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ABSTRACT

The security of the smart grid is a grand challenge across cyber and physical do-

mains. As an emerging critical infrastructure that integrates information and commu-

nication technologies (ICT) into power and energy systems (PES) with improved ef-

ficiency, reliability, and sustainability, the smart grid encompasses a transcontinental

network of interdependent and interoperating cyber-physical systems (CPS) through the

computerization, interconnection, and communication of systems and devices. Across

the closely interwoven cyber-physical spaces, the vulnerability and exposure of critical

systems and processes have been on the rise: malicious attackers may penetrate through

access points in the cyberspace and exploit vulnerabilities in the physical systems, pos-

ing major threats to disrupt the delivery of electricity through massive cascading black-

outs. Risks and impacts of such attacks have been demonstrated by intensive research

efforts as well as real-world incidences recently, drawing increasing concerns from the

government, the industry, and the public.

This dissertation will investigate the cyber-physical security of smart grid against

potential massive blackouts. The work is composed of three synergistic tasks: 1) un-

derstand the mechanisms behind major cascading blackouts; 2) identify critical attack

vectors that could initiate the cascading process; 3) develop effective strategies to en-

hance the resilience of the grid. The dissertation will first assess operational and struc-

tural vulnerabilities in massive cascading blackouts through steady state and complex

network models, respectively. It will then examine malicious attacks that exploit the

vulnerabilities through compromised control and measurements, where advanced ma-

chine learning algorithms are employed to identify critical attack vectors that would

trigger massive cascades. Simulations results on IEEE standard benchmarks are evalu-

ated and revealed the impact of sophisticated attacks. The dissertation aims to facilitate

our awareness and preparedness toward an attack-resilient smart grid of the future.
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CHAPTER 1

Introduction to Cyber-Physical Security of Smart Grid

1.1 Overview of the Smart Grid
1.1.1 The Existing Electrical Power Infrastructure

Electricity is one of the substantial foundations of the modern life. Playing an

expanding critical role in maintaining the functioning of our society and sustaining its

prosperity, the electrical power infrastructure has gradually evolved over the last cen-

tury into a transcontinental network of interconnected and interacting systems. Shown

in Figure 1, the cyber-physical power grid in North American has become one of the

largest systems humans have ever built [1] and arguably one of the most complex and

challenging to operate.

According to the National Institute of Standards and Technologies (NIST), the

monolithic electrical power infrastructure can be categorized into seven domains: gen-

eration, transmission, distribution, operation, electricity markets, service providers, and

customers [2]. In a traditional model of physical power systems, power plants generate

the electricity from various resources, and the electricity is delivered to the customers via

the transmission and distribution networks, where substations and transmission/power

lines constitute the major components in such networks. Regional power grids have been

constructed, operated, and networked geographically in the major interconnections that

ensure the delivery of electricity for customers across the continent.

On top of this physical systems, a cyber infrastructure for the monitoring, control,

and communication of the grid has been established, mostly on proprietary facilities,

to maintain and regulate power grid operations. Control centers host energy manage-

ment systems (EMS) that monitor and control the grid through the supervisory control

and data acquisition (SCADA) system. The SCADA is composed of master and re-

mote terminal units, i.e., MTUs and RTUs, which are located at the control center and

1



field substations, respectively. The MTUs and RTUs exchange control commands and

sensory measurements through an array of communication networks to maintain and op-

erate the grid. The sensory measurements, primarily consisting of raw data of voltage,

current, and frequency in the field, are collected by deployed sensors, pre-processed and

aggregated at the RTUs, and transmitted to MTUs. The information is further processed

in control rooms and visualized through the human-machine interface (HMI), based on

which control commands are determined and issued. The MTUs then send down the

commands to the RTUs, which execute the code to operate actuators and adjust dynam-

ics of the system. In this process, regional grids, predominantly owned and operated

by local utility providers, are supervised and coordinated by regional transmission or-

ganizations (RTO) and independent system operators (ISO). The hierarchical collective

efforts ensure overall system reliability, social utility, and economic benefits through the

production, delivery, and consumption of electricity.

Figure 1. The electrical power infrastructure in the United States.

2



1.1.2 The Emerging Smart Grid

Since the millennium, increasing challenges as well as innovative solutions in both

the physical and the cyber spaces have been transforming the electrical power infras-

tructure into a new generation known as the smart grid [3, 4, 5]. Evolving along with

the emerging challenges and advancements, the smart grid stands out as an advanced

infrastructure to supply electrical power with significantly increased efficiency, reliabil-

ity, and sustainability. One of the key innovations therein is the incorporation of modern

information and communication technologies (ICT) to computerize and network the ex-

isting power systems. This incorporation, or integration, allows better accommodation

of a combination of latest changes and challenges across generation supply, transmission

operation, demand variation, energy storage, renewable energies, distributed resources,

and market deregulation, among others. Consequently, the critical electrical power in-

frastructure has become a cyber-physically integrated network of systems, as illustrated

in Figure 2 [6].

From the power engineering perspective, the physical power grids are undergoing

radical transformations. On the generation side, the growing integration of renewable

energies (RES) brings one of the most significant improvements of the sustainability and

economics of electrical power generation. According to the U.S. Energy Information

Administration [7], the percentage of renewable energies has grown from to 8.5% in

2007 to 14.9% in 2016 over the last decade. This growth, contributed by installation

and operation of utility-scale renewable generations like wind farms, solar photovoltaic,

and solar thermal plants, is projected to continue in the years to come thanks to efforts

in states like New York, Texas, and California [8].

In the transmission systems, long-distance transmission lines are being planned

and installed to deliver electricity from remote generation sites to populated metropoli-

tans as well as to increase interchange between different balancing authorities. A 2016

3
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Figure 2. Cyber-physical architecture of the smart grid.

report from Edison Electric Institute showed a record-breaking investment of at least

$41 billion in transmission from 2016 to 2019 [9]. Meanwhile, short-distance and local

transmission are also being developed to compensate the loss and cost of long-distance

transmission. Advancements in transmission technologies have also been driven by

the industry and the government, particularly with the installment of over 1,100 phasor

measurement units (PMUs) [10]. The PMUs utilize global positioning system (GPS)

to provide high-resolution, accurate, and reliable synchronous measurements of inter-

connected transmission systems, a key that paves the way for wide-area monitoring,

protection, and control (WAMPAC) systems [11].
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On the distribution and customer side, the advanced metering infrastructure (AMI)

is been developed and deployed. Millions of smart meters are being installed in the AMI

to provide two-way, real-time monitoring and communications with an unprecedented

spatial-temporal resolution of the grid. Such granularity promises prosperous benefits

to the grid, ranging from peak energy reduction (with demand response) to wide-area

real-time situation awareness, outage management, and consumer engagements. Fur-

thermore, distributed energy resources (DER) enable customer-side power generation

and management with augmented flexibility and reliability, which will reshape the uni-

directional power flow into a bidirectional pattern. Moreover, recent progress in energy

storage, electrical vehicles, and other emerging technologies are also transforming vari-

ous stages of electricity delivery in physical power grids.

1.2 Cyber-Physical Security of the Smart Grid

The smart grid encompasses complex cyber-physical energy systems hosted in a

heterogeneous network of power, energy, control, sensory, computing, and communica-

tion. The emerging smart grid incorporates systems of legacy hardware and software,

operates under multiple entities and regulations, faces increasing system stress and un-

certainty, and attracts parties of malicious intentions. The reality underscores the chal-

lenges to the security and resilience of smart grid that have been on the rise within and

across physical and cyber domains [12, 6]. On one hand, the intrinsic complexity and

dynamics of bulk power systems have complicated the protection against inherent phys-

ical vulnerabilities in the grid. On the other, the cyber-integration also requires substan-

tial efforts on adapted security designs and upgrades against unforeseen exposure and

threats to the electrical power grid.

The electrical power grids are complex networked systems vulnerable to internal

and external disturbances, including load stress, equipment failure, misoperation, and

natural disasters [13]. In smart grid, increasing RES introduces new non-linearity, un-
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certainty, time-variance when the grid embraces their sustainability [14]. The DER

shapes new, less predictable patterns in power generation, transmission, and distribu-

tion with expectable, significant impacts on grid stability [15]. Furthermore, power

lines and substations are mostly deployed in the field with limited surveillance or pro-

tection, rendering them vulnerable to physical sabotages as reported in the past few

years [16, 17, 18].

The cyber-integration inevitably increases the risk of attacks on critical power sys-

tems and processes from the cyberspace [12]. Tremendous threats arise from the cyber-

attacker’s ability to launch a range of anonymous, remote, simultaneous, and coordi-

nated intrusions. From crimes to terrorism and warfare, the fragility of computer and

communication networks has been frequently exploited. As inter-networking of devices

and services continue to grow, emerging cyber-physical systems raise grand security

concerns. Recent incidences, including Stuxnet on nuclear control systems [19], Black-

Energy on power control centers [20], and Botnet on the internet-of-things [21], revealed

unforeseen threats that explicitly target the networked physical systems and processes.

Research on the cyber-physical security of the smart grid advances on a multi-

disciplinary frontier, converging the physical security of power and energy systems and

the cybersecurity of information, control, sensory, and communication systems [22].

The incorporation of knowledge and strengths on physical and cyber security is essential

to enhance the security and resilience of smart grid, while neither direction along can

secure the critical infrastructure for our modern society.

1.2.1 Physical Security of the Smart Grid

Physical security of power systems focuses on the survivability and reliability of

power systems after contingencies. As the core of power system security, the contin-

gency analysis (CA) evaluates the power system stability after credible inadvertent con-

tingencies to minimize interruptions to the delivery of electricity [13]. CA typically runs
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on a selection of operating points and covers events including faults, disturbances, and

planned outages of inadvertent nature. Security constraints are established by the CA

in subsequent modules of the EMS, e.g., optimal power flow, economic dispatch, and

unit commitment, to ensure the stable operation of power grids. Under different mod-

eling accuracies and timeframes, steady-state and transient analyses both serve the grid

operators to assure the physical security [23, 24]. In practice, the N − 1 security, i.e.,

the grid remains in secure operation after the loss of any single components, has been

enforced as a standard for major transmission grids across the United States [25].

However, the interconnected power and energy systems have presented challenges

to the physical security analysis. Both the complexity and the runtime of CA increase

dramatically when the system scales up, rendering it difficult to conduct or implement

N − k security in bulk power systems. The heterogeneity and complexity of hardware,

software, and operations also limit the accurate and timely evaluation of remote contin-

gencies whose impact could propagate through a long distance in an instant. Without

sufficient wide-area situation awareness and coordination, multiple remedial actions de-

termined locally may compete, instead of collaborating, with each other, resulting in

degraded conditions and/or cascading failures [26]. Last but not least, while large-scale

physical sabotages are rare, they still pose threats to most power facilities and devices

not equipped with sufficient surveillance and protection systems [27].

Moreover, the cyber-threats introduces new challenges. Legacy field devices and

systems are not designed or equipped with sufficient security features against malignant

events from the cyberspace. Concerning about the cyber-exposure of critical informa-

tion, access, and process, investigations have revealed vulnerabilities, both unknown

and zero-day, in the emerging smart grid. The lack of sufficient protection against co-

ordinated cyber-attacks could be catastrophic, as demonstrated by the cyber-attack on

a Ukraine regional grid [28]. Meanwhile, intelligent and automated systems, which
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have been designed to enhance the system security and reliability, may also be turned

into weapons against the smart grid itself. With all these emerging threats, securing the

smart grid will require new insights beyond the traditional physical security approaches

in power systems.

1.2.2 Cybersecurity of the Smart Grid

Cybersecurity has been widely recognized as a major feature and challenge in the

development of smart grid [29]. Utilities have followed the principles of confidentiality,

integrity, and availability to install secure public and corporate networks. Firewalls and

intrusion detection systems (IDSs) have been deployed to protect control centers and

critical field assets against external intrusions. New protocols with security features have

also emerged to protect SCADA communications within and among control centers,

substations, and user-end devices.

Meanwhile, the smart grid is still far from immunity against cyber-penetrations.

Cybersecurity features are often insufficient, obsolete, or absent in legacy power sys-

tems, both in control centers as well as field devices. Adoption of existing technologies

for the Internet and computer security also needs to proactively accommodate physical

properties, requirements, and dependencies of the physical power systems. For instance,

multiple log-ins shall not result in denied or delayed access to an operator’s account even

after a number of failed attempts: attackers may utilize this mechanism to lock operators

out of the control system that can result in disastrous consequences. Moreover, anomaly-

based and signature-based IDSs also need to adapt to emerging and diversifying patterns

in the smart grid to effectively identify traces of malicious behavior from data streams of

normal monitoring and control; these real-time data streams will also pose challenges,

in terms of both volume and complexity, to the cybersecurity analysis of smart grid.

Last but not least, the security mechanisms implemented on physical electronic devices

could still suffer from tempering and damages directly, and their dependence on elec-
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tricity may also be exploited. As a result, similar to the status of physical security, there

is an urgent need to incorporate physical aspects into the cybersecurity of the smart grid.

In short, the security and resilience of the smart grid are contingent upon the effec-

tive combination of the strength in both physical and cyber security analysis and against

both inadvertent and malignant events. Vulnerabilities and contingencies shall be in-

vestigated on a broader spectrum. The causes, processes, and consequences across the

cyber-physical spaces shall be comprehensively analyzed with consideration of interde-

pendence and interoperability therein. Operators of the grid should be aware of the risks

both externally and internally, while mitigation and restoration efforts need to be guided

by adequate security awareness to avoid secondary damages in the post-attack systems.

1.2.3 Threats of Massive Blackouts

Massive blackouts, i.e., the complete interruption of electrical power delivery, are

rare but disastrous events in the power grids. Though uncommonly seen, blackouts

can affect a large population and area for an extended amount of time and incur sig-

nificant operational, economic, and social disruptions. Illustrated in Figure 3 [30], the

population affected by massive blackouts since 1999 unambiguously demonstrated the

catastrophic impacts of blackouts in electrical power grids.

Historically, blackouts are consequences of complex disturbances and dynamics.

The cascades often start from a small number of contingencies before propagating to

a large area through unexpected protection system failures. Initiating events of black-

outs range from software bugs (U.S. Northeast, 2003), extreme load stress (India, 2012),

physical sabotage (Pakistan, 2015), to cyber-penetration (Ukraine, 2015). While most

of these events were not expected to cause major outages during normal operations,

unexpected operating conditions, insufficient situation awareness, or malicious outsider

attempts triggered the epidemic process known as the cascading failures. Often due

to limited coordination and communication between field protective devices, local pro-

9



Brazil, 

Mar. 11

India, 

Jan. 02

USA & Canada, 

Aug. 14

Italy & Swiss 

Sep. 28

Indonesia, 

Aug. 18 Brazil & Paraguay, 

Nov. 10

India, 

Jul. 30

India, 

Jul. 31

Bangladesh, 

Nov. 01
Pakistan, 

Jan. 26

Turkey, 

Mar. 31

Sri Lanka, 

Mar. 13

Kenya, 

Jun. 07

10

100

1000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

P
o
p

u
la

ti
o

n
 A

ff
ec

te
d

 (
m

il
li

o
n

)

Year

Figure 3. The population affected by major blackouts since 1999.

tection efforts after the initiating events could result in reduced reliability of the entire

grid, leading to overloading lines, insufficient generation supply, or instant load loss.

For interconnected power grids, although every effort has been made to ensure the grid

security, when some situations are not monitored or responded promptly and properly,

what could have been a small-scale outage may turn into a massive cascading blackout

within minutes, leaving a large population without power for hours or days unexpect-

edly.

Both the frequency and size of blackouts have been increasing in interconnected

power grids of the United States [31]. Aware of the impact of as well as the unpre-

paredness against potential major blackouts in the future, there have been significant

attentions and efforts from the government, industry, and academia to investigate into

this challenge. The task force formed by the Institute of Electrical and Electronic Engi-

neers (IEEE) have directed extensive studies to discuss, evaluate, and advise the progress

towards a cascade-resilient infrastructure [32, 33, 34]. However, understanding of large-

scale cascades are far from mature and our solutions are limited by the complexity of the

spatial-temporal system behaviors, the availability of history records and analytic tools,

as well as the applicability of effective prevention and mitigation strategies [34].
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1.3 Significance and Organization
1.3.1 Significance of the Research

Securing the smart grid against massive cascading blackouts requires significant

research advancement and end-to-end engineering solutions on both physical and cyber

security. Although there have been extensive research efforts that investigated the cyber-

physical attack threats and defense strategies in the smart grid, the risk and complexity of

cascading blackouts remain a major challenge to securing the smart grid to date [6]. To

this end, this dissertation has aimed to systematically assess the grid vulnerability under

cascading failures from both complex network and power flow perspectives, efficiently

identify the critical cascade-initiating components with machine learning approach, and

facilitate the understanding of grid resilience under malicious cyber-physical attacks.

To date, there have been a large number of studies investigating smart grid security
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with topological approaches [35], some would date back in the early 2000s [36, 37, 38].

While these approaches provide powerful tools developed in the field of computer and

network security, to adopt them in the smart grid requires the further inclusion of power

system properties and corresponding models. Such incorporation, while intuitive, is

not trivial due to the heterogeneity, complexity, and uncertainty of the cyber-physically

integrated smart grid [6]. To this end, this dissertation has investigated and proposed

complex network based topological and integrative assessment of cascading failure vul-

nerability in bulk power grids. The proposed models and metrics effectively identify the

system vulnerabilities and critical components in the bulk grids, and the methods have

been further extended to both steady-state and transient stability analyses based on more

detailed and accurate power flow models [39, 40, 41].

Another challenge to secure the smart grid arises from the scale and dynamics of

the interconnected components in the context of cybersecurity. Contingency screening

with fast search or heuristic methods have been the effective approaches to identify crit-

ical components in a N − k setting [42, 43, 44, 45, 46, 47, 48]. However, they may

still fall short to include all credible scenarios for all possible target sets in a wide-area

interconnected grid. The grid may fail in cyber or physical space as well as the inter-

face in-between; the failure can occur concurrently or sequentially at distant locations;

the impacts can vary significantly due to the combined effect of operating points, fail-

ure locations, timing, and order, among others. These factors result in a large search

space for the grid operators to create a profile of credible, critical contingencies that

require the most attention and emergency plan. To this end, the dissertation resorts to

machine learning, particularly unsupervised and reinforcement learning approaches that

have been expanding recently, to develop data-driven, self-adaptive methods that can

help grid operators to identify the critical component sets more efficiently and accu-

rately. Through adaptive and effective assessment, the proposed research may benefit
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the development of advanced real-time monitoring, communication, and control systems

for the early detection and prevention of cascading blackouts.

1.3.2 Organization of the Dissertation

The dissertation is organized into 7 chapters with an overall structure illustrated in

Figure 5. Following Chapter 1 of introductions, Chapter 2 and Chapter 3 present vul-

nerability analyses from operational (Chapter 2) and structural perspectives (Chapter 3),

respectively. Based on the proposed cascading failure models and metrics in these two

chapters, Chapter 4 to 6 investigates cyber-physical attack schemes on control (Chapter

4 and 5) and measurement (Chapter 6) in the smart grid. The conclusions are drawn in

Chapter 7 with discussions on future challenges and opportunities.
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Figure 5. Overall structure of the dissertation.

Among the technical contents, Chapter 2 and 3 proposed complex network and

power flow based metrics to identify critical components and processes in the develop-
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ment of blackouts. The assessments also develop simulation environments to analyze

the impact of potential initiating events, based on which further security analysis can

look into the potential attack threats. Chapter 4 and 5 presented coordinated multi-

target control attacks launched concurrently (Chapter 4) and sequentially (Chapter 5)

utilizing machine learning algorithms. Chapter 6 presented cascading failure-based re-

silience analysis and supervised learning-based detection methods against well-known

false data injection attacks on the measurement inputs of power system state estima-

tors. Each chapter features an overview, detailed description of problem formulation,

proposed methodology, simulation results, and respective summaries. The references

are provided at the end of all chapters, followed by the bibliography of the disserta-

tion. Collectively, the chapters represent a series of interdependent investigations and

publications of the author on the topic of cascading blackouts in the smart grid under

malicious attacks.

Specifically, Chapter 2 investigates the effect of overloading and hidden failures

in the power grid after the initiating event of relay tripping. A steady-state power flow

based model (DC-CFS) is developed to analyze the system behaviors during the cascad-

ing process. Based on the model, factors contributing to the massive blackouts will be

decomposed and analyzed. A novel metric, the critical moment, is proposed to identify

critical consistency and discrepancy between steady-state and transient stability analysis

in the cascading blackouts. The investigation will reveal how failures propagate in the

grid through due to power flow redistribution and provide insights on how to prevent the

failure at its early stage.

Chapter 3 proposed a complex network based model (EB-CFS) to analyze the in-

herent vulnerability in the structure of power transmission systems. The proposed EB-

CFS model, based on the concept of extended betweenness centrality, integrated the

topology and property of electrical power grids to effectively identify potential structural
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vulnerabilities in the interconnected grid that will lead to a massive blackout. Influence

of different loading and overloading situations on cascading failures was also evaluated

under different tolerance factors of the system. Simulation results from a standard IEEE

118-bus test system revealed the vulnerability of network components, which was then

validated on a DC power flow simulator with comparisons to other topological measure-

ments.

Chapter 4 presents the investigation of cyber-physical attacks launched concur-

rently on the control commands sent from the control centers to field devices. To address

the large search space of potential victims and subsequent computational costs, a self-

organizing map based approach was proposed to identify strong attack vectors in the

Texas grid with over 5,000 substations. The chapter will introduce how self-organized

clusters are formed to identify the combination of vulnerable components in bulk power

grids that, when attacked concurrently from the cyberspace, would result in a massive

blackout. The proposed approach will assist the grid operator in raising awareness and

preparedness against major cyber-intrusions that cause multi-contingencies concurrently

in this critical infrastructure.

Chapter 5 presents the investigation into control attacks launched sequentially. Fol-

lowing the preliminary work that identifies this new vulnerability of smart grid, the re-

search proposed a Q-learning based adaptive search strategy to effectively and efficiently

identify critical attack sequences that will result in a massive blackout. The Chapter will

review the threat of sequential attacks and formulate the search for critical attack se-

quence as a reinforcement learning problem. Similar to Chapter 4, the proposed scheme

addressed the challenge of a large, complex search space in the context of massive black-

outs and will provide information to grid operators for better security enhancement in

multi-contingency scenarios.

Chapter 6 presents the investigations on cyber-physical attacks on the measure-
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ment signals. The chapter will first review the prominent threat posed by the recently

revealed false data injection attacks on power system state estimator. The DC-CFS is

then utilized to examine the grid resilience against this stealth attack that can bypass

the traditional bad data detectors. As the simulation results indicated, the grid demon-

strated significant robustness as the false data did not pose a major threat in triggering

the blackouts. A supervised learning based approach was proposed to detect the stealth

false data, in which three light-weight classifiers effectively identified false data from

the normal measurements.

Finally, Chapter 7 summarizes the research and discusses future challenges and

opportunities along the direction. The problems, methods, and impacts along each phase

of investigation in this research will be reviewed along with the contribution of the

work. The remaining challenges to further address potential attack threats with effective

defense strategies will be discussed in the closing, with which the author hopes to shed

some lights on the future endeavors along the way.
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CHAPTER 2

Operational Vulnerability Assessment of Massive Blackouts

2.1 Chapter Overview

Being aware of the critical threat of massive blackouts, researchers from the indus-

try and academia have collectively developed a large number of assessment approaches

and tools to comprehensively understand the mechanisms and factors behind a black-

out [32, 33]. These efforts provide the foundation to further analyze potential cyber-

physical attack threats and impacts practically present in the smart grid. This research

also follows this path to first establish a validated simulation platform for the vulnera-

bility assessment and security analysis in the context of cascading blackouts.

Meanwhile, modeling and prediction of massive blackouts still remain a grand chal-

lenge due to the complexities and difficulties of diverse grid dynamics, system uncertain-

ties, and attack schemes. To approach a solution to this multi-factor, multi-timescale,

and multi-system challenge, investigations often decompose the mechanisms and fo-

cus on specific aspects of the blackout with corresponding assumptions and simplifica-

tions [34, 49]. While investigations based on different types of models provide respec-

tive insights into the cause and process of massive blackouts, they also lead to potential

(and frequent) discrepancies, resulting in different precision, conflicting results, as well

as distinct requirement of system information and computational resources. However,

there are few studies on their discrepancy and consistency in the context of cascading

failures. The apparent distinctions in-between can not delineate that to what degree

these two methodologies are consistent with each other. While the steady state models

are widely used in the cascading failure analysis, this chapter aims at not only investi-

gating the physical process revealed by a specific model, but also providing a reference,

through illustrative comparative studies, to help determine a more appropriate model for

the analysis of power grid cascading failures from case to case.
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Given the considerations above, this chapter will investigate both the operational

vulnerability of bulk power grids via a time-efficient steady-state cascading failure sim-

ulator (CFS) as well as a comparative study of the steady-state model with the transient

stability analysis. For the vulnerability assessment, a DC power flow based CFS will be

established based on the state-of-the-art. For the discrepancy comparison, a new metric,

the critical moment (CM), will be proposed based on the rotor angle stability and volt-

age stability principles of power grids to quantitatively analyze the discrepancies. For

the dissertation, the validated DC power flow based cascading failure simulator (CFS)

will also serve as the platform for topological model validation as well as cyber-physical

attack analyses. In addition, this chapter is also expected to narrow the knowledge gap

between two well-developed models and to facilitate understanding of cascading failures

in power systems.

The rest of this chapter is organized as follows: Section 2.2 describes the power

flow based DC-CFS platform for cascading failure analysis. Section 2.3 presents single-

contingency assessments of cascading failures simulated with the DC-CFS. Section 2.4

compares the steady-state model with TSA model on two benchmarks, where the new

concept critical moment (CM) is proposed to assess the discrepancy between two mod-

els as well as the validity of DC-CFS. Finally, Section 2.5 provides a summary of the

chapter with some future directions.

2.2 DC-CFS for Cascading Failure Analysis
2.2.1 Cascading Failure Simulators (CFSs)

Simulation models are one of the centerpieces of cascading failure analysis, which

aim to integrate physical properties to predict system behaviors and develop correspond-

ing solutions. The IEEE PES CAMS Task Force on Understanding, Prediction, Mitiga-

tion and Restoration of Cascading Failures [34] has reported a variety of simulation

models developed for cascading failure analysis. These models focus on certain sets
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of assumptions to approximate the real power system, yet a well-accepted model is

still absent due to the complexity of interconnected power grids and cascading failure

themselves. Meanwhile, there is limited literature comparing the validity of using dif-

ferent power system models to approximate system behavior in cascading failures. This

chapter is thus motivated to investigate the discrepancy of two well-established types of

cascading failure model, i.e., the DC power flow based steady-state model versus the

transient stability model.

The steady-state models have been widely used to approximate power system be-

haviors for various purposes. For cascading failure analysis, the stochastic ORNL-

PSerc-Alaska (OPA) model [50, 51, 52] is among the earliest and most established

models for cascading failure analysis. Comprehensive work on self-organized criti-

cality in cascading failures [53, 54, 55] have also been developed using the Manchester

model [56, 57] and CASCADE model [58]. In general, the DC power flow based models

are powerful for the balance between model complexity and system behavior approx-

imation [34, 59], as they utilize the assumptions of power flow equations [60, 61] for

efficient cascading failure simulation and assessment. In this chapter, we have imple-

mented a well-defined CFS [45] with further modifications and analyses that serve as

the baseline cascading failure simulator.

In contrast to the steady-state models, transient stability models have also been built

on more accurate yet complex equations [24]. Based on the differential algebraic equa-

tions (DAE), they have been widely used in power system control design and served as

the primary tool for contingency and stability analysis. Although the transient stability

analysis (TSA) provides higher precisions to reproduce systems events in reality [62],

the time-domain simulations are often cost-prohibitive for the exhaustive screening of all

possible situations after contingencies. In practices, only credible contingency sets are

chosen to simulate and provide dynamic information alongside the results from steady-
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state models.

The steady-state models exhibit significant popularity in smart grid research con-

cerning the cascading failures. There are two typical DC power flow based CFSs distin-

guished by their time-frame. Some studies [52, 63] focus on long-term effects to eval-

uate temperature and line-expansion to determine the vulnerability of a branch. Then

proper control measures, e.g., vegetation management, can be applied to reduce the risk

of blackouts. Meanwhile, other research places a focus on relays [45], because they

are critical factors in major blackouts due to the automatic branch tripping mechanism

operated by relays [26]. The relay-based CFS usually focuses on short-term effects oc-

curring in seconds or minutes, in contrast to the long-term models that run from less than

an hour to a few days. For a fair comparison between the two methodologies, this chap-

ter will compare the relay-based CFS with the transient stability models for cascading

failure analysis.

In this chapter, we refer to the original cascading failure simulator in [45] as the

CFS, and its modified version in this chapter as the DC-CFS, respectively. In addition,

the DC power generation and load are denoted as Pg and Pd, respectively, where g de-

notes a generation bus and d a load bus; correspondingly, the complete sets of generators

and load buses are denoted as G and D, respectively. Similarly, l refers to a branch and

B is the set of branches, while the DC branch power flow is denoted by F . The voltage

magnitude and angles are denoted as V and θ, respectively.

2.2.2 The DC Power Flow based CFS

The DC-CFS in this chapter is developed based on [45], a steady-state cascading

failure simulator for multi-contingency analysis. It belongs to a family of models of

cascading failure based on DC power flow assumptions without consideration of reactive

power and transmission loss [64, 65, 66]. In this chapter, modifications of modeling

and implementation are made to the original CFS for cascading failure analysis and
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comparison, and an overview is provided as follows with a flowchart shown in Figure 6:

1. The DC-CFS implemented an additional trigger of bus contingency so that cas-

cading failure of both bus and branch contingencies can be simulated to validate

the use of DC-CFS compared to the TSA approach;

2. In the generation and load re-dispatch process of the DC-CFS, we introduced

weight vectors to the generation and load buses, which can be determined empir-

ically in advance, or adjusted adaptively according to the feedback of simulated

blackout size with proper algorithms;

3. A dedicated module is designed in the DC-CFS to handle the islanding issue so

that the simulation can be implemented in parallel and further islanding technique

and policy can be incorporated;

4. The system failure criterion of 10% in blackout size in original CFS is canceled

in the DC-CFS so that we can explore and compare the full development of a

potential cascading failure process in both models. Moreover, we can also justify

if this criterion is appropriate in the simulation of cascading failures;

5. Last but not least, more implementation details, including the ramping rate, the

ramping period, are provided to further improve this DC-CFS dedicated for cas-

cading failure analysis.

While these modifications are the major contribution of this chapter, the adjust-

ments to the original CFS enable a fair comparison between the DC-CFS and TSA

model in cascading failure analysis. The detailed simulation can be divided into four

steps below (Steps A-D) to elaborate on initial events, dispatch policy, cascading out-

ages, and islanding processing.

21



Generation Dispatch
and 

Load Shedding

All Sub-Grid 
Processed?

Overloading 
Identified?

Update of Power Grid 
Status 

Cascading Failure Ends

N Y

Trigger An Initial 
Contingency

Solution of Power 
Flow 

Initialize Power 
System States

Calculation of 
Tf(l), Tramp and T 

Tripping of
Dangerous Branch

Calculation of O(l,t)

N

Y

Figure 6. Flowchart of DC-CFS

A. Initial Events

In the DC-CFS we consider potential cascading failures initiated by both branch

and bus contingencies in the system. A branch contingency is the tripping of transmis-

sion lines typically analyzed in traditional contingency analyses [43, 67, 68]. A bus

contingency, similar to the case of a branch, is the tripping of a bus (substation) from

the grid, after which no power flow is transmitted through the given bus.

In reality, bus contingencies, e.g., the outage of substations or power plants, oc-

curred less frequently and thus were less studied in contrast to branch contingencies.

Nevertheless, a cascading failure can still be triggered by a bus contingency, after which
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all branches connecting to the failed bus are tripped [69, 70]. Since at least one branch

will be connected to a bus, any single-bus contingency will be at least an N − 1 event

and thus more likely to result in cascading failures or greater damages to the grid, partic-

ularly after the violation of N −1 security. Therefore, both scenarios will be considered

to better understand cascading failures in power systems.

B. Relay-based Overloading Branch Tripping

Branch tripping is one of the most common factors responsible for the cascading

failures after the initial event [34]. Therefore, we refer to each tripping as a cascading

failure event (CFE), and the whole process of cascading failure is then represented by

a series of CFEs. The initial contingency is numbered as CFE 0, while the following

CFEs occurred during a cascading failure are numbered by positive integers thereafter.

When a CFE occurs, overloading may be found on a branch l whose power flow Fl

exceeds its thermal rating of power flow, denoted as Cl. As critical or long-lasting

overloading can cause great damage to the power transmission, the relays will respond

to these overloadings by tripping dangerously overloading branches from the grid. For

an overloaded branch denoted as l′, the following accumulative function O(l′, t) from

[45] determines the severeness of overloading on a branch l at time t:

O(l, t) =

∫ t

t0

[Fl(τ)− Cl]dτ, Fl(τ) > Cl (1)

where Fl(τ) is the branch power flow at time τ . Theoretically, under the steady-state

assumption, O(l, t) of a branch l is integrated over the duration when it is overloaded

while the system remains in a steady state. As the power flow Fl will be changed by

the generation and load re-dispatch after the occurrence of a CFE, t0 and t in practice

will have to be changed accordingly, which will be described later in the next subsection

following Eqn. (2). If the accumulation O(l, t) exceeds a dangerous threshold Olimit(l)

at time Tf (l), the relays will automatically trip off the corresponding branch l. This crit-

ical threshold is defined empirically based on referential scenarios as in [45]. Note that
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O(l, t) is not the actual heat accumulated on the branch, but an accumulative function

of overloading evaluated by the relays to trip dangerous branches accordingly.

C. Generation and Load Redispatch

When a new failure occurs, the power transmission can be disrupted, and the bal-

ance of load and generation has to be restored via re-dispatch process [71]. Specifically,

between two consecutive cascading failures in a fully-connected grid, the following re-

dispatching steps are performed:

C.1 Generation ramping

The generation ramping involves two scenarios:

1. If there is a generation surplus, i.e.,
∑
Pg >

∑
Pd, ramp down all generators’

output with a given ramping rate r.

2. If there is a generation deficit, i.e.,
∑
Pg <

∑
Pd, ramp up all generators’ output

with the given ramping rate r until ramping is terminated;

The ramping is terminated when any of these two following conditions is met:

i)
∑
Pg ≥

∑
Pd; or ii) the output of a given generator reaches its capacity Pmax(g);

C.2 Generator tripping/load shedding

Similar to the generation dispatch, there are also two corresponding processes to

handle the surplus and deficit, respectively:

1. If the surplus still exists after ramping, then the generators with minimal non-zero

importance will be instantly tripped one by one in the grid until
∑
Pg ≤

∑
Pd;

2. If the desired balance (
∑
Pg =

∑
Pd) is still not met after a certain amount of

time Tramp, the load on the bus with the minimal non-zero importance will be

shed one by one until the load-generation balance is established;

C.3 Power flow update
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After the ramping and shedding process, the power flow on each branch is instantly

recalculated and redistributed to set up a new system operating point.

In this procedure, the ramping in Step C.1 tries to resolve any imbalance between

generation and load caused by cascading failure. In both scenarios, we assumed all

generators ramp up or down with a uniformed maximal ramping rate r with respect

to their capacity. As this ramping process can be interrupted by a new CFE in the

system, the duration of generation ramping period between two CFEs, denoted as Tramp,

is determined by the following equation:

Tramp = min
l∈L
{Tf (l)} (2)

where Tf (l) corresponds to the dangerous threshold Olimit(l) as aforementioned. No

failure occurs during this period Tramp, and the power grid is assumed to stay in a steady-

state. Therefore, the accumulative overload O(l, t) in Eqn. (1) is integrated from t0, the

moment when a new CFE is observed, to t0 + Tramp, the moment when the next CFE

occurs in the system. In this way, if a new CFE occurs in the system, the actual value

of t0 is automatically reset to the time when this CFE occurs, and t is set to t0 + Tramp

when Tramp is calculated by Eqn. (2). This allows the DC-CFS to directly use Tramp as

a step time in simulation instead of using small, unit step intervals in classic transient

stability models, which can be computationally expensive otherwise.

During the ramping period, a system can resume stable if the generation deficit or

surplus is eliminated; however, if the desired balance is not met after ramping, then a

generator tripping and/or load shedding is performed in Step C.2 to ensure the system

stability. The importance of a generation bus Yg is determined by the product of its

generation Pg and a weight vector Wg, i.e., Yg = Wg · Pg; similarly, the importance of a

load bus is calculated by Yd = Wd · Pd.

Afterward, the system operation point is updated in Step C.3 to continue the iter-

ative simulation process. This procedure follows the general principle to maximize the
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adjustment on the generation side while minimizing the impact on the load/consumer’s

side as long as the power system remains stable.

D. Islanded Sub-grids Processing

During the process of a cascading failure, an originally fully connected grid can be

disintegrated into several islands, which can still maintain independent operation. Each

island has independent topology, operating point, and potential cascading failures that

continue to propagate therein. Instead of assigning a new CFS for each new island, in

this implementation we used an alternative tactic to efficiently simulate cascading failure

in islands of a power grid without increasing the implementation complexity.

Specifically, an island emerged when a CFE breaks down the grid is rendered as a

new fully-connected sub-grid that carries the most recent system operating point in the

corresponding segment. If generation and load are not balanced in an island, the simula-

tor re-dispatches the load and generation and recalculates power flow through Step C.1

to Step C.3 to establish a new balanced operating point, and obtains the corresponding

value of Tramp in each island if a new CFE occurs.

As islands may be further broken down when failure continues to propagate, it

is necessary to synchronize different cascading failure processes in different sub-grids

during simulation. Therefore, when the values of Tramp for all current sub-grids are

obtained, we will use the minimum of them as a global time step ∆T to advance the

simulation:

∆T = min
i
{Tramp(i)} (3)

where i = 1, 2, ..., K, and K is the number of existing sub-grids. It is notable that two

consecutive values of ∆T may be obtained from different islands during the simulation,

so the sequence and location of the events are also recorded accordingly. Also, because

∆T is the minimum of Tramp across different islands, by definition every island still

remains in steady state with their own operating points.
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This sub-grid handling is beneficial because the number of islands emerging during

a cascading failure is unknown in advance. This uncertainty causes a high computation

overhead for the simulator to process a time-variant number of islands simultaneously.

From Step A to Step D, cascading failures in all existing islands will be simulated recur-

sively until no overloading is further observed.

2.2.3 Assessment Metric

To assess the impact of cascading failures with DC-CFS, we choose the blackout

size as the assessment metric of a cascading failure. Denoted as ∆P , it is defined as

the percentage of the overall loss of load (measured in real power) with respect to the

original loading:

∆P =

[∑
d∈D0

PD0 −
∑
d∈D′

P ′D′

]
/
∑
d∈D0

PD0 (4)

where D0 and D′ are the sets of load buses in the original grid and the final grid, respec-

tively. PD0 and P ′D′ are the corresponding load remaining in each grid, respectively. It

is also notable that the final load loss, as a result of generation and load re-dispatch in

Step C, is equivalent to the loss of generation as the system is designed to be balanced

after Step C.

According to the model described above, we decompose the final blackout size ∆P

into three parts. First, if a contingency is initially triggered on a load bus that has a non-

zero load, the load on that bus will be instantly lost, which is referred to as the direct

loss of real power. Secondly, immediately after the initial contingency, the blackout

size is contributed by the system’s first re-dispatch and shedding process in Step C as

an emergent response. Since there is limited time to react to the abrupt contingency,

some load will be shed in this emergent response. Third and last, after the re-balance

of load and generation, a potential cascading failure triggered by overloading branches

will further increase the loss of load.

In addition to the blackout size ∆P , the number of load buses affected during the
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cascading failure (∆NL) is also assessed as comparative metrics of the cascading failure

impact. It is measured as the number of load buses whose load is either completely or

partially shed during the cascading. The correlation efficient of ∆NL and ∆P will be

evaluated for comparison in following simulations.

2.3 Vulnerability Assessment with DC-CFS
2.3.1 Simulation Setup

In this chapter, the DC-CFS is implemented in MATLAB and the MATPOWER

toolbox [60] is used to calculate DC power flow in the benchmark. The standard IEEE

39-bus system is also chosen from MATPOWER as the benchmark to evaluate the DC-

CFS. This system has a total load of 62.54 p.u.; it contains 39 buses (10 of which are

generation buses) and 46 branches with specified capacity Cl. The benchmark is an

abstract representation of the New England test system, in which a single bus (Bus

39) represents the regional system’s interconnection to the rest of US/Canada. As one

of the most widely used benchmarks in power system studies, it is a suitable general

representation of typical regional power transmission networks.

The ramping rate r of all generateors are set as 5%/min with respect to each gener-

ator’s capacity. Since we do not have a practical reference of the importance of buses,

all generation buses are assigned equal importance (Wg = 1/NG); the same for all load

buses (Wd = 1/ND). As a result, Yg and Yd are proportional to the generation and load

of corresponding types of buses, respectively, and so the simulator trips the generator

with minimum non-zero generation and then sheds the non-zero load in the grid when

necessary. These values of r, Wg and Wd can be adjusted accordingly when detailed

information is obtained in real power system applications. If such information is not

available, these weights can also be adjusted heuristically according to the blackout size

simulated in the DC-CFS as well as other stability constraints in consideration. This

allows better approximation of a real power system to minimize the impact of cascad-
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ing. Finally, as mentioned before, we refer to [45] to determine the critical threshold

Olimit(l) with Tref = 5s and Fl = 150% × Cl. With all these settings, the DC power

flow based simulation results are presented as follows.

2.3.2 Vulnerability Assessment

First, we illustrate the histograms of the final blackout size of both single bus and

single branch contingency in Figure 7. As discussed in Section 2.2.2, given the same

number of simultaneous contingencies, single-bus contingencies should in general yield

greater cascading failure damage than branch contingencies. The distributions in Fig-

ure 7 are consistent with this assumption. Roughly 61% of the 39-single bus contingen-

cies and 24% of the 46 single-branch contingencies lead to a blackout size greater than

10% of the overall load in the system. It is also notable that while the majority of the

blackout sizes are no greater than 25%, some critical contingencies still result in the loss

greater than 40%.
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Figure 7. Blackout size distribution in the IEEE 39-bus system.

In addition to the overall blackout size, Figure 8 illustrates the decomposition of

overall blackout size in single-bus and single-branch contingencies, respectively, where

different components of a blackout size are shown as stacked bars representing differ-

ent components in final blackout sizes. The first type of bars ∆Pdirect on the bottom is

the direct load loss on the victim buses; the second type of bars ∆Pinitial in the middle
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represents the load loss after the initial emergent re-dispatch right after the attack; fi-

nally, the last type of bars ∆Pcascade on top corresponds to the fraction of blackout sizes

contributed by the triggered cascading failures.
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Figure 8. Decomposition of blackout sizes from single-bus and single-branch contin-
gencies.

As shown in Figure 8(a), in single-bus contingencies the initial re-dispatch adds a

significant amount to the blackout size to the direct loss of load buses, which is observed

on most generation buses (Bus 30 to 38) and some load buses (Bus 6, 10, 16, etc). The

generation-load combined Bus 39 is the only exception as it carries the largest genera-

tion and load simultaneously in the system. As an equivalent bus of interconnection to

the rest of US/Canada, Bus 39 in this benchmark provides 15.88% of the generation and
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consumes 17.65% of the power in this system, resulting in a significant direct impact on

the system when it fails even without a cascading failure. Nonetheless, from Figure 8(a)

it is still shown that the cascading failure triggered by less loaded buses is responsible

for the most severe single-bus contingencies blackouts. Meanwhile, the type of bus is

not closely related to the eventual blackout size, as the most severe single-bus contin-

gencies (∆P > 20%) can be found on both load-only buses (Bus 6, 21, 24, 27) and

load-generator bus (Bus 31). In fact, because the type of a bus can be defined inter-

changeably by altering the net injection of the given bus without changing the overall

system dynamics, it does not have a definite influence on the eventual blackout size.

Instead, the decomposition of ∆P in Figure 8(a) has shown that cascading failure plays

a more important role in the final impact.

Similar observation can be found in Figure 8(b) for single-branch contingencies.

Although for branch contingencies, there is no direct loss of power ∆Pdirect on branches,

the re-dispatch still contributes to some blackout sizes that reach the similar scale as the

bus-contingency blackouts without a cascading failure. However, in the most severe

cases, the cascading failure is still the major factor in severe blackouts, which raises

some ∆P to nearly 50%. For both types of triggers, we have observed that cascading

failures contribute significantly in the major blackouts caused by a single-component

contingency.

In addition to the blackout size ∆P , we have also evaluated the number of load

buses affected in the cascading failures using DC-CFS. The number of load buses af-

fected by a cascading failure(∆NL) is shown in Figure 9 with both types of triggers.

The correlation coefficients of ∆P and ∆NL are ρpl,bus = +0.9365 for buses and

ρpl,branch = +0.9278 for branches, respectively. The results indicate a relatively high

correlation between the blackout size and the number of buses that subject to load shed-

ding during the cascading failures, which is reasonable as the bus with the minimal load
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will be directly tripped when generator ramping cannot achieve the load-generation bal-

ance.
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Figure 9. Number of affected load buses after (a) single-bus and (b) single-branch con-
tingencies, respectively.

As a summary of this section, from the simulation results and analysis above, the

DC-CFS proves to be a useful tool to understand the vulnerability of a power system

against cascading failures. Information on the final impact, cascading failure develop-

ment as well as contributing factors can be obtained more efficiently with the DC-CFS,

which is especially helpful if it is extended to a bulk power system or a detailed regional

grid that has a greater number of substations and transmission lines in the system.
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2.4 Comparative Studies

While the DC-CFS simulation shown above presented important information on

the development and eventual sizes of cascading failures, it is certainly critical to un-

derstand how precise these vulnerability assessments are in comparison to some more

complex models. As mentioned before, the DC power flow model is a proper represen-

tation of high-voltage low-load power grids [59] with a good balance between the com-

putational efficiency and model complexity. It certainly provides important information

of power system behavior in cascading failures. However, it does not consider the re-

active power and voltage characteristics in a complex power system, and a steady-state

assumption can fail to hold in the complex dynamics of a real power system. Therefore,

we presented a comparative study between the DC-CFS and Transient Stability Anal-

ysis (TSA) to understand the discrepancy and consistency between them for cascading

failure analysis. The TSA model is implemented in the Power System Analysis Tool-

box (PSAT) software, a popular open source toolbox for the research on both static and

dynamic analysis of power systems [72].

In addition to the IEEE 39-bus system shown in Figure 10, we also implemented

the IEEE 68-bus system in PSAT shown in Figure 11 as an additional benchmark. The

additional system is an extended representation of the New England and the New York

power system, with three buses as the equivalent of three external regions connected

to these two regional power grids. As an extension to the 39-bus system, the 68-bus

system has a significantly larger total load of 176.21 p.u., and variances of both power

generation and load consumption are also greater than the 39-bus system. This more

complex network can pose a greater challenge to the DC-CFS as discussed below. All

parameters used in PSAT can be found in publications for the 39-bus system [73, 74]

and the 68-bus system [75], respectively. There is no direct generation dispatch or load

shedding in PSAT, and branch tripping is simulated upon each occurrence of CFE iden-
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Figure 10. Cascading failures after Branch 13 in the IEEE 39-bus system is tripped.
Branches affected in the cascading failure are numbered and highlighted.

tified by the DC-CFS. Numerical comparisons between two models are presented below

to reveal their consistency and discrepancy in the simulation of cascading failures.

2.4.1 Case Study

To illustrate the consistency as well as the discrepancy between the DC-CFS and

the TSA model, a comparative case study of a single-branch contingency on the IEEE

39-Bus System is first presented as follows. We choose the cascading failure caused

by the tripping of Branch 14 (from Bus 6 to Bus 31) as a baseline for the comparative

study. This branch failure isolates Generation Bus 31 from the grid, which has been

shown previously as a severe cascading failure in the system. According to the DC-

CFS simulation result, after the cascading failure has been triggered, subsequent branch

tripping has been found on Branch 13, 9, 6, 1, and 23 before the failure terminates. We
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Figure 11. The IEEE 68-bus system in PSAT.

record this sequence of CFEs with the moments of occurrences in DC-CFS, and then

set up the simulation of identical branch tripping at the same moments in PSAT. The

location and occurrence time of these CFEs are shown in Figure 10. Then we observe

whether there is a consistent trend of power re-distribution and branch overloading, and

if so, to what extent this consistency holds during the cascading failure.

The corresponding line load rate distribution after each CFE is partially visual-

ized in Figure 12, and the initial system branch flow is shown in Figure 12(a). After

the initial CFE on Branch 14 (CFE 1), the active power transmission on Branch 13

increased immediately. This is because Branch 14 is linked to Load Bus 1 with a gen-

erator Bus 31, whose failure draws more power to supply Load Bus 7, Load Bus 8 and

Load Bus 4 through Branch 13 simultaneously, resulting in a severe overloading condi-

tion that forces the relay to trip Branch 13 in CFE 2 after 23.1 seconds. Figure 12(b)

shows the subsequent system line load rate change after the tripping of Branch 13, in

which the active power transmission on Branch 9 surged immediately. The reason is
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(a) (b) (c)

Figure 12. Transmission line load rate distribution (a) before cascading; (b) after Branch
13 is tripped; (c) after Branch 9 is tripped.

that Branch 13 and Branch 9 are two branches connected the load area (left) to the gen-

eration area (right). The tripping of Branch 13 significantly increased the Branch 9’s

transmission burden. As a result, Branch 9 was consequently tripped in CFE 3 at 28.7

seconds after the initial tripping. Until this point, simulation results remain consistent

between the two models despite that they are based on different power flow assumptions

and that the regulation is only performed in the PSAT simulation.

Upon the next occurrence of CFE, however, the system dynamics begin to change.

Although in Figure 12(c), the most severe overloading is still observed on Branch 6 for

both DC-CFS and TSA models. However, the system voltage has already started to

collapse after CFE 3, making following simulations of two models diverge into differ-

ent flow distributions. This discrepancy can be observed in the change of rotor angles

(Figure 13(a)) and bus voltage magnitudes (Figure 13(b)), respectively. Each curve in

Figure 13(a) represents a generator and in Figure 13(b) a bus in the 39-bus system.

As some bus voltages dropped to a relatively low value and some generators start

to desynchronize after CFE 3, the system became unstable as the bus voltages began to

oscillate till the end of the simulation. In practice, grid operator will trip some generators

to prevent further damage to the machines caused by desynchronization. As a result, the

branch line load rate distribution in simulation also began to diverge between these two
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models from the next CFE. Specifically, the active power transmission on Branch 16

increased dramatically in the TSA model, while the DC-CFS simulation suggested that

the next branch to be tripped should be Branch 1. As a summary, for this cascading

failure triggered on Branch 14, the steady-state assumption no longer holds after CFE 3

due to the significant change in the power grid dynamics. The importance of CFE 3 in

this example leads to the concept of the critical moment (CM) as an index of consistency,

which is described as follows.

2.4.2 Critical Moments

From the case study above, it is desirable to define the CM in a more generic way

for comparison between the two models. To define the critical moment (CM) numer-

ically, we refer to two principles of power systems, i.e., the rotor angle stability and

voltage stability as the criteria of CM.

Specifically, given the two following numeric criteria:

1. The maximal difference between any two rotor angles is greater than 10◦;

2. The voltage of any bus deviates from its original voltage in p.u. by 10%.

A critical moment (CM) is defined as the most recent CFE that occurs before the point

when either (1) or (2) is met. As an example, if criterion (1) or (2) is satisfied at a

moment τ between CFE k and CFE k + 1 in a cascading failure simulated by the DC-

CFS, then CFE k is selected as the CM after which the steady state assumption does not

hold for the DC-CFS.

It is notable that for most of the research on transient stability, stability criteria

can vary among different benchmarks and different methods, e.g., change of sign of

PEBS or an arbitrary value, such as π [76]. In this study, both thresholds are chosen

empirically based on the following consideration. For criterion (1), according to [24],

the angular difference depends on the power-angle relationship, where it demonstrates a
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Figure 13. The (a) rotor angles and (b) bus voltages after the initial tripping.

highly nonlinear characteristic. For large-disturbance rotor angle stability (correspond-

ing to small-disturbance or small-signal rotor angle stability), the time frame of interest

in transient stability studies is usually 3 to 5 seconds following the disturbance, i.e., the

most recent CFE before the divergence. In such a short time frame, it will be reason-

able to set “10 degrees” as the criterion to determine the critical moment. For criterion

(2), we refer to [23], which states that when the voltage drop below 85% to 90% of its

nominal value, more motors may drop out consequently and lead to a cascading effect if
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the original cause of voltage drop remains unsolved. Therefore, we choose the moment

when the voltage drops to 90% of nominal value, i.e., the 10% deviation, to determine

CM with criterion (2). For the case study, the CFEs and CM are marked in Figure 13 as

vertical dotted lines and solid lines, respectively.

Although the actual moment τ when one of the criteria is met can also be rendered

as a critical point in the simulation, by defining CM as a CFE that corresponds to a

failure event in the system instead of a continuous time value, it is more intuitive and

convenient to keep track of the CFEs. With the above definition, we have calculated the

CMs for the top ten single-component contingencies of both types on IEEE 39-bus and

68-bus system, respectively.

First, for the 39-bus system, the consistency and discrepancy are visualized with a

new figure called a Time-domain Difference (T-Diff) plot shown in Figure 14. In this

visualization, we selected the top-10 most severe blackouts of single-branch contingen-

cies according to the DC-CFS model and illustrated their normalized duration and CMs

in the bar graph. The occurrence time of each CFE in each cascading failure is normal-

ized by their overall duration, respectively. In this way, the horizontal bars represent the

series of CFEs for the top-10 cases in the time-domain. The corresponding blackout size

∆P , the total number of CFES (NCFE), the CMs and their actual time of occurrence are

listed to the right of the bar graph with the legends shown under it. The superscripts

next to CM indicate whether the criterion of rotor angle stability (marked with †) or

the criterion of voltage stability (marked with ∗) is met when the corresponding CM is

obtained.

As shown in Figure 14, the CMs of bus-contingencies on average are relatively

smaller than those of the single-branch cases. In other words, the duration in which the

two models are consistent with each other is relatively longer in single-branch cases.

This is reasonable as the tripping of buses usually does not follow the N − 1 security
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standard in cascading failures, and so they may lead to more significant damage to the

system stability and results in earlier CM than the branches.

Meanwhile, for some branch contingencies (Branch 28 and 38), consistency be-

tween the two models remains throughout the whole cascading failure process. In these

cases, the DC-CFS can be utilized for its computational efficiency in cascading failure

analysis. For the contingencies that did not result in a cascading failure (indicated by

Init.), there is no CM between the two models, because the system always stays in a

steady state after the initial contingency.

Results of CMs for the 68-bus system can be found in Table 1 with the same nota-

tion as in Figure 14. The top-10 severe contingencies all lead to subsequent cascading

failures according to the DC-CFS, and corresponding blackout sizes ∆P are compa-

rably larger than that of the 39-bus system. It is also notable that some single-branch

contingencies yield identical CMs as the single-bus contingencies in the 68-bus system,

as each of these branches is the only branch connecting the corresponding bus to the rest

of the power grid.

From Table 1, it is also observed that the CMs in single-bus contingencies are

relatively short compared to single-branch contingencies, which is consistent with the

39-bus system. However, although the total number of CFEs becomes greater in the 68-

bus system, the CMs of the top-10 single-branch contingencies turn out to be relatively

smaller compared to the 39-bus system. The major reason is that some generators (e.g.,

Bus 12, 13, 14, 15 and 16) are providing at least 10 p.u. of power to the rest of the

grid, and the load of buses is also significantly greater (e.g., 4 buses have load greater

than 10 p.u., and the maximal load is as large as 60 p.u.). This causes an extremely

imbalanced burden on a number of buses in the 68-bus system, while the rest of the

grid operates in a state with more redundancy. The contingencies triggered on these

transmission lines result in more severe damage to the system, and so the stability is lost
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Figure 14. Critical moments in the top-10 (a) single-bus and (b) single-branch contin-
gencies in the 39-bus system.

Note: “init.” denotes right after the initial dispatch, and “N/A” denotes the moment
does not exist. The superscripts next to CM indicate whether the criterion of rotor
angle stability (marked with †) or the criterion of voltage stability (marked with ∗) is
met when the corresponding CM is obtained.
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more easily compared to the 39-bus system where no generator therein has an output

greater than 10 p.u. and the maximal load is only 11 p.u.. In other words, as the CM is

defined by two stability criteria, it is thereby more likely to observe a smaller CM of a

given contingency if the contingency leads to a greater impact on the system’s stability.

As a summary, when the oscillation or disturbance is confined within a certain

range, the power flow based simulator can well approximate the power system behavior.

However, when cascading failures continue to develop, the power flow based CFS can

fail in capturing the actual power system behavior as the steady state assumption does

not hold anymore. In this case, TSA models are more suitable for the simulation of

power system behavior so that proper critical control action can be taken to address se-

vere power grid disturbances. For very large scale benchmarks with thousands of buses,

criteria that render a power grid has reached a system failure can also be considered an

alternative strategy to evaluate the impact or risk of cascading failures. For instance,

in the original CFS [45], the simulation of a cascading failure is terminated when the

blackout size reaches 10%, which can help limit the discrepancy caused by the loss of

dynamic stability in the system. The CM proposed in this chapter can be further devel-

oped and utilized to determine such threshold of blackout size accordingly to take the

advantage of the simulation efficiency of DC-CFS for bulk power systems. Meanwhile,

as there is still a certain degree of consistency between the DC-CFS and TSA models de-

spite the differences between steady and transient stability models, the DC-CFS model

can still be utilized for applications such as early stage intervention and mitigation of

cascading failures, if the system has been designed with sufficient stability margin, e.g.,

greater transmission capacity or fault tolerance, against these severe single-component

contingencies.
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Table 1. Critical Moments of Top-10 Contingencies in the 68-Bus System.

Rank Buses ∆P (%) NCFE CM (CFE #) CM (seconds)
1 17 81.84 12 6∗ 4.1
2 13 79.84 13 1† 1.7
3 12 70.79 14 1† 1076.5
4 16 62.37 8 1∗ 1.6
5 36 61.19 12 1∗ 0.8
6 61 49.58 14 4† 8.3
7 15 40.66 9 2† 10.8
8 51 38.11 4 2∗ 4.0
9 50 35.28 4 2∗ 4.0

10 14 30.85 5 1∗ 1.3
Rank Branches ∆P (%) NCFE CM (CFE #) CM (seconds)

1 74 79.84 13 1† 1.7
2 70 70.79 14 1† 1076.5
3 78 62.37 8 1† 1.6
4 45 51.27 13 2† 2.9
5 71 40.66 9 2† 10.8
6 56 33.82 4 2† 4.6
7 57 33.79 4 2† 6.2
8 72 30.85 7 1† 1.3
9 83 25.12 9 1† 5.1

10 8 19.58 3 2† 9.7

2.5 Chapter Summary

In this chapter, we implemented a modified DC power flow based cascading fail-

ure simulator to evaluate its utilization in the contingencies triggered by both bus and

branch failures. Simulations on the IEEE 39-bus system were presented to illustrate the

utilization of DC-CFS from multiple perspectives. Then simulation results of DC-CFS

were compared validated against the TSA approach with two benchmarks (IEEE 39-bus

and 68-bus system) implemented in the Power System Analysis Toolbox (PSAT). A new

concept, i.e., the critical moment (CM), is proposed and illustrated to measure impor-

tant consistencies and discrepancies between these two well-established methodologies,
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which aims to facilitate a more comprehensive understanding of cascading failures in

power systems.

Although built with only DC power flow assumptions, the DC-CFS is able to assess

the vulnerability of power grids in the early stage of cascading failures, as discussed in

the chapter. Informative details of cascading failure development can be revealed from

different perspectives including the size, the contributing factors and the duration of

cascading failures. However, as the DC-CFS is utilizing the steady-state assumption

to replace the complex transient dynamics of power systems, if the cascading failure

violates the power system dynamic stability principle, then the underlying steady-state

assumption behind DC-CFS will not hold and the simulator will fail to capture the power

system dynamics.

The critical moment (CM) presented in this chapter illustrates the strength and

limitation of DC power flow based steady state model in cascading failure analysis.

As a model with a number of simplifications of complex power system dynamics, the

DC-CFS certainly is able to acquire important information regarding the development

and final impact of cascading failures. However, as the discrepancy between these two

models emerges in cascading failure simulation when the impact to the system dynamic

stability becomes significantly large, the DC power flow based models shall be carefully

used to assess the impact of cascading failures after severe system contingencies. It is

notable that this definition of CM can be further utilized for comparisons between other

power system models, including the long-term stochastic models when proper timing

information is provided.

It is notable that the calculation of CM in this chapter still requires simulation of

TSA model that will increase the computation overhead. While the major contribution

of this chapter is to evaluate the discrepancy and consistency between two models rather

than to compete with pure DC-CFS on computation efficiency, it is desirable that CM

44



can be determined independently for real world applications. This will be the primary

focus of our future work. Also, some of the parameters, e.g., the choice of Tref and Fl

in the calculation of Olimit(l), the ramping rate r in the re-dispatch procedure, and the

branch capacity Cl of the benchmark system all have potential influence on the value of

CM [77, 69]. This reflects the complex nature of power system and cascading failure

itself, which will consist of our focus in the next stage to evaluate the significance of their

influence on CM. Furthermore, we will also consider an extension to the AC power flow

based cascading failure simulator (AC-CFS) and compare this complex power based

model to the TSA approach. Then a hybrid model of the AC-CFS and the TSA model

combining the strength of both models with proper visualization [78] can be beneficial

to power grid operators, on which the influence of more complex control policies and

preventative techniques like early warning signals [79] can be further developed.
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CHAPTER 3

Structural Vulnerability Assessment of Massive Blackouts

3.1 Chapter Overview

By its nature, the smart grid is a complex network of cyber and physical systems in-

teracting with each other. The electrical power infrastructure may be exposed to inherent

vulnerabilities rooted in its physical properties and topological connections that would

critically affect the development of a cascading blackout. Since the interconnections

require extensive planning and remain relatively stable after installation, the inherent

structural vulnerability in the power grid also has a long-term impact on the risk of mas-

sive blackouts, particularly if such vulnerability remain unknown to the operators under

normal operating conditions.

Moreover, it is notable that the threat of cascading failures can be intensified by the

growing cyber-integration. On one hand, the structural information of the grid could be

more easily accessible than the dynamic operating information processed in the control

centers; on the other, such structural information can still reveal critical locations and

components in the grid that could result in significant damage if exploited by malicious

attackers. Studies [80, 81, 22, 82, 6] have revealed that cyber assets and intelligence will

raise new challenges to the security of the smart grid. For instance, malicious attackers

can take advantage of potential access points at RTUs to plan intrusions with intelligence

collected from the intrusions [83, 84, 85]. With further knowledge on the potential

of cascading failures, attackers and terrorists can conceive critical attacks that could

result in massive blackouts [86]. Therefore, this chapter aims to develop models and

methodologies to understand the structural vulnerability with consideration of specific

physical properties, which is expected to contribute to both defensive strategies and

decision supports to protect the critical infrastructure.

The rest of this chapter is organized as follows. The complex network based ex-
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tended betweenness (EB) metric and the proposed EB-based simulator for cascading

failure vulnerability assessment are presented in Section 3.2. Simulation results and

analyses are provided in Section 3.3. A summary of the chapter will be provided in

Section 3.4.

3.2 Structural Vulnerability Assessment Based on Complex Networks
3.2.1 Complex Network Analysis for the Smart Grid

Complex network theories have been one of the most used tools to understand

cyber-physical system behaviors in the last decade [87, 35]. By definition, a complex

network refers to a network of interacting components with non-trivial properties [88],

which have propelled studies in communication networks, social networks, smart grid,

and transportation infrastructures, among others. Meanwhile, with increasing intercon-

nection of local networks, growing communication traffic, diversifying demands and

services, as well as emerging new technologies, complex networks in the real world are

also becoming increasingly sophisticated to operate and coordinate. Such complexity

has also lead to cascading failures in complex networks beyond the energy sector [89]

and draws growing interest from the research community [36].

Among the efforts to examine the structural vulnerability of power grids with com-

plex network theories, one of the popular approaches is to adopt well-developed con-

cepts, tools, and algorithms from graph theory and topological analysis [90, 91, 92]. In

contrast to traditional power system analysis, which requires a very detailed set of power

system operating point information and involves a large cost of non-linear calculations,

topological approaches utilized justifiable simplifications that require limited knowledge

of the structure and reduce the computational overhead without the dynamics.

However, as a complex network with unique physical characteristics, the power

grid encompasses unique features that pure topological methods can not generalize [93,

31, 94, 95]. For instance, a key difference lies in the nature of the load. In computer
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networks, e.g., the Internet, the load is defined based on the flow of information, which is

transmitted along a single path between the source and destination. However, in power

grids, the flow of electricity does not follow the geodesic shortest path from generation

to load. Instead, electrical power flows along all existing transmission lines throughout

the grid before being distributed to the consumers, regardless of the length of paths.

In addition, power flows follow the Kirchhoff’s Law, a fundamental basis in traditional

power system analysis [96, 97] but usually omitted in topological analyses. Considering

such trade-off, if complete information is inaccessible or computational cost remains

expensive, there is a strong motivation for both the power grid operator as well as the

potential malicious attacker to investigate structural vulnerability with integrating both

topological and power grid methods.

From the complex network perspective, the power grid can be regarded as a

weighted, directed map with two major types of interconnected components, i.e. nodes

and edges, referred to as buses and branches in the context of power grids, respectively.

Similar to the previous chapter, both types of contingencies are covered in this chapter.

As the failure propagation process is closely related to a system’s tolerance of fault,

this chapter also investigates the relationship between the final blackout size and the

tolerance factor of a system. The goal is to provide an integrative tool with a better

balance between accuracy and complexity to identify critical components from a struc-

tural perspective based on power system behavior under potential contingencies and/or

adversaries.

There have been extensive studies on the complex network security analysis within

the context of power grids. For example, R. Fitzmaurice et al. use a complex network

model to evaluate short-term risk-aversive dispatch policies in power systems [98]. Re-

searchers have also pointed out the relevant possibility that blackouts in a bulk complex

network system are first-order phenomena [99]. More recently, Y. Koç et al. introduce
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the entropy [100] in power system analysis, which has been utilized in other network

security studies [101]. Last but not least, spectral method has also been popular in topo-

logical analysis of complex networks [102].

On top of the aforementioned efforts to overcome the drawbacks of pure topolog-

ical measurements for the power grid, a recent study by E. Bompard et al. [103, 104,

105, 106] proposed an extended topological power-flow analysis using the Power Trans-

fer Distribution Factor (PTDF). In what follows, l, g and d denote a transmission line,

a generation bus and a load bus in the power grid, respectively. Correspondingly, L, G,

and D will denote the set of branches, generation buses and load buses, respectively.

3.2.2 Power Transfer Distribution Factor (PTDF)

The PTDF is a matrix of whose elements correspond to the power flow change on

a branch l when one unit of real power (1 p.u) is injected at a bus v and withdrawn the

slack bus. The matrix will be denoted as F in the rest of the chapter. By definition, the

magnitude of each element in F can be interpreted as the sensitivity to nodal power in-

jection of a transmission line, and its sign is the relative direction of the actual flow with

respect to the reference direction of the given branch. Based on the assumptions of bus

voltage magnitude and angle as well as transmission loss, there are two types of mod-

els to calculate the PTDF: the direct current (DC) model assumes lossless transmission

and pure real/active power injection in a system, while the alternate current (AC) model

considers the transmission loss on branches and the existence of reactive power [60].

The DC models have been widely used thanks to the simplified linear assumptions for

fast computation with relatively reliable accuracy [59], while the AC models, in general,

have better accuracy at the cost of complexity, as discussed in the operational vulnera-

bility assessment earlier in this dissertation. In this chapter, the DC-PTDF based model

is the primary focus in this structural vulnerability assessment, while the AC extension

will also be covered in comparison.
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3.2.3 Extended Betweenness

Combining the power-flow based PTDF with topological analysis, a new definition

of the load in the network can be introduced to analyze the structural vulnerability. The

re-defined load on each bus v, proposed by E. Bompard et al. and coined the Extended

Betweenness, involves three major steps:

First, the power flow sensitivity of branch l with respective to the pairwise unit

power transmission is calculated by:

fdg (l) = Flg − Fld, g ∈ G, d ∈ D, l ∈ L (5)

where Flg and Fld are the power flow occurred on branch l when a unit power is in-

jected on a generation bus g or a load bus d and withdrawn from a reference slack bus,

respectively.

Then, with the definition of power flow sensitivity, we can calculate the capacity

of power transmission between a transmission pair g and d. Specifically, because of

different sensitivities to power flow injection, a more sensitive branch will reach its given

power flow limit faster than less sensitive ones given the same capacity. Therefore, the

maximal power that could be transferred between any given transmission pair is limited

by the most sensitive branch in the whole grid. This assumption can be easily extended

to a more realistic case where the branch capacities are different. Assume that each

transmission line has a designed limit Pmax(l) measured in MW, the pairwise power

transmission capacity between g and d when the first branch in the grid reaches its

thermal rating is defined as:

P d
g = min

l∈L
(
Pmax(l)

|fdg (l)|
), g ∈ G, d ∈ D (6)

which is calculated for all pairs of generation bus g and load bus d in the system. In

other words, P d
g is a theoretical pairwise power transmission upper-bound between a

transmission pair due to the limit of branches.
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Last, the extended betweenness of a bus is calculated as the overall power trans-

mission capacity of the given bus v:

T (v) =
1

2

∑
g∈G,d∈D,l∈Lv

P d
g · fdg (l), g 6= d 6= v ∈ V (7)

where Lv is the set of branches directly connected to a bus v in the set of all buses V .

The product P d
g · fdg (l) is the power flow transmitted via branch l when power between

a transmission pair g and d is transferred at its pairwise transmission capacity. The

discount factor 1
2

is applied since the total power flowing into a bus is equal to the total

power flowing out.

The extended betweenness of a branch is defined similarly. As the branch PTDF

F has either a positive or negative sign according to power flow direction, the branch

extended betweenness of l is determined as the greater one between the absolute values

of total in-flows and out-flows:

T (l) = max
l+,l−∈L

{
∑

g∈G,d∈D

P d
g · fdg (l+),

∑
g∈G,d∈D

|P d
g · fdg (l−)|} (8)

where l+ and l− indicate fdg (l) with a positive sign and a negative sign, respectively.

It is notable that in [104] the extended betweenness is interpreted as a representation

of the total power transmitted on a branch l in the grid. However, in the power flow

theories, the positive and negative power flow on a branch will cancel each other; in this

case, the actual load is measured differently as the sum of both values. As the focus of

this chapter is to develop a CFS based on extended betweenness for cascading failure

analysis, we adopted the definition of T (l) as it was originally proposed, while further

modifications can be implemented to adapt to the power flow assumptions.

We adopt the extended betweenness as the load on each bus and branch because

of its strength to incorporate both topological and electrical characteristics of power

grids. Although the term extended betweenness resembles the concept of betweenness
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centrality in graphic theory and complex network studies, it should be noted that there

is a distinctive difference between them: the extended betweenness is not based on the

geodesic shortest paths. Although it is associated the idea of pairwise transmission flow,

the “extended betweenness” implies the overall power transmission capacity accord-

ing to a power flow based model; consequently, the measurement is closer to the real

power systems that purely topological models. In addition, this model utilizes the sen-

sitivity and flow limit on each branch to calculate the structural transmission capacity

as an index of load/importance, thereby it provides a better approximation on power

transmission than pure topological approaches. In summary, the extended betweenness

captures physical characteristics of a real power system that add to its robustness while

still retains the strength of security analyses of complex networks.

3.2.4 Extended Betweenness Based CFS (EB-CFS)

On top of the extended betweenness measurement proposed to assess the static

structural vulnerability of power grid, we also see the potential of developing a cascad-

ing failure simulator (CFS) with the metrics. The motivation is two folds: On one hand,

without a complete knowledge of real-time loading information, the extended between-

ness can be used as a more power-related approximation of load than pure topological

methods, and the overall loss of extended betweenness can be used to approximate the

portion of blackout size related to embedded structural vulnerability in power grids.

On the other hand, the extended betweenness is still merely a static structural measure-

ment that cannot fully consider the effect of consequent failure propagation in a massive

blackout. A further development of a CFS will help us better approximate the conse-

quence of power grid behaviors, including overloading and failure propagation triggered

by the initial contingency, so that we can better evaluate and understand the subsequent

impact that may cause the collapse of power transmission networks.

Based on the above considerations, we proposed an extended betweenness based
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CFS (EB-CFS) for structural vulnerability assessment. The proposed EB-CFS do not

depend on the complete real-time generation or load status of a given bulk power grid.

This allows power grid operators to assess the inherent structural vulnerability of criti-

cal components in cascading failures and can be computationally efficient even in bulk

power grids.

In the rest of this section, we will describe the iterative extended betweenness based

cascading failure simulator in details. The general procedure of the EB-CFS is shown in

the pseudo codes in Table 2, and details of the four major steps are described as follows:

1. Initialization

The first step is to setup initial status of all network components and related pa-

rameters. The capacity in the context of extended betweenness is usually calculated as

a function of the initial load of a given benchmark, which assumes that branches car-

rying heavier power transmission load will be designed to have greater capacity[45].

Therefore, we refer to our previous work [107, 69, 70] and assume there is a global

overload tolerance in a system, denoted as Tol. Numerically, this can be defined as

Tol = Cap(c)/T0(c), where Cap(c) is the capacity and T0(c) is the initial load (ex-

tended betweenness) of a component c in the given system. Note that by definition,

the Tol should always be larger than one, and it can also be viewed as the system re-

dundancy between the initial load and its maximal capacity. In reality, the loading of a

transmission network is dynamic which varies over time, resulting in different remaining

tolerance ratio even with a constant capacity. Therefore, to evaluate different possible

tolerances in reality, a numerical analysis on the relationship between tolerance and the

cascading impact will be evaluated. By varying the value of Tol used in THE simulation,

we can generate different situations of system tolerance to measure the vulnerability of

cascading failures for different system states.

To initiate a contingency, we simply screen the buses or branches in the grid and trip
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the candidate of interest from the original grid. Then the iterative process of cascading

failures below will be started in the EB-CFS.

2. System Update

The structure of a power grid will be changed after the initial contingency or a

component failure during the cascades. Consequently, the extended betweenness is re-

calculated to reflect the latest transmission capacity of the system. It is notable that

updates should be made through computations from the PTDF matrix F to the extended

betweenness T , as all intermediate parameters depend on the current network topology.

Whenever a new grid topology is set up, we will first recalculate the PTDF depending

on whether DC or AC model is chosen. Then, the branch sensitivity fdg (l) and the pair-

wise power transmission capacity P d
g will be updated to f ′dg (l) and P ′dg , respectively.

Afterwards, the power flow of branch l generated by a transmission pair g and d will

be changed to P ′dg · f ′dg (l). The extended betweenness T ′ at any given moment is calcu-

lated with Eqn. (7) and (8). Also, in the cases where the initially fully-connected grid

is broken down into disconnected islands, we will set up a new topology for each of the

sub-area and re-calculate the extended betweenness T ′ locally within each sub-area. As

a special case, if a new sub-grid contains no generation buses or load buses, by definition

the extended betweenness of all components in this isolated sub-grid will be set to zero.

3. Failure Identification

A failure that occurs on either a bus or a branch will affect other components in

the grid, but it may or may not result in a fatal overloading. The overloading degree, if

exists, becomes a critical index affecting whether an overloading is turning fatal. Hereby

we define the overloading ratio of a component c, denoted as r(c), as the extended

betweenness over the initial betweenness, i.e. r(c) = T ′(c)/T (c). It reflects the impact

of the previous failure of each component during the cascading process. As components
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Table 2. Extended Betweenness based Cascading Failure Simulator

Initialization: Calculate the initial extended betweenness T as a system’s initial
load with the corresponding capacity, which is a value set by the system tolerance
parameter Tol;
Initial contingency: Initiate a tripping and update the network topology;
while ∃ any tripped or failed component do

Step 1: Re-calculate the PTDF and the extended betweenness to acquire the
redistribution of load;

Step 2: Determine if any component is overloaded, and if this overloading is se-
vere enough that it exceeds the capacity, which is referred to as a fatally overloaded
state;

Step 3: Trip the fatally overloaded component from the grid and update the
network topology;
end while
Vulnerability Assessment: Evaluate the total loss ∆EB as the measurement of
structural vulnerability after the cascade.

in the system subject to a maximal degree of overloading ratio, they will be shut off and

disconnected if the upper-bound is reached. Therefore, we consider a component c is

fatally overloaded, or failed, if r(c) > Tol; if, however, an overloading occurs but not

fatal (1 < r(c) ≤ Tol), then component c is regarded as deficient but still in operation.

4. Component Tripping

For any failure occurs in the power grid due to the initial contingency or the fail-

ure caused by overloading, the network topology will be modified accordingly. In this

chapter, the following policy is applied to update the grid topology:

1. If a bus fails, no more power can be transmitted through this nodal connection

in the system, and so any branch connecting to it will also lose the transmission

ability. Therefore, for any bus failure, the bus itself, as well as all connected

branches, are removed from the topology;

2. If a branch fails, as a bus connecting to its end can still be linked to the remaining

system by other branches, the EB-CFS will only remove the failed branch from
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the network.

3.2.5 Assessment Metrics

In order to identify the most critical component, an assessment metric of structural

vulnerability is necessary. In this chapter, we use the loss of total extended betweenness,

denoted as ∆EB, to evaluate the vulnerability. The value is defined as the fraction of

total extended betweenness lost after the cascading

∆EB(c) =

∑
T ′(c′)−

∑
T (c)∑

T (c)
, c′ ∈ C ′ and c ∈ C (9)

where C is the initial set of buses (V ) or branches (L) according to the type of con-

tingency, and C ′ is the corresponding set of components in a stabilized power system

after a cascading failure. This metric can be more accurate than pure topological mea-

surements or extended betweenness alone, as it covers not only the initial structural

vulnerability but also the effect of potential cascading failures. However, it should be

noted that due to the combination problem, the feasibility of exhaustive search can be

significantly limited in N −k analysis if the order k or the size grid is greatly increased.

In this case, other techniques to improve the searching efficiency should be incorporated

accordingly.

3.3 Simulations and Results
3.3.1 Simulation Setup

The proposed method requires information on electrical properties of a power grid,

and so it will be tested on a modified IEEE 118-bus system [108]. Specifically, dual

branches connecting the same pair of buses will be merged as one, and the number

of transmission lines is thus reduced to 179. To decide the value of Pmax, we assign

the emergent thermal rating limits to all 179 branches as described in Table 3. These

values are obtained from the Appendix of [108] and will be set as constants during the

simulation.
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Table 3. The capacity of all 179 branches in IEEE 118-bus Benchmark

Branch ID Pmax (MW)
7, 9 1250
8 1000

36, 38, 51, 133, 134 750
3, 21, 31, 33, 50, 90, 91, 93, 94, 95,

500
103, 104, 112, 119, 132, 156, 176

All other branches 250

To compare the integrated cascading based metric against pure topological mea-

surements, two topological metrics, i.e., the connectivity loss (δC) and the change of

characteristic path length (∆λ) [94] are chosen for comparison.

First, the connectivity loss is defined as the average decrease of the percentage of

generation buses no longer connected to any load bus after the cascading failures:

δC = 1− 1

ND

∑
i∈D

N i
G(c)

NG

(10)

where NG and ND are the number of generation and load buses in the original grid,

respectively. N i
G(c) is the number of generation bus that can still be reached by bus i

after a component c after the imitated cascading failures from the grid.

Secondly, let λ0 be the characteristic path length of the original grid, i.e. the average

length of all pairwise shortest path from generation buses G to load buses D; also, let

λ(c) be the characteristic path length after a component c is taken down. Then, the

change of characteristic path ∆λ is defined as ∆λ = λ(c)− λ0.

To validate ∆EB as an effective structural vulnerability metric, we utilize the DC

power flow based cascading failure simulator (DC-CFS) from the previous chapter. The

DC-CFS calculates the total loss of load (in MWs) caused by the failure propagation af-

ter tripping of the top-ranking components for each metrics to validate the vulnerability

of components.
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3.3.2 Pre-cascading Analysis

As aforementioned, the system tolerance Tol is an important factor in the simu-

lation of cascading failures, as it decides to what degree an overloaded component is

considered “tolerable” with respect to its initial loading status. To determine a proper

range for Tol in simulation, we first consider a system that is designed to avoid any

cascading failure after a single contingency. In this case, there shall be a required fault

tolerance above which no overloading will be fatal and no cascading failure will occur.

This required tolerance, denoted as R, is defined as the maximum of overloading ratio r

immediately after any single bus/branch removal. Our simulation has shown that in the

DC-PTDF model, the maximum and mean values of R are 3.90 and 1.29 for the buses,

and 4.26 and 1.38 for the branches, respectively. In the AC-PTDF model, the corre-

sponding values are 2.96 and 1.28 for buses, 4.20 and 1.38 for branches, respectively.

These results help us refine the range of Tol to be within 1.0 and 2.0, which will be used

in the following simulations of this chapter.

With the refined range, we can also evaluate the number of effective cascades, in

which at least one component in the system other than the initial contingency is tripped.

Table 4 lists the number of tripping after single-bus and single-branch contingencies for

both DC and AC models of PTDF. The table also exhibits how the tolerance parameter

can affect the cascading failure simulation. For instance, after single-contingencies un-

der DC-PTDF model, when Tol = 1.5, only 23 of all 118 single-bus contingencies and

42 of all 179 single-branch contingencies can lead to a cascading effect. However, if

Tol is set to 1.2, the corresponding numbers will rise to 43 and 95, respectively.

3.3.3 Cascading Failure Analysis
Single-Bus Contingencies

For the single-bus contingencies, we perform an exhaustive search over the set

of loaded buses D, i.e., buses with non-zero load, to calculate their ∆EB under each
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Table 4. Number of cascade-initiating contingencies under different tolerances.

Single-Bus Single-Branch
Tol DC-PTDF AC-PTDF DC-PTDF AC-PTDF
1.0 91 113 166 178
1.1 68 74 129 140
1.2 43 40 95 95
1.3 35 32 70 70
1.4 26 25 55 52
1.5 23 23 42 41
1.6 18 19 35 36
1.7 16 13 28 25
1.8 9 8 18 17
1.9 7 7 14 13
2.0 7 6 13 12

tolerance. For each value of Tol, we consider the bus with the greatest ∆EB as the

most vulnerable. Values of ∆EB of the most vulnerable buses are listed in Table 5 for

both DC-PTDF and AC-PTDF model, and trajectories of ∆EB over the chosen Tol

range are plotted in Fig.15. These buses, i.e., Bus 30, 38, and 65 in the DC model and

Bus 30, 68, 65, 68, 69, and 80 in the AC model, reveal more structural vulnerability

than other buses due to their contribution to cascading failures. It is notable that with

DC-PTDF, the most vulnerable buses produce ∆EB above 80% only when Tol ≤ 1.8;

meanwhile, with the AC-PTDF model the loss of ∆EB will always stay above 80% for

all tested tolerance values. This reflects that the difference in system modeling will also

contribute to the eventual vulnerability measurements, a factor that shall be carefully

considered when determining the criticality of components.

There is another observation regarding the trend of ∆EB when Tol increases. In

Fig.15, although ∆EB varies with respect to different Tol, the maximal ∆EB that a

single-bus contingency can create is in general non-increasing with the increase of Tol.

However, we can also observe that ∆EB for each bus alone may not decrease mono-

tonically, a fact consistent with both PTDF models. Although intuitively, greater toler-
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Table 5. The most vulnerable buses in N − 1 contingencies

DC-PTDF AC-PTDF
Tol Bus ∆EB Branch Nfail Bus ∆EB Branch Nfail

1.0 30 100.00% 38 108 30 100.00% 38 108
1.1 38 95.16% 38 62 38 94.64% 38 62
1.2 65 93.77% 38 52 69 99.60% 38 55
1.3 65 91.06% 65 41 68 93.28% 65 44
1.4 65 89.61% 65 30 80 92.97% 65 36
1.5 65 88.62% 65 25 65 87.88% 65 28
1.6 65 84.71% 65 20 65 86.93% 65 24
1.7 65 85.05% 65 18 65 86.51% 65 22
1.8 65 84.58% 65 16 65 86.10% 65 21
1.9 65 51.70% 65 13 65 84.86% 65 18
2.0 30 34.10% 65 10 65 82.66% 65 17

ance/redundancy with respect to the initial load should increase the system’s resilience

and lead to the smaller impact of cascading, this observation is still reasonable due to the

complex mechanism behind cascading failure. In some cases, e.g. contingency on Bus

65, a slightly increased tolerance from 1.6 to 1.7 may not be able to reduce the loss of

load across the whole grid, as the load will be redistributed elsewhere in another region

of the 118-bus system that has less transmission capacity. As a result, this can cause

more severe overloading in the new area and result in greater load loss.

Finally, the number of failed components (Nfail) after cascading failures is pro-

vided for the most vulnerable buses in Table 5. While Nfail is correlated to the cas-

cading failure process and thus the value of ∆EB, it is noted that it drops significantly

when Tol increases. Meanwhile, ∆EB remains relatively high under most Tol tested.

This discrepancy can be interpreted by the varying load on different buses, which will

greatly influence the cascading effect but is absent in the measurement of Nfail. In prac-

tice, even when there is only a small number of failed components in the grid, the power

system can fail to maintain stability after the loss of some critical buses.
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Figure 15. ∆EB of the most critical single-bus contingency in IEEE 118-Bus system
according to (a) DC-PTDF and (b) AC-PTDF model.

Single-Branch Contingencies

In this part, we further utilize the EB-CFS for the assessment of N − 1 branch con-

tingencies. Similar to the single-bus scenario, the most vulnerable branches identified

by ∆EB are presented in Table 6. To illustrate the impact of Tol, the values ∆EB of

all the branches identified are plotted as bar graphs in Figure 16. The IDs of the most

vulnerable branch for each value of Tol are shown on top of the corresponding bar of

∆EB, respectively.
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In Figure 16, the maxima of ∆EB in single-branch contingencies generally de-

creases with an increasing system tolerance; but for specific cases, the cascading failure

caused by single-branch contingencies can still yield an increase of ∆EB within the

given range of Tol. This is similar to the case of single-bus contingencies, where a

greater tolerance re-distribute the load and re-directs the cascade into sub-regions with

unexpected overloading. Branches in this new overloaded area will lead to increased

loss overall. From Fig.16(a) and Fig.16(b), ∆EB of Branch 93 and 100 in both PTDF

models remain comparatively greater than other branches with a larger Tol, demonstrat-

ing consistent vulnerabilities across both models. With a further look into the structure,

Branch 93 connects Bus 38 to 65 and Branch 100 connects Bus 65 to 68; all these

buses have also been consistently identified as the most vulnerable buses in single-bus

contingencies previously.

It is notable that for the larger tolerances, the values of ∆EB after single-branch

contingencies can be greater than those after single-bus contingencies. For instance,

in DC-PTDF model, when Tol = 1.9 the maximal branch ∆EB is 65.02% (Branch

93), while the maximal bus ∆EB drops to 51.70% (Bus 65); similar observations are

also found with Tol = 2.0 in both models. Recall that in the pre-cascading analysis,

the mean and maximum of required tolerance R for branches are also greater than the

corresponding values of buses. These consistent observations suggest that the loss of

some branches can be more critical than the loss of buses even in the presence of a

larger tolerance.

Finally, from Table 6, the number of failed branches Nfail after losing the most

vulnerable branches also decreases drastically when Tol is increased. It is also shown

that a small number of critical branch failures in the cascading process can nevertheless

result in a severe disturbance or outage in the power grid.
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Table 6. The most vulnerable branches in N − 1 contingencies

DC-PTDF AC-PTDF
Tol ID Max ∆EB ID Max Nfail ID Max ∆EB ID Max Nfail

1.0 36 100.00% 36 170 98 100.00% 54 174
1.1 93 92.05% 93 82 36 96.86% 100 106
1.2 76 90.18% 41 70 51 93.91% 93 64
1.3 135 79.04% 142 48 134 97.81% 21 57
1.4 30 72.43% 36 35 138 87.13% 36 52
1.5 100 68.67% 94 29 26 88.12% 26 58
1.6 100 66.71% 98 29 94 86.15% 94 37
1.7 93 66.33% 94 23 94 78.53% 98 35
1.8 93 68.42% 54 18 100 64.17% 8 17
1.9 93 65.02% 121 15 93 64.89% 121 16
2.0 93 64.18% 121 17 93 89.86% 121 16

Influence of Tolerance

In previous discussions, a global factor Tol is used as a criterion to determine the

system tolerance of fatal overloading in the EB-CFS. This results in overload tolerance

proportional to the initial value of extended betweenness for each bus/branch. Mean-

while, for transmission lines in a real power grid, it is common that the actual capacities

are designed into a small, finite set of categories according to transmission requirements.

Therefore, this part will also discuss another setting where the tolerance are preset inde-

pendently of the initial EB. In this setting, a constant threshold TolU is used to determine

the tolerance of EB after redistribution during the cascades. The single-branch contin-

gency with DC-PTDF model will be used as an example to analyze the influence of

tolerance.

Specifically, the universal tolerance TolU is calculated as the product of the maxi-

mal T in the initial grid and its corresponding tolerance:

TolU = max
l
{T0(l)} × TolM (11)

where TolM is the tolerance factor with respect to the maximal initial extended between-
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Figure 16. ∆EB of the most vulnerable branches under (a) DC-PTDF and (b) AC-
PTDF models, respectively. The most vulnerable branch IDs identified under each Tol
are labeled on top of the corresponding bars.

ness that also guarantees no branches are overloaded under TolU .

Using TolU as a control variable, the most vulnerable branches under different

TolM become significantly different: for TolM = 1.0, the most vulnerable branch is

Branch 108, and its ∆EB is merely 5.40%. For ∀TolM ≥ 1.1, the most vulnera-

ble branch is always Branch 30, whose ∆EB = 10.82%. Further investigation into
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these two tolerance intervals showed that Branch 108 is the most vulnerable when

TolM ≤ 1.07, while it is replaced by Branch 30 when TolM ≥ 1.08. In the latter

case, the global capacity TolU is sufficiently large, so that there is no cascading fail-

ure triggered by single-contingencies in the 118-bus system. As a result, the majority

of ∆EB are only contributed by the direct loss in the initial contingency. Meanwhile,

both the global constant capacity and the global constant tolerance carry a certain level

of simplifications of branch capacity in reality. Since a generally accepted cascading

failure model has not been established yet [34], further improvement on the modeling

of capacity in EB-CFS can be helpful in understanding the complex power grid security

against cascading failure threats.

Run-Time Analysis

The complexity of a CFS poses a constant challenge to cascading failure analysis

in practice, and thereby a run-time analysis is provided herein for the proposed EB-CFS.

The complexity can be viewed as four-fold from the top down perspective:

1. The number of system tolerance (NTol) to be evaluated;

2. The number of components in a given grid (Ngrid) and the number of failures as

the initiating events (k).

3. The run-time of a cascade O(cascade), i.e., the overall number of failures (Nf )

occurred in a complete cascading process;

4. The run-time to update extended betweenness T for each occurrence of a failure.

It can be roughly approximated by NG × ND × NL × O(T ), where O(T ) is the

approximate computational complexity of calculating the extended betweenness

for a given component.

Among these four levels of complexity, Nf is the most difficult to obtain analyt-

ically as it depends on the structural topology (connectivity and scale), the electrical
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property of power systems, and the specific contingency initiated. These dependencies

render it infeasible to express Nf in an explicit closed form. Nevertheless, if we only

consider single-contingencies (k = 1) and assume that the complexity of the worst case

to simulate a complete cascading failure is O(cascade), then the overall complexity

O(EB-CFS) can be approximated by O(EB-CFS) = NTol ×Ngrid ×O(cascade).

Although an analytic and explicit form of the complexity of EB-CFS is difficult

to obtain, we can still acquire empirical run-time information of the exhaustive search

approach in the simulation. Specifically, we implemented the EB-CFS in MATLAB

2010b on a Windows 7 64-bit operating system, with 8 GB DDR5 memory and Intel

Xeon W3565 3.20 GHz quad-core processors. The average run-time is obtained from

100 runs of the exhaustive search of single contingencies in the IEEE 118-bus sys-

tem. The run-time of each complete search, denoted as RT (Run), is recorded along

with the average run-time per each given tolerance RT (Tol) and per each contingency

RT (Contingency). The results are shown in Table 7 with corresponding types of con-

tingencies and PTDF models. Note that as RT (Run) is obtained from 100 runs while

11 Tol values are tested in each run, RT (Tol) is the average of 1100 samples, and

RT (Contingency) is the average of 129,800 samples of single-bus contingencies but

the average of 196,900 samples of single-branch contingencies, respectively.

With the information of RT (Contingency), to simulate all the 118 single-bus

contingencies in DC-PTDF model with Tol = 1.0, 1.1, ..., 2.0, the average run-

time of a complete exhaustive search can be approximated by NTol × Ngrid ×

RT (Contingency) = 11 × 118 × 0.116 = 150.57 seconds, which is very close to

the actual run-time per search, i.e., 151.22 seconds. Similarly, the estimated overall run-

time for single-branch contingencies in the DC-PTDF model is 329.07 seconds, while

the actual run-time is also very close as 329.06 seconds.

According to the second row of Table 7, for the grid operator, if the tolerance of
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Table 7. Average run-time of EB-CFS for single-contingencies.

Run-Time (sec.) DCbus ACbus DCbranch ACbranch

RT (Contingency) 0.116 1.318 0.167 1.858
RT (Tol) 13.75 155.48 29.92 332.67
RT (Run) 151.22 1,710.26 329.07 3,659.33

the 118-bus system is known beforehand and an initial contingency can be instantly de-

tected, then the EB-CFS can provide a decently fast assessment in less than two seconds,

although the AC model takes much longer than the DC model. However, it should be

noted that if the tolerance is unknown or a complete evaluation of all possible contin-

gencies is requested in real-time, some fast selection algorithms or parallel computing

techniques should be incorporated to improve the computation efficiency of the EB-

CFS model. Meanwhile, to perform a fully online screening and evaluation for a bulk

energy system, which typically consists of over ten thousand substations and branches,

an exhaustive search for all candidates and tolerances will still be cost-prohibitive and

advanced techniques shall be developed.

Validation of EB-CFS

This section will validate the ∆EB as a vulnerability measurement, using single-

bus contingencies as an example. Specifically, we validated the EB-CFS with the power

flow based DC-CFS described in Section 3.3.3 and compared the actual size of blackouts

after the most vulnerable buses with the topological metrics.

First, with the two topological metrics δC and ∆λ for comparison, we select the

loaded buses with the largest δC and ∆λ as two candidate sets of single-bus contingen-

cies, respectively. A third candidate set is formed by the most vulnerable buses identified

by ∆EB. Note that we did not choose zero-loaded Bus 38 as a candidate because it is a

transmission bus serving as a transitional transformer connected by only two branches,

which can cause no outage without being actually loaded.
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Table 8. Validation results of the EB-CFS

Bus ID∆EB ∆P Bus IDδC ∆P Bus ID∆λ ∆P

80 476.2 8 449.2 65 390.2
65 390.2 100 262.9 69 380.2
69 380.2 110 153.2 30 236.3
68 238.2 12 84.2 49 203.2
30 236.3 85 61.2 70 66.0

With the selected candidate sets, we simulated contingencies on each candidate

individually in the DC-CFS and then measured the blackout size ∆P (loss of real power

in MWs). The validation results are shown in Table 8, where the subscripts denote the

corresponding metric used to select the candidates. The IDs are sorted according to ∆P ,

respectively. From the results, ∆EB successfully identifies Bus 80, which is the most

vulnerable bus in all candidate sets; meanwhile, other candidates chosen by ∆EB also

have greater blackout sizes than the buses selected by δC and ∆λ. Moreover, among

the buses chosen by Nfail from Table 5, Bus 65 ranks as the third most vulnerable bus

in terms of ∆P , as shown in Table 8.

It is notable that none of these approaches require real-time, dynamic loading, or

generation information of the system. The critical components can still be located with-

out real-time information of power system dynamics. From a potential attacker’s point

of view, the structural information still reveals critical intelligence to design effective

attack schemes, which calls for better protection of this information.

In summary, the validation above has shown that the EB-CFS can effectively eval-

uate the structural vulnerability without the knowledge of dynamic operating points.

The proposed approach outperformed the topological measurements in comparison in

the task of identifying more vulnerable components, which attributes to its ability in

capturing the electrical characteristics in vulnerability assessment.
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3.4 Chapter Summary

This chapter proposed an extended topological vulnerability assessment approach

for cascading failure analysis. Based on the electrical property of extended betweenness,

we proposed an integrated cascading failure simulator to assess the structural vulnerabil-

ity of both bus and branch contingencies. To consider the complex power transmission

and the power loss on transmission lines, we also incorporated an AC model in the

cascading failure analysis. Simulations on the IEEE 118-Bus system demonstrated the

effectiveness of EB-CFS in revealing structural vulnerability and were validated on the

DC-CFS presented in the previous chapter. Discussions regarding the

According to the simulation results, the proposed extended topological approach is

able to assess the vulnerability of power grid components in cascading failures with only

limited knowledge of dynamic real-time information of a power system. Based on the

simulations and discussions, the proposed approach is not only helpful to evaluate the

vulnerability of components that pose most threats to the power system; it is also useful

to facilitate the understanding defense and protection of a real world complex network

systems like power grids by further developing better strategies based on potential and

feasible threats.

In this chapter, the tolerance is a global constant across the power grid in the simula-

tion. Some simulation results show that the vulnerability of branches measured at a low

system tolerance can vary to a large extent when the tolerance is increased dramatically.

This calls for future work to improve this model with less tolerance dependency, and

some work has been published [70, 109, 110, 111]. In addition, fast multi-contingency

screening methods and intelligent attack strategies can also benefit from the EB-CFS in

further security and resilience investigations of the smart grid and other critical infras-

tructures.
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CHAPTER 4

Multi-Contingency Analysis of Concurrent Attacks with Self-Organizing Maps

4.1 Chapter Overview

The smart grid integrates two-way communication into system planning and oper-

ations [112], where the control centers rely on the supervisory control and data acquisi-

tion (SCADA) systems to monitor and operate the grid. The cyber-physical structure, as

illustrated in Figure 17 [113], has been shown vulnerable to cyber-attacks, physical sab-

otages [12, 80], as well as cyber-physical attacks whose surfaces and targets are across

both domains. While the former two malicious actions are intensively investigated by

information security and power system security experts, the following three chapters

will focus on the cyber-physical attack that targets control commands and measurement

data to inflict physical blackouts from the cyberspace.

This chapter focuses on control attacks that manipulate or forge control commands

to maliciously trip targeted substations and lines remotely [20, 114]. When tripping

commands are issued concurrently, anN−k scenario occurs whereN is the total number

of substations/lines in the grid and k is the number of victims being tripped. We refer

to this as the current attack scheme. As aforementioned, this is usually a worst case

scenario but less prepared due to the rarity of such events in the absence of malicious

attackers and the cost to screen all possible combinations [115, 116]. However, given

the threat of cyber-attacks, we assume this as a “what-if” scenario and will look for

effective and efficient methods to identify the potential attack vectors in a large-scale

interconnected power grid.

Specifically, this chapter proposes an SOM-based pre-clustering method for multi-

contingency analysis of bulk power grid blackouts. The method utilizes a sub-grid ap-

proach that outperforms load-based ranking of an entire grid and reduces the complexity

of simulation compared to traditional N − k contingency analysis. Simulations are car-
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Figure 17. Potential attacks on the status/analog data in the smart grid.

ried out on the Texas grid with over 5,000 substations and the effectiveness will be

demonstrated in multiple attack scenarios.

The rest of this chapter is organized as follows: Section 4.2 first reviews the known

threat of concurrent attack schemes. Section 4.3 describes the self-organizing map

(SOM) algorithm for clustering and the multi-contingency analysis based on the SOM.

Section 4.4 describes the simulations set up on Texas benchmark grid with comparisons

to both traditional load-ranking based scheme and K-means based clustering scheme;

the result shows that the proposed method effectively finds stronger attack vectors. Fi-

nally, a chapter summary is provided in Section 4.5.
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4.2 Concurrent Attack in Smart Grids
4.2.1 Concurrent Attack Schemes

Attacks in the smart grid are commonly assumed to be launched concurrently in

current literature, mostly due to its model simplicity and potential impacts [6]. Such

attacks can exploit different aspects of vulnerability in the smart grid: malicious data

attacks [84, 117, 118] inject undetectable false data into the state estimation to mislead

grid operations. Interdiction analysis [86, 119, 120] extends traditional line contingency

into interactive attacker-defender scenarios. Cascaded attacks [37, 121, 122, 123, 124]

evaluate the risk of cascading outages triggered by attacking a small set of components.

Time synchronization attacks [125, 126, 127] target the critical temporal information

and synchronization of measurements for grid operation. These attack scheme studies

aided traditional power grid contingency and stability analysis by revealing security

concerns that are usually outside the scope of normal operating dynamics, random faults,

and major disturbances due to extreme natural events.

4.2.2 Risks of Massive Blackouts under Concurrent Attacks

Attackers of power control systems can create a catastrophic consequence when

taking advantage of the cascading blackout vulnerabilities [128]. The targets are not

limited to a single component in cyber-attacks, and the compromise of multiple com-

ponents will trigger a major disturbance that can easily result in cascading blackouts.

As the grid are merely protected under N − 1 security, it is important for both secu-

rity and forensic experts to understand the N − k vulnerability under intelligent and

informed attacks. To date, it remains a complex challenge to thoroughly examine the

grid vulnerability under multiple coordinated attacks [6].

Meanwhile, we can recall that in bulk power grids it is increasingly difficult to

perform N − k security analysis due to the increase of computational complexity. Re-

searchers have therefore been looking for better approaches to balance between the cost
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of precise power grid representation and the efficiency of security analysis. A common

practice is to perform heuristic or hierarchical pre-processing [45, 129] to reduce the set

of interested targets before conducting the N − k contingency analysis for a limited set

of components.

To identify the most critical victims, load ranking has been frequently used as a

vulnerability index [107, 129]. As a fundamental electrical characteristic, the load plays

one of the most critical roles in the analysis of power grid security [130, 70]. Mean-

while, topological information of the power system can be utilized to support the study

of power system security from the perspective of its spatial structure. However, neither

the spatial topological feature nor the electric characteristics alone are sufficient to pro-

vide a comprehensive evaluation for failure propagation; it is possible to combine the

spatial features and the electrical characteristics of the power grid in the design of a cas-

caded attack. Such attack can be beneficial to the attackers who can only access limited

information such as the structure of the power grids, which is important to understand

for the grid operators and defenders. In this chapter, we will propose a solution to inte-

grate the load ranking with an effective clustering method that will help refine the range

of search and provide a powerful tool for the cascading analysis.

In this chapter, we are interested in bulk power grids, which consist of thousands of

substations, power plants, transmission lines and other auxiliary facilities, posing ma-

jor challenges to traditional screening methods. Performing simulation over these large

grids with great topological complexity will cost high in computation and result analy-

sis. For instance, in N−k contingency analysis, an exhaustive search for k most critical

substations in a power grid with N substations leads to a problem of combinations,

which means for k = 4 and N = 5, 000 it will request simulating the cascading pro-

cess for approximately 2.6 × 1013 different combinations of substations. Therefore, an

effective and efficient modeling of the power system is required to simulate its behavior
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when multiple substations are attacked in a large electricity transmission network.

To focus on the effectiveness of the method with lower computational cost, we will

model the power grid as a topological network [107], which can effectively represent

the high-level power system behaviors with relatively low computation overhead [131].

Thanks to the efforts of numerous researchers, there are many topological network mod-

eling available for the study of power grid security. Petri-net [132, 133], as an example,

is a powerful model which can be used to model the coordinated attacks simultaneously

happened in both cyber and physical space [134], or be employed to detect and identify

the fault or failure in smart grid [135]. However, the application of this method could be

limited to relatively small power systems, due to the prohibitive costs of manpower and

computation for an accurate model of the bulk power grid infrastructure. Another popu-

lar method is to model electrical power systems into a Bayesian network [136, 137, 138],

incorporating graph model with probabilistic functions for load prediction and the fault

diagnosis in the power grids. Unfortunately, in large power transmission systems, the

Bayesian modeling also faces similar difficulties as the Petri-net. The reason is that a

bulk power system may contain thousands of substations and transmission lines, and

each of them subjects to various generation, relay, thermal, and weather conditions, ex-

posing significant challenges to the computation of conditional probabilities for every

component in the power grid. Considering the effectiveness and efficiency in analyzing

large scale networks, using simplified topological network models based on complex

network analysis [36, 139, 140, 141, 93] can be an appropriate alternative that satisfies

our requirements on power system models.

In real world cascading cases, although there may be an area with a cluster of highly

condensed grids, e.g. metropolis like Los Angeles, Houston, etc., one can still find

that the most critical components are not necessarily neighbors to each other in terms

of spatial distance. The cooperative effect of substation failures occurred in distance
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can result in a strong impact on the power grid as well. Hence we can pre-cluster the

substations into several groups based on their spatial locations and then perform analysis

by studying the top-loaded substations in each of the clusters. By using this method,

we utilize the spatial features of the power grid to help analyze the electrical system

behavior in cascading failure scenarios. This integrated approach is implemented by

the utilization of the Self-Organizing Map (SOM), a popular and robust method among

the clustering approaches [142]. It is an effective unsupervised approach to cluster and

abstract data based on its input features.

4.3 Self-Organizing Map-Based Multi-Contingency Analysis
4.3.1 Self-Organizing Maps (SOM)

The SOM is a classic neural network proposed by T. Kohonen and has been widely

applied in clustering, classification, and visualization. It is an unsupervised iterative

training approach that projects and visualizes high dimension feature space onto a low

dimensional (usually 1-D or 2-D) lattice of weighted neurons [143, 144, 145].

While there are a few SOM-based clustering algorithms developed for other stud-

ies, in our work we implement the fundamental non-hierarchical SOM and it turns out

to be very effective in finding the vulnerable set of substations in the grid. To make use

of the spatial features, we use the spatial location of substations as the input feature of

SOM, and a list of cluster IDs will be returned as the output ready for further cascading

analysis. Also, the SOM lattice in this chapter is a square lattice which hasN neurons in

total, and every neuron has two features, i.e. the X and Y coordinates, which carries a 1-

by-2 SOM weight vector on each of them. The detailed procedure of SOM initialization

and training is described in the following subsections.

Initialization of the SOM

There are many weights initialization approaches for SOM, two of which are tested

in our simulation, i.e. the linear initialization approach using greatest eigenvectors, and
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the random initialization based on uniformly distributed probability density function.

The first approach is more widely used since it effectively utilizes the information

from the input space to initialize the weights of SOM neurons [146]. The weights are

selected from the linear subspace spanned by the N largest eigenvectors, i.e., the first

N principal components. N is the desired number of neurons on SOM lattice, which

is also the number of initial victims in the attack scheme. By using linear initialization

we start from the same initial weights in each of experiments, which is beneficial to the

cascading analysis comparing to the random initialization approach.

The random initialization is implemented as a comparison to the linear initializa-

tion. Though it is also able to identify a victim set which could be more vulnerable

than the load-ranking and other clustering method based approach, it introduces another

randomness other than the random sampling, which unnecessarily adds to the complex-

ity of our algorithm. Therefore, we only use it to prove the robustness of SOM-based

clustering method for failure cascading analyses.

In addition to the initial weights, the total number of iteration Titr, the initial values

of the SOM training rate η0, a neighborhood function H(τ) with size τ0 will also be set

up during the initialization for the training process. The details are discussed in Section

4.3.1 and Section 4.4.1, respectively.

Training of the SOM

After the initialization, an iterative process will start to train the SOM lattice. The

training process can be divided into two stages: a rough training stage with a large initial

training rate and a neighborhood radius decreasing radically, followed by a fine tuning

stage with both parameters being tuned slowly and smoothly.

In each iteration, a substation will be randomly selected and its coordinates pre-

sented as the input of SOM. Then the following process will be performed:

1. Find the best matching unit (BMU) on the lattice. The BMU is the neuron whose
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weights yield the smallest distance D in the feature space to the current input;

2. Update the kernel function H(σ), where σ is the neighborhood size determining

the Euclidean radius of influence of current BMU on the lattice;

3. Gradually decrease the SOM training rate η to refine the speed of weight tuning;

4. Update the weights of neurons W according to the latest value of H(σ) and η;

Details of these steps are as follows: First, for each sample presented, its distance

D to all neurons in the feature space is calculated by:

Dij = ||XS(t)−Wij(t)|| (12)

where XS(t) is the current sample at tth iteration and Wij(t) is the weight vector of the

neuron on ith row, jth column on the lattice. The BMU is the neuron corresponding to

the minimum of Dij .

Then, the Gaussian function is selected as the kernel or neighborhood function for

our model. It is a symmetric function that decreases on both sides away from its center

peak:

H(σ) = e−δ
2/2σ2

(13)

where δ is the distance between neurons on the 2-D lattice.

The Gaussian kernel is a mask function to adjust the weights of neurons differently

based on their distances to the BMU. Neurons closer to the BMU will be given higher

mask value so that when their weights are updated, they will be moved more toward the

BMU than more remote neurons on the lattice. During this process, the shape of the

lattice will be constantly changing each time a new sample is provided, and the neurons

will adjust their locations in the feature space according to the density of input feature

distribution. Note that the distance measured on SOM lattice δ is the geometric distance,

and the distance in the feature space D is the normalized spatial coordinate distance.

77



Both τ and η decrease exponentially over training iterations, as in (14), so that the

training will slow down over time, changing from a quick and rough beginning stage to

a slow and smooth fine tuning stage:

σ(t) = σ0e
−t/τ1 (14)

η(t) = η0e
−t/τ2 (15)

where t is the number of current iteration, τ1 = 100/log(σ0) is a constant time factor

to refine the shrinking rate of σ, and τ2 is a pre-set number of iterations that divides the

stages of rough training and fine tuning.

Once the parameters are updated, the weights of neurons will be adjusted accord-

ingly. The updating value is masked by H(τ) so that the weights of neurons closer to

the current BMU will be modified more:

Wij(t+ 1) = Wij(t) + ∆Wij (16)

∆Wij = η(t)H(σ)(XS(t)−Wij(t)) (17)

where Wij(t) and XS(t) are the same as in equation (12).

When the SOM training ends, the neurons will settle at their own final locations in

the feature space, and each of them represents a centroid of the clusters. Then, measured

by the Euclidean distance, each substation in the network will be assigned a cluster ID

of its nearest neuron. The most loaded one from each cluster will be selected to produce

an initial attack vector, which combines the electrical features (load) as well as spatial

features (distance) for the following cascading analysis.

4.3.2 Multi-Contingency Analysis with SOM

In this subsection, we will introduce our topological model of the power grid and

cascading failure In order to present the power grid as a topological network, there are

a few assumptions to be specified.
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First, a substation in our power grid cascading model is referred to as a node,

regardless of its type as a generator, a load, or simply a transmission substation; a

transmission line which connects one substation at each end will be regarded as a

branch of the network. Hence the power grid is regarded as a bidirectional unweighted

graph [129, 93, 90], a simplification that helps to reduce the computational cost signifi-

cantly.

Second, we will define the load and fault tolerance of the power system, as the

process of failure cascading relies heavily on these two factors. From studies of high-

level power grid structure [32, 54, 130], the load of a given node is highly related to the

connectivity or centrality of its neighbors, which means that a node connecting to more

neighbors, or whose direct neighbors have greater connectivity, will be more likely to

carry greater portion of load in the power delivery. In this chapter, we follow [122] to

define the load of a node as the product of its degree and the summation of the degree

of all its neighbors. Let Deg(v) and Nbr(v) be the degree of a given node v and the set

of neighboring nodes of v, respectively, then the load for each node v, denoted as L(v),

is calculated as follows:

L(v) = Deg(v)
∑

Deg(n), n ∈ Nbr(v) (18)

When a victim node is attacked, its load will be proportionally redistributed to its

neighbors according to equation (19). The load of each active neighbor of the victim

will be updated as follows:

L′(n) =
L(n)∑
L(n)

L(v), n ∈ Nbr(v) (19)

Affected by the redistribution, surviving nodes in the vicinity of a failed node can

be heavily overloaded and fail to operate as before. So, considering a non-recoverable

scenario, when a node is overloaded to a certain degree, it will be regarded as fatally

overloaded and cut off from the network, and all the branches that directly linked to
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Round #1

Round #2

Round #3
Victim Nodes

Cascading 
Failure

Figure 18. Illustration of a cascading tree following an attack.

it will also be disconnected. The threshold of overloading ratio when a node fails is

referred to as the system tolerance, and currently, we only assign a universal system

tolerance, denoted as T , for all the nodes in the network. The failure propagation will

continue as long as new fatally overloaded nodes emerge in the grid, and eventually,

it will lead to a cascading failure across the network. If the initial victims are well-

selected, the malicious attacker will be able to create a large scale or fast propagating

blackout in the power system.

Finally, when a number of nodes are failed, we use the concept of “round” to help

to describe the progress of failure cascading. The definition of a round is illustrated in

Figure 18. The very first set of victims forms the nodes failed at first round. Then the

nodes failed due to the failure in the first round will be regarded as the victims of the

second round, and so forth. In this way, nodes failed at different rounds in a cascading

process form a tree-like structure where the “child” nodes are the direct victims of their

parent node’s failure, and the root nodes are the initial set of victims attacked. A node

may have more than one parent if it is affected by multiple nodes failure at the same

time, as shown in Figure 18.
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One more fact to note is that the load and status of each node are only updated once

in each round, and the nodes failed in the same round will not have an instant effect on

others. Instead, the failure of all nodes in the last round will simultaneously affect the

remaining active nodes in next round.

In summary, the overall cascading process can be generalized in following steps:

1. Trigger a multi-victim attack by knock down some victims in the grid;

2. Calculate the load redistribution and mark fatally overloaded nodes as failed;

3. Disconnect failed nodes and branches from the grid;

4. Repeat step 2 and 3 until the process reaches a final stabilized stage.

As we want to identify the most critical power grid components from the attacker’s

perspective, we use the final percentage of failure in the power grid with respect to

system tolerance T , denoted as PoF , as the assessment metric:

PoF =
Nf

N
(20)

where Nf is the number of failed components and N is the total number of components

in a given grid. For each multi-victim attack, we measure the value of PoF after the

cascading failure stops at the final, stabilized state.

According the previous definition of round, a cascading tree with more leaves,

i.e. PoF , indicates that the attack results in a larger blackout with more component

failed consequently; while with fewer rounds it indicates a faster failure propagation

with fewer intermediate process and requires a quicker decision to limit its impact at an

early stage. The more child nodes a parent node have, the more critical they will be.

By using this measurement, we are able to intuitively illustrate the effectiveness of the

proposed approach using the cascading failure model described above and highlight the

critical components in multi-victim attack scenarios.
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Figure 19. Texas grid shown in (a) ArcMap 10.0 and (b) normalized substation coordi-
nates.

4.4 Simulation and Performance

The benchmark used in our simulation is the Texas power grid, visualized in Ar-

cMap 10.0 using a dedicated demo [78] shown in Figure 19(a). The power grid in-

formation is provided in the PLATTS Powermap dataset of North America electrical

power infrastructure. The Texas grid managed by the Electric Reliability Council of

Texas (ERCOT) is the third largest interconnections in the United States, an ideal rep-

resentative of a wide-area bulk power grid. The grid presented in this work has 5,390

substations connected by 7,389 transmission lines, and the simulation is performed in

the MATLAB 2010b environment.

4.4.1 Simulation Setup

As we assume equal importance to the two input features, i.e. the X and Y coordi-

nates, each of them will be normalized by their respective ranges as follows:

z =
z −min(Z)

max(Z)−min(Z)
, z ∈ Z (21)
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where Z is the set of coordinate z, which stands for either x or y coordinate. In this way,

neither of them will dominate the clustering result, as shown in Figure 19(b).

In our simulation, the total number of sampling, equally the total number of iter-

ation Titr, is set as 10 times the length of rough training τ2, as in the literature [145].

For the Texas grid benchmark, τ2 is set as 25,000, roughly 5 times the number of nodes

in the Texas grid. It is not sufficient for a deterministic clustering result; however, it

will be able to find out a stronger attack scheme instead. In other words, with τ2 set to

over 10 times the number of nodes, the clustering result with linear initialization and

random sampling will be deterministically stabilized to a specific result, given a certain

initial neighborhood size σ0. However, in this case, it is actually unnecessary because

the corresponding victim set will not lead to a cascading impact as severe as the sets ob-

tained from a smaller τ2 just about 4 to 5 times the number of nodes. Therefore, despite

that with this parameter setup SOM will produce different clustering results in differ-

ent experiments, the PoF curve proves that this “insufficient” sampling will be able to

identify some more vulnerable victim sets, according to our cascading analysis model.

4.4.2 Attack Performance

First, we will exam the performance of a simple SOM-based attack where the size

of SOM neurons is 2×2, namely 4 victim nodes are chosen in the initial attack. Figure 20

shows the 3 most effective SOM-based attack schemes found in our experiments and

how they compare to the traditional load-based scheme based on the final percentage of

failure PoF at different system tolerances. The system tolerance T ranges in [1.0, 2.5]

with a step of 0.05. As shown in the figure, although in each experiment the differences

in SOM sampling lead to various clustering results and thus different initial attack victim

sets, the PoF curves of the 3 strongest SOM based attack schemes stay stronger than the

load based attack scheme as T increases; the PoF curves of these SOM attack victim

sets remain around 90% even when the system tolerance is increased to over 2.0.
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Figure 20. Performance of the most effective SOM-based 4-victim attack schemes

Then we increase the SOM lattice to 3 × 3 and perform 9 initial victim attacks in

our simulation. The value of T has the same setting as above, and the result is shown in

Figure 21. Similarly, in this scenario, we also illustrate 3 attack schemes that are found

more resistant to large system tolerance T than load-based schemes.

First, take 4-node attack as an example. In Table 9 we compare the three SOM-

based initial victim sets in Figure 20 to that of load based scheme. From the table

we can find that the SOM-based schemes are able to construct victim sets with nodes

carrying significant less load, such as Node 1069 in attack scheme #2, ranked only as

the 359th loaded node with a load of 95; similar for the Node 57 in attack scheme #1

with a load of 572.

Similarly, in 9-node attacks (shown in Table 10), we can also find that Node 1460

in attack scheme #2, ranked as low as the 382nd, is included in one of the most critical

sets. Therefore, by using SOM-based spatial clustering, we can quickly sort out these

complex combinations of nodes that vary significantly in load and assess the impact of

their failure to the power grid. Moreover, this not only demonstrates that the load of

substations alone is not robust enough in identifying the most vulnerable components,

but also reveals that the exhaustive search, even using the load-ranking to facilitate the

searching process, is likely to pose a prohibitive cost in identifying a victim set that
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Figure 21. Performance of the most effective SOM-based 9-victim attack schemes

Table 9. Load- and SOM-based 4-bus attack schemes

Load Node ID 1892 2747 2063 1046
based Load Rank 1 2 3 4

scheme Load 1343 1241 1104 1008

SOM Node ID 1892 1046 17 57
based Load Rank 1 4 5 22

scheme 1 Load 1343 1008 975 572

SOM Node ID 1892 1046 3064 1069
based Load Rank 1 4 37 359

scheme 2 Load 1343 1008 410 95
SOM Node ID 1892 2747 1046 2737
based Load Rank 1 2 4 9

scheme 3 Load 1343 1241 1008 780

includes nodes with much less load than the ones on top. This shows that our SOM-

based scheme is capable of searching for the vulnerable components midst the complex

mechanisms behind cascading failures.

4.4.3 Comparative Studies

In the following part, we will first compare two different approaches for the initial-

ization of the SOM weights. For both linear and random initialization, 100 independent

experiments are performed to compare the strongest attack schemes found in each type.

As shown in Figure 22, the random initialization approach can indeed find out some
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most vulnerable sets in the Texas grid; however, as discussed previously, the random

initialization will add another independent randomness in SOM clustering and intro-

duce more uncertainty in the search for most vulnerable sets. Therefore its reliability is

reduced when applied to other power systems and the computational cost of simulation

will increase as well.

In addition to the comparison between load-ranking and SOM based schemes, an-

other scheme based on K-means clustering is also tested to assess the effectiveness of

SOM clustering in our model. K-means is also a widely used classic clustering method

which partitions the input space into K clusters. However, it may converge to a local

minimum and can not handle the situation well where clusters are not of equivalent size

or samples are evenly distributed [147]. These drawbacks also limit the use of K-means

in our model, as shown below in the simulation results.

To compare with the SOM-based scheme, in K-means the original input features

are also normalized according to their ranges of distribution, respectively. The input

space will be divided into K clusters whose boundaries are decided by the distance to

the nearest cluster centroid. The initial value of K centroid is generated from a random

uniform distribution within the range of [0, 1]. In each iteration, a random node is sam-

pled and given the cluster ID of its nearest centroid. Then, clusters centroids will be

updated to the new means of in-cluster nodes. An empty cluster after all sampling is

finished will be dropped and then only K − 1 clusters will become the output. This iter-

ative process will continue until a pre-defined maximal number of iteration is reached.

The K-means approach is essentially a special case of SOM clustering, where the neigh-

borhood size σ is fixed to zero and only the weight of BMU will be updated. Similar

to the post-processing of SOM-based scheme, the top loaded nodes from each cluster

will be chosen to perform a cascading analysis. In our simulation, 100 experiments are

conducted for both approaches, and the most effective attack from both are selected for
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Figure 22. Comparing the most vulnerable set with two initialization methods: (a) 4-
victim attack and (b) 9-victim attack.

comparison. As shown in Figure 23(a) and Figure 23(b), in both cases the SOM based

schemes outperformed the K-means at finding the stronger attacks.

Finally, the clustering results corresponding to the 4-node attack in Figure 23(a)

are illustrated in Figure 24, where different clusters are marked by different colors and

shapes. As shown in the figures, the SOM clustering result differs from the K-means

clustering as the former produces some sharp angle borders, resulting in irregular shapes

of clusters, e.g., Cluster 2 (marked in red) with a triangle-like outline; meanwhile, the

K-means clusters are more radial, which generates less effective attack in the cascading
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Figure 23. Comparing SOM and K-means: the most vulnerable set in (a) 4-node attack
and (b) 9-node attack.

failure analysis. From the observations and comparisons above, we can safely conclude

that the integrated SOM-based clustering method exhibits both effectiveness and robust-

ness for cascading failure and power grid security analysis.

4.4.4 Discussions

There are a few failure behaviors discovered in our simulations. First, as shown

in both 4-nodes and 9-nodes attacks, both PoF curves yield a shape of “step-down”

function, which indicates that there is a threshold of tolerance T that prevents the fail-

ure of some critical components which contribute to a significant impact on the power
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Table 10. Load- and SOM-based 9-bus attack schemes

Load ID 1892 2747 2063 1046 17 2782 1286 1476 2737
scheme Rank 1 2 3 4 5 6 7 8 9

Load 1343 1241 1104 1008 975 960 795 784 780

SOM ID 1892 2747 1046 3064 907 1277 4526 1030 2598
scheme Rank 1 2 4 37 46 78 111 158 205

# 1 Load 1343 1241 1008 410 384 279 240 186 150

SOM ID 1892 1046 17 1286 2415 1467 3064 2598 1460
scheme Rank 1 4 5 7 17 18 37 205 382

# 2 Load 1343 1008 975 795 660 658 410 150 88
SOM ID 1892 1046 17 1286 401 1467 3064 2405 2725

scheme Rank 1 4 5 7 16 18 37 101 123
# 3 Load 1343 1008 975 795 696 658 410 256 217

grid failure. For different sets of victims, the threshold values are different, as these

nodes contribute to different procedures of failure cascading. However, if the system

has a relatively low tolerance, in either 4 or 9 initial victims case, attacking the victim

nodes simultaneously is still strong enough to break down almost the entire regional

grid without the presence of proper defense response. And when we increase the num-

ber of initial targets from 4 to 9, it is expected that the strongest of latter should be more

influential than that of the former over the same range of tolerance, which is verified

comparing Figure 20 and Figure 21. For the tolerance interval from 1.5 to 2, we could

see that in the 9-victim attack, the percentage of failure PoF from the same attack set

remains greater than 4-victim attack to a larger tolerance. However, when the universal

tolerance is increased high enough, both PoF curves still show a quick step-down with

oscillation in some cases. Also, according to the victim sets of 4-node and 9-node attack

schemes in Table 9 and 10, we can find that some initial victims in 4-node attack are not

necessarily included in the most effective 9-node attack sets, which means that in cas-

cading analysis, to extend most vulnerable set with more victims is more complicated

than the simple extension or combination of smaller victim sets.
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Figure 24. Clusters of (a) SOM and (b) K-means approach corresponding to the most
vulnerable set in 4-node attack.

Secondly, it is noticed that for some attack sets, their PoF curves do not fall mono-

tonically with increased tolerance, and this can be observed below and above their cor-

responding step-down thresholds of T ; for some curves, it may not even be possible to

identify a threshold. The observation is against the intuitive assumption that greater tol-

erance will always contribute to the reduction of failure cascading scale in power grids.

However, it matches the reality instead, as a slightly increased tolerance is not guaran-

teed to restrict the cascading effect globally; it may only be able to protect some victims

of a parent node’s failure, which can re-direct the failure propagation elsewhere and the

overloading in this new area can lead to a larger number of node failure as a result.

Nevertheless, if we keep increasing T , the value ofPoF will step down ultimately.

Another factor that affects the result is that, in this work, we only assign a universal

system tolerance for all the substations in the grid. For a more comprehensive model,

in reality, the tolerance of substations can vary from each other and may be changing

during the cascading procedure due to dynamic status and protective mechanisms. In

this case, the curve may show some changes compared to a universal tolerance model;

however, it is still expected that similar oscillation of PoF over T will be observed since
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the major factor discussed above still exists.

There are some other approaches for multi-contingency cascading analysis related

to our simulation presented above. As mentioned in the review [34], there is a number

of different tools for the risk assessment of cascading failures in bulk power system, and

these methods all have their relative strength and weaknesses in specific applications.

For example, in traditional power system N − k contingency analysis and attack strate-

gies studies, it is a common practice to simulate and validate the algorithms on a rela-

tively small benchmark, such as the IEEE 5, 30, 39, 54 or 118-Bus systems. This allows

less computation overhead as well as more flexibility and accuracy for the parameter

tuning. But this can also raise concerns about the scalability of these approaches, and

the utility of some approaches may remain in question for bulk power systems, e.g. the

Texas grid in our simulation, which consists of a more gigantic, complex structure and

dynamics, requesting not only more intensive computations but also additional policies

and revisions to address these issues.

However, it is notable that the complete information on most bulk power systems

to such detailed level is unlikely to be accessible for most malicious attackers; it may

not even be available to the research community and utility providers. For the attackers,

collecting all these operational information in reality (such as power generation of all

generators and consumption at all substations) from the power system control centers

could be too risky and challenging; and the collected information can be easily outdated

or stained with noisy data, resulting in inaccurate or even unnecessary collection from

the attackers’ perspective. Therefore, it is expected that most attackers will try to put

their efforts to maximize the impact of their attacks based on the incomplete electrical

information; and the topological information, which is more accessible through many

GIS databases, can be a potential source of intelligence that they will rely on. This geo-

graphic information will remain constant or subject to little influence from the dynamic
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load consumption and power supply, which is a powerful auxiliary source for the smart

grid security analysis.

In summary, the challenges of multi-contingency analysis for smart grid attacks

can be concluded in the following perspective:

1. The restricted scalability of manyN−k contingency analyses which are validated

mostly on relatively small power system benchmarks;

2. The limited knowledge of attackers on the complex dynamics in real-time power

systems, in contrast to the power system managers, that restricts their strength in

modeling the power system and the estimation of the impact of their attacks;

3. The difficulties in solving both linear and non-linear equations in bulk power sys-

tems with incomplete information and intensive computational burden.

Therefore, the proposed SOM based multi-contingency cascading failure analysis,

as the simulation results have illustrated above, reveals its merit in the multi-contingency

analysis for bulk power system cascading failure studies. Meanwhile, it is expected

that with increasing electrical grid data collected, more tools for comprehensive multi-

contingency analysis will be developed to respond to the call for an efficient evaluation

of the risk and to explore the underlying mechanism of cascading failure from the secu-

rity perspective.

4.5 Chapter Summary

This chapter proposes a topological method to analyze the vulnerability of substa-

tions in power transmission grids based on SOM clustering. While the physical charac-

teristics are considered as the basis for the evaluation of power grid security, associating

cascading analysis with spatial feature based clustering shows that the combined ap-

proach is able to locate the more critical components in a large scale power grid than
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traditional methods. This is expected to provide an efficient tool for the N − k contin-

gency analysis in both inadvertent and adversarial scenarios. In our approach, the poten-

tial victims are processed by the robust SOM clustering so that the candidates of a search

are refined to a limited range, which significantly reduces the computational cost while

keeping the capability to identify some of the most vulnerable sets or attack schemes in

the grid. This approach shows better performance for cascading analysis in comparison

to the traditional load ranking based and the K-means based clustering method, and the

result will provide insightful information for decision support and power grid protective

mechanism.

There are several important future research directions along this topic. First, in

the corresponding 2013 publication of this chapter, we consider the power grid security

and attacks from a topological analysis point of view. While this assumption has been

widely adopted in many existing literature [122, 129, 148, 121, 36, 139], the power grid

is a unique complex system with no less than a complicated topological structure; more

importantly, it has the fundamental circuit theory (i.e. Kirchhoff’s law) governing the

electricity generation, transmission, and distribution. Therefore, it will be critical to

advance beyond the topological analysis and consider the physical laws of the power

systems. One possible extension was to integrate our approach with the extended topo-

logical model [77] to analyze how our proposed method will perform with the consider-

ation of several key features in power flow analysis. Secondly, we can improve our cas-

cading model by introducing overcurrent relays and generation ramping to approximate

power system failure behaviors. Finally, critical temporal features during the procedure

of cascading can also be analyzed [69], so that we can simulate different strategies with

limited strength and resource to optimize defense mechanism against smart grid attacks.
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CHAPTER 5

Multi-Contingency Analysis of Sequential Attacks with Q-Learning

5.1 Chapter Overview

The current multi-contingency analysis in power systems has mostly focused on

contingencies occurred concurrently [42, 45, 67]. Attacks launched this way are ex-

pected to be more impactful yet also easier to model and analyze without involving the

timing and ordering of multiple attempts. Meanwhile, recent studies on the sequential

attack have revealed another vulnerability in the smart grid [149, 110, 123]. In sequential

attacks, attackers can compromise critical components consecutively, which is similar

to the N − 1− 1 contingency and its further extensions. The number, target, and timing

of attacks could be determined by the attackers to could lead to a maximal damage. The

preliminary study [149] has shown that sequential attacks with the same strength can

cause comparable damages as the concurrent attacks; nonetheless, sequential attacks re-

quire fewer resources to coordinate, and the vulnerability of the same targets in such

attacks can differ significantly: line outages, if triggered back-to-back at critical loca-

tions, can still lead to much severe system blackouts than when they occur at the same

time.

To identify most critical sequences that can lead to large-scale system failures,

existing sequential attack and contingency studies rely either on heuristic graph meth-

ods [110], exhaustive search [123], or engineering expertise [150]. A more systematic

and effective method can be helpful when bulk power systems are considered. Instead,

this chapter focuses on impacts of sequential topology attacks with consideration of

physical system behaviors when the attack has bypassed the detection, as it is equally

important to investigate the attack schemes based on its impacts on the physical system

to fully understand its threat.

The development of machine learning algorithms provides promising tools to han-
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dle the challenge from a cost-prohibitive stochastic search space. The patterns un-

derlying in the system dynamics and cascading failures can be revealed adaptively

by computational intelligence algorithms, as demonstrated in applications like Al-

phaGo [151, 152] and other complex problems [153, 154, 155]. The adaptability, i.e, the

ability to self-tune based on previous experiences can also aid the vulnerability analysis

of a complex networked system like the smart grid. This chapter introduces a novel

Q-learning based approach to adaptively identify the more vulnerable attack sequence

that can cause critical system failure from sequential topology attacks. In what follows,

the term “sequential attack” (SA) exclusively refers to the sequential line-switching in-

terdiction on the power transmission grids.

The major contributions of this chapter are as follows:

1. The chapter proposed a reinforcement learning based approach for vulnerability

analysis of sequential attacks in power transmission grids. The approach evaluates

the blackout damage resulting from line-switching interdiction with consideration

of overloading-related cascading outages and hidden line failures. It formulates

the problem under the reinforcement learning framework and identifies critical

sequences in sequential attacks with the Q-learning algorithm;

2. The proposed method, utilizing the Q-learning algorithm and Monte Carlo sim-

ulation, effectively identified grid vulnerability under sequential attacks causing

complex system outages. Simulation-based case studies showed that critical at-

tack sequences that lead to large blackouts have been identified. Results with

different systems and loading levels have shown the effectiveness of the proposed

method as it discovers more vulnerable target sequence in sequential attacks;

3. Only topological information has been used to identify the critical attack se-

quences with the Q-learning approach; this echoes the vulnerability observed in
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Figure 25. The intermediate states in cascading blackouts of electrical power grid.

[148] as complete information of system dynamics is not required to identify crit-

ical sequences in the power grid.

The rest of the chapter is organized as follows: Section 5.2 introduces the threats of

sequential line-switching attacks and describes the proposed Q-learning based approach

to identify critical attack sequences. Section 5.3 demonstrates the simulation results

on three benchmark systems of different scales and under different loading. Finally,

Section 5.4 provides a summary of the chapter and some future directions.

5.2 Sequential Attack Analysis with Q-Learning
5.2.1 Sequential Attacks in Smart Grid

A sequential attack is considered in this chapter as a series of coordinated inter-

diction on the power transmission grid. Specifically, this chapter considers an inter-

diction as a line-switching attack, i.e., the malicious operation that trips a transmission

line out-of-service. Each line-switching directly changes the topology of a transmission

grid [156, 157]; in practice, these attacks can be launched from manipulated control

commands, false line status data, or physical sabotages. They can also be disguised as

irrelevant disturbances or contingencies that are harder to defend [150]. Following the

stages of blackout identified in [158], Figure 25 illustrates the state transitions of power

systems where a sequential attack may interfere to trigger a cascading blackout.

Mathematically, a sequential attack scheme can be formulated as a sequence S of
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ordered and timed 2-tuples [110, 123, 113]:

S = {(a1, t1), (a2, t2), ..., (ak, tk)}, k ≤ N (22)

where (ai, ti) describes the i-th line-switching attack launched on target line ai

at time ti; k is the number of attacks in the sequence and N is the num-

ber of active lines in the power grid. By definition, the time-domain sequence

T = {t1, t2, ..., tk} is non-negative and monotonically non-decreasing for any attack

sequence A = {a1, a2, ..., ak} [123].

The inclusion of selection, ordering, and timing in (22) obstructs the analysis of se-

quential attack schemes [123]. The target selection needs to be made from a total of
(
N
k

)
combinations; ordering of the combinations expands the problem to a search space with

N !
(N−k)!

possible permutations; in addition, the timing introduces a continuous variable in

time domain, where there is little research that provides a ground truth or a systematic

approach to the best knowledge of the authors. Particularly, attacks launched with ar-

bitrary timing during fast transient states will lead to complicated and nondeterministic

system responses. Therefore, this chapter focuses on the analysis of the first two aspects

for different sequential attack sequences A with the help of a steady-state assumption;

the investigation on timing T will remain a future work of this dissertation.

Given this consideration, three assumptions are made in this chapter to further re-

fine the definition of sequential attacks:

Assumption 1: Attackers can access and manipulate the topological information of

power systems. The topological information refers to the connectivity of substations

and transmission lines, recorded in the status data and changeable by circuit breaker

operations or malicious manipulations (as shown in Figure 17).

Assumption 2: Each line-switching attack ai ∈ A is launched during a steady-state

of the system, which includes both normal and emergency operating points in Figure 25.

This assumption decomposes a sequential topology attack into a series of k consecutive
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individual line-switching attacks on a power grid, allowing this study to focus on the

identification of critical attack sequence A.

Assumption 3: Without loss of generality, the cost to attack any line is considered

equal in this chapter.

With the assumptions above, the attack objective is to identify a minimal attack

sequence that causes a critical system failure through cascading outages. The critical

system failure occurs when the number of line outages exceeds a critical threshold Nθ

that leads to a system collapse and/or major blackouts, shown as the point of no return

in Figure 25.

5.2.2 The Q-learning Algorithm

Q-learning belongs to a category of semi-supervised learning algorithms [159]

known as the reinforcement learning (RL). In general, RL seeks an action sequence

that produces the maximal cumulative rewards via a trial-and-error manner. A typical

framework of reinforcement learning is shown in Figure 26 [159]. An agent takes a

sequence of actions at a series of states before it reaches an ultimate goal. The quality

of each action is assessed by an evaluative feedback from an environment, known as the

“reward”. By adaptively adjust its actions, the agent has an ultimate objective to learn

an optimal policy from the cumulative rewards to maximize the expected total rewards

it will receive from the environment.

In general, the expected total rewards Q is computed by a discounted cumulative

function of the reward rt observed upon the action at taken at state st:

Q =
n∑
t=1

γt−1rt(st, at) (23)

where γ is a discounted factor. Setting γ = 1 weights every immediate reward equally

in the sequence of actions. In practice, γ is commonly set slightly smaller than 1.0 to

facilitate the convergence of Q value during the learning process [159].
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Although the true optimal value of Q∗ is usually unknown in practice, it can be

approximated by the Q-learning algorithm iteratively. The Q-learning is an off-policy,

temporal difference reinforcement learning algorithm that approximates the optimal Q

value with Monte Carlo simulation [160]. The general procedure of the algorithm is

described below:

In Q-learning, a Q value is assigned to each state-action pair (s, a). Each triplet of

Q, s and a creates an entry in a Q-table. Initially, all the Q values are set to zero.

Then, when a state st is observed at time t, the agent first searches for a set of

available actions At. The optimal action a∗t at st is determined by:

a∗t = arg max
aj∈At

Q(st, aj) (24)

where At is the set of available actions at st. If multiple a∗t exists, a random tie-breaker

will be chosen as the a∗t . Note that (24) favors the maximum of total rewards Q instead

of an immediate reward rt to achieve the long-term optimality.

In search for the policy towards the optimal total rewards, random experiments are

run repeatedly to update the Q value, during which the quality of the action sequence is
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improved towards the optimum:

Q(st, at)← (1− α)Q(st, at) + α{rt+1(st, at) + γmax
a
Q(st+1, a)} (25)

where α is the learning rate that controls the aggressiveness of learning.

Empirically[159], setting α = 1 will make the agent extremely aggressive, focusing on

the immediate reward rt+1 received and the estimated approximate total future rewards

maxaQ(st+1, a). This can lose the knowledge learned from previous experiments and

cause unnecessary oscillations. On the contrary, setting α = 0 will make the agent

extremely conservative, as it sticks to its initial estimate and learns nothing from its ac-

tions. In practice, the value is often chosen as a trade-off between aggressiveness and

conservativeness.

The updated Q value for the given state-action pair is saved in the Q-table for

the future decision-making process. It is possible that the agent makes non-optimal

actions at the beginning of training when it tries to learn from the feedback of rewards.

Eventually, the algorithm will converge to the optimal action sequence that collects the

maximal total rewards [160].

Exploitation vs. Exploration: It is notable that Q-learning could be sensitive to

deteriorate initialization and local optima problems. This can cost more learning time

in practice. Therefore, exploration is commonly used in reinforcement learning. This

chapter utilizes the optimistic initial guess and the ε-greedy method for the exploration

purpose.

The optimistic initial guess overcomes deteriorate initialization of Q-learning. It

initializes theQ values of all valid actions of any state s0 encountered for the first time to

be a positive constant, e.g., +1, so that the agent is first encouraged to explore different

actions and later adjust the Q value estimates towards the actual long term rewards.

The ε-greedy method is used to address the local optima problem during the learn-

ing process. Specifically, when the agent queries an action at from the Q table for the
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current state st, the ε-greedy method forces the agent to take a non-optimal valid action,

i.e., any action other than a∗ in Eqn. (24), with a small probability ε. Numerically, this

means that the probability that the agent takes the optimal action is given by:

P (at = a∗t | st) = 1− ε (26)

where a∗t is the optimal action at st according to (24). A proper choice of ε can balance

the trade-off between exploitation and exploration so that the algorithm converges to

the optimal policy in an effective and efficient manner. To avoid excessive exploration

after the agent has learned much from the trials, the exploration parameter ε can starts

from a larger initial value ε0 then linearly decreases with a certain step distance δε to a

near-zero value εf , after which it remains constant. This allows the agent to sufficiently

explore the searching space and then fine-tunes the Q value in a timely manner during

the learning process.

5.2.3 Q-Learning for Sequential Attack Vectors

The paradigm of Q-learning applies well to the security analysis of sequential at-

tacks in the smart grid, as shown in Figure 27. An attacker, who seeks to identify the

more vulnerable components in the power grid in sequential attacks, is considered as

the agent in Q-learning. The electrical power grid can be viewed as an independently

operating environment that responds to the malicious actions of attackers. With these

two interactive roles, the action of the attacker is the malicious line-switching while the

states can be defined by parameters of the system. The attack objective is to create a

critical system failure where a fatal fraction of lines are out of service. The learning

objective of the attacker is to find the optimal policy that reaches this goal with the least

number of lines attacked. The pseudo code of the vulnerability analysis is shown in

Table 11, and the design of the state st, the action at, and the reward rt are given as

follows.
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Figure 27. The flowchart of Q-learning based vulnerability analysis for sequential at-
tacks.

According to Assumption 1, the state is exclusively defined by the system topology

available to a potential attacker. According to Assumption 2, the state also exclusively

refers to the steady-state prior to sequential attacks. The initial state is s = 1; the inter-

mediate states st are post-attack steady states after any cascading outages triggered by

the previous attacks. A complete system failure occurs when s = 0 and a critical failure

occurs when the number of surviving lines (non-zero elements in s) is dangerously low.

It is notable that a number of transitional states could exist between two consecutive

attacks if there is a series of cascading outages. To evaluate the quality of sequential

attack action, the transitional states are not considered as individual states during the

Q-learning but only as intermediate transitions between st and st+1.

The topological system state st is defined as a vector of line status st =

{st(1), st(2), ..., st(N)}, where:

st(l) =


0, if line l is in-service at time t

1, if line l is out-of-service at time t
(27)

The action is defined as the line-switching attack as in (22). An attack ai on line l
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Table 11. Pseudo Code of Q-learning Based Multi-Contingency Analysis

Initialization: Initialize the Q-table and the benchmark system
for current number of trials ≤ maximal trials do

Reset: No = 0, s0 = 1;

while No ≤ Nθ do
1. Acquire attack candidates:
Obtain all valid line targets At from the current steady state st;
2. Initiate an attack:
Choose a line l from At and set its status st(l) = 0. Set at = l;
3. Simulate cascading outages:
With the attack updated in st, run the CFS until a new post-attack steady-
state st+1;
4. Obtain evaluative feedback:
Obtain No from st+1 and generate the reward rt+1 according to (28);
5. Learning from trial:
Update the value of Q(st, at) according to (25).

end while
end for

switches the status of l from in-service to out-of-service. The corresponding value in st

is set to zero.

The evaluative feedback or reward r is a critical parameter in reinforcement learn-

ing. Given the aforementioned attack objective to create a critical system failure, this

chapter proposes the following reward function:

rt+1(st, at) =



+1, if No ≥ Nθ and k < Nθ

−1, if No ≥ Nθ and k ≥ Nθ

0, otherwise

(28)

where No is the total number of lines outages used to define the blackout size. Nθ is the

critical threshold at the point-of-no-return (the attack objective), and k is the number of

attacks launched sequentially. A sequential attack scheme is successful (r = +1) if it

achieves the objective by triggering a cascade, i.e., the entire scheme causes Nθ or more

line outages with less than Nθ actions. Otherwise, it is either unsuccessful (r = −1) if
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it takes k = Nθ attacks to achieve the objective blackout size or neutral (r = 0) if the

number of attacks and line outages are both still underNθ. In the last case, the sequential

attack will continue until the objective blackout size is reached.

5.3 Simulations and Results
5.3.1 Simulation Setup

The simulation platform is an extension of the DC-CFS developed in previous

chapters, with an additional consideration of hidden failure in cascading outages [161].

The hidden failures consider random outages of exposed lines next to the tripped lines

and are integrated into the simulator.

Specifically, after the tripping of a fatally overloaded line, exposed line will be

tripped with certain hidden failure probability. We consider the degree and duration of

persisting line overloading and the hidden failure probability is defined as a function of

the overloading risk O(l) and critical overloading threshold OT . Mathematically, the

hidden failure probability is defined as:

p(l) =


O(l)/OT , if O(l) > 0

0, otherwise

(29)

The performance of the proposed Q-learning based vulnerability analysis is tested

on three benchmarks: a small-size IEEE 5-bus test system [162], a mid-sized IEEE 24-

bus reliability test system (RTS-79)[163], and a large-scale IEEE 300-bus system [60].

Parameters of the three test systems are provided in Table 12 and the one-line diagrams

for the 5-bus and RTS-79 are shown in Figure 28.

Different systems will have different critical levels at which cascading outages can

lead to a system collapse. In this chapter, we defined the blackout size as the combined

number of line outages caused by the direct line-switching attack and the cascading

failures triggered by the sequential attacks. For the smaller IEEE 5-bus benchmark, we

consider the attack objective to be a complete system failure, i.e., θ = 100% andNθ = 6;
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Figure 28. (a) IEEE 5-bus test system and (b) IEEE RTS-79 test system.
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Table 12. Benchmark system information

Benchmark Nbus Nline Load (MW) Capacity (MW)

IEEE 5-bus 5 6 1,000.0 1,530.0

IEEE RTS-79 24 38 2,850.0 3,405.0

IEEE 300-bus 300 411 23,525.8 32,678.4

for the IEEE RTS-79 system and the larger IEEE 300-bus system, we consider a critical

system failure as the attack objective, where the system will lose its functionality after

a fatal number of lines are down. Subsequently, we consider θ = 20% (Nθ = 8) for the

RTS-79 system and θ = 2.5% (Nθ = 11) for the 300-bus system.

In the experiments, Monte Carlo simulations are used to address the randomness

from the stochastic hidden line failures [161]. As a common practice for validation, re-

peated simulations on typical operating points will verify the effectiveness of the method

in stochastic scenarios. A set of 100 independent simulations is first performed on each

of the three benchmark systems. Every experiment consists of up to 1,000 trials during

which the Q-learning agent searches for attack sequences that will reach the attack ob-

jective Nθ. At the beginning of the first trial in each experiment, the initial Q values are

set to +1.0 and the same for any new state-action pairs onward, which is an “optimistic”

estimate to encourage exploration during the early stages. In each subsequent trials, the

system is reset to the attack-free initial state with no line outages, while the Q values

learned from previous trials are retained.

We start each experiment with a relatively large exploration probability of ε0 = 0.3

and decrease it to a small final value of εf = 0.005, with a step-down by ∆ε = −0.005

after each trial. Meanwhile, following the common practice of Q-learning, we choose

α = 0.1 for a less aggressive learning process and γ = 0.9 to weight slightly more on

the recent reinforcements [159].
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Table 13. Number of Line Outages from Sequential Attacks on the IEEE 5-bus System
Increased by Q-learning

Order of attack Initial Eventual Best of random attack
t = 2 2.37 3.23 2.62
t = 3 3.54 4.34 3.70
t = 4 4.54 5.34 4.77
t = 5 5.48 5.94 5.73

5.3.2 Attack Performance

We first evaluate the proposed method on the IEEE 5-bus test system, for which

the attack performance saturated after about 200 trials. Figure 29 shows the Q values

of the action in each attack and the number of line outages afterward. In Figure 29(a),

we first observed that the initialized Q value for t = 1 quickly decreased from +1.0 to

near-zero after 10 trials, showing that these early trials were mostly unsuccessful. After

the initial trails, the Q-learning started to explore successful attack sequences and update

the Q values quickly, reflecting the expected total reward learned from its trials. After

about 100 trials, the Q values were stably increased to different ranges of expected total

rewards for different rounds of attack in the sequence.

In addition to theQ values, the number of line outages is shown in Figure 29(b). As

a comparison, the number of line outages caused by random attacks has also been plotted

as unmarked dash-lines with different colors for corresponding values of t. Except for

the first attack (t = 1), the average blackout size after each attack in the sequence was

increased during the Q-learning process as shown in Table 13. The improvement was

most significant for the second attack (t = 2), with an increase of 0.86 additional line

outages. The additional line outages from Q-learning for the fifth attack (t = 5) was

0.46, and the eventual blackout size on average (5.94) was close to a complete system

failure. Note that the system is N − 1 secured so that there is only one line outage

after the first attack. In comparison, the random attacks did not utilize any knowledge
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Figure 29. Results from the IEEE 5-bus system: (a) the Q(s, a) values of actions taken
in each attack; (b) the number of line outages after each attack.

from previous trials and thus failed to identify more vulnerable sequences over time.

These results on the 5-bus system have exhibited the effectiveness of the Q-learning

based vulnerability analysis, learning from trials to reach the objective blackout size

with purely topological information.
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Figure 30 shows the attack performance on the IEEE RTS-79 system. Similar to

the 5-bus system, we also observed similar changes of Q value for the sequential attacks

in Figure 30(a), with respective expected total rewards from the attack. Meanwhile, as

shown in Figure 30(b), with Q-learning the blackout size was improved from 2.06 to

5.15 after the second attack (t = 2) and from 3.15 to 8.39 after the third attack (t = 3),

respectively. Although the RTS-79 system is N − 1 secured, with an attack objective

Nθ = 8, it only took three sequential attacks to cause a critical 8-line blackout after

500 trials with Q-learning. With the same level of topological information, the proposed

Q-learning based scheme was more effective in finding critical attack sequence on the

RTS-79 system.

The proposed approach is further validated on a large-scale benchmark, the IEEE

300-bus system. The results are shown in Figure 31. Similarly, the Q values converged

through the learning process (Figure 31(a)) and the reinforcements improved the black-

out sizes after the second attacks towards the attack objective, an 11-line outage, after

598 trials (Figure 31(b)) on average. Some oscillations persisted after 700 trials, as the

final blackout size differed slightly due to cascading outages and hidden failures when

the objective was achieved. The results validated that the proposed approach is scalable

to bulk power systems.

The cost of attack can also be evaluated by the average number of attacks required

to achieve the objective blackout size, which is shown in Figure 32. The dashed lines

indicate the respective objective blackout sizes, which are the unsuccessful (worst) case

for the attackers as they would need to attack as many lines as possible to achieve the

attack objective. According to Figure 32, the initial number of attacks required to reach

the objective blackout sizes are 5.48, 7.29, and 10.14 for the 5-bus, the RTS-79, and

the 300-bus systems, respectively. These numbers were reduced to 4.67 for the 5-bus

system after 100 trials, 2.82 for the RTS-79 system after 500 trials, and 3.16 for the
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Figure 30. Results of the IEEE RTS-79 system: (a) the Q(s, a) values of the chosen
action for each attack in the sequence and (b) the number of line outages after each
attack.

300-bus system after 700 trials, respectively. Afterward, their values remained in stable

ranges, respectively. The eventual numbers of sequential attacks launched to reach the

attack objectives were 4.60, 2.85, and 3.09, respectively, for the three systems. From
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Figure 31. Results from the IEEE 300-bus system: (a) the Q(s, a) values of the chosen
action for each attack in the sequence and (b) the number of line outages after each
attack.

these simulations, the Q-learning based scheme also effectively reduced the number of

attacks through the learning process.
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Figure 32. The number of attacks taken to achieve the objective blackout size (dashed
line) for the IEEE 5-bus, RTS-79, and 300-bus systems. The numbers reduced by the Q-
learning exhibited the effectiveness of Q-learning in identifying more vulnerable attack
sequences.

5.3.3 Disucssions

As the load of power systems fluctuates with time, the robustness of the proposed

approach shall be tested under different operating points (OP). Assuming a benchmark

system’s total default load is 100%, we solved the optimal power flow to obtain an OP

with a peak load at 120% and another with a reduced load at 80% for the benchmarks.

Simulations were repeated on the three benchmark systems and the eventual blackout

size when the attack objectives were achieved are shown in Table 14 with different

loading settings.

From the simulation, the proposed Q-learning based approach has successfully

identified critical sequential topology attacks with respective objectives on all three

benchmarks with different loading levels. In general, lowering loading levels reduce

the system stress and make them more resilient to cascading outages and sequential at-

tacks. In contrast, the peak loads turn N − 1 secured systems (under default loading)
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more stressed and vulnerable. The blackout sizes in Table 14 are consistent with these

discussions. As load increases, sequential attacks caused more line outages with the

same number of attacks and attack objective were achieved faster.

Table 14. Influence of Load Variation on the Eventual Blackout Sizes

IEEE 5-bus Default Load Peak Load Reduced Load
t = 1 1.00 1.99 1.00
t = 2 3.39 4.02 3.29
t = 3 4.44 5.02 4.36
t = 4 5.44 5.98 5.38
t = 5 5.98 6.00 5.62
t = 6 6.00 - 6.00

IEEE RTS-79 Default Load Peak Load Reduced Load
t = 1 1.00 1.81 1.00
t = 2 5.15 5.85 2.03
t = 3 8.38 8.40 3.45
t = 4 - - 4.35
t = 5 - - 5.10
t = 6 - - 6.05
t = 7 - - 7.11
t = 8 - - 8.19

IEEE 300-bus Default Load Peak Load Reduced Load
t = 1 1.84 1.92 1.02
t = 2 13.91 14.72 3.08
t = 3 - - 5.59
t = 4 - - 9.73
t = 5 - - 13.10

Note: A ‘-’ indicates that the attack objective has already been achieved.

5.4 Chapter Summary

This chapter presented a novel Q-learning based vulnerability analysis of electri-

cal power grid in the sequential topological attacks. By monitoring topology change

in the system, the Q-learning based sequential scheme was able to find out vulnerable

sequences that led to critical blackouts in the system. Not only did the scheme increase
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the number of line outages through the learning process, but it also reduced the num-

ber of attacks launched by excluding unpromising attack sequences that could not take

advantage of the cascading vulnerability. Simulation results on three IEEE systems of

different scales have demonstrated the learning ability and the effectiveness of the pro-

posed approach. From the perspective of a grid defender/operator, the Q-learning based

vulnerability analysis can serve as a tool to identify critical components in a potential

sequential attack scheme. It also gives a warning sign that topological status information

of the system could be utilized to conceive disastrous attack schemes. These insights are

expected to help improve situation awareness of the smart grid against cyber-attacks.

The future work will focus on the development of detection and mitigation strate-

gies against sequential attacks. While the proposed approach utilizes reinforcement

learning to screen potentially vulnerable sequences of topological line-switching, it is

not limited to the DC power flow or hidden failure models; adaptions can be made to

consider other factors such as voltage and frequency for vulnerability analysis. Mean-

while, it is valuable to explore other potential information, sources, and parameters to

identify if they may result in more catastrophic attack impacts on the critical power

infrastructure. Finally, the online learning ability will also be a valuable feature to be

added for real-world applications.
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CHAPTER 6

Resilience And Detection Against False Measurement Attacks

6.1 Chapter Overview

While control commands in the smart grid are ideal targets of cyber-attackers who

aim to inflict direct disruption to the power system, the measurements are also potential

victims of cyber-attacks for various purposes. Although compromised measurements

may not directly cause system damages as the commands, they can leverage misin-

formation that leads to inadequate situation awareness and/or incorrect control actions.

Many research ahs revealed that such manipulation poses multiple threats to system op-

erations and could be exploited to induce large-scale blackouts [6]. Meanwhile, this

chapter will look at the problem more from the perspective of a grid operator, for whom

the emphasis will be placed on the assessment of grid resilience as well as the detection

of false data in the system.

Specifically, this chapter will first provide a preliminary resilience analysis of FDI

attack regarding its potential to create cascading blackouts [164]. Specifically, an AC

version of the CFS will be developed to report voltage violations, line outage, and load

shed resulting from injected false data in state estimation. A comparison is made with

different attack strengths in terms of magnitude and severeness. This part tries to bridge

current studies on FDI attacks with power system blackout analysis to better understand

the practical threat of FDI attacks on the smart grid.

In addition, this chapter will also investigate the supervised learning based ap-

proaches to detection FDI attacks. In [165], M. Ozay, et al., first proposed the use

of supervised machine learning based classifiers to detect false data using the distance

between attacked and normal measurements. However, the attack vectors were built in

the measurement space rather than the state space, which might not fully exploit the

stealthiness proposed in [84]. In addition, the performance was only tested against the
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attack sparsity, i.e., number of compromised meters, while the magnitude of injected

false data was not considered. Lastly, the possible imbalance between attacked and

normal data samples should also be considered as a challenge in practical applications.

The rest of this chapter is organized as follows: Section 6.2 introduces the ba-

sic concepts of FDI attacks, including the power system state estimation, the residual

based bad data detection, and the false data injection attack schemes. Section 6.3 in-

troduces the analytic framework based on the previously developed cascading failure

model to analyze the grid response and resilience in the presence of false data. Sec-

tion 6.4 describes the formulation of the FDI detection as a classification problem and

introduces the classifiers for detection with discussions on two influence factors. Sec-

tion 6.5 presents the resilience analysis and detection performance based on simulation.

Section 6.6 summarizes the chapter and discusses some future works.

6.2 False Data Injection Attacks

In 2009, Y. Liu, et al. have revealed that measurements collected from supervisory

control and data acquisition (SCADA) systems are exposed to the threat of malicious

false data injection (FDI) attacks [84]. Given the critical role of accurate and trustworthy

power system state estimation (PSSE) in power system control and operation, numerous

attack and defense studies have been conducted to understand the threat of FDI attacks

ever since [118].

The attack studies focus on stealth schemes that utilize the knowledge of the topo-

logical Jacobian matrix to bypass the residual-based bad data detectors in the system.

Attack schemes can thus be built based on minimum energy leakage [166], system topol-

ogy [167], or the sparsity of the Jacobian matrix [168]. Moreover, when full knowledge

of the Jacobian matrix is not available to the attackers, stealth FDI attacks can still be

constructed with incomplete [169, 170, 171] or local topology information [172, 173].

Worse still, the ICA-based attack can infer the stealth attack vector without the knowl-
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edge of the Jacobian matrix [174, 175]. The attacks can also be coordinated [176, 177]

or cast into bi-level or tri-level optimization problems that can counter the presence of a

grid defender [178, 179].

The defense studies focus on both the detection of FDI attacks and the protec-

tion of measurements. Detectors utilizing the low rank and sparsity of the Jacobian

matrix has been proposed in [180, 181]. An adaptive online CUSUM detectors have

been proposed [182]. Spatial and temporal based detection schemes have also been pro-

posed in [183], while an online detection scheme has been proposed in [184]. In the

meantime, secure communication channels and protocols have been established [185].

Greedy, game theoretic, and other methods have been used for optimizing the place-

ment of PMUs for more secure measurements [186, 187, 188], significantly reducing

attacker’s ability to launch FDI attacks.

6.2.1 Power System State Estimation

Electrical power systems depend on reliable state variables for control and dispatch

of the generation, transmission and distribution of electricity. In PSSE, the relationship

between the known measurement variable z and the unknown state variable x can be

written as [189]:

z = h(x) + n (30)

where h(x) is a non-linear function determined by the power grid topology and n is

the random measurement noise. n is commonly assumed to be a zero-mean Gaussian

variable with known covariance cov(n) = R.

In practice, the nonlinear function h(x) is approximated by a linear function based

on the following direct current (DC) assumptions [60]:

1. The magnitudes of all bus voltages V are close enough to be equal to 1 p.u.;

2. The active power transmission on all branches is lossless;
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3. The angular difference δθ between any two bus voltages are small enough so that

sin(δθ) ≈ δθ.

With the above DC assumption, (30) can be replaced by:

z = Hx + n (31)

where H is the Jacobian matrix of power grid topology. Let M be the number of mea-

surements and N the number of states, H is a M × N matrix with M � N , so that

redundant measurements can recover the accurate state variable x from z. In practice,

the linear approximation can also be achieved if sufficient phasor measurement units

have been installed [189].

To solve the linear equation in (31), the weighted least square (WLS) estimation is

commonly used. WLS minimizes the following cost function J(x):

J(x) = (z−Hx̂)TR−1(z−Hx̂) (32)

and the estimated state variable x̂ is given by:

x̂ = (HTR−1H)−1HTR−1z (33)

6.2.2 Bad Data Detection

In PSSE, meter and sensor faults can result in deteriorated state estimation results.

To improve estimation accuracy, bad data detection (BDD) that identifies and removes

these bad measurements are commonly employed. The following is a brief introduction

to the widely used residual-based BDD from [189], where further details can found

therein.

Let r = z−Hx̂ be the measurement residual, the normalized L2-norm of r is:

L(r) = rTR−1r (34)
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L(r) follows the χ2
M−N distribution with at mostM−N degree of freedom. There-

fore, the χ2-test is used to determine a threshold τ with a given confidence p. The null

hypothesis H0 of the residual-based bad data test is:

H0 : rTR−1r ≤ τ (35)

If H0 is accepted, then no bad data exist in the SE solutions with a confidence of p;

if H0 is rejected, then bad data exist and they are subsequently eliminated by the largest

normalized residual (LNR) test with another threshold γ:

rNi =
ri√

diag(S)diag(R)
> γ (36)

where ri is the i-th residual in r, i = 1, 2, ...,M , S = I−K is the residual sensitivity

matrix, I is the M ×M identity matrix, K = (HTR−1H)−1HTR−1, and diag(·) is the

diagonal elements of a given matrix. After rNi has been calculated for every measure-

ment in z, the measurement zj producing the largest normalized residual that satisfies

(36), i.e., j = argmaxi{rNi |rNi > γ}, is considered as a bad measurement and will be

eliminated from z. rNi is repeatedly calculated for bad data removal until no residual

satisfies (36) or a maximal number of bad data have been removed. In practice, the

BDD and PSSE are iteratively executed until no normalized measurement residual rNj

satisfies (36) or the maximal allowed number of bad data has been reached.

6.2.3 False Data Injection Attack

In general, false data injection (FDI) is written in the following form:

za = z + a = Hx + a + n (37)

where a is the injected false measurement data.

If a is directly generated and injected into the measurements without the knowledge

of H, L(r) does not necessarily follow the χ2
M−N distribution. The residual-based BDD

can only detect the false data if a increases the residual statistic in (34)-(36).
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If H is available to the attacker, however, a completely unobservable FDI for the

above BDD can be constructed. Specifically, the stealth false measurement data a in

(37) can be generated in the following form:

a = Hc (38)

where c is the false state data. Then the compromised measurement za becomes:

za = Hx + Hc + n

= H(x + c) + n

= Hxa + n (39)

which is in the same form of z in (31). Meanwhile, the residual also remains the same

to (35):

ra = za −Hx̂a = z + a−H(x̂ + c)

= z−Hx̂ + (a−Hc)

= z−Hx̂ (40)

Therefore, residual-based BDD is not able to identify the false data a if the original

attack-free data z can pass the residual-test in (35). The LNR test in (36) is also not

capable of eliminating the attacked measurements, although false data can possibly be

rejected by a lucky hit if the original measurement z itself is rejected as bad data.

Let κ be the number of compromised measurements, it has been proved in [84] that

if the following condition is satisfied, it is guaranteed that there exists an FDI attack

unobservable by the residual based BDD:

κ > M −N + 1 (41)

Mathematically, κ is equivalent to the sparsity, i.e., the L-0 norm of the attack vector a.
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Among the current studies of FDI attacks, this chapter chose two typical FDI

schemes in comparison: the direct FDI with the random false measurement and the

stealth FDI with the random false state:

1. Direct FDI Attack

In the first scheme, we consider the attacker has no knowledge of H when inject-

ing false data into the measurements. A random attack vector a ∼ N(0, σ2
a) is

generated with a given false measurement variance σ2
a, similar to [165]. The false

data a is then injected directly into the measurements z by (37).

2. Stealth FDI Attack

In the second scheme, we assume the attacker has the full knowledge of H and

thereby can construct a stealth FDI attack as in [84]. In this case, a targeted false

state xa is generated by xa = x + c. We assume that c ∼ N(0, σ2
c), where σ2

c is

the variance.

6.3 Grid Resilience under FDI Attacks

Manipulated measurements from FDI attack can mislead system operation to in-

crease the risk of cascading blackouts. For instance, when energy management system

(EMS) re-dispatches power to manipulated measurements, the powers system can run in

degenerated state with potential overloading, voltage violation, or other stability issues.

Considering the extreme case with a fully knowledgeable attack, line outages and cas-

cading blackouts may also be triggered by contingencies after the injection of targeted

attack vectors. However, such risk can be low compared to control attacks as the power

system is designed to be resilient against faults and disturbances by nature. It merits

careful examination to determine if an FDI attack can actually result in feasible damage

to the system to the level of cascading blackouts.

The resilience analysis in this chapter will examine the ability of the grid to with-
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stand the FDI by retaining an operational transmission without major failures such as a

local blackout, voltage collapse, or any cascading outages. The resilience is evaluated

on two factors that quantify the strength of an FDI attack, i.e., the magnitude and the

severeness.

1. The magnitude of FDI attack, denoted as α, is a scale factor of a that describes

the extent of manipulation for each measurement. Assume that original state is

1.0 p.u. and the nominal upper/lower limits are 0.9 and 1.1 p.u., respectively.

α = 0.1 indicates the false states in c are up to 0.01 p.u. or 10% of the maximal

deviation allowed by the state limits; α = 1.0 indicates the false states can reach

a maximal deviation of 0.1 p.u..

2. The severeness of FDI attack, denoted as ρ, refers to the fraction of measurements

subject to manipulation. If ρ = 0.1, 10% of measurements are manipulated; if

ρ = 1.0, all measurements are manipulated. In this chapter, the location of

attacked measurements is randomly selected and tested with different severeness.

With the two factors introduced, the false data a becomes:

a = α∆Hc (42)

where ∆ = diag(δ), and δ is an m × 1 index vector with ρ × m (rounded) randomly

selected elements equal to one and the rest equal to zero.

Blackouts are often results of complex system responses, unstable operations, and

protection failures. While it is challenging to properly consider all factors in a single

simulator, this chapter considers short-term blackout risks contributed by the following

mechanisms:

Line Overloads and Outages

This chapter considers the over-current-relay triggered cascading line outages as

the first system response. An AC power flow based cascading model was built from
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a DC power flow cascading outage simulator [190]. The DC simulator implements

re-dispatch, islanding and active power flow overload response to simulate cascading

outages from over-current relay actions. Details of the DC simulator can be found in

Chapter 2 of this dissertation.

On top of these features, the AC simulator in this chapter removes the DC assump-

tions and considers reactive power limits, transmission loss and steady-state voltage

stability in cascading blackouts. Lines with persisting overloading beyond a critical

threshold will be subsequently tripped and simulation will continue until no more over-

loading is observed. The number of lines tripped and the load shed due to emergent

re-dispatch are reported to analyze system resilience.

Voltage Violations

Voltage stability plays an critical role in blackouts as voltage collapse or power

swings cause severe damages in the system [158]. THe previous study [190] has shown

that the steady-state model remains consistent with more detailed transient stability

model if the voltages are within the magnitude and angle constraints. With the voltage

computed from steady state AC power flow solutions, any voltage violations emerging

either after the FDI or from the cascading line outages can be reported if either of the

following conditions is not satisfied:

θmin ≤ θ ≤ θmax (43)

Vmin ≤ V ≤ Vmax (44)

where Vmin = 0.9 p.u., Vmax = 1.1 p.u., θmin = −10◦, and θmax = +10◦, according

to the critical moment defined in [190]. Note that a violation does not warrant a voltage

collapse or pole flip; it is rather a warning of the voltage instability caused by FDI.
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6.4 Detecting FDI Attacks with Supervised Learning

From the perspective of machine learning, the aforementioned FDI detection prob-

lem can be conceived as a binary classification problem. Let s be the measurement

data samples with M features from either z (negative class) or za (positive class). The

corresponding class labels y is defined as:

y =


+1, if a 6= 0

−1, if a = 0

(45)

Without loss of generality, the distance between two arbitrary samples si and sj is

given by:

‖si − sj‖2 =



‖zi − zj + ai − aj‖2, if ai, aj 6= 0

‖zi − zj + ai‖2, if ai 6= 0, aj = 0

‖zi − zj‖2, if ai, aj = 0

(46)

Note that the right side expressions are different from that of [165].

According to (46), the presence of false data can be determined by the vector dis-

tance. Consider the following two assumptions: 1) ai is sufficiently greater than the

noise n; 2) the mean of ai is sufficiently greater than its variance. In general, both

assumptions will hold for attackers who aim at creating disturbances in the smart grid

via the injection false data. Consequently, the two classes can be classified by proper

learning methods to detect the FDI attacks.

6.4.1 Classifiers for FDI Detection

There are numerous machine learning methods available for the binary classifica-

tion problem described above. A practical concern is that complex algorithms are often

expensive in real-time implementations despite their superior performance in difficult

classification problems. On the other hand, it remains unknown if false data constructed
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by the above schemes are separable by the simple algorithms. This chapter considers

the following learning algorithms that are widely used in practice:

Support Vector Machine

Support vector machine (SVM) is a binary classifier to find the maximum-margin

hyperplane that separates the two classes. Given the definition of yi and s in (45), if

the data is linearly separable, the decision boundaries can be expressed as two parallel

hyperplanes: 
wTsi + b = +1, if yi = +1

wTsi + b = −1, if yi = −1

(47)

Data samples satisfying either equations in (47) are called the support vectors. The

region that lies between the parallel boundaries are called the margin, and the distance

between this two hyperplane, i.e., the width of the margin, is D = 2/wTw. For bi-

nary classification, the data samples from different classes should lie on corresponding

side of the margin, and the maximal margin should yield the maximal D, i.e., the mini-

mum of wTw. Combining the formulation above, the linear SVM solves the following

optimization problem:

min
w

1

2
wTw (48)

s.t. yi(wTsi + b) ≥ 1, i = 1, 2, ...,m (49)

This is a quadratic programming problem and the solutions of w and b can be

obtained using the following the Lagrangian of the optimization:

L(w, b, α) =
1

2
wTw −

m∑
i=1

αi[yi(w
Tsi − b)− 1] (50)

where α is the Lagrange multiplier. The problem satisfies the Karush-Kuhn-Tucker
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(KKT) conditions, and it can be solved by the Lagrange dual of this problem:

maximize L(α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjs
T
i sj (51)

s.t.
m∑
i=1

αiyi = 0 (52)

If the samples are not linearly separable, then a kernel function K(si, sj) is used to

replace the inner product sTi sj in (51), if K(si, sj) has the following property:

K(si, sj) = φ(si)
Tφ(sj) (53)

where φ(s) is a mapping function of s into a higher dimension.

In this chapter, the Gaussian radial basis function is used as the kernel in the SVM

classifier:

K(si, sj) = e−λ‖si−sj‖
2

, λ > 0 (54)

k-Nearest Neighbor (kNN)

kNN is a simple and widely-used effect classifier that assign the samples to the

class of its nearest neighbors. The Euclidean distance is used to determine the closeness

between the current unlabeled sample si and all the labeled samples S:

dij = ‖si − sj‖, sj ∈ S (55)

For k = 1, the predicted class label yi is given by the labeled sample closest to yi:

yi = argmin
yj
{dij} (56)

For k > 1, the majority voting is used to determine the eventual label from k nearest

neighbors of si. In this chapter, the number of nearest neighbor is chosen according to

cross-validation performance. In this chapter, the number of nearest neighbors is chosen

from k = {1, 3, 5, 7} according to the best cross-validation performances.
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Extended Nearest Neighbor (ENN)

The ENN is a variation of kNN that improves the latter’s performance [191]. Tra-

ditional kNN is sensitive to the distribution of predefined classes, mostly because the

nearest neighbors of data sample with a low density tend to be dominated by the other

class with a higher density [192]. To address the “two types of errors” [193] in kNN

method, we propose an extended nearest neighbors (ENN) method which takes advan-

tage of learning the global distribution of class and local neighbors to make a classifica-

tion prediction.

Let S1 and S2 be the set of samples that belong to y = −1 (class 1) and y = +1

(class 2), respectively. A generalized class-wise statistic Ti is calculated to measure the

distribution of each class:

Ti =
1

ni

∑
s∈Si

1

k

k∑
r=1

Ir (s, S) (57)

=
1

ni

∑
s∈Si

tk(s), i = 1, 2

where s is a sample with known class label in S = S1∪S2. Ir (s, S) is a binary function

that indicates whether s and its r-th nearest neighbor belong to the same class:

Ir (s, S) =

{
1, if s ∈ Si and NNr (s, S) ∈ Si
0, otherwise

(58)

where NNr (s, S) is the r-th nearest neighbor of x by the Euclidean distance, given the

currently known sample set S.

In (57), tk(s) is a point-wise statistic of sample s evaluating the number of its k

nearest neighbors that are from the same class. The generalized class-wise statistic Ti

measures the ratio of the nearest neighbors belonging to the same class over the number

of samples ni and nearest neighbors k in a given class. It can be perceived as a coherence

measurement for each class, indicating whether the nearest neighbors of samples from

one class are dominated by the samples from other class. A larger Ti indicates that the
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samples in Si are more condensed and their nearest neighbors are mostly from the same

class, whereas a smaller Ti indicates that more nearest neighbors of the samples in one

class belong to another.

Given a new sample z to be classified, we compute the expected total gains of Ti

when z is assigned to class y = −1 (class 1) and class y = +1 (class 2), respectively. As

higher Ti implies a more densely distributed class i, z will be assigned to the class that

yields the maximal total gain. The gain for each respective class is described as follows:

First, assuming that z is from class 1, we calculate the following class-wise statis-

tics T 1
1 and T 1

2 by:

T 1
1 =

1

(n1 + 1)k

∑
s∈S1∪{z}

k∑
r=1

Ir

(
s, S

′
)

T 1
2 =

1

n2k

∑
s∈S2

k∑
r=1

Ir

(
s, S

′
)

(59)

where T ji is the statistic of class i when the new sample z is assigned to class j and

S
′
= S1 ∪ S2 ∪ {z} is the updated set of samples.

Then, assuming that z is from class 2, we also calculate the corresponding class-

wise statistics T 2
1 and T 2

2 by:

T 2
1 =

1

n1k

∑
s∈S1

k∑
r=1

Ir

(
s, S

′
)

T 2
2 =

1

(n2 + 1)k

∑
s∈S2∪{z}

k∑
r=1

Ir

(
s, S

′
)

(60)

Instead of using the k nearest neighbors for a majority voting, we calculate the total

gains for each class:

Gk =
2∑
i=1

(T ki − Ti), k = 1, 2 (61)

The new sample z is assigned to class 1 if G1 > G2 and class 2 if G1 < G2.

Similar to the kNN method, the number of nearest neighbors in consideration is also

chosen from k = {1, 3, 5, 7} according to the best cross-validation performances.
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6.4.2 Attack Strength in FDI Detection

The sample distance in (46) depends on the characteristics of a. Therefore, the

sparsity and variance of a are two key factors to be considered. The sparsity measures

the number of compromised measurements in the FDI attack, and the variance indicates

the magnitude of disturbances brought by the false data. They both reflect the attack

strength of an FDI and the detection performance will be sensitive to these two factors

and need to be examined in this chapter.

The first factor, i.e., the number of false measurement data injected into the system,

is defined previously as the variable κ in (41). The fraction of compromised measure-

ments, i.e., ρ = κ/M is used to analyze the attack detection performance.

Secondly, the variance of false measurement data injected to the system determines

the deviation from normal measurements. Although the value of a does not change

the residual in (40), it affects the sample distance in (46) that will results in different

detection performance. Specifically, we defined this factor α as a scale factor of the

false data variances defined above, i.e., σ2
a in the direct FDI attack or σ2

c in the stealth

FDI attack.

6.4.3 Performance Metrics

Let ŷi and yi be the predicted and actual class of a measurement sample si, respec-

tively. Let TP , TN , FP , FN be the true positive, true negative, false positive and false

negative of the detection. If the data samples are balanced, i.e., there are equal number

of positive and negative samples in the training data, the performance is evaluated by

the detection accuracy Acc:

Acc =
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN |
(62)

If the data samples are imbalanced, e.g., the number of negative samples is signif-

icantly greater or less than the number of positive samples, then the F1 score is used to
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Figure 33. Flowchart of false data injection assessment. The dashed line indicates data
flow.

evaluate the detection performance:

F1 =
2|TP |

2|TP |+ |FP |+ |FN |
(63)

The detection performance will be evaluated against different values of A and P to

test the robustness under various attack strength in practice.

6.5 Simulations
6.5.1 Simulation Setup
Simulation Setup for Resilience Analysis

Figure 33 shows the flowchart of the simulation procedure. The IEEE 300-bus

system with n = 600 states is used as the benchmark. Excluding measurements on

generation and zero-injection buses, there are m = 2, 184 measurements subject to

FDI. The benchmark is configured to be N − 1 secured with no voltage violations nor

overloading from any single line outage. The total load demand is fixed as a short-term

consideration. For each α and ρ , 1, 000 random false state attack vectors c are generated

from uniform distributions U(a, b), where the boundaries (a, b) are (−10◦,+10◦) for

angles and (−0.1 p.u.,+0.1 p.u.) for magnitudes, respectively.

The false data in (42) are injected at t = 0 and cleared after a typical SCADA

sampling interval, at t = 15s. α and ρ are evaluated with 50 values in the logarithmic

interval [10−4, 1] and 40 values in the linear interval [0.1, 1], respectively. The state

estimation and bad data detection are both simulated in the MATPOWER toolbox [60].
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The maximal number of Newton iterations and bad data are 10 and 50, respectively. The

simulation starts with responses to the manipulated measurements and reports results at

the end of blackout simulation.

Simulation Setup for Learning-Based Detectors

We choose the IEEE 30-bus test system as the benchmark [194]. There are 30

buses and 41 branches with a total load demand of 189.2 MW. A total of M = 284

measurements are used to estimate N = 60 state variables. A one-line diagram of this

system is shown in Figure 34. The measurements include four sets of measurements:

the bus voltages angles and magnitudes, the bus injected active and reactive power, the

branch active and reactive power injection at the from-end, and the branch active and

reactive power withdrawal at the to-end. The AC system states to be estimated are the

bus voltages angles and magnitudes.

Figure 34. The IEEE 30-bus test system.
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For the simulation, 1, 000 steady-state operating points (OP) are first sampled from

the 30-bus system. Each OP refers to a configuration of power grid topology with cor-

responding generation output and load demand. We consider the topology as a control

variable and the 30-bus system is fully-connected in the investigation. The load de-

mand may dynamically change; to keep the system balanced, the generation will also

vary accordingly, thus each balanced configuration, combining generations and load de-

mands at all buses with the given grid topology, forms a new OP. To consider the load

demand variation, for each OP the total load demand are firstly randomly sampled from

the range between 95% and 105% of the original benchmark. The corresponding bus

generations and power flows are then obtained from AC optimal power flow (AC-OPF)

solutions subjecting to minimal generation cost. Afterward, the measurements of each

OP are collected with random measurement noise n added using the covariance R from

the MATPOWER Toolbox [60]. The states are calculated by the AC state estimator,

also provided in MATPOWER. These 1000 OP measurements are labeled as the normal

(negative) samples with y = −1.

For the attack schemes, 1, 000 attacked (positive) samples labeled with y = +1

are also obtained. With each given value of P and A, each attack vector a is generated

and added to the corresponding measurement z. The false data variance for the direct

and stealth FDI are given by σ2
a = 0.05 and σ2

c = 0.05, respectively. We consider three

levels of A: A = 0.1 (small), A = 1.0 (medium), and A = 10.0 (large). The values of

P is chosen between 0.05 to 1.00 with a step distance of 0.05.

To test the detection performance, we consider both balanced and imbalanced

cases, where the number of normal data is either equal to (balanced) or much smaller

than (imbalanced) the number of attacked data, respectively. In balanced case, all the

1000 attacked samples are used; for the imbalanced case, only 100 attacked samples are

randomly picked. In either balanced or imbalanced scenario, half of the positive samples
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and half of the negative samples are randomly chosen to form the training set detectors,

while the other half are kept as the testing set. The reported detection performances

below are obtained from the average of 100 independent experiments.

6.5.2 Resilience Analysis

The effectiveness of FDI attacks is first evaluated by the passing rate and divergence

rate of FDI attacks. The passing rate is the percentage of FDI attack vectors that can pass

the BDD and be accepted as part of trusted measurements. The divergence rate is the

percentage of FDI attacks that will cause a diverged SE solution, indicating that the

estimation has failed to converge after excessive removal of bad data, which renders the

system unobservable [195]. To effectively analyze FDI stealthiness, the passing rate is

measured only for FDI with a converged SE solution. Values of both rates are illustrated

in Figure 35.

In Figure 35(a), both rates showed some patterns with the change of α. High pass-

ing rate and zero divergence rate were observed when α < 0.001; high passing rate and

high divergence rate were observed when α > 0.1. For α between 0.001 and 0.1, the

passing rate plunged below 20% at α ≈ 0.03 before returning to 100% after α > 0.2;

the divergence rate remains at zero when α ≤ 0.01 but surged to 100% after α ≥ 0.05.

Without a converged SE solution, the manipulated measurements that passed BDD still

would not cause any misinformed system response directly. The passing rate p was not

100% under small α because some attacked measurements would have been identified

as bad data in an FDI-free case due to large measurement noise, and these measurements

are rejected “accidentally”.

Meanwhile, Figure 35(b) shows a different pattern for ρ, the percentage of mea-

surements manipulated, with α = 0.05 fixed. Both rates fluctuated with the increase of

ρ. The passing rate increased from 23% to around 40%; more significantly, the diver-

gence rate increased from 40 % to above 85%. Figure 35(b) suggested that manipulating
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most measurements are not ideal if only random false data are injected. An effective FDI

would be built with a proper choice of magnitude and severeness to achieve either high

passing rate (stealthiness) or high divergence rate (damage).
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Figure 35. Effectiveness of FDI attacks with (a) fixed ρ = 1.0 and (b) fixed α = 0.05.

The grid resilience against both FDI attacks is shown in Figure 36. Figure 36(a)

reports the percentage of load shedding, line outage, and voltage violation due to FDI

attacks with a fixed severeness ρ = 1.0 but different magnitudes α. When α < 0.01,

the load shed (black) and line outage (red) fluctuated with little variances; their mean

values were 1.5% and 0.02%, respectively. The voltage violation (blue) was in a higher
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range, between 10% to 15%, partially because was assumed that attackers have no exact

knowledge of bus voltages, leading to higher chance of voltage violations even under

small attack magnitudes. However, as divergence rate surged to 100% when α > 0.05

(see Figure 35(a)), the estimation could not return a valid state; voltage violations were

observed for every FDI attack thereon. Further simulation thus requires the transient

stability model and the steady-state simulator stopped reporting load shed or line outages

thereafter. The maximal amount of re-dispatched generation active power, in response

to any initial FDI, was less than 7 MWs. It was relatively small compared to the total

generation capacity of 32,678.4 MWs. No major blackout was reported with greater

than 10% load shed in the simulation. These observations suggested that the benchmark

power grid yields resiliency against overloading, islanding and line tripping that are tied

to blackouts under different magnitudes of FDI attacks. However, voltage stability is

exposed to more risks when the attack magnitude is beyond a certain level.

Figure 36(b) shows grid resilience with different values of ρ with fixed magnitude

α = 0.05. Both percentages of load shed and line outages were in a range similar to that

in Figure 36(a); but voltage violation steadily increased from below 50% to 90% as ρ

increased, consistent to the divergence rate in Figure 35(b). No major blackouts were re-

ported. These observations suggested that although the passing and divergence rate both

increased with ρ, the grid remained resilient to load shed and line outages; meanwhile,

severe false data injections with increasing number of compromised measurements still

posed threats to the voltage stability of the system.

6.5.3 Detection Performance

The detection accuracy of direct and stealth FDI attacks on balanced data are shown

in Figure 37, under different values of A and P . The training performance are testing

performance are shown in dashed and solid lines, respectively. From both figures, all

three detectors yield over 80% accuracy for direct FDI attacks and over 85% accuracy
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Figure 36. Grid resilience with different (a) magnitudes of FDI at ρ = 1.0, and (b)
severeness of FDI at α = 0.05.

for stealth FDI attacks.

For the direct FDI attack in Figure 37(a)–37(c), the detection accuracy increased

with the attack strength for all three detectors. When A or P was increased, the SVM

based detector achieved 100 % accuracy faster than the ENN and kNN based method.

The kNN based detector outperformed ENN based detector when A = 0.1 or P was

small, but the performance of the latter quickly improved asAwas increased before both

achieved 100% accuracy when P is sufficiently large. The detectors will be capable of

identifying FDI attacks that are more likely to cause severe disturbances to the system.

For the stealth FDI attack in Figure 37(d)–37(f), the SVM-based detector showed
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better accuracy with small attack strength A and P and was the only detector to achieve

100 % accuracy. The ENN based detector outperformed kNN based detector in most

cases, though both failed to achieve 100 % accuracy under the direct FDI attack.

Particularly, it is notable that for A = 0.10, a critical range of P was observed dur-

ing which the accuracy improved significantly with the increase of P : in Figure 37(a),

the SVM testing accuracy increases from 91% to 100% when 0.3 ≤ P ≤ 0.5; similar

patterns are observed for kNN and ENN testing accuracy when 0.5 ≤ P ≤ 0.8. Such

pattern is also found for 0.05 ≤ P ≤ 0.2 in Figure 37(d). The improved accuracy with a

greater attack strength P is caused by more distinguishable samples due to the increase

of distance dij .

The detection performance (F1 score) with imbalanced data are shown in Figure 38

of the stealth FDI, respectively. The SVM-based detector still exhibited superior overall

performance, and all detectors achieved optimal performance when A and P are suffi-

ciently large. Meanwhile, a similar pattern of performance change in the critical range

of P has also been observed. Sensitivity analysis on how the individual factors in the

performance metrics, i.e., |TP |, |TN |, |FP |, and |FN |, were affected by the attack

schemes will be featured in the future work for improvement of the proposed supervised

learning based detectors.

6.6 Chapter Summary

This chapter presented a two-part study consisting of a resilience analysis of false

data injection attacks on the power grid and a comparative study on the supervised

learning-based detection against FDI threats. The resilience analysis provided a pre-

liminary result to evaluate power grid resilience against FDI attacks considering the

impact of the magnitudes and number of attacked measurements. With a dedicated AC

power flow based simulator, the system responses considering the potential develop-

ment of cascading blackouts have been simulated and investigated. From the simulation
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Figure 37. Detection accuracy on balanced data: (a) α = 0.1, (b) α = 1.0, and (c)
α = 10.0 in direct FDI attacks; (d) α = 0.1, (e) α = 1.0, and (f) α = 10.0 in stealth FDI
attacks.
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results, the FDI attack showed less threat in creating line overloading or outages to trig-

ger massive blackouts through cascading failures. However, voltage violations can be

frequently triggered even with a moderate magnitude or severeness of false data. The

resilience analysis is expected to facilitate a better understanding of FDI attack impacts

in the context of cascading blackouts.

The comparative study investigated supervised learning based classifiers in the de-

tection of false data injection in the smart grid. Following the conversion of false data

detection to binary classification, the learning based detectors exhibited satisfactory per-

formance, which is promising for the stealth false data injection that can bypass tradi-

tional residual-based bad data detection. The three detector designs of choice achieved

optimal detection performance against attacks that would cause major disturbances with

large amount or magnitude of false measurements.

In practice, the learning based false data classifiers can be implemented as an effec-

tive secondary or auxiliary detector to the residual based bad data detectors, identifying

false data after the bad data have been removed by LNR test. However, for each mea-

surement, the potential number of bad data is not a constant, which will leave missing

features in the data samples. Robust classifiers that can handle such missing features can

significantly improve the practical value of learning base false detectors. In practice, it

is also beneficial to combine the bad data and false data detectors as a single integrated

system. In addition, the learning based detectors can be improved to not only detect the

presence of false data but also locate each individual false data in the measurements.

Lastly, the run-time performance and cost analysis of these learning based detectors

should also be further investigated for real-world implementations.
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Figure 38. F1 score on imbalanced data: (a) α = 0.1, (b) α = 1.0, and (c) α = 10.0 in
direct FDI attacks; (d) α = 0.1, (e) α = 1.0, and (f) α = 10.0 in stealth FDI attacks.
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CHAPTER 7

Conclusions

7.1 Summary of the Dissertation

The smart grid is a vital upgrade of the electrical power infrastructure. Despite

variations of systems and techniques adopted around the globe, the key feature of the

smart grid, i.e., cyber-physical integration of physical systems and processes with infor-

mation and communication technologies, brings both promises as well as perils to the

power and energy infrastructure. It is of paramount importance to secure the grid in both

physical and cyber space for the delivery of electricity that supports our modern society.

The research presented in this dissertation systematically investigated the cyber-

physical security of smart grid on the topic of massive cascading blackouts. The research

is composed of the vulnerability analysis of cascading blackouts and the identification

of critical components and processes that could be exploited by informed attackers.

The goal of this research is to advance the understanding of smart grid security and

resilience against major blackouts with the increasing cyber-physical integration, with

which critical risks can be better identified and critical assets better protected. The

contribution of the research is twofold:

First, the vulnerability analysis of cascading blackouts models the spatial-temporal

cascading process from operational and structural perspectives. Investigations focused

on the major factors that contribute to the propagation of failures due to the dynamic

power flows and the static grid topology and established simulation platforms to evaluate

the vulnerability under different scenarios.

In the operational vulnerability analysis, the research examined the power flow

based cascading in power transmission systems after an initial contingency that trips

substations or lines in the grid. A power flow based cascading failure model was estab-

lished to simulate and evaluate steady-state system responses and failure mechanisms
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that contribute to a massive cascade of failures. The investigation analyzed the influence

of direct tripping, emergency response, and cascading failures as three major factors in

the development of blackouts, and the cascades from overloading and hidden failures

play a major role in the creation of major blackouts. Based on further comparison with

detailed transient stability analysis, the concept of critical moments was proposed to

assess the consistency between steady-state and transient stability analyses in approxi-

mating the system behavior during cascading blackouts. The investigations are expected

to help grid operators establish an efficient warning system at the early stage of a cas-

cade. The cascading failure model will also serve as a simulation platform to validate

further structural vulnerability analysis and the impact of potential cascade-initiating

attacks.

In the structural vulnerability analysis, we focused on how the power grid topology

and electrical properties could reveal information of inherent vulnerabilities in the struc-

ture of interconnected power systems. A complex network model based on betweenness

centrality that incorporated the power flow distribution factor (PTDF) was established to

analyze the critical components in the structure of the grid. The research proposed the

use of the total loss of the extended betweenness as the index of vulnerability and com-

pared the metric against classic topology-based metrics. The simulation results revealed

that the structural information, combining the topology of grid interconnection and the

electrical property of power flows, can be used to identify the critical substations and

transmission line in the grid. Such vulnerability is determined by the grid topology, the

line flow sensitivity, and the rated capacity that are independent of the real-time system

dynamics and operation. The results demonstrated that the structural information from

the extended betweenness better revealed the information of critical components in the

grid, which can assist the resilience enhancement in the planning and upgrade of trans-

mission systems. In addition, the results also highlighted the potential risks even when
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attackers have only limited structural information of the grid.

Second, the research identifies and analyzes potential attack schemes that can target

the critical components to initiate a cascading blackout. The investigations focused on

how the system information can be exploited by attacks on control and measurement

signals in the transmission system and utilized advanced machine learning techniques

to identify the critical targets efficiently and adaptively.

For attacks on control signals, the investigation analyzed two coordinated schemes

on transmission substations and lines: the concurrent attack and the sequential attack.

For the concurrent attack, the research proposed a self-organizing map based strategy

that was able to identify low-ranking but high-risk components unknown to traditional

contingency ranking. Simulation results demonstrated that the most vulnerable com-

ponents from the self-organized clusters produce critical attack vectors that may bring

down bulk grids like the Texas grid. For the sequential attack, the research proposed

a Q-learning based strategy to adaptively identify critical attack sequences that exploit

consecutive tripping to initiate cascades and maximize blackouts. The proposed Q-

learning strategy was able to effectively identify critical sequences that lead to criti-

cal system failures across simulations on multiple benchmarks. The investigations on

the concurrent and sequential attack schemes aim to develop advanced adaptive tools

for penetration tests while raising operator’s awareness against prominent cyber-attack

threats on the industrial control systems.

For attacks on the measurements, the research evaluated the grid resilience against

the false data injection attacks targeting the state estimators and developed supervised

learning-based detection against the prominent attack threats. By evaluating the poten-

tial size of blackouts, the number of line outages and the violations of bus voltages, the

resilience analysis revealed the system tolerance against the false data undetectable by

residual-based bad data detectors. The results indicated that the grid might be able to
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remain robust against the false data in terms of the size of load loss and the number of

line outages that the attack may trigger. However, the number of false voltage viola-

tion alarms raised by the false data injection can still pose a threat to reliable system

operation. To provide an early detection of the false data, the research developed su-

pervised learning based approaches that utilized support vector machines and nearest

neighborhood-based binary classifiers for light-weight detection under both balanced

and imbalanced cases. Simulations revealed that the learning-based detectors effectively

superior performance against the strong false data injection attacks.

In conclusion, the dissertation investigated the smart grid vulnerability in cascading

blackouts through operational and structural analyses and identified schemes that could

generate critical attack vectors on both controls and measurements to initiate a cascading

blackout. The simulation results demonstrated the impacts of malicious cyber-physical

attacks on the grid and the challenges that infrastructure would face during the cyber-

physical integration, and the work hopes to improve our awareness, preparedness, and

responses against catastrophic consequence against the catastrophic events.

7.2 Challenges and Opportunities

There are significant research directions and opportunities following the work

presented in this dissertation. First, the power systems are increasingly complicated

and advanced modeling of the grid structures and behaviors are under growing need.

Hardware-in-the-loop co-simulation of cyber-physical systems in the grid can provide

abundant detailed and accurate information for vulnerability assessment, attack analy-

sis, and defense response. In addition, the inclusion of communication and computation

modules in the security analysis will be critical: it will not only help identify feasible

and impactful schemes that would pose practical threats to the system but also advise

on effective resource allocation and emergency responses against the high-risk threats.

Considerations of industrial devices, protocols, and policies in-use will contribute to
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the establishment of early, accurate defense against the major threats at the stages of

evaluation, prevention, detection, mitigation, and restoration.

Among the major challenges and opportunities along this prominent direction, this

dissertation would like to highlight three critical topics pertinent to the future work

following this dissertation:

7.2.1 Infrastructure Interdependence

Interdependence plays an increasing yet critical role in smart grid security, whose

influences reach not only across the cyber and physical layers but also beyond the energy

sector. Between the cyber and physical systems, not only will the physical operations

rely on trustworthy computation and communication; the cyber operations are also con-

tingent upon reliable electricity supply from the physical grid. Also, between the energy

and other sectors, we should be vigilant that the availability of electrical power relies on

proactive mining, transportation, and coordination, while the availability itself has a far-

reaching impact on other sectors including food, water, transportation, communication,

and healthcare, among others.

In the first regard, cyber-physical attack analysis shall extend beyond traditional

cyber attacks on physical systems [6]. Physical sabotages targeting cyber systems and

security have been less investigated, yet the threats can be nevertheless devastating when

the dependence of electricity is exploited. Most cyber systems and security mechanisms

have assumed the availability and reliability of electrical power to operate designated

electronic devices. Under physical attacks, these devices can be damaged or disabled

by intentional surges and outages of electricity. Such vulnerabilities should also be

integrated into the investigation of the cyber-physical security in the smart grid. In ad-

dition, it should also be noted that the cyber-physical interdependence may be exploited

recurrently and interactively by complex intrigue schemes. Assuming an attacker had

successfully triggered a power outage: during this outage, the security mechanism on
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some critical field devices can be compromised, following which parameters and data

stored therein may be manipulated. Once the power has been restored, the attacker can

either utilize the compromised device to access more information from the cyberspace

or induce further damages into the physical system. To date, there are still limited inves-

tigations into interactive schemes like this, which repeatedly exploit the vulnerability of

the cyber-physical interdependence.

In addition, the smart grid itself is a heterogeneous network of interdependent and

interoperating systems, where numerous CPSs are being developed and deployed for the

future. The vulnerability of the entire grid, meanwhile, will be determined by the weak

components among them. Various subsystems, includeing wind farms [196], energy

storages [197, 198], electric vehicles [199], renewable energy systems [200], micro-

grids [201, 202], distributed energy systems [203], PMUs [124], AMI [204], among

others, require careful scrutinization of cyber-physical security when integrated and op-

erated in the smart grid.

Moreover, the interdependence also exists beyond the smart grid. Through both

cyber and physical interconnections, the smart grid can be vulnerable to attacks on its

dependent infrastructures as well as casting vulnerability onto these infrastructures. A

large number of critical infrastructures are also vulnerable to cyber-physical attacks on

the smart grid, as illustrated in Figure 39. While some early work has looked into the

problem [205, 206, 207] and agencies like the U.S. National Science Foundation (NSF)

has established programs such as the Critical Resilient Interdependent Infrastructure

Systems and Processes (CRISP), investigations on cross-infrastructure interdependence

have largely remained to be conducted.

7.2.2 Imperfect Attacks

Investigations of cyber-physical attack threats are often conducted in the worst case

scenario to fully understand their impacts. Assumptions of the worst case usually in-
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Figure 39. Example of interdependent sectors vulnerable to cyber-physical attacks on
the smart grid.

clude the full access of resource, knowledge, and/or control of the system as well as

a well-defined intention of the attack objective. These “perfect attacks” are crucial to

reveal the maximal damages an attacker may induce in the system.

Meanwhile, for practical and usable security, it is also an essential task to inves-

tigate the imperfect attacks, which will include scenarios where attackers have limited

information, resource, or time-window to perform a sophisticated attack. Along this

direction, the information of the power system can be better categorized and classified

to accurately assess the level of risks and impacts based on the type and level of infor-

mation accessed by the attacker. The resources of an attack should also be identified,

which may include the computational power, the communication channels, as well as

the domain expertise that would lead to a feasible and impactful attack. This will enable

better monitoring and protection of critical assets. The time-window, including both the

time to penetrate a system, the timing of an attack, as well as the duration that attack

signals are present will also have significant impacts on the actual risks. These factors

will warrant further investigation to understand the attack threats on a full spectrum,

allowing grid operators to react promptly and properly to feasible threats in real-world
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scenarios.

Furthermore, as the cyber-physical integration continues, the exposure and vulner-

ability of critical systems and processes will also reveal new zero-day threats in the

grid. It is therefore important to roll out penetration tests at all levels to identify new

vulnerabilities that even an ill-informed attacker could exploit. Due to the complex-

ity of cyber-physical interdependence and interactions in the smart grid, it is becoming

increasingly challenging to enumerate and evaluate attack surface, path, and schemes.

However, thanks to the development of machine intelligence, it is possible to combine

human expertise and intelligent algorithms to develop adaptive and automatic pen-tests

that can self-screen and identify threats unforeseen or unnoticed in complex systems in

the grid.

7.2.3 Attack-Resilience

In the real world, it is hardly possible to enumerate or eliminate all potential attack

threats for a perfectly secured smart grid [208]. Therefore, attack-resilience should be

integrated against the permanent presence and evolution of threats, for both blackouts

and beyond. On one hand, additional security features and mechanisms against the

most significant attack threats should be established as a core for the measurement and

control of cyber-physical power and energy systems. Meanwhile, the costs of attack-

resilient designs should be balanced with the risks of feasible attacks, so that a proper

trade-off between economic concerns and security impacts can be achieved. Meanwhile,

we should be aware that the development and deployment of advanced and distributed

intelligence are double-edged: the intelligent systems will become both targets of cyber-

physical attacks as well as tools to defend against them. Overall, security analysis should

integrate the impacts of the latest development in generation [209], transmission [112],

and distribution systems [210, 211] of the smart grid, enhance their resilience against

potential attacks, and utilize their potentials to assure the delivery of electricity in the
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21st century.

Beyond the technical considerations, the smart grid is a critical infrastructure that

involves organizations and individuals in both private and public sectors. From high-

level regulations and policies to individual awareness and practice, human factors should

be inclusive throughout the design, implementation, and restoration of a secure and

smart grid. While the grid is becoming more and more automatic and intelligent, there

should always be sufficient “room” left for manual supervision, intervention, and op-

timization. Across security stages of prevention, evaluation, detection, mitigation, and

restoration, security designs shall keep human in the loop to enhance both attack aware-

ness and attack resilience of the smart grid.
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