
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Dissertations

2017

On-Line Adaptive Dynamic Programming for Feedback Control On-Line Adaptive Dynamic Programming for Feedback Control

Xiangnan Zhong
University of Rhode Island, xzhong@ele.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Zhong, Xiangnan, "On-Line Adaptive Dynamic Programming for Feedback Control" (2017). Open Access
Dissertations. Paper 609.
https://digitalcommons.uri.edu/oa_diss/609

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/609?utm_source=digitalcommons.uri.edu%2Foa_diss%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

ON-LINE ADAPTIVE DYNAMIC PROGRAMMING FOR FEEDBACK CONTROL

BY

XIANGNAN ZHONG

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

ELECTRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

2017

DOCTOR OF PHILOSOPHY DISSERTATION

OF

XIANGNAN ZHONG

APPROVED:

Dissertation Committee:

Major Professor Haibo He

Yan Sun

Lisa DiPippo

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2017

ABSTRACT

Stability analysis and controller design are among the most important issues in

feedback control problems. Usually, controller design for linear system can be obtained

by solving the Riccati equation. However, when comes to the nonlinear control prob-

lem, Riccati equation becomes the well-known Hamilton-Jacobi-Bellman (HJB) equa-

tion which is difficult to tackle directly. Fortunately, adaptive dynamic programming

(ADP) has been widely recognized as one of the “core methodologies” to achieve opti-

mal control in stochastic process in a general case to achieve brain-like intelligent con-

trol. Extensive efforts and promising results have been achieved over the past decades.

The achievements cover a large variety of problems, including system stability, conver-

gence analysis, controller design, optimal control, state prediction, etc.

This dissertation investigates the on-line ADP techniques for the feedback control

systems and provides novel methods to solve several existing problems in this field.

Specifically, the improvement and the original contribution of this dissertation can be

summarized from algorithms, architectures, and applications, respectively.

From the algorithms, an event-triggered ADP method is provided by sampling the

efficient states rather than the entire system states generated during the learning process.

The designed control law is only updated according to the sampled states to reduce the

computation cost. In order to guarantee the sampled states are efficient, the theoretical

analysis is provided to generate an event threshold to make sure the stability of the sys-

tem during the event triggered learning process. It is said that only when the difference

between the sampled and the current states is larger than the threshold, the system sam-

ples the state from the environment and updates the control law according to the sample

states. This idea is further developed in the partially observable environment and the

event threshold is designed only based on the observed feedback. A neural-network-

based observer is designed to recover the internal states from the partially observable

ones. Both the observer and the control law are updated aperiodically based on the

sampled system outputs. In this way, the computation and the transmission load can be

significantly reduced. From the simulation results, it is shown that the event-triggered

ADP method can achieve competitive performance at the same time.

From the architectures, a new framework, named “goal representation adaptive dy-

namic programming (GrADP)”, is proposed and introduced in this dissertation. It is

regarded as the foundation of building intelligent systems through internal reward learn-

ing, goal representation and state-action association. Unlike the traditional ADP design

with an action network and a critic network, this new approach integrates an additional

goal network, such that to build a general internal reinforcement signal. Unlike the tra-

ditional fixed or predefined reinforcement signal, this new design can adaptively update

the internal reinforcement representation over time and thus facilitate the system’s learn-

ing and optimization to accomplish the ultimate goals. This dissertation for the first time

provides the theoretical foundation of the GrADP design. It is shown that the designed

internal reinforcement signal can give the agent more information by considering more

distance lookahead, and therefore, this signal is more efficient.

From the applications, this dissertation designs the ADP method for a class of

Markov jump systems (MJSs) to find the optimal control law even though the system

state keeps jumping among several subsystems. This dissertation also shows that the

control law obtained from the learning process can quickly converge to the optimal

solutions which verifies the effectiveness of the proposed method.

ACKNOWLEDGMENTS

Five years on my Ph.D. study in the University of Rhode Island (URI) has been a

period of intense learning for me, not only in the scientific arena, but also on a personal

level. Writing this dissertation has had a big impact on me. I would like to acknowledge

the people who have supported and helped me so much throughout this period.

I would first like express my deepest gratitude to my advisor, Prof. Haibo He, for

his excellent guidance, caring, patience, and providing me with an excellent atmosphere

for doing research. He continually and convincingly conveyed a spirit of adventure in

regard to research, and an excitement in regard to teaching. Without his guidance and

persistent help, this dissertation would not have been possible.

I would also like to sincerely thank Prof. Yan Sun, Prof. Richard Vaccaro, Prof.

Lisa DiPippo, and Prof. P. V. August for serving as my dissertation defense committee.

They gave me many precious comments and guidance in this process which provided

me a different view of my research work and myself. Also extremely thankful to Prof.

Huaguang Zhang, Prof. Zhanshan Wang, and Dr. Danil Prokhorov for close collabora-

tions and suggestions all the way along this research direction.

I am grateful to the Computational Intelligence and Self-Adaptive System (CISA)

group in URI during my Ph.D. period: Dr. Ding Wang, Dr. Chaoxu Mu, Dr. Siyao Fu,

Dr. Yufei Tang, Dr. Bo Tang, Jun Yan, Lu Dong and Jing Wang for their inputs, valuable

discussions and accessibility of my research work. Also thanks all the faculty members,

staff, visiting scholars, and graduate students in the Department of Electrical, Computer,

and Biomedical Engineering for their friendship and support in these five years.

Grateful acknowledgement is expressed to my beloved parents, Liangcai Zhong

and Shu Chen, for being my inspirations and motivation to always do the best in every-

thing I do; for always showing the world and making me feel how much they are proud

of me; for their teachings and guidance which made me become as to what I am now.

iv

Also many thanks to my grandparents: Futang Chen and Xiangyu Shu, Bingwen Zhang

and Guifang Yu, who always care about me, my uncle: Mo Chen, my aunt: Haiping Xu,

my cousin: Chen Chen, and all my family for their unconditional supports and patience.

Thank you for being so understanding and supportive.

My final words go equally to my husband, Zhen Ni, for his inestimable moral

support and his infinite warmth and tenderness. Thank you for always being my side

whenever and wherever I need. Thank you for completing my life.

This work was supported in part by the National Science Foundation under Grant

ECCS 1053717, Grant CMMI 1526835, Army Research Office under Grant W911NF-

12-1-0378, NSF-DFG Collaborative Research on Autonomous Learning (a supplement

grant to CNS 1117314), and in part by the National Aeronautics and Space Administra-

tion under Grant NNX15AK54A.

v

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . vi

LIST OF FIGURES . x

LIST OF TABLES . xiv

CHAPTER

1 Introduction . 1

1.1 Motivation and Inspirations . 1

1.2 Significance of the Research . 2

1.3 Research Objective . 3

1.4 Dissertation Organization . 5

List of References . 6

2 On-line Data-driven Adaptive Dynamic Programming (ADP) Control 9

2.1 Feedback Control . 9

2.2 Background of Adaptive Dynamic Programming 10

2.3 On-line Learning . 12

2.4 Related Work . 14

List of References . 17

3 Event-triggered ADP Control . 23

3.1 Introduction . 23

vi

Page

vii

3.2 Event-triggered Method Design . 24

3.3 Stability Analysis of the Event-Triggered Method 27

3.4 Neural-network-based Event-Triggered Controller Design 30

3.4.1 Event-Triggered Control Law Estimation 30

3.4.2 Neural-Network-based Implementation 31

3.5 Simulation Studies . 34

3.6 Conclusion . 41

List of References . 42

4 Event-triggered ADP Control with Unknown Internal States 45

4.1 Introduction . 45

4.2 Problem Statement . 47

4.3 Event-triggered Controller Design Using Only the Input-Output Data 50

4.3.1 Event-triggered Regulator Design 51

4.3.2 Neural-network-based Observer Design 54

4.3.3 Optimal Event-triggered Control Scheme Design 60

4.3.4 Stability Analysis of the closed-loop system 62

4.4 Simulation Studies . 67

4.5 Summary . 72

List of References . 72

5 On-line Hierarchical Adaptive Critic Design 76

5.1 Introduction . 76

5.2 Goal Representation Design . 78

5.3 GrADP Control and the Theoretical Analysis 81

Page

viii

5.3.1 GrADP Algorithm . 81

5.3.2 Convergence analysis of the GrADP approach 82

5.4 Goal representation ADP ladder . 87

5.4.1 Goal Representation Design in HDP 87

5.4.2 General Utility Function Representation in DHP 88

5.4.3 Gr-GDHP Design . 89

5.5 Learning Process of Gr-GDHP Approach 89

5.5.1 State Prediction . 91

5.5.2 General Utility Function Representation Design 92

5.5.3 Learning Process of Critic Network 96

5.5.4 Learning Process of Action Network 99

5.6 Simulation Studies . 101

5.6.1 Nonlinear System . 101

5.6.2 Ball-and-beam balancing system 104

5.7 Discussions . 112

5.8 Summary . 115

List of References . 115

6 On-line ADP Learning for Markov Jump Systems (MJSs) 118

6.1 Introduction . 118

6.2 Problem Statement . 119

6.3 Optimal Control for unknown MJSs 123

6.3.1 ADP Algorithm to Approximate the Optimal Control for MJSs124

6.3.2 Convergence Analysis of the Proposed ADP Approach . . . 125

Page

ix

6.4 Design of the Proposed ADP Approach 130

6.4.1 Critic Network . 130

6.4.2 Action Network . 131

6.5 Simulation Studies . 133

6.5.1 Linear System . 133

6.5.2 Nonlinear System . 139

6.5.3 Single Link Robot Arm . 145

6.6 Summary . 150

List of References . 150

7 Conclusions and Future Research Directions 153

7.1 Conclusions . 153

7.2 Original Contributions . 154

7.3 Future Research Directions . 155

BIBLIOGRAPHY . 158

LIST OF FIGURES

Figure Page

1 Dissertation Organization. 5

2 The schematic diagram of a typical HDP structure. 13

3 Architecture of the event-triggered method based on the ADP ap-
proach. 32

4 Comparisons of system responses by the event-triggered and the
traditional ADP method with M = 1 and G = 1. 35

5 Inter-event instants during the learning process with M = 1 and G = 1. 35

6 Response of the gap ∥ej(t)∥ and the threshold ∥eT ∥ with M = 1 and
G = 1. 36

7 Learning trajectories of the critic and the action network weights
from the hidden to the output layer with M = 1 and G = 1. 37

8 Comparisons of system responses by the event-triggered and the
traditional ADP method with M = 5 and G = 5. 38

9 Inter-event instants during the learning process with M = 5 and G = 5. 39

10 Response of the gap ∥ej(t)∥ and the threshold ∥eT ∥ with M = 5 and
G = 5. 39

11 Learning weights of the critic and the action network from the hid-
den to the output layer with M = 5 and G = 5. 40

12 The average number of the samples used by the event-triggered con-
troller for each parameters pair within [1,20]. 41

13 Block diagram of the nonlinear continuous-time system control
with only the input-output data. 50

14 System responses with the event-triggered observer and ADP con-
troller . 67

15 Errors between the estimated state and the true state. 68

x

Figure Page

xi

16 Trajectory of the weights in function network. 69

17 Trajectory of the event-triggered control law. 69

18 Comparison of the gap ∥eyj∥ and the threshold ∥eT ∥. 70

19 Inter-event time during the learning process. 71

20 Cumulative number of the sampled data for both the event-triggered
ADP method and traditional ADP method. 71

21 The concept diagram of learning and feedback evaluation process:
In contrast with the traditional ADP design, the GrADP method
has the internal reinforcement signal in the loop which includes the
information of future external reinforcement signal. 80

22 Architecture of the Gr-GDHP approach. 90

23 The schematic archtecture of the goal network. 93

24 The schematic archtecture of the critic network. 97

25 The schematic archtecture of the action network. 99

26 Comparison of the state trajectory x1 on the nonlinear system with
Gr-GDHP, GrDHP, GrHDP and GDHP methods. 102

27 Comparison of the state trajectory x2 on the nonlinear system with
Gr-GDHP, GrDHP, GrHDP and GDHP methods. 102

28 Comparison of the control input u on the nonlinear system with Gr-
GDHP, GrDHP, GrHDP and GDHP methods. 103

29 The trajectories of the performance index Ĵ(t) of the Gr-GDHP,
GrHDP and GDHP methods. 103

30 Schematics of the ball-and-beam balancing system. 105

31 System responses of a typical successful trial without noise in the
first 40 seconds. 106

32 Typical trajectory of control action in the first 20 seconds in a typical
successful trial without noise. 106

Figure Page

xii

33 The weights evolution in goal network from ten hidden layer nodes
to the first output layer node of a typical successful trial without
noise in the first 12 seconds. 107

34 The weights evolution in critic network from eleven input layer
nodes to the first hidden layer node of a typical successful trial with-
out noise in the first 18 seconds. 107

35 The weights evolution in action network from eight hidden layer
nodes to the output layer node of a typical successful trial without
noise in the first 18 seconds. 108

36 The neural network structure of the proposed ADP approach. 127

37 Identification errors for mode 1 and mode 2 of the linear MJS. . . . 134

38 Active jumping mode and system responses with the ADP controller. 134

39 Performance index function trajectory of the linear MJS. 135

40 Weights trajectories of the action and the critic network from the
hidden to the output layer. 135

41 Comparisons of system responses of the ADP and the LQR controller.137

42 Identification errors for mode 1 and mode 2 of the nonlinear MJS. . 138

43 Active jumping mode and system responses with the ADP controller. 139

44 Performance index function trajectory of the nonlinear MJS. 140

45 Weights trajectories of the action and the critic network from the
hidden to the output layer. 140

46 Average state trajectories of 10,000 round. 142

47 Histogram of the state values of 50th time step of 10,000 round. . . 143

48 Histogram of RMSE for x1 and x2 of 10,000 round. 143

49 Average state trajectories of 10,000 round. 145

50 Histogram of the state values of 50th time step of 10,000 round. . . 146

51 Histogram of RMSE for x1 and x2 of 10,000 round. 146

Figure Page

xiii

52 Jumping mode evolution r of the robot arm system. 147

53 State trajectories of the robot arm system under jumping mode r. . . 148

54 Control law of the robot arm system under jumping mode r. 148

55 Weights trajectories of the action and the critic network from the
hidden to the output layer. 149

LIST OF TABLES

Table Page

1 Summary of the parameters used in the case study A 109

2 Comparison of the statistical simulation results on the ball-and-
beam balancing system with the Gr-GDHP and the GDHP controller 110

xiv

CHAPTER 1

Introduction

1.1 Motivation and Inspirations

When we first think about the nature of learning, we probably start with the idea

that we learn by interacting with our environment. Actually, we learn from our child-

hood. When an infant plays, waves its arms, or looks about, there is no explicit teacher.

However, it does have a direct connection with its environment. Exercising this connec-

tion produces a wealth of information about cause and effect, about the consequences

of actions, and about what to do in order to achieve goals. Throughout our lives, such

interactions are undoubtedly a major source of knowledge about our environment and

ourselves. Learning from interaction is a foundational idea underlying nearly all theories

of learning and intelligence.

Brain intelligence and animal intelligence are very important biological inspiration

to develop truly self-adaptive systems to such a level of intelligence in certain perspec-

tives. With the recent developments of brain research and modern technologies, scien-

tists and engineers will hopefully find efficient ways to build complex systems that are

highly adaptive, robust, and fault tolerant to uncertain and unstructured environment.

However, although many important fundamental research as well as critical engineering

applications have been successfully developed, there is still a long way to go to achieve

truly brain-like general-purpose intelligent machines. In other words, understanding

of brain intelligence and developing self-adaptive systems to potentially mimic certain

level of intelligence is still one of the greatest unsolved scientific challenges [1, 2]. One

of the key fundamental challenges is how to design intelligent systems to be able to

“learn to optimize” and “learn to predict” over time to achieve goals. In this disser-

tation, an online learning system with an emphasis on the latest data-driven adaptive

dynamic programming (ADP) architecture is developed for the feedback control prob-

1

lems to improve the control performance.

In the general control problems, learning controller design for nonlinear systems is

a difficult and challenging topic because it often requires solving the Hamilton-Jacobi-

bellman (HJB) equation rather than the Riccati equation. Fortunately, ADP technique

gives us an opportunity to obtain the approximate solutions of the HJB equation [3, 4].

In recent years, ADP method has attracted significantly increasing attention and it has

been widely recognized as one of the “core methodologies” to achieve optimal control

for intelligent systems in a general case [1, 5, 6]. Extensive efforts have been dedicated

to developing ADP method from both theoretical researches and real-world applications

[7, 8]. Although promising results have been achieved, there still exist several major

challenges when we design the ADP method for the control problems. For instance,

the high computation during the learning process, how we can provide an evaluative

feedback in terms of the reinforcement signal, the requirement of the full system states,

and robustness. In this dissertation, I provide the detailed solutions for several certain

major challenges in this field.

1.2 Significance of the Research

Generally, every living organism interacts with its environment and uses those in-

teractions to improve its own actions in order to survive and increase. In this process,

the living organism modifies actions based on the interactions with the environment [9].

We call this process as reinforcement learning or ADP. There are many types of learning

in the computational intelligent society, including supervised learning and unsupervised

learning, etc. Reinforcement learning and ADP refer to an actor or agent that inter-

acts with its environment and modifies its actions, or control policies, based on stimuli

received in response to its actions. This is based on evaluative information from the

environment and could be called action-based learning. ADP implies a cause and effect

relationship between actions and rewards or punishments. It implied goal directed be-

2

havior at least insofar as the agent has an understanding of reward versus lack of reward

or punishment. The rewards or punishments define the goal of the task. Optimal actions

may be based on minimum fuel, minimum energy, minimum risk, maximum reward,

and so on.

Motivated by the human-level intelligence, this idea is introduced into the machine

training process [10]. The machines interact with the environment to modify the action

in order to achieve the goals. When we train the machines based on the reinforcement

learning or ADP scheme, we want the machines become intelligent and act as human

beings. During the learning process, we tell the machines which is good or which is

bad. This means we need to let the machines know the effect of their actions or situa-

tions. In this way, after trial-and-error learning, the machines can achieve human-level

intelligence.

1.3 Research Objective

The objective of this dissertation is focused on designing on-line intelligent learn-

ing systems that are capable to learn to optimize the decision-making process in an

unknown environment for the feedback control problems. It is very important to ana-

lyze different types of challenges and develop the detailed solutions for them onto the

various critical engineering applications:

● ADP is usually relying on the periodic transmission of the sampled data and com-

putation of the control law. This periodic data abstraction is advantageous from

the design standpoint. It permits real-time system engineers and control system

engineers to pursue their design objectives in relative isolation from each other.

However, such algorithm may bring huge number of the transmitted data and sub-

sequently tremendous computation [11], [12]. This is clearly a disadvantage when

the computation bandwidth or sensor power resources are constrained [13], [14],

[15]. In this dissertation, an event-triggered ADP control method has been pro-

3

vided for its capability of computation efficiency. In the proposed event-triggered

control algorithm, the controller is only updated when an event is triggered, and

thus the computation is significantly saved.

● Usually, when we develop the ADP method to solve the Bellman equation, it re-

quires careful evaluate the benefits and cost not only the immediate action but also

the choices we may have in the future [16, 17, 18]. In order to achieve this goal,

the designed method needs a complete set of system information/states to achieve

the online optimal decision-making. However, in many practical situations, the

measured input/output data can only represent part of the system internal infor-

mation. In this dissertation, I further develop the event triggered ADP method in

the partially observable environment. Only the reduced information is applied to

design the adaptive observer and neural-network-based controller. The goal is to

obtain the competitive results with limited information.

● Since the goal representation design could be able to learn proper internal reward

through the interaction with the environment adaptively, rather than a fixed reward

formula all the way over time, I further integrate the goal representation technique

into the GDHP design and propose an advanced method which is goal represen-

tation GDHP (Gr-GDHP). In the proposed method, the goal network not only

provides the internal reinforcement signal, but also generates its partial deriva-

tives with respect to the system variables and control action. The objective of

this research is to improve the control performance comparing with the traditional

ADP methods and other goal representation ADP structure.

● This dissertation also develops an adaptive learning method for a class of unknown

nonlinear Markov jump systems based on ADP technique. Unlike the traditional

method, such as the linear matrix inequality (LMI) technique, the proposed in-

4

Figure 1. Dissertation Organization.

telligent approach includes the adaptive and learning capability of the system dy-

namics, indicating that this approach can still find the near optimal controller even

if the system parameters are changed.

1.4 Dissertation Organization

The rest of this dissertation is shown in Figure 1. It includes three parts of the

on-line ADP design for feedback control: Algorithms, Architectures, and Applications.

We focus on the problems exist in the ADP control field and develop novel algorithms

and architectures to improve the control performance or save the computation resources.

5

Then, the developed methods are demonstrated in a kind of Markov Jump Systems to

show the performance.

Chapter 2 provides the background of my research and literature review in cur-

rent community. It further provides the ADP development in feedback control and the

advantages of on-line learning.

Chapter 3 focuses on an event-triggered ADP control method. The triggered thresh-

old is designed to guarantee the stability of the developed method. Competitive results

are obtained with reduced sampling states.

Chapter 4 further investigates the event-triggered ADP scheme and develops it in

the partially observable environment. An observer is designed based on the neural net-

work techniques to recover the entire states from the system input/output data. Both the

observer and the controller are only updated when a specific event is triggered.

Chapter 5 studies the ADP control from the architecture side and presents a new

internal goal representation design based on the traditional adaptive critic design. An

additional goal network is integrated into the structure to facilitate the performance.

Then, a goal representation HDP method is developed with the explicit on-line learning

process.

Chapter 6 develops the ADP method for a class of Markov Jump Systems which

have the powerful modeling capability for power systems, network control systems,

manufacturing systems among others.

Chapter 7 concludes the dissertation and also discusses the future directions of this

on-line ADP method for feedback control.

List of References

[1] P. J. Werbos, “Intelligence in the brain: A theory of how it works and how to build
it,” Neural Networks, vol. 22, no. 3, pp. 200–212, 2009.

[2] P. J. Werbos, “Using ADP to Understand and Replicate Brain Intelligence: the
Next Level Design,” IEEE Int. Symposium on Approximate Dynamic Programming

6

and Reinforcement Learning (ADPRL07), pp. 209–216, 2007.

[3] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. Wiley-Interscience, 2007.

[4] F. L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network Control of Robot
Manipulators and Nonlinear Systems. Taylor & Francis, London, UK, 1999.

[5] P. J. Werbos, “ADP: The key direction for future research in intelligent control
and understanding brain intelligence,” IEEE Transactions on Systems Man and
Cybernetics Part B-Cybernetics, vol. 38, no. 4, pp. 898–900, 2008.

[6] X. Zhong, H. He, H. Zhang, and Z. Wang, “A neural network based online learning
and control approach for markov jump systems,” Neurocomputing, vol. 149, pp.
116–123, 2015.

[7] X. Zhong, H. He, and D. V. Prokhorov, “Robust controller design of continuous-
time nonlinear system using neural network,” in The 2013 International Joint Con-
ference on Neural Networks (IJCNN), Aug. 2013.

[8] X. Zhong, Z. Ni, Y. Tang, and H. He, “Data-driven partially observable dynamic
processes using adaptive dynamic programming,” in Proc. IEEE Symposium of
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE,
2014, pp. 1–8.

[9] F. L. Lewis, and D. Vrabie., “Reinforcement learning and adaptive dynamic pro-
gramming for feedback control,” IEEE Circuits Sys. Mag., vol. 9, no. 3, pp. 32–50,
2009.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. Cam-
bridge Univ Press, 1998, vol. 1, no. 1.

[11] W. Heemels, M. Donkers, and A. Teel, “Periodic event-triggered control for linear
systems,” Automatic Control, IEEE Transactions on, vol. 58, no. 4, pp. 847–861,
2013.

[12] P. Tallapragada and N. Chopra, “On event triggered tracking for nonlinear sys-
tems,” Automatic Control, IEEE Transactions on, vol. 58, no. 9, pp. 2343–2348,
2013.

[13] M. Lemmon, “Event-triggered feedback in control, estimation, and optimization,”
in Networked Control Systems. Springer, 2010, pp. 293–358.

[14] E. Garcia and P. J. Antsaklis, “Model-based event-triggered control with time-
varying network delays,” in Decision and Control and European Control Confer-
ence (CDC-ECC), 2011 50th IEEE Conference on. IEEE, 2011, pp. 1650–1655.

7

[15] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered
and self-triggered control,” in Decision and Control (CDC), 2012 IEEE 51st An-
nual Conference on. IEEE, 2012, pp. 3270–3285.

[16] X. Zhong, H. He, H. Zhang, and Z. Wang, “Optimal control for unknown discrete-
time nonlinear markov jump systems using adaptive dynamic programming,” Neu-
ral Networks and Learning Systems, IEEE Transactons on, vol. 25, no. 12, pp.
2141–2155, 2015.

[17] Z. Ni, H. He, X. Zhong, and D. V. Prokhorov, “Model-free dual heuristic dy-
namic programming,” IEEE transactions on neural networks and learning systems,
vol. 26, no. 8, pp. 1834–1839, 2015.

[18] X. Zhong, Z. Ni, and H. He, “A theoretical foundation of goal representation
heuristic dynamic programming,” Neural Networks and Learning Systems, IEEE
Transactions on, 2015, in press.

8

CHAPTER 2

On-line Data-driven Adaptive Dynamic Programming (ADP) Control

2.1 Feedback Control

The study of the means of developing control systems for human engineered sys-

tems to endow them with guaranteed performance and safety is called as feedback con-

trol theory. Included are control systems for aircraft, ships, race cars, robot systems,

industrial process, building temperature and climate regulation systems, and many more.

Feedback control systems require the designed algorithms and analysis to yield

guaranteed provable performance and safety margins. Feedback controller without per-

formance, stability, and robustness guarantees will not be accepted by industry. Provid-

ing such guarantees needs to use the framework and tools through mathematics. There-

fore, we should like to capture the ideas about reinforcement learning or adaptive dy-

namic programming in some sort of mathematical formulation. One such formulation is

the framework of Markov decision processes (MDP). MDP have been extensively used

to study and embody reinforcement learning systems. In MDP, the state spaces and

action spaces are generally discrete (i.e. state and action take on only certain allowed

discrete values). However, human engineered systems develop and move through time

and generally have states and actions that reside in continuous spaces. A broad class of

engineered systems can be effectively described by ordinary differential equations, since

these describe the development of a system through time based on its current status as

well as any inputs received, such as commands, disturbances, and so on.

This dissertation is to show the usefulness of ADP techniques for feedback con-

trol of human engineered systems. ADP techniques have been developed by computa-

tional intelligence community. Therefore, this requires bringing together ideas from two

communities-control systems engineering and computational intelligence. Since ADP

involves modifying the control policy based on responses from the environment, one

9

has the initial feeling that it should be closely related to adaptive control, a family of

successful control techniques held in high regard in control systems community.

2.2 Background of Adaptive Dynamic Programming

The fundamental idea of intelligence is to learn from the interaction. Over the past

decades, many researchers have explored computational approaches to learning from

active interaction with the environment. Imagine that we try to train a mouse to find its

way out of a specific maze. When the mouse succeeds in the test, we give it a cheese,

which is its favorite food as a reward. Otherwise, we give it nothing. After trial and

error learning, we find that the mouse can quickly find its way out of this maze no

matter where it is. In this process, even though the mouse does not know the exact

meaning of maze navigation, it knows a cheese can be given when certain position is

achieved. This process can be called as learning. Nowadays, we apply this idea when

we train the machines to copy intelligent human behaviors or to achieve some certain

goals. In the training process, we tell the machines which is good and which is bad.

This means we need to let the machines know the effect of their actions and situations.

One of the popular methods we explore to achieve this goal is ADP.

In an ADP problem, the learner or decision maker, like the mouse in the first ex-

ample, is called the agent. The thing it interacts with, like the maze, is called the en-

vironment. At one time step, the agent selects actions u(t) to the environment. The

environment responds to these actions and produces new situations x(t) to the agent. At

the same time, the environment also gives rise to rewards or punishments to the agent.

In the ADP control problems, we unite the reward or punishment signals as reinforce-

ment signals or utility functions which can be described as r(t) or U(x(t), u(t)). The

objective of the agent is to choose a control sequence, so that the total expected fu-

ture reinforcement signals can be minimized in the long run. Therefore, by defining

the interaction between an agent and its environment in terms of states, actions, and

10

reinforcement signals, ADP approach helps the agent to make the optimal decision.

Generally speaking, ADP can be categorized into three typical schemes: heuristic

dynamic programming (HDP), dual heuristic dynamic programming (DHP), and glob-

alized dual heuristic dynamic programming (GDHP) [1]. Specifically, the HDP design

adopts a critic network to estimate the performance index function or total cost-to-go

J(t) in the Bellman equation. This idea is essentially similar to the temporal-difference

(TD) method discussed in [2]. The detailed backpropagation rules for both the critic and

the action networks of the direct HDP design were proposed in [3]. The authors further

presented the stability of this method in [4, 5] where they demonstrated the theoretical

analysis that the estimation errors of neural network weights were uniformly ultimately

bounded (UUB) by Lyapunov stability construct. In [6], the authors provided the con-

vergence of the value-iteration-based HDP algorithm for general discrete-time nonlinear

systems. In [7], the policy iteration using adaptive dynamic programming for discrete-

time nonlinear systems was also discussed and demonstrated. Many other publications

on the theoretical analysis for the HDP approach were also provided and demonstrated

[8, 9, 10, 11]. To overcome the limitations of scalability, Werbos went beyond a critic

network approximating just the performance index function and further proposed two

new methods: DHP and GDHP [12], followed by many improvements and demonstra-

tions of such methods [13, 14]. The core idea of DHP is to use a critic network to

approximate the derivatives of the performance index function with respect to the state

variables. While GDHP takes advantage of both HDP and DHP by using a critic network

to approximate both the value function and its derivatives [15]. In [16, 17], the authors

built the GDHP controller for a class of unknown discrete-time nonlinear systems and

compared the performance among the HDP, the DHP and the GDHP controllers. Vari-

ous versions of ADP have been developed based on these three typical schemes, such as

the action-dependent (AD) version and model-dependent version.

11

Recently, a series of the goal representation heuristic dynamic programming

(GrHDP) was proposed to improve the online learning of the ADP design in [18, 19].

Unlike the typical ADP schemes (i.e., one critic and one action networks), the authors

integrated an additional network, namely the reference/goal network, to obtain an in-

ternal reinforcement signal to facilitate the optimal learning and control. This architec-

ture has been applied to various realistic and complex control problems. In [20], the

GrHDP design was applied on the tracking control problem and further on the real-time

simulink/virtual reality platform. In addition, multiple reference/goal networks design,

namely the hierarchical HDP design, was proposed and verified with promising control

performance [21]. More recently, the GrHDP controller was further tested on the maze

navigation problems [22, 23]. The goal representation dual heuristic dynamic program-

ming (GrDHP) was also proposed and the partial derivatives of utility function can be

directly obtained through a neural network rather than engineering designs [24, 25]. In

the society, many researchers also followed this trend and applied the three-network

HDP framework from different aspects. The improvement from the simulation results

were provided and discussed in [26, 27].

2.3 On-line Learning

Usually, in the ADP problems, we find a control law u(t) to minimize the dis-

counted total expected future reinforcement signals as

J∗(t) = min
u(t)

{r(t) + αJ∗(t + 1)} (1)

where r(t) is the reinforcement signal, 0 < α < 1 is the discount factor, and J(t) is the

discounted total expected future reinforcement signals which is called the performance

index.

Neural network techniques are applied to solve the problem. There are usually two

neural networks in the traditional adaptive critic design. Figure.2 is the schematic dia-

gram of typical HDP structure. An action network is used to provide the control action

12

Figure 2. The schematic diagram of a typical HDP structure.

to the system, and a critic network is used to evaluate the control performance over time.

For example, the action network generates the control action u(t) based on the observa-

tion of the system variables x(t). The critic network evaluates the performance of this

control policy based on the reinforcement signal feedback r(t) from the environment.

Meanwhile, the performance index J(t) will be approximated by the critic network. As

presented in Figure. 2, the objective function of critic network will be provided by the

temporal difference between current step and previous step in Bellman’s equation and

the performance index is applied to adjust the weights in action network.

In this dissertation, the learning process of the neural networks is conducted on-

line. This means we train the weight matrices in the order of the critic network, and the

action network. After the critic network weights are learned, we fix them thereafter and

start to train the weights in the action network. It can be observed that this process does

not require the knowledge of system functions. This is important, as the exact informa-

tion of system functions is difficult to obtain for general nonlinear systems. In addition,

this algorithm includes the adaptive capability, indicating that even if the parameters of

the system change, the optimal controller can still be determined automatically. The

on-line learning process also has the benefit that when the system functions are changed

13

or some disturbance happens, the method can still find the optimal control law through

the on-line learning scheme.

2.4 Related Work

Taking advantage of solving the problem without the knowledge of system func-

tions, ADP has attracted significantly increasing attention from both theoretical research

and real-world applications [15, 9, 28, 29, 30, 31] over the past decades by attempting

to obtain the approximate solutions of the Hamilton-Jacobi-Bellman (HJB) equation.

It has been widely recognized that ADP could be one of the “core methodologies” to

achieve optimal control in stochastic process in a general case to achieve brain-like in-

telligent control [32, 33]. Extensive efforts and promising results have been achieved

over the past decades. Here we highlight a few important ADP research from the theo-

retical perspective that are closely related to the research presented in this dissertation.

Interested readers can refer to the two important handbooks on ADP for many other

successful architectures, algorithms, models, and challenging engineering applications

[34, 35]. For instance, Al-Tamimi et al provided the convergence of the value-iteration-

based ADP algorithm for general discrete-time nonlinear systems in [6]. In another

paper [36], Abu-Khalaf et al introduced a new generalized non-quadratic function into

the performance index to evaluate the performance of systems with constrained control

inputs. This idea of bounded control was also related to the work presented in [37] and

[38], in which the authors focused on the optimal control problem for nonlinear systems

with unknown perturbation. The optimal control problem with constrained input was

also solved in [39], [40] based on the ADP algorithm. In [41], the feasibility of using

the solution of the optimal control problem to solve the robust control problem was pro-

vided for nonlinear system with matched uncertainties. The author further developed the

results into the nonlinear system with unmatched uncertainties in [42]. Zhong et al used

online neural network learning method to train the control law for robust control prob-

14

lem [11]. In [43], Wei and Liu proposed a new “θ-ADP” iterative algorithm to solve the

optimal control problem of infinite horizon discrete-time nonlinear systems by finding a

lower bound for parameter θ to assure the convergence of this algorithm. Motivated by

these results, Liu and Wei further developed the convergence conditions for the situation

that the iterative control policy and iterative performance index cannot be accurately ob-

tained [44]. In a related work [45], an optimal scheme for unknown nonaffine nonlinear

discrete-time systems by using cost function with discount factor was developed and

analyzed. For the affine nonlinear system, the optimal control by using general value it-

eration was provided in [46]. A new iterative ADP method was proposed to solve a class

of nonlinear zero-sum differential games in [47], [48] for continuous-time and discrete-

time situation, respectively. Wei et al developed a numerical iterative ADP algorithm

with convergence analysis in [49]. Moreover, the adaptive critic techniques were also

applied for engine torque and air-fuel ratio control [50] and tracking control [51]. From

the architecture point of view, He et al integrated a reference network into the classic

ADP structure to adaptively establish an internal goal representation to facilitate the op-

timal learning and control [18], [19]. Then, they used this new structure to solve tracking

control problem and obtain the effective performance [20], [52]. This GrHDP approach

was also applied on the maze navigation example and compared with many other rein-

forcement learning approaches in [53], [54]. The hierarchical GrHDP architecture was

further studied in [55], [21]. Furthermore, due to the problem of (partially) unknown

system dynamics, many researchers have developed different approaches to handle such

partially observable situations [56], [57]. In a similar situation, Zhang et al employed a

model network based on recurrent neural network structure to reconstruct the unknown

system dynamics for nonlinear systems [58].

When the ADP method is introduced into the feedback control system, it is impor-

tant to notice the stability and the convergence of the proposed methods. The proofs

15

of convergence for the ADP designs have been studied for years. In [6], the authors

proved the convergence of the value iterations using the HDP design and sought the

optimal solution of the discrete-time HJB equation. This idea was further extended to

prove the stability of the DHP and the GDHP in [45] and [16], respectively. In [44],

the convergence conditions were developed for the situation that the iterative control

policy and the iterative performance index cannot be accurately obtained. In [43], new

ADP control designs were proposed under the specific situations and the corresponding

convergence analysis was provided to show the accuracy of the proposed method. The

convergence analysis of HDP method was discussed for stochastic system in [59]. The

core idea in the above results was the stability of the iterative ADP algorithm. It was

shown that after infinite iteration steps, the value function could converge to the optimal

value and the corresponding control law could stabilize the system. Then neural network

techniques were applied to approximate the optimal value function and the controller.

Particularly, a pre-trained model network was required in these methods. For continu-

ous state and action spaces, theoretical guarantee of convergence is more challenging.

Several analytical frameworks were developed for ADP control designs under multiple

system formulations in [60], [61]. In these papers, the control system was described as

ẋ = f(x) + g(x)u(x) and the knowledge of g(x) was required for deriving the optimal

controller u(x).

Moreover, stability analysis was also developed based on the Lyapunov stability

approach in [4], [5], [58]. A positive definite Lyapunov function was designed and the

first difference of this function was derived as negative definite. Hence, the learning

weights of neural networks were guaranteed to converge to the optimal values under

certain conditions. In [3], the Robbins-Monro algorithms was used to find the optimal

weights for each neural networks during the learning process. In the reinforcement

learning field, researchers have demonstrated that the difference between the estimated

16

value function and the expected optimal value function can be bounded in an arbitrary

small range after infinite iteration [62], [63].

List of References

[1] F. Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An introduc-
tion,” IEEE Comput. Intel. Mag., vol. 4, no. 2, pp. 39–47, 2009.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. Cam-
bridge Univ Press, 1998, vol. 1, no. 1.

[3] J. Si and Y.-T. Wang, “Online learning control by association and reinforcement,”
Neural Networks, IEEE Transactions on, vol. 12, no. 2, pp. 264–276, 2001.

[4] F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct
heuristic dynamic programming,” Neural Networks, vol. 32, pp. 229–235, 2012.

[5] L. Yang, J. Si, K. S. Tsakalis, and A. A. Rodriguez, “Direct heuristic dynamic pro-
gramming for nonlinear tracking conrol with filtered tracking error,” IEEE Trans-
actions on Systems Man and Cybernetics Part B-Cybernetics, vol. 39, no. 6, pp.
1617–1622, 2009.

[6] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB
solution using approximate dynamic programming: convergence proof,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 4, pp. 942–
949, 2008.

[7] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems,” in press, 2013.

[8] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control approach
for discrete-time nonlinear systems,” IEEE Trans. on Cybernetics, vol. 43, no. 2,
pp. 779–789, 2013.

[9] H. G. Zhang, Y. H. Luo, and D. Liu, “Neural-network-based near-optimal control
for a class of discrete-time affine nonlinear systems with control constraints,” IEEE
Transactions on Neural Networks, vol. 20, no. 9, pp. 1490–1503, 2009.

[10] X. Zhong, Z. Ni, Y. Tang, and H. He, “Data-driven partially observable dynamic
processes using adaptive dynamic programming,” in Proc. IEEE Symposium of
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE,
2014, pp. 1–8.

[11] X. Zhong, H. He, and D. V. Prokhorov, “Robust controller design of continuous-
time nonlinear system using neural network,” in The 2013 International Joint Con-
ference on Neural Networks (IJCNN), Aug. 2013.

17

[12] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,” in System
modeling and optimization. Springer, 1982, pp. 762–770.

[13] F. Lewis and D. Liu, Eds., Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Wiley-IEEE Press, 2013.

[14] J. Si, A. G. Barto, W. B. Powell, D. C. Wunsch, et al., Handbook of learning and
approximate dynamic programming. IEEE Press Los Alamitos, 2004.

[15] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” Neural Networks
and Learning Systems, IEEE Transactions on, vol. 8, no. 5, pp. 997–1007, 1997.

[16] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based optimal
control for a class of unknown discrete-time nonlinear systems using globalized
dual heuristic programming,” Automation Science and Engineering, IEEE Trans-
actions on, vol. 9, no. 3, pp. 628–634, 2012.

[17] D. Liu and D. Wang, Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control. Wiley-IEEE Press, 2013, ch. Optimal Control of
Unkonwn Nonlinear Discrete-Time Systems Using the Iterative Globalized Dual
Heuristic Programming Algorithm, pp. 52–74.

[18] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and
optimization based on adaptive dynamic programming,” Neurocomputing, vol. 78,
no. 1, pp. 3–13, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/
ijon/ijon78.html#HeNF12

[19] H. He, Self-Adaptive Systems for Machine Intelligence. Wiley, 2011.

[20] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based on the dual
critic network design,” Neural Networks and Learning Systems, IEEE Transactions
on, vol. 24, no. 6, pp. 913–928, 2013.

[21] Z. Ni, H. He, D. Zhao, and D. V. Prokhorov, “Reinforcement learning control based
on multi-goal representation using hierarchical heuristic dynamic programming,”
in Neural Networks (IJCNN), The 2012 International Joint Conference on. IEEE,
2012, pp. 1–8.

[22] Z. Ni, H. He, J. Wen, and X. Xu, “Goal representation heuristic dynamic program-
ming on maze navigation,” Neural Networks, IEEE Transactions on, vol. 24, pp.
2038–2050, Dec. 2013.

[23] Z. Ni and H. He, “Heuristic dynamic programming with internal goal representa-
tion,” Soft Computing, vol. 17, pp. 2101–2108, 2013.

[24] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A General Utility
Function Representation for Dual Heuristic Dynamic Programming,” IEEE Trans.
on Neural Networks and Learning Systems, vol. 26, no. 3, pp. 614–627, Mar. 2015.

18

http://dblp.uni-trier.de/db/journals/ijon/ijon78.html#HeNF12
http://dblp.uni-trier.de/db/journals/ijon/ijon78.html#HeNF12

[25] Z. Ni, Y. Tang, H. He, and J. Wen, “Multi-machine power system control based on
dual heuristic dynamic programming,” in Proc. of 2014 IEEE Symposium on Com-
putational Intelligence Applications in Smart Grid (CIASG), Dec. 2014, Orlando,
FL, pp. 1–7.

[26] X. Luo, J. Si, and Y. Zhou, “An integrated design for intensified direct heuristic
dynamic programming,” in Adaptive Dynamic Programming And Reinforcement
Learning (ADPRL), 2013 IEEE Symposium on. IEEE, 2013, pp. 183–190.

[27] J. Chen and Z. Li, “A novel adaptive tropism reward ADHDP method with robust
property,” in Advances in Brain Inspired Cognitive Systems. Springer, 2013, pp.
288–295.

[28] D. Liu, Y. Zhang, and H. G. Zhang, “A self-learning call admission control scheme
for CDMA cellular networks,” IEEE Transactions on Neural Networks, vol. 16,
no. 5, pp. 1219–1228, 2005.

[29] J. Fu, H. He, and X. Zhou, “Adaptive learning and control for mimo system
based on adaptive dynamic programming,” IEEE Transactions on Neural Net-
works, vol. 22, no. 7, pp. 1133–1148, 2011.

[30] H. G. Zhang, Q. L. Wei, and Y. H. Luo, “A novel infinite-time optimal tracking
control scheme for a class of discrete-time nonlinear systems via the greedy HDP
iteration algorithm,” IEEE Transactions on System, Man and Cybernetics, Part B,
vol. 38, no. 4, pp. 937–942, 2008.

[31] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to solve
the continuous-time infinite horizon optimal control problem,” Automatica,
vol. 46, no. 5, pp. 878–888, May 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.automatica.2010.02.018

[32] P. J. Werbos, “Intelligence in the brain: A theory of how it works and how to build
it,” Neural Networks, vol. 22, no. 3, pp. 200–212, 2009.

[33] P. J. Werbos, “Using ADP to Understand and Replicate Brain Intelligence: the
Next Level Design,” IEEE Int. Symposium on Approximate Dynamic Programming
and Reinforcement Learning (ADPRL07), pp. 209–216, 2007.

[34] J. Si, A. G. Barto, W. B. Powell, and D. W. II, Eds., Handbook of Learning and
Approximate Dynamic Programming. Wiley-IEEE, 2004.

[35] F. L. Lewis and D. Liu, Eds., Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Wiley-IEEE, 2012.

[36] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear
systems with saturating actuators using a neural network HJB approach,”
Automatica, vol. 41, no. 5, pp. 779–791, 2005. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/automatica/automatica41.html#Abu-KhalafL05

19

http://dx.doi.org/10.1016/j.automatica.2010.02.018
http://dx.doi.org/10.1016/j.automatica.2010.02.018
http://dblp.uni-trier.de/db/journals/automatica/automatica41.html#Abu-KhalafL05
http://dblp.uni-trier.de/db/journals/automatica/automatica41.html#Abu-KhalafL05

[37] D. M. Adhyaru, I. N. Kar, and M. Gopal, “Bounded robust control of
nonlinear systems using neural network-based HJB solution,” Neural Computing
and Applications, vol. 20, no. 1, pp. 91–103, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/nca/nca20.html#AdhyaruKG11

[38] D. M. Adhyaru, I. N. Kar, and M. Gopal, “Fixed final time optimal control
approach for bounded robust controller design using Hamilton-Jacobi-Bellman
solution,” IET Control Theory and Applications, vol. 3, no. 1, pp. 1183–1195,
2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/nca/nca20.html#
AdhyaruKG11

[39] D. Liu, D. Wang, and X. Yang, “An iterative adaptive dynamic programming al-
gorithm for optimal control of unknown discrete-time nonlinear systems with con-
strained inputs,” Information Sciences, vol. 220, pp. 331–342, Jan. 2013.

[40] D. Wang, D. Liu, D. Zhao, Y. Huang, and D. Zhang, “A neural-network-based
iterative GDHP approach for solving a class of nonlinear optimal control problems
with control constraints,” Neural Computing and Applications, vol. 22, no. 2, pp.
219–227, 2013.

[41] F. Lin, R. D. Brandt, and J. Sun, “Robust control of nonlinear systems: Com-
pensating for uncertainty,” International Journal of Control, vol. 56, no. 6, pp.
1453–1459, 1992.

[42] F. Lin, “An optimal control approach to robust control design,” International Jour-
nal of control, vol. 73, no. 3, pp. 177–186, 2000.

[43] Q. Wei and D. Liu, “Adaptive dynamic programming with stable value iteration al-
gorithm for discrete-time nonlinear systems,” in Proc. IEEE Int. Joint Conf. Neural
Netw., 2012, pp. 1–6.

[44] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control approach
for discrete-time nonlinear systems,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B, vol. 43, no. 2, 2013.

[45] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of unknown non-
affine nonlinear discrete-time systems based on adaptive dynamic programming,”
Automatica, vol. 48, no. 8, pp. 1825–1832, 2012.

[46] H. Li and D. Liu, “Optimal control for discrete-time affine non-linear systems
using general value iteration,” IET Control Theory & Applications, vol. 6, no. 18,
pp. 2725–2736, 2012.

[47] H. Zhang, Q. Wei, and D. Liu, “An iterative adaptive dynamic programming
method for solving a class of nonlinear zero-sum differential games,” Automatica,
vol. 47, no. 1, pp. 207–214, 2011.

20

http://dblp.uni-trier.de/db/journals/nca/nca20.html#AdhyaruKG11
http://dblp.uni-trier.de/db/journals/nca/nca20.html#AdhyaruKG11
http://dblp.uni-trier.de/db/journals/nca/nca20.html#AdhyaruKG11

[48] D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game for discrete-
time nonlinear systems via iterative adaptive dynamic programming algorithm,”
Neurocomputing, vol. 110, pp. 92–100, 2013.

[49] Q. Wei and D. Liu, “Numerical adaptive learning control scheme for discrete-time
non-linear systems,” IET Control Theory & Applications, vol. 7, no. 11, pp. 1472–
1486, 2013.

[50] D. Liu, H. Javaherian, O. Kovalenko, and T. Huang, “Adaptive critic learning tech-
niques for engine torque and air–fuel ratio control,” Systems, Man, and Cybernet-
ics, Part B: Cybernetics, IEEE Transactions on, vol. 38, no. 4, pp. 988–993, 2008.

[51] D. Wang, D. Liu, and Q. Wei, “Finite-horizon neuro-optimal tracking control for
a class of discrete-time nonlinear systems using adaptive dynamic programming
approach,” Neurocomputing, vol. 78, no. 1, pp. 14–22, 2012.

[52] Z. Ni, X. Fang, H. He, D. Zhao, and X. Xu, “Real-time tracking control on adaptive
critic design with uniformly ultimately bounded condition,” in IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL’13), IEEE
Symposium Series on Computational Intelligence (SSCI), Apr. 2013.

[53] Z. Ni, H. He, J. Wen, and X. Xu, “Goal representation heuristic dynamic pro-
gramming on maze navigation,” IEEE Trans. on Neural Networks and Learning
Systems, vol. 24, no. 12, pp. 2038–2050, 2013.

[54] Z. Ni and H. He, “Heuristic dynamic programming with internal goal representa-
tion,” Soft Computing, vol. 17, pp. 2101–2108, 2013.

[55] H. He, Z. Ni, and D. Zhao, Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Wiley-IEEE Press, 2013, ch. Learning and
Optimization in Hierarchical Adaptive Critic Design, pp. 78–95.

[56] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for partially
observable dynamic processes: Adaptive dynamic programming using measured
output data,” IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol. 41, no. 1, pp. 14–25, 2011. [Online]. Available: http://dblp.uni-trier.de/db/
journals/tsmc/tsmcb41.html#LewisV11

[57] Z. Ni, H. He, and X. Zhong, Frontiers of Intelligent Control and Information Pro-
cessing. World Scientific Publishing, 2014, in press, ch. Experimental Studies on
Data-Driven Heuristic Dynamic Programming for POMDP.

[58] X. Zhang, H. Zhang, Q. Sun, and Y. Luo, “Adaptive dynamic programming-based
optimal control of unknown nonaffine nonlinear discrete-time systems with proof
of convergence,” Neurocomputing, vol. 91, pp. 48–55, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/ijon/ijon91.html#ZhangZSL12

21

http://dblp.uni-trier.de/db/journals/tsmc/tsmcb41.html#LewisV11
http://dblp.uni-trier.de/db/journals/tsmc/tsmcb41.html#LewisV11
http://dblp.uni-trier.de/db/journals/ijon/ijon91.html#ZhangZSL12

[59] X. Zhong, H. He, H. Zhang, and Z. Wang, “Optimal control for unknown discrete-
time nonlinear markov jump systems using adaptive dynamic programming,” Neu-
ral Networks and Learning Systems, IEEE Transactons on, vol. 25, no. 12, pp.
2141–2155, 2015.

[60] M. Abu-Khalaf, F. L. Lewis, and J. Huang, “Neurodynamic programming and
zero-sum games for constrained control systems,” Neural Networks, IEEE Trans-
actions on, vol. 19, no. 7, pp. 1243–1252, 2008.

[61] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive optimal
control for continuous-time linear systems based on policy iteration,” Automatica,
vol. 45, no. 2, pp. 477–484, 2009.

[62] A. Bernstein and N. Shimkin, “Adaptive-resolution reinforcement learning with
polynomial exploration in deterministic domains,” Machine learning, vol. 81,
no. 3, pp. 359–397, 2010.

[63] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill, Inc.,
1997.

22

CHAPTER 3

Event-triggered ADP Control

3.1 Introduction

In literature, digital control methods are relying on the periodic transmitted data

using the fixed sampling period. However, huge number of the transmitted data may

cause subsequent tremendous computation, especially when the computation bandwidth

or sensor power sources are constrained. In recent years, the event-triggered control

method has been studied for its capability of computation efficiency [1], [2]. In the

event-triggered control algorithm, the controller is only updated when an event is trig-

gered, and thus the computation is significantly saved [3], [4], [5]. Currently, the event-

triggered control methods are based on the accurate system function or model [6], [7].

In many cases, the complete knowledge of the system function is either infeasible or

very difficult to obtain. Recently, neural-network-based event-triggered optimal control

approaches were proposed and demonstrated with the promising performance in [8], [9],

[10].

ADP techniques have been studied and adopted for seeking the solution of the

Hamilton-Jacobi-Bellman (HJB) equation in recent years [11, 12, 13]. Extensive efforts

and promising results have been achieved over the past decades, such as the special

issue on feedback control provided well-known feedback control problems with new

techniques of ADP [14]. Higher level exploration, like [15, 16], showed the deeper

thinking for the future development on ADP community. In addition, ADP methods

demonstrate the control capabilities in many real applications, like the power system

stability/transient control in [17, 18], the looper system control in the iron and steel

company in [19, 20], the engine torque and air-fuel control in [21] and among others

[22, 23, 24]. Stability analysis of the ADP control on dynamic systems were provided

under certain conditions in [25, 26, 27]. The performance index function and the control

23

law were studied and demonstrated in [28, 29]. The robust controller with the ADP

technique was also presented in [30].

In this chapter, the event-triggered control technique is integrated into the ADP ap-

proach for the unknown nonlinear continuous-time system. First, the stability analysis

is investigated for the event-triggered method. The event-triggered controller is then

implemented with the neural network techniques. That is, we use an action network

to approximate the control law based on the event-triggered sample data (with event-

triggered techniques), and use a critic network to evaluate the control performance with

the value function. The pseudo-code for the event-triggered algorithm is provided and

the weights updating rules are subsequently derived. The weights evolution in the learn-

ing process are provided to show the achieved learned/optimal policy. The performance

of both the traditional ADP approach and the proposed event-triggered ADP approach

are also provided in the simulation studies for the comparative studies. From the sim-

ulation results, we know that the proposed event-triggered ADP method can achieve

competitive performance with limited sampled data. Note that this method relies on the

on-line learning process and the information of the system dynamics is unknown in the

learning process.

3.2 Event-triggered Method Design

Consider a nonlinear continuous-time system with the form

ẋ(t) = f(x(t)) + g(x(t))u(t) (2)

where x(t) ∈ Rn denotes the system state variable with the initial state x(0) = x0 and

u(t) ∈ Rm is the control input. f(x(t)) and g(x(t)) are the unknown system func-

tions. Assume that f(x(t)) + g(x(t))u(t) is Lipschitz continuous on a set Ω ⊆ Rn, and

f(0) = 0, g(0) = 0. In order to save resources, we design a sampled-data system which

is characterized by a monotonically increasing sequence of sampling instants {δj}∞j=0,

where δj < δj+1 for j = 0,1,2,⋯,∞. The time δj denotes the jth consecutive sampling

24

instant. The output of the sampled-data system is a sequence of the sampled states which

can be described by

x̂j = x(δj). (3)

For simplicity, we assume that the sampled-data system has zero task delay. Define the

gap function for ∀t ∈ [δj, δj+1) as

ej(t) = x̂j − x(t) (4)

which is the difference between the sampled state and the current state. It is obvious that

at the beginning of the interval [δj, δj+1), the gap function in (4) equals to zero. After

that, one expects the norm of the gap function to increase. When the value is larger

than a threshold eT , then the system state is again sampled by setting x̂j = x(t), thereby

forcing the gap function to zero again.

We are interested in the state-feedback controller γ(x̂j), which maps the sampled

state onto a control vector. Assume that γ(x̂j) is a Lipschitz continuous function. The

obtained control sequence {γ(x̂j)}∞j=0 becomes a continuous-time signal through a zero-

order hold (ZOH). In particular, this control signal can be seen as a piecewise constant

function and within any time interval [δj, δj+1), the controller is u(t) = γ(x̂j), j =

0,1,2,⋯,∞.

Rewrite equation (4) as x̂j = x(t) + ej(t), so that the closed loop dynamics can be

described as

ẋ(t) = f(x(t)) + g(x(t))γ(x(t) + ej(t)), ∀t ∈ [δj, δj+1). (5)

Similar to the traditional ADP problem, it is desired to find a controller u(t) that

minimizes the performance index given as

V (x0) = ∫

∞

0
U(x(τ), u(τ))dτ

= ∑
⋃
j
[δj ,δj+1)=[0,∞)

∫

δj+1

δj
U(x(τ), γ(x̂j))dτ

(6)

25

where U(x(τ), γ(x̂j)) is the utility function with U(0,0) = 0. In this chapter, the utility

function is given by

U(x(t), γ(x̂j)) = x
T (t)Qx(t) + γT (x̂j)Rγ(x̂j) (7)

in which Q and R are symmetric and positive definite matrices with appropriate dimen-

sions, and they can be described by

Q = q ⋅ qT R = r ⋅ rT (8)

Definition 1: A law u(t) is said to be an admissible control with respect to (6) on

Ω, if u(t) is continuous on Ω and can stabilize system (2) for all x0 ∈ Ω, u(t) = 0 if

x(t) = 0, and V (x0) is finite, ∀x(t) ∈ Ω.

Equation (6) can be expanded as follows

V (x0) = ∑
⋃
j
[δj ,δj+1)=[0,δ1)

∫

δj+1

δj
U(x(τ), γ(x̂j))dτ

+ ∑
⋃
j
[δj ,δj+1)=[δ1,∞)

∫

δj+1

δj
U(x(τ), γ(x̂j))dτ

=∫

δ1

0
U(x(τ), γ(x̂j))dτ + V (x(δ1)).

(9)

After transformation, equation (9) becomes

lim
δ1→0

[
V (x(δ1)) − V (x0)

δ1

]

= − lim
δ1→0

1

δ1
∫

δ1

0
[xT (τ)Qx(τ) + γT (x̂j)Rγ(x̂j)]dτ.

(10)

Then, we obtain the infinitesimal version of (6) as

V T
x (f(x(t)) + g(x(t))γ(x̂j, t)) + x

T (t)Qx(t)γT (x̂j, t)Rγ(x̂j, t) = 0 (11)

where Vx =
∂V (x(t))
∂x(t) is the partial derivative of the performance index with respect to the

state and γ(x̂j, t) is the continuous-time signal of the event-triggered control law γ(x̂j).

Given that u(t) = γ(x̂j, t) is an admissible control law, if V (x(t)) satisfies (11) and

26

Q ≥ 0, R ≥ 0, then V (x(t)) is a Lyapunov function for the system (2) with the control

law u(t) = γ(x̂j, t). Note that, in order to simplify the expression, we use γ(x̂j) to

represent γ(x̂j, t) in the following presentation.

According to Bellman’s optimality equation, the optimal performance index

V ∗(x(t)) satisfies

min
γ(x̂j)

[V ∗T
x (f(x(t)) + g(x(t))γ(x̂j)) + x

T (t)Qx(t) + γT (x̂j)Rγ(x̂j)] = 0. (12)

Assume that the minimum on the left-hand side of the equation (12) exists and is

unique. Therefore, the optimal control γ∗(x̂j) satisfies the first-order necessary con-

dition, which is given by the gradient of (11) with respect to γ(x̂j). Note that, in the

event-triggered method, the controller is only updated when an event is triggered. In

other words, the controller is designed based on the event-triggered sampling state x̂j

rather than the real state x(t). Hence, we have g(x(t)) = g(x̂j) and Vx = Vx̂j , where

Vx̂j =
∂V (x̂j)

∂x(t) is the partial derivative of the event-triggered performance index with re-

spect to the state. Therefore, we obtain the event-triggered optimal control as

u∗(t) = γ∗(x̂j) = −
1

2
R−1gT (x̂j)V

∗
x̂j
. (13)

By substituting (13) into (11), we obtain the HJB equation under event-triggered

method as follows

V ∗T
x f(x(t)) −

1

2
V ∗T
x g(x(t))R−1gT (x̂j)V

∗
x̂j

+
1

4
V ∗T
x̂j
g(x̂j)R

−1gT (x̂j)V
∗
x̂j
+ xT (t)Qx(t) = 0

(14)

with V ∗(0) = 0.

In the next section, it will be shown that the event-triggered control (13) is admis-

sible and can stabilize the nonlinear continuous-time system (2).

3.3 Stability Analysis of the Event-Triggered Method

Assumption: The controller γ(x) is Lipschitz continuous with respect to the gap,

∥γ(x(t)) − γ(x̂j)∥ = ∥γ(x(t)) − γ(x(t) + ej(t))∥ ≤ L∥ej(t)∥ (15)

27

where L is a positive real constant.

The stability analysis of the event-triggered controller is provided as follows.

Theorem 1: Consider the nonlinear continuous-time system (2). For ∀t ∈

[δj, δj+1), the control law is given by (13) and assume V ∗(x(t)) is the solution of the

event-triggered HJB equation (14). If the triggered condition is defined as follows

∥ej(t)∥
2 ≤ ∥eT ∥

2 =
(1 − α2)

L2∥r∥2
λ(Q)∥x(t)∥2 +

1

L2
∥γ∗(x̂j)∥

2 (16)

where λ(Q) is the minimal eigenvalue of Q, α ∈ (0,1) is the designed parameter, and

eT is the threshold of the gap between the sampled and the real state, then the following

conditions hold.

(1) The event-triggered control law (13) is an admissible control.

(2) The event-triggered control law (13) can asymptotically stabilize the nonlinear

system (2).

Proof: Let us start with the admissibility part. From equation (13), we know when

the state x̂j = 0, then g(x̂j) = 0 and hence γ∗(x̂j) = 0. The continuity assumption on

f(x(t)) + g(x(t))u(t) and γ∗(x̂j) implies that γ∗(x̂j) is continuous and the system (2)

cannot jump to infinity by any one step of finite control. Moreover because f(0) = 0,

g(0) = 0, when the system state x(t) reaches the equilibrium state, γ∗(x̂j) becomes

zero and the state is kept at zero. Therefore, according to Definition (1), we obtain

event-triggered control law γ∗(x̂j) is an admissible control which proves the part (1).

Now we will show that γ∗(x̂j) can asymptotically stabilize the nonlinear

continuous-time system (2). Let γ∗(x̂j(t)) and V ∗(x(t)) be the optimal event-triggered

control law and the optimal performance index obtained in equation (13) and (14), re-

spectively. From equation (6), we know V ∗(x(t)) is a positive definite function, namely,

V ∗(x(t)) > 0 for any x(t) ≠ 0 and V ∗(x(t)) = 0 when x(t) = 0. Hence, V ∗(x(t)) can

be seen as a Lyapunov function.

With the event-triggered controller, the derivative of V ∗(x(t)) along the system

28

trajectory can be obtained as,

V̇ ∗(x(t)) = (
∂V ∗(x(t))

∂x(t)
)

T

⋅ ẋ

= V ∗T
x f(x(t)) + V ∗T

x g(x(t))γ∗(x̂j)

(17)

Here, we recall the control law and the HJB equation in the traditional ADP method

as

u∗(t) = −
1

2
R−1gT (x)V ∗

x(t) ≡ γ
∗(x(t)) (18)

and

V ∗T
x f(x(t)) −

1

4
V ∗T
x g(x(t))R−1gT (x(t))V ∗

x + x
T (t)Qx(t) = 0. (19)

Therefore,

gT (x(t))V ∗
x = −2Rγ∗(x(t)) (20)

V ∗T
x f(x(t)) =

1

4
V ∗T
x g(x(t))R−1gT (x(t))V ∗

x + x
T (t)Qx(t) (21)

Substitute (20) and (21) into (17), we have

V̇ ∗(x(t)) =
1

4
V ∗T
x g(x(t))R−1gT (x(t))V ∗

x + x
T (t)Qx(t) + V ∗T

x g(x(t))γ∗(x̂j)

=γ∗T (x(t))Rγ∗(x(t)) − xT (t)Qx(t) − 2γ∗T (x(t))Rγ∗(x̂j)

(22)

Because R = r ⋅ rT , we obtain

γ∗T (x(t))Rγ∗(x(t)) − 2γ∗T (x(t))Rγ∗(x̂j) = ∥rTγ∗(x(t)) − rTγ∗(x̂j)∥
2 − ∥rTγ∗(x̂j)∥

2.

(23)

By substituting (23) into (22) and using the Lipschitz condition from Assumption

1, we have

V̇ ∗(x(t)) =∥rTγ∗(x(t)) − rTγ∗(x̂j)∥
2 − ∥rTγ∗(x̂j)∥

2 − xT (t)Qx(t)

≤L2∥r∥2∥ej(t)∥
2 − ∥rTγ∗(x̂j)∥

2 − xT (t)Qx(t)

≤L2∥r∥2∥ej(t)∥
2 − ∥rTγ∗(x̂j)∥

2 − λ(Q)∥x(t)∥2

= − α2λ(Q)∥x(t)∥2 + [− (1 − α2)λ(Q)∥x(t)∥2

+L2∥r∥2∥ej(t)∥
2 − ∥rTγ∗(x̂j)∥

2]

(24)

29

since −xT (t)Qx(t) ≤ −λ(Q)∥x(t)∥2, where λ(Q) is the minimal eigenvalue of Q.

Based on the condition (16), we know that the last three terms in (24) is guaranteed

negative. Therefore, (24) can be modified as follows

V̇ ∗(x(t)) ≤(1 − α2)λ(Q)∥x(t)∥2 + ∥r∥2∥γ∗(x̂j)∥
2 − ∥rTγ∗(x̂j)∥

2 − λ(Q)∥x(t)∥2

= − α2λ(Q)∥x(t)∥2

<0

(25)

for any x(t) ≠ 0. Thus, u∗(t) = γ∗(x̂j) can asymptotically stabilize the nonlinear

continuous-time system (2). The conclusion holds. ∎

From Theorem 1, we know that the controller is guaranteed stable (under certain

conditions) with the event-triggered sample data. In the next section, we are applying

the neural network methods to implement the event-triggered ADP approach.

3.4 Neural-network-based Event-Triggered Controller Design

In this section, an ADP approach is provided to solve the event-triggered HJB equa-

tion (14) and approximate the optimal event-triggered control law (13). The neural

network techniques are employed to implement this approach. Two subsections are

included. The first one shows the event-triggered online learning ADP algorithm for

nonlinear continuous-time system. The neural network implementation is presented in

the second subsection.

3.4.1 Event-Triggered Control Law Estimation

Set the initial triggered state as x̂0 = x0. Note that if we use equation (13) to

calculate the event-triggered control law, the system function g(x̂j) is required which

is unknown in this chapter. Hence, we provide a method to approximate the control

updating equation (13). The algorithm can be described as Algorithm 1.

From Algorithm 1, it is obvious that by estimation of the control law, no system in-

formation is required during the learning process. The control law is only updated when

30

Algorithm 1 Event-triggered ADP Algorithm Using Only the Measured Input-Output
Data.

Set i = 0, j = 0, x̂0 = x0

Calculate µ(x̂j) = −1
2R

−1gT (x̂j)V̂x̂j
for all i < Nrun do

State estimation:
˙̂x = Ax̂ + F̂A(x̂, µ(x̂j)) +G(y −Cx̂)
Policy evaluation:
V (x̂) = min

µ(x̂j)
∫
∞

0 U(x̂(τ), µ(x̂j))dτ

if x̂j − x̂ = êj > eT then
Set j = j + 1, x̂j = x̂
Update µ(x̂j) = arg min

µ(x̂j)
{V (x̂j)}

end if
Update system information ẋ = F (x,µ(x̂j)); y = Cx
Set i = i + 1

end for

an event is triggered. In the next subsection, we will provide the explicit approximation

process based on neural network techniques.

3.4.2 Neural-Network-based Implementation

The neural networks are employed in this subsection to approximate the event-

triggered control law. The architecture of this event-triggered method is shown in

Figure.3. A critic network and an action network are built to approximate the perfor-

mance index and the control law of the event-triggered method, respectively. We can

observe that a sampled-data system is used during this process with the sampling in-

stants {δj}∞j=0. As we provided above, {δj}∞j=0 are obtained based on the gap function

(ej(t)) which is the difference between the current and the sampled state. When ej(t)

is larger than the threshold eT , the system state is sampled by x̂j = x(δj), and the action

network is updated based on the event-triggered sample state. Then through the ZOH,

the control law sequence is transformed into a continuous-time control signal. Assume

that the sampling period for the discretization is △t. We set both the critic and the action

network used in this chapter be the three-layer networks. In the following part, we will

31

Figure 3. Architecture of the event-triggered method based on the ADP approach.

provide the online learning rules for both neural networks.

Critic Network

The critic network is used to approximate the performance index V (x(t)) which

can be formulated as

V (x(t)) = ωTc2(t)Φ(h(t)) (26)

where ωTc2(t) is the weight matrix between the hidden and the output layer of the critic

network and h(t) = ωTc1[xT (t), γT (x̂j)], to which ωc1 denotes the weight matrix between

the hidden and the input layer. Note that ωc1 is randomly chosen as initial and is kept

constantly during the implementation process in this chapter.

Φ(x) is a sigmoid function that can be described as

Φ(x) =
1 − e−x

1 + e−x
. (27)

The purpose of the sigmoid function is to constrain the output into [−1,1]. Here the

sigmoid function is applied on the hidden to output nodes.

Define the error function for the critic network by

ec(t) = V (x(t)) − [V (x(t −△t)) −U(x(t), γT (x̂j)] (28)

32

where △t is the sampling period during discretization.

Therefore, to update the weight matrix is to minimize the following objective func-

tion

Ec(t) =
1

2
e2
c(t). (29)

Hence, we obtain the critic network weights adjustments for the hidden to the out-

put layer

ωc2(t +△t) = ωc2(t) − βc (
∂Ec(t)

∂ωc2(t)
) (30)

where βc > 0 is the learning rate of the critic network. According to the chain-

backpropagation rules, we derive the tuning formula as

∂Ec(t)

∂ωc2(t)
=

∂Ec(t)

∂V (x(t))

∂V (x(t))

∂ωc2(t)
(31)

Action Network

The purpose of the action network is to estimate the optimal event-triggered control

law. As we discussed, the action network is only updated when an event is triggered.

Therefore, the estimated control law can be formulated as

γT (x̂j) = Φ(ωTa2(δj)g(δj)) (32)

g(δj) = Φ(ωTa1(δj)x̂j) (33)

where ωa1(δj) and ωa2(δj) are the weight matrices of the input-to-hidden and the

hidden-to-output layer at the sampled time δj , respectively. Sigmoid function is ap-

plied on both hidden and the output side. x̂j is the sampled state and is also the input of

the action network. The same as above, we fix the input-to-hidden layer weight matrix

ωa1(δj) which is chosen initially at random. Therefore, only the weight matrix ωa2(δj)

between the hidden and the output layer is needed to be updated.

We know the objective for the action network is to minimize the total future cost,

33

hence we define the error function here by

ea(δj) = V (x̂j) −Uc (34)

where Uc is the ultimate utility function. The value of Uc is critical in ADP design and

it could be variant in different application. In this chapter, we choose Uc = 0.

The objective function of the action, therefore, can be written as

Ea(δj) =
1

2
e2
a(δj) (35)

The gradient descent method is also applied to minimize the approximation error

(35) as

ωa2(δj+1) = ωa2(δj) − βa (
∂Ea(δj)

∂ωa2(δj)
) (36)

where βa > 0 is the learning rate of the action network. From the chain backpropagation

rule, we obtain
∂Ea(δj)

∂ωa2(δj)
=
∂Ea(δj)

∂V (x̂j)

∂V (x̂j)

∂γT (x̂j)

∂γT (x̂j)

∂ωa2(δj)
(37)

3.5 Simulation Studies

Consider a single link robot arm with the following dynamic function

θ̈(t) = −
MgH

G
sin(θ(t)) −

D

G
θ̇(t) +

1

G
u(t) (38)

where θ(t) is the angle position of robot arm, and u(t) is the control input. Moreover,

M is the mass of the payload, G is the moment of inertia, g is the acceleration of gravity,

H is the length of the arm and D is the viscous friction, where g, H , D are the system

parameters andM ,G are the design parameters. Set the values of the system parameters

as g = 9.81, D = 2, and L = 0.5, and the design parameters M and G are alterable.

Assuming x1(t) = θ(t) and x2(t) = θ̇(t), the dynamic function (38) can be rewritten by

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) = −
2

G
x2(t) +

1

G
u(t) −

4.905M sin(x1(t))

G
.

(39)

34

0 5 10 15
−0.5

0

0.5

1

Time/s
u

0 5 10 15
−0.5

0

0.5

1

Time/s

x 1

0 5 10 15
−1.5

−1

−0.5

0

0.5

Time/s

x 2

Event−Trigger
Traditional ADP

Event−Trigger
Traditional ADP

Event−Trigger
Traditional ADP

Figure 4. Comparisons of system responses by the event-triggered and the traditional
ADP method with M = 1 and G = 1.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time/s

S
a

m
p

le
 P

e
ri
o

d

Figure 5. Inter-event instants during the learning process with M = 1 and G = 1.

35

0 5 10 15
0

0.05

0.1

0.15

0.2

Time/s

Gap ||e
j
(t)||

Threshold ||e
T
||

Figure 6. Response of the gap ∥ej(t)∥ and the threshold ∥eT ∥ with M = 1 and G = 1.

We use the event-triggered method proposed in this chapter to solve the problem.

Choose the threshold according to condition (16) with L = 3, α = 0.95. Set Q, R and r

are the identity matrices with appropriate dimensions. Therefore, the threshold is

∥eT ∥
2 =

(1 − α2)

L2∥r∥2
λ(Q)∥x(t)∥2 +

1

L2
∥γ(x̂j)∥

2

=
1 − 0.952

9
∥x(t)∥2 +

1

9
∥γ(x̂j(t))∥

2.

(40)

When the gap ej(t) = x̂j − x(t) satisfies the condition ∥ej(t)∥2 > ∥eT ∥2, then the system

state is again sampled by setting x̂j = x(t).

Two three-layer neural networks are built as the critic and the action networks. The

neuron structures of the critic and the action network are 3−8−1 (i.e., three input neuros,

eight hidden neuros, and one output neuros) and 2 − 6 − 1, respectively. Set the learning

rates of both networks as βc = βa = 0.01, and the sampling period for discretization as

△t = 0.03s. The initial weights of both networks are chosen randomly within [−1,1].

The initial state is set to x0 = [1,−0.5]. The input of the action network is the sampled

state.

In the first case, we set the design parameters as M = 1, G = 1. By employing

the event-triggered method proposed in this chapter, we obtain the system responses in

36

Figure 4. Note that, in order to demonstrate the performance of our method, we also con-

duct this example under the traditional ADP method with the same initial weights which

is also presented in Figure 4. From the comparison, we know that the event-triggered

control law keeps the same at period [δj, δj+1) and is only updated when an event is

triggered. The control law evolution and the state trajectories of the event-triggered

method are very close to those of the traditional ADP method. This means efficiently

reducing the sampled times does not influence the system performance. The sampling

period during the event-triggered learning process is provided in Figure 5 which shows

that the sampling period is up to 0.27s. The relationship between the gap ∥ej(t)∥ and the

threshold ∥eT ∥ is shown in Figure 6. The learning trajectories of the critic and the action

network weights from the hidden to the output layer is provided in Figure 7. It is obvi-

ous that the weights converge after 3s. In particular, comparing the event-triggered and

0 5 10 15
−2

0

2

4

Time/s

W
e

ig
h

ts
 o

f
C

N

0 5 10 15
−1

0

1

2

Time/s

W
e

ig
h

ts
 o

f
A

N

ω
c2

(1)

ω
c2

(2)

ω
c2

(3)

ω
c2

(4)

ω
c2

(5)

ω
c2

(6)

ω
c2

(7)

ω
c2

(8)

ω
a2

(1)

ω
a2

(2)

ω
a2

(3)

ω
a2

(4)

ω
a2

(5)

ω
a2

(6)

Figure 7. Learning trajectories of the critic and the action network weights from the
hidden to the output layer with M = 1 and G = 1.

37

0 5 10 15 20
−1

−0.5

0

0.5

1

Time/s
u

0 5 10 15 20
−1

−0.5

0

0.5

1

Time/s

x 1

0 5 10 15 20
−2

−1

0

1

2

Time/s

x 2

Event−Trigger
Traditional ADP

Event−Trigger
Traditional ADP

Event−Trigger
Traditional ADP

Figure 8. Comparisons of system responses by the event-triggered and the traditional
ADP method with M = 5 and G = 5.

the traditional ADP method, the event-triggered controller uses 161 samples of the state

while the traditional ADP controller uses 500 samples, which means the even-triggered

method improved the learning process.

In the second case, we conduct the example with the design parameters M = 5,

G = 5. The comparison of the system responses by the event-triggered and the tradi-

tional ADP method with the same initial weights is presented in Figure 8. We can ob-

serve that the event-triggered method also works with the high design parameters. The

sampling period during the learning process of the event-triggered method is provided

in Figure 9. We know the sampling period is up to 0.39s in this case. The relationship

38

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time/s

S
a

m
p

le
 P

e
ri
o

d

Figure 9. Inter-event instants during the learning process with M = 5 and G = 5.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time/s

Gap ||e
j
(t)||

Threshold ||e
T
||

Figure 10. Response of the gap ∥ej(t)∥ and the threshold ∥eT ∥ with M = 5 and G = 5.

39

0 5 10 15 20
−5

0

5

Time/s

W
e
ig

h
ts

 o
f
C

N

0 5 10 15 20
−4

−2

0

2

4

Time/s

W
e
ig

h
ts

 o
f
A

N

ω
c2

(1)

ω
c2

(2)

ω
c2

(3)

ω
c2

(4)

ω
c2

(5)

ω
c2

(6)

ω
c2

(7)

ω
c2

(8)

ω
a2

(1)

ω
a2

(2)

ω
a2

(3)

ω
a2

(4)

ω
a2

(5)

ω
a2

(6)

Figure 11. Learning weights of the critic and the action network from the hidden to the
output layer with M = 5 and G = 5.

between the gap ∥ej(t)∥ and the threshold ∥eT ∥ is shown in Figure 10. Moreover, the

learning weights of the critic and the action network from the hidden to the output layer

is provided in Figure 11. In this learning process, the event-triggered controller uses 291

samples of the state while the traditional ADP controller uses 800 samples. This means

the proposed method can reduce the computation cost and achieve the competitive re-

sults at the same time.

Additionally, without loss of generality, we choose the values of the design param-

eters as M = 1,2,⋯,20 and G = 1,2,⋯,20. For each pair of the design parameters, we

conduct the simulation based on the proposed method for 100 times. The sampling pe-

riod for discretization is set as △t = 0.03s and each simulation lasts 25s. This means the

traditional ADP controller will use 800 samples to stabilize the system. However, from

40

0 5 10 15 20
0

50

100

150

200

250

300

350

M=G

E
v
e

n
t−

tr
ig

g
e

re
d

 s
a

m
p

le
s

Figure 12. The average number of the samples used by the event-triggered controller
for each parameters pair within [1,20].

Figure 12, we know the average number of the samples used by the event-triggered

controller for each parameters pair is around 300, which is significantly less than the

samples used by the traditional ADP controller. All the simulation studies indicate that

the designed event-triggered ADP control method is effective.

3.6 Conclusion

In this chapter, we design an event-triggered controller for nonlinear continuous-

time system using ADP approach. The system function is assumed to be unknown. The

controller is updated only based on the triggered state. A zero-order hold is used to

transform the control sequence into a continuous-time signal. The threshold for trigger-

ing an event is discussed and the stability of this event-triggered controller is analyzed.

Neural network techniques are used to approximate the performance index and the con-

troller in event-triggered method, respectively. The stability of the designed controller

is analyzed in this chapter. The simulation results demonstrate the effectiveness of the

designed controller and also verify the theoretical analysis. In the next chapter, I am

going to further demonstrate its adaptive learning mechanism in the partially observable

41

environment.

List of References

[1] W. Heemels, M. Donkers, and A. Teel, “Periodic event-triggered control for linear
systems,” Automatic Control, IEEE Transactions on, vol. 58, no. 4, pp. 847–861,
2013.

[2] P. Tallapragada and N. Chopra, “On event triggered tracking for nonlinear sys-
tems,” Automatic Control, IEEE Transactions on, vol. 58, no. 9, pp. 2343–2348,
2013.

[3] M. Lemmon, “Event-triggered feedback in control, estimation, and optimization,”
in Networked Control Systems. Springer, 2010, pp. 293–358.

[4] E. Garcia and P. J. Antsaklis, “Model-based event-triggered control with time-
varying network delays,” in Decision and Control and European Control Confer-
ence (CDC-ECC), 2011 50th IEEE Conference on. IEEE, 2011, pp. 1650–1655.

[5] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered
and self-triggered control,” in Decision and Control (CDC), 2012 IEEE 51st An-
nual Conference on. IEEE, 2012, pp. 3270–3285.

[6] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-triggered control
for discrete-time systems,” in American Control Conference (ACC), 2010. IEEE,
2010, pp. 4719–4724.

[7] W. Heemels and M. Donkers, “Model-based periodic event-triggered control for
linear systems,” Automatica, 2013.

[8] A. Sahoo, H. Xu, and S. Jagannathan, “Neural network-based adaptive event-
triggered control of affine nonlinear discrete time systems with unknown inter-
nal dynamics,” in American Control Conference (ACC), 2013. IEEE, 2013, pp.
6418–6423.

[9] A. Sahoo, H. Xu, and S. Jagannathan, “Neural network-based adaptive event-
triggered control of nonlinear continuous-time systems,” in Intelligent Control
(ISIC), 2013 IEEE International Symposium on. IEEE, 2013, pp. 35–40.

[10] D. Tolic, R. Fierro, and S. Ferrari, “Optimal self-triggering for nonlinear systems
via approximate dynamic programming,” in Control Applications (CCA), 2012
IEEE International Conference on. IEEE, 2012, pp. 879–884.

[11] J. Si, A. G. Barto, W. B. Powell, and D. C. Wunsch, Eds., Handbook of Learning
and Approximate Dynamic Programming. IEEE Press and John Wiley & Sons,
2004.

42

[12] F. Lewis and D. Liu, Eds., Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Wiley-IEEE Press, 2013.

[13] H. Zhang, D. Liu, Y. Luo, and D. Wang, Adaptive Dynamic Programming for
Control: Algorithms and Stability (Communications and Control Engineering).
Springer, 2013.

[14] F. L. Lewis, D. Liu, and G. G. Lendaris, “Special issue on adaptive dynamic pro-
gramming and reinforcement learning in feedback control,” IEEE Transactions on
System, Man and Cybernetics, Part B, vol. 38, no. 4, pp. 896–897, 2008.

[15] P. J. Werbos, “ADP: The key direction for future research in intelligent control
and understanding brain intelligence,” IEEE Transactions on Systems Man and
Cybernetics Part B-Cybernetics, vol. 38, no. 4, pp. 898–900, 2008.

[16] G. G. Lendaris, “Higher level application of adp: A next phase for the control
field?” IEEE Transactions on System, Man and Cybernetics, Part B, vol. 38, no. 4,
pp. 901–912, 2008.

[17] W. Qiao, G. Venayagamoorthy, and R. Harley, “DHP-based wide-area coordinating
control of a power system with a large wind farm and multiple FACTS devices,”
in Proc. IEEE Int. Conf. Neural Netw., 2007, pp. 2093–2098.

[18] S. Ray, G. K. Venayagamoorthy, B. Chaudhuri, and R. Majumder, “Comparison of
adaptive critics and classical approaches based wide area controllers for a power
system,” IEEE Trans. on Syst. Man, Cybern., Part B, vol. 38, no. 4, pp. 1002–1007,
2008.

[19] J. Fu, H. He, and X. Zhou, “Adaptive learning and control for mimo system based
on adaptive dynamic programming,” IEEE Trans. Neural Networks, vol. 22, no. 7,
pp. 1133–1148, 2011.

[20] J. Fu, H. He, and Z. Ni, “Adaptive Dynamic Programming with Balanced Weights
Seeking Strategy,” in IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), IEEE Symposium Series on Computational In-
telligence (SSCI), Paris, France, 2011.

[21] D. Liu, H. Javaherian, O. Kovalenko, and T. Huang, “Adaptive critic learning tech-
niques for engine torque and air-fuel ratio control,” IEEE Transactions on Systems
Man and Cybernetics Part B-Cybernetics, vol. 38, no. 4, pp. 988–993, 2008.

[22] D. Liu, Y. Zhang, and H. G. Zhang, “A self-learning call admission control scheme
for CDMA cellular networks,” IEEE Transactions on Neural Networks, vol. 16,
no. 5, pp. 1219–1228, 2005.

[23] Y. Tang, H. He, Z. Ni, J. Wen, and X. Sui, “Reactive power control of grid-
connected wind farm based on adaptive dynamic programming,” Neurocomputing,
vol. 125, pp. 125–133, Feb. 2014.

43

[24] C. Lu, J. Si, and X. Xie, “Direct heuristic dynamic programming for damping
oscillations in a large power system,” IEEE Trans. Sys. Man Cyber. Part B, vol. 38,
no. 4, pp. 1008–1013, 2008.

[25] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear hjb solu-
tion using approximate dynamic programming: Convergence proof,” IEEE Trans-
actions on System, Man and Cybernetics, Part B, vol. 38, no. 4, pp. 943–949, 2008.

[26] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control approach
for discrete-time nonlinear systems,” IEEE Transactions on Cybernetics, vol. 43,
no. 2, pp. 779–789, 2013.

[27] P. He and S. Jagannathan, “Reinforcement learning neural-network-based con-
troller for nonlinear discrete-time systems with input contraints,” IEEE Transac-
tions on Systems Man and Cybernetics Part B-Cybernetics, vol. 37, no. 2, pp.
425–436, 2007.

[28] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems,” IEEE Trans. on Neural Networks and Learning
Systems, in press.

[29] D. Liu, D. Wang, and H. Li, “Decentralized stabilization for a class of continuous-
time nonlinear interconnected systems using online learning optimal control ap-
proach,” IEEE Trans. on Neural Networks and Learning Systems, in press.

[30] X. Zhong, H. He, and D. V. Prokhorov, “Robust controller design of continuous-
time nonlinear system using neural network,” in The 2013 International Joint Con-
ference on Neural Networks (IJCNN), Aug. 2013.

44

CHAPTER 4

Event-triggered ADP Control with Unknown Internal States

4.1 Introduction

So far, most ADP control designs are based on entire state measurements in the

literature [1, 2, 3]. This is because ADP design needs to carefully evaluate the costs

and benefits of the immediate action, as well as the choices which may be acted in the

future [4], [5], [6, 7]. If the system feedback is imperfect or unreliable indicators of the

underlying process, this evaluation will become difficult [8]. However, in many real-

world applications, the likelihood to access the complete knowledge of system state is

either infeasible or very difficult to obtain [9, 10]. In other words, the feedback can only

represent parts of the system states in these situations. In order to achieve better per-

formance, estimating or reconstructing the state variables needs to be considered. Over

the past decades, partially observable processes have attracted significantly increasing

attention from both the artificial intelligence and machine learning areas. One major

idea of most existing methods is to obtain the belief state, which is a sufficient statistic

of the complete information of system and is also updated after each observation [11],

[12], [13]. However, intensive computational burden will be caused when we try to ob-

tain the belief state, especially when the dimension of the system state increases (i.e.,

curse of dimensionality). In these years, new iterative algorithms were developed under

the partially observable environment based on reinforcement learning approach [14],

[15]. Many of these methods, however, were still based on parameters/probability and

required solid mathematic background to apply. Recently, ADP has been applied in this

field and achieved some promising results. In [16], both the policy iteration and value

iteration were provided using only the input-output data to obtain an optimal controller.

This idea is extended to a linear tracking problem for unknown discrete-time system in

[17]. Only the reduced information of the system dynamics is used in their method. In

45

[18], [19], an observer was established based on neural networks to determine a mapping

between the behavior of the system and the external influences.

Because of the integration of an observer, the computation of ADP control design

increases. Generally, the observer-based ADP methods rely on the periodic transmitted

data with the fixed sampling period. This may bring huge number of the transmitted

data and cause subsequent tremendous computation. This disadvantage becomes severe

when the computation bandwidth or sensor power resources are constrained. In recent

years, the event-triggered control method [20, 21, 22, 23] is introduced in ADP design.

Different from the traditional method, the event-triggered method only transmits the sys-

tem data and updates the control law when a specific event is triggered. In this way, the

transmission load and computation burden are significantly reduced. The authors in [24]

for the first time online solved an event-triggered controller for a nonlinear system with

guaranteed performance and without any linearizing process. In [25], a near optimal

event-triggered condition of a nonlinear discrete-time system in affine form was pro-

vided. The authors extended this idea on the multi-input multi-output continuous-time

system in [26] and provided the corresponding neural-network-based event-triggered

condition.

In this chapter, a novel event-triggered ADP control method for the nonlinear

continuous-time system with unknown internal states is proposed. In this situation,

the measured input/output data can only represent parts of the system internal states. A

neural-network-based observer is developed to recover the entire states from the system

feedback. Then, a triggering condition is designed to make sure the control stability with

the reduced information. A critic network is established to approximate the performance

index and help calculate the control law. Note that, in this chapter, both the observer and

the control law are updated aperiodically according to the triggering condition. This

means the observer and the control law are updated only when an specific event is trig-

46

gered and held as constant otherwise. The stability analysis for the closed-loop system

is presented based on the Lyapunov construct for both the continuous and the jump dy-

namics. Comparing with [27], the proposed method only uses the triggered samples

to update the observer and the control law, which reduces the transmission load and

computation burden. Comparing with the works in [19], [18], the proposed method can

recover the details of what actually happened inside the partially observable dynamic

processes.

4.2 Problem Statement

Consider the nonlinear continuous-time system given as

ẋ(t) =f(x(t)) + g(x(t))u(t)

y(t) =Cx(t)

(41)

where x(t) ∈ Rn is the state vector with the initial state x(0) = x0, u(t) ∈ Rm is the

control input vector, y(t) ∈ Rp is the output vector, f(x(t)) ∶ Rn → Rn and g(x(t)) ∶

Rn → Rm are the unknown continuous-time state functions, and f(0) = 0. Assume that

f + gu is Lipschitz continuous on a set Ω ⊆ Rn containing the origin. C ∈ Rp∗n is the

known output matrix.

Generally, the digital communication network is used to connect system, sensor,

controller, and actuator in practical applications. Consider the limitation of the com-

putation bandwidth or sensor power resources, an aperiodic updating and transmission

rule for control action and system states is designed. In order to achieve this goal, a

sampled-data system is introduced, which is characterized by a monotonically increas-

ing sequence of sampling instants {δj}∞j=0, where δj < δj+1 for j = 0,1,2,⋯,∞. The time

instant δj denotes the jth consecutive sampling instant. The output of the sample-data

system is a sequence of the sampled states which can be denoted as

x̂j = x(δj) (42)

47

For simplicity, we assume that the sampled-data system has zero task delay.

Assumption 1 [27]: The nonlinear continuous-time system described in (41) is

controllable and observable. Here, the system output, y(t), is considered measured.

Therefore, a stabilizing controller can be guaranteed to be designed due to the con-

trollability and the internal state can be ensured to be estimated from output measure-

ment because of the observability. The control objective is to determine a feedback con-

trol law u(t) = µ(x(t)) which minimizes the following infinite-horizon performance

index

V (x0) = ∫

∞

0
(yT (τ)Qy(τ) + uT (τ)Ru(τ))dτ

= ∫

∞

0
U(y(τ), u(τ))dτ

(43)

whereU(y(t), u(t)) = yT (t)Qy(t)+uT (t)Ru(t) is the utility function with U(0,0) = 0.

Note thatQ andR are symmetric positive definite matrices with appropriate dimensions.

Here, the state-feedback control law is designed as u(t) = µ(x̂j, t), which maps the sam-

pled state, rather than the continuous state in literature, onto a control vector. Therefore,

the control signal µ(x̂j, t) is a piecewise constant function and consists of the control se-

quence {µ(x̂j)}∞j=0. In particular, {µ(x̂j)}∞j=0 becomes a continuous-time signal µ(x̂j, t)

through a zero-order hold (ZOH).

Let us recall the performance index in the traditional ADP method (time-triggered

case),

V (x0) = ∫

∞

0
U(Cx(τ), µ(x(τ)))dτ

= ∫

t

0
U(Cx(τ), µ(x(τ)))dτ + V (x(t))

(44)

If the performance index (44) is continuously differentiable, then after transforma-

tion, we obtain

lim
t→0

[V (x(t)) − V (x0)] /t = − lim
t→0

1

t ∫
t

0
U(Cx(τ), µ(x(τ)))dτ (45)

48

Therefore, the infinitesimal version of (44) is as

V ∗T
x (f(x(t)) + g(x(t))µ(x(t))) +U(Cx(t), µ(x(t))) = 0 (46)

where V ∗
x = ∂V ∗(x(t))/∂x(t) is the partial derivatives of the optimal performance index

V ∗(x(t)) with respect to x(t).

Assume that the minimum of the left-hand side of (46) exists and is unique [28].

Therefore, the optimal control µ∗(x(t)) satisfies the first-order necessary condition,

which is given by the gradient of (46) with respect to µ(x(t)). Hence, the optimal

control law for the time-triggered case can be described as,

u∗(t) = µ∗(x(t)) = −
1

2
R−1gT (x(t))V ∗

x (47)

In this event-triggered control design, the controller is only updated when an event

is triggered. This means the controller is designed based on the sampled state x̂j instead

of the current state x(t). Therefore, we obtain the event-triggered control law as

u∗(t) = µ∗(x̂j, t) = −
1

2
R−1gT (x̂j)V

∗
x̂j

(48)

where V ∗
x̂j
= ∂V ∗(x̂j)/∂x̂j . Note that, µ(x̂j) is used to represent µ(x̂j, t) in order to sim-

plify the expression in the following presentation. By applying event-triggered control

law (48) into (46), the event-triggered HJB equation can be obtained,

H(x(t), µ∗(x̂j), V
∗
x) =V ∗T

x (f(x(t)) −
1

2
g(x(t))gT (x̂j)V

∗
x̂j
)

+
1

4
V ∗T
x̂j
g(x̂j)g

T (x̂j)V
∗
x̂j
+ xT (t)CTQCx(t)

(49)

By developing the event-triggered ADP method, the transmission load and com-

putation burden can be significantly relaxed. However, we can observe that the system

internal states x(t), x̂j are used in (48) and (49) to calculate the event-triggered con-

troller and HJB equation. Since the knowledge of the system functions is completely

unknown and the measured output can only represent parts of the system internal states,

49

Figure 13. Block diagram of the nonlinear continuous-time system control with only the
input-output data.

the existing ADP methods cannot be applied directly in this situation. In the next sec-

tion, an event-triggered ADP control method using only the system input-output data

will be provided. Note that, in order to simplify the presentation, the time index t is

omitted in the following statement.

4.3 Event-triggered Controller Design Using Only the Input-Output Data

The general architecture of event-triggered ADP control using only the system

input-output data is shown in Figure 13. First, because of the unavailability of the sys-

tem internal state vectors and the system functions, a neural-network-based observer is

designed to reconstruct both the state vector x and the control coefficient function g(x)

through an online manner. Therefore, the proposed observer design relaxes the require-

ment of an explicit identifier for g(x) or an action network for µ(x). Then, the ADP

framework is applied to approximate the performance index and calculate the optimal

control vector. The critic network is established to estimate the performance index and

it is trained online with a corresponding error term minimized overtime. Moreover, it is

important to note that a sampled-data system is introduced with a sequence of sampling

50

instants {δj}∞j=0 for both the neural network observer and the controller. This means both

the observer and the controller are updated only when an specific event is triggered. The

corresponding triggering condition is also provided. Due to the limitation of the com-

munication bandwith and sensor power resources, this can significantly reduce the huge

number of the transmitted data and subsequently tremendous computation.

In the following part, I will explicitly present the event-triggered ADP design using

only the system input and output data. Specifically, in the first subsection, the triggering

condition is derived for the sampled-data system. The corresponding stability analysis

is also provided. A neural-network-based observer is designed in the second subsection,

so that the control scheme can be developed using only the input and the output data

measured during the operation of the system. A proof is also provided in this subsection

to guarantee the stability of the observer and the accuracy of its estimation during the

continuous and the jump dynamics. In the third subsection, neural network techniques

are used to implement the proposed method. The weights updating rules for the critic

network are also provided. Finally, the stability of the close-loop system is demonstrated

using the Lyapunov theory for both dynamics. It is shown that the system state and

parameter estimations are proved bounded, even when the trigger occurs.

4.3.1 Event-triggered Regulator Design

Note that, since the internal state is unknown, an observer is designed to recover

the system state. Therefore, the sampled states should be described as

x̂j = x̂(δj) (50)

where x̂(δj) is the estimated state at the sampled instants.

Now, define the gap function for ∀t ∈ [δj, δj+1)as

eyj(t) = Cx̂j − y(t) (51)

which is the difference between the term Cx̂j and the current system output.

51

Assumption 2: The controller is Lipschitz continuous with respect to the gap,

∥µ(x(t)) − µ(x̂j)∥ ≤ L∥exj∥ (52)

where L is a positive real constant, and exj = x̂j − x(t).

Theorem 1: If there exists a positive definite function V (x) that satisfies the HJB

equation (49) with V (0) = 0, and the control law is given in (48) with the triggering

condition

∥eyj∥
2 ≤

(1 − α2)λ(Q)∥C∥2∥y∥2 + ∥C∥2∥rTµ(xj)∥2

L2∥r∥2
(53)

then the close-loop system can be asymptotically stabilized, where α ∈ (0,1) is the

designed parameter.

Proof: With the event-triggered control law (48), the orbital derivative of V ∗(x)

along the system trajectory can be given as

V̇ ∗(x) =(
∂V ∗(x)

∂x
)
T

ẋ

=V ∗
x f(x) + V

∗T
x g(x)µ∗(x̂j)

(54)

Here, consider the optimal control law and HJB equation in the traditional ADP

method as

u∗ = µ∗(x) = −
1

2
R−1gT (x)V ∗

x (55)

and

V ∗T
x f(x) −

1

4
V ∗T
x g(x)R−1gT (x)V ∗

x + y
TQy = 0. (56)

Therefore, we have

gT (x)V ∗
x = −2Rµ∗(x) (57)

V ∗T
x f(x) =

1

4
V ∗T
x g(x)R−1gT (x)V ∗

x − y
TQy (58)

52

Substitute (57) and (58) into (54), we obtain

V̇ ∗(x) =
1

4
V ∗T
x g(x)R−1gT (x)V ∗

x − y
TQy − 2µ∗T (x)Rµ∗(x̂j)

=µ∗T (x)Rµ∗(x) − 2µ∗T (x)Rµ∗(x̂j) − y
TQy

(59)

Since R is a symmetric positive definite matrix, we can describe R as R = r ⋅ rT .

Therefore, we have

µ∗T (x)Rµ∗(x) − 2µ∗T (x)Rµ∗(x̂j) = ∥rTµ∗(x) − rTµ∗(x̂j)∥
2 − ∥rTµ∗(x̂j)∥

2 (60)

By using the Lipschitz condition in Assumption 2, we can write

V̇ ∗(x) =∥rTµ∗(x) − rTµ∗(x̂j)∥
2 − ∥rTµ∗(x̂j)∥

2 − yTQy

≤ − ∥rTµ∗(x̂j)∥
2 +L2∥r∥2∥exj∥

2 − λ(Q)∥y∥2

= − α2λ(Q)∥y∥2 + [− (1 − α2)λ(Q)∥y∥2 +L2∥r∥2∥exj∥
2 − ∥rTµ∗(x̂j)∥

2]

(61)

We know when the following inequality is satisfied,

∥exj∥
2 ≤

(1 − α2)λ(Q)∥y∥2 + ∥rTµ(x̂j)∥2

L2∥r∥2
(62)

we have V̇ ∗(x) < 0.

Due to the unavailability of the current internal state, we obtain an equivalent con-

dition (53) from (51). This is to say, when (53) is satisfied, we have V̇ ∗(x) < 0. Thus, in

this way, u∗ = µ∗(x̂j) can asymptotically stabilize the nonlinear continuous-time system

(41). The conclusion holds. ∎

It can be seen that the controller is guaranteed stable with the event-triggered sam-

ple data. The sampled-data system will continuously monitor the triggering condition

(53). When a violation is about to occur, the sampled-data system will be triggered

to sample the estimated system state, and according to the new sampled data, both the

observer and the controller will be updated again.

53

4.3.2 Neural-network-based Observer Design

In this subsection, a neural-network-based observer is established to reconstruct

the system state x and the control coefficient function g(x). Consider system (41) with

the event-triggered control law µ(x̂j). Choose a Hurwitz matrix A, such that the pair

(C,A) is observable. The system dynamics (41) can be reformulated as

ẋ =Ax + FA(x) + g(x)µ(x̂j)

y =Cx

(63)

where FA(x) = f(x) − Ax. In order to reconstruct the state, the nonlinearity of the

system should be identified. Since x is restricted to a compact set of x ∈ Rn, the unknown

system function can be described as a multilayer neural network with sufficiently large

number of hidden layer neurons [29], then

FA(x) + g(x)µ(x̂j) =ω
∗T
o2FΦF (x) + ω

∗T
o2gΦg(x)µ(x̂j) + εF (x) + εg(x)µ(x̂j)

=[ω∗To2F , ω
∗T
o2g] [

ΦF (x) 0
0 Φg(x)

] [
1

µ(x̂j)
]

+ [εF (x), εg(x)] [
1

µ(x̂j)
]

=ω∗To2 Φ(x) + ε(x)

(64)

where ω∗o2 is the ideal weights of the neural network output layer, ∥ε(x)∥ ≤ εM is the

bounded neural network approximation error, Φ(⋅) is the bounded sigmoid function that

can be expressed as

∥Φ(⋅)∥ = ∥
1 − e−(⋅)

1 + e−(⋅)
∥ ≤ ΦM (65)

It is assumed that the ideal weights are bounded as ∥ω∗o2∥ ≤ ωo2M . Moreover, we have

ω∗o2 = [ω∗o2F , ω
∗
o2g] (66)

Φ(x) = [
ΦF (x) 0

0 Φg(x)
] [

1
µ(x̂j)

] (67)

54

ε(x) = [εF (x), εg(x)] [
1

µ(x̂j)
] (68)

Hence, the system states can be identified by updating the corresponding neural

network weights. Since the ideal weights ω∗o2 are unknown, a neural network, which is

called the function network in this chapter, is established to identify the nonlinearity by

using the current estimates ω̂o2 of the ideal weights ω∗o2,

F̂A(x̂) + ĝ(x̂)µ(x̂j) = ω̂
T
o2Φ(x̂) (69)

It is important to note that in order to save the resource, the function network

weights are only updated when an event is triggered, i.e.,

ω̂o2j = ω̂o2(δj) (70)

Then, (69) becomes

F̂A(x̂) + ĝ(x)µ(x̂j) = ω̂
T
o2jΦ(x̂j) (71)

Hence, I design the following neural-network-based observer which is assumed to

be of the Luenberger like structure

˙̂x =Ax̂ + ω̂To2jΦ(x̂j) +G(y − ŷ)

ŷ =Cx̂

(72)

where x̂ and ŷ are the estimated state and output of the observer, respectively, x̂j is the

estimated sampled state, and G ∈ Rn∗m is the observer gain. Here, Φ(x̂j) = Φ(ωo1X̂oj),

in which X̂oj = [x̂j, µ(x̂j)] is the input of the function network, and ωo1 is the weights

of the function network hidden layer. Now, define the state estimation error as

˙̃x =ẋ − ˙̂x

=Ax + ω∗To2 Φ(x) −Ax̂ − ω̂To2jΦ(x̂j) −G(y − ỹ) + ε(x)

(73)

By adding and subtracting ω∗To2 Φ(x̂j) from (73), such error dynamics become

˙̃x = Acx̃ + ω̃
T
o2jΦ(x̂j) + ξ(x) (74)

55

where ω̃o2j = ω∗o2− ω̂o2j is the neural network estimation error, Ac = A−GC is a Hurwitz

matrix, and ξ(x) = ω∗To2 [Φ(x) − Φ(x̂j)] + ε(x) is a bounded disturbance term. This

means, ∥ξ(x)∥ ≤ ξM for some positive constant, due to the boundedness of the sigmoid

function and the ideal neural network weights ω∗o2.

Note that, in this study, the input-to-hidden layer weights ωo1 are randomly chosen

and kept constantly during the training process. Therefore, the goal now should be to

find the updating rule for the hidden-to-output layer weights ω̂o2j . Adjusting the weights

of the function network is to minimize the squared error

Eo =
1

2
(y − ŷ)2 =

1

2
ỹ2 (75)

where ỹ = y − ŷ. Since the updating law for the observer will have an aperiodic nature,

it has to be updated only at the trigger instants and held constant otherwise. Therefore,

it can be described as the following updating laws: when an event is not triggered, we

have

˙̂ωo2j = 0, for δj−1 ≤ t < δj (76)

and when an event is triggered, the jump equation to calculate ω̂o2j is given by

ω̂+o2j =ω̂o2j − βo
∂Eo
∂ω̂o2j

− ρ∥ỹ∥ω̂o2j

=ω̂o2j − βo
∂Eo
∂ỹ

∂ỹ

∂x̂

∂x̂

∂ω̂o2j
− ρ∥ỹ∥ω̂o2j for t = δj

(77)

where βo > 0 is the learning rate of the function network and ρ > 0 is a small positive

number. Note that the second term in (77) is the backpropagation term and the third term

is the e-modification term for incorporating damping. We have ∂Eo

∂ỹ = ỹ and ∂ỹ
∂x̂ = CT

according to (75) and (63), respectively. The updating rule can thus be achieved for

solving the gradient ∂x̂
∂ω̂o2j

. To solve this problem, we apply the static approximation of

the gradient by setting ˙̂x = 0 in (72). Then, after transformation, we obtain

∂x̂

∂ωo2j
= −A−T

c Φ(x̂j) (78)

56

Hence, we have the updating rule for the function network at the trigger instants as

ω̂+o2j = ω̂o2j − βo(ỹ
TCA−1

c)TΦ(x̂j) − ρ∥ỹ∥ω̂o2j for t = δj (79)

In order to guarantee the stability of the neural-network-based observer and the

accuracy of the estimation, the boundedness of the observer error should be provided

for both the continuous and the jump dynamics.

Theorem 2: Consider the nonlinear continuous-time system given by (41) with the

event-triggered neural-network-based observer given by (72). If the tuning laws for the

function network of the observer is provided as (76) and (79) for different time instants,

then the state estimation error x̃ and weight estimation errors ω̃o2j = ω∗o2j − ω̂o2j are

uniformly ultimately bounded (UUB).

Proof: Since the observer is updated only when the event is triggered, we have

to consider both the continuous and the jump dynamics separately. Initially, we will

consider the following Lyapunov function Lo

Lo =
1

2
x̃TPx̃ +

1

2
tr(ω̃To2jω̃o2j) (80)

where x̃ is the state estimation error given by (74) and ω̃o2j is the weight estimation

error. P is a positive definite matrix that satisfies

ATc P + PAc = −M (81)

where M is a positive definite matrix.

For the continuous dynamics of the observer model, by taking the time derivative

of (80) with respect to the close-loop system trajectories, the second term has a zero

derivative due to the function network continuous dynamics (76). Therefore,

L̇o =
1

2
˙̃xTPx̃ +

1

2
x̃TP ˙̃x

=
1

2
(Acx̃ + ω̃

T
o2jΦ(x̂j) + ξ(x))

T
Px̃ +

1

2
x̃TP (Acx̃ + ω̃

T
o2jΦ(x̂j) + ξ(x))

(82)

57

By using some polynomial adjustments and (81), equation (82) can be rewritten as

L̇o = −
1

2
x̃TMx̃ + x̃TP (ω̃To2jΦ(x̂j) + ξ(x))

≤ −
1

2
λ(M)∥x̃∥2 + ∥x̃∥∥P ∥(∥ω̃o2∥ΦM + ξM)

≤ −
1

2
λ(M)∥x̃∥2 + (2ωoMΦM∥P ∥ + ∥P ∥ξM)∥x̃∥

(83)

where λ(M) is the minimal eigenvalue of M . Hence, in order to guarantee the nega-

tiveness of the time derivative L̇o at the continuous dynamics, the following condition

on the state estimation error should hold,

∥x̃∥ ≥
4ωMΦM∥P ∥ + 2ξM∥P ∥

λ(M)
= d. (84)

According to the Lyapunov extension theorem, as long as condition (84) is satisfied,

it demonstrates that the state and the weights estimation errors are UUB.

Note that L̇o for continuous dynamics is negative definite under the condition (84),

which means x̃ is UUB outside the ball with radius d described asX = {x̃∣∥x̃∥ > d}. The

size of the estimation error bound d can be kept arbitrarily small by proper selection of

the parameters.

Next we have to consider the jump dynamics. The function network weights are

updated at these instants. For that reason, we consider the following form

∆Lo =
1

2
(x̃T)+Px̃+ −

1

2
x̃TPx̃

+
1

2
tr((ω̃To2j)

+ω̃+o2j) −
1

2
tr(ω̃To2jω̃o2j), t = δj

(85)

Since we have proved that the state estimation error is asymptotically stable, there exists

1

2
(x̃T)+Px̃+ ≤

1

2
x̃TPx̃ (86)

Therefore, the problem becomes to find a bound for the following term,

∆Lo1(ω̃o2j) =
1

2
tr((ω̃To2j)

+ω̃+o2j) −
1

2
tr(ω̃To2jω̃o2j), t = δj (87)

58

Consider (79), we obtain,

ω̃+o2j =ω
∗
o2j − ω̂

+
o2j

=ω̃o2j + βo(ỹ
TCA−1

c)TΦ(x̂j) + ρ∥ỹ∥ω̂o2j

(88)

Substituting (88) into (87) and after some mathematical manipulation, the first dif-

ference ∆Lo1(ω̃o2j) becomes

∆Lo1(ω̃o2j) =tr(ω̃
T
o2j(βo(ỹ

TCA−1
c)TΦ(x̂j)

+ ρ∥ỹ∥ω̂o2j)) + ∥βo(ỹ
TCA−1

c)TΦ(x̂j) + ρ∥ỹ∥ω̂o2j∥
2

=tr(ω̃To2jβoA
−T
c CT ỹΦ(x̂j) + ρ∥ỹ∥ω̃

T
o2jω

∗
o2j − ρ∥ỹ∥ω̃

T
o2jω̃o2j)

+ ∥βoA
−T
c CT ỹΦ(x̂j)∥

2 + 2ΦT (x̂j)ỹ
T (βoA

−T
c CT)Tρ∥ỹ∥ω̂o2j

+ ρ2∥ỹ∥2ω̂To2jω̂o2j

≤ − ρ∥C∥∥x̃∥∥ω̃o2j∥
2 + ∥m∥∥x̃∥∥ω̃o2j∥ΦM + ρ∥C∥∥x̃∥∥ω̃o2j∥ωoM

+ ∥m∥2∥x̃∥2Φ2
M + 2ρ∥C∥∥m∥∥x̃∥2ΦM∥ω̂o2j∥ + ρ

2∥C∥2∥x̃∥2ω2
oM

(89)

where m = βoA−T
c CTC. By completing the square of ∥ω̃o2j∥, formula (89) becomes

∆Lo1(ω̃o2j) ≤ −
1

2
(∥m∥ΦM + ρ∥C∥ωM − ∥ω̃o2j∥)

2

∥x̃∥ − (ρ −
1

2
)∥ω̃o2j∥

2∥x̃∥

+
1

2
(∥m∥ΦM + ρ∥C∥∥ωoM∥)

2

∥x̃∥

+ (∥m∥2Φ2
M + 2ρ∥m∥∥C∥∥ωM∥2ΦM + ρ2∥C∥2ω2

oM)∥x̃∥2

(90)

Since ∥x̃∥ is guaranteed positive, then ∆Lo(ω̃o2j) ≤ 0 is equivalent to the following

condition holding,

−
1

2
(∥m∥ΦM + ρ∥C∥ωM − ∥ω̃o2j∥)

2

− (ρ −
1

2
)∥ω̃o2j∥

2

+
1

2
(∥m∥ΦM + ρ∥C∥∥ωoM∥)

2

+ (∥m∥2Φ2
M + 2ρ∥m∥∥C∥∥ωM∥2ΦM

+ ρ2∥C∥2ω2
oM)∥x̃∥ ≤ 0

(91)

By defining

γ2 =
1

2
(∥m∥ΦM + ρ∥C∥∥ωoM∥)

2

+ (∥m∥2Φ2
M

+ 2ρ∥m∥∥C∥∥ωM∥2ΦM + ρ2∥C∥2ω2
oM)∥x̃∥

(92)

59

condition (91) becomes

−
1

2
(∥m∥ΦM + ρ∥C∥ωM − ∥ω̃o2j∥)

2

− (ρ −
1

2
)∥ω̃o2j∥

2 + γ2 ≤ 0 (93)

Note that because the boundedness of the state estimation error has been proved, there

exists a bound for γ2. Therefore, we can prove that the jump dynamics are UUB as long

as the following conditions satisfied

ρ >
1

2
(94)

∥ω̃o2j∥ ≥

¿
Á
Á
ÁÀ

γ2

(ρ − 1
2)

(95)

Hence, the system states estimation error and the neural network weight estimation

errors are UUB in both the continuous and the jump dynamics. This completes the

proof. ∎

4.3.3 Optimal Event-triggered Control Scheme Design

Neural network technique is applied in this subsection to implement the proposed

event-triggered ADP method. A critic network is built to approximate the performance

index which can be formulated as

V ∗(x) = ω∗Tc2 Φ(m(x)) + εc(x) (96)

where ω∗c2 is the optimal weights between the hidden and the output layer of the critic

network, m(x) = ω∗Tc1 Xc to which ω∗c1 is the optimal input-to-hidden layer weights,

Xc = [xT , µT (x)]T , and ∥εc(x)∥ ≤ εcM is the bounded critic network error.

According to (96), the performance index V ∗(x) in the event-triggered control

scheme can be approximated as

V̂ (x̂) = ω̂Tc2Φ(m(x̂)) (97)

60

where V̂ (x̂) represent the estimated performance index, ω̂Tc2 is the approximated hidden-

to-output layer weights of the critic network, and m(x̂) = ω̂Tc1X̂c to which ω̂c1 is the

estimated input-to-hidden layer weights of critic network and X̂c = [x̂, µ(x̂j)] is the

input of the critic network. We fix the input-to-hidden layer weights as ωc1, which are

chosen randomly at initial. Therefore, only the hidden-to-output layer weights ω̂c2 need

to be updated.

Define the error function for the critic network as

ec =H(x̂, µ(x̂j), V̂x) −H(x,u∗, V ∗
x))

=((
∂Φ(m(x̂))

∂x̂
)T ω̂c2)

T
˙̂x +U(x̂, µ(x̂j))

(98)

We know that H(x,u∗, V ∗
x)) = 0 from (49). Adjusting the weights of the critic network

is to minimize the objective function

Ec =
1

2
e2
c (99)

Therefore, the hidden-to-output layer weights of the critic network can be updated

as

˙̂ωc2 = − βc
∂Ec
∂ω̂c2

= −βc
∂Ec
∂ec

∂ec
∂ω̂c2

= − βc
κ

(κTκ + 1)2
(ω̂Tc2κ +U(x̂, µ(x̂j)))

2

(100)

where κ = (
∂Φ(m(x̂))

∂x̂)T ˙̂x, and βc > 0 is the learning rate of the critic network.

The control law is only updated when the triggering condition (53) is violated.

Since the design of the neural-network-based observer can reconstruct both the system

internal state and the control coefficient function, the control law can be directly calcu-

lated as

µ(x̂j) = −
1

2
R−1gT (x̂j)V̂x̂j (101)

where V̂x̂j is the partial derivative of the estimated performance index with respect to

61

the sampled state x̂j . According to (97), V̂x̂j can be formulated as

V̂x̂j =
∂V̂ (x̂j)

∂x̂j

=
∂V̂ (x̂j)

∂Φ(m(x̂j))

∂Φ(m(x̂j))

∂m(x(x̂j))

∂m(x(x̂j))

∂x̂j

=
1

2
ω̂Tc2j(1 −Φ2(m(x̂j)))ωc1(x̂j)

(102)

to which ωc1(x̂j) is the fixed weights of x̂ component for the input to the hidden layer

of the critic network at the jump instant δj .

Also, considering (69), g(x̂j) can be described by

g(x̂j) =
∂(FA(x̂j) + g(x̂j)µ(x̂j))

∂µ(x̂j)

=
∂(FA(x̂j) + g(x̂j)µ(x̂j))

∂Φ(x̂j)

∂Φ(x̂j)

∂µ(x̂j)

=
1

2
ω̂To2j(1 −Φ2(x̂j))ωo1(µ(x̂j))

(103)

where ωo1(µ(x̂j)) is the input-to-hidden layer weights of µ(x̂j) component for the func-

tion network at jump instant δj . Because the control law is only updated when the trig-

gering condition (53) is violated, we then have the following description,

u(t) = {
µ(x̂j−1), Event is not triggered, δj−1 ≤ t < δj
−1

2R
−1gT (x̂j)V̂x̂j , Event is triggered, t = δj

(104)

The algorithm of the proposed event-triggered ADP control using the measurable

input-output data is provided in Algorithm 3.

4.3.4 Stability Analysis of the closed-loop system

In this subsection, the stability analysis for the close-loop system will be investi-

gated. A Lyapunov function candidate is considered as a combination of the Lyapunov

functions for the neural-network-based observer and the designed control law. Both of

them have two dynamics. The following theorem provides the stability of the whole

system.

62

Algorithm 2 Event-triggered ADP control design Using Only the Measurable Input-
Output Data.

Set i = 0, j = 0, x̂0 = x0

Calculate µ(x̂j) = −1
2R

−1gT (x̂j)V̂x̂j
Initialize all the neural network weights
for all i < Nrun do

State estimation:
˙̂x = Ax̂ + ω̂To2jΦ(x̂j) +G(y −Cx̂)
Policy evaluation:
V (x̂) = min

µ(x̂j)
∫
∞

0 U(x̂(τ), µ(x̂j))dτ

if x̂j − x̂ = êj > eT then
Set j = j + 1, x̂j = x̂
Update ω̂o2j according to (79)
Update µ(x̂j) = arg min

µ(x̂j)
{V (x̂j)}

end if
Update system information ẋ = F (x,µ(x̂j)); y = Cx
Set i = i + 1

end for

Theorem 3: Consider the nonlinear continuous-time system (41) with the event-

triggered observer (72) and control law (104). The tuning laws for the impulsive ob-

server and the continuous critic network are provided by (76), (79) and (100), respec-

tively. Then, the system state x, sampled state x̂j , observer error x̃, function network

weights estimation error ω̃o2, and the critic network weights estimation error ω̃c2 are all

UUB given the following triggering condition:

∥eyj∥
2 ≤

(1 − α2)λ(Q)∥C∥2∥y∥2 + ∥C∥2∥rTµ(xj)∥2

L2∥r∥2
(105)

where α ∈ (0,1).

Proof: The proof of the boundedness is carried out in two parts, which are the

continuous and the jump dynamics, respectively. The objective is to prove that both dy-

namics of the impulsive close-loop model are UUB. First, let us consider the following

63

Lyapunov function,

Lcl =
1

2
x̃TPx̃ +

1

2
tr(ω̃To2ω̃o2) + V

∗(x) + V ∗(x̂j) +
β−1
c

2
tr(ω̃Tc2ω̃c2)

=Lo +Lc, t ∈ (δj, δj+1]

(106)

where

Lo =
1

2
x̃TPx̃ +

1

2
tr(ω̃To2ω̃o2) (107)

Lc = V
∗(x) + V ∗(x̂j) +

β−1
c

2
tr(ω̃Tc2ω̃c2) (108)

and V ∗(x) and V ∗(x̂j) are the optimal performance index for the continuous and event-

triggered sampled system.

For the continuous dynamics of the impulsive model, we take the time derivative

of (106). L̇o is provided in (83). Now L̇c needs to be considered. Note that the second

term in (108) has a zero derivative. Hence, we obtain,

L̇c =
∂V ∗T (x)

∂x
ẋ + β−1

c tr(ω̃
T
c2

˙̃ωc2) (109)

where ω̃c2 = ω∗c2 − ω̂c2, and

˙̃ωc2 =βc
κ

(κTκ + 1)2
(ω̂Tc2κ +U(x̂, µ(x̂j)))

2

= − βc
κκT

(κTκ + 1)2
ω̃c2 + βc

κ

(κTκ + 1)2
(κTω∗c2 +U(x̂, µ(x̂j)))

= − βc
κκT

(κTκ + 1)2
ω̃c2 + βc

κ

(κTκ + 1)2
σc

(110)

where σc = −∂εc∂x̂ ˙̂x

Now, we will consider the following two terms separately,

L̇c1(V
∗) =

∂V ∗T (x)

∂x
ẋ (111)

L̇c2(ω̃c2) = β
−1
c tr(ω̃

T
c2

˙̃ωc2) (112)

64

Then, (111) can be rewritten as

L̇c1(V
∗) =

∂V ∗T (x)

∂x
(f(x) + g(x)µ(x̂j))

=
∂V ∗T (x)

∂x
f(x) +

∂V ∗T (x)

∂x
g(x)µ(x̂j)

(113)

Consider equations (57) and (58), we obtain

L̇c1(V
∗) =

1

4
V ∗T
x g(x)R−1gT (x)V ∗

x − y
TQy − 2µ∗T (x)Rµ∗(x̂j)

=µ∗T (x)Rµ∗(x) − 2µ∗T (x)Rµ∗(x̂j) − y
TQy

(114)

where R = r ⋅ rT is a symmetric positive definite matrix. Therefore, we have

µ∗T (x)Rµ∗(x)−2µ∗T (x)Rµ∗(x̂j)

=∥rTµ∗(x) − rTµ∗(x̂j)∥
2 − ∥rTµ∗(x̂j)∥

2

(115)

By using the Lipschitz condition in Assumption 2, we have

L̇c1(V
∗) ≤ − ∥rTµ∗(x̂j)∥

2 +L2∥r∥2∥exj∥
2 − λ(Q)∥y∥2

= − α2λ(Q)∥y∥2 + [− (1 − α2)λ(Q)∥y∥2

+L2∥r∥2∥exj∥
2 − ∥rTµ∗(x̂j)∥

2]

(116)

Considering the triggering condition (105), we have

L̇c1(V
∗) ≤ −α2λ(Q)∥y∥2 (117)

Next, for the term L̇c2(ω̃c2) in (112), we obtain

L̇c2(ω̃c2) =β
−1
c tr(− βcω̃

T
c2

κκT

(κTκ + 1)2
ω̃c2 + βcω̃

T
c2

κ

(κTκ + 1)2
σc)

≤ − ∥
κκT

κTκ + 1
∥

2

∥ω̃o2∥
2

+
1

2βc
(β2

c ∥
κκT

κTκ + 1
∥

2

∥ω̃o2∥
2
+

σ2
c

∥κTκ + 1∥2
)

≤ − (1 −
βc
2
)∥

κκT

κTκ + 1
∥

2

∥ω̃o2∥
2
+
σ2
c

2βc

(118)

65

It is important to note that the gradients of the critic network error is upper bounded,

i.e., σc ≤ σcM . Hence, we have

L̇c2(ω̃c2) ≤ −(1 −
βc
2
)∥

κκT

κTκ + 1
∥

2

∥ω̃o2∥
2
+
σ2
cM

2βc
(119)

Based on (83), (117) and (119), then L̇cl becomes

L̇cl ≤ −
1

2
λ(M)∥x̃∥2 + (2ωoMΦM∥P ∥ + ∥P ∥ξM)∥x̃∥

− α2λ(Q)∥y∥2 − (1 −
βc
2
)∥

κκT

κTκ + 1
∥

2

∥ω̃o2∥
2
+
σ2
cM

2βc

(120)

Therefore, if the following conditions are satisfied,

βc < 2 (121)

∥x̃∥ ≥
4ωMΦM∥P ∥ + 2ξM∥P ∥

λ(M)
(122)

∥ω̃o2∥ ≥

¿
Á
Á
ÁÀ

σ2
cM/2βc

(1 − βc
2
) ∥ κκT

κT κ+1
∥

2 (123)

then L̇cl < 0. This means the continuous dynamics of the impulsive model are UUB.

Now, we will consider the boundedness of the jump dynamics. The first difference

of the Lyapunov function is shown as follows,

∆Lcl =V
∗(x+) − V ∗(x) + V ∗(x̂+j) − V

∗(x̂j)

+ β−1
c tr((ω̃

+
c2)

T ω̃+c2) − β
−1
c tr(ω̃

T
c2ω̃c2)

+
1

2
(x̃T)+Px̃+ −

1

2
x̃TPx̃ +

1

2
tr((ω̃To2)

+ω̃+o2) −
1

2
tr(ω̃To2ω̃o2)

=∆Lc +∆Lo, t = δj

(124)

where ∆Lo is defined in (85), which is UUB under the conditions (94) and (95). Now,

we consider the boundedness of ∆Lc which is defined as

∆Lc =V
∗(x+) − V ∗(x) + V ∗(x̂+j) − V

∗(x̂j)

+ β−1
c tr((ω̃

+
c2)

T ω̃+c2) − β
−1
c tr(ω̃

T
c2ω̃c2)

(125)

66

Time(sec)
0 5 10 15 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
x

1est

x
1

Time(sec)
0 5 10 15 20

-1.5

-1

-0.5

0

0.5

1
x

2est

x
2

Figure 14. System responses with the event-triggered observer and ADP controller

Since the states and the critic network estimation error are UUB from the first

part of the proof, there exists V ∗(x+) ≤ V ∗(x) and tr((ω̃+c2)
T ω̃+c2) ≤ tr(ω̃Tc2ω̃c2) at

the jump instants t = δj . Moreover, for the sampled data, because during the jump

instants, one has x̂+ = x̂+j and we have proved that the state estimation error is UUB,

then V ∗(x̂+j) ≤ V
∗(x̂j). Therefore, we have ∆Lc < 0, then ∆Lcl < 0. This means the

jump dynamics of the close-loop system is also UUB. This completes the proof. ∎

4.4 Simulation Studies

Consider a single link robot arm system giving by

θ̈(t) = −
MgH

G
sin(θ(t)) −

D

G
θ̇(t) +

1

G
u(t) (126)

where

g = 9.81, is the acceleration of gravity;

H = 0.5, is the length of the arm;

D = 2, is the viscous friction;

M = 10, is the mass of the payload;

G = 10, is the moment of inertia;

θ(t) is the angle position of robot arm;

u(t) is the control input.

67

Assume that only the angle position θ(t) of the robot arm is observable. Defining

x1(t) = θ(t) and x2(t) = θ̇(t), the dynamic function (126) can be described as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −
2

10
x2 +

1

10
u −

49.05 sin(x1)

10

y = x1.

(127)

We can clearly observe that y = x1 is the system measurable feedback in (127).

This means the output matrix is C = [1,0] in this case.

Apply the proposed event-triggered ADP method to solve the problem. In order to

recover the internal system state, an observer is built with the following parameters,

A = [
0 1
−4 −0.4

] ; G = [10 −1]
T
. (128)

The designed observer includes a three-layer function network with the neuron

structure as 3 − 6 − 2 (i.e., three input neurons, six hidden neurons, and two output

neurons). Based on the estimated internal state from the observer, a critic network is

Time(sec)
0 5 10 15 20

e
o
1

-0.1

-0.05

0

Time(sec)
0 5 10 15 20

e
o
2

-0.2

0

0.2

Figure 15. Errors between the estimated state and the true state.

68

Time(sec)
0 5 10 15 20

-0.4

-0.2

0

0.2
ω

o1(1)

ω
o1(2)

ω
o1(3)

ω
o1(4)

ω
o1(5)

ω
o1(6)

Time(sec)
0 5 10 15 20

-0.5

0

0.5
ω

o2(1)

ω
o2(2)

ω
o2(3)

ω
o2(4)

ω
o2(5)

ω
o2(6)

Figure 16. Trajectory of the weights in function network.

established to approximate the performance index and help to obtain the control law.

The neuron structure of the critic network is 3 − 8 − 1.

Choose the triggering condition as (53) withL = 3, α = 0.95. SetQ, r as the identity

Time(sec)
0 5 10 15 20

u

-1

-0.5

0

0.5

Figure 17. Trajectory of the event-triggered control law.

69

Figure 18. Comparison of the gap ∥eyj∥ and the threshold ∥eT ∥.

matrix with appropriate dimensions. Therefore, we have the triggering condition for this

case as

∥eyj∥
2 ≤

(1 − 0.952)∥C∥2∥y∥2 + ∥C∥2∥rTµ(xj)∥2

32
(129)

The trigger instants are decided according to (129). When the gap eyj = Cx̂j −y violates

condition (129), the system state is sampled again by setting x̂j = x̂(t). The event-

triggered observer and control law are updated again according to the sampled state.

Set the initial learning rates for both the function and the critic network as βo =

βc = 0.1. Learning rates are decreased by 0.05 every five time steps until they reach

βo = βc = 0.005 and stay thereafter. The initial weights of both networks are chosen

randomly within [−1,1]. The initial state is set to x0 = [0.5,−0.5]T . The sampling

period for discretization is chosen as 0.03s.

By employing the event-triggered ADP control method proposed in this chapter, we

stabilize the partially observable system (127) only using the system input-output data.

The trajectories of the system estimated state and true state are provided in Figure 14. It

can be seen that the estimated state x̂1 and x̂2 can quickly approach the true state x1 and

x2, respectively. This means the designed observer can recover the system internal state

70

Time(sec)
0 5 10 15 20

In
te

r-
e

ve
n

t
tim

e
(s

e
c)

0

0.2

0.4

0.6

0.8

Figure 19. Inter-event time during the learning process.

from the output feedback, even with the reduced sampled data. The errors between the

estimated state and the true state are provided in Figure 15. The learning process of the

function network weights are shown in Figure 16. It is clearly that the weights updating

law is aperiodic and only based on the sampled data. The observer is online training.

Time(sec)
0 5 10 15 20

C
u

m
m

u
la

tiv
e

 n
u

m
b

e
r

o
f
sa

m
p

le
d

 d
a
ta

0

200

400

600

800

1000

1200
Event-triggered ADP
Traditional ADP

Figure 20. Cumulative number of the sampled data for both the event-triggered ADP
method and traditional ADP method.

71

The trajectory for the event-triggered control law in this process is shown in Figure 17.

We can observe that the control law is a piecewise signal. This means the control law

keeps the same at period [δj, δj+1) and is only updated when an event is triggered. The

relationship between the gap ∥eyj∥ and the threshold is shown in Figure 18. It can be

clearly observed that the gap ∥eyj∥ is always smaller than the threshold to make sure the

close-loop system is stable. The inter-event time between two consecutive transmissions

are shown in Figure 19. We know the inter-event time exists and is up to 0.9s in this

case. Finally, the cumulative number of the sampled data during the control process for

both the proposed event-triggered ADP method and the traditional ADP method in [27]

are provided in Figure 20. The event-triggered ADP method uses 118 samples while the

traditional ADP method needs 1200 sample data. This means by efficiently reducing the

sampled instants, the performance of the control method will not be influenced.

4.5 Summary

An event-triggered ADP control method is proposed in this chapter for nonlinear

continuous-time system using only the input-output data. A neural-network-based ob-

server is established to reconstruct the system internal states and the control coefficient

function. Neural network techniques are applied to approximate the performance in-

dex and help calculate the control law. In order to save the computation resource and

transmission load, both the designed observer and the controller are only updated when

an event is triggered. The stability of the close-loop system is analyzed by Lyapunov

construct for both the continuous and the jump dynamics. The simulation results demon-

strate the effectiveness of the proposed method and also verify the theoretical analysis.

List of References

[1] X. Zhong, H. He, H. Zhang, and Z. Wang, “Optimal control for unknown discrete-
time nonlinear markov jump systems using adaptive dynamic programming,” Neu-
ral Networks and Learning Systems, IEEE Transactons on, vol. 25, no. 12, pp.
2141–2155, 2015.

72

[2] Z. Ni, H. He, X. Zhong, and D. V. Prokhorov, “Model-free dual heuristic dy-
namic programming,” IEEE transactions on neural networks and learning systems,
vol. 26, no. 8, pp. 1834–1839, 2015.

[3] X. Zhong, Z. Ni, and H. He, “A theoretical foundation of goal representation
heuristic dynamic programming,” Neural Networks and Learning Systems, IEEE
Transactions on, 2015, in press.

[4] J. Si, A. G. Barto, W. B. Powell, and D. C. Wunsch, Eds., Handbook of Learning
and Approximate Dynamic Programming. IEEE Press and John Wiley & Sons,
2004.

[5] V. Ugrinovskii* and H. R. Pota, “Decentralized control of power systems via robust
control of uncertain markov jump parameter systems,” International Journal of
Control, vol. 78, no. 9, pp. 662–677, 2005.

[6] S. C. Lee, “Maintenance strategies for manufacturing systems using markov mod-
els,” Ph.D. dissertation, The University of Michigan, 2010.

[7] H. Zhang, C. Qin, B. Jiang, and Y. Luo, “Online adaptive policy learning algorithm
for H∞ state feedback control of unknown affine nonlinear discrete-time systems,”
Cybernetics, IEEE Transactions on, vol. 44, no. 12, pp. 2706–2718, 2014.

[8] M. Hauskrecht, “Value-function approximations for partially observable markov
decision processes,” arXiv preprint arXiv:1106.0234, 2011.

[9] F. Lewis and D. Liu, Eds., Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Wiley-IEEE Press, 2013.

[10] H. Zhang, D. Liu, Y. Luo, and D. Wang, Adaptive Dynamic Programming for
Control: Algorithms and Stability (Communications and Control Engineering).
Springer, 2013.

[11] T. Smith and R. Simmons, “Heuristic search value iteration for pomdps,” in Pro-
ceedings of the 20th conference on Uncertainty in artificial intelligence. AUAI
Press, 2004, pp. 520–527.

[12] J. Pineau, G. Gordon, S. Thrun, et al., “Point-based value iteration: An anytime
algorithm for pomdps,” in IJCAI, vol. 3, 2003, pp. 1025–1032.

[13] H. Zhang, “Partially observable markov decision processes: A geometric tech-
nique and analysis,” Operations Research, vol. 58, no. 1, pp. 214–228, 2010.

[14] T. Jaakkola, S. P. Singh, and M. I. Jordan, “Reinforcement learning algorithm for
partially observable markov decision problems,” vol. 7. MIT Press, 1995, p. 345.

[15] E. Saad, “Reinforcement learning in partially observable markov decision pro-
cesses using hybrid probabilistic logic programs,” arXiv preprint arXiv:1011.5951,
2010.

73

[16] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for partially
observable dynamic processes: Adaptive dynamic programming using measured
output data,” IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol. 41, no. 1, pp. 14–25, 2011. [Online]. Available: http://dblp.uni-trier.de/db/
journals/tsmc/tsmcb41.html#LewisV11

[17] B. Kiumarsi, F. Lewis, M.-B. Naghibi-Sistani, and A. Karimpour, “Optimal track-
ing control of unknown discrete-time linear systems using input–output measured
data,” Cybernetics, IEEE Transactions on, 2015, in press.

[18] Z. Ni, H. He, and X. Zhong, Experimental Studies on Data-Driven Heuristic Dy-
namic Programming for POMDP. World Scientific Publishing, Singpore, ch.
Frontiers of Intelligent Control and Information Processing.

[19] X. Zhong, Z. Ni, Y. Tang, and H. He, “Data-driven partially observable dynamic
processes using adaptive dynamic programming,” in Proc. IEEE Symposium of
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE,
2014, pp. 1–8.

[20] W. Heemels, M. Donkers, and A. Teel, “Periodic event-triggered control for linear
systems,” Automatic Control, IEEE Transactions on, vol. 58, no. 4, pp. 847–861,
2013.

[21] P. Tallapragada and N. Chopra, “On event triggered tracking for nonlinear sys-
tems,” Automatic Control, IEEE Transactions on, vol. 58, no. 9, pp. 2343–2348,
2013.

[22] M. Lemmon, “Event-triggered feedback in control, estimation, and optimization,”
in Networked Control Systems. Springer, 2010, pp. 293–358.

[23] J. Zhang and G. Feng, “Event-driven observer-based output feedback control for
linear systems,” Automatica, vol. 50, no. 7, pp. 1852–1859, 2014.

[24] K. G. Vamvoudakis, “Event-triggered optimal adaptive control algorithm for
continuous-time nonlinear systems,” IEEE/CAA JOURNAL OF AUTOMATICA
SINICA, vol. 1, no. 3, pp. 282–293, 2014.

[25] A. Sahoo, H. Xu, and S. Jagannathan, “Near optimal event-triggered control of
nonlinear discrete-time systems using neurodynamic programming,” Neural Net-
works and Learning System, IEEE Transactions on, 2015, in press.

[26] A. Sahoo, H. Xu, and S. Jagannathan, “Neural network-based event-triggered state
feedback control of nonlinear continuous-time systems,” Neural Networks and
Learning System, IEEE Transactions on, 2015, in press.

[27] D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game for discrete-
time nonlinear systems via iterative adaptive dynamic programming algorithm,”
Neurocomputing, vol. 110, pp. 92–100, 2013.

74

http://dblp.uni-trier.de/db/journals/tsmc/tsmcb41.html#LewisV11
http://dblp.uni-trier.de/db/journals/tsmc/tsmcb41.html#LewisV11

[28] K. G. Vamvoudakis and F. L. Lewis, “Online actor–critic algorithm to solve the
continuous-time infinite horizon optimal control problem,” Automatica, vol. 46,
no. 5, pp. 878–888, 2010.

[29] H. A. Talebi, F. Abdollahi, R. V. Patel, and K. Khorasani, Neural Network-Based
State Estimation of Nonlinear Systems. Springer, New York, 2010. [Online].
Available: http://books.google.com/books?id=TzdCJdjrp3YC

75

http://books.google.com/books?id=TzdCJdjrp3YC

CHAPTER 5

On-line Hierarchical Adaptive Critic Design

5.1 Introduction

Learning controller design for nonlinear systems is a difficult and challenging topic

because it often requires solving the Hamilton-Jacobi-Bellman (HJB) equation rather

than the Riccati equation. Fortunately, ADP techniques give us an opportunity to ob-

tain the approximate solutions of the HJB equation [1, 2]. Generally specking, ADP

can be categorized into three typical schemes: heuristic dynamic programming (HDP),

dual HDP (DHP), and globalized DHP (GDHP) [3]. Various versions of ADP have

been developed based on these three typical schemes, such as the action-dependent

(AD) version and model-dependent version. Recently, a series of the goal represen-

tation heuristic dynamic programming (GrHDP) was proposed to improve the online

learning of the ADP design in [4, 5]. Unlike the typical ADP schemes (i.e., one critic

and one action networks), the authors integrated an additional network, namely the ref-

erence/goal network, to obtain an internal reinforcement signal to facilitate the optimal

learning and control. This architecture has been applied to various realistic and complex

control problems. In [6], the GrHDP design was applied on the tracking control prob-

lem and further on the real-time simulink/virtual reality platform. In addition, multiple

reference/goal networks design, namely the hierarchical HDP design, was proposed and

verified with promising control performance [7]. More recently, the GrHDP controller

was further tested on the maze navigation problems [8, 9]. On the other hand, many re-

searchers also followed this trend and applied the three-network HDP framework from

different aspects. The improvement from the simulation results were provided and dis-

cussed in [10, 11]. This concept of goal representation was later introduced into the

DHP structure, where the requiement of partial derivatives of the reinforcement signal

were provided by the goal network. Literature [12] showed that the control performance

76

of this goal representation DHP (GrDHP) was improved on certain nonlinear numerical

examples and a power system example.

Previous studies on the GrADP design were focused on the feasibility in imple-

mentation and simulation. Although the impressive performance has been achieved in

the GrADP design, there is no rigorous theoretical proof of convergence in terms of

both the internal reinforcement signal and the performance index under general con-

ditions. In this chapter, I focus on this direction and provide a theoretical analysis of

the GrADP design. Specifically, the theoretical foundation of the internal reinforcement

signal is provided. It is shown that the designed internal reinforcement signal has the

information of the future external reinforcement signals, which gives the agent a more

effective information about the control action. Furthermore, a rigorous theoretical con-

vergence analysis for the GrADP design is developed. It is proved that the internal

reinforcement signal has an upper bound and the performance index in this method can

monotonically non-decrease towards its optimal value. Furthermore, considering the

advantage of the goal representation ADP (GrADP) design, in this chapter, we follow

this trend by integrating the goal representation technique into the GDHP design and

propose an advanced method which is goal representation GDHP (Gr-GDHP). In the

proposed method, the goal network not only provides the internal reinforcement signal,

but also generates its partial derivatives with respect to the system variables and control

action. Therefore, the critic network can obtain both the adaptive (internal) reward and

its derivatives within the Gr-GDHP structure to realize its objective function. Further-

more, we define the output of the goal network, including the internal reinforcement sig-

nal and its derivatives, as parts of the critic network’s input to closely connect these two

networks and help approximate the performance index and its derivatives. This chapter

starts with the fundamental idea of goal representation design. Then, the goal repre-

sentation ADP design ladder is presented. The foundation of the GrHDP and GrDHP

77

methods is provided as the background. After that, comparing with these two previ-

ous design, the key idea of the Gr-GDHP method is discussed. The algorithm for the

proposed method is also provided. The architecture of the Gr-GDHP method is shown

based on the neural networks with explicit neural-network-based learning process. We

compare the simulation results of the Gr-GDHP method with the GrHDP, the GrDHP,

and the traditional GDHP methods. It is shown that the proposed method can achieve

better performance comparing with other ADP designs.

5.2 Goal Representation Design

Consider a nonlinear discrete-time system of the form

x(t + 1) = F [x(t), u(t)] (130)

where x(t) ∈ Rn denotes the system state vector, and u(t) ∈ Rm is the control input.

Let x(0) be the initial state. Assume that F [x(t), u(t)] is Lipschitz continuous on a set

Ω ⊆ Rn and F [0,0] = 0. Therefore, x(t) = 0 is the equilibrium state of the system.

In the GrHDP method, an internal reinforcement signal s(t) is designed to help

stabilize the system which can be described as

s(t) =r(t) + αr(t + 1) + α2r(t + 2) +⋯

=r(t) + α(r(t + 1) + αr(t + 2) +⋯)

=r(t) + αs(t + 1)

(131)

where 0 < α < 1 is the discount factor, and r(t) is the external reinforcement signal

which is positive definite. In this chapter, the external reinforcement signal is chosen as

the quadratic form

r(t) = xT (t)Qx(t) + uT (t)Ru(t) (132)

where Q and R are positive definite matrices with appropriate dimensions.

78

Compare with the traditional ADP design which only provides a single external

reinforcement signal to the agent. We can observe that the designed internal reinforce-

ment signal has the information of the future external reinforcement signals. This means

the internal reinforcement signal s(t) gives us more information by considering more

distant lookahead. In other words, for each state visited, the internal reinforcement sig-

nal looks forward in time to the future information and therefore this signal is more

effective.

The major difference between the GrADP and ADP method is provided in Figure

21. Comparing with the traditional ADP method which uses the external reinforcement

signal r(t) to provide the information of the control action directly, the GrADP method

designs an internal reinforcement signal s(t) to represent the performance of the control

action based on the information of r(t).

The control action we are desired is to minimize the performance index function

V (t) which is given based on s(t),

J(t) = s(t) + γJ(t + 1) (133)

where 0 < γ < 1 is the discount factor. Note that γ and α are not necessary the same.

Furthermore, since (132) is positive definite, then according to (131) and (133), we know

that s(t) and J(t) are positive definite.

From [13], we know that the designed controllers need not only to stabilize the

system but also to guarantee that the performance index (133) is finite, which means the

control must be admissible.

Definition 1: A law u(t) is said to be an admissible control with respect to (133)

on Ω, if u(t) is continuous on Ω and stabilize system (218) for all x(0) ∈ Ω, u(t) = 0 if

x(t) = 0, and ∀x(t) ∈ Ω, J(t) is finite.

Here, assume that there exists the optimal solution for (133). Based on Bellman’s

optimality principle, the optimal performance index J∗(t) satisfies the discrete-time

79

Figure 21. The concept diagram of learning and feedback evaluation process: In con-
trast with the traditional ADP design, the GrADP method has the internal reinforcement
signal in the loop which includes the information of future external reinforcement signal.

HJB equation

J∗(t) =min
u(t)

{s(t) + γJ∗(t + 1)} (134)

where

s(t) = r(t) + αs(t + 1) (135)

is the internal reinforcement signal.

Therefore, the optimal control law can be described as

u∗(t) = argmin
u(t)

{s(t) + γJ∗(t + 1)}. (136)

From (134) we know the control action decides what is the best strategy to combine

the internal reinforcement signals, and also the internal reinforcement signal has the in-

formation of future external reinforcement signals. Assume that the agent is standing

on a given state, first calculating the internal reinforcement signals s(t) for all the pos-

sible control actions to provide the adaptive and effective information, then determining

which is the optimal control action according to the discounted cumulative internal rein-

forcement signals. Therefore, the ultimate goal is to find the control action to minimize

80

the performance index J(t). In the next section, the GrHDP algorithm is provided to

solve the performance index J∗(t) of the HJB equation (134) and the corresponding

convergence analysis is also presented.

5.3 GrADP Control and the Theoretical Analysis

In this section, the GrADP algorithm is first adopted to approximate s(t), J(t) and

u(t), respectively. Then the convergence analysis of this algorithm is also presented.

Note that since r(t) is a function of x(t) and u(t), we use r(x(t), u(t)) to represent

this external reinforcement signal to facilitate the proof.

5.3.1 GrADP Algorithm

Set the initial values as s0 = 0 and J0 = 0. The control action is calculated by

ui(t) = arg min
u(t)

{s(t) + γJ i(t + 1)}, (137)

where i is the iteration index and t is the time index. Once the control action ui(t) is

determined, the internal reinforcement signal can be updated by

si+1(t) = r(x(t), ui(t)) + αsi(t + 1). (138)

Then, the performance index is determined by

J i+1(t) = min
u(t)

{s(t) + γJ i(t + 1)}

= si+1(t) + γJ i(t + 1)

= r(x(t), ui(t)) + αsi(t + 1) + γJ i(t + 1).

(139)

The GrADP algorithm, therefore, is a form of incremental optimization of iterating

(137), (138) and (139).

Note that, the GrADP algorithm is an incremental optimization process which is

implemented forward in time and online. In the next subsection, the convergence proof

81

of the GrADP approach is provided, including the boundedness of the internal rein-

forcement signal and the convergence of the performance index. The existence of the

corresponding control law is also presented.

5.3.2 Convergence analysis of the GrADP approach

Before I present the proof of convergence for the GrADP algorithm, two important

lemmas are given as follows

Lemma 1: Consider sequences which are updated as

φi+1(t) = r(x(t), ηi(t)) + αφi(t + 1) (140)

and

δi+1(t) = φi+1(t) + γδi(t + 1), (141)

where ηi(t) is any stabilizing and admissible control law sequence, r(x(t), ηi(t)) =

xT (t)Qx(t) + ηiT (t)Rηi(t). Define ui(t), si(t) and J i(t) as in (137), (138) and (139),

respectively. If φ0 = s0 = 0, δ0 = J0 = 0 then, J i(t) ≤ δi(t).

Proof: From (138), we have

si+1(t) = r(x(t), ui(t)) + αsi(t + 1)

=
i+t

∑
k=t

αk−tr(x(k), ui+t−k(k)).
(142)

Hence, according to (139), we can rewrite the performance index as

J i+1(t) =
i+t

∑
k=t

αk−tr(x(k), ui+t−k(k)) + γJ i(t + 1)

=
i+t

∑
k=t

αk−t(xT (t)Qx(t) + uiT (t)Rui(t)) + γJ i(t + 1).

(143)

Consider (140) and (141), the sequences φi(t) and δi(t) can be also described as

φi+1(t) =
i+t

∑
k=t

αk−tr(x(k), ηi+t−k(k)) (144)

δi+1(t) =
i+t

∑
k=t

αk−t(xT (t)Qx(t) + ηiT (t)Rηi(t)) + γδi(t + 1). (145)

82

Consider (143) and (145). Because ui(t) minimizes the right-hand side of (143),

and ηi(t) is any stabilizing and admissible control law sequence, then considering φ0 =

s0 = 0, δ0 = J0 = 0, we have J i(t) ≤ δi(t) by induction, which completes the proof. ∎

Next lemma provides the existence of the admissible control.

Lemma 2: Let the internal reinforcement signal sequence si(t) and the perfor-

mance index sequence J i(t) be defined as in (138) and (139), respectively. If the system

(130) is controllable, then the admissible control law exists.

Proof: Since sequences J i(t) and si(t) are positive definite, both of them attain

minimal values at x(t) = 0. Thus, ∂J
i(t)

∂x(t) and ∂si(t)
∂x(t) should vanish there, which indicates

that u(t) = 0 if x(t) = 0. The continuity assumption on F [x(t), u(t)] implies that there

exists a continuous control law and the system (130) cannot jump to infinity by any

one step of finite control. Moreover, since F [0,0] = 0, the control input becomes zero

and the state is kept at zero when the system reaches the equilibrium state. This means

the external reinforcement signal r(x(t), u(t)) becomes zero when the system is stable

(r(0,0) = 0). Hence, according to the definition of s(t) and J(t), we know that both

s(t) and J(t) are finite. According to Definition 1, we know the admissible control law

exists for system (130), which proves the conclusion. ∎

Now, we present our main results.

Theorem 1: Define the sequences si(t) and J i(t) as in (138) and (139), respec-

tively. The sequence ui(t) is determined by (137). If the system is controllable and

s0 = J0 = 0, then the following conclusions hold.

(1) J i(t) is a monotonically non-decreasing sequence, i.e., J i(t) ≤ J i+1(t).

(2) There exists 0 ≤ si(t) ≤ P (x(t)), 0 ≤ J i(t) ≤ W (x(t)), where P (x(t)) and

W (x(t)) are the upper bounds for sequences si(t) and J i(t), respectively.

(3) When i → ∞, then J i(t) → J∗(t), ui(t) → u∗(t). This implies the sequence

J i(t) can converge to the solution of the discrete-time HJB equation (134).

83

Proof: From Lemma 1, we know if φ0 = s0 = 0, δ0 = J0 = 0, the sequence δi(t)

defined in (141) has the following property

J i(t) ≤ δi(t). (146)

In the following part, it will be proved J i+1(t) ≥ δi(t) by mathematical induction.

Because φ0 = s0 = 0 and δ0 = J0 = 0, it follows

J1(t) − δ0(t) = r(x(t), u0(t)) ≥ 0 (147)

which means J i+1(t) ≥ δi(t) holds for i = 0.

Now, assume that there exists J i(t) ≥ δi−1(t) for the (i − 1)th iteration step. Set

the stabilizing and admissible control law ηi−1(t) = ui(t) and the summation of external

reinforcement signal φi(t + 1) = si(t + 1). We obtain

δi(t) = r(x(t), ui(t)) + si(t + 1) + γδi−1(t + 1). (148)

By subtracting (148) from (139), it yields

J i+1(t) − δi(t) = γ(J i(t + 1) − δi−1(t + 1)) ≥ 0. (149)

This completes the proof of J i+1(t) ≥ δi(t). Combining this with (146), we obtain

J i(t) ≤ δi(t) ≤ J i+1(t) for any i = 0,1,2,⋯. This means, J i(t) ≤ J i+1(t). Therefore, the

sequence J i(t) is a monotonically non-decreasing sequence. This completes the proof

of part (1).

The second part of the theorem follows by realizing that the sequence J i(t) is

positive and monotonically non-decreasing. Hence, we can conclude that

0 ≤ J i(t) ≤ J∞(t). (150)

Now, it will be proved there exist an upper bound for this sequence. Set µ(t) be

any stabilizing and admissible control and θ0 = s0 = 0, where θi(t) is updated as

θi+1(t) = r(x(t), µ(t)) + αθi(t + 1). (151)

84

Define θ0 = 0, and equation (151) can be written as

θi+1(t) = r(x(t), µ(t)) + αθi(t + 1)

= r(x(t), µ(t)) + αr(x(t + 1), µ(t + 1)) + α2θi−1(t + 2)

⋮

= r(x(t), µ(t)) + αr(x(t + 1), µ(t + 1))

+⋯ + αir(x(t + i), µ(t + i)) + αi+1θ0(t + i + 1)

=
i

∑
k=0

αkr(x(t + k), µ(t + k))

=
i+t

∑
k=t

αk−tr(x(k), µ(k))

≤
∞

∑
k=t

αk−tr(x(k), µ(k)).

(152)

Since µ(t) is an admissible stabilizing control, x(t) → 0 when t → 0, and ∀i such

that

θi+1(t) ≤
∞

∑
k=t

αk−tr(x(k), µ(k)). (153)

By setting µ(t) = ui−1(t) and θi−1(t + 1) = si−1(t + 1), it follows that ∀i,

si+1(t) ≤
∞

∑
k=t

αk−tr(x(k), µ(k)). (154)

Define P (t) = ∑
∞
k=tα

k−tr(x(k), µ(k)), and hence si(t) ≤ P (t). This completes the

conclusion that P (t) is an upper bound of sequence si(t). Therefore, 0 ≤ si(t) ≤ P (t).

In the following part, it will be proved that there also exists an upper bound for the

sequence J i(t). We rewrite (139) as

J i+1(t) = si+1(t) + γJ i(t + 1)

= si+1(t) + γsi(t + 1) + γ2J i−1(t + 2)

⋮

= si+1(t) + γsi(t + 1) +⋯ + γis1(t + i) + γi+1J0(t + i + 1)

=
t+i

∑
m=t

γm−tsi+t−m(m).

(155)

85

Since si(t) ≤ P (t), it follows that

J i+1(t) ≤
∞

∑
m=t

γm−tP (m). (156)

Define W (t) = ∑
∞
m=t γ

m−tP (m), such that 0 ≤ J i(t) ≤ W (t). Hence, the proof of

part (2) is completed. Note that both P (t) and W (t) are determined by the admissible

stabilizing control law µ(t). This means when t → ∞, µ(t) → 0 and x(t) → 0. Hence,

limt→∞ r(x(t), µ(t)) = 0, indicating that P (t) and W (t) are finite values.

For part (3), define a sequence ϕi(t) with the following update rule

ϕi+1(t) = θi+1(t) + γϕi(t + 1), (157)

where ϕ0 = J0 = 0. From Lemma 1, we known J i(t) ≤ ϕi(t) by setting φi(t) = θi(t)

and δi(t) = ϕi(t). After some derivation, (157) can be rewritten as

ϕi+1(t) = θi+1(t) + γθi(t + 1) + γ2θi−1(t + 2) +⋯

=
i

∑
m=0

γm+t(
i+t

∑
k=t

αk−tr(x(k +m), µ(k +m)))

(158)

Let i→∞, it follows

J∞(t) ≤ ϕ∞(t) ≤
∞

∑
m=0

γm+t(
∞

∑
k=t

αk−tr(x(k +m), µ(k +m))). (159)

If µ(t) = u∗(t), then

J∞(t) ≤
∞

∑
m=0

γm+t(
∞

∑
k=t

αk−tr(x(k +m), u∗(k +m))) = J∗(t). (160)

On the other hand, consider the definition of the upper bound W (t). Because µ(t)

is defined as an admissible control, setting µ(t) is the control input of the infinite step,

it follows,

J∞(t) =W (t) ≥ J∗(t). (161)

From (160) and (161), we know J∞(t) = J∗(t), which means J i(t) converges to the

optimal value J∗(t). This completes the result that J∞(t) = J∗(t).

86

Now let us consider the convergence of the control action. According to equation

(137), we obtain

u∞(t) = arg min
u(t)

{s(t) + γJ∞(t + 1)} (162)

u∗(t) = arg min
u(t)

{s(t) + γJ∗(t + 1)}. (163)

Therefore, we can observe that if limi→∞ J i(t) = J∗(t) hold, then we have

limi→∞ ui(x(t)) = u∗(x(t)). The conclusion holds. ∎

Theorem 1 proves that the performance index sequence J i(t) is a monotonically

non-decreasing sequence, and both the internal reinforcement signal sequence si(t) and

the performance index sequence J i(t) exist upper bounds. This means s(t) and J(t)

cannot go infinity. Moreover, the performance index sequence and the control law se-

quence can converge to their optimal value, respectively, after certain iteration steps.

This implies that we can use this algorithm to approximate the solution of the discrete-

time HJB equation (134). Next section presents the neural-network-based implementa-

tion of the GrADP approach.

5.4 Goal representation ADP ladder

The family of the GrADP method is discussed in this section, including the GrHDP,

GrDHP, and Gr-GDHP.

5.4.1 Goal Representation Design in HDP

In literature work [4, 5], the GrHDP method is discussed. It is shown that the goal

network is integrated into the traditional HDP design to generate an internal reinforce-

ment signal s(t) to help the control process. This s(t) signal is adaptive and learn from

the external reinforcement signal r(t). Therefore, the output of the goal network can be

described as

s(t) = r(t) + αs(t + 1) (164)

87

where 0 < α < 1 is the discount factor. Then, we include s(t) within the inputs of the

critic network to closely connect the goal network and the critic network. Therefore, the

output of the critic network, performance index J(t), can be provided as

J(t) = s(t) + γJ(t + 1) (165)

where 0 < γ < 1 is the discount factor. Notice that γ and α are not necessary the same.

In the GrHDP design, our goal is to seek an optimal control action u(t), so that the

performance index J(t) in (165) can be minimized. Various complex and realistic con-

trol cases have been tested on this architecture with numerous impressive performance

[6, 8, 7]. Furthermore, the theoretical foundation of this method has been provided in

[14]. It is shown that the internal reinforcement signal s(t) exists an upper bound and

the performance index J(t) can converge to its optimal value.

5.4.2 General Utility Function Representation in DHP

Later, this general representation of the utility function is introduced into the DHP

approach, and thus GrDHP method has been proposed [12]. In the GrDHP method,

we adopt the goal network to estimate the partial derivatives of s(t) with respect to the

vector Y (t) = [xT (t), uT (t)]T , where x(t) denotes the system state and u(t) is the

control action. Therefore, the output of the goal network in GrDHP method becomes

g(t) =
∂s(t)

∂Y (t)
(166)

The derivatives of the performance index are provided by the critic network as

λ(t) =
∂J(t)

∂Y (t)
=
∂s(t)

∂Y (t)
+ γ

∂J(t + 1)

∂Y (t)
(167)

Since now the critic network is trained to estimate the high quality of ∂J(t)/∂u(t), our

goal becomes to minimize ∂J(t)/∂u(t) to find the optimal control action [15].

Follow our previous work, in this chapter, we introduce the goal representation

concept into the traditional GDHP method, and propose a Gr-GDHP design. A goal

88

network is established to provide both the adaptive internal reinforcement signal and its

derivatives to help the performance index estimation in critic network and the decision

making in action network.

5.4.3 Gr-GDHP Design

Considering the advantage of both GrHDP and GrDHP, we build a goal network

in Gr-GDHP to estimate both the internal reinforcement signal s(t) in (164) and its

derivatives g(t) in (166). Moreover, a critic network is also applied to estimate both the

performance index J(t) in (165) and its derivatives λ(t) in (167).

Notice that, in our design, both s(t) and g(t) can not only provide an adaptive

representation of the utility function for the critic network, but also help estimate the

cost-to-go in detail since s(t) and g(t) work as parts of the critic network’s inputs.

A model network is also applied in this design to predict the future system states.

Therefore, we can obtain all the predicted internal reinforcement signal, performance

index, and their partial derivatives at the current time step. Subsequently, the temporal

difference (TD) errors for all the s(t), g(t), J(t), and λ(t) between the current and the

next time step can be achieved. Furthermore, the designed model network needs to be

considered into the backpropagation paths of the neural network learning process, since

the critic and the goal networks are connected with the action network through it.

The algorithm of the Gr-GDHP design is presented in Algorithm 3.

5.5 Learning Process of Gr-GDHP Approach

In this section, we will provide the explicit procedures on the implementation of the

proposed Gr-GDHP approach. The architecture of this approach is shown in Figure 22.

All the neural networks applied in this method are established based on the Multilayer

perceptron (MLP) neural network technique. We can observe that the goal network’s

outputs are included in the critic network’s inputs, which provides more information

89

Algorithm 3 Outline of the Implementation for Gr-GDHP Control Design.
Initialize all the neural network weights.
Set t = 0.
for all t < Nrun do

1. Obtain u(t) through the action network.
2. Observe x(t) from the environment or system.
3. Calculate ŝ(t), ĝ(t), Ĵ(t), and λ̂(t) through the goal network and the critic

network, respectively.
4. Predict x̂(t + 1) through the model network with the inputs x(t) and u(t).
5. The predicted û(t + 1) is obtained through the action network with the input
x̂(t + 1).
6. The predicted ŝ(t + 1) and ĝ(t + 1) are obtained through the goal network with

the inputs x̂(t + 1) and û(t + 1).
7. The external reinforcement signal r(t) is given based on the current state. If

the control fails, start over from the beginning.
8. The TD errors are obtained between ŝ(t), ĝ(t) and ŝ(t+1), ĝ(t+1), respectively.

The goal network weights are updated accordingly.
9. The predicted Ĵ(t+1) and λ̂(t+1) are obtained through the critic network with

the inputs x̂(t + 1), û(t + 1), ŝ(t + 1), and ĝ(t + 1).
10. The TD errors are obtained between Ĵ(t), λ̂(t) and Ĵ(t+ 1), λ̂(t+ 1), respec-

tively. The critic network weights are updated accordingly.
11. The action network weights are tuned according to the outputs of the goal and

the critic networks.
12. System information is updated based on the newly obtained u(t).
13. Set t = t + 1.

end for

Figure 22. Architecture of the Gr-GDHP approach.

90

to approximate the performance index. The predicted control action û(t + 1) will be

generated from the action network with input x̂(t + 1), which is estimated by the model

network. In this section, the weights updating rules of the action, the critic, and the goal

networks are provided, respectively. The training process of the model network is also

described, since the future information is required in this method.

5.5.1 State Prediction

A model network [16, 17] is established in this Gr-GDHP method to predict the

future information of the system. Therefore, the predicted value of the internal rein-

forcement signal, the performance index, and their derivatives can be achieved at current

time step based on the predicted system state. The function approximation structure is

designed as a three-layer neural network. The weights between the input and the hidden

layers are denoted by ωm1 and the weights between the hidden and the output layers are

set as ωm2. In this chapter, we randomly chose the input-to-hidden layer weights ωm1 at

initial and keep as constant thereafter. Therefore, only the output layer weights ωm2 are

proposed to be tuned during the learning process. The design of the model network is

similar to the RVFL nets in [18].

Define the identification scheme as:

x̂(t + 1) = ωTm2(t)σ(ω
T
m1Y (t)) (168)

where Y (t) = [xT (t), uT (t)]T is the input of the model network, x(t) is the system

state, u(t) is the control action, x̂(t+1) is the predicted state of next time step, and σ(⋅)

is the bounded activation function. Here, we define σ(⋅) as the sigmoid function

σ(x) =
1 − e−x

1 + e−x
(169)

Since the neural networks have the property of universal approximation, the above

identified system can be described as the neural network representation

x(t + 1) = ω∗Tm2σ(ω
T
m1Y (t)) + δ(t) (170)

91

where ω∗Tm2 is the ideal hidden-to-output weights, and ∣δ(t)∣ ≤ δM is the approximation

error of neural network.

The identification error is defined as

e(t + 1) = x̂(t + 1) − x(t + 1) (171)

Then, considering (168) and (170), we have

e(t + 1) =ωTm2(t)σ(ω
T
m1Y (t)) − ω∗Tm2σ(ω

T
m1Y (t)) − δ(t)

=ω̃m2(t)σ(ω
T
m1Y (t)) − δ(t)

(172)

where ω̃m2 = ωm2(t) − ω∗m2 is the errors of the weights.

Hence, the weights in the system identification process are updated to minimize the

following objective function

Em2 =
1

2
eT (t + 1)e(t + 1) (173)

Using the gradient descent method to minimize (173), we have the weights updat-

ing law for the model network as

ωm2(t) = ωm2(t) +∆ωm2(t) (174)

where

∆ωm2(t) = − βm [
∂Em2(t)

∂ωm2(t)
]

= − βm [σ(ωTm1Y (t)) ⋅ (x̂(t + 1) − x(t + 1))]

(175)

Notice that the training process of the model network is offline in this chapter. This

means when the model network weights are well trained, we fixed them and start to

online train the weights of the goal, the critic, and the action networks.

5.5.2 General Utility Function Representation Design

Compared with the traditional GDHP design that assigns an instant reward signal,

which is called the external reinforcement signal in this chapter, from the environment,

92

Figure 23. The schematic archtecture of the goal network.

our proposed Gr-GDHP method designs an internal reinforcement signal including the

information of future external reinforcement signals. Specifically, a goal network is

integrated to provide a more effective internal reinforcement signal to represent the per-

formance of the control action. This signal is adaptive and learned from the external

reinforcement signal r(t). The goal network, in the Gr-GDHP design, aims to approxi-

mate both s(t) and its partial derivatives g(t) with respect to the vector Y (t). Then, we

can describe g(t) as

g(t) =
∂s(t)

∂Y (t)
= [

∂s(t)

∂x(t)
,
∂s(t)

∂u(t)
]

T

(176)

Notice that ∂(⋅)/∂(⋆) means the partial derivations of the scalar (⋅) with respect to the

components in (⋆).

The goal network is established as a three-layer neural network architecture, as

shown in Figure 23. It can be observed that the vector Y (t) is applied as the input of the

goal network. Therefore, the output of the goal network becomes

[
ŝ(t)
ĝ(t)

] = [
ωaTg2 (t)
ωbTg2 (t)

] ⋅ σ(ωTg1(t)Y (t)) (177)

where ωg2(t) = [ωag2(t), ω
b
g2(t)] is the hidden-to-output layer weights and ωg1(t) is the

input-to-hidden layer weights of the goal network. The sigmoid function σ(⋅) is defined

93

the same as in (169). Here, we only adopt the sigmoid function on the input-to-hidden

layer nodes. Therefore, we can obtain

ŝ(t) = ωaTg2 (t)σ(ωTg1(t)Y (t)) (178)

ĝ(t) = ωbTg2 (t)σ(ω
T
g1(t)Y (t)) (179)

The target functions can be written as

s(t) = r(t) + αŝ(t + 1) (180)

and

g(t) =
∂r(t)

∂Y (t)
+ α

∂ŝ(t + 1)

∂Y (t)
(181)

Here, we use the predicted internal reinforcement signal ŝ(t + 1) instead of s(t + 1) in

(164), since in the implementation process, the accurate value of s(t + 1) is difficult to

achieve.

Comparing (178), (179) with (180), (181), respectively, the approximation error

functions of the goal network is defined as

eg1(t) = ŝ(t) − s(t) = ŝ(t) − αŝ(t + 1) − r(t) (182)

eg2(t) =
∂ŝ(t)

∂Y (t)
− α

∂ŝ(t + 1)

∂Y (t)
−
∂r(t)

∂Y (t)
(183)

Hence, the following objective function needs to be minimized in order to update

the goal network weights:

Eg(t) = η1Eg1(t) + η2Eg2(t) (184)

where

Eg1(t) =
1

2
e2
g1(t), Eg2(t) =

1

2
e2
g2(t) (185)

in which η1 and η2 are the positive parameters that adjust how GrHDP and GrDHP are

combined in Gr-GDHP.

94

DER =
∂Ŷ (t + 1)

∂Y (t)
=

⎡
⎢
⎢
⎢
⎢
⎣

∂x̂(t+1)
∂u(t) ⋅

∂u(t)
∂x(t) +

∂x̂(t+1)
∂x(t)

∂x̂(t+1)
∂u(t)

∂û(t+1)
∂x̂(t+1) ⋅ (

∂x̂(t+1)
∂u(t) ⋅

∂u(t)
∂x(t) +

∂x̂(t+1)
∂x(t))

∂û(t+1)
∂x̂(t+1) ⋅

∂x̂(t+1)
∂u(t)

⎤
⎥
⎥
⎥
⎥
⎦

(190)

Then, the weights updating rule is obtained based on the gradient decent method,

ωg(t + 1) = ωg(t) +∆ωg(t) (186)

where

∆ωg(t) = − βg [
∂Eg(t)

∂ωg(t)
]

= − βg [η1

∂Eg1(t)

∂ωg(t)
+ η2

∂Eg2(t)

∂ωg(t)
]

= − βg [η1(ŝ(t) − αŝ(t + 1) − r(t))
∂ŝ(t)

∂ωg(t)

+η2 (
∂ŝ(t)

∂Y (t)
− α

∂ŝ(t + 1)

∂Y (t)
−
∂r(t)

∂Y (t)
)

∂2ŝ(t)

∂Y (t)∂ωg(t)
]

(187)

in which βg is the learning rate of the goal network. Here, we use ωg(t) to express both

ωg1(t) and ωg2(t). Note that, in the implementation process, equation (187) needs to be

calculated in a component-by-component fashion.

Note that, in (187)
∂ŝ(t)

∂Y (t)
= ĝ(t) (188)

Thus, terms ŝ(t) and ∂ŝ(t)/∂Y (t) can be directly obtained from the output of the goal

network. Since we apply the model network to predict the future system state, then

Ĵ(t + 1), ĝ(t + 1), and û(t + 1) can be obtain subsequently. Hence, we have

∂ŝ(t + 1)

∂Y (t)
=
∂ŝ(t + 1)

∂Ŷ (t + 1)
⋅
∂Ŷ (t + 1)

∂Y (t)
(189)

The second term ∂Ŷ (t + 1)/∂Y (t) can be achieved from the model network as (190).

Thus, we have
∂ŝ(t + 1)

∂Y (t)
= ĝ(t + 1) ⋅DER (191)

95

Substituting (191) into (187), we can observe that only the terms ∂ŝ(t + 1)/∂ωg(t)

and ∂2ŝ(t)/∂Y (t)∂ωg(t) need to be solved. Note that in this chapter, both the input-

to-hidden and the hidden-to-output layer weights ωg1(t), ωg2(t) are tuned during the

learning process. Now, we will derive these two terms for both layers separately.

(1). ∆ωg1(t): Adjustment for the input-to-hidden layer weights of the goal net-

work.

∂ŝ(t)

∂ωg1(t)
=
∂ŝ(t)

∂σg(t)
⋅
∂σg(t)

∂ωg1(t)

=
1

2
ωaTg2 (t) ⋅ (1 − σ2

g(t)) ⋅ Y (t)

(192)

∂2ŝ(t)

∂Y (t)∂ωg1(t)
=

∂ĝ(t)

∂ωg1(t)

=
∂ĝ(t)

∂σg(t)
⋅
∂σg(t)

∂ωg1(t)

=
1

2
ωbTg2 (t) ⋅ (1 − σ2

g(t)) ⋅ Y (t)

(193)

where σg(t) = σ(ωTg1(t)Y (t)).

(2). ∆ωg2(t): Adjustment for the hidden-to-output layer weights of the goal net-

work.
∂ŝ(t)

∂ωg2(t)
= [

∂ŝ(t)

∂ωag2(t)
,
∂ŝ(t)

∂ωbg2(t)
] (194)

∂2ŝ(t)

∂Y (t)∂ωg2(t)
= [

∂ĝ(t)

∂ωag2(t)
,
∂ĝ(t)

∂ωbg2(t)
] (195)

5.5.3 Learning Process of Critic Network

The performance index J(t) and its partial derivatives with respect to the vector

Y (t) are estimated by the critic network. The partial derivatives of the performance

index can be defined as λ(t) = ∂J(t)/∂Y (t). The critic network is built as a three-layer

neural network architecture and its schematic diagram is shown in Figure 24. It can

be seen that we include the goal network’s outputs ŝ(t) and ĝ(t) as parts of the critic

network’s input and aim to help the performance index approximation. In this way, the

96

Figure 24. The schematic archtecture of the critic network.

critic and the goal networks are closely connected. The input of the critic network is

defined as Yc = [xT (t), uT (t), ŝ(t), ĝT (t)]T . We also adopt the sigmoid function on the

hidden layer nodes. Set the input-to-hidden layer weights as ωc1(t) and the hidden-to-

output layer weights as ωc2(t) = [ωac2(t), ω
b
c2(t)]. Then, we have the output of the critic

network:

[
Ĵ(t)

λ̂(t)
] = [

ωaTc2 (t)
ωbTc2 (t)

]σ(ωTc1Yc(t)) (196)

The objective function for critic network can be described as

Ec(t) = η1Ec1(t) + η2Ec2(t) (197)

where

Ec1(t) =
1

2
(Ĵ(t) − γĴ(t + 1) − ŝ(t))

2

(198)

Ec2(t) =
1

2
(
∂Ĵ(t)

∂Y (t)
− γ

∂Ĵ(t + 1)

∂Y (t)
−
∂ŝ(t)

∂Y (t)
)

2

(199)

Here, instead of the predefined (external) reinforcement signal r(t) in literature, we

provide an adaptive internal reinforcement signal ŝ(t) for the critic network.

97

The gradient decent rule is employed to minimize the objective function in (197).

Then, the weights updating rule of the critic network is:

ωc(t + 1) = ωc(t) +∆ωc(t) (200)

where

∆ωc(t) = − βc [
∂Ec(t)

∂ωc(t)
]

= − βc [η1
∂Ec1(t)

∂ωc(t)
+ η2

∂Ec2(t)

∂ωc(t)
]

= − βc [η1(Ĵ(t) − γĴ(t + 1) − ŝ(t))
∂Ĵ(t)

∂ωc(t)

+η2 (
∂Ĵ(t)

∂Y (t)
− γ

∂Ĵ(t + 1)

∂Y (t)
−
∂ŝ(t)

∂Y (t)
)

∂2Ĵ(t)

∂Y (t)∂ωc(t)
]

(201)

in which βc is the learning rate of the critic network. Here, we use ωc(t) to express both

ωc1(t) and ωc2(t).

It can be observed that

∂Ĵ(t)

∂Y (t)
= λ̂(t);

∂ŝ(t)

∂Y (t)
= ĝ(t) (202)

Hence, we can obtain these two terms in (201) from the goal and the critic networks

directly. Based on the model network, we have

∂Ĵ(t + 1)

∂Y (t)
= λ̂(t + 1) ⋅DER (203)

Now, we will derive the adjustment for the hidden and the output layers weights,

respectively.

(1). ∆ωc1(t): Adjustment for the input-to-hidden layer weights of the critic net-

work.
∂Ĵ(t)

∂ωc1(t)
=

1

2
ωaTc2 (t) ⋅ (1 − σ2

c(t)) ⋅ Yc(t) (204)

∂2Ĵ(t)

∂Y (t)∂ωc1(t)
=
∂λ̂(t)

∂ωc1(t)

=
1

2
ωbTc2 (t) ⋅ (1 − σ2

c(t)) ⋅ Yc(t)

(205)

98

Figure 25. The schematic archtecture of the action network.

where σc(t) = σ(ωTc1(t)Yc(t))

(2). ∆ωc2(t): Adjustment for the hidden-to-output layer weights of the critic net-

work.
∂Ĵ(t)

∂ωc2(t)
= [

∂Ĵ(t)

∂ωac2(t)
,
∂Ĵ(t)

∂ωbc2(t)
] (206)

∂2Ĵ(t)

∂Y (t)∂ωc2(t)
= [

∂λ̂(t)

∂ωac2(t)
,
∂λ̂(t)

∂ωbc2(t)
] (207)

5.5.4 Learning Process of Action Network

The optimal control action u(t) is approximated by the action network. Recall

the GrHDP design [4], this goal is achieved by minimizing the performance index or

total future cost. Although the performance index J(t) is one of the outputs of the

critic network in the proposed Gr-GDHP design, we also have high quality estimation

of ∂J(t)/∂s(t) at the critic’s outputs. Therefore, similar to the GrDHP design [12], we

use ∂J(t)/∂s(t) instead to perform the training of the action network [15]. Hence, the

approximation error for the action network can be defined as

ea(t) =
∂ŝ(t)

∂u(t)
+ γ

∂Ĵ(t + 1)

∂u(t)
(208)

Ea(t) =
1

2
e2
a(t) (209)

99

The estimated control law can be formulated as

u(t) = σ(ωTa2(t)m(t)) (210)

m(t) = σ(ωTa1(t)x(t)) (211)

where ωa1(t) and ωa2(t) are the action network weights of the input-to-hidden and

hidden-to-output layers, respectively. The input of the action network is the system

state x(t).

The weights updating law is derived based on the gradient descent method as

ωa(t + 1) = ωa(t) +∆ωa(t) (212)

where

∆ωa(t) = − βa [
∂Ea(t)

∂ωa(t)
]

= − βa [(
∂ŝ(t)

∂u(t)
+ γ

∂Ĵ(t + 1)

∂u(t)
) (

∂2ŝ(t)

∂u(t)∂ωa(t)
+ γ

∂2Ĵ(t + 1)

∂u(t)∂ωa(t)
)]

(213)

In this Gr-GDHP design, the goal and the critic networks are built to estimate the

internal reinforcement signal s(t), performance index J(t), and their derivatives g(t)

and λ(t). Thus, the second derivatives ∂2s(t)/∂Y (t)∂ωg(t) and ∂2J(t)/∂Y (t)∂ωc(t)

are conveniently obtained through backpropagation. In general, the use of both the

optimization criterion and its derivatives is regarded as being more critical to seek the

optimal solution [15]. Furthermore, the training process of Gr-GDHP is in the order

of the goal network, the critic network, and the action network. Specifically, after the

weights ωg1(t), ωg2(t) of the goal network are learned, we fix them thereafter and start

to train the weights ωc1(t), ωc2(t) of the critic network. Then, we fix ωc1(t), ωc2(t) and

start to train the weights ωa1(t), ωa2(t) of the action network. For each time step, the

designed neural networks have their own internal cycles Ng, Nc, Na and training error

thresholds Tg, Tc, Ta. For instance, the goal network is trained until the squared error

under the threshold Tg, otherwise it is trained at most Ng cycles in each time step.

100

5.6 Simulation Studies

In this section, we provide two case studies to demonstrate the effectiveness of

the proposed Gr-GDHP method. We also compare the results with the GrDHP, GrHDP

and GDHP methods. The comparison shows that the proposed Gr-GDHP method can

improve the control performance.

5.6.1 Nonlinear System

Consider the following nonlinear system

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1(t + 1) = − sin (0.5x1(t))

x2(t + 1) = − sin (x1(t)) cos (0.2x1(t) + 0.8x2(t)) + u(t)

(214)

where x(t) = [x1(t), x2(t)]T is the system state vector and u(t) is the control action.

The external reinforcement signal is chosen as r(t) = xT (t)x(t) + uT (t)u(t). We can

observe that x(t) = 0 is an equilibrium state of the system.

We apply the proposed Gr-GDHP method to stabilize the nonlinear system (214).

In the system identification process, a three-layer neural network is established as the

model network with the structure 3 − 6 − 2 (i.e., the network has three input nodes, six

hidden nodes, and two output nodes). The initial weights of the input-to-hidden and the

hidden-to-output layer are chosen randomly within [−1,1] and the learning rate of the

model network is set as βm = 0.01. After training, the model network can successfully

predict the unknown future state of the nonlinear system (214). Then, the offline training

process is finished and we fix the well-trained model network weights.

Three neural networks are built as the goal, the critic, and the action networks

with three-layer structure. Specifically, the structures of these three neural networks are

3 − 6 − 4, 7 − 10 − 4, and 2 − 5 − 1, respectively. All the initial weights are randomly

chosen within [−0.5,0.5]. The weights training processes are based on the analysis in

Section 6.3. The learning rates of the goal, the critic, and the action networks are set

as βg = βc = βa = 0.01. In this case study, we define the number of internal cycles

101

Time Step
0 2 4 6 8 10 12 14 16 18 20

x 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Gr-GDHP
GrDHP
GDHP
GrHDP

2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 26. Comparison of the state trajectory x1 on the nonlinear system with Gr-GDHP,
GrDHP, GrHDP and GDHP methods.

Time Step
0 2 4 6 8 10 12 14 16 18 20

x 2

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Gr-GDHP
GrDHP
GDHP
GrHDP

1 2 3 4 5
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Figure 27. Comparison of the state trajectory x2 on the nonlinear system with Gr-GDHP,
GrDHP, GrHDP and GDHP methods.

102

Time Step
0 2 4 6 8 10 12 14 16 18 20

u

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Gr-GDHP
GrDHP
GDHP
GrHDP

Figure 28. Comparison of the control input u on the nonlinear system with Gr-GDHP,
GrDHP, GrHDP and GDHP methods.

Time Step
0 2 4 6 8 10 12 14 16 18 20

V
al

ue
 F

un
ct

io
n

0

0.05

0.1

0.15

3 4 5 6
0

0.01

0.02

0.03

0.04

GrGDHP
GDHP
GrHDP

Figure 29. The trajectories of the performance index Ĵ(t) of the Gr-GDHP, GrHDP and
GDHP methods.

103

as Ng = 150, Nc = 100, Na = 200 and the error threshold as Tg = Tc = Ta = 1e − 6.

The discounted factors are set as α = γ = 0.95. The weighted parameters are set as

η1 = η2 = 0.5.

In order to verify the effectiveness of the Gr-GDHP method, we compare this

method with three other ADP methods in literature, which are GDHP in [15], GrHDP

in [4], and GrDHP in [12]. The initial state is set as x(0) = [0.5,−0.5]T . We apply the

optimal controller designed by these four methods and compare the performance. The

compared state trajectories of these four methods are shown in Figure 26 and Figure 27.

The comparison of the control input u(t) of these four methods is provided in Figure

28. It can be observed that all the methods can stabilize the system. Moreover, the

proposed Gr-GDHP method can drive the system states to converge to the equilibrium

points faster than other three methods. Furthermore, the trajectories of the performance

index J(t) of the Gr-GDHP, GrHDP, and GDHP methods are shown in Figure 29. Note

that since the performance index Ĵ(t) cannot be directly obtained in the GrDHP design,

we only compare the trajectories of Ĵ(t) for the other three methods here. From Figure

29, we can observe that the proposed Gr-GDHP method can minimize the performance

index faster than the other methods. These simulation results demonstrate that the pro-

posed Gr-GDHP design has better performance than the GrHDP, GrDHP, and GDHP

designs.

5.6.2 Ball-and-beam balancing system

In this case study, the effectiveness of the proposed Gr-GDHP method is further

investigated on the ball-and-beam balancing system [6, 19], which is shown in Figure

30. The motion equations can be described as:

(m +
Ib
r2

) ẍ′ + (mr2 + Ib)
1

r
θ̈ −mx′θ̇2 =mg(sin θ) (215)

104

Figure 30. Schematics of the ball-and-beam balancing system.

[m(x′)2 + Ib + Iω] θ̈ + (2mẋ′x′ + bl2) θ̇ +Kl2θ

+ (mr2 + Ib)
1

r
ẍ′ −mgx′(cos θ) = ul(cos θ)

(216)

where

b = 1Ns/m, is the friction coefficient of the drive mechanics;

m = 0.0162kg, is the mass of the ball;

g = 9.8m/s2, is the acceleration due to gravity;

r = 0.02m, is the roll radius of the ball;

K = 0.001N/m, is the stiffness of the drive mechanics;

Ib = 4.32 × 10−5kg ⋅m2, is the inertia moment of the ball;

Iω = 0.14025kg ⋅m2, is the inertia moment of the beam;

l = 0.48m, is the radius of force application;

lω = 0.5m, is the radius of the beam;

x′, is the position of the ball;

θ, is the angle of the beam to the horizontal axis;

u, is the force of the drive mechanics.

To formulate the system dynamics, assume x1 = x′ is the position of the ball, x2 = ẋ′

105

t(s)
0 10 20 30 40

x 1
(m

)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

t(s)
0 10 20 30 40

x 2
(m

/s
)

-0.06

-0.04

-0.02

0

0.02

0.04

t(s)
0 10 20 30 40

x 3
(r

ad
)

-0.1

-0.05

0

0.05

0.1

0.15

t(s)
0 10 20 30 40

x 4
(r

ad
/s

)
-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 31. System responses of a typical successful trial without noise in the first 40
seconds.

0 2 4 6 8 10
t(s)

-10

-5

0

5

10

u
(N

)

4 8 12 16

-0.05

0

0.05

Figure 32. Typical trajectory of control action in the first 20 seconds in a typical suc-
cessful trial without noise.

106

t(s)
0 2 4 6 8 10 12

ω
g
2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
ωg2(1)

ωg2(2)

ωg2(3)

ωg2(4)

ωg2(5)

ωg2(6)

ωg2(7)

ωg2(8)

ωg2(9)

ωg2(10)

Figure 33. The weights evolution in goal network from ten hidden layer nodes to the
first output layer node of a typical successful trial without noise in the first 12 seconds.

0 2 4 6 8 10 12 14 16 18
t(s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

ω
c1

ω
c1

(1)

ω
c1

(2)

ω
c1

(3)

ω
c1

(4)

ω
c1

(5)

ω
c1

(6)

ω
c1

(7)

ω
c1

(8)

ω
c1

(9)

ω
c1

(10)

ω
c1

(11)

Figure 34. The weights evolution in critic network from eleven input layer nodes to the
first hidden layer node of a typical successful trial without noise in the first 18 seconds.

107

t(s)
0 2 4 6 8 10 12 14 16 18

ω
a2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
ωa2(1)

ωa2(2)

ωa2(3)

ωa2(4)

ωa2(5)

ωa2(6)

ωa2(7)

ωa2(8)

Figure 35. The weights evolution in action network from eight hidden layer nodes to the
output layer node of a typical successful trial without noise in the first 18 seconds.

is the velocity of the ball, x3 = θ is the angle of the beam to the horizontal axis, and x4 = θ̇

is the angular velocity of the beam. Therefore, after substituting the physical value of

each parameter, we obtain the following corresponding nonlinear state space function:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 1.717 sin(x3)

ẋ3 = x4

ẋ4 = −0.241x4 + 0.157x1 cos(x3) + 0.5 cos(x3) ⋅ u

(217)

Our goal is to balance the ball on the beam for a certain period of time. If any

trial of the run can last 6000 time steps, we consider it as a successful run. We run

the simulations 100 times with a maximum of 1000 consecutive trials in each run. This

means the designed controller needs to balance the ball within some certain range for

6000 time steps within 1000 consecutive trials to be regarded as a successful run. The

ball is considered fallen if the position of the ball on the track is out of [−0.48m,0.48m],

108

or if the angle of the beam to the horizontal axis is out of [−0.24rad,0.24rad]. The

force u is starting from u = 10N which is applied on the system at the beginning of each

learning process. In our current simulation, the sampling period is chosen as T = 0.02s.

We apply the proposed Gr-GDHP method to design the controller. Three neural

networks are established as the goal, the critic, and the action networks. Since there

are four system states in this case, the multilayer perceptron structures for the goal, the

critic, and the action network are chosen as 5−10−6, 11−18−6, and 4−8−1, respectively.

Set the external reinforcement signal as r(t) = −1 when the ball is fallen. Otherwise, we

define r(t) = 0. The parameters used in this example are summarized in Table 1. Note

that the learning rate βg(t) is initialized as βg(0) and will dropped 0.05 every 10 steps

until it reach βg(f) and stay thereafter. Here, we assume that the learning rates of the

critic and the action networks have the same settings as those of the goal network.

Table 1. Summary of the parameters used in the case study A

Parameter βg(0) βc(0) βa(0) Ng Nc

Value 0.3 0.3 0.3 80 80

Parameter Na βg(f) βc(f) βa(f) Tg
Value 100 0.005 0.005 0.005 1e − 6

Parameter Tc Ta α/γ ∗ ∗

Value 1e − 6 1e − 6 0.95 ∗ ∗

where

βg(0) is the initial learning rate of the goal network;

βc(0) is the initial learning rate of the critic network;

βa(0) is the initial learning rate of the action network;

Ng is the internal cycle of the goal network;

Nc is the internal cycle of the critic network;

Na is the internal cycle of the action network;

βg(f) is the lower bound of the learning rate of the goal network;

109

βc(f) is the lower bound of the learning rate of the critic network;

βa(f) is the lower bound of the learning rate of the action network;

Tg is the training error threshold for the goal network;

Tc is the training error threshold for the critic network;

Ta is the training error threshold for the action network;

α, γ are the discount factors.

The action network will provide a control force u to balance the ball on the beam.

The initial values of the ball position x1 and the beam angle x3 are randomly chosen

in [−0.2m,0.2m] and [−0.15rad,0.15rad], respectively. The initial values of the ball

velocity x2 and the angular velocity x4 are set as zero. In order to make the problem

more realistic, we considered both the sensor and actuator noise. Specifically, the sensor

noise is added to the state measurements and the actuator noise is added to the output

of the action network. For instance, if the noise level is 5%, we implement the uniform

noise through x/u + 0.05 ⋅ x/u ⋅ random(−1,1).

Table 2. Comparison of the statistical simulation results on the ball-and-beam balancing
system with the Gr-GDHP and the GDHP controller

Noise type Gr −GDHP GDHP

Noise free 4.1 11.4

Uniform 5% a.∗ 5.2 11.2

Uniform 10% a 5.7 18.6

Uniform 5% x.+ 4.9 15.9

Uniform 10% x. 5.5 21.5

a.∗ : actuator sensor noise
x.+ : position sensor noise on x3

We also apply the GDHP method to do the same example for 100 times and com-

pare the statistical results with the proposed Gr-GDHP method. The required average

numbers of trials to success are provided in Table 2. For this ball-and-beam balancing

case, both the Gr-GDHP and the GDHP methods can achieve 100% successful rate un-

der various noise conditions. However, comparing with the GDHP method, the proposed

110

method needs less average number of trials to successfully learn balancing the ball under

the same noise type. This indicates that the Gr-GDHP method can improve the perfor-

mance by requiring less number of trials to balance the ball on the beam. Furthermore,

different types of noise does not affect the required average number of trials. It indicates

that the proposed approach is very robust. We also study the computational cost per time

step in the successful run for both methods. We account for the backpropagation train-

ing time in every time step and calculate the average value. After calculation, we obtain

that the average computational cost in one backpropagation training for the Gr-GDHP

method is 0.0167s, while for the traditional GDHP method is 0.0118s. This indicates

that the proposed Gr-GDHP method can achieve better performance with competitive

computational cost.

Furthermore, we provide the typical trajectories of the state variables in the first

40s (2000 time steps) of a typical successful trial without noise in Figure 31. It can be

clearly observed that the ball can keep staying in the middle of the beam after several

seconds. The corresponding evolution of the control action in the first 20s (1000 time

steps) is shown in Figure 32. The control starts from u(0) = 10 and converges to zero in

the end. Figure 33 provides the weights trajectories in the goal network from ten hidden

layer nodes to the first output layer node of a typical successful trail during the first 12s

(600 time steps). The weights evolution in the critic network from eleven input layer

nodes to the first hidden layer node during the first 18s (900 time steps) is provided in

Figure 34. Moreover, Figure 35 shows the weights trajectories in the action network

from eight hidden layer nodes to the output layer node during the first 18s (900 time

steps). From these results, we know the neural network weights start from small values

round zero and converge after a few seconds. These simulation results indicate the

promising performance of the proposed Gr-GDHP approach in the learning and control

process.

111

5.7 Discussions

In recent years, goal representation adaptive dynamic programming (GrADP) de-

sign has been developed to improve the online learning and control performance of the

traditional ADP methods. Specifically, by integrating an additional neural network, goal

network, into the traditional adaptive critic design, the GrHDP method can obtain an in-

ternal reinforcement signal s(t) to facilitate the optimal learning process. This s(t)

includes the information of the future external reinforcement signals, which means the

internal reinforcement signal can give us more information by considering more distant

lookahead [14]. The designed s(t) also inputs to the critic network to help estimate

the performance index J(t). This architecture has been applied to various simulation

studies and many realistic complex applications [5, 6, 8, 9, 7]. Promising capability

and impressive performance were achieved. The theoretical foundation of the GrHDP

method is provided in [14]. Later, based on the GrHDP design, the goal representa-

tion DHP design has been proposed and tested on numerous challenging applications

including the multimachine power system control problem [12]. In the GrDHP design,

the goal and the critic network build a representation for the partial derivatives of s(t)

and J(t), respectively. The derivatives of the internal reinforcement signal g(t) (i.e.,

g(t) = ∂s(t)/∂Y (t), Y (t) = [x(t), u(t)]T) is generated internal within the GrDHP

design to help the learning process. This method has been applied on many complex ap-

plications and showed the better performance comparing to the traditional DHP design.

In this chapter, we follow our previous work and develop the Gr-GDHP method by

building the general mapping from the system states and actions to the signals s(t) and

J(t), as well as their derivatives g(t) and λ(t). Note that the Gr-GDHP design is not an

easy combination of the GrHDP and GrDHP design. The goal and the critic networks

in Gr-GDHP directly estimate not only the internal reinforcement signal s(t), and per-

formance index J(t), but also their derivatives g(t) and λ(t), respectively. Specifically,

112

the outputs of the goal network, which are the signal s(t) and its derivatives g(t), can

directly provide information of the error function for the critic network. Moreover, s(t)

and g(t) are also set as parts of the inputs for the critic network to support the approxi-

mation of performance index J(t) and its derivatives λ(t). Knowing s(t) and J(t), as

well as their derivatives is important in the problem where the availability of the infor-

mation associated with s(t) and J(t) themselves is as important as knowledge of the

slope of s(t) and J(t), respectively [15]. Furthermore, any adjustment of combination

for the values of s(t) and J(t) or their derivatives g(t) and λ(t) can be accommodated

by selecting the weighted parameters η1 and η2 in (184) and (197).

A model network is built for the Gr-GDHP method in this chapter. The design of

the model network here is similar with the model network established in the traditional

ADP methods [15, 20, 12]. The goal of the model network is to predict the future

system state x̂(t + 1), and then we can obtain the subsequent internal reinforcement

signal and the performance index for the next time step. Following the idea in literature,

the training process of the model network is offline in this chapter. In this way, we

can compare the performance of the proposed method with the existing ADP methods

in literature. Moreover, in this design, we set the discount factors for both the internal

reinforcement signal and the performance index as 0 < α < 1, and 0 < γ < 1 to make sure

s(t) and J(t) are finite [15]. Note that this is not a necessary condition for the finite

horizon problem. For certain designs of the external reinforcement signal r(t), like the

quadratic form, the finite horizon can also be satisfied. In these situations, we can set

the discount factors equal to 1.

This chapter integrates an internal reinforcement signal s(t) into the traditional

GDHP design. By containing the information of future external reinforcement signals,

s(t) can facilitates the learning process. Since a new method is proposed, it is very

important to consider its stability. In [14], we developed the convergence and the sta-

113

bility analysis of the GrHDP method with a rigorous theoretical proof. It was proved

that the internal reinforcement signal had an upper bound and the performance index in

the GrHDP design could converge to its optimal value. The existence of the admissible

control in this learning process was also provided. Then, we went further to consider the

stability of the GrDHP design and presented a theoretical foundation for the GrDHP in

terms of the partial derivatives for both the internal reinforcement signal and the perfor-

mance index [21]. It is shown that the partial derivatives of the internal reinforcement

signal are bounded signals. And the partial derivatives of the performance index can con-

verge to their optimal values when the number of iteration step went to infinity. Since

the Gr-GDHP method is a weighted combination of the GrHDP and GrDHP methods, it

is expected that there exists upper bounds for the internal reinforcement signal s(t) and

its derivatives g(t). Moreover, J(t) and λ(t) are expected to converge to their optimal

values respectively.

The proposed Gr-GDHP method is studied on two simulation examples to test its

performance in this chapter. In the first case study, we apply this method on a nonlinear

system and compare the results with other existing ADP methods, i.e., GDHP, GrHDP,

and GrDHP. From the results, we can observe that all the methods can stabilize the

system, and the proposed Gr-GDHP method has a faster speed comparing with other

methods. Then, this method has been tested on a more complex example, the ball-and-

beam balancing system. The comparison of the proposed method with the traditional

GDHP method is provided. Generally, the goal of this case is to balance the ball on

the beam for a certain period of time. The simulation results show that both of these

two methods can achieve 100% successful rate under various noise conditions. More-

over, the proposed method performs better results in terms of the number of trails to

successfully learn balancing the ball under the same noise type.

114

5.8 Summary

This chapter presents an advanced ADP method, which is the Gr-GDHP control de-

sign. Starting from the general formulation of the Gr-GDHP method, a neural-network-

based architecture is proposed to implement this approach. Then, the explicit learning

process of the goal, the critic, and the action networks is discussed, respectively. The

weights updating rules of both the input-to-hidden layer and the hidden-to-output layer

are also provided. A nonlinear system and a ball-and-beam balancing system are applied

to verify the proposed method. The simulation results demonstrate the effective control

performance of the proposed Gr-GDHP method comparing with other ADP designs.

List of References

[1] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. Wiley-Interscience, 2007.

[2] F. L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network Control of Robot
Manipulators and Nonlinear Systems. Taylor & Francis, London, UK, 1999.

[3] F. Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An introduc-
tion,” IEEE Comput. Intel. Mag., vol. 4, no. 2, pp. 39–47, 2009.

[4] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and
optimization based on adaptive dynamic programming,” Neurocomputing, vol. 78,
no. 1, pp. 3–13, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/
ijon/ijon78.html#HeNF12

[5] H. He, Self-Adaptive Systems for Machine Intelligence. Wiley, 2011.

[6] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based on the dual
critic network design,” Neural Networks and Learning Systems, IEEE Transactions
on, vol. 24, no. 6, pp. 913–928, 2013.

[7] Z. Ni, H. He, D. Zhao, and D. V. Prokhorov, “Reinforcement learning control based
on multi-goal representation using hierarchical heuristic dynamic programming,”
in Neural Networks (IJCNN), The 2012 International Joint Conference on. IEEE,
2012, pp. 1–8.

[8] Z. Ni, H. He, J. Wen, and X. Xu, “Goal representation heuristic dynamic program-
ming on maze navigation,” Neural Networks, IEEE Transactions on, vol. 24, pp.
2038–2050, Dec. 2013.

115

http://dblp.uni-trier.de/db/journals/ijon/ijon78.html#HeNF12
http://dblp.uni-trier.de/db/journals/ijon/ijon78.html#HeNF12

[9] Z. Ni and H. He, “Heuristic dynamic programming with internal goal representa-
tion,” Soft Computing, vol. 17, pp. 2101–2108, 2013.

[10] X. Luo, J. Si, and Y. Zhou, “An integrated design for intensified direct heuristic
dynamic programming,” in Adaptive Dynamic Programming And Reinforcement
Learning (ADPRL), 2013 IEEE Symposium on. IEEE, 2013, pp. 183–190.

[11] J. Chen and Z. Li, “A novel adaptive tropism reward ADHDP method with robust
property,” in Advances in Brain Inspired Cognitive Systems. Springer, 2013, pp.
288–295.

[12] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “Grdhp: A general utility func-
tion representation for dual heuristic dynamic programming,” Neural Networks
and Learning Systems, IEEE Transactions on, vol. 26, no. 3, pp. 614–627, 2015.

[13] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB
solution using approximate dynamic programming: convergence proof,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 4, pp. 942–
949, 2008.

[14] X. Zhong, Z. Ni, and H. He, “A theoretical foundation of goal representation
heuristic dynamic programming,” ieee trans. on neural networks and learning sys-
tems,” in press, 2015.

[15] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” Neural Networks
and Learning Systems, IEEE Transactions on, vol. 8, no. 5, pp. 997–1007, 1997.

[16] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based optimal
control for a class of unknown discrete-time nonlinear systems using globalized
dual heuristic programming,” Automation Science and Engineering, IEEE Trans-
actions on, vol. 9, no. 3, pp. 628–634, 2012.

[17] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic pro-
gramming excitation neurocontrol for generators in a multimachine power sys-
tem,” Industry Applications, IEEE Transactions on, vol. 39, no. 2, pp. 382–394,
2003.

[18] B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in adaptive function
approximation and the functional-link net,” Neural Networks, IEEE Transactions
on, vol. 6, no. 6, pp. 1320–1329, 1995.

[19] T.-L. Chien, C.-C. Chen, Y.-C. Huang, and W.-J. Lin, “Stability and almost dis-
turbance decoupling analysis of nonlinear system subject to feedback linearization
and feedforward neural network controller,” Neural Networks, IEEE Transactions
on, vol. 19, no. 7, pp. 1220–1230, 2008.

116

[20] D. Liu and D. Wang, Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control. Wiley-IEEE Press, 2013, ch. Optimal Control of
Unkonwn Nonlinear Discrete-Time Systems Using the Iterative Globalized Dual
Heuristic Programming Algorithm, pp. 52–74.

[21] X. Zhong, Z. Ni, and H. He, “Convergence analysis of grdhp-based optimal con-
trol for discrete-time nonlinear system,” in Neural Networks (IJCNN), The 206
International Joint Conference on. IEEE, 2016, pp. 1–8.

117

CHAPTER 6

On-line ADP Learning for Markov Jump Systems (MJSs)

6.1 Introduction

Markov jump systems (MJSs) have witnessed extensive studies in recent years be-

cause of their powerful modeling capability for power systems, network control sys-

tems, and manufacturing systems [1], [2]. These systems include abrupt variations in

their structures due to sudden environmental disturbances and subsystems interconnec-

tion variations. Therefore these systems are inherently vulnerable to component failure

or repairs and hard to be modeled. Due to the wide spectrum of applications of MJSs,

there has been extensive researches in the stability analysis [3], controller design [4],

[5], and filtering [6], [7]. The study of MJSs has attracted considerable attention in

recent years. Most of the results of MJSs are obtained under the full information of

system dynamics, but in many practical situation, the system dynamics cannot easily

be obtained exactly. In order to solve this problem, in literature, Chen et al designed a

memoryless state feedback controller for uncertain MJSs to guarantee the closed-loop

cost function value was not more than a specific level of performance for any admis-

sible uncertainties [5]. In [8], an optimal estimator for the current state was designed

according to current and past observations to overcome the system parameters varying.

Farias et al introduced the ADP method into the stochastic control problem in [9] and

approximated the optimal control law via linear programming. In [10], they defined this

algorithm as approximate linear programming and provided the detailed theoretical and

simulation results.

This chapter develops an adaptive learning method for a class of unknown discrete-

time nonlinear MJSs based on adaptive dynamic programming (ADP) technique.

Specifically, we propose an optimal control scheme to convert the MJSs control prob-

lem with multiple subsystems into a single objective optimal control problem. That

118

is, the performance index functions of all the subsystems in MJSs are combined into

one performance index function depending on the Markov chain and the weighted sum

technique. The ADP technique is introduced into the field of MJSs to solve this kind

of problem. Unlike the traditional method, such as the linear matrix inequality (LMI)

technique, our approach based on ADP technique includes the adaptive and learning

capability of the system dynamics, indicating that our approach can still find the near

optimal controller even if the system parameters change. The theoretical analysis is de-

veloped in this chapter which is focused on the stability of the proposed ADP approach

for MJSs. The convergence of the proposed performance index function and the ex-

istence of the corresponding control law are provided. These are also verified by the

simulation studies.

6.2 Problem Statement

Consider the unknown discrete-time nonlinear Markov jump systems (MJSs) of the

following form

xk+1 = fi(xk) + gi(xk)uk (218)

where xk ∈ Rn denotes the system state with the initial value x0, uk ∈ Rl is the system

input, and i is the simplified notation of a discrete-time Markov chain {rk}, of which

taking values in a finite state space S = {1,2,⋯,m}, where m is the number of the

subsystems. Assume that f + gu is Lipschitz continuous on a set Ω ⊆ Rn containing the

origin. fi(xk) and gi(xk) are the unknown discrete-time state functions and fi(0) = 0,

gi(0) = 0, which means the system state xk = 0 is an equilibrium point of system (218)

under the control uk = 0.

Define the transition probability matrix for discrete-time MJSs as

H =

⎛
⎜
⎜
⎜
⎝

π11 π12 ⋯ π1m

π21 π22 ⋯ π2m

⋮ ⋮ ⋱ ⋮

πm1 πm2 ⋯ πmm

⎞
⎟
⎟
⎟
⎠

. (219)

119

The elements in (219) can be expressed by

πab = Pr{rk+1 = b∣rk = a} (220)

which denotes the probability of the next system mode b, given the current mode a.

Therefore, we can easily obtain that πab ≥ 0, ∀a, b ∈ S and for each subsystem a,

∑
m
b=1 πab = 1.

Assume that the MJSs (218) are completely controllable and bounded on Ω ∈ Rn.

The performance index function for each subsystem can be described by

Ji(xk) =
∞

∑
z=k

Ui(xz, uz) (221)

where the utility function can be chosen as

Ui(xk, uk) = Qi(xk) + u
T
kRiuk (222)

in which Qi(xk) and Ri are positive definite. This means Ui(xk, uk) is positive definite,

i.e., if and only if xk = 0 and uk = 0, Ui(0,0) = 0, otherwise, Ui(xk, uk) > 0.

An equivalent equation to (221) is given by the Bellman equation

Ji(xk) = Ui(xk, uk) +
∞

∑
z=k+1

Ui(xz, uz)

= Ui(xk, uk) + Ji(xk+1)

(223)

where i ∈ S.

The purpose of this chapter is to find the optimal control law u∗k, so as to minimize

the performance index function of the whole MJSs and stabilize the MJSs. However,

due to the existence of the transition probabilities, we cannot just add all the perfor-

mance index functions of the subsystems together as the final one for the MJSs. Here,

we reconstruct the performance index function (221) of the subsystems by using the

120

transition probability matrix (219) as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JI(xk) = π11J1(xk) + π12J2(xk) +⋯ + π1mJm(xk)

JII(xk) = π21J1(xk) + π22J2(xk) +⋯ + π2mJm(xk)

⋮

JM(xk) = πm1J1(xk) + πm2J2(xk) +⋯ + πmmJm(xk)

. (224)

In this way, we transform the MJSs control problem into a multiple objectives

optimal control problem. Using the weighted sum technique, we convert the above

multi-objective optimal control problem into a single-objective optimisation problem.

The performance index function can be rewritten as

J(xk) = ω1JI(xk) + ω2JII(xk) +⋯ + ωmJM(xk) (225)

where ωi > 0 is the weight vector and
m

∑
i=1
ωi = 1.

Therefore, the control vector uk needs to be found to minimize the performance

index function (225). Note that, for optimal control problems, the designed control law

must not only stabilize the systems on the compact set Ω, but also guarantee that (225)

is finite, which means the control must be admissible.

Definition 1 ([11, 12]): (Admissible Controls). A law uk is said to be an admissible

control with respect to (225) on Ω, if uk is continuous on Ω and can stabilize system

(218) for all x0 ∈ Ω, uk = 0 if xk = 0, and ∀xk ∈ Ω, J(xk) is finite.

Equation (225) can be extended as

J(xk) = ω1JI(xk) + ω2JII(xk) +⋯ + ωmJM(xk)

= ω1 (π11J1(xk) + π12J2(xk) +⋯ + π1mJm(xk))

+ ω2 (π21J1(xk) + π22J2(xk) +⋯ + π2mJm(xk))

+⋯ + ωm (πm1J1(xk) +⋯ + πmmJm(xk))

(226)

121

Then, we can further obtain,

J(xk) = (ω1π11 + ω2π21 +⋯ + ωmπm1)J1(xk)

+ (ω1π12 + ω2π22 +⋯ + ωmπm2)J2(xk)

+⋯ + (ω1π1m +⋯ + ωmπmm)Jm(xk)

=D1J1(xk) +D2J2(xk) +⋯ +DmJm(xk)

=
m

∑
i=1

DiJi(xk)

=
m

∑
i=1

Di (
∞

∑
z=k

(Qi(xz) + u
T
zRiuz))

=
m

∑
i=1

∞

∑
z=k

(Di (Qi(xz) + u
T
zRiuz))

(227)

where Di = ∑
m
j=1 ωjπji > 0. Hence, equation (226) is positive definite, i.e. the obtained

performance index function J(xk) is positive definite. Hence, this performance index

function serves as a Lyapunov function. Equation (226) can be rewritten as

J(xk) =
m

∑
i=1

(Di(Qi(xk) + u
T
kRiuk)) +

m

∑
i=1

∞

∑
z=k+1

Di(Qi(xz) + u
T
zRiuz)

=
m

∑
i=1

DiUi(xk, uk)+
m

∑
i=1

DiJi(xk+1)

=DTT (xk, uk) + J(xk+1)

(228)

where

D = (D1,D2,⋯,Dm)T ,

T (xk, uk) = (U1(xk, uk), U2(xk, uk),⋯, Um(xk, uk))T .

Let us define a stochastic operator P by

PJ(xk) = min
uk

{DTT (xk, uk) + J(xk+1)} (229)

where the minimization is carried out component-wise. Adaptive dynamic programming

involves solution of Bellman’s equation

J(xk) = PJ(xk). (230)

122

According to Bellman’s optimality principle, the unique solution J∗(xk) of (230)

is the optimal performance index function and satisfies the discrete-time HJB equation

J∗(xk) = min
uk

{DTT (xk, uk) + J
∗(xk+1)}. (231)

Here, we assume that the minimum on the right-hand side of the equation (231)

exists and is unique [13]. Therefore, the optimal control u∗k satisfies the first-order nec-

essary condition, which is given by the gradient of the right-hand side of (231) with

respect to uk as
∂(DTT (xk, uk))

∂uk
+ (

∂xk+1

∂uk
)

T ∂J∗(xk+1)

∂xk+1

= 0 (232)

and therefore the optimal control law is obtained by

u∗k = arg min{DTT (xk, uk) + J
∗(xk+1)}

= −
1

2
(
m

∑
i=1

DiRi)
−1gTi (xk)

∂J∗(xk+1)

∂xk+1

(233)

where J∗(xk) is solved in the following HJB equation

J∗(xk) =
m

∑
i=1

DiQi(xk) +
1

4
(g(xk)

T ∂J
∗(xk+1)

∂xk+1

)

T

⋅ (
m

∑
i=1

DiRi)

−1

gT (xk)
∂J∗(xk+1)

∂xk+1

+ J∗(xk+1).

(234)

6.3 Optimal Control for unknown MJSs

In this section, ADP approach is proposed to approximate the optimal performance

index function and control law for MJSs. Two subsections are included. The first one

proposes an ADP algorithm for discrete-time nonlinear MJSs to estimate the HJB equa-

tion and solve the optimal control law according to the obtained performance index

function (228). The corresponding stability analysis is given in the second subsection,

including the convergence of the obtained performance index function for MJSs and the

existence of the optimal control input.

123

6.3.1 ADP Algorithm to Approximate the Optimal Control for MJSs

In this ADP algorithm, we start with an initial performance index function

J(0)(x) = 0. Then we solve for the control law u
(0)
k as

u
(0)
k = arg min

uk
{DTT (xk, uk) + J

(0)(xk+1)} . (235)

According to u
(0)
k , iteration on the performance index function is performed by

computing

J(1)(xk) = min
uk

{DTT (xk, uk) + J
(0)(xk+1)}

=DTT (xk, u
(0)
k) + J(0)(xk+1).

(236)

Because J(0)(x) = 0, then it follows

J(1)(xk) =D
TT (xk, u

(0)
k). (237)

Based on (237), we can obtain the following iteration equations

u
(1)
k = arg min

uk
{DTT (xk, uk) + J

(1)(xk+1)} , (238)

J(2)(xk) = min
uk

{DTT (xk, uk) + J
(1)(xk+1)}

=DTT (xk, u
(1)
k) + J(1)(xk+1).

(239)

The ADP algorithm, therefore, is obtained by iterating between a sequence of ac-

tion laws u(n)
k

u
(n)
k = arg min

uk
{DTT (xk, uk) + J

(n)(xk+1)}

= arg min
uk

{DTT (xk, uk) + J
(n)(fi(xk) + gi(xk)uk)}

(240)

and a sequence of performance index functions J(n)(xk)

J(n+1)(xk) = min
uk

{DTT (xk, uk) + J
(n)(xk+1)}

=DTT (xk, u
(n)
k) + J(n)(fi(xk) + gi(xk)uk)

(241)

124

where k is the time index, i is the index of the active subsystem at time step k, and n is

the iteration index.

Note that, in the ADP algorithm, we do not need to start from an optimal perfor-

mance index function which is difficult to find for general nonlinear jump systems. It is

an incremental optimization process which is implemented forward in time and online.

Moreover, this process is adaptive as it does not require the knowledge of system func-

tions. In the next subsection, it is shown that J(n)(xk) and u(n)
k converge to the optimal

performance index function and to the corresponding optimal control law, respectively.

6.3.2 Convergence Analysis of the Proposed ADP Approach

In order to prove the convergence of the proposed ADP approach for discrete-time

nonlinear MJSs, let us start with the following lemmas which are important in the con-

vergence analysis.

Lemma 2: Let η(n)k be any stabilizing and admissible control law and Φ(0)(x) =

J(0)(x) = 0, where Φ(n)(xk) is updated as

Φ(n+1)(xk) =D
TT (xk, η

(n)
k) +Φ(n)(xk+1) (242)

where,

T (xk, η
(n)
k) = (U1(xk, η

(n)
k), U2(xk, η

(n)
k)⋯, Ul(xk, η

(n)
k))T ,

Ui(xk, η
(n)
k) = Qi(xk) + η

(n)T
k Riη

(n)
k , i ∈ S.

Then, J(n)(xk) ≤ Φ(n)(xk).

Lemma 2 can easily be proved because J(n)(xk) is the result when control uk

minimizes the right-hand side of (242).

Lemma 3: Define the performance index function sequence for discrete-time MJSs

as in (241). If the MJSs (218) are controllable and J(0)(x) = 0. Then, it follows that

J(n)(xk) is a monotonically non-decreasing sequence, i.e., ∀n, J(n)(xk) ≤ J(n+1)(xk).

Proof: From Lemma 2, we know if Φ(0)(x) = J(0)(x) = 0, then the new sequence

125

Φ(n)(xk) defined in equation (242) has the following property

J(n)(xk) ≤ Φ(n)(xk). (243)

Because η(n)k is an arbitrary and stabilizing sequence, assume η(n−1)
k = u

(n)
k , such

that

Φ(n)(xk) =D
TT (xk, η

(n−1)
k) +Φ(n−1)(xk+1)

=DTT (xk, u
(n)
k) +Φ(n−1)(xk+1).

(244)

In the following part, we prove J(n+1)(xk) ≥ Φ(n)(xk) by mathematical induction.

Let us start with n = 0. We know that J(0)(xk) = Φ(0)(xk) = 0, then

J(1)(xk) −Φ(0)(xk) =D
TT (xk, u

(0)
k) ≥ 0. (245)

Thus, for n = 0, we obtain J(1)(xk) ≥ Φ(0)(xk).

Now, we assume it holds for the (n − 1)th iteration step, i.e.,

J(n)(xk) −Φ(n−1)(xk) ≥ 0. (246)

By subtracting (244) from (241), it follows

J(n+1)(xk) −Φ(n)(xk)

=DTT (xk, u
(n)
k) + J(n)(xk+1) − (DTT (xk, u

(n)
k) +Φ(n−1)(xk+1))

= J(n)(xk+1) −Φ(n−1)(xk+1) ≥ 0

(247)

which completes the proof of J(n+1)(xk) ≥ Φ(n)(xk).

On the other side, we obtain J(n)(xk) ≤ Φ(n)(xk) from (243), hence J(n)(xk) ≤

Φ(n)(xk) ≤ J(n+1)(xk) for any n = 0,1,2,⋯, which is J(n)(xk) ≤ J(n+1)(xk) for any it-

eration step, i.e., J(n)(xk) is a monotonically non-decreasing sequence. The conclusion

holds. ∎

From Lemma 3, we know the performance index function sequence (241) for MJSs

is monotonically non-decreasing. Now, we present our main theorem.

126

Figure 36. The neural network structure of the proposed ADP approach.

Theorem 2: Let the sequences J(n)(xk) and u(n)
k be defined as in (241) and (240),

respectively. If the MJSs (218) are controllable, then the following conditions hold.

(1) The admissible control law exists for MJSs (218).

(2) There exists an upper bound C(xk) such that 0 ≤ J(n)(xk) ≤ J∞(xk) ≤ C(xk).

(3) The performance index function sequence can converge to the optimal value

J∗(xk), and∀k, u∞k is an asymptotically stable control law for MJSs (218), i.e., u∞k = u∗k.

Proof: Let us start with the admissibility part. Since J(n)(xk) is positive definite, it

attains a minimum at xk = 0, and thus dJ(n)(xk)/dxk should vanish there. This implies

that uk = 0 if xk = 0. The continuity assumption on f + gu implies that there exists

continuous control law and the system (218) cannot jump to infinity by any one step

of finite control. And because fi(0) = gi(0) = 0, when the system state xk reaches

the equilibrium state, the control input becomes zero and the state of MJSs is kept at

zero. According to Definition 1, the admissible control law exists for MJSs (218) which

proves part (1).

The second part of the theorem follows by realizing that the elements in the ob-

tained performance index function sequence J(n)(xk) for MJSs are all positive values

from equation (226). Therefore, by using Theorem 2 and equation (226), the left-hand

127

side of the conclusion 0 ≤ J(n)(xk) ≤ J∞(xk) holds. Now, we prove this positive

sequence has an upper bound.

Define µk as any stabilizing and admissible control law and let µk = η
(n)
k . There-

fore, the new sequence based on µk is updated as

Λ(n+1)(xk) =D
TT (xk, µk) +Λ(n)(xk+1) (248)

where Λ(0)(x) = J(0)(x) = 0.

Motivated by the research in [11] and [14], we obtain the following equations

Λ(n+1)(xk)

=DTT (xk, µk) +Λ(n)(xk+1)

=DTT (xk, µk) +D
TT (xk+1, µk+1) +Λ(n−1)(xk+2)

⋮

=DTT (xk, µk) +D
TT (xk+1, µk+1) +⋯ +DTT (xk+n, µk+n) +Λ(0)(xk+n+1).

(249)

Because Λ(0)(x) = 0, it follows that

Λ(n+1)(xk) =
n

∑
t=0

DTT (xk+t, µk+t) =
n+k

∑
t=k

DTT (xt, µt). (250)

Letting n→∞, lim
n→∞

Λ(n+1)(xk) = Λ∞(xk), equation (250) becomes

Λ∞(xk) =
∞

∑
t=k

DTT (xt, µt). (251)

Assume η(n)k = µk and Φ(n)(xk) = Λ(n)(xk), such that J(n)(xk) ≤ Λ(n)(xk) ob-

tained from Lemma 2. It can be rewritten as J∞(xk) ≤ Λ∞(xk) when n→∞. Combin-

ing this with (251), it follows

J∞(xk) ≤ Λ∞(xk) =
∞

∑
t=k

DTT (xt, µt). (252)

Define C(xk) = ∑
∞
t=kD

TT (xt, µt), such that (252) can be rewritten as J∞(xk) ≤

C(xk). Hence, the proof of part (2) is completed. Note that C(xk) is a function and

determined by an admissible stabilizing law µk which means C(xk) is a finite value.

128

For part (3), consider the definition of the upper bound C(xk). Because µk is

defined as an admissible control, if µk is the control input of the infinite step, it follows

that

J∞(xk) = C(xk) ≥ J
∗(xk). (253)

On the other hand, since J(n)(xk) ≤ Λ(n)(xk), which can be rewritten as J∞(xk) ≤

Λ∞(xk) =
∞

∑
t=k
DTT (xt, µt), we obtain

J∞(xk) ≤
∞

∑
t=k

DTT (xt, u
∗
t) (254)

by setting µk = u∗k, which means J∞(xk) ≤ J∗(xk). From (253), we know J∗(xk) ≤

J∞(xk). Hence, J∞(xk) = J∗(xk), i.e., J(n)(xk) converge to the optimal value J∗(xk).

Then the convergence of the corresponding control law sequence u(n)
k is provided

as follows.

From equation (226), we know the performance index function (228) for MJSs is

positive definite. We can further write that

J∞(xk+1) − J
∞(xk) = −D

TT (xk, u
∞
k). (255)

Since DTT (xk, u∞k) is positive definite, we obtain the above equation (255) is negative

definite. Therefore, J∞(xk) can be seen as a kind of Lyapunov function for an admis-

sible control u∞k . Besides, because (255) is negative definite, u∞k can make the MJSs

(218) asymptotically stable. As J∞(xk) = J∗(xk), it follows

J∞(xk+1) − J
∞(xk) = J

∗(xk+1) − J
∗(xk). (256)

Consider (231) and (255), equation (256) becomes

−DTT (xk, u
∞
k) = −DTT (xk, u

∗
k). (257)

Hence the conclusion u∞k = u∗k is proved which completes the proof. ∎

129

From Theorem 2, we know the obtained performance index function sequence

J(n)(xk) for discrete-time nonlinear MJSs monotonically non-decreases to the opti-

mal value J∗(xk) for each xk and the corresponding admissible control input exists to

asymptotically stabilize the MJSs, i.e., when n→∞, J(n)(xk) → J∗(xk) and u(n)
k → u∗k.

6.4 Design of the Proposed ADP Approach

In this section, we use the technique of neural networks to approximate the obtained

performance index function sequence (241) and the control law sequence (240). The

implementation process is provided in Figure 36. We can see the unknown MJS is

replaced by the state identifier which is introduced in Section 5.3. Two neural networks,

the critic and the action network, are used iteratively to estimate the optimal values of the

performance index function and the control law. The detailed implementation process

based on the actor-critic networks is presented as follows.

6.4.1 Critic Network

The purpose of the critic network is to approximate the performance index func-

tion sequence J(n)(xk) of the proposed MJSs. A three-layer neural network is built as

this function approximation structure. Set the weight matrix between the input and the

hidden layer as Wc1, and the weight matrix between the hidden and the output layer as

Wc2. Therefore, the output of the critic network can be defined as

Ĵ(n)(xk) =W
(n)T
c2 Ψ(yk) (258)

where Ψ(⋅) is the activation function defined as

Ψ(⋅) =
1 − e−(⋅)

1 + e−(⋅)
. (259)

and yk =W T
c1[x

T
k , u

T
k]

T .

Based on equation (241), the target performance index function is

J(n)(xk) =D
TT (xk, u

(n−1)
k) + Ĵ(n−1)(xk+1). (260)

130

So, the output error of the critic network is

e
(n)
c (k) = Ĵ(n)(xk) − J

(n)(xk)

= Ĵ(n)(xk) − Ĵ
(n−1)(xk+1) −D

TT (xk, u
(n−1)
k).

(261)

To update the weight matrix is to minimize the following performance measure

E
(n)
c (k) =

1

2
e
(n)2
c . (262)

According to the gradient decent rules, the update scheme of the critic network is

as follows

W
(n+1)
c2 =W

(n)
c2 − βc

⎛

⎝

∂E
(n)
c (k)

∂W
(n)
c2

⎞

⎠

=W
(n)
c2 − βc

⎛

⎝

∂E
(n)
c (k)

∂e
(n)
c (k)

⋅
∂e

(n)
c (k)

∂W
(n)
c2

⎞

⎠

=W
(n)
c2 − βcΨ(yk)e

(n)T
c (k)

(263)

where βc > 0 is the learning rate of the critic network.

6.4.2 Action Network

The control law sequence u(n)
k is estimated by the action network. Consider a three-

layer neural network architecture as this function approximation structure. Denote the

weight matrix between the input and the hidden layer as a constant matrix Wa1, and

the weight matrix between the hidden and the output layer as Wa2. Then, the estimated

control law can be formulated as

û
(n)
k = Ψ (W

(n)T
a2 Ψ(n)(tk)) (264)

where tk =W T
a1xk, and the definition of Ψ(tk) is the same as Ψ(yk) in the critic network

part

Since u(n)
k , given by equation (240), is the target of the output of the action network,

define the output error as

e
(n)
a (k) = û

(n)
k − u

(n)
k . (265)

131

The weight matrix in this process is updated to minimize the following performance

measure

E
(n)
a (k) =

1

2
e
(n)T
a (k)e

(n)
a (k). (266)

Then, we can derive gradient decent rules to train

W
(n+1)
a2 =W

(n)
a2 − βa

⎛

⎝

∂E
(n)
a (k)

∂W
(n)
a2

⎞

⎠
(267)

where βa > 0 is the learning rate of the action network, and

∂E
(n)
a (k)

∂W
(n)
a2

=
∂E

(n)
a (k)

∂e
(n)
a (k)

⋅
∂e

(n)
a (k)

∂û
(n)
k

⋅
∂û

(n)
k

∂W
(n)
a2

= Ψ(n)(tk) ⋅
1

2
(1 −Ψ(u

(n)
a (k))) ⋅ e

(n)T
a (k).

(268)

Note that during this training procedure, the input-to-hidden layer weight matrices

Wc1 and Wa1 are chosen randomly at initial and only the hidden-to-output layer weight

matrices Wc2 and Wa2 are proposed to be updated.

Remark: The training procedure above is to obtain the performance index function

and the control law sequence. It is very important that the whole system would remain

stable while both the action and the critic network undergo adaption, which means one

should make sure the convergence of the networks’ weights. So far, many papers study

the neural-network-based ADP technique. Some of them prove the convergence of it-

erative performance index function and control law and then neural networks are just

used to implement this process [11], [15], [14]. While the others prove the convergence

in another way which is the convergence analysis of the neural network weights and

the state [16], [17], [18]. In this chapter, we use the first method to prove that our pro-

posed method is convergent including the performance index function and the control

law. Then the actor-critic networks are used to implement this method. Detailed analy-

sis on neural network training algorithm can be found in [16] where Liu et al provides

a theorem to show that the training errors of the neural network weights in the ADP are

uniformly ultimately bounded (UUB) by using the Lyapunov stability construct.

132

6.5 Simulation Studies

In this section, we provide three examples to demonstrate the effectiveness of the

neural-network-based ADP approach for MJSs. Specifically, the first example solves a

two-mode linear MJS and we compare the results with the theoretical solution of the

HJB equation. A two-mode nonlinear MJS is considered in the second example and

without loss of generality, we also consider two kinds of arbitrary selections of the

system functions. In the third example, we consider a single link robot arm which is

very popular in Markov jump problems. Four jumping modes are considered in this

case.

6.5.1 Linear System

We start with the following discrete-time linear Markov jump system with two

jumping modes

xk+1 = Aixk +Biuk (269)

where xk ∈ Rn and uk ∈ Rm.

The dynamics in each mode can be described as

mode 1 A1 = (
−0.5 0.1
0.1 0.6

) , B1 = (
0.1
0

)

mode 2 A2 = (
0.6 −0.2
0.1 0.1

) , B2 = (
0

0.6
) .

(270)

The transition probability matrix is

H = (
0.2 0.8
0.4 0.6

) . (271)

Assume that the system functions and dynamics are unknown. Based on the iden-

tifier design approach proposed in Section 5.3, the state identifiers for two subsystems

are built with the maximal time step 250. The initial weights of the identifiers are ran-

domly chosen in [-1,1], and the learning rate is set to β = 0.01. Then the identification

133

0 50 100 150 200 250
0

1

2

3

4

5

Time Step

E
rr

or

Identification error for mode 1

x

1

x
2

0 50 100 150 200 250
0

2

4

6

8

Time Step

E
rr

or

Identification error for mode 2

x

1

x
2

Figure 37. Identification errors for mode 1 and mode 2 of the linear MJS.

0 10 20 30
0

0.5

1

1.5

2

2.5

Time Step

M
od

es

0 10 20 30
0

0.1

0.2

0.3

0.4

Time Step

u

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Time Step

x 1

0 10 20 30

−0.4

−0.2

0

0.2

Time Step

x 2

Figure 38. Active jumping mode and system responses with the ADP controller.

134

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Iteration Step

P
er

fr
om

an
ce

 in
de

x
fu

nc
tio

n

Figure 39. Performance index function trajectory of the linear MJS.

0 5 10 15 20 25 30 35
−2

−1

0

1

2

Time Step

W
e

ig
h

ts
 o

f
A

N

0 5 10 15 20 25 30 35
−1.5

−1

−0.5

0

0.5

1

Time Step

W
e

ig
h

ts
 o

f
C

N

W

c2
(1)

W
c2

(2)

W
c2

(3)

W
c2

(4)

W
c2

(5)

W
c2

(6)

W
c2

(7)

W
c2

(8)

W
a2

(1)

W
a2

(2)

W
a2

(3)

W
a2

(4)

W
a2

(5)

W
a2

(6)

Figure 40. Weights trajectories of the action and the critic network from the hidden to
the output layer.

135

errors for both subsystems are provided in Figure 37. We can observe that both errors

converge to zero asymptotically, which means these two identifiers can approximate the

states effectively.

With the built identifiers, we define the performance index function for each mode

of this linear Markov jump system as linear quadratic form Ji(xk) = xTkQixk + uTkRiuk,

i ∈ {1,2}, whereQi andRi are the identity matrices with appropriate dimensions. In this

situation, set the weight vector as ω = [0.3,0.7]T . Combining this with the knowledge of

equation (271), we convert this two-mode MJS control problem into a single-objective

optimal control problem according to equation (228). Therefore, the performance index

function for the whole MJS can be described as

J(xk) = (0.3 ∗ 0.2 + 0.7 ∗ 0.8)J1(xk) + (0.3 ∗ 0.4 + 0.7 ∗ 0.6)J2(xk). (272)

For the design of the controller, we choose the initial state as x0 = [1,−0.5]T . Two

three-layer neural networks are built as the critic and the action network and the numbers

of the hidden layer nodes are set to Nhc = 8, Nha = 6, respectively. The learning rates of

both the action and the critic network are set as βc = βa = 0.01. The initial weights of

both networks are set randomly within [−1,1].

The active jumping mode and the system responses of training are shown in Figure

38. We can clearly observe that the system randomly jumps between two modes and

the state variables converge to zero even though the mode randomly jumps between

mode 1 and mode 2. Moreover, when the system reaches the stability (after 10 time

steps), the state variables do not change even though the modes still jump randomly.

The trajectory of the performance index function sequence at time step k = 0 for MJS

(270) is provided in Figure 39, indicating that the obtained performance index function

sequence is monotonically non-decreasing and can stay at its optimal value during this

process, just like the theoretical analysis in Section 6.3.2. Weights of both the action

and the critic network from hidden to output layer are shown in Figure 40.

136

0 5 10 15 20 25 30 35

−0.4

−0.2

0

0.2

Time Step

u

LQR
ADP

0 5 10 15 20 25 30 35
−1

−0.5

0

Time Step

x
1

LQR
ADP

0 5 10 15 20 25 30 35

−0.5

0

0.5

Time Step

x
2

LQR
ADP

Figure 41. Comparisons of system responses of the ADP and the LQR controller.

137

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

Time Step

E
rr

or

Identification error for mode 1

x

1

x
2

0 200 400 600 800 1000
0

0.1

0.2

0.3

Time Step

E
rr

or

Indentification error for mode 2

x

1

x
2

Figure 42. Identification errors for mode 1 and mode 2 of the nonlinear MJS.

Furthermore, in order to demonstrate the effectiveness of this method, we compare

this ADP controller with the standard linear quadratic regulator (LQR) controller which

is the exact solution of the HJB. We fix the optimal weights of the critic and the action

network obtained above and test the performance of the controller. The system responses

of both controllers are provided in Figure 41 including both the state variables and the

control law trajectories of the two controllers. It can be seen that the system responses

of the designed ADP controller can converge to those of the LQR controller, which

means the training process of the proposed ADP method can obtain the performance

of the optimal control solution. The simulation results reveal that the proposed neural-

network-based ADP approach is effective for the linear MJS with unknown discrete-time

dynamics and can obtain satisfactory.

138

0 10 20 30
0

0.5

1

1.5

2

2.5

Time Step

M
o
d
e
s

0 10 20 30

−0.2

0

0.2

0.4

Time Step

u

0 10 20 30
−0.2

0

0.2

0.4

0.6

0.8

Time Step

x 1

0 10 20 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time Step

x 2

Figure 43. Active jumping mode and system responses with the ADP controller.

6.5.2 Nonlinear System

Now, we turn to the nonlinear discrete-time Markov jump system with two jumping

modes. The system function can be described as follows

mode 1

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1(k+1) = −x1(k) + x1(k) cos(x1(k)x2(k))

x2(k+1) = − sin(x1(k) + uk)

mode 2

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1(k+1) = − sin(0.5x2(k))

x2(k+1) = − sin(0.9x1(k)) cos(x2(k) + uk).

(273)

The transition probability matrix is

H = (
0.7 0.3
0.2 0.8

) . (274)

Assume the system has unknown state dynamics. According to the identification

approach presented in Section 5.3, a three-layer neural network is trained to approximate

139

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration Step

P
e
rf

o
rm

a
n
ce

 in
d
e
x

fu
n
ct

io
n

Figure 44. Performance index function trajectory of the nonlinear MJS.

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

Time Step

W
e

ig
h
ts

 o
f

A
N

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

1.5

Time Step

W
e
ig

h
ts

 o
f
C

N

W
a2

(1)

W
a2

(2)

W
a2

(3)

W
a2

(4)

W
a2

(5)

W
a2

(6)

W
c2

(1)

W
c2

(2)

W
c2

(3)

W
c2

(4)

W
c2

(5)

W
c2

(6)

W
c2

(7)

W
c2

(8)

Figure 45. Weights trajectories of the action and the critic network from the hidden to
the output layer.

140

the state of next step. The learning rate is set to β = 0.01, and the initial weights of the

identifiers are chosen randomly in [−1,1]. The identification errors of both subsystems

are provided in Figure 42. It can be seen that the identification errors can converge to

zero, indicating that the designed identifiers can accurately estimate the system state .

With these two identifiers, an ADP controller is designed to stabilize this MJS. Two

three-layer neural networks are built as the critic and the action network with Nhc = 8

and Nha = 6. The learning rates of both networks are set to βc = βa = 0.01 and the initial

weights of both networks are chosen randomly within [−1,1]. The initial state is set to

x0 = [1,−0.5]. The weight vector is set to ω = [0.6,0.4]. Therefore, we can obtain the

performance index function for MJS (273) as follows

J(xk) = (0.6 ∗ 0.7 + 0.4 ∗ 0.3)J1(xk)

+ (0.6 ∗ 0.2 + 0.4 ∗ 0.8)J2(xk)

(275)

where Ji(xk) = xTkQixk + uTkRiuk, i ∈ {1,2}, and Qi and Ri are the identity matrices

with appropriate dimensions.

System performances of the designed ADP controller are shown in Figure 43 which

illustrates the active mode of each time step, the state responses and the control input

trajectory during the training process. We can observe that the system state variables

reach the equilibrium point at the 10th time step and then stay at the equilibrium values

even though the active mode keep changing. The performance index function sequence

at time step k = 0 is provided in Figure 44 which consistent with the analysis in Section

6.3.2 by noticing that it is monotonically non-decreasing. The learning weights of both

the critic and the action network from the hidden to the output layer are provided in

Figure 45.

Additionally, without loss of generality, we consider an arbitrary selection of the

system functions in the following two cases.

141

0 10 20 30 40 50
−0.5

0

0.5

1

Time Step

A
ve

rg
e

 v
a

lu
e

 o
f

x 1
 &

 x
2

x
1

x
2

Figure 46. Average state trajectories of 10,000 round.

(1) Consider a set of nonlinear systems

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1(k+1) = λ1 sin(λ2x2(k))

x2(k+1) = λ3 sin(λ4x1(k)) cos(λ5x2(k) + λ6uk)

(276)

where λ1 ∼ λ6 are the designed parameters which are adjustable. For convenience, we

assume λ1 ∈ [−1,1], λ2 ∈ [−1,1], λ3 ∈ [−1,1], λ4 ∈ [−1,1], λ5 ∈ [−100,100], and

λ6 ∈ [−100,100]. As we know, different sets of designed parameters (λ1 ∼ λ6) come

with different system functions. Therefore, we randomly choose the parameters within

their boundaries, respectively, for each time step and let the system jump among these

different functions for 50 time steps. Set the initial state as x0 = [−0.5,1] and choose

randomly the initial weights of both the critic and the action network within [−1,1].

The performance index function is defined as J(xk) = xTk xk + u
T
k uk in this case. Then,

the values of state variables are collected and the root mean square error (RMSE) is

measured based on each round.

We repeat this process for 10,000 times and plot the average state trajectories of

these 10,000 rounds of x1 and x2 which are shown in Figure 46. The histogram of the

50th state values and the state RMSE for these 10,000 rounds of x1 and x2 are provided

142

−2 −1 0 1 2 3 4

x 10
−64

0

2000

4000

6000

8000

10000

X
1
(50)

C
o
u
n
t
N

u
m

b
e
r

−2 0 2 4 6 8 10 12 14 16

x 10
−65

0

2000

4000

6000

8000

10000

X
2
(50)

C
o
u
n
t
N

u
m

b
e
r

−2 −1 0 1

x 10
−64

0

1

2

0 5 10

x 10
−65

0

1

2

Figure 47. Histogram of the state values of 50th time step of 10,000 round.

0.0975 0.098 0.0985 0.099
0

1000

2000

3000

4000

5000

6000

7000

RMSE of x
1

C
ou

nt
 N

um
be

r

0.142 0.1422 0.1424 0.1426
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

RMSE of x
2

C
ou

nt
 N

um
be

r

Figure 48. Histogram of RMSE for x1 and x2 of 10,000 round.

143

in Figure 47 and Figure 48. The results show that the RMSE for x1 and x2 can focus on a

small range of errors, which means the states can converge regardless of the parameters

changes within their boundaries. Moreover, from Figure 47, we know almost all the

states of the 50th time step are located at a small neighbour of zero (equivalent point).

Therefore, all the rounds in this situation achieve the desired performance which means

the rate of success is one hundred percent.

(2) Consider the following nonlinear systems

mode 1

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1(k+1) = p1x1(k) + x1(k) cos(p2x1(k)x2(k))

x2(k+1) = p3 sin(p4x1(k) + uk)

mode 2

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1(k+1) = p5 sin(p6x2(k))

x2(k+1) = p7 sin(p8x1(k)) cos(p9x2(k) + p10uk)

(277)

where p1 ∼ p10 are the designed parameters which are chosen within their boundaries.

Moreover, we assume p1 ∈ [−1,0], p2 ∈ [−100,100], p3 ∈ [−1,1], p4 ∈ [−100,100], p5 ∈

[−1,1], p6 ∈ [−1,1], p7 ∈ [−1,1], p8 ∈ [−1,1], p9 ∈ [−100,100], and p10 ∈ [−100,100].

We can clearly observe that system (273) is the above MJS with specific set of the

designed parameters. Without loss of generality, we randomly choose a set of these

parameters (p1 ∼ p10) within their boundaries at the beginning of each round. In other

words, the system jumps between two arbitrary functions of selection in one run. The

transition probability matrix is defined as

H = (
a 1 − a

1 − b b
) (278)

where 0 < a < 1 and 0 < b < 1 are the transition probabilities which are randomly chosen

at initial. We repeat this process for 10,000 times. And, for each round, the initial state

is set to x0 = [−0.5,1]. System jumps every two time steps and continue for 50 steps.

The state value of each time step is collected and the RMSE for system state is measured

according to each set of the parameters. Figure 49 gives the average trajectories of x1

144

0 10 20 30 40 50
−0.5

0

0.5

1

Time Step

A
ve

ra
g
e
 v

a
lu

e
 o

f
x 1

 &
 x

2

x
1

x
2

Figure 49. Average state trajectories of 10,000 round.

and x2 of 10,000 rounds. The histograms of the state value of the 50th time step and of

RMSE for x1 and x2 are provided in Figure 50 and Fig.51, respectively. From the results,

we know most of the jumping process can converge to zero (the equivalent point). In

this chapter, we define the desired performance if the state trajectories converge to the

range of [−0.01,0.01]. From Fig.50, we obtain the number of the unsuccessful round is

287, indicating that successful rate in this case is 97.13%.

6.5.3 Single Link Robot Arm

In this subsection, we consider a single link robot arm to illustrate the effectiveness

of the proposed design approach. This model is very popular in Markov jump problems

(see reference [19], [20] and [21]). Comparing to these papers, our approach does not

require the knowledge of system functions. This is very important, because if the pa-

rameters of the system modes are changed, we do not need to recalculate the controller.

The dynamic function of the single link robot arm is given by

θ̈(t) = −
MgL

G
sin(θ(t)) −

D

G
θ̇(t) +

1

G
u(t) (279)

where θ(t) is the angle position of the robot arm, and u(t) is the control input. Moreover,

145

−0.5 0 0.5 1
0

2000

4000

6000

8000

10000

X
1
(50)

C
o
u
n
t
N

u
m

b
e
r

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

2000

4000

6000

8000

10000

X
2
(50)

C
o
u
n
t
N

u
m

b
e
r

−0.5 0 0.5
0

50

100

150

−0.2 −0.1 0 0.1
0

20

40

60

Figure 50. Histogram of the state values of 50th time step of 10,000 round.

0.05 0.1 0.15 0.2
0

1000

2000

3000

4000

5000

6000

7000

8000

RMSE of x
1

C
ou

nt
 N

um
be

r

0.1 0.2 0.3 0.4
0

1000

2000

3000

4000

5000

6000

RMSE of x
2

C
ou

nt
 N

um
be

r

Figure 51. Histogram of RMSE for x1 and x2 of 10,000 round.

146

0 5 10 15
0.5

1

1.5

2

2.5

3

3.5

4

4.5

t/s

M
o
d
e
s

Figure 52. Jumping mode evolution r of the robot arm system.

M is the mass of the payload, G is the moment of the inertia, g is the acceleration of

gravity, L is the length of the arm, and D is the viscous friction. According to [19], the

values of the system parameters are given by g = 9.81, D = 2, and L = 0.5, respectively.

This process is a Markov jump process because the parameters of M and G have four

different modes. Assuming x1(t) = θ(t) and x2(t) = θ̇(t), the dynamic function (279)

can be represented by

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) = −
2

G(r)
x2(t) +

1

G(r)
u(t) −

4.905M(r) sin(x1(t))

G(r)

(280)

where r = {1,2,3,4}, G(r) and M(r) are dependent on jumping mode r. In this chap-

ter, we set G(1) = 1, G(2) = 5, G(3) = 10, G(4) = 15, and M(1) = 1, M(2) = 5,

M(3) = 10, M(4) = 15. The transition probability matrix is described as

H =

⎛
⎜
⎜
⎜
⎝

0.2 0.1 0.4 0.3
0.3 0.2 0.2 0.3
0.1 0.3 0.3 0.3
0.4 0.4 0.1 0.1

⎞
⎟
⎟
⎟
⎠

. (281)

147

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t/s

x
1
&

x
2

x
1

x
2

Figure 53. State trajectories of the robot arm system under jumping mode r.

0 5 10 15
−1

−0.5

0

0.5

1

t/s

u

Figure 54. Control law of the robot arm system under jumping mode r.

148

0 5 10 15
−4

−3

−2

−1

0

1

2

3

t/s

W
ei

gh
ts

 o
f A

N

0 5 10 15
−1

−0.5

0

0.5

1

1.5

t/s

W
ei

gh
ts

 o
f C

N

W
a2

(1)

W
a2

(2)

W
a2

(3)

W
a2

(4)

W
a2

(5)

W
a2

(6)

W
c2

(1)

W
c2

(2)

W
c2

(3)

W
c2

(4)

W
c2

(5)

W
c2

(6)

W
c2

(7)

W
c2

(8)

Figure 55. Weights trajectories of the action and the critic network from the hidden to
the output layer.

In our current simulation, the sampling period is chosen as T = 0.05s. Two three-

layer neural networks are built as the critic and the action network. The hidden neurons

of these two networks are chosen as Nhc = 8 and Nha = 6. The learning rates of both

networks are set to βc = βa = 0.01 and the initial weights of both networks are chosen

randomly within [−1,1]. We set the initial state of the system to x0 = [0.5,0.5]. The

system parameters are jumping randomly among four modes which can be clearly ob-

served in Fig.52. The state trajectories and the control law of the robot arm system under

jumping mode r are provided in Fig.53 and Fig.54, respectively. The weights learning

process of the critic and the action network are showed in Fig.55. We know from the

results that this MJSs can converge to its stable state under the designed control law. The

simulation results reveal that the proposed control method can be applied to nonlinear

MJSs with high jumping modes and obtain satisfying performance.

149

6.6 Summary

This chapter proposes an optimal control method for a class of discrete-time non-

linear MJSs with unknown dynamics. An identifier is designed to approximate the state

variables for unknown systems, and an ADP-based approach is proposed to control this

kind of jump systems by transforming MJSs control problem into a single objective

optimal control problem. The convergence of the performance index function and the

existence of the admissible control in this situation are proved in detail. Neural network

techniques are applied to implement the proposed ADP method. Three simulation stud-

ies are used to demonstrate the performance of the proposed optimal control method.

List of References

[1] V. Ugrinovskii* and H. R. Pota, “Decentralized control of power systems via robust
control of uncertain markov jump parameter systems,” International Journal of
Control, vol. 78, no. 9, pp. 662–677, 2005.

[2] S. C. Lee, “Maintenance strategies for manufacturing systems using markov mod-
els,” Ph.D. dissertation, The University of Michigan, 2010.

[3] L. Zhang and E. K. Boukas, “Stability and stabilization of markovian jump
linear systems with partly unknown transition probabilities,” Automatica, vol. 45,
no. 2, pp. 463–468, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/
automatica/automatica45.html#ZhangB09

[4] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control synthesis
for switched systems: a switched lyapunov function approach,” IEEE Trans.
Automat. Contr., vol. 47, no. 11, pp. 1883–1887, 2002. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tac/tac47.html#DaafouzRI02

[5] W. Chen, J. Xu, and Z. Guan, “Guaranteed cost control for uncertain
markovian jump systems with mode-dependent time-delays,” IEEE Trans.
Automat. Contr., vol. 48, no. 12, pp. 2270–2277, 2003. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tac/tac48.html#ChenXG03

[6] A. P. C. Gonalves, A. R. Fioravanti, and J. C. Geromel, “H filtering of
discrete-time markov jump linear systems through linear matrix inequalities,”
IEEE Trans. Automat. Contr., vol. 54, no. 6, pp. 1347–1351, 2009. [Online].
Available: http://dblp.uni-trier.de/db/journals/tac/tac54.html#GoncalvesFG09

[7] M. S. Mahmoud, P. Shi, and A. Ismail, “Robust kalman filtering for
discrete-time markovian jump systems with parameter uncertainty,” J. Comput.

150

http://dblp.uni-trier.de/db/journals/automatica/automatica45.html#ZhangB09
http://dblp.uni-trier.de/db/journals/automatica/automatica45.html#ZhangB09
http://dblp.uni-trier.de/db/journals/tac/tac47.html#DaafouzRI02
http://dblp.uni-trier.de/db/journals/tac/tac48.html#ChenXG03
http://dblp.uni-trier.de/db/journals/tac/tac54.html#GoncalvesFG09

Appl. Math., vol. 169, no. 1, pp. 53–69, Aug. 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.cam.2003.11.002

[8] I. Matei and J. S. Baras, “Optimal state estimation for discrete-time markovian
jump linear systems, in the presence of delayed output observations,” IEEE
Trans. Automat. Contr., vol. 56, no. 9, pp. 2235–2240, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tac/tac56.html#MateiB11

[9] D. Farias and B. V. Roy, “Approximate dynamic programming via linear program-
ming,” in Advances in Neural Information Processing Systems, 2001, pp. 689–695.

[10] D. P. de Farias and B. Van Roy, “The linear programming approach to approximate
dynamic programming,” Operations Research, vol. 51, no. 6, pp. 850–865, 2003.

[11] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB
solution using approximate dynamic programming: convergence proof,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 4, pp. 942–
949, 2008.

[12] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear
systems with saturating actuators using a neural network HJB approach,”
Automatica, vol. 41, no. 5, pp. 779–791, 2005. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/automatica/automatica41.html#Abu-KhalafL05

[13] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to solve
the continuous-time infinite horizon optimal control problem,” Automatica,
vol. 46, no. 5, pp. 878–888, May 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.automatica.2010.02.018

[14] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of unknown non-
affine nonlinear discrete-time systems based on adaptive dynamic programming,”
Automatica, vol. 48, no. 8, pp. 1825–1832, 2012.

[15] H. G. Zhang, Y. H. Luo, and D. Liu, “Neural-network-based near-optimal control
for a class of discrete-time affine nonlinear systems with control constraints,” IEEE
Transactions on Neural Networks, vol. 20, no. 9, pp. 1490–1503, 2009.

[16] F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct
heuristic dynamic programming,” Neural Networks, vol. 32, pp. 229–235, 2012.

[17] X. Zhang, H. Zhang, Q. Sun, and Y. Luo, “Adaptive dynamic programming-based
optimal control of unknown nonaffine nonlinear discrete-time systems with proof
of convergence,” Neurocomputing, vol. 91, pp. 48–55, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/ijon/ijon91.html#ZhangZSL12

[18] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based on the dual
critic network design,” Neural Networks and Learning Systems, IEEE Transactions
on, vol. 24, no. 6, pp. 913–928, 2013.

151

http://dx.doi.org/10.1016/j.cam.2003.11.002
http://dblp.uni-trier.de/db/journals/tac/tac56.html#MateiB11
http://dblp.uni-trier.de/db/journals/automatica/automatica41.html#Abu-KhalafL05
http://dblp.uni-trier.de/db/journals/automatica/automatica41.html#Abu-KhalafL05
http://dx.doi.org/10.1016/j.automatica.2010.02.018
http://dx.doi.org/10.1016/j.automatica.2010.02.018
http://dblp.uni-trier.de/db/journals/ijon/ijon91.html#ZhangZSL12

[19] X. Luan, F. Liu, and P. Shi, “Neural-network-based finite-time h∞ control for ex-
tended markov jump nonlinear systems,” International Journal of Adaptive Con-
trol and Signal Processing, vol. 24, no. 7, pp. 554–567, 2010.

[20] H. Wu and K. Cai, “Mode-independent robust stabilization for uncertain Marko-
vian jump nonlinear systems via fuzzy control,” Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, vol. 36, no. 3, pp. 509–519, 2005.

[21] R. Palm and D. Driankov, “Fuzzy switched hybrid systems-modeling and identi-
fication,” in Intelligent Control (ISIC), 1998. Held jointly with IEEE International
Symposium on Computational Intelligence in Robotics and Automation (CIRA),
Intelligent Systems and Semiotics (ISAS), Proceedings. IEEE, 1998, pp. 130–
135.

152

CHAPTER 7

Conclusions and Future Research Directions

7.1 Conclusions

This dissertation research is motivated by brain-intelligence and animal intelli-

gence, and integrates the computational intelligence into the feedback control field.

By bring together the ideas from both the control systems engineering and the com-

putational intelligence communities, this dissertation provides detailed solutions for

some problems in ADP-based feedback control. This dissertation improve the perfor-

mance from three aspects: algorithms, architectures, and applications. First, consider

the huge computation and communication load in the ADP learning process, a novel

event-triggered ADP control method is developed in chapter 3 by providing an event

threshold to generate the sampled instance and guarantee the stability. The computation

burden can be reduced in this way, and the competitive control performance is achieved

at the same time. Next, this idea is further developed in the partially observable envi-

ronment. Since the ADP design requires the full information of the system states, this is

an important and challenge problem that need to be solved. An on-line learning neural-

network-based observer is established in chapter 4 to recover the entire system state

from the partially observable ones. Both the designed observer and the controller are

only updated when an event is triggered. Therefore, the computation burden is reduced

with limited state information. Then, the ADP architecture is considered. A new inter-

nal goal representation architecture is developed based on the traditional ADP structure.

An additional goal network is integrated into the adaptive critic design to facilitate the

learning process. Chapter 6 designs this ADP method for a class of MJSs which is a

popular modeling systems in practical situations. The theoretical analysis is also pro-

vided to show the stability and convergence of the proposed methods. Simulation results

are applied to demonstrate the control performance.

153

7.2 Original Contributions

The contributions of this dissertation are presented from two aspects: feedback

control and computational intelligence. New algorithms and architectures are devel-

oped based on ADP techniques for the feedback control systems to improve the control

performance. Specifically, the original contributions of this dissertation are summarized

as following:

● Event-triggered ADP control method has been developed to reduce the computa-

tion and transmission load. The key idea is how to choose the sample instances

to make sure the sampled data are evaluative. To this end, an event threshold has

been designed to guarantee the stability of the entire feedback control systems. It

is said that only when the difference between the sampled and the current states is

larger than this threshold, the state is sampled and controller is updated according

to the sample data.

● Event-triggered ADP control has been successfully designed in the partially ob-

servable environment. Since the ADP control method requires the full system

state during the learning process, it becomes challenge when the method is devel-

oped with only the input/output data. In this dissertation, an observer has been

established to recover the entire system state from the partially observable ones.

Besides, in order to save the resources, both the controller and the observer are

updated when an event is triggered.

● From the architecture side, goal representation design has been integrated into

the traditional adaptive critic structure. The Gr-GDHP method has been proposed

with explicit description. Simulation results verify the improved learning control

and optimization performance. Furthermore, the results have been compared with

the traditional GDHP method and other goal representation methods (i.e., GrHDP

and GrDHP) to show the improvement of this method.

154

● Consider the significant increasing attention of MJSs in practice. The ADP

method has been developed for MJSs by combining the performance index func-

tions for multiple subsystems into one major performance index. The simulation

examples have been shown that the learning-based results can converge to the

optimal solutions.

7.3 Future Research Directions

The dissertation provides the comprehensive study for the on-line ADP for feed-

back control from three aspects: algorithms, architectures, and applications. Promising

results, including both simulation results and theoretical results, are provided to demon-

strate the improved learning control performance. Consider the challenges in this field,

there are still many opportunities to conduct further research along this directions:

● As the event-triggered ADP method demonstrates quite competitive comparing

with the traditional method with limited sampled states, it is desirable to investi-

gate the trade-off between the control performance and the computation reduction.

The optimal event threshold for each specific situation is also a interesting aspect

in this field. Moreover, since the event-triggered ADP method replies on the re-

duced information, it will becomes challenge when the disturbance or the delay

happens during the learning process. The solutions for these problems are desired

to be achieved.

● Deep learning has become one of the biggest topics in machine learning field, and

deep reinforcement learning has also become one of the frontier topics by taking

the advantage of deep network learning principle. It is very interesting to integrate

the deep learning into the ADP method. In this way, the intelligent method can be

designed directly from raw data, such as images and videos. Generally, there are

two ways to achieve this goal. One is to develop the convolutional neural network

155

for the critic and the action networks. The other way is to develop the deep neural

network to derive the efficient representations of the environment from the high-

dimensional sensory input. Then, the ADP method is designed directly based on

the low-dimensional representations.

● In current literature, the ADP control designs are most focusing on the computer

simulation. Many of the physical control systems need dedicated and high-speed

embedded systems to support. It is a nature movement if this research can also be

applied in several high-speed embedded system, such as FPGA and GPU boards.

One step ahead this direction could make the engineering intelligence more close

to reality.

● Nowadays, multi-agent control becomes a hot topic in this field, especially in

robotics, UAV, tracking systems, among others. Multi-agent control is a group

of autonomous agents, coordinating with each other through communication or

sensing networks. Such control can perform certain challenging task which cannot

be well accomplished by a single agent. In many practical situations, the complete

information of multi-agent system functions is either infeasible or very difficult

to obtain. However, ADP method gives us an opportunity to achieve the control

performance with only the system states and control inputs. It is desired to design

the distributed learning-based algorithms based on ADP or reinforcement learning

not only to make all the agents reach synchronization/ achieve the goals but also

minimize the energy cost under communication digraphs.

Intelligent feedback control system design is one of most exciting research top-

ics in today’s society. With the modern technologies, neuroscience, and fundamental

research of computational intelligence, our human beings very hopefully achieve the

truly engineering intelligent systems. This dissertation provides a comprehensive study

156

of an on-line learning-based method, i.e., ADP control method, for feedback control

systems, including designed algorithms inspiration, new architectures based on the tra-

ditional adaptive critic designs, applications of the designed methods and theoretical

assurance as well as implementation-level pseudocode algorithms. Hopefully, the dis-

sertation could contribute to the development of this most exciting and ambitious re-

search topics in the field.

157

BIBLIOGRAPHY

Abu-Khalaf, M. and Lewis, F. L., “Nearly optimal control laws for nonlinear
systems with saturating actuators using a neural network HJB approach,”
Automatica, vol. 41, no. 5, pp. 779–791, 2005. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/automatica/automatica41.html#Abu-KhalafL05

Abu-Khalaf, M., Lewis, F. L., and Huang, J., “Neurodynamic programming and zero-
sum games for constrained control systems,” Neural Networks, IEEE Transactions
on, vol. 19, no. 7, pp. 1243–1252, 2008.

Adhyaru, D. M., Kar, I. N., and Gopal, M., “Fixed final time optimal control approach
for bounded robust controller design using Hamilton-Jacobi-Bellman solution,”
IET Control Theory and Applications, vol. 3, no. 1, pp. 1183–1195, 2009. [Online].
Available: http://dblp.uni-trier.de/db/journals/nca/nca20.html#AdhyaruKG11

Adhyaru, D. M., Kar, I. N., and Gopal, M., “Bounded robust control of
nonlinear systems using neural network-based HJB solution,” Neural Computing
and Applications, vol. 20, no. 1, pp. 91–103, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/nca/nca20.html#AdhyaruKG11

Al-Tamimi, A., Lewis, F. L., and Abu-Khalaf, M., “Discrete-time nonlinear hjb solution
using approximate dynamic programming: Convergence proof,” IEEE Transac-
tions on System, Man and Cybernetics, Part B, vol. 38, no. 4, pp. 943–949, 2008.

Al-Tamimi, A., Lewis, F. L., and Abu-Khalaf, M., “Discrete-time nonlinear HJB solu-
tion using approximate dynamic programming: convergence proof,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 4, pp. 942–949,
2008.

Bernstein, A. and Shimkin, N., “Adaptive-resolution reinforcement learning with poly-
nomial exploration in deterministic domains,” Machine learning, vol. 81, no. 3, pp.
359–397, 2010.

Chen, J. and Li, Z., “A novel adaptive tropism reward ADHDP method with robust
property,” in Advances in Brain Inspired Cognitive Systems. Springer, 2013, pp.
288–295.

Chen, W., Xu, J., and Guan, Z., “Guaranteed cost control for uncertain
markovian jump systems with mode-dependent time-delays,” IEEE Trans.
Automat. Contr., vol. 48, no. 12, pp. 2270–2277, 2003. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tac/tac48.html#ChenXG03

158

http://dblp.uni-trier.de/db/journals/automatica/automatica41.html#Abu-KhalafL05
http://dblp.uni-trier.de/db/journals/automatica/automatica41.html#Abu-KhalafL05
http://dblp.uni-trier.de/db/journals/nca/nca20.html#AdhyaruKG11
http://dblp.uni-trier.de/db/journals/nca/nca20.html#AdhyaruKG11
http://dblp.uni-trier.de/db/journals/tac/tac48.html#ChenXG03

Chien, T.-L., Chen, C.-C., Huang, Y.-C., and Lin, W.-J., “Stability and almost distur-
bance decoupling analysis of nonlinear system subject to feedback linearization
and feedforward neural network controller,” Neural Networks, IEEE Transactions
on, vol. 19, no. 7, pp. 1220–1230, 2008.

Daafouz, J., Riedinger, P., and Iung, C., “Stability analysis and control synthesis
for switched systems: a switched lyapunov function approach,” IEEE Trans.
Automat. Contr., vol. 47, no. 11, pp. 1883–1887, 2002. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tac/tac47.html#DaafouzRI02

de Farias, D. P. and Van Roy, B., “The linear programming approach to approximate
dynamic programming,” Operations Research, vol. 51, no. 6, pp. 850–865, 2003.

Eqtami, A., Dimarogonas, D. V., and Kyriakopoulos, K. J., “Event-triggered control
for discrete-time systems,” in American Control Conference (ACC), 2010. IEEE,
2010, pp. 4719–4724.

F. L. Lewis, and D. Vrabie., “Reinforcement learning and adaptive dynamic program-
ming for feedback control,” IEEE Circuits Sys. Mag., vol. 9, no. 3, pp. 32–50,
2009.

Farias, D. and Roy, B. V., “Approximate dynamic programming via linear program-
ming,” in Advances in Neural Information Processing Systems, 2001, pp. 689–695.

Fu, J., He, H., and Zhou, X., “Adaptive learning and control for mimo system based on
adaptive dynamic programming,” IEEE Transactions on Neural Networks, vol. 22,
no. 7, pp. 1133–1148, 2011.

Fu, J., He, H., and Ni, Z., “Adaptive Dynamic Programming with Balanced Weights
Seeking Strategy,” in IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), IEEE Symposium Series on Computational In-
telligence (SSCI), Paris, France, 2011.

Fu, J., He, H., and Zhou, X., “Adaptive learning and control for mimo system based on
adaptive dynamic programming,” IEEE Trans. Neural Networks, vol. 22, no. 7, pp.
1133–1148, 2011.

Garcia, E. and Antsaklis, P. J., “Model-based event-triggered control with time-varying
network delays,” in Decision and Control and European Control Conference
(CDC-ECC), 2011 50th IEEE Conference on. IEEE, 2011, pp. 1650–1655.

Gonalves, A. P. C., Fioravanti, A. R., and Geromel, J. C., “H filtering of discrete-time
markov jump linear systems through linear matrix inequalities,” IEEE Trans.
Automat. Contr., vol. 54, no. 6, pp. 1347–1351, 2009. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tac/tac54.html#GoncalvesFG09

Hauskrecht, M., “Value-function approximations for partially observable markov deci-
sion processes,” arXiv preprint arXiv:1106.0234, 2011.

159

http://dblp.uni-trier.de/db/journals/tac/tac47.html#DaafouzRI02
http://dblp.uni-trier.de/db/journals/tac/tac54.html#GoncalvesFG09

He, H., Self-Adaptive Systems for Machine Intelligence. Wiley, 2011.

He, H., Ni, Z., and Fu, J., “A three-network architecture for on-line learning and
optimization based on adaptive dynamic programming,” Neurocomputing, vol. 78,
no. 1, pp. 3–13, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/ijon/
ijon78.html#HeNF12

He, H., Ni, Z., and Zhao, D., Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control. Wiley-IEEE Press, 2013, ch. Learning and Op-
timization in Hierarchical Adaptive Critic Design, pp. 78–95.

He, P. and Jagannathan, S., “Reinforcement learning neural-network-based controller
for nonlinear discrete-time systems with input contraints,” IEEE Transactions on
Systems Man and Cybernetics Part B-Cybernetics, vol. 37, no. 2, pp. 425–436,
2007.

Heemels, W. and Donkers, M., “Model-based periodic event-triggered control for linear
systems,” Automatica, 2013.

Heemels, W., Donkers, M., and Teel, A., “Periodic event-triggered control for linear
systems,” Automatic Control, IEEE Transactions on, vol. 58, no. 4, pp. 847–861,
2013.

Heemels, W., Johansson, K. H., and Tabuada, P., “An introduction to event-triggered and
self-triggered control,” in Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on. IEEE, 2012, pp. 3270–3285.

Igelnik, B. and Pao, Y.-H., “Stochastic choice of basis functions in adaptive function
approximation and the functional-link net,” Neural Networks, IEEE Transactions
on, vol. 6, no. 6, pp. 1320–1329, 1995.

Jaakkola, T., Singh, S. P., and Jordan, M. I., “Reinforcement learning algorithm for
partially observable markov decision problems,” vol. 7. MIT Press, 1995, p. 345.

Kiumarsi, B., Lewis, F., Naghibi-Sistani, M.-B., and Karimpour, A., “Optimal track-
ing control of unknown discrete-time linear systems using input–output measured
data,” Cybernetics, IEEE Transactions on, 2015, in press.

Lee, S. C., “Maintenance strategies for manufacturing systems using markov models,”
Ph.D. dissertation, The University of Michigan, 2010.

Lemmon, M., “Event-triggered feedback in control, estimation, and optimization,” in
Networked Control Systems. Springer, 2010, pp. 293–358.

Lendaris, G. G., “Higher level application of adp: A next phase for the control field?”
IEEE Transactions on System, Man and Cybernetics, Part B, vol. 38, no. 4, pp.
901–912, 2008.

160

http://dblp.uni-trier.de/db/journals/ijon/ijon78.html#HeNF12
http://dblp.uni-trier.de/db/journals/ijon/ijon78.html#HeNF12

Lewis, F. and Liu, D., Eds., Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control. Wiley-IEEE Press, 2013.

Lewis, F. L., Jagannathan, S., and Yesildirek, A., Neural Network Control of Robot
Manipulators and Nonlinear Systems. Taylor & Francis, London, UK, 1999.

Lewis, F. L., Liu, D., and Lendaris, G. G., “Special issue on adaptive dynamic pro-
gramming and reinforcement learning in feedback control,” IEEE Transactions on
System, Man and Cybernetics, Part B, vol. 38, no. 4, pp. 896–897, 2008.

Lewis, F. L. and Liu, D., Eds., Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control. Wiley-IEEE, 2012.

Lewis, F. L. and Vamvoudakis, K. G., “Reinforcement learning for partially observable
dynamic processes: Adaptive dynamic programming using measured output data,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 41, no. 1,
pp. 14–25, 2011. [Online]. Available: http://dblp.uni-trier.de/db/journals/tsmc/
tsmcb41.html#LewisV11

Li, H. and Liu, D., “Optimal control for discrete-time affine non-linear systems using
general value iteration,” IET Control Theory & Applications, vol. 6, no. 18, pp.
2725–2736, 2012.

Lin, F., “An optimal control approach to robust control design,” International Journal
of control, vol. 73, no. 3, pp. 177–186, 2000.

Lin, F., Brandt, R. D., and Sun, J., “Robust control of nonlinear systems: Compensating
for uncertainty,” International Journal of Control, vol. 56, no. 6, pp. 1453–1459,
1992.

Liu, D., Javaherian, H., Kovalenko, O., and Huang, T., “Adaptive critic learning tech-
niques for engine torque and air-fuel ratio control,” IEEE Transactions on Systems
Man and Cybernetics Part B-Cybernetics, vol. 38, no. 4, pp. 988–993, 2008.

Liu, D. and Wei, Q., “Finite-approximation-error-based optimal control approach for
discrete-time nonlinear systems,” IEEE Transactions on Cybernetics, vol. 43, no. 2,
pp. 779–789, 2013.

Liu, D., Zhang, Y., and Zhang, H. G., “A self-learning call admission control scheme for
CDMA cellular networks,” IEEE Transactions on Neural Networks, vol. 16, no. 5,
pp. 1219–1228, 2005.

Liu, D., Javaherian, H., Kovalenko, O., and Huang, T., “Adaptive critic learning tech-
niques for engine torque and air–fuel ratio control,” Systems, Man, and Cybernet-
ics, Part B: Cybernetics, IEEE Transactions on, vol. 38, no. 4, pp. 988–993, 2008.

161

http://dblp.uni-trier.de/db/journals/tsmc/tsmcb41.html#LewisV11
http://dblp.uni-trier.de/db/journals/tsmc/tsmcb41.html#LewisV11

Liu, D., Li, H., and Wang, D., “Neural-network-based zero-sum game for discrete-
time nonlinear systems via iterative adaptive dynamic programming algorithm,”
Neurocomputing, vol. 110, pp. 92–100, 2013.

Liu, D. and Wang, D., Reinforcement Learning and Approximate Dynamic Program-
ming for Feedback Control. Wiley-IEEE Press, 2013, ch. Optimal Control of
Unkonwn Nonlinear Discrete-Time Systems Using the Iterative Globalized Dual
Heuristic Programming Algorithm, pp. 52–74.

Liu, D., Wang, D., and Li, H., “Decentralized stabilization for a class of continuous-time
nonlinear interconnected systems using online learning optimal control approach,”
IEEE Trans. on Neural Networks and Learning Systems, in press.

Liu, D., Wang, D., and Yang, X., “An iterative adaptive dynamic programming algorithm
for optimal control of unknown discrete-time nonlinear systems with constrained
inputs,” Information Sciences, vol. 220, pp. 331–342, Jan. 2013.

Liu, D., Wang, D., Zhao, D., Wei, Q., and Jin, N., “Neural-network-based optimal con-
trol for a class of unknown discrete-time nonlinear systems using globalized dual
heuristic programming,” Automation Science and Engineering, IEEE Transactions
on, vol. 9, no. 3, pp. 628–634, 2012.

Liu, D. and Wei, Q., “Finite-approximation-error-based optimal control approach for
discrete-time nonlinear systems,” IEEE Trans. on Cybernetics, vol. 43, no. 2, pp.
779–789, 2013.

Liu, D. and Wei, Q., “Finite-approximation-error-based optimal control approach for
discrete-time nonlinear systems,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B, vol. 43, no. 2, 2013.

Liu, D. and Wei, Q., “Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems,” IEEE Trans. on Neural Networks and Learning
Systems, in press.

Liu, D. and Wei, Q., “Policy iteration adaptive dynamic programming algorithm for
discrete-time nonlinear systems,” in press, 2013.

Liu, F., Sun, J., Si, J., Guo, W., and Mei, S., “A boundedness result for the direct heuristic
dynamic programming,” Neural Networks, vol. 32, pp. 229–235, 2012.

Lu, C., Si, J., and Xie, X., “Direct heuristic dynamic programming for damping oscilla-
tions in a large power system,” IEEE Trans. Sys. Man Cyber. Part B, vol. 38, no. 4,
pp. 1008–1013, 2008.

Luan, X., Liu, F., and Shi, P., “Neural-network-based finite-time h∞ control for extended
markov jump nonlinear systems,” International Journal of Adaptive Control and
Signal Processing, vol. 24, no. 7, pp. 554–567, 2010.

162

Luo, X., Si, J., and Zhou, Y., “An integrated design for intensified direct heuristic
dynamic programming,” in Adaptive Dynamic Programming And Reinforcement
Learning (ADPRL), 2013 IEEE Symposium on. IEEE, 2013, pp. 183–190.

Mahmoud, M. S., Shi, P., and Ismail, A., “Robust kalman filtering for
discrete-time markovian jump systems with parameter uncertainty,” J. Comput.
Appl. Math., vol. 169, no. 1, pp. 53–69, Aug. 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.cam.2003.11.002

Matei, I. and Baras, J. S., “Optimal state estimation for discrete-time markovian
jump linear systems, in the presence of delayed output observations,” IEEE
Trans. Automat. Contr., vol. 56, no. 9, pp. 2235–2240, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tac/tac56.html#MateiB11

Mitchell, T. M., Machine Learning. New York, NY, USA: McGraw-Hill, Inc., 1997.

Ni, Z., Fang, X., He, H., Zhao, D., and Xu, X., “Real-time tracking control on adaptive
critic design with uniformly ultimately bounded condition,” in IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL’13), IEEE
Symposium Series on Computational Intelligence (SSCI), Apr. 2013.

Ni, Z. and He, H., “Heuristic dynamic programming with internal goal representation,”
Soft Computing, vol. 17, pp. 2101–2108, 2013.

Ni, Z. and He, H., “Heuristic dynamic programming with internal goal representation,”
Soft Computing, vol. 17, pp. 2101–2108, 2013.

Ni, Z., He, H., and Wen, J., “Adaptive learning in tracking control based on the dual
critic network design,” Neural Networks and Learning Systems, IEEE Transactions
on, vol. 24, no. 6, pp. 913–928, 2013.

Ni, Z., He, H., Wen, J., and Xu, X., “Goal representation heuristic dynamic program-
ming on maze navigation,” IEEE Trans. on Neural Networks and Learning Systems,
vol. 24, no. 12, pp. 2038–2050, 2013.

Ni, Z., He, H., Wen, J., and Xu, X., “Goal representation heuristic dynamic program-
ming on maze navigation,” Neural Networks, IEEE Transactions on, vol. 24, pp.
2038–2050, Dec. 2013.

Ni, Z., He, H., Zhao, D., and Prokhorov, D. V., “Reinforcement learning control based
on multi-goal representation using hierarchical heuristic dynamic programming,”
in Neural Networks (IJCNN), The 2012 International Joint Conference on. IEEE,
2012, pp. 1–8.

Ni, Z., He, H., Zhao, D., Xu, X., and Prokhorov, D. V., “Grdhp: A general utility
function representation for dual heuristic dynamic programming,” Neural Networks
and Learning Systems, IEEE Transactions on, vol. 26, no. 3, pp. 614–627, 2015.

163

http://dx.doi.org/10.1016/j.cam.2003.11.002
http://dblp.uni-trier.de/db/journals/tac/tac56.html#MateiB11

Ni, Z., He, H., Zhao, D., Xu, X., and Prokhorov, D. V., “GrDHP: A General Utility
Function Representation for Dual Heuristic Dynamic Programming,” IEEE Trans.
on Neural Networks and Learning Systems, vol. 26, no. 3, pp. 614–627, Mar. 2015.

Ni, Z., He, H., and Zhong, X., Experimental Studies on Data-Driven Heuristic Dynamic
Programming for POMDP. World Scientific Publishing, Singpore, ch. Frontiers
of Intelligent Control and Information Processing.

Ni, Z., He, H., and Zhong, X., Frontiers of Intelligent Control and Information Pro-
cessing. World Scientific Publishing, 2014, in press, ch. Experimental Studies on
Data-Driven Heuristic Dynamic Programming for POMDP.

Ni, Z., He, H., Zhong, X., and Prokhorov, D. V., “Model-free dual heuristic dy-
namic programming,” IEEE transactions on neural networks and learning systems,
vol. 26, no. 8, pp. 1834–1839, 2015.

Ni, Z., Tang, Y., He, H., and Wen, J., “Multi-machine power system control based on
dual heuristic dynamic programming,” in Proc. of 2014 IEEE Symposium on Com-
putational Intelligence Applications in Smart Grid (CIASG), Dec. 2014, Orlando,
FL, pp. 1–7.

Palm, R. and Driankov, D., “Fuzzy switched hybrid systems-modeling and identifica-
tion,” in Intelligent Control (ISIC), 1998. Held jointly with IEEE International
Symposium on Computational Intelligence in Robotics and Automation (CIRA),
Intelligent Systems and Semiotics (ISAS), Proceedings. IEEE, 1998, pp. 130–135.

Pineau, J., Gordon, G., Thrun, S., et al., “Point-based value iteration: An anytime algo-
rithm for pomdps,” in IJCAI, vol. 3, 2003, pp. 1025–1032.

Powell, W. B., Approximate Dynamic Programming: Solving the Curses of Dimension-
ality. Wiley-Interscience, 2007.

Prokhorov, D. V. and Wunsch, D. C., “Adaptive critic designs,” Neural Networks and
Learning Systems, IEEE Transactions on, vol. 8, no. 5, pp. 997–1007, 1997.

Qiao, W., Venayagamoorthy, G., and Harley, R., “DHP-based wide-area coordinating
control of a power system with a large wind farm and multiple FACTS devices,” in
Proc. IEEE Int. Conf. Neural Netw., 2007, pp. 2093–2098.

Ray, S., Venayagamoorthy, G. K., Chaudhuri, B., and Majumder, R., “Comparison of
adaptive critics and classical approaches based wide area controllers for a power
system,” IEEE Trans. on Syst. Man, Cybern., Part B, vol. 38, no. 4, pp. 1002–1007,
2008.

Saad, E., “Reinforcement learning in partially observable markov decision processes
using hybrid probabilistic logic programs,” arXiv preprint arXiv:1011.5951, 2010.

164

Sahoo, A., Xu, H., and Jagannathan, S., “Neural network-based adaptive event-triggered
control of affine nonlinear discrete time systems with unknown internal dynamics,”
in American Control Conference (ACC), 2013. IEEE, 2013, pp. 6418–6423.

Sahoo, A., Xu, H., and Jagannathan, S., “Neural network-based adaptive event-triggered
control of nonlinear continuous-time systems,” in Intelligent Control (ISIC), 2013
IEEE International Symposium on. IEEE, 2013, pp. 35–40.

Sahoo, A., Xu, H., and Jagannathan, S., “Near optimal event-triggered control of non-
linear discrete-time systems using neurodynamic programming,” Neural Networks
and Learning System, IEEE Transactions on, 2015, in press.

Sahoo, A., Xu, H., and Jagannathan, S., “Neural network-based event-triggered state
feedback control of nonlinear continuous-time systems,” Neural Networks and
Learning System, IEEE Transactions on, 2015, in press.

Si, J., Barto, A. G., Powell, W. B., and Wunsch, D. C., Eds., Handbook of Learning and
Approximate Dynamic Programming. IEEE Press and John Wiley & Sons, 2004.

Si, J., Barto, A. G., Powell, W. B., and II, D. W., Eds., Handbook of Learning and
Approximate Dynamic Programming. Wiley-IEEE, 2004.

Si, J., Barto, A. G., Powell, W. B., Wunsch, D. C., et al., Handbook of learning and
approximate dynamic programming. IEEE Press Los Alamitos, 2004.

Si, J. and Wang, Y.-T., “Online learning control by association and reinforcement,” Neu-
ral Networks, IEEE Transactions on, vol. 12, no. 2, pp. 264–276, 2001.

Smith, T. and Simmons, R., “Heuristic search value iteration for pomdps,” in Proceed-
ings of the 20th conference on Uncertainty in artificial intelligence. AUAI Press,
2004, pp. 520–527.

Sutton, R. S. and Barto, A. G., Reinforcement learning: An introduction. Cambridge
Univ Press, 1998, vol. 1, no. 1.

Talebi, H. A., Abdollahi, F., Patel, R. V., and Khorasani, K., Neural Network-Based
State Estimation of Nonlinear Systems. Springer, New York, 2010. [Online].
Available: http://books.google.com/books?id=TzdCJdjrp3YC

Tallapragada, P. and Chopra, N., “On event triggered tracking for nonlinear systems,”
Automatic Control, IEEE Transactions on, vol. 58, no. 9, pp. 2343–2348, 2013.

Tang, Y., He, H., Ni, Z., Wen, J., and Sui, X., “Reactive power control of grid-connected
wind farm based on adaptive dynamic programming,” Neurocomputing, vol. 125,
pp. 125–133, Feb. 2014.

Tolic, D., Fierro, R., and Ferrari, S., “Optimal self-triggering for nonlinear systems via
approximate dynamic programming,” in Control Applications (CCA), 2012 IEEE
International Conference on. IEEE, 2012, pp. 879–884.

165

http://books.google.com/books?id=TzdCJdjrp3YC

Ugrinovskii*, V. and Pota, H. R., “Decentralized control of power systems via robust
control of uncertain markov jump parameter systems,” International Journal of
Control, vol. 78, no. 9, pp. 662–677, 2005.

Vamvoudakis, K. G., “Event-triggered optimal adaptive control algorithm for
continuous-time nonlinear systems,” IEEE/CAA JOURNAL OF AUTOMATICA
SINICA, vol. 1, no. 3, pp. 282–293, 2014.

Vamvoudakis, K. G. and Lewis, F. L., “Online actor–critic algorithm to solve the
continuous-time infinite horizon optimal control problem,” Automatica, vol. 46,
no. 5, pp. 878–888, 2010.

Vamvoudakis, K. G. and Lewis, F. L., “Online actor-critic algorithm to solve
the continuous-time infinite horizon optimal control problem,” Automatica,
vol. 46, no. 5, pp. 878–888, May 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.automatica.2010.02.018

Venayagamoorthy, G. K., Harley, R. G., and Wunsch, D. C., “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power system,” In-
dustry Applications, IEEE Transactions on, vol. 39, no. 2, pp. 382–394, 2003.

Vrabie, D., Pastravanu, O., Abu-Khalaf, M., and Lewis, F. L., “Adaptive optimal control
for continuous-time linear systems based on policy iteration,” Automatica, vol. 45,
no. 2, pp. 477–484, 2009.

Wang, D., Liu, D., and Wei, Q., “Finite-horizon neuro-optimal tracking control for a
class of discrete-time nonlinear systems using adaptive dynamic programming ap-
proach,” Neurocomputing, vol. 78, no. 1, pp. 14–22, 2012.

Wang, D., Liu, D., Wei, Q., Zhao, D., and Jin, N., “Optimal control of unknown non-
affine nonlinear discrete-time systems based on adaptive dynamic programming,”
Automatica, vol. 48, no. 8, pp. 1825–1832, 2012.

Wang, D., Liu, D., Zhao, D., Huang, Y., and Zhang, D., “A neural-network-based it-
erative GDHP approach for solving a class of nonlinear optimal control problems
with control constraints,” Neural Computing and Applications, vol. 22, no. 2, pp.
219–227, 2013.

Wang, F. Y., Zhang, H., and Liu, D., “Adaptive dynamic programming: An introduc-
tion,” IEEE Comput. Intel. Mag., vol. 4, no. 2, pp. 39–47, 2009.

Wei, Q. and Liu, D., “Adaptive dynamic programming with stable value iteration algo-
rithm for discrete-time nonlinear systems,” in Proc. IEEE Int. Joint Conf. Neural
Netw., 2012, pp. 1–6.

Wei, Q. and Liu, D., “Numerical adaptive learning control scheme for discrete-time non-
linear systems,” IET Control Theory & Applications, vol. 7, no. 11, pp. 1472–1486,
2013.

166

http://dx.doi.org/10.1016/j.automatica.2010.02.018
http://dx.doi.org/10.1016/j.automatica.2010.02.018

Werbos, P. J., “Using ADP to Understand and Replicate Brain Intelligence: the Next
Level Design,” IEEE Int. Symposium on Approximate Dynamic Programming and
Reinforcement Learning (ADPRL07), pp. 209–216, 2007.

Werbos, P. J., “ADP: The key direction for future research in intelligent control and
understanding brain intelligence,” IEEE Transactions on Systems Man and Cyber-
netics Part B-Cybernetics, vol. 38, no. 4, pp. 898–900, 2008.

Werbos, P. J., “Intelligence in the brain: A theory of how it works and how to build it,”
Neural Networks, vol. 22, no. 3, pp. 200–212, 2009.

Werbos, P. J., “Applications of advances in nonlinear sensitivity analysis,” in System
modeling and optimization. Springer, 1982, pp. 762–770.

Wu, H. and Cai, K., “Mode-independent robust stabilization for uncertain Markovian
jump nonlinear systems via fuzzy control,” Systems, Man, and Cybernetics, Part
B: Cybernetics, IEEE Transactions on, vol. 36, no. 3, pp. 509–519, 2005.

Yang, L., Si, J., Tsakalis, K. S., and Rodriguez, A. A., “Direct heuristic dynamic pro-
gramming for nonlinear tracking conrol with filtered tracking error,” IEEE Trans-
actions on Systems Man and Cybernetics Part B-Cybernetics, vol. 39, no. 6, pp.
1617–1622, 2009.

Zhang, H., Liu, D., Luo, Y., and Wang, D., Adaptive Dynamic Programming for Control:
Algorithms and Stability (Communications and Control Engineering). Springer,
2013.

Zhang, H. G., Luo, Y. H., and Liu, D., “Neural-network-based near-optimal control for
a class of discrete-time affine nonlinear systems with control constraints,” IEEE
Transactions on Neural Networks, vol. 20, no. 9, pp. 1490–1503, 2009.

Zhang, H. G., Wei, Q. L., and Luo, Y. H., “A novel infinite-time optimal tracking control
scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration
algorithm,” IEEE Transactions on System, Man and Cybernetics, Part B, vol. 38,
no. 4, pp. 937–942, 2008.

Zhang, H., “Partially observable markov decision processes: A geometric technique and
analysis,” Operations Research, vol. 58, no. 1, pp. 214–228, 2010.

Zhang, H., Qin, C., Jiang, B., and Luo, Y., “Online adaptive policy learning algorithm
for H∞ state feedback control of unknown affine nonlinear discrete-time systems,”
Cybernetics, IEEE Transactions on, vol. 44, no. 12, pp. 2706–2718, 2014.

Zhang, H., Wei, Q., and Liu, D., “An iterative adaptive dynamic programming method
for solving a class of nonlinear zero-sum differential games,” Automatica, vol. 47,
no. 1, pp. 207–214, 2011.

167

Zhang, J. and Feng, G., “Event-driven observer-based output feedback control for linear
systems,” Automatica, vol. 50, no. 7, pp. 1852–1859, 2014.

Zhang, L. and Boukas, E. K., “Stability and stabilization of markovian jump linear
systems with partly unknown transition probabilities,” Automatica, vol. 45,
no. 2, pp. 463–468, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/
automatica/automatica45.html#ZhangB09

Zhang, X., Zhang, H., Sun, Q., and Luo, Y., “Adaptive dynamic programming-based
optimal control of unknown nonaffine nonlinear discrete-time systems with proof
of convergence,” Neurocomputing, vol. 91, pp. 48–55, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/ijon/ijon91.html#ZhangZSL12

Zhong, X., He, H., and Prokhorov, D. V., “Robust controller design of continuous-time
nonlinear system using neural network,” in The 2013 International Joint Confer-
ence on Neural Networks (IJCNN), Aug. 2013.

Zhong, X., He, H., Zhang, H., and Wang, Z., “Optimal control for unknown discrete-
time nonlinear markov jump systems using adaptive dynamic programming,” Neu-
ral Networks and Learning Systems, IEEE Transactons on, vol. 25, no. 12, pp.
2141–2155, 2015.

Zhong, X., Ni, Z., Tang, Y., and He, H., “Data-driven partially observable dynamic pro-
cesses using adaptive dynamic programming,” in Proc. IEEE Symposium of Adap-
tive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE, 2014,
pp. 1–8.

Zhong, X., He, H., Zhang, H., and Wang, Z., “A neural network based online learning
and control approach for markov jump systems,” Neurocomputing, vol. 149, pp.
116–123, 2015.

Zhong, X., Ni, Z., and He, H., “A theoretical foundation of goal representation heuristic
dynamic programming,” Neural Networks and Learning Systems, IEEE Transac-
tions on, 2015, in press.

Zhong, X., Ni, Z., and He, H., “Convergence analysis of grdhp-based optimal control
for discrete-time nonlinear system,” in Neural Networks (IJCNN), The 206 Inter-
national Joint Conference on. IEEE, 2016, pp. 1–8.

Zhong, X., Ni, Z., and He, H., “A theoretical foundation of goal representation heuristic
dynamic programming,” ieee trans. on neural networks and learning systems,” in
press, 2015.

168

http://dblp.uni-trier.de/db/journals/automatica/automatica45.html#ZhangB09
http://dblp.uni-trier.de/db/journals/automatica/automatica45.html#ZhangB09
http://dblp.uni-trier.de/db/journals/ijon/ijon91.html#ZhangZSL12

	On-Line Adaptive Dynamic Programming for Feedback Control
	Terms of Use
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Motivation and Inspirations
	Significance of the Research
	Research Objective
	Dissertation Organization
	List of References

	On-line Data-driven Adaptive Dynamic Programming (ADP) Control
	Feedback Control
	Background of Adaptive Dynamic Programming
	On-line Learning
	Related Work
	List of References

	Event-triggered ADP Control
	Introduction
	Event-triggered Method Design
	Stability Analysis of the Event-Triggered Method
	Neural-network-based Event-Triggered Controller Design
	Event-Triggered Control Law Estimation
	Neural-Network-based Implementation

	Simulation Studies
	Conclusion
	List of References

	Event-triggered ADP Control with Unknown Internal States
	Introduction
	Problem Statement
	Event-triggered Controller Design Using Only the Input-Output Data
	Event-triggered Regulator Design
	Neural-network-based Observer Design
	Optimal Event-triggered Control Scheme Design
	Stability Analysis of the closed-loop system

	Simulation Studies
	Summary
	List of References

	On-line Hierarchical Adaptive Critic Design
	Introduction
	Goal Representation Design
	GrADP Control and the Theoretical Analysis
	GrADP Algorithm
	Convergence analysis of the GrADP approach

	Goal representation ADP ladder
	Goal Representation Design in HDP
	General Utility Function Representation in DHP
	Gr-GDHP Design

	Learning Process of Gr-GDHP Approach
	State Prediction
	General Utility Function Representation Design
	Learning Process of Critic Network
	Learning Process of Action Network

	Simulation Studies
	Nonlinear System
	Ball-and-beam balancing system

	Discussions
	Summary
	List of References

	On-line ADP Learning for Markov Jump Systems (MJSs)
	Introduction
	Problem Statement
	Optimal Control for unknown MJSs
	ADP Algorithm to Approximate the Optimal Control for MJSs
	Convergence Analysis of the Proposed ADP Approach

	Design of the Proposed ADP Approach
	Critic Network
	Action Network

	Simulation Studies
	Linear System
	Nonlinear System
	Single Link Robot Arm

	Summary
	List of References

	Conclusions and Future Research Directions
	Conclusions
	Original Contributions
	Future Research Directions

	BIBLIOGRAPHY

