"johndoe";email|s:16:"jdo

e@example.com";"; 
Secure s:108:"lvbdVMs9VMmMulAOkbrsGr00QMfVf/c8k0Vod

UfJtmMkdIW6ZDoL/6iS8Ut8Xfdp/gQoioxkAx1Q7Hlo2
Rrgu5uf7lqIL0RcJOO0ZcDP8qM="; 

 

 As a result of this experiment, I  concluded that the vulnerable and secure 

session handlers correctly store data to expose and mitigate vulnerabilities pertaining 

to the leakage of information from session data.  This includes possible vulnerabilities 

due to broken authentication and session management (A2), XXS (A3), and sensitive 

data exposure (A6). 

4.1.2.3 Testing for Tamper Resistance (Segment of OTG-SESS-001) 

This experiment set out to determine if a session cookie was resistant to 

malicious attempts of modification.  The results of this experiment are identical to 

those in Section 4.1.1.3.  However, additional implications of these results include the 

possible exposure to and mitigation of session hijacking attacks. 



 

56 
 

4.1.2.3.1 Testing for Session Fixation (Segment of OTG-SESS-003) 

This experiment set out to specifically determine if sessions could possibly be 

vulnerable to certain incarnations of session fixation attacks.  The results of this 

experiment were gathered by visually inspecting session cookies to see if their 

identifiers were regenerated and by attempting to bypass the authentication 

mechanism of the login form to directly access the administrative section of the web 

application.  With the vulnerable implementation of the session manager, the session 

identifier is never regenerated.  Therefore, when a session was authenticated in one 

browser it was also authenticated in the other browser that shared the same session 

identifier.  Contrarily, with the secure implementation the session identifier was 

regenerated on each request, which invalidated the old session identifier after logging 

into the application. 

As a result of this experiment, I  concluded that the vulnerable and secure 

implementations of the session manager component appropriately expose and mitigate 

session fixation attacks (A2) that are reliant on the regeneration of session identifiers. 

4.1.2.4 Testing for Cross Site Request Forgery (OTG-SESS-005) 

This experiment set out to determine if the methods in the session manager 

could be used to verify a request coming into the application through the use of a 

CSRF token.  The results of this experiment showed that these methods were working 

as intended since the forged request was not honored by the application.  A CSRF 

token is stored in a user’s session data and is regenerated on every request.  This token 

must appear as a hidden form field in any form that is submitted to the application in 



 

57 
 

order to be verified.  Since the forged request did not contain the session’s token it was 

ignored by the application. 

As a result of this experiment, I concluded that these methods do function 

correctly and may be used by the application developer to prevent CSRF attacks. 

4.1.2.5 Testing for Session Validity (Includes OTG-SESS-007) 

This experiment set out to determine if the methods in the session manager 

component could be used to check the validity of a session by associating it with 

client-specific data.  The results of this experiment were gathered by inspecting the 

behaviors of the web application when HTTP request headers were forged with 

different user-agent strings and IP addresses.  The results of this experiment showed 

that these methods were working as intended since the web application denied access 

to an authorized-only area of the web application.  The timeout functionality of the 

session manager also worked as intended.  When a request was made after an allowed 

period of idle time of three minutes, the session was destroyed. 

As a result of this experiment, I concluded that these methods do function 

correctly and may be used by the application developer to introduce additional 

security features to a web application. 

4.1.3 Database Manager Results 

To revisit the exact details of each of the following tests for the database 

manager component refer to section 3.2.1.3. 



 

58 
 

4.1.3.1 Testing for SQL Injection (OTG-INPVAL-005) 

This experiment set out to determine if the queries compiled by the database 

manager component were vulnerable to SQL injection attacks (A1).  This experiment 

was broken down into separate tests for each of the major query operations: select, 

insert, update, and delete.  The results of running SQLMap against different parts of a 

web application that uses these queries showed that the vulnerable implementation 

was vulnerable to SQL injection in all four cases.  More specifically, SQLMap found 

the queries vulnerable to Boolean-based blind injection, error-based injection, 

AND/OR time-based blind injection and union query injection.  As expected, 

SQLMap was unable to perform any injection attacks on the secure implementation of 

the component.  As a result, I concluded that the vulnerable and secure 

implementations of the database manager component correctly expose or mitigate 

SQL injection vulnerabilities. 

 



 

59 
 

CHAPTER 5 
 

DISCUSSION 

 

5.1 Conclusions 

The previous chapter presented the results that were collected by testing the web 

application framework designed and implemented using the methodologies described 

in Chapter 3.  This chapter will now reflect on those methodologies and review the 

testing results to make implications regarding whether or not the methodologies used 

to develop the web application framework were able to achieve the goals defined in 

Section 1.3. 

5.1.1 Goal 1 Conclusions 

The first goal of this project was to develop a web application framework that is 

able to simplify the development of vulnerable web applications.  The framework 

developed in this thesis was able to simplify the development of web applications by 

providing abstractions and interfaces to common web functionalities including routing 

and the management of sessions, cookies, and databases.  This is evidenced by the 

creation of the primary components, which include methods for providing these 

functionalities.  Furthermore, many of these abstractions were due to the inclusion of 

popular community projects and standards set by the PHP-FIG that were created 

specifically for simplifying the development of PHP web applications.  Based on the 

application developer target audience, which was defined to have had experience with 

developing applications using native PHP and other web application frameworks, the 



 

60 
 

developers creating applications should already have a familiarity with some of these 

components such as the HttpFoundation component and the HttpKernelInterface.  

In addition, the Porous framework specifically sought to simplify the development 

of vulnerable web applications. This was achieved by building on these components 

and making abstractions to different security implementations of components.  This 

was verified by the various primary component tests. 

5.1.2 Goal 2 Conclusions 

The second goal of this project was to develop a web application framework that 

provides configurable security features for introducing vulnerabilities to web 

applications.  This goal was achieved by the inclusion of both a vulnerable and secure 

implementation of each primary component.  As described in the methodologies 

sections for each component, the base implementation contains no security options by 

default.  The secure implementations however, provide configuration options to 

granularly control the security mechanism for each component.  For instance, the 

cookie jar component provides the options of whether or not to encrypt a cookie, sign 

a cookie, and what algorithms are used to do either of these tasks.  The session 

component provides these same options for its identifier as well as options to 

regenerate the identifier and change its default name.  The session data may also be 

optionally encrypted and stored in non-default locations.  Lastly, the database 

component can be configured to use raw SQL statements or prepared statements.  

Each of these configuration options were again tested during the primary component 

tests and are configurable by setting these options in a main configuration file for the 

application. 



 

61 
 

5.1.3 Goal 3 Conclusions 

The third goal of this project was to develop a web application framework that is 

evocative of current web application security concerns.  This has been evidenced 

throughout the primary component tests that reference the categories of vulnerabilities 

that the various security mechanisms expose or mitigate from the OWASP Top 10.   

The test results show which of the categories of vulnerabilities can be directly 

exposed and mitigated by configuring the primary components of the framework.  The 

table below provides a mapping of these categories to the components that are 

affected. 

Table 8. OWASP Top 10 Vulnerabilities Exposed and Mitigated 

OWASP Top 10 Category Components Affected 
A1 – Injection Database 
A2 – Broken Authentication and Session 
Management 

Cookie, Session 

A3 – Cross-Site Scripting (XSS) Cookie, Session 
A4 – Insecure Direct Object References --- 
A5 – Security Misconfiguration Cookie, Session, Database 
A6 – Sensitive Data Exposure Cookie, Session, Database 
A7 – Missing Function Level Access --- 
A8 – Cross-Site Request Forgery --- 
A9 – Using Components with Known Vulnerabilities Cookie, Session, Database 
A10 – Unvalidated Redirected and Forwards --- 

 

Based on these results, the configuration of the primary components directly 

addresses six of the ten categories.  The remaining four categories may be addressed 

by the business logic of the application. 

A4 – Insecure Direct Object References refers to flaws that expose a reference to 

resources without any proper restrictions.  The example attack provided by the 

OWASP Top 10 for this vulnerability is when an application uses unverified data to 



 

62 
 

access the account information for another user.  The solution to preventing this type 

of an attack would be to validate that the account information for the logged in user 

matches the account information being modified.  This could be handled by using a 

combination of logic from the session manager and/or auxiliary validation component. 

A7 – Missing Function Level Access refers to flaws that allow non-privileged users 

to access functions that should only be available to authorized users.  The example 

attack provided by the OWASP Top 10 for this vulnerability is when an attacker 

accesses a URL that should only be available to authorized users.  Again, this can be 

prevented using either the session manager or validation component to ensure that a 

user accessing a URL has the correct level of authorization to access the resource. 

A8 – Cross-Site Request Forgery refers to flaws where an attacker tricks 

authenticated users into performing unintended actions through the use of forged 

HTTP requests.  While the session manager component does contain methods for 

generating and verifying CSRF tokens it does not support the injection of these tokens 

into the HTML of a rendered web page as a hidden form field.  It would be up to the 

application developer to individually add these hidden form fields to every form they 

use in their application. 

A10 – Unvalidated Redirects and Forwards refers to flaws where an attacker takes 

advantage of a redirect or forward feature within a web application to send a victim to 

a malicious location or to access unauthorized resources.  The solution to this category 

of flaws would be to not use redirects or forwards that allow for user parameters.  If 

allowed, then the user input should be validated using the validation component. 



 

63 
 

Overall, based on this information the Porous framework can be seen as evocative 

of current web application security concerns through direct and indirect use of the 

primary and auxiliary components 

5.1.4 Goal 4 Conclusions 

The fourth goal of this project was to create a web application framework that is 

extensible.  Proof that this goal was achieved can be seen in the architecture of the 

Porous framework’s core.  The dependency injection container allows components to 

be added and swapped into the framework by storing definitions that provide the 

construction details of each component.  Each component, both primary and auxiliary, 

was added to the framework by writing these service provider definitions and 

registering them with the container.  Additionally, the routing component, which is 

based on the HttpFoundation component and the HttpKernelInterface allows for 

community middleware to be added to the framework.  Together, the dependency 

injection container and routing layer provide the extensibility that was desired to meet 

this goal. 

5.2 Future Work 

The Porous framework developed for this project was able to successfully meet 

each of the four goals described above.  However, at this point the Porous framework 

is still in its infancy and additional work can and should be done to bring this project 

to its fullest potential.  Over the course of developing this framework the following 

areas of future work are seen as parts of the framework that may be developed at a 

later time. 



 

64 
 

5.2.1 Further Evaluation 

Perhaps the most important consideration when drawing conclusions from the 

results of the experiments conducted on this framework is that no implementation is 

ever going to be completely secure against all vulnerabilities.  Additional testing 

should be done to check for vulnerabilities that were overlooked or missed during the 

completion of this project.  It would be beneficial for other developers and security 

experts to audit the code of this framework in order to locate any of these 

vulnerabilities and provide any additional insights on how to prevent them. 

5.2.2 Additional Components and Implementations 

Another future extension to this project would be to construct additional 

components or implementations of existing components.  This would allow for added 

customization for application developers who may be seeking particular functionalities 

for the web applications that they build.  Suggested components to be added to the 

framework would be authentication and authorization libraries for managing users. 

5.2.3 Intrusion Detection System 

The next area of future work would be the possible integration of an intrusion 

detection system. An intrusion detection system could be of use when web 

applications built using the framework are used in a cyber challenge.  This, combined 

with the event manager component, could provide application users or challenge 

moderators with a means of logging the exact exploitations that take place within the 

vulnerable components of the framework.  Existing intrusion detection systems may 

be looked at as possible candidates for inclusion in later releases of the framework. 



 

65 
 

5.2.4 Command Line Interface 

A command line interface to the framework would be a nicety for application 

developers by providing them with tools to generate keys, application templates, and 

content.  Additionally, a command line interface could include the functions for 

database migrations and seeding, which would accelerate the process of some of this 

other content generation.  

5.3 Conclusion 

In conclusion, the Porous web application framework was successful in meeting its 

goals. It has the potential to be a significant contributor to the open-source community 

and cyber security communities by allowing them to develop realistic vulnerable web 

applications relatively simply and have these web applications be easily extensible to 

facilitate reuse.  While this project was successful, it should be seen as just the 

beginning as the framework should continue to grow over time. 



 

66 
 

BIBLIOGRAPHY 

 

 
[1]  WhiteHat Security, "Website Security Statistics Report," WhiteHat Security, May 

2013. 

[2]  Sensio Labs, "Symfony Framework," Sensio Labs, [Online]. Available: 
https://symfony.com/. [Accessed 18 June 2015]. 

[3]  Laravel, "Laravel: The PHP Framework for Artisans," [Online]. Available: 
http://laravel.com/. [Accessed 18 June 2015]. 

[4]  Ruby on Rails, "Ruby on Rails," [Online]. Available: http://rubyonrails.org/. 
[Accessed 18 June 2015]. 

[5]  Django, "Django," Django, [Online]. Available: https://www.djangoproject.com/. 
[Accessed 18 June 2015]. 

[6]  J. Lockheart, "Slim Framework," Slim Framework, [Online]. Available: 
http://www.slimframework.com/. [Accessed 18 June 2015]. 

[7]  Sensio Labs, "Silex The PHP micro-framework based on the Symfony2 
Components," [Online]. Available: http://silex.sensiolabs.org/. [Accessed 18 June 
2015]. 

[8]  Sinatra, "Sinatra," [Online]. Available: http://www.sinatrarb.com/. [Accessed 18 
June 2015]. 

[9]  "Armin Ronacher," [Online]. Available: http://flask.pocoo.org/. [Accessed 18 
June 2015]. 

[10]  University of Rhode Island, "Open Cyber Challenge Platform," [Online]. 
Available: https://opencyberchallenge.net/. [Accessed 18 June 2015]. 

[11]  Open Web Application Security Project, "Open Web Application Security 
Project," [Online]. Available: https://www.owasp.org/index.php/Main_Page. 
[Accessed 18 June 2015]. 

[12]  Open Web Application Security Project, "OWASP Site Generator," [Online]. 
Available: https://www.owasp.org/index.php/OWASP_SiteGenerator. [Accessed 
18 June 2015]. 

[13]  Open Web Applicaiton Security Project, "OWASP Top 10," [Online]. Available: 
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project. 
[Accessed 18 June 2015]. 



 

67 
 

[14]  Open Web Application Security Project, "OWASP Testing Project," [Online]. 
Available: https://www.owasp.org/index.php/OWASP_Testing_Project. 
[Accessed 18 June 2015]. 

[15]  RandomStorm, "Damn Vulnerable Web Application," [Online]. Available: 
http://www.dvwa.co.uk/. [Accessed 18 June 2015]. 

[16]  Github, "Github RandomStorm DVWA Issues," [Online]. Available: 
https://github.com/RandomStorm/DVWA/issues. [Accessed 18 June 2015]. 

[17]  Q-Success, "W3Techs - World Wide Web Technology Surveys," [Online]. 
Available: http://w3techs.com/. [Accessed 18 June 2015]. 

[18]  Alexa, "Alexa," Amazon, [Online]. Available: http://www.alexa.com/. [Accessed 
15 June 2015]. 

[19]  M. Fowler, "Inversion of Control Containers and the Dependency Injection 
pattern," [Online]. Available: 
http://www.martinfowler.com/articles/injection.html. [Accessed 18 June 2015]. 

[20]  M. Seemann, "Service Locator is an Anti-Pattern," [Online]. Available: 
http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern/. [Accessed 15 
June 2015]. 

[21]  R. C. Martin, "Design Principles and Design Patterns," [Online]. Available: 
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf. 
[Accessed 18 June 2015]. 

[22]  Illuminate, "Github Illuminate Container," [Online]. Available: 
https://github.com/illuminate/container. [Accessed 18 June 2015]. 

[23]  "Lumen," [Online]. Available: http://lumen.laravel.com/. [Accessed 18 June 
2015]. 

[24]  Sensio Labs, "Pimple A Simple Dependency Injection Container," [Online]. 
Available: http://pimple.sensiolabs.org/. [Accessed 18 June 2015]. 

[25]  The League of Extraordinary Packages, "Container," [Online]. Available: 
http://container.thephpleague.com/. [Accessed 18 June 2015]. 

[26]  Network Working Group, "Hypertext Transfer Protocol -- HTTP/1.1," World 
Wide Web Consortium, [Online]. Available: 
http://www.w3.org/Protocols/rfc2616/rfc2616.html. [Accessed 15 Jun 2015]. 

[27]  SensioLabs, "The HttpFoundation Component," SensioLabs, [Online]. Available: 
http://symfony.com/doc/current/components/http_foundation/introduction.html. 



 

68 
 

[Accessed 15 June 2015]. 

[28]  Sensio Labs, "The HTTPKernel Component," [Online]. Available: 
http://symfony.com/doc/current/components/http_kernel/introduction.html. 
[Accessed 18 June 2015]. 

[29]  Drupal, "Drupal," [Online]. Available: https://www.drupal.org/. [Accessed 18 
June 2015]. 

[30]  
 

phpBB, "phpBB," [Online]. Available: https://www.phpbb.com/. [Accessed 18 
June 2015]. 

[31]  PHP Framework Interop Group, "PHP Framework Interop Group," [Online]. 
Available: http://www.php-fig.org/. [Accessed 15 June 2015]. 

[32]  PHP Framework Interop Group, "HTTP Message Interfaces," [Online]. 
Available: http://www.php-fig.org/psr/psr-7/. [Accessed 15 June 2015]. 

[33]  Igor Wiedler, "Stack," [Online]. Available: http://stackphp.com/. [Accessed 18 
June 2015]. 

[34]  The League of Extraordinary Packages, "Route," [Online]. Available: 
http://route.thephpleague.com/. [Accessed 18 June 2015]. 

[35]  A. Ferrara, "N-Tier Architecture - An Introduction," [Online]. Available: 
http://blog.ircmaxell.com/2012/08/n-tier-architecture-introduction.html. 
[Accessed 18 June 2015]. 

[36]  The League of Extraordinary Packages, [Online]. Available: 
http://event.thephpleague.com/2.0/. [Accessed 18 June 2015]. 

[37]  Sensio Labs, "The EventDispatcher Component," [Online]. Available: 
http://symfony.com/doc/current/components/event_dispatcher/introduction.html. 
[Accessed 18 June 2015]. 

[38]  Sabre, "Sabre EventEmitter," [Online]. Available: 
http://sabre.io/event/eventemitter/. [Accessed 18 June 2015]. 

[39]  J. Boggiano, "Github Monolog," Github, [Online]. Available: 
https://github.com/Seldaek/monolog. [Accessed 18 June 2015]. 

[40]  The PHP Group, "Mcrypt," [Online]. Available: 
http://php.net/manual/en/book.mcrypt.php. [Accessed 15 June 2015]. 

[41]  J. Daemen and V. Rijmen, "AES Proposal: Rijndael," National Institute of 
Standards and Technology, [Online]. Available: 



 

69 
 

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf. [Accessed 15 
June 2015]. 

[42]  "Announcing the Advanced Encryption Standard (AES)," National Institute of 
Standards and Technology, [Online]. Available: 
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. [Accessed 15 June 
2015]. 

[43]  B. Schneier, "Description of a New Variable-Length Key, 64-bit Block Cipher 
(Blowfish)," [Online]. Available: https://www.schneier.com/paper-blowfish-
fse.html. [Accessed 15 June 2015]. 

[44]  W. Penard and T. van Werkhoven, "On the Secure Hash Algorithm Family," 
Utrecht University, [Online]. Available: 
http://www.staff.science.uu.nl/~werkh108/docs/study/Y5_07_08/infocry/project/
Cryp08.pdf. [Accessed 15 June 2015]. 

[45]  H. Moody, "Respect Validation," Respect, [Online]. Available: 
http://respect.li/Validation/. [Accessed 18 June 2015]. 

[46]  C. Cornutt, "Effective Validation with Respect," websec.io, [Online]. Available: 
http://websec.io/2013/04/01/Effective-Validation-with-Respect.html. [Accessed 
15 June 2015]. 

[47]  SensioLabs, "Twig," [Online]. Available: http://twig.sensiolabs.org/. [Accessed 
15 June 2015]. 

[48]  T. Otwell, "Github Illuminate View," [Online]. Available: 
https://github.com/illuminate/view. [Accessed 15 June 2015]. 

[49]  J. Reinink, "Plates Native PHP Templates," The PHP League, [Online]. 
Available: http://platesphp.com/. [Accessed 15 June 2015]. 

[50]  Open Web Application Security Project, "OWASP Zed Attack Proxy," [Online]. 
Available: 
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project. 
[Accessed 18 June 2015]. 

[51]  "SQLMap," [Online]. Available: http://sqlmap.org/. [Accessed 18 June 2015]. 

 


	Vulnerable Web Application Framework
	Terms of Use
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	INTRODUCTION
	1.1 Statement of the Problem
	1.2 Justification for and Significance of the Study
	1.3 Goals
	1.4 Summary of Accomplishments

	CHAPTER 2
	REVIEW OF LITERATURE
	2.1 Web Application Frameworks
	2.1.1 Full-Stack Frameworks
	2.1.2 Micro Frameworks
	2.1.3 Monolithic Frameworks

	2.2 Related Works
	2.2.1 Open Cyber Challenge Platform
	2.2.2 Open Web Application Security Project
	2.2.2.1 OWASP Site Generator
	2.2.2.2 OWASP Top 10
	2.2.2.3 OWASP Testing Project

	2.2.3 Damn Vulnerable Web Application (DVWA)

	2.3 Technologies Used
	2.3.1 LAMP Stack

	2.4 Target Audiences
	2.4.1 Framework Developers
	2.4.2 Application Developers
	2.4.3 Application Users


	CHAPTER 3
	METHODOLOGY
	3.1 Framework Architecture
	3.1.1 Framework Core
	3.1.1.1 Dependency Injection Container
	3.1.1.2 Routing Layer

	3.1.2 Primary Components
	3.1.2.1 Cookie Jar
	3.1.2.2 Session Manager
	3.1.2.3 Database Manager

	3.1.3 Auxiliary Components
	3.1.3.1 Event Manager
	3.1.3.2 Logger
	3.1.3.3 Cryptography
	3.1.3.4 Validation
	3.1.3.5 Template Engine


	3.2 Testing Procedures
	3.2.1 Primary Component Vulnerability Tests
	3.2.1.1 Cookie Jar Tests
	3.2.1.1.1 Testing for Cookie Attributes (OTG-SESS-002)
	3.2.1.1.2 Testing for Information Leakage (Segment of OTG-SESS-001)
	3.2.1.1.3 Testing for Tamper Resistance (Segment of OTG-SESS-001)

	3.2.1.2 Session Manager Tests
	3.2.1.2.1 Testing for Cookie Attributes (OTG-SESS-002)
	3.2.1.2.2 Testing for Information Leakage (Segment of OTG-SESS-001)
	3.2.1.2.3 Testing for Tamper Resistance (Segment of OTG-SESS-001)
	3.2.1.2.4 Testing for Session Fixation (Segment of OTG-SESS-003)
	3.2.1.2.5 Testing for Cross Site Request Forgery (OTG-SESS-005)
	3.2.1.2.6 Testing for Session Validity (Includes OTG-SESS-007)

	3.2.1.3 Database Manager Tests
	3.2.1.3.1 Testing for SQL Injection (OTG-INPVAL-005)




	CHAPTER 4
	FINDINGS
	4.1 Primary Component Vulnerability Results
	4.1.1 Cookie Jar Results
	4.1.1.1 Testing for Cookie Attributes (OTG-SESS-002)
	4.1.1.2 Testing for Information Leakage (Segment of OTG-SESS-001)
	4.1.1.3 Testing for Tamper Resistance (Segment of OTG-SESS-001)

	4.1.2 Session Manager Results
	4.1.2.1 Testing for Cookie Attributes (OTG-SESS-002)
	4.1.2.2 Testing for Information Leakage (Segment of OTG-SESS-001)
	4.1.2.3 Testing for Tamper Resistance (Segment of OTG-SESS-001)
	4.1.2.3.1 Testing for Session Fixation (Segment of OTG-SESS-003)

	4.1.2.4 Testing for Cross Site Request Forgery (OTG-SESS-005)
	4.1.2.5 Testing for Session Validity (Includes OTG-SESS-007)

	4.1.3 Database Manager Results
	4.1.3.1 Testing for SQL Injection (OTG-INPVAL-005)



	DISCUSSION
	5.1 Conclusions
	5.2 Future Work
	5.2.1 Further Evaluation
	5.2.2 Additional Components and Implementations
	5.2.3 Intrusion Detection System
	5.2.4 Command Line Interface

	5.3 Conclusion

	BIBLIOGRAPHY

