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ABSTRACT

The exponential growth of the earth’s population has lead to the depletion

of natural resources in concert with unrepairable environmental damage. One

solution for a more sustainable lifestyle is the supply of electricity by renewable

energy technology. Offshore wind energy is expected to play a major role in

the extension of this sustainable energy supply. However, several challenges lay

ahead due to the high expenses of offshore energy. Consequently, the optimization

of a wind farm layout for minimizing costs and maximizing revenue gains high

importance.

This study determines the sensitivity of a wind farm layout and its revenue to

wind time series length, wind direction and wind velocity trend. The sensitivity

analysis is conducted at the Renewable Energy Zone (REZ) and the Rhode

Island and Massachusetts Area of Mutual Interest (AMI) in Rhode Island, USA.

Optimum layouts are found by minimizing an objective function expressed in

terms of the Wind Farm Siting Index (WiFSI) with a Genetic Algorithm. The

objective function considers wind resource, technological costs as expenses for

tower foundation and cable interconnection as well as ecological and fishery cost.

Ecological cost is expressed as abundance and sensitivity of species to wind farms.

Fishery cost is implemented proportional to fishing activity intensity. The WiFSI

is a dynamic tool adjustable by weighting factors to societal or political choices.

Seven simulations are conducted for the REZ and four simulations are

researched for the AMI to complete the sensitivity study. All scenarios exclude

ecological and fishery constraints from the objective function to focus on effects

of a changing wind resource. Simulation 1 is conducted as a base case for the



REZ with constant wind resource measured over three years. Simulation 2 to 4

apply wind probability distributions of 1992 to 2012, 1980 to 2012 and 2008 to

2012, respectively. Applying the long wind time series leads to several placement

solutions in contrast to one optimum layout for simulation 1. Scenario 5 and

6 apply single-year wind roses of the years 1980 and 2012. Resulting layouts

differ in orientation to the respective dominant wind direction. Simulation 7

implements a positive, linear trend in usable wind velocity. The same layout as

for simulation 1 is found but net revenue increases. One base case simulation

with constant wind and one simulation with a positive, linear trend in the usable

wind resource are operated for the Northern and the Southern part of the AMI.

Optimized layouts of the base case and the trend application simulations vary.

The change is due to the high number of possible turbine locations with same

WiFSI. The implementation of the trend leads to an increase of net revenue.

Wind turbine layout is highly sensitive to a change in wind time series length

and wind direction while net revenue is less influenced. In contrast, the sensitivity

of the layout to a trend in usable wind velocity is low while the effect on net revenue

is significant. Conclusively, long-term wind predictions over the life time of a farm

are necessary to determine the optimum layout as well as produced power of a

site.
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PREFACE

This thesis is written in the manuscript format. Manuscript 1 presents the

paper Including wind resource trends in a micrositing optimization of the Block

Island Wind Farm, RI, USA. The paper is in preparation for submission to the

Journal of Renewable Energy. The paper explains the implementation of a chang-

ing wind resource to the Wind Farm Siting Index (WiFSI) methodology of Grilli

et al. (2013). The improved tool is applied to the Renewable Energy Zone (REZ)

Southwest of Block Island and the Rhode Island and Massachusetts Area of Mu-

tual Interest (AMI). The paper shows the necessity to consider long-term wind

predictions to optimize wind farm sites.
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1.1 Abstract

Due to the depletion of natural energy resources offshore wind energy has

become of great interest for sustainable electricity supply. Regarding the high ex-

penses for construction and maintenance of a offshore wind farm, research focuses

on finding a turbine layout with minimum cost and maximal power production.

This study overcomes the limitation of using a constant wind resource by imple-

menting changing wind time series lengths, varying wind direction and a trend in

usable wind velocity. The sensitivity study is applied to the Renewable Energy

Area (REZ) with five turbines as well as the Rhode Island and Massachusetts Area

of Mutual Interest (AMI) with 100 turbines. The changing wind resource is im-

plemented in the methodology of the Wind Farm Siting Index (WiFSI). This tool

combines technological, ecological and fishery constraints in an objective function

to find optimum turbine locations. Weighting factors for each constraint are ad-

justable to societal and political choices. Wind turbine placement is determined

to be highly sensitive to a change in wind time series length as well as changing

wind direction. In contrast, the impact of a trend in usable wind speed on a layout

is low while net revenue is changing significantly. Conclusively, long-term wind

predictions over the life time of a farm are necessary to determine the optimum

layout as well as produced power of a site.

1.2 Keywords

Offshore renewable energy, Wind farm micrositing, Wind farm siting index,

Wind trend, Ecosystem services, Genetic algorithm

1.3 Introduction

The exponential growth of the earth’s population has lead to the depletion of

natural resources in concert with unrepairable environmental damage. One solu-

2



tion for a more sustainable future is the supply of electricity by renewable energy

technology. For several countries, targets range up to 100% of energy supply from

renewable sources[1]. As of 2012, 19% of the world-wide energy consumption was

produced by renewable energy plants. Offshore wind energy is expected to play a

major role in the targeted argumentation of sustainable energy supply. Providing

emission-free electricity from a domestic, non-ending source, this technology also

strengthens the economy and diversifies the energy supply leading to independence

from conventional, environmental unfriendly energy devices[2][3]. However, several

challenges lay ahead since offshore energy requires high expenses due to the foun-

dation, installation and maintenance at the open sea[4]. The optimization of a

wind farm layout gains high importance in this context[5]. Consequently, recent

efforts to site wind farms have resulted in placing a given number of turbines in a

predefined area based on a siting optimzation approach which aims on maximizing

the revenue[6].

1.3.1 Wind farm siting in Rhode Island

The state of Rhode Island, USA, passed the Rhode Island Energy Standard

(RES) in June 2004 in order to tackle the challenges of offshore wind energy. This

portfolio demands that by 2019 16% of the total supplied electricity must originate

from renewable sources[7]. One contribution to this goal is the first US offshore

wind farm Southeast of Block Island which is currently under construction[8]. The

location of the Block Island Wind Farm was selected based on an extensive siting

optimization research phase performed through the Ocean Special Area Manage-

ment Plan (Ocean SAMP)[12]. This eco-system based coastal management tool

was initiated by the Rhode Island Coastal Resources Management Council (RI

CRMC) and developed in close collaboration with the University of Rhode Island.

The study area is shown in figure 1. The SAMP area is home to migratory fish, sea

3



Figure 1. Map of the site of the Special Area Management Plan (SAMP) (outlined
in red) with water depth in meter (color shading) from Grilli et al. (2014)[9].

turtles, birds and marine mammals in addition to the presence of several human

activities such as ship traffic or recreational and commercial fisheries[10]. These

ecological and human activities constitute significant constraints to wind farm de-

velopment which were tackled in the SAMP project through scientific research and

stake-holder meetings. In that context, Grilli et al. (2013)[11] developed a siting

optimization protocol including ecosystem service constraints in a wind farm cost

model that improved the classic wind farm optimization. Based on the comprehen-

sive Ocean SAMP study[12] and its associated siting optimization tools, a small

offshore Renewable Energy Zone (REZ) (Figure 2) was defined in state waters as

well as a much larger zone in federal waters. The large zone is called Area of

Mutual Interest (AMI) and expands across the offshore area of Rhode Island and

Massachusetts (Figure 3)[13][14].
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Figure 2. Map of the site of the Renewable Energy Zone (REZ) (dashed blue) in
the Special Area Management Plan (SAMP) (solid red) with the limits of state
waters (dashed yellow) and water depth in meter (color shading) from Grilli et al.
(2013)[11].

1.3.2 Classic wind farm siting optimization

Conventionally, two approaches are followed in research on wind farm siting

optimization. The first approach focuses on the development of siting algorithms

applied to simple test cases[15][16][17], while the second approach performed in

studies such as TopFarm[18] or OWFLO[19] focuses on the refinement of the

aerodynamic modelling. These studies validate their model with measurements

at existing wind farms. Therefore, the difference in the approaches lies in the

complexity of the objective function, the formulation of the constraints to be

minimized, and the sophistication of the aerodynamic and economic models.

Table 1 gives an overview of previously applied objective functions in both

approaches.

Wan et al. (2010)[17] rely on wake effects as single constraint in Annual

5



Figure 3. Map of the site of the Rhode Island and Massachusetts Area of Mutual
Interest (AMI) divided into North Lease (blue) and South Lease (brown) from the
Bureau of Ocean Energy Management (2015)[14].
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Table 1. Overview of objective function formulations
Objective function Short title Unit Author & Year

Annual energy production AEP KW Wan et al. (2010)[17]
WindFarmer, Open-
Wind, WindPro

Cost of Energy COE $/KWh Grady et al. (2005)[16]
Wan et al. (2009)[24]
Wang et al. (2011)[25]

Linear combination - Mosetti et al. (1994)[15]
Levelized Production Cost LPC $ Elkinton et al. (2006)[19]

and (2008)[26]
Szafron (2010)[21]

Financial Balance FB $ Réthoré et al. (2014)[22]
Net Present Value NPV $ Gonzáles et al. (2009)

[23]

Energy Production (AEP) when testing a Particle Swarm Algorithm. Many com-

mercial softwares such as WindFarmer, OpenWind or WindPro use energy pro-

duction alone as single objective. In contrast to that, El-Thalji et al. (2011)[20]

and Tesauro et al. (2010)[6] state that maximizing energy production alone is far

from sufficient and that all costs of the farm must be included in the cost model

to achieve a realistic optimization. Grady et al. (2005)[16] define Cost Of En-

ergy per KWh (COE) as ratio between total investment cost and total extracted

power to test a Genetic Algorithm. Mosetti et al. (1994)[15] introduce the rarely

used concept at that time of a linear combination of costs where weighting factors

can be adjusted to economic choices. Adding expenses for operation and mainte-

nance as further constraints in the model leads to the Levelized Production Cost

(LPC) applied by Elkinton et al. (2006)[19] or Szafron (2010)[21]. Réthoré et al.

(2014)[22] define a profit function as Financial Balance (FB) including installation

cost, cable cost, fatigue degradation cost and discounting rate while Gonzáles et

al. (2009)[23] use the concept of Net Present Value (NPV) of an investment for

the optimization process.
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1.3.3 Current research in wind farm siting

Currently, the classic siting tools’ critical components are the wake

modelling[21][19][27] and a precise cost representation[6]. Barthelmie et al.

(2006b)[28] compare measurements and predictions of the most commonly used

wake models. None of these is able to precisely predict wind speed in the nearfield

behind a turbine. Gonzáles et al. (2014)[4] therefore suggest a revaluation of the

current wake formulations. Elkinton et al. (2006)[19] miss precise cost models for

offshore wind farm availability, installation cost as well as expenses for operation

and maintenance while Réthoré et al. (2014)[22] demand refinement of the

electrical grid models. Improvement of component reliability analysis is requested

by Gonzáles et al. (2014)[4].

Restrictions of the conventional models has lead to the development of new

approaches to wind farm siting. In particular, the standard computational grid

in optimization models has evolved towards a continuous siting approach. Wan

et al. (2009)[24] first allowed the devices to be placed freely inside a computa-

tional grid cell instead of its center to further reduce the wake. In parallel, a new

concept of flexibility in terms of turbine parameters has emerged. Acero et al.

(2009)[29] apply variable hub heights for turbines aligned on a straight line while

Chen et al. (2013)[30] keep number of turbines and height as free variables when

optimizing a simple test site. The Unrestricted Wind Farm Layout Optimization

(UWFLO) developed by Chowdhury et al. (2013)[31] as well as Rahbari et al.

(2014)[32] combine several of these approaches. The model optimizes under con-

tinuous placement conditions with variable rotor diameter, variable hub height and

variable power characteristics.

8



1.3.4 Social and environmental constraints

Studies on the impact of wind farms regarding social and environmental fac-

tors have been conducted in the last years followed by the development of models to

predict specific impacts of wind farms on the environment. Visual impact increases

with number and size of the turbines[33] and decreases with distance to shore[34].

Visual impact is also dependent on arrangement, spacing, color and material[35] as

well as on personal attitude towards offshore farms[36]. Shadow impact decreases

with distance and flicker frequency while offshore noise level depends on wind di-

rection and distance[37]. A noise emission model for wind turbines was developed

by Prospathopoulos (2007)[38]. Bird collision risk at wind farms is lower than with

other man-made infrastructures[39]. Nevertheless, even low additional mortality

may be significant for slow reproducing species[40]. Band et al. (2007)[41] devel-

oped a collision risk model based on flight height, avoidance behaviour and turbine

type. Overall, the most effective mitigation technique seems to be shut-down of

turbines on demand[42]. Constructional or operational noise is expected to result

in displacement or a shift in common migration routes of mammals[43] while fish

abundance is larger in the presence of turbines (reef effect)[44][45].

1.3.5 Limitation of current siting tools

Examining the factors taken into consideration in the objective functions of

the conventional micrositing tools it becomes obvious that social and environmen-

tal factors are missing in most algorithms although several frameworks and models

regarding these impacts have been developed in the past years[11]. El-Thalji et

al. (2011)[20] introduce the implementation of cold climate as a factor of wind

farm siting. Staffel and Green (2014)[46] record turbulent loads and determine

output declination. Chowdhury et al. (2013)[31] propose the implementation of

land area per kW installed as further decision making tool. Christie and Bradley
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(2012)[47] maximize power density as power per unit area of land occupied to

overcome limited available sites.

Still, these first approaches to include environmental issues in micrositing

tools aim on maximizing energy production. Few studies involve options for

minimizing potential environmental impacts of a wind farm. Kwong et al.

(2012)[48] run a Genetic Algorithm for optimizing a simple test case while taking

in account energy production and noise impact. Overall, there is a lack of research

regarding implementation of ecological and social constraints in micrositing tools

for the ecological sensitive marine area[49].

Another factor missing in current siting tools is the change in the wind

resource over time. Wind speed is the primary factor to a wind farm project[6]

since produced power is directly proportional to the cube of wind speed. Satellite

altimeter measurements revealed an increase of wind velocity of at least 0.25 to

0.5% over the last 20 years with speeds of extreme events increasing faster than

mean conditions[51]. Wind speeds in Spring rise faster than in Fall and meridional

wind trends are smaller than zonal trends[52]. Although many studies show a

positive trend over the last decades, the magnitudes vary significantly and require

further investigation [53].

Conventional siting tools used to apply several wind models to research the

effect of wind conditions: unidirectional uniform wind, uniform wind with vari-

able direction and non-uniform wind variable direction[16][17][54]. The com-

plex models either use discrete wind distributions[16][15] or continuous Weibull

distributions[31][55][32][56]. To the best knowledge of the authors, no model con-

10



siders the previous described change in the wind resource over the life time of a

wind farm.

1.3.6 Study objective

The current study researches the effects of changes in the wind resource over

the life time of a wind farm on micrositing in the Ocean SAMP. Sensitivity of the

optimized layout to wind time series length, changing wind direction and a trend in

usable wind velocity are tested for the Block Island Wind Farm at the Renewable

Energy Zone. The inclusion of a trend in the usable wind resource in a micrositing

model is further applied to the Rhode Island and Massachusetts Area of Mutual

Interest.

1.4 Materials and Methods

The micrositing optimization model developed by O’Reilly et al. (2013)[63] is

expanded to include a usable wind velocity trend in the wind resource. The wind

trend is calculated over a usable wind time series of 33 years at the respectively

closest Wind Information Study (WIS) Station[57] and projected over the next

20 years. The expanded model also includes a new cable cost algorithm. As in

O’Reilly et al. (2013)[63], the optimum location of each turbine is determined

using a Genetic Algorithm to optimize an objective function (OF). The objective

function is derived from the Wind Farm Siting Index (WiFSI) which was developed

as a tool to optimize macrositing of a wind farm by Grilli et al. (2013)[11].

1.4.1 The objective function

The WiFSI describes a non-dimensional balance between technological, so-

cial and ecological constraints and the wind resource[11]. The conceptual view

of the index is given in figure 4. Each constraint is weighted with a factor wi

which is adjustable according to societal values or political choices[62]. Social

11



Figure 4. Concept of the Wind Farm Siting Index (WiFSI) as balance between
constraints and resources from Grilli et al. (2013)[11]. The constraints are techno-
logical cost (TC) as well as ecosystem services cost (ESC) divided into ecological
and fisheries service. The resource is wind power (PP).
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and environmental value are formulated as the services which the ecosystem pro-

vides to human beings[61]. Since these intangible costs[59][60] can not directly

be described in monetary terms[58] as the technological costs, all constraints are

non-dimensionalized to their maximum value in the research site. Zero then repre-

sents the best WiFSI and one the worst WiFSI. The objective function (WiFSOF)

derived from this concept and developed in O’Reilly et al. (2013)[63] is expressed

as:

WiFSOF =
w1 · SF
PR

− w2 · EC − w3 · FC (1)

3∑
i=1

wi = 1 (2)

where the net revenue (PR) is based on a monetary balance between technological

costs and extracted power. The scaling factor (SF) is equal to the worst possible

income at that site. This factor non-dimensionalizes the net revenue to be com-

parable to the non-monetary ecosystem service constraints. EC and FC are mean

ecological and fishery costs for the respective turbine locations.

PR =
n∑

i=1

Pex · PL−
n∑

i=1

TC (3)

The net revenue of n-placed turbines is the difference between the produced power

in $/kWh including extractable power (Pex) and power loss due to wake (PL)

as well as technological cost (TC)[63]. The extractable power is defined as the

usable power density (Pu) in W/m2 at the rotor level restricted by Betz Law

(Pex = 59.4%Pu). In the concept of usable power, wind speeds lower than cut-in

as well as higher than cut-out velocity are ignored while velocities higher than

rated wind speed are kept constant for the power calculation[64]. The power law

is applied to calculate wind speed at rotor elevation[11]. Power loss is calculated
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with the WAsP Model formulated by Barthelmie et al. (2006)[65]:

Uloss = Ufreestream

[
1−

(
1−

√
1− CT

)( D

D + 2kwakex

)2]
(4)

Dw = D + 2kwakex (5)

where Uloss is the velocity deficit behind the turbine and Ufreestream the arriving

wind velocity. CT is the thrust coefficient of the turbine. The rotor diameter is

expressed by D and the wake diameter Dw describes the lateral extent of the wake

in a distance x from the turbine. The model is based on a simple one-dimensional

concept where the momentum deficit is expanding linearly behind a turbine

with a wake decay coefficient k of 0.05 for offshore sites. Wind speed data is

discretized into 1 degree sectors. The data is then expressed in mean wind speed

and probability of occurrence for each directional sector[63].

Technological costs represent the technical challenge resulting from the

placement of one turbine at a given location. Expenses for foundation and

installation as a function of water depth and geological characteristics as well as

costs for cable connection depending on distance are considered. Non-relevant

costs for micrositing such as expenses for maintenance or device retail price are

excluded through the relative cost principle[11][22].

Ecological costs are expressed in non-monetary value based on seasonally av-

eraged abundance of fish species and mammals as well as their intrinsic sensitivity

to noise, turbidity and electromagnetic field perceived during the construction and

the operation phases. Fishery costs are included as a linear combination of com-

mercial mobile and fixed gear fisheries as well as recreational fishing activities. The

costs are assumed proportional to fishing intensity[11].
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Figure 5. Genetic Algorithm cycle combining natural selection and survival of the
fittest to optimize an objective function from O’Reilly et al. (2013)[63].

1.4.2 Genetic Algorithm

A Genetic Algorithm combines natural selection and survival of the fittest

philosophy to find the optimum of an objective function (Figure 5). As the initial

condition, combinations of turbine locations are randomly selected by the algo-

rithm to create a starting population of solutions. In a breeding process, a new

population is developed where 10% of the fittest parents are kept. Fitness of a

solution is determined by evaluating the WiFSOF for each combination of turbine

locations. A schematic flow chart of the evolution of the model is shown in fig-

ure 6. The breeding process is repeated until the predefined number of generations

is reached and an optimum layout is found. The optimum layout is defined by

a minimal objective function value. To avoid convergence to a local minimum,

one single turbine location is randomly changed by a mutation in each genera-

tion. Generation size as well as population and sub-population number depend on

the chosen number of turbines. The formulas for the number of each parameter
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Figure 6. Wind farm siting optimization process in the Wind Farm Siting Index
(WiFSI) methodology of Grilli et al. (2013) from O’Reilly et al. (2013)[63].

are[63][66]:

Generations = 200 · b
√
No.ofTurbinesc (6)

Populations = 20 + 5 · bNo.ofTurbines

10
c (7)

Sub− population = 2 · b
√
No.ofTurbinesc (8)

The model developed in Matlab is amenable to parallel processing and uses the

Genetic Algorithm Toolbox[67]. The siting area is gridded with one rotor diameter

discretization. Turbine placing is restricted to the center of a grid cell to increase

rate of convergence[63]. The distance optimization algorithm for the cable inter-

connection is a Cluster Algorithm at the REZ. Due to increased turbine number

16



Table 2. Turbine parameters at the Renewable Energy Zone (REZ) and the Area
of Mutual Interest (AMI)[73][74][76][63]
Site Turbine Hub Rotor Cut-in Cut-out Rated Effi-

type height diameter speed ciency

REZ Siemens 6MW 110m 154m 3.5m/s 27m/s 15 m/s 0.3034
AMI Alstom 6MW 100m 150m 3m/s 25m/s 12.5 m/s 0.4786

at the AMI, the distance optimization is updated to a Prim Algorithm[68][69].

1.4.3 Implementation of changing wind resource

The trend in wind velocity is determined by linear regression in a 95% con-

fidence interval over the hourly usable wind speed values. The resulting slope is

applied as yearly trend in the calculation of extractable power and power loss due

to wake. The sensitivity of a change in wind direction on the optimization lay-

out is tested by implementing different usable wind roses while keeping the power

resource constant.

1.4.4 Application to the Ocean SAMP location
Wind farm parameters

The Block Island Wind Farm at the REZ has five Siemens 6MW turbines with

an hub height of 110 m and a rotor diameter of 154 m. Cut-in wind speed is 3.5 m/s,

cut-out speed is 27 m/s and rated wind speed is 15 m/s. While optimizing the

AMI,turbine type Alstom Haliade 6MW[73][74][75] is used with 100 m height and

150 m rotor diameter (Table 2). Cut-in is 3 m/s, cut-out is 25 m/s and rated wind

is 12.5 m/s. 60 turbines are distributed over the North Lease while 40 turbines are

placed at the South Lease. Project cost of energy is $0.24/kWh over a life time

of 20 years for the Block Island Wind Farm (Docket No. 2010-273-M.P. (4185))

and is assumed for the AMI as well. Cost for the feeder cable was determined as

$0.6 million/km by the Ocean SAMP study while interconnection cost is set to

$860/m[18].
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Table 3. Description of the optimization simulations
No. Site Turbines Description

1 REZ 5 Siemens 6MW Standard with constant wind
2 20 year wind rose
3 33 year wind rose
4 5 year wind rose
5 Wind rose 1980
6 Wind rose 2012
7 Standard wind rose, trend in speed

8 AMI South 40 Alstom 6MW Standard with constant wind
9 Standard wind rose, trend in speed
10 AMI North 60 Alstom 6MW Standard with constant wind
11 Standard wind rose, trend in speed

Simulations

Sensitivity of a wind farm layout to wind time series length, wind direction and

a trend in usable wind velocity is examined in 11 simulations. A short description of

all runs is given in table 3. The changes in the REZ are examined in seven scenarios.

The North and South Lease are optimized in two separate simulations each to

reduce computational time.

Each first simulation of the three sites constitutes the respective base case

of each site, defined by a constant wind probability distribution. For the AMI,

the second scenario applies the same usable wind rose but implements a linear

trend in usable wind velocity. At the REZ, the standard simulation is followed

by a sensitivity study of the layout design and revenue to the length of the wind

time series. Simulations are performed for three wind data sets of of 20, 32 and

five years respectively (simulation 2, 3 and 4). Simulations 5 and 6 assess the

sensitivity of the results to wind direction by applying wind distributions with

significantly different dominant wind direction of the year 1980 and 2012. The

last simulation (7) applies the usable wind rose used in the base case with a linear
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trend in usable wind velocity at the REZ. Wind data is discussed in detail in the

next section.

Data

The wind resource for the power calculation was estimated from a 2009 to

2012 time series obtained from the Block Island Meteorological Tower at five levels

from 10 to 60 m. The shear coefficient r was estimated to a value of 0.11. The

tower was established on the Island by AWS Truewind and Deepwater Wind Inc.,

the current developer of the wind farm[70][71]. Data regarding technological, eco-

logical and fishery cost in the area was collected in the Ocean SAMP project[72][11].

The wind probability distribution used in the wake model is estimated from

the closest wind measurement station summarized in table 4. Simulation 1, the

standard, and simulation 7 (trend in usable wind speed) use data collected at the

Block Island Meteorological Tower. The local usable wind rose at 110 m as hub

height of the Siemens turbine is shown in figure 7. Dominant wind direction is

Southwest and Northwest while all other directions have a very low occurrence.

The trend in usable wind velocity at the REZ was determined with hindcasted

wind data from WIS Station 63101[57]. The available data contains 33 years from

1980 to 2012. The average, linear trend in usable wind speed over this time period

is 0.0067 m/s per year. This is 0.13 m/s over 20 years, the life time of a wind

farm. The 95% confidence interval is varying between 0.0051 m/s and 0.0083 m/s

per year.

In order to create long-term usable wind roses, wind data is taken from the

WIS Station 63101 and cut for the usable wind velocity range. For simulation 2
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Figure 7. Usable wind rose at the Block Island Meteorological Tower from 2009 to
2012 at hub height 110 m from O’Reilly et al. (2013)[63].

Table 4. Wind data sources for the optimization simulations
No. Wind data source[57] Time period wind rose

1 Block Island Meteorological Tower 2009-2012
2 WIS Station 63101 1992-2012
3 WIS Station 63101 1980-2012
4 WIS Station 63101 2008-2012
5 WIS Station 63101 1980
6 WIS Station 63101 2012
7 Block Island Meteorological Tower 2009-2012

8 WIS Station 63095 2008-2012
9 WIS Station 63095 2008-2012
10 WIS Station 63095 2008-2012
11 WIS Station 63095 2008-2012
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a wind rose of the youngest 20 years, as the life time of a wind farm, from 1992

to 2012 is used for the optimization. All available wind data is used for case 3

to create a wind probability distribution for 33 years. For simulation 4 only the

youngest five years from 2008 to 2012 are included. It was found that reducing

the wind data below a minimum time period results in significant changes in

the usable wind rose. Changes in the wind farm layout are also expected. For

WIS Station 63101 the minimum was determined to be five years which indeed

corresponds to the standard length of a representative wind time series[50].

The usable wind rose from 1992 to 2012 can be seen in figure 8. Compared to

the usable wind rose calculated from measurements at the Block Island Meteoro-

logical Tower, dominant wind directions remain Southwest and Northwest but all

previous weak directions gain importance. The years 2009 to 2012 used in the base

case optimization seem to be years of an unusual concentration of high velocities

in two wind directions (Figure 7).

For simulation 5 and 6 wind probability distributions in 1980 and 2012 are

calculated to examine the change in optimized layout for different wind directions.

Wind data is taken from WIS Station 63101. The dominant wind direction in

the year 1980 is Northwest. Winds between 5 and 10 m/s preliminary occur from

Southwest while winds higher than 15 m/s blow from Northwest (Figure 9). Winds

in the year 2012 are predominantly blowing from North to South directions while

probability of winds higher than 15 m/s is less than the winds in 1980 (Figure 10).

Wind data for the AMI was collected from WIS Station 63095. The applied

wind probability distribution covers data from the youngest five years from 2008
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Figure 8. Wind rose for usable wind speeds at WIS Station 63101 from 1992 to
2012 at hub height 110 m.
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Figure 9. Wind rose for usable wind speeds at WIS Station 63101 in 1980 at hub
height 110 m.
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Figure 10. Wind rose for usable wind speeds at WIS Station 63101 in 2012 at hub
height 110 m.

to 2012 to represent long-term conditions with minimum data requirements. Fig-

ure 11 shows the similarity to the usable wind rose at Station 63101 from 1992

to 2012. The linear regression of usable winds over 33 years from 1980 to 2012

provides an average trend of 0.0015 m/s with a 95% confidence interval varying

between -0.000001 m/s and 0.00298 m/s per year. This upper value is half of the

value of the average trend identified from the usable wind data at WIS Station 101

located further offshore. The upper value is used for the simulations. This usable

wind trend is 0.059 m/s over 20 years, the life time of a wind farm.

Genetic Algorithm set up

All scenarios are simulated using O’Reilly et al.’s (2013)[63] objective function

parameter values for comparison with these results. The weighting factor w1 is set

to 1 so that the non-monetary terms ecological and fishery constraints are excluded.

Therefore, the objective function reduces to:

WiFSOF =
1

PR
(9)
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Figure 11. Wind rose for usable wind speeds at WIS Station 63095 from 2008 to
2012 at hub height 110 m.

Table 5. Genetic Algorithm parameters
Site Generation Populations Sub-populations

REZ 400 32 4
South Lease 1,200 32 12
North Lease 1,400 32 14

Minimizing the objective function leads to the maximum net revenue. The

first runs of simulation 2 at the REZ were conducted with 1,000 generations

to test convergence of the WiFSOF. After that, the Genetic Algorithm was

run for 400 generations, 32 populations and 4 sub populations. For the South

Lease, 12 sub-populations and 32 populations are created and the run takes

1,200 generations. The North Lease requires 1,400 generations, 32 populations

and 14 sub-populations to converge. The settings of the Genetic Algorithm

are presented in table 5. In simulation 5 and 6 turbine interconnection costs

are excluded from the algorithm first to set a higher importance to the wake

calculation. The second approach includes interconnection cost as siting constraint.
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While optimizing the AMI the interconnection cost are calculated with a Prim

Algorithm[68][69] to find the shortest possible connection of all turbines. The Prim

Algorithm was validated by application to the REZ. Computational time is reduced

by excluding the trend in the usable wind velocity from the wake calculation.

Testing this method at the REZ leads to a 0.02% loss of produced power. This

simplification was considered acceptable and implemented in the AMI zone in order

to keep the computational time in a reasonable time frame (days versus weeks).

1.5 Results and Discussion
1.5.1 Renewable Energy Zone
Base case

Optimum solutions were found for 5 distinct locations. One solution is shown

in figure 12. The cable interconnection costs pull the turbines together while the

wake effect pushes the devices apart. The turbines are placed in areas of low

foundation cost. Extractable power has no significant influence since the resource

is approximately equally distributed over the zone[63]. Figure 13 shows that all

locations are sited in the area of the lowest WiFSI of the REZ. The East part

of the REZ with a higher index is avoided due to high foundation cost. The

map was created for macrositing purposes in Grilli et al. (2013)[11] with the

initial formulation of the WiFSI. Compared to the layout which was developed by

Deepwater Wind, the optimized solution would save $17 Million over a lifetime of

20 years due to the reduction of wake effects[63].

Sensitivity to time series length

The first runs were operated with 1000 generations to test convergence for

the long-term usable wind rose. Five examples are shown in figure 14. Most runs

quickly reach a local minimum of the WiFSOF after 200 generations while only in
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Figure 12. Optimum layout (blue) in simulation 1 for the base case at the Re-
newable Energy Zone (REZ) applying the usable wind rose at the Block Island
Meteorological Tower from 2008 to 2012[63].

a few runs the index decreases more slowly but determines a better layout at the

end. After 400 generations already 99.57% of the total revenue of the layout after

1000 generations is achieved. This percentage is considered as an insignificant

difference. All subsequent runs were conducted with 400 generations to reduce

computational time and for better comparison with the results of the base case

optimization.

With the same settings as for the wind scenario of O’Reilly et al. (2013)[63]

the optimized turbine locations change as a function of the length of the time

series used. While five clear turbine siting zones are identified in the base case,

two additional zones appear in simulation 2 (20 years time series). In parallel,

each zone widens (Figure 15). In simulation 3 (33 years time series) (Figure 16),

a similar behaviour is observed. In contrast to the constant shape of the turbine
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Figure 13. Map of the Wind Farm Siting Index (WiFSI) (color shading) excluding
ecological and fishery constraints at the Renewable Energy Zone (REZ) (outlined
in black) with optimum turbine locations (red) of the base case in simulation 1.
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Figure 14. Convergence of the Wind Farm Siting Index Objective Function (WiF-
SOF) in simulation 2 applying the usable wind rose at WIS Station 63101 from
1992 to 2012.
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Figure 15. Optimum layouts in simulation 2 at the Renewable Energy Zone (REZ)
applying the usable wind rose at WIS Station 63101 from 1992 to 2012. Each
color-set represents one optimum layout.

layouts of the base case layout, the inclusion of more data from previous years

leads to six different combinations of turbine locations. The implementation of the

shorter wind time series, the youngest five years from 2008 to 2012 (Figure 16),

leads to 3 different layouts.

Net revenue is in the same range about $201.41 million for all three simu-

lations 2 to 4 which is in average 1.1% lower than the results of the base case.

Lower feeder and higher interconnection cost are identified for the runs with the

usable wind roses of WIS Station 63101. The mean of the results from the different

simulations is presented in table 6.

The presence of more optimum turbine sites for longer time series reflects

the increase of occurrence of directional sectors which are weakly represented
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Figure 16. Wind roses for usable wind speeds at WIS Station 63101 from 1980 to
2012 at hub height 110 m.
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Figure 17. Wind rose for usable wind speeds at WIS Station 63101 from 2008 to
2012 at hub height 110 m.
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Table 6. Results simulation 1 to 4 with cost in $ million
No. Description Total Installation Produced

revenue cost power

1 Standard 203.55 56.14 259.69
1 optimized with standard,

results calculated with
wind rose 1992-2012

200.94 56.14 257.08

2 1992-2012 201.31 57.66 258.98
3 1980-2012 201.51 57.75 259.26
4 2008-2012 201.43 57.73 259.17

in the short-time series. The short-term usable wind rose based on three years

of measurements at the Block Island Meteorological Tower shows two distinct

frequency peaks for the Northwest and Southwest direction. The long-term WIS

usable wind roses with 20 or 32 years of data show less significant peaks since

all other directions grow in occurrence over time. This leads to more options

in placing the turbines optimally without being located in the wake of another.

Optimal turbine locations are more variable and larger optimum siting areas

appear.

The 2008 to 2012 usable wind rose was selected to include the minimal

five years of wind data to obtain a representative sample of synoptic conditions

and to reflect the most recent wind climate. Its shape is more similar to the

long-term usable wind rose of 1992 to 2012 than to the three year Block Island Me-

teorological Tower wind rose. This reflects differences in wind micro-climate at the

site of the Block Island Tower and the offshore WIS Station. The layout solutions

for the five year usable wind rose are closer to the long-term optimized wind farms.

The determination of several solutions to one optimization problem of-

fers various options for soft constraints. The user is able to choose between
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layouts based on societal or political preferences. Although the optimization

might exclude ecological and fishery cost, a layout with low EI or FI could be

chosen or visual concerns could be solved without significant losses in total revenue.

The decrease in revenue using the long-term usable wind roses is misleading.

Total revenue is calculated assuming that the wind conditions described by the

used wind rose actually occur over the wind farm life time of 20 years. The

base case wind rose does not represent long-term wind conditions as was shown

by comparison of figure 7 and 8. Consequently, the base case placement of

the turbines does not remain optimal over the life time of the wind farm. The

expected real life revenue is lower. Calculating the total revenue of the base case

layout by applying the usable wind rose from 1992 to 2012 leads to a loss of

$2.61 million. This is 1.28% less compared to the previous usage of the usable

wind rose of the Block Island Meteorological Tower.

Long-term wind roses present a more realistic picture of the wind conditions

of a site. Calculated revenue is expected to reflect a realistic picture of net

revenue. Consequently, the wind data collection for a wind farm project should

cover the longest time period possible to avoid over-representation of yearly or

monthly variations in the wind. The time period which shows few changes in the

respective wind rose when more years are added is required as minimum for the

optimization process.

The various simulations with usable wind roses over varying time periods show

the importance of the consideration of exact wind conditions. Changing the wind

velocity and direction as simulated by the different wind roses leads to a different
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Figure 18. Dominant optimum layout (blue) in simulation 5 at the Renewable
Energy Zone (REZ) excluding interconnection cost applying the usable wind rose
at WIS Station 63101 in 1980.

optimum layout. Consequently, a farm optimized with fragmentary wind data will

produce an inaccurate estimation of the wind farm revenue. Considering trends in

usable wind speed and directions therefore becomes of great interest.

Changing wind direction

The application of the usable wind rose of 1980 without turbine inter-

connection cost results in six turbine siting zones with four different possible

combinations. The dominant layout with 60% of occurrence in the results is shown

in figure 18. The optimum layouts of the usable wind rose in 2012 also shows

six zones where only one has a totally different position compared to scenario

1980. The dominant layout with 80% of occurrence is found similar to the usable

wind rose of 1980. Mean total revenue is $199 million for both cases with similar

values for produced power and installation cost.
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Despite the usable wind probability distributions being different, the

optimized layouts are similar when interconnection cost are excluded. The

three Southwest turbine locations remained the same throughout all runs al-

though the wind direction was changed. Excluding interconnection costs do not

emphasize the constraints due to wind direction in the siting. In contrast, without

the influence of the interconnection costs which pull the turbines together, the

individual locations spread over the whole area without any distance constraints.

Wake effects become unimportant over the long distances and the effect of

changing wind direction is not visible in the layout.

Repeating the simulations including interconnection costs results in different

layouts. For winds in 1980 figure 19 shows that the turbines are more likely to

line up perpendicular to the dominant wind direction Northwest although these

likely high winds are rated down to 15 m/s. Optimizing for the usable wind

rose of 2012 leads to turbine zones (Figure 20) which are are more similar to the

results of O’Reilly et al. (2013)[63]. The reason might be the usage of a similar

wind distribution from 2009 to 2012. The turbines are mainly arranged in two

rows perpendicular to the Southwest direction although the usable wind rose does

not show a clear dominance in that direction (Figure 10). Setting the respective

wind conditions constant for 20 years, both layouts produce a total revenue of

$201 million each (Table 7).

Assuming the layout optimized for the usable wind rose of 1980 but applying

the long-term usable wind rose from 1980 to 2012 results in a loss of produced power

and total revenue of $0.86 million or 0.33% over 20 years. When the usable wind
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Figure 19. Optimum layout (blue) in simulation 5 at the Renewable Energy Zone
(REZ) applying the usable wind rose at WIS Station 63101 of 1980.
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Figure 20. Optimum layouts in simulation 6 at the Renewable Energy Zone (REZ)
applying the usable wind rose at WIS Station 63101 of 2012. Each color-set rep-
resents one optimum layout.
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Table 7. Results of simulation 5 and 6 in $ million
No. Description Total Installation Produced

revenue cost power

5 1980 201.85 58.35 260.1
6 2012 201.85 57.62 259.47
5 optimized 1980,

results 1980-2012
200.98 58.25 259.24

5 optimized 1980,
results 2012

200.08 58.25 258.33

6 optimized 2012,
results 1980

200.17 57.62 257.79

rose of 2012 is applied to the 1980 layout, total revenue is reduced by $1.76 million

or 0.89%. A similar reduction is observed when the 1980 usable wind rose is applied

to the layout resulted in an optimization assuming a 2012 usable wind rose.

Different wind roses result in different layouts. The more significant the varia-

tion in the wind rose, the more noticeable is the difference in the turbine locations.

Assuming the same wind conditions as the farm was optimized for, different layouts

can produce the same revenue. However, the application of real life wind conditions

with changing wind direction leads to reduced revenue over time. The determi-

nation and consideration of future changes of wind direction in an optimization

process gains importance.

Trend in usable wind velocity

The turbine locations converge towards the same locations as the one obtained

for the base case in simulation 1 (constant wind speed) (Figure 21). The averaged

installation costs remain constant but mean produced power increases by 2.17%.

Total revenue increases to $209.07 million compared to $203.55 million in the base

case.
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Figure 21. Optimum layouts in simulation 7 at the Renewable Energy Zone (REZ)
applying the usable wind speed trend to the usable wind rose at WIS Station 63101
from 2008 to 2012. Each color-set represents one optimum layout.

Table 8. Results simulation 1 and 7 in $ million
No. Description Total Installation Produced

revenue cost power

1 Standard 203.55 56.14 259.69
7 Trend Standard 209.07 56.37 265.44
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The application of a positive trend to the usable wind velocity results in an

increase in power production while the turbine locations remain quasi identical.

A higher trend magnitude might have a larger effect on the layout since the wake

effect will increase with higher wind velocity. However, this effect may not play

a large role for wind farm siting since measured wind trends have been found

considerably small[51][52][53].

1.5.2 Area of Mutual Interest
Base case at the South Lease

Figure 22 presents the dependence of the WiFSOF to number of generation

for three optimizations for the South Lease. Over the first 200 generations the in-

dex decreases rapidly. After 600 generations the WiFSOF remains approximately

constant. Regarding the total revenue of the first run, the change over generations

is less significant. After 100 generations, revenue is already 98.78% of the revenue

after 1,200 generations. This is a loss of $47.96 million. 38 turbines are chang-

ing location before reaching the final generation. From generation 1100 to 1200,

still 4 turbines are replaced and revenue is increased by $1.52 million or 0.04%.

Figure 23 shows the layout for generation 100, 600 and 1200. The first layout

contains more central turbine locations. The longer the optimization process, the

more turbines are placed at the North and West border of the siting area.

Optimizing the South Lease mainly results in placement of turbines at the

borders of the area. Locations are similar for all runs at the West and the Northwest

border of the large as well as the small part of the lease. Few devices are placed

at the Eastern border. A higher variance of turbine locations occurs at the North

and South borders. However, turbines are often distributed in successive rows in a

45◦ angle to the grid axis (Figure 24). Turbine clustering is not as clear as during
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Figure 22. Convergence of the WiFSOF in simulation 8 at the South Lease applying
the usable wind rose at WIS Station 63095 from 2008 to 2012.
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Figure 23. Convergence of layouts in simulation 8 at the South Lease (grey) apply-
ing the usable wind rose at WIS Station 63095 from 2008 to 2012: after 100 gen-
erations (green), 600 (red) and 1200 (blue).
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Figure 24. Optimized layouts in simulation 8 at the South Lease (grey) applying
the usable wind rose at WIS Station 63095 from 2008 to 2012. Each color-set
represents one optimum layout.

Table 9. Results simulation 8 to 11 in $ billion
No. Description Total Installation Produced

revenue cost power

8 South Lease Standard 3.95 0.95 4.91
9 South Lease Trend 3.99 0.97 4.95
10 North Lease Standard 5.99 1.14 7.14
11 North Lease Trend 6.05 1.15 7.20

the optimization of the REZ. All runs end in the same range of produced power

and installation cost resulting in an average total revenue of $3.95 billion (Table 9).

Base case at the North Lease

The dependence of the WiFSOF to number of generation when optimizing the

North Lease shows the typical shape for convergence. The layout at 100 generations

has 49 different turbines compared to the final layout. The optimization produces
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Figure 25. Convergence of layouts in simulation 10 at the North Lease (grey)
applying the usable wind rose at WIS Station 63095 from 2008 to 2012: after
1400 generations (red), 900 (blue), 400 (light blue), 2 (green).

an additional revenue of $88.85 million or 1.49%. After 1000 generations only

four turbines change location. This is a difference in total revenue of $2.06 million

or 0.004%. Figure 25 shows that the higher the generation number, the more

likely the turbines align at the borders of the lease. The small allowed area in

the Northwest is avoided as well as the Northwest border. Only three rows of

nine devices do not follow a border. Net revenue is $5.99 billion for the final layout

(Table 9).

Trend in usable wind velocity at the South Lease

Applying the trend in usable wind velocity leads to a similar layout as the one

obtained in simulation 8 (no change in wind resource over time) (Figure 26). Indi-

vidual optimum sites are difficult to identify since several possibilities are shown for
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Figure 26. Optimized layouts simulation 9 at the South Lease (grey) applying the
usable wind rose at WIS Station 63095 from 2008 to 2012 with the implementation
of a usable wind speed trend. Each color-set represents one optimum layout.

each turbine. In addition, the trend was excluded from the wake effect to maintain

a reasonable time frame in computational time. However, the rows at the West

border and Northwest edge as well as the successive rows in a 45◦angle provide a

distinct pattern. Produced power and installation cost are in the same order of

magnitude for all runs and result in an average total revenue of $3.99 billion. The

increase of total revenue due to the trend is of the order of 1% corresponding to

$37.55 million. The power production rises by $47.20 million.

Trend in usable wind velocity at the North Lease

Figure 27 shows the optimized layout with the implementation of the trend in

usable wind speed compared to the base case optimization in simulation 10 with

constant wind. The similarity of the layouts is not as obvious as for the REZ.

Still, turbines align at the borders of the site except the Northwest border and the
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Figure 27. Optimized layouts in simulation 10 at the North Lease (grey) applying
the usable wind rose at WIS Station 63095 from 2008 to 2012: constant wind
(blue) and implementation of a usable wind speed trend (red).

central area is mainly avoided. Four rows of 14 turbines are placed across the area.

The angles of the rows vary. Total revenue is $6.05 billion which is an increase of

$56.87 million or 0.95%.

Discussion

The optimized layouts for the base case simulations are not as similar to the

layouts of the simulations with the trend in usable wind speed as in the REZ. This

is due to the increase of variables from five to 40 and 60 devices and of possible

turbine locations from 1,494 in the REZ to 12,431 in the South Lease and 17,952

in the North Lease of the AMI. The several options of available optimized layouts

offer flexibility in societal or political preferences.

The optimization of the North as well as the South Lease shows the placement
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of the turbines along the borders of the siting area. At the South Lease the South

border is left out while at the North Lease, the Northwest border is avoided. In

both areas few turbines do not follow a border. At the South Lease, those are

mainly aligned in successive rows in a 45◦ angle which is perpendicular to one of

the dominant wind directions. At the North Lease, the rows are either in a 90◦ or

0◦ angle. There is no clear connection to the dominant wind directions.

Figure 28 shows a map of the WiFSI over the AMI. The map was created for

macrositing with the initial formulation of the index in Grilli et al. (2013)[11]. The

placement of the turbines can be explained regarding favourable siting areas with

a low WiFSI. At the South area, the South border as well the middle is avoided

due to the worst index in the whole area. The devices are placed at the borders

where the WiFSI is lower. Many turbines are set up at the small Northeast area

because the best WiFSI values of the South Lease are located there. The high

index of the South Lease is due to high foundation cost (Figure 29) resulting

from increasing depths to 60 m (Figure 31) although wind speed is high (Figure 30).

At the North Lease, the Northwest border is avoided due to a high WiFSI.

The index results from the highest foundation cost in the area due to the local

geology characterized by terminal moraines. Unlike to the South Lease the

index in the center of the area is not as high. The wake effect and the cable

interconnection cost mainly influence the placement of the turbines at the borders.

O’Reilly et al. (2013)[63] showed that turbines tend to spread over the whole

siting area when interconnection cost are not included. In that case, the power

lost due to wake effects decreases. In contrast, turbines cluster at one point at a

specific site when wake is excluded but interconnection is the major constraint. At
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Figure 28. Map of the non-dimensional Wind Farm Siting Index (WiFSI) (color
shading) at the Area of Mutual Interest (AMI) with the borders of the North and
South Lease (outlined in black) as well as optimum turbine locations (blue).

the North Lease, the cable costs constraint leads to small distances between each

turbine and its neighbours by placing them in rows. The wake effect is expressed

through distance maximization between each row. The distance between the

turbines is restricted by the zone borders and the number of turbines.

Both AMI zones were optimized separately to reduce computational time. The

layout of the leases changes when optimized together. Areas of high foundation

cost would still be avoided but interconnection cost and wake effect would change

the overall shape of the turbine layout.
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Figure 29. Map of technological cost (TC) (color shading) in $ million at the Area
of Mutual Interest (AMI) with the borders of the North and South Lease (outlined
in black) as well as optimum turbine locations (blue).

1.5.3 Comparison

Installing the turbines of the optimized layouts of the North and South Lease

would cost $2.09 billion and produce power for $12.05 billion. Assuming the trend

in usable wind velocity, net revenue increases from $9.94 to $10.04 billion. This

increase is 1.0% or $94.42 million.

Table 10 compares costs and income per turbine for both leases. At the

North Lease each turbine leads to an average revenue of $99.86 million. At

the South Lease income per turbine is $98.74 million. The same difference of

approximately $1 million per turbine is stated for the implementation of the trend.

Average installation cost per turbine is less for the North Lease due to lower

water depth (Figure 31). The South Lease outweighs higher installation cost with

a higher power production per turbine because of higher wind velocity (Figure 30).
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Figure 30. Map of wind speed (color shading) in m/s at the Area of Mutual Interest
(AMI) with the borders of the North and South Lease (outlined in black) as well
as optimum turbine locations (blue).

Optimizing the REZ with wind data from a different station as the AMI but

the same time period from 2008 to 2012 leads to 60% less total revenue per turbine.

Installation cost is cut in half but produced power is only 42% of the power of the

AMI. It has to be considered that different types of turbines have been used for

the REZ and AMI. On the one hand, the Siemens 6MW used at the REZ is 5 m

taller and rotor diameter is 4 m longer than the Alstom Haliade 6MW used at the

AMI. The range of usable wind speed of the Alstom device is also 1.5 m/s lower.

In addition, its rated wind speed is 2.5 m/s lower. On the other hand, efficiency

of the Alstom turbine is higher (Figure 2). The difference in efficiency as well as

the higher extractable power at the AMI result in the high produced power per

turbine at the North and South Lease.
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Figure 31. Map of water depth (color shading) in meter at the Area of Mutual
Interest (AMI) with the borders of the North and South Lease (outlined in black)
as well as optimum turbine locations (blue).

Table 10. Cost and revenue per turbine in $ million
No. Description Total Installation Produced

revenue cost power

1 REZ 2009-2012 40.29 11.55 51.83
7 REZ Trend 2008-2012 41.81 11.27 53.09
8 South Lease Standard 98.74 23.93 122.667
9 South Lease Trend 99.68 24.18 123.85
10 North Lease Standard 99.86 19.10 118.96
11 North Lease Trend 100.81 19.24 120.05
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For all results it has to be considered that the applied usable wind rose only

effects the wake calculation. The wind power resource at the sites is constant for

all simulations. Only produced power is changing according to the wake loss due

to the relative positions of the turbines. In addition, the applied usable wind rose

is assumed to be representative for the entire life time of a farm.

1.6 Conclusions

This study determined the sensitivity of a wind farm layout and its total

revenue to wind time series length, wind direction and usable wind velocity trend.

O’Reilly et al.’s (2013) [63] model was updated with the implementation of a

usable wind speed trend in the calculation of the produced power and the wake

effect. The model was applied to a large wind farm siting area. The update

includes also the implementation of a Prim Algorithm for the calculation of cable

interconnection between the turbines at large wind farms. Computational speed

was increased by restructuring of the model.

Applying wind probability distributions which were collected at the same

site but during different time periods leads to different optimization results. The

number of possible layout options increases with wind time series length. If

the number of possible turbine locations increases, even more optimum layout

options are available. Turbine locations form rows perpendicular to the dominant

wind direction if present. Sensitivity of the layout to wind time series length

and wind direction is significant. The impact on the total revenue is smaller

but recognizable. This is because all other constraints as foundation cost and

extractable power remain the same for all simulations while only the wind

direction changes. In contrast to that, the implementation of a trend in usable

wind velocity does not result in a significant change in the turbine layout but has
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a a higher impact on the total revenue. A positive trend leads to an increase in

produced power while installation cost remain the same. Total revenue rises.

A long-term wind prediction over the life time of a farm is necessary to

determine the optimum layout and expected total revenue of a site. Short-term

wind probability distributions are not representative for future wind conditions.

Their application does not result in the optimum layout for a wind farm over its

entire life time. Real life income might be less than predicted total revenue. In

contrast to that, long-term predictions include changes in the wind resource i.e.

direction and velocity. Applying changes in the wind direction leads to wind farm

designs which minimizes the impacts of the changing wake effect expansion. In

contrast to that, considering the trend in usable wind velocity is not significant

for finding optimum turbine locations as long as the trend is small. High trends

increase the extent of the wake effect and are expected to change the layout. The

implementation of the trend is therefore only necessary in economic models when

expected produced power can be calculated more accurately. Economic decision

can be taken regarding the decrease or increase of total revenue due to a negative

or positive trend respectively.

Future work should focus on the validation of the wind farm siting model.

Model results could be compared to data collected at the Block Island Wind Farm

which is currently under construction. Calculated produced power is validated with

values of power produced at the Block Island Wind Farm. The one-dimensional

WAsP Model can be compared to measurements of the wake decay behind the

operated turbines. The influence of changing wind direction as well as speed could

be observed with data of the produced power for short as well as long time periods.
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Further research is required for the optimization of the AMI. More runs where

constraints such as wake effect or interconnection costs are excluded are necessary

to determine their sensitivity to the layout. The optimum number of turbines at

the AMI could be found to maximize total revenue. Ecological as well as fishery

costs could be included in an optimization. The resulting layouts show options for

the usage of the marine resources when environmental, economic and social impact

are considered.
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