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Key points:  25 

• Three parameterizations for particulate organic carbon (POC) export are 26 

compared to global data. 27 

• POC fluxes estimated from the Martin curve and the ballast hypothesis capture 28 

observations equally well at all depths. 29 

• Globally, data constrain Martin’s b to a range from 0.70 to 0.98. This range 30 

could modify atmospheric pCO2 by only tens of ppm. 31 

  32 
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Abstract 33 

The shunt of photosynthetically derived particulate organic carbon (POC) from the 34 

euphotic zone and remineralization at depth comprises the basic mechanism of the 35 

“biological carbon pump.”  POC raining through the “twilight zone” (euphotic depth 36 

to 1km) and “midnight zone” (1 km to 4 km) is remineralized back to inorganic form 37 

through respiration by heterotrophs and bacteria.  Accurately modeling POC flux is 38 

critical for understanding the “biological pump” and its impacts on air-sea CO2 39 

exchange and, ultimately, long-term ocean carbon sequestration.  Yet, the 40 

parameterizations of POC flux commonly used in simulations have not been tested 41 

quantitatively against global datasets using the same modeling framework.  Here, we 42 

use a single one-dimensional physical-biogeochemical modeling framework to assess 43 

the skill of three common POC flux parameterizations in capturing POC flux 44 

observations from moored sediment traps and thorium-234 depletion.  The 45 

exponential decay, Martin curve, and ballast model are compared to data from 11 46 

biogeochemical provinces distributed across the globe.  In each province, the model 47 

captures satellite-based estimates of surface primary production within uncertainties.  48 

Goodness-of-fit is measured by how well the simulation captures the observations, 49 

quantified by bias and the root-mean-squared-error and displayed using “target 50 

diagrams.”  Comparisons are presented separately for the twilight zone and midnight 51 

zone.  We find the parameterization based on the ballast hypothesis shows no 52 

improvement over a globally or regionally parameterized Martin curve.  For all 53 

provinces taken together, Martin’s b that best fits the data is [0.70, 0.98]; this finding 54 

reduces by at least a factor of 3 previous estimates of potential impacts on 55 

atmospheric pCO2 of uncertainty in POC export to a more modest range [-16 ppm, 56 

+12 ppm]. 57 
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 58 

1. Introduction 59 

The biologically-mediated removal of organic carbon from surface waters against a 60 

dissolved inorganic carbon (DIC) gradient and its subsequent remineralization at 61 

depth is termed the “biological pump” [Broecker and Peng, 1982; De La Rocha, 62 

2006], which can be separated into a “carbonate pump” and a “soft-tissue pump” 63 

[Volk and Hoffert, 1985] as well as a “microbial pump” [Jiao et al., 2010].  The 64 

percentage of net primary production (NPP) exported from the euphotic zone as 65 

particulate organic carbon (POC) is at least 5%, with some estimates higher than 40% 66 

[Martin et al., 1987; Buesseler, 1998; Schlitzer, 2000; Boyd and Trull, 2007; 67 

Buesseler and Boyd, 2009; Henson et al., 2011].  Much of this material is respired, 68 

primarily by bacteria and zooplankton, within the “twilight zone” (euphotic depth to 69 

1000 m) [Steinberg et al., 2008]; only ~3% of exported NPP reaches the 1000 m 70 

depth horizon [De La Rocha and Passow, 2007].  On timescales of days to weeks the 71 

flux of POC is controlled by sinking speed and degradation rate.  If in steady state, 72 

POC flux should be balanced by the input of limiting nutrients to the euphotic zone 73 

[Passow and Carlson, 2012; Giering et al., 2017]. 74 

 75 

POC flux to depth is the hallmark of the biological pump, and is critical to setting 76 

surface ocean pCO2 [Parekh et al., 2006; Kwon et al., 2009; Kwon et al., 2011; 77 

DeVries et al., 2012].  The pCO2 gradient across the air-sea interface determines the 78 

direction of carbon flux across the surface.  By converting DIC to organic carbon, 79 

biological activity reduces surface ocean pCO2 and promotes CO2 uptake by the 80 

ocean.  The downward POC flux then sequesters carbon at depth.  Changes in the 81 

efficiency of the biological pump, measured as the ratio of exported POC to primary 82 
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production has the potential to alter ocean carbon storage and atmospheric CO2 83 

[Marinov et al., 2008a, 2008b; Kwon et al., 2009; Henson et al. 2011].  Parekh et al. 84 

[2006] estimate the atmospheric pCO2 would be 150-200 𝜇atm greater than the 85 

current value if not for the biological control on the vertical DIC gradient.  Kwon et 86 

al. [2011] separate the sensitivity of atmospheric CO2 to changes in the carbonate 87 

pump versus the soft-tissue pump.  They find that for a globally-averaged respired 88 

carbon increase of 10 mol kg-1, the carbonate pump increases atmospheric CO2 by 89 

about 3.4% while the soft-tissue pump decreases atmospheric CO2 by 5.3%, thus there 90 

is a net 2% reduction in atmospheric CO2 when both pumps are accounted for.   91 

 92 

Projections using earth system models show a sizeable uncertainty across various 93 

models with respect to the biological pump’s response to 21st century climate change 94 

[Bopp et al., 2013; Laufkötter et al., 2015; Hauck et al., 2015; Krumhardt et al. 2016].  95 

Accurate estimation the sensitivity of the biological pump to future climate change is 96 

critical to economic evaluations of the impacts of climate change on ecosystem 97 

services [Barange et al., 2017].  Parameterizations used in earth system models would 98 

ideally capture both the mean POC attenuation and the variability found in available 99 

observations, and do so in a mechanistically-realistic manner, in order to reliably 100 

predict future change in the strength and efficiency of the biological pump.   101 

 102 

Early parameterizations of POC flux relate export either at a reference depth [Martin 103 

et al., 1987] or the euphotic zone primary production [Suess, 1980; Betzer et al., 104 

1984; Pace et al., 1987] to the vertical POC flux through an empirically-derived 105 

relationship.  Although these parameterizations lack mechanistic realism, the Martin 106 

et al. [1987] power law parameterization, in some cases with adjustment to different 107 
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ocean regions [Henson et al. 2012; Guidi et al. 2015], has been used widely to predict 108 

carbon flux >2000m [François et al., 2002; Honjo et al., 2008].  Alternative to a 109 

power law parameterization, an exponential curve has been used to describe 110 

attenuation through an empirical fit to observations [Lutz et al., 2002; Boyd and Trull, 111 

2007; Marsay et al., 2015].  Parameterizations assuming first-order kinetics and a 112 

constant sinking speed have been used in biogeochemical models [Walsh et al., 1988; 113 

Banse, 1990; Dutkiewicz et al., 2005; DeVries and Weber, 2017], which implies an 114 

exponential decay of POC.  More mechanistic parameterizations, such as those based 115 

on the “ballast hypothesis” [Armstrong et al., 2002] assume minerals associated with 116 

POC increase the POC flux at depth, have been proposed.  117 

 118 

To directly compare the various choices available for POC parameterization, a global 119 

dataset with consistent treatment and a consistent model framework is required.  The 120 

choice of seasonal normalization in datasets [Lutz et al., 2002; Lutz et al., 2007; 121 

Honjo et al., 2008] can impact statistical fits, and simulated POC fluxes are dependent 122 

both on the POC flux parameterization, and also on the simulated surface ocean 123 

productivity. In a previous model-data comparison, Howard et al. [2006] used a three-124 

dimensional ocean model in which surface NPP responds to the POC 125 

parameterization. They find that the ballast model captures observations more 126 

accurately than the Martin curve, and that the geochemical distribution in the deep 127 

ocean is sensitive to the parameterization used.  However, there has not yet been a 128 

comparison across all three common parameterizations in which the modeling 129 

framework is identical, including identical surface NPP and POC production to drive 130 

the vertical fluxes estimated by each parameterization.   131 

 132 
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In this study, we compare three common POC flux parameterizations using a single 133 

one-dimensional numerical modeling framework in which NPP is not responsive to 134 

the parameterization used; i.e. each parameterization is driven by the same surface 135 

POC source.  This model is applied in 11 Longhurst [2006] provinces for which 136 

adequate POC flux data are available (Figure 1).  We quantitatively evaluate, using a 137 

suite of statistical tests, the exponential decay model, Martin curve, and the ballast 138 

hypothesis against the recently released global POC flux dataset [Mouw et al., 2016a] 139 

that consists of POC flux observations from sediment traps supplemented with 140 

thorium-234 depletion observations (2% of the data) spanning years 1976 to 2012.   141 

 142 

2. Methodology 143 

2.1 Model Description 144 

The Massachusetts Institute of Technology general circulation model (MITgcm) 145 

[Marshall et al., 1997a, 1997b] is configured as a one-dimensional column with 77 146 

vertical layers.  Depths increase from a resolution of 10m in the surface to 650m in 147 

the deepest layer.  K-profile parameterization (KPP) simulates vertical mixing [Large 148 

et al., 1994].  The model uses a nutrient-restoring scheme with a relaxation time scale 149 

of 30 days to approximate advection and diffusive processes that are not directly 150 

simulated.  Nutrients are restored towards the climatology appropriate for each 151 

province in the euphotic zone when the simulated nutrient concentration falls below 152 

the climatological value, while nutrients below the euphotic zone are constantly 153 

restored towards climatology.  Sediments are not included in the model, and thus 154 

detritus slowly accumulates in the bottom grid cell; the bottom grid cell is ignored in 155 

analyses.   156 

 157 
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The model is initialized with physical and biogeochemical observations and forced at 158 

the surface with monthly climatological meteorological and radiative fields 159 

appropriate for each province.  Temperature, salinity, and nutrients are prescribed by 160 

World Ocean Atlas 2013 [Boyer et al., 2013].  Alkalinity and DIC are prescribed 161 

using GLobal Ocean Data Analysis Project (GLODAP) atlas [Key et al., 2004].  162 

Photosynthetically active radiation (PAR) is prescribed using Sea-viewing WIde 163 

Field-of-view Sensor (SeaWIFS) data [Frouin et al., 2002].  Surface dust deposition 164 

is provided by Mahowald et al. [2005].  Surface wind stress is prescribed using 165 

National Center for Environmental Prediction (NCEP) reanalysis 1 [Kalnay et al., 166 

1996].   167 

 168 

The ecosystem model embedded in MITgcm is that of Dutkiewicz et al. [2005].  The 169 

model includes two phytoplankton functional groups (diatoms and small 170 

phytoplankton) and one zooplankton class.  Phytoplankton growth can be light and 171 

nutrient limited.  Mortality rate and maximum growth rates of diatoms and small 172 

phytoplankton are tuned for each province (supplementary Table S1) to best fit 173 

satellite-based estimates of primary productivity (Table 1).  The remineralization rate 174 

(𝑘) is set to 1/10 d-1 for POC and 1/150 d-1 for biogenic silica (opal).  The dissolution 175 

rate for particulate inorganic carbon (PIC) is 1/300 d-1.  The sinking speed (𝑤) for 176 

POC, PIC, and opal are fixed constants: POC and opal sink at a rate of 10 m d-1 while 177 

PIC sinks at 15 m d-1.  These POC sinking speeds lie within the range of other 178 

models, 2.5 m d-1 [Yool et al., 2010], 8 m d-1 [Dutkiewicz et al., 2005], 11-85 m d-1 179 

[DeVries and Weber., 2017].  The POC remineralization rate and sinking speed used 180 

here imply a remineralization length scale (𝜆 = 𝑤𝑘−1) of 100 m, similar to the Lima 181 

et al. [2014] value of 130 m and within the range assumed by Moore et al. [2004].  182 
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This remineralization length scale is within the 50-200 m range that Mouw et al. 183 

[2016b] found for most provinces, and the 69-265m range derived from the 184 

optimization of DeVries and Weber [2016].  185 

 186 

The model assumes 7% of phytoplankton are calcifiers, and therefore produce PIC.  187 

Production of POC, PIC, and opal are due to mortality of phytoplankton and 188 

zooplankton, as well zooplankton grazing on phytoplankton.  The tendency of POC, 189 

PIC, and opal production are shown below: 190 

𝑑[𝑋𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
=  𝑃𝑋

𝑝𝑟𝑜𝑑(𝑧) + 𝑍𝑋
𝑝𝑟𝑜𝑑(𝑧)   (1) 191 

where X=POC, PIC, or opal.  𝑃𝑋
𝑝𝑟𝑜𝑑(𝑧) represents production of X (mgX m-2 d-1) at 192 

depth (z, m) by phytoplankton (P) and 𝑍𝑋
𝑝𝑟𝑜𝑑(𝑧) represents production of X (mgX m-2 193 

d-1) at depth (z, m) by zooplankton (Z).  194 

 195 

A 10-year simulation is run after a 10-year model spin up.  The model uses a time 196 

step of 200 seconds with an 8-day averaging period.  This averaging period is chosen 197 

to coincide with the time step of the vertically integrated production model (VGPM) 198 

[Behrenfeld and Falkowski, 1997] which is used for comparison to modeled NPP.  199 

VGPM satellite-based NPP estimates are obtained from 200 

http://www.science.oregonstate.edu/ocean.productivity/ and the modeled NPP is 201 

calculated as the integrated productivity in the euphotic zone.  202 

 203 

2.3 Exponential Decay Model 204 

The exponential decay model assumes that all the POC is labile with a constant 205 

sinking speed, expressed in equation (2) [Banse, 1990]. 206 
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𝐹(𝑧) = 𝑤𝑝𝑜𝑐[𝑃𝑂𝐶(𝑧)]     (2) 207 

where 𝐹(𝑧) is the POC flux (mgC m-2 d-1) at depth (z, m), 𝑤𝑝𝑜𝑐 is the sinking speed 208 

of labile POC (m d-1), and [𝑃𝑂𝐶(𝑧)] is the volume concentration of labile POC (mgC 209 

m-3) at depth.  The tendency of POC to sink and remineralize is expressed in the 210 

following form: 211 

𝑑[𝑃𝑂𝐶(𝑧)]

𝑑𝑡
= 𝑤𝑝𝑜𝑐

𝑑[𝑃𝑂𝐶(𝑧)]

𝑑𝑧
− 𝑘𝑝𝑜𝑐[𝑃𝑂𝐶(𝑧)]    (3) 212 

where the first term represents vertically sinking POC while the second term 213 

represents a first-order remineralization scheme where POC is instantly remineralized 214 

at each depth level (z) with 𝑘𝑝𝑜𝑐 being the remineralization rate.  An expression for 215 

the flux of labile POC is derived by applying equation (2) to a steady state version of 216 

equation (3):  𝐹(𝑧) = 𝐹(𝑧𝑜)𝐸𝑋𝑃[(𝑧 − 𝑧𝑜)/𝜆], where 𝐹(𝑧𝑜) is the flux at reference 217 

depth 𝑧𝑜 and 𝜆 =
𝑤𝑝𝑜𝑐

𝑘𝑝𝑜𝑐
 is the remineralization length scale (e-folding length scale).  218 

Table 2 provides definitions of all equation parameters.  219 

 220 

The ecosystem model of Dutkiewicz et al. [2005] treats particulate organic matter as 221 

exponentially decaying throughout the water column and assumes all POC is labile. 222 

The full tendency of POC is defined in equation (4):  223 

𝑑[𝑃𝑂𝐶(𝑧)]

𝑑𝑡
=

𝑑[𝑃𝑂𝐶𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
+ 𝑤𝑝𝑜𝑐

𝑑[𝑃𝑂𝐶(𝑧)]

𝑑𝑧
− 𝑓𝑇𝑘𝑝𝑜𝑐[𝑃𝑂𝐶(𝑧)]   (4) 224 

where the first term is the tendency of POC production (equation (1)) and the last two 225 

terms represent sinking and remineralization (equation (3)).  Temperature dependence 226 

on remineralization rate is taken into account through an Arrhenius function: 𝑓𝑇 = 𝐴 ∗227 

𝐸𝑋𝑃[𝑇𝐴𝐸(𝑇−1 − 𝑇𝑟𝑒𝑓
−1 )], where 𝐴, 𝑇𝐴𝐸, and 𝑇𝑟𝑒𝑓 are constants and 𝑇 is the local 228 

temperature (supplementary Table S2).  POC flux at each level is calculated using 229 
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equation (2).  This framework will be termed the “exponential decay model” for POC 230 

flux.   231 

 232 

2.4 Martin Curve 233 

Using data obtained from free-floating sediment traps, Martin et al. [1987] describe 234 

POC flux attenuation using a normalized power function of the following form, 235 

commonly referred to as the “Martin curve”: 236 

𝐹(𝑧) = 𝐹(100) (
𝑧

100
)

−𝑏

    (5) 237 

where 𝐹(100) is the POC flux at 100m and 𝑏 is the flux attenuation coefficient.  The 238 

Martin curve is equivalent to a decreasing remineralization rate with depth or an 239 

increasing sinking speed with depth [Lam et al., 2011].  Villa‐Alfageme et al. [2016] 240 

observed an increase in sinking speed with depth, possibly due to the gradual loss of 241 

slow-sinking particles with depth.  Small values of 𝑏 imply a higher transfer 242 

efficiency where more carbon remineralizes at deeper depths.  Transfer efficiency is 243 

defined as the fraction of exported organic matter that reaches a given depth below 244 

the depth of export, with 100 m below the depth of export being where transfer 245 

efficiency is typically estimated [Buesseler and Boyd, 2009].  Transfer efficiency and 246 

b are inversely related: large values of 𝑏 imply a small transfer efficiency with more 247 

carbon remineralizing at shallower depths.  Martin et al. [1987] calculated a global b 248 

value of 0.858 using observations from nine locations in the Northeast Pacific. 249 

Regional variations in the b parameter have been found to improve the statistical fits 250 

at the scale of ocean provinces [Henson et al., 2012; Guidi et al., 2015] and across 251 

ocean basins [Berelson, 2001; Schlitzer, 2002], implying regional variability in the 252 

flux attenuation and transfer efficiency.  Marsay et al. [2015] showed the b parameter, 253 

and hence the flux attenuation, correlates with temperature.  This pattern is plausibly 254 
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explained by a slowdown of microbial utilization of carbon as temperature decreases 255 

[Pomeroy and Diebel, 1986; Pomeroy et al., 1991].  Changes in b, when applied 256 

globally in a biogeochemical model, have been shown to significantly impact 257 

atmospheric CO2 concentrations [Kwon et al., 2009]. 258 

 259 

In this study, POC fluxes at depth based on the Martin curve are calculated offline 260 

from surface production in MITgcm.  In keeping with the original intent of the Martin 261 

curve, we use equation (5) to calculate the flux at each depth level (z) using an export 262 

depth of 100 m and export flux, 𝐹(𝑧100), from the exponential decay model runs.  263 

Due to nutrient restoring below the euphotic zone, feedback of shallow 264 

remineralization on surface production is negligible; thus, this approach is robust.  265 

Runs with both the Martin et al. [1987] global b value of 0.858 as well as the Guidi et 266 

al. [2015] and Henson et al. [2012] regional b values are performed for comparison. 267 

 268 

2.5 Ballast Hypothesis 269 

The ballast hypothesis proposed by Armstrong et al. [2002] asserts that “ballast” 270 

minerals (PIC, opal, and dust), qualitatively associated with POC, increase the deep 271 

ocean POC flux.  Using observations from the equatorial Pacific, Armstrong et al. 272 

[2002] observed that the ratio of organic carbon flux to total mass flux was nearly 273 

constant below 1800 m and concluded ballast minerals are intimately related to the 274 

POC flux.  Mechanistically, the role of ballast minerals is not entirely clear.  It has 275 

been proposed that they act to increase the sinking speed and/or protect POC from 276 

microbial respiration and zooplankton grazing.  Thus, POC that is associated with 277 

ballast minerals induces a higher transfer efficiency, delivering more POC to depth.  278 

The ballast hypothesis asserts that sinking POC is a composed of “free” and ballast 279 
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mineral associated fractions (supplementary Figure S1).  The free fraction has a 280 

remineralization length scale as labile POC while POC qualitatively associated with 281 

ballast minerals is partitioned between a “soft” and “hard” subclass, which represent 282 

external and internal protection mechanisms, respectively [Armstrong et al., 2002].  283 

External protection constitutes physical removal from hydrolyzing enzymes by 284 

adsorption of POC into mineral micropores and increasing sinking speed [Mayer, 285 

1994]; POC associated with the soft fraction has the same remineralization profile as 286 

its associated ballast mineral.  Internal protection occurs when POC is encased in PIC 287 

or opal, sheltering it from degradation until the mineral has dissolved [Armstrong et 288 

al., 2002; and references therein].  For this reason, the hard fraction has a very deep 289 

remineralization length scale, representing refractory POC.  However, Iversen and 290 

Robert [2015] concluded that ballast minerals act only to increase sinking speed and 291 

do not provide any protection to organic matter.  292 

 293 

Klaas and Archer [2002] used a global dataset of sediment trap observations in the 294 

midnight zone to distinguish three forms of ballast with the following carrying 295 

capacities (grams of organic carbon per gram of ballast): PIC (0.094), opal (0.025), 296 

and dust (0.035).  Additionally, Klaas and Archer [2002] observed 80% of the POC 297 

flux to the seafloor was associated with PIC, suggesting it is a more efficient ballast 298 

mineral compared to opal and dust. There are three reasons why the carrying capacity 299 

of PIC has been suggested to be greater than that of opal and lithogenic dust:  300 

1. PIC sinks ~50% faster than opal for an equivalent particle radius [Sarmiento 301 

and Gruber, 2006], since the density of PIC (2.71 g cm-3) is ~30% greater than 302 

the density of opal (2.1 g cm-3) [Klaas and Archer, 2002].  303 
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2. Opal production and export is not as spatially uniform as PIC production and 304 

export [Sarmiento and Gruber, 2006].  The ratio of opal flux to carbon flux 305 

also varies regionally [Ragueneau et al., 2000 Figure 5].  306 

3. Lithogenic fluxes are generally too small to significantly impact the transfer 307 

efficiency of organic carbon [François et al., 2002]. 308 

However, some studies find evidence that does not support PIC having a higher 309 

carrying capacity compared to opal or dust [De La Rocha et al., 2008] or show 310 

regional variability in the carrying capacity of each ballast mineral [Wilson et al., 311 

2012; Pabortsava et al., 2017].   312 

 313 

Published parameterizations for the ballast hypothesis have important differences: 314 

Moore et al. [2004] and Armstrong et al. [2002] include PIC, opal, and lithogenic 315 

material (dust) as ballast minerals while Yool et al. [2010] and Dunne et al. [2013] 316 

omit ballasting from dust.  The reader is referred to Moore et al. [2004] and Lima et 317 

al. [2014] for a detailed description of the implementation of the ballast hypothesis in 318 

a three-dimensional ocean model with dust.  319 

 320 

For this study, the ecosystem model of Dutkiewicz et al. [2005] is augmented to 321 

include ballasting from PIC, opal, and dust in a manner similar to that of Moore et al. 322 

[2004] and Lima et al. [2014].  The implementation of the ballast hypothesis is based 323 

on Armstrong et al. [2002] and assumes a portion of the POC production is associated 324 

with PIC and opal production and surface dust deposition.  Flux of POC is calculated 325 

by multiplying the sinking speed by the concentration of POC associated with each 326 

mineral (equation (6)): 327 
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𝐹(𝑧) = 𝑤𝑝𝑜𝑐[𝑃𝑂𝐶(𝑧)] + 𝑤𝑝𝑖𝑐[𝑃𝑂𝐶𝑃𝐼𝐶(𝑧)] + 𝑤𝑜𝑝𝑎𝑙[𝑃𝑂𝐶𝑜𝑝𝑎𝑙(𝑧)]328 

+ 𝑤𝑑𝑢𝑠𝑡[𝑃𝑂𝐶𝑑𝑢𝑠𝑡(𝑧)]  (6) 329 

where 𝑤𝑋 is the sinking speed of X=POC, PIC, opal, or dust, [𝑃𝑂𝐶𝑌(𝑧)] is the 330 

concentration of POC associated with Y=PIC, opal, or dust, and [𝑃𝑂𝐶(𝑧)] is the 331 

concentration of free or labile POC.  The tendency of POC associated with ballast 332 

mineral Y is separated into a hard and soft subclass (equation (7)): 333 

𝑑[𝑃𝑂𝐶𝑌(𝑧)]

𝑑𝑡
 =

𝑑[𝑃𝑂𝐶𝑌
𝑠𝑜𝑓𝑡

(𝑧)]

𝑑𝑡
+

𝑑[𝑃𝑂𝐶𝑌
ℎ𝑎𝑟𝑑(𝑧)]

𝑑𝑡
   (7) 334 

POC in the soft subclass decays exponentially with a remineralization rate as its 335 

associated ballast mineral while POC in the hard subclass decays exponentially with a 336 

very long remineralization rate; POC in each subclass has the same sinking speed as 337 

its associated ballast mineral.  Each term in 
𝑑[𝑃𝑂𝐶𝑃𝐼𝐶(𝑧)]

𝑑𝑡
  is defined in Table 3 and each 338 

term in 
𝑑[𝑃𝑂𝐶𝑜𝑝𝑎𝑙(𝑧)]

𝑑𝑡
 is defined in Table 4.  The source of dust in the model is from 339 

surface deposition (𝑑𝑢𝑠𝑡𝑑𝑒𝑝,  mgDust m-2 d-1).  POC associated with dust solely 340 

occurs in the surface grid cell (𝛥𝑧𝑠𝑢𝑟𝑓 , 𝑚) and is separated into a hard and soft 341 

subclass which decay exponentially.  Each term in the tendency equation for POC 342 

associated with dust (
𝑑[𝑃𝑂𝐶𝑑𝑢𝑠𝑡(𝑧)]

𝑑𝑡
) is defined in Table 5.  The tendency of free POC 343 

production is calculated by subtracting ballast associated POC from the total POC 344 

production: 
𝑑[𝑃𝑂𝐶𝑓𝑟𝑒𝑒

𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
=

𝑑[𝑃𝑂𝐶𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
− [𝜔𝑃𝐼𝐶  (

𝑑[𝑃𝐼𝐶𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
) +345 

𝜔𝑜𝑝𝑎𝑙 (
𝑑[𝑜𝑝𝑎𝑙𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
) + 𝜔𝑑𝑢𝑠𝑡 (

𝑑𝑢𝑠𝑡𝑑𝑒𝑝

𝛥𝑧𝑠𝑢𝑟𝑓
)], where  

𝑑[𝑋𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
 is the production of 346 

X=PIC or opal by phytoplankton and zooplankton (equation (1)) and 𝜔𝑌 is the POC 347 

carrying capacity for Y=PIC, opal, or dust.  Each term in the tendency equation for 348 

free POC (
𝑑[𝑃𝑂𝐶(𝑧)]

𝑑𝑡
) is defined in Table 6.  349 
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 350 

2.6 Analysis 351 

An 8-day climatology of POC flux within each province is created using the Mouw et 352 

al. [2016a] data compilation of in situ sediment trap and thorium-234 based 353 

measurements.  PIC and opal fluxes are not analyzed due to insufficient spatial and 354 

temporal resolution in the field data.  Dates are converted to day of year and aligned 355 

in time using the midpoint of the deployment.  POC flux observations within each 356 

biogeochemical province as defined by Longhurst [2006] (provided by VLIZ [2009]) 357 

are aggregated and grouped by depth and day of year into 8-day segments. 358 

Observations are then aggregated to the model vertical grid in order to quantitatively 359 

compare to model output.  In order to be considered in our comparison, observations 360 

must be available at depths greater than 1000 m and the model must capture the 361 

surface ocean production in a manner consistent with satellite retrievals.  Coastal 362 

provinces are omitted. 363 

 364 

Model performance is assessed by investigating the model-data misfit, defined as 365 

𝛥(𝑖) =  log [𝑀(𝑖)] − log [𝑂(𝑖)] where 𝑀(𝑖) and 𝑂(𝑖) represent the ith model 366 

prediction and ith observed value respectively.  Each observation is log base 10 367 

transformed to alleviate skewedness from large values.  The water column is 368 

partitioned into the twilight zone (100-1000m) and midnight zone (1000-4000m), 369 

with each analyzed separately. For consideration of variability, the full range of 370 

variability for the model and observations across each zone is compared.  A set of six 371 

summary statistics are used as univariate measures of model performance [Stow et al., 372 

2009]:  373 
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1. Correlation:  𝑟 =
∑ {log[𝑀(𝑖)]−log[𝑀(𝑖)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅}𝑁

𝑖=1  {log[𝑂(𝑖)]−log[𝑂(𝑖)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

{∑ [𝑀(𝑖)−�̅�]2𝑁
𝑖=1  ∑ [𝑂(𝑖)−�̅�]𝑁

𝑖=1

2
}

1
2

 374 

2. Root Mean Squared Difference:  𝑅𝑀𝑆𝐷 =  [
1

𝑁
∑ 𝛥(𝑖)2𝑁

𝑖=1 ]

1

2
 375 

3. Bias:  𝐵 =  log[M(i)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − log[O(i)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    376 

4. Average Absolute Error:  𝐴𝐴𝐸 =
∑ | log[M(i)]−log [O(i)]|𝑁

𝑖=1

𝑁
  377 

5. Model Efficiency:   𝑀𝐸 =  1 −
∑ {log [M(i)]−log [O(i)]}2𝑁

𝑖=1

∑ {log [O(i)]−log [O(i)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }
2𝑁

𝑖=1

= 1 − (
𝑅𝑀𝑆𝐷

𝑠𝑂
)

2

 378 

6. Reliability index:  𝑅𝐼 =  10𝑅𝑀𝑆𝐷 379 

The correlation (r) is a measure between -1 and 1 quantifying the degree to which the 380 

simulation and observations linearly vary.  The correlation only expresses how well 381 

the simulation and observations vary together and does not account for systematic 382 

biases; a correlation of 1 does not preclude a mean offset between the simulation and 383 

observations.  Additionally, this value is related to the coefficient of determination 384 

(r2), which expresses the variance explained by a linear regression.  385 

 386 

Root mean squared difference (RMSD), bias (B), and average absolute error (AAE) 387 

are all measures of the discrepancy between the simulated and observed mean.  388 

Values near zero imply “good” model performance and large values imply “poor” 389 

model performance using these metrics.  The modeling efficiency (ME) can be used 390 

as a transition value between good and poor model performance [Nash and Sutcliffe, 391 

1970].  A skillful model by this metric has an ME value near one.  Modeling 392 

efficiency is related to RMSD: 𝑀𝐸 = 1 − (
𝑅𝑀𝑆𝐷

𝑠𝑂
)

2

, where 𝑠𝑂 is the observed 393 

variance.  The reliability index (RI) quantifies the average factor by which the model 394 

differs from observations.  For example, an RI of 2 implies the model predictions 395 

need to be multiplied by 2 in order to reconstruct the observations.  396 
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 397 

Model performance is visualized using normalized “target diagrams” [Jolliff et al., 398 

2009].  Target diagrams visualize bias and variability together (Figure 2a), giving 399 

them an advantage over the commonly used “Taylor diagram” [Taylor, 2001], which 400 

summarizes only the variability.  Normalized target diagrams are based on the 401 

following quadratic relationship: 402 

(
𝑅𝑀𝑆𝐷

𝑠𝑂
)

2

= (
𝐵

𝑠𝑂
)

2

+ (
𝑢𝑅𝑀𝑆𝐷

𝑠𝑂
)

2

   (8) 403 

 where 𝑢𝑅𝑀𝑆𝐷 =
1

𝑁
∑ [𝛥(𝑖) − 𝐵]2𝑁

𝑖=1  is the unbiased RMSD (or variance of the 404 

model-data misfit), which measures the degree to which the model captures the 405 

observed variance, bias (B) is a measure of how well the simulated mean captures the 406 

observed mean, and 𝑠𝑂 is the observed variance.  Target diagrams provide a novel 407 

way of visualizing B and uRMSD on a single plot: bias (B) on the y-axis and 408 

unbiased RMSD (uRMSD) on the x-axis.  The radial distance, (
𝑅𝑀𝑆𝐷

𝑠𝑂
)

2

, is related to 409 

the modeling efficiency (ME): (
𝑅𝑀𝑆𝐷

𝑠𝑂
)

2

= 1 − 𝑀𝐸.  ME is negative when the radial 410 

distance is greater than one and modeling efficiency is positive when the radial 411 

distance is less than one.  Therefore, ME is visualized by plotting a circle with a 412 

radius of one on a normalized target diagram; skillful models are within the circle.  413 

Under- or over-estimation of the variability is quantified by multiplying uRMSD by 414 

the sign of the observed variance (𝑠𝑂) subtracted from the modeled variance (𝑠𝑀).  415 

Equation (9) shows the relationship used to construct target diagrams presented in this 416 

manuscript, which is equivalent to equation (8): 417 

(1 − 𝑀𝐸) = 𝐵∗2 + 𝑢𝑅𝑀𝑆𝐷∗2   (9) 418 
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where 𝐵∗ =
𝐵

𝑠𝑂
  and 𝑢𝑅𝑀𝑆𝐷∗ =

𝑢𝑅𝑀𝑆𝐷

𝑠𝑂
𝑠𝑖𝑔𝑛(𝑠𝑀 − 𝑠𝑂).  Normalized target diagrams 419 

allow the display of multiple models on a single plot. They also visualize how well 420 

each model captures the observed mean and variance along with the modeling 421 

efficiency (ME).  Target diagrams have previously been used to assess satellite 422 

derived NPP estimates [Friedrichs et al., 2009; Saba et al., 2010; Saba et al., 2011; 423 

Lee et al., 2015], surface chlorophyll [Hofmann, 2008; Lazzari et al., 2012], and 424 

physical variables such as temperature and salinity [Hofmann, 2008; Pairaud et al., 425 

2011].   426 

 427 

The final component of our analysis is to determine the range of Martin’s b that is 428 

globally consistent with POC flux observations; and then to use this range to constrain 429 

previous estimates of the potential sensitivity of atmospheric pCO2 to uncertainty in 430 

the biological pump [Kwon et al. 2009].  The normalized bias (B*), the vertical axis in 431 

normalized target diagrams, is our metric for best fit.  As discussed in detail in section 432 

3, the three parameterizations are better able to capture the observed mean POC flux 433 

rather than POC flux variability, motivating the choice of B* as a metric.  For this 434 

analysis, the model is run for each province with a range of b values from 0.40 to 1.40 435 

(with increments of 0.01), the range of b from Kwon et al. [2009].  B* is calculated 436 

using observations only in the midnight zone, and in both the midnight and twilight 437 

zones. A particular value of b “accurately” captures the observed mean if the B* for 438 

that model is within the range [-1,1] (supplementary Figure S2).  The best-fit global b 439 

range is taken as the interquartile range of all province-specific b values.  440 

Atmospheric pCO2 as a function of b is taken from the global 3-D biogeochemical 441 

modeling study of Kwon et al. [2009].  In their most realistic model formulation 442 

(“nutrient restoring”, Supplementary Text T1), biological productivity changed in 443 
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response to export change and a constant rain ratio (PIC/POC) of 0.08 was used.  For 444 

our analysis, their results are digitized and interpolated with a cubic spline [Kwon et 445 

al., 2009, their Figure 3c].  The change in atmospheric pCO2 (referenced to pCO2 446 

with b=0.858) is then inferred from this curve for the range of b values that we find to 447 

best fit POC flux observations. 448 

 449 

3. Results 450 

Four biogeochemical provinces out of eleven are selected to be presented in the main 451 

text since they span a range of latitudes (Figure 1).  Simulated POC fluxes for each 452 

parameterization in the selected provinces are shown alongside observations in Figure 453 

3; all provinces are presented in supplementary Figures S3-S16, and considered in the 454 

discussion and conclusions.  Two provinces, Eastern Pacific subarctic gyres (PSAE) 455 

and North Atlantic drift (NADR), were selected for focus because of their expected 456 

collocation with the study regions for the Exports Processes in the Ocean from 457 

RemoTe Sensing (EXPORTS) field campaign that is presently being planned [Siegel 458 

et al., 2016].  These sites also cover a range of ecosystem states.  The simulated mean 459 

annual primary production in each province captures the climatological range of mean 460 

annual primary production, calculated using VGPM (Table 1).  Although the model 461 

does not fully capture the observed seasonality across some provinces (supplementary 462 

Figure S17), it does capture the annual primary production, indicating the model is a 463 

useful tool to study mean annual export, as done here.  464 

 465 

3.1 Twilight Zone 466 

For each province, the Martin curve, exponential model, and ballast hypothesis have 467 

similar reliability indexes in the twilight zone (Figure 4), illustrating that these 468 
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parameterizations capture observations equally well within the twilight zone.  This 469 

corroborates Buesseler and Boyd [2009], who show that the Martin curve and 470 

exponential model capture observations at shallow depths.  The exponential decay 471 

model has a tendency to underestimate the flux deep in the twilight zone in some 472 

provinces such as the Pacific Equatorial Divergence (PEQD) (Figure 3).  The 473 

exponential model assumes a constant sinking speed and remineralization rate (i.e. 474 

constant remineralization length scale) throughout the water column, which often 475 

results in fluxes that decrease too quickly with depth [Armstrong et al., 2002; Lutz et 476 

al., 2002].  The amount of variability in the modeled flux varies between provinces, 477 

much due to variability in primary production.  478 

 479 

The interquartile ranges for the three parameterizations overlap for each of the 480 

univariate statistics (Figure 5), quantitatively supporting that these parameterizations 481 

are equally good at capturing observations in the twilight zone.  However, the 482 

parameterizations tend to underestimate the observed variability in the twilight zone, 483 

evident through negative uRMSD* values (Figure 6).  Depending on the location, the 484 

models either show a slight positive or negative bias (Figure 5, Figure 6).  Overall, all 485 

the models perform well in the twilight zone and are more skillful than simply setting 486 

the POC flux to be the observed average (Figure 6).   487 

 488 

3.2 Midnight Zone 489 

The Martin curve and ballast hypothesis each capture observations well in the 490 

midnight zone, while the exponential model underestimates the observed flux at these 491 

depths (Figure 3; Figure 4).  The exponential model underestimates the flux at depth 492 

since a constant remineralization length scale does not allow for slowdown of 493 
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remineralization with depth or increasing sinking speed with depth.  The global 494 

Martin curve slightly underestimates the observed flux in some provinces, such as 495 

PEQD (Figure 3), resulting from either too low POC fluxes out of the euphotic zone 496 

or the use of a b parameter that is too large.  497 

 498 

In the midnight zone, the interquartile range for summary statistics overlap for both 499 

the Martin curve and ballast hypothesis (Figure 5); however, not for the exponential 500 

model.  Each summary statistic suggests the exponential model performs poorly in the 501 

midnight zone compared to the Martin curve and ballast hypothesis: 502 

1. Correlation interquartile range nearly symmetric about zero.  503 

2. Large RMSD, AAE compared to Martin curve and ballast hypothesis. 504 

3. Large negative bias compared to Martin curve and ballast hypothesis. 505 

4. Large negative ME, suggesting poor model performance. 506 

The exponential model for the midnight zone generally lies far from the origin in the 507 

fourth quadrant in the target diagram (Figure 6), consistent with its underestimate of 508 

the observed mean and overestimate of variability.  However, if only one depth level 509 

is resolved in the midnight zone then the normalized target diagram suggests the 510 

exponential model reasonably captures the variability while underestimating the mean 511 

(e.g. PSAE).  For all provinces, the Martin curve and ballast hypothesis both have a 512 

radial distance near unity on the normalized target diagram (Figure 6), suggesting 513 

these models are equally skillful. 514 

 515 

3.3 Regional Attenuation Parameter 516 

Regional Martin curves, using attenuation parameters from Henson et al. [2012] and 517 

Guidi et al. [2015], qualitatively agree with each other and with the global b estimates 518 
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(Figure 7, Figure 8).  Regional b parameters can lead to an improved fit in the 519 

midnight zone in specific provinces.  For example, the Guidi et al. [2015] regional b 520 

parameter reduces the bias in PEQD relative to the Martin et al. [1987] global b value 521 

(Figure 2).  This is further supported by the reliability index (RI) in the midnight zone 522 

decreasing from 2.24 using Martin et al. [1987] global b value to 1.97 using the Guidi 523 

et al. [2015] regional b parameter (Figure 8).  However, when all 11 provinces are 524 

considered, the interquartile range for each summary statistic overlaps (Figure 5), 525 

which suggests on a global scale regional b values produce no statistically significant 526 

improvement over the Martin et al. [1987] global b value.  527 

 528 

4. Discussion 529 

We use a consistent modeling framework to compare estimates of vertical POC flux 530 

from three common parameterizations to a globally distributed dataset. We find that 531 

the Martin curve and the ballast hypothesis capture observations equally well at all 532 

depths. The exponential model is as skillful as the Martin curve and the ballast 533 

hypothesis in the twilight zone (100-1000m), but not as skillful in the midnight zone 534 

(1000-4000m).  535 

 536 

Vertical attenuation of POC flux is ultimately controlled by particle sinking speed and 537 

remineralization rate, each of which can change as the particle descends through the 538 

water column.  Potential processes influencing sinking speed and remineralization 539 

rate include: mineral ballasting [Armstrong et al., 2002; François et al., 2002], 540 

temperature [Laws et al., 2000; Marsay et al., 2015; DeVries and Weber, 2017], 541 

oxygen concentration [Devol and Hartnett, 2001; Van Mooy et al., 2002; Keil et al., 542 

2016; Sanders et al., 2016; DeVries and Weber, 2017], and particle aggregation [Burd 543 
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and Jackson, 2009].  Some of these processes have been explicitly parameterized into 544 

the “stochastic, Lagrangian aggregate model of sinking particles (SLAMS)”, which 545 

was able to reproduce sediment trap observed POC fluxes and some of its regional 546 

variation [Jokulsdottir and Archer, 2016].  The relative and global importance of 547 

these processes is unclear [Burd et al., 2016] and their influence on sinking speed is 548 

still an active area of research.  For example, Mari et al., [2017] show transparent 549 

exopolymer particles (TEP) accumulates in the surface microlayer and needs to be 550 

ballasted to overcome its low density in order to promote aggregation, which brings 551 

into question the classic view that TEP increases POC flux by promoting aggregation 552 

through its role as a “biological glue.”  Attenuation of POC flux is also effected by 553 

surface processes that modify the character and lability of the POC that is exported. 554 

For example, episodic events [Lebrato et al., 2012; Smith et al, 2014], community 555 

structure [Guidi et al., 2009; Guidi et al., 2016], and zooplankton processes [Giering 556 

et al., 2014; Cavan et al., 2015; Cavan et al., 2017; Steinberg and Landry, 2017] are 557 

all likely important.  558 

 559 

That we find that this implementation of the ballast hypothesis captures observations 560 

in the twilight zone and midnight zone no better than the global and regional Martin 561 

curves does not invalidate the ballast hypothesis.  It simply indicates that the 562 

interaction of ballast minerals with POC, as parameterized using standard approaches, 563 

is not necessary to model POC flux in a manner that is statistically consistent with 564 

observations from water column.  A major issue here is, of course, the limited 565 

coverage of these data in space and time [Mouw et al. 2016a,b; Siegel et al. 2016; 566 

Burd et al. 2016].  The ballast hypothesis is based on a long-known correlation 567 

between the flux of POC and the flux of ballast minerals [Deuser et al., 1981] which 568 
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has been used to suggest ballast minerals are responsible for the flux of POC at depth, 569 

either by increasing the sinking speed or protecting organic matter from oxidation 570 

[Armstrong et al., 2002; François et al., 2002; Klaas and Archer, 2002].  The organic 571 

matter content of sinking particles in the midnight zone is observed to be 572 

approximately 5% by weight [Armstrong et al., 2002].  An alternative view of this 573 

correlation is that sinking POC scavenges neutrally-buoyant minerals [Passow, 2004], 574 

which has been corroborated with a laboratory study [Passow and De La Rocha, 575 

2006].  Additionally, Passow and De la Rocha, [2006] observed the POC to dry 576 

weight percent concentration to be 2-3%, which is similar to the 5% observed by 577 

Armstrong et al. [2002] in deep sediment traps, suggesting this may be the carrying 578 

capacity of suspended minerals for POC.  Many studies support the claim that ballast 579 

minerals increase the sinking speed of aggregates [De La Rocha and Passow, 2007; 580 

Ploug et al., 2008; Iversen and Ploug, 2010].  However, the literature provides both 581 

supporting [Arnarson and Keil, 2005; Engel et al., 2009; Le Moigne et al., 2013] and 582 

opposing [Ingalls et al., 2006; Ploug et al., 2008; Iversen and Robert, 2015] 583 

mechanistic evidence with respect to the degree to which ballast minerals protect 584 

organic matter from oxidation.  585 

 586 

4.1 Modeling Recommendations 587 

Each parameterization investigated in this study may be useful in modeling studies, 588 

but should be selected with consideration of the time and depth scales of interest.  All 589 

three parameterizations capture mean observations within the twilight zone and 590 

therefore would be suitable for studies investigating the surface ocean on annual to 591 

decadal time scales, i.e. where accurately capturing the deep ocean is not crucial.  592 

However, for studies of the carbon cycle on centennial to millennial time scales, 593 
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including assessments of long-term ocean carbon sequestration, carbon supply to the 594 

deep ocean should be important.  In this case, the Martin curve and the ballast 595 

hypothesis capture observations at depth equally well on the mean and therefore 596 

would both be suitable.  597 

 598 

We find that the empirical Martin curve has a predictive power comparable to the 599 

mechanistic ballast hypothesis, despite the fact that it lacks a mechanistic foundation.  600 

Though regional variability in the b parameter may improve the realism of the Martin 601 

curve [Henson et al. 2012; Guidi et al., 2015], it is still not mechanistic.  The 602 

exponential decay model’s first-order kinetics are mechanistic to a degree, but this 603 

approach excludes suggested mechanisms such as increasing sinking speed and 604 

remineralization length scale with depth [Villa‐Alfageme et al., 2016].  The ballast 605 

hypothesis is more mechanistic by allowing for refractory POC and allowing ballast 606 

associated POC to sink faster with a longer remineralization length scale.  However, 607 

sinking speed and remineralization length scale of POC and ballast minerals still do 608 

not increase with depth.  Even though the ballast hypothesis is more mechanistic than 609 

the exponential model and the Martin curve, it does not explain the observed 610 

variability in POC flux at depth, which highlights a need for more complete 611 

quantification of export mechanisms (see section 4).  If simplicity is desired, our 612 

recommendation would be to use the Martin curve in ecosystem models, but this 613 

evaluation indicates that the ballast hypothesis would be an equally good choice.  614 

 615 

In order to improve simulations of the biological pump, the relative significance of 616 

mechanisms driving POC flux attenuation need to be better understood.  The primary 617 

limitation on this understanding is the lack of observational data with sufficient 618 
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spatio-temporal resolution to resolve ecosystem processes in the surface ocean that 619 

generate POC and at the same time the processes driving remineralization at depth 620 

[Buessler and Boyd, 2009; Siegel et al. 2016; Burd et al. 2016].  Drivers of temporal 621 

variability in these mechanisms need also to be elucidated.  To better constrain a 622 

model on seasonal timescales, having sediment trap data with higher temporal 623 

resolution and more sampling depths would be of great utility.  624 

 625 

4.2 Impacts on Atmospheric pCO2 626 

The biological pump plays an important role regulating atmospheric pCO2 [Parekh et 627 

al., 2006; Kwon et al., 2009] and may help explain the drawdown of atmospheric 628 

pCO2 during glacial periods [Sigman and Boyle, 2000; Buchanan et al., 2016] by 629 

sequestering carbon in the deep ocean [Yu et al., 2016].  Carbon raining to the 630 

“midnight zone” (>1000 m) can be considered sequestered because it will be out of 631 

contact with the atmosphere for at least 100 years [Primeau, 2005; Ciais et al., 2013].  632 

Using earth system model experiments, Buchanan et al., [2016] find that the 633 

biological pump explains about 58% of the increase in atmospheric pCO2 from the 634 

last glacial maximum to pre-industrial times.  The current uncertainty with respect to 635 

the biological carbon pump’s role in setting atmospheric pCO2 has significant 636 

implications for our understanding of global climate regulation on time frames 637 

ranging from centennial to millennial. 638 

 639 

Applying B* as a metric to limit Martin’s b to a range consistent with the 640 

observations in each province (section 2.6) reveals that Martin’s global b (=0.858) 641 

value is contained within the range of reasonable estimates for each province (Figure 642 

9A).  When data in the twilight zone and midnight zone are considered, and all 643 
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provinces b values collected, the interquartile range of b values is 0.68 – 1.13 (Figure 644 

9C) while the range is 0.70 – 0.98 when only considering observations solely in the 645 

midnight zone (Figure 9D). The midnight zone contains 25-75% of observations in 646 

each province (>33% mean, Figure 9B) indicating sufficient data are available for the 647 

latter comparison.   648 

 649 

Thus, the best-fit global range for b is 0.68 – 1.13 across both the twilight and 650 

midnight zone, and 0.70 – 0.98 for only the midnight zone.  These ranges are 651 

substantially less than 0.4 to 1.4 used in the model of Kwon et al. [2009] to estimate 652 

potential impacts on atmospheric pCO2.  In their most realistic model configuration, 653 

this range of b leads to a range of equilibrium atmospheric pCO2 of almost 100 ppm [-654 

46ppm, +52ppm].  Since only the carbon that reaches the midnight zone is 655 

sequestered on the long-term, our data-constrained range of b that is most applicable 656 

to the control of atmospheric pCO2 is 0.70 – 0.98.  This constrained range leads to 657 

change in atmospheric pCO2 from -16 ppm to +12 ppm in the Kwon et al. [2009] 658 

model (supplementary Table S3). This indicates that uncertainty in the biological 659 

pump, as globally constrained by the available POC flux data, has the potential to 660 

vary modern atmospheric pCO2 by approximately 1/3 the range suggested by Kwon et 661 

al. [2009], i.e. only a few tens of ppm [-16 ppm, +12 ppm].  662 

 663 

5. Conclusions 664 

The Mouw et al. [2016a] dataset is a comprehensive collection of POC flux 665 

measurements that allows a regional assessment of the skill of the Martin curve, 666 

exponential decay model, and ballast hypothesis parameterizations.  When these three 667 
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parameterizations are compared to observations throughout the water column in 11 668 

biogeochemical provinces we find: 669 

1. Twilight zone observations are captured equally well by the all three 670 

parameterizations.  671 

2. Midnight zone observations are captured equally well by the Martin curve and 672 

ballast hypothesis.  673 

All three parameterizations would be equally good choices for modeling studies 674 

addressing the upper ocean, but only the ballast hypothesis or Martin curve should be 675 

selected if export to depths below 1000m is of interest.  676 

 677 

Parameterizations using the global b value of Martin et al. [1987] were compared 678 

with province specific b values of Guidi et al. [2015] and Henson et al. [2012]. 679 

Province-specific b values can reduce the bias in the midnight zone POC fluxes in 680 

some regions relative to Martin’s global b value (Figure 2).  However, when all 681 

provinces are considered, the interquartile range for each summery statistic overlaps 682 

(Figure 5), indicating no global benefit of province-specific b values.  Province-683 

specific b values may still be suitable for studies with a regional focus.  For all 684 

provinces taken together, the range of Martin’s b that best fits data from the midnight 685 

zone where long-term carbon sequestration occurs is [0.70, 0.98].  Based on previous 686 

global biogeochemical modeling [Kwon et al., 2009], this limited range of b has the 687 

capacity to change atmospheric pCO2 by only a few tens of ppm [-16 ppm, +12 ppm]. 688 

 689 

The paucity of high-resolution observations makes it impossible to discern the relative 690 

importance of various export mechanisms, many of which are discussed in Section 4. 691 

At a given depth level, the Mouw et al. [2016a] dataset shows variability spanning an 692 
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order of magnitude (Figure 3) that cannot yet be mechanistically explained, and thus 693 

cannot yet be accurately modeled.  The role of ecosystem structure on export, the 694 

biotic and abiotic transformation of particles to different class sizes, and variability 695 

through space and time are key areas of research [Burd et al., 2016; Mouw et al., 696 

2016b].  There is also a great need for seasonally resolved observations at a variety of 697 

locations for more complete elucidation and quantification of export mechanisms 698 

[Siegel et al. 2016].  699 

 700 
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Tables 1092 

 1093 

Table 1. Annual primary production. 1094 

Province 

[short name] 

VGPM†,‡ 

[g m-2] 

Simulation† 

[g m-2] 

NPSW 96 ± 53 137 ± 1 

PSAW 148 ± 55 113 ± 113 

SPSG 108 ± 29 71 ± 34 

NADR* 251 ± 88 249 ± 100 

NASW 113 ± 23 134 ± 2 

NPPF 202 ± 61 230 ± 140 

PNEC 128 ± 37 118 ± 58 

PEQD* 155 ± 53 114 ± 58 

ANTA 51 ± 31 39 ± 49 

SANT* 100 ± 59 83 ± 88 

PSAE* 148 ± 45 108 ± 99 

* indicates province is presented in the main text.  1095 

† Uncertainty is one standard deviation. 1096 

‡ VGPM is satellite-observed net primary production. 1097 

  1098 
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Table 2. Definition of equation parameters. 1099 

Parameter Units Definition 

F(z) mgC m-2 d-1 POC flux 

[POC(z)] mgC m-3 Volume concentration of labile POC 

[POCY(z)] mgC m-3 Volume concentration of POC associated with Y 

[POCY
hard(z)] mgC m-3 

Volume concentration of POC associated with Y 

in the hard subclass 

[POCY
soft(z)] mgC m-3 

Volume concentration of POC associated with Y 

in the soft subclass 

[𝑋𝑝𝑟𝑜𝑑(𝑧)] mgC m-3 Volume concentration of production of X 

𝑃𝑋
𝑝𝑟𝑜𝑑(𝑧) mgC m-3 d-1 Production of X at depth z by phytoplankton 

𝑍𝑋
𝑝𝑟𝑜𝑑(𝑧) mgC m-3 d-1 Production of X at depth z by zooplankton 

𝑤𝑋 m d-1 Sinking speed of X 

𝑤𝑑𝑢𝑠𝑡 m d-1 Sinking speed of dust 

𝑘𝑋 =
𝑤𝑋

𝜆𝑋
 d-1 Remineralization rate of X 

𝑘𝑌
ℎ𝑎𝑟𝑑 =

𝑤𝑌

𝜆ℎ𝑎𝑟𝑑
 d-1 Remineralization rate of hard subclass for Y 

𝜆𝑋 m Remineralization length scale of X 

𝜆ℎ𝑎𝑟𝑑 m Remineralization length scale of hard subclass 

𝜔𝑌 gC gY-1 POC carrying capacity of Y 

𝑓𝑌
ℎ𝑎𝑟𝑑 dimensionless Fraction of Y routed to hard subclass 

𝑑𝑢𝑠𝑡𝑑𝑒𝑝 mgDust m-2 d-1 Surface dust deposition 

𝛥𝑧𝑠𝑢𝑟𝑓 m Depth of surface grid cell 

𝑏 dimensionless Flux attenuation parameter 

   

X = POC, PIC, or opal 1100 

Y = PIC, opal, or dust 1101 

  1102 
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Table 3: Tendency equation for POC associated with PIC at depth z (
𝑑[𝑃𝑂𝐶𝑃𝐼𝐶(𝑧)]

𝑑𝑡
).  1103 

The summation of the parameter column produces the full tendency equation.  1104 

 1105 

Parameter Definition 

𝜔𝑃𝐼𝐶𝑓𝑃𝐼𝐶
ℎ𝑎𝑟𝑑  (

𝑑[𝑃𝐼𝐶𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
) Tendency of hard POC associated with PIC  

𝜔𝑃𝐼𝐶(1 − 𝑓𝑃𝐼𝐶
ℎ𝑎𝑟𝑑) (

𝑑[𝑃𝐼𝐶𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
) Tendency of soft POC associated with PIC 

𝑤𝑃𝐼𝐶  (
𝑑[𝑃𝑂𝐶𝑃𝐼𝐶

ℎ𝑎𝑟𝑑(𝑧)]

𝑑𝑧
) Sinking of hard POC associated with PIC 

𝑤𝑃𝐼𝐶  (
𝑑[𝑃𝑂𝐶𝑃𝐼𝐶

𝑠𝑜𝑓𝑡(𝑧)]

𝑑𝑧
) Sinking of soft POC associated with PIC 

−𝑘𝑃𝐼𝐶
ℎ𝑎𝑟𝑑[𝑃𝑂𝐶𝑃𝐼𝐶

ℎ𝑎𝑟𝑑(𝑧)] Remineralization of hard POC associated with PIC 

−𝑘𝑃𝐼𝐶[𝑃𝑂𝐶𝑃𝐼𝐶
𝑠𝑜𝑓𝑡

(𝑧)] Remineralization of soft POC associated with PIC 

 1106 
  1107 
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Table 4: Tendency equation for POC associated with opal at depth z (
𝑑[𝑃𝑂𝐶𝑜𝑝𝑎𝑙(𝑧)]

𝑑𝑡
).  1108 

The summation of the parameter column produces the full tendency equation.    1109 
 1110 

Parameter Definition 

𝜔𝑜𝑝𝑎𝑙𝑓𝑜𝑝𝑎𝑙
ℎ𝑎𝑟𝑑  (

𝑑[𝑜𝑝𝑎𝑙𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
)  Tendency of hard POC associated with opal 

𝜔𝑜𝑝𝑎𝑙(1 − 𝑓𝑜𝑝𝑎𝑙
ℎ𝑎𝑟𝑑) (

𝑑[𝑜𝑝𝑎𝑙𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
) Tendency of soft POC associated with opal 

𝑤𝑜𝑝𝑎𝑙  (
𝑑[𝑃𝑂𝐶𝑜𝑝𝑎𝑙

ℎ𝑎𝑟𝑑(𝑧)]

𝑑𝑧
) Sinking of hard POC associated with opal 

𝑤𝑜𝑝𝑎𝑙  (
𝑑[𝑃𝑂𝐶𝑜𝑝𝑎𝑙

𝑠𝑜𝑓𝑡(𝑧)]

𝑑𝑧
) Sinking of soft POC associated with opal 

−𝑘𝑜𝑝𝑎𝑙
ℎ𝑎𝑟𝑑[𝑃𝑂𝐶𝑜𝑝𝑎𝑙

ℎ𝑎𝑟𝑑(𝑧)] Remineralization of hard POC associated with opal 

−𝑓𝑇𝑘𝑜𝑝𝑎𝑙[𝑃𝑂𝐶𝑜𝑝𝑎𝑙
𝑠𝑜𝑓𝑡

(𝑧)] Remineralization of soft POC associated with opal 

𝑓𝑇 is the temperature-dependency function [supplementary Table S3] 1111 

  1112 
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Table 5: Tendency equation for POC associated with dust at depth z (
𝑑[𝑃𝑂𝐶𝑑𝑢𝑠𝑡(𝑧)]

𝑑𝑡
). 1113 

The summation of the parameter column produces the full tendency equation.  1114 

 1115 

Parameter Definition 

𝜔𝑑𝑢𝑠𝑡𝑓𝑑𝑢𝑠𝑡
ℎ𝑎𝑟𝑑  (

𝑑𝑢𝑠𝑡𝑑𝑒𝑝

𝛥𝑧𝑠𝑢𝑟𝑓
)  Tendency of hard POC associated with dust 

𝜔𝑑𝑢𝑠𝑡(1 − 𝑓𝑑𝑢𝑠𝑡
ℎ𝑎𝑟𝑑) (

𝑑𝑢𝑠𝑡𝑑𝑒𝑝

𝛥𝑧𝑠𝑢𝑟𝑓
)  Tendency of soft POC associated with dust 

𝑤𝑑𝑢𝑠𝑡  (
𝑑[𝑃𝑂𝐶𝑑𝑢𝑠𝑡

ℎ𝑎𝑟𝑑(𝑧)]

𝑑𝑧
) Sinking of hard POC associated with dust 

𝑤𝑑𝑢𝑠𝑡  (
𝑑[𝑃𝑂𝐶𝑑𝑢𝑠𝑡

𝑠𝑜𝑓𝑡(𝑧)]

𝑑𝑧
) Sinking of soft POC associated with dust 

−𝑘𝑑𝑢𝑠𝑡
ℎ𝑎𝑟𝑑[𝑃𝑂𝐶𝑑𝑢𝑠𝑡

ℎ𝑎𝑟𝑑(𝑧)] Remineralization of hard POC associated with dust 

−𝑘𝑑𝑢𝑠𝑡[𝑃𝑂𝐶𝑑𝑢𝑠𝑡
𝑠𝑜𝑓𝑡

(𝑧)] Remineralization of soft POC associated with dust 

 1116 

  1117 
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Table 6: Tendency equation for labile POC at depth z (
𝑑[𝑃𝑂𝐶(𝑧)]

𝑑𝑡
) used in the ballast 1118 

model.  The summation of the parameter column produces the full tendency equation.  1119 
 1120 

Parameter Definition 

(
𝑑[𝑃𝑂𝐶𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
) Tendency of POC production by phytoplankton and zooplankton 

−𝜔𝑃𝐼𝐶  (
𝑑[𝑃𝐼𝐶𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
) Tendency of POC associated with PIC production 

−𝜔𝑜𝑝𝑎𝑙  (
𝑑[𝑜𝑝𝑎𝑙𝑝𝑟𝑜𝑑(𝑧)]

𝑑𝑡
) Tendency of POC associated with opal production 

−𝜔𝑑𝑢𝑠𝑡 (
𝑑𝑢𝑠𝑡𝑑𝑒𝑝

𝛥𝑧𝑠𝑢𝑟𝑓
)  Tendency of POC associated with dust deposition 

𝑤𝑝𝑜𝑐  (
𝑑[𝑃𝑂𝐶(𝑧)]

𝑑𝑧
) Sinking of labile POC 

−𝑓𝑇𝑘𝑝𝑜𝑐[𝑃𝑂𝐶(𝑧)] Remineralization of labile POC 

𝑓𝑇 is the temperature-dependency function [supplementary Table S3] 1121 
  1122 
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 1123 

Figure 1. Simulated provinces presented in the paper are shown in dark gray. Light 1124 

gray provinces are presented in supplementary.  Red dots are locations of flux 1125 

observations from sediment traps and thorium-234 depletion.  1126 

 1127 

Figure 2. Target diagrams displaying average model skill at each region (SANT, 1128 

PEQD, PSAE, NADR) for the Martin et al. [1987] global b value (Martin), Henson et 1129 

al. [2012] regional b values (Henson), and Guidi et al. [2015] regional b values 1130 

(Guidi) in the twilight zone (red) and midnight zone (blue). The black circle is the 1131 

normalized standard deviation of the observed POC flux. Symbols within the circle 1132 

indicate that the parameterization captures the observed POC flux more accurately 1133 

than using the mean of the observed data (modeling efficiency > 0) at each region. 1134 

  1135 

Figure 3. Simulated POC flux (black) with standard deviation (gray) compared with 1136 

observed POC flux (blue) for the Martin curve (column 1), exponential model 1137 

(column 2), and ballast model (column 3) at four provinces (SANT, PEQD, PSAE, 1138 

NADR).  Depth is relative to the surface. Twilight zone extends from 100m – 1000m 1139 

and midnight zone is >1000m. 1140 

 1141 

Figure 4. Cross plot of simulated POC flux versus observed POC flux for the Martin 1142 

curve, exponential model, and ballast model at four provinces (SANT, PEQD, PSAE, 1143 

NADR).  Colors represent depth below surface: the upper twilight zone (100-500m), 1144 

lower twilight zone (500-1000m), upper midnight zone (1000-2500m), and lower 1145 

midnight zone (2500-4000m). The reliability index (RI) for each zone is indicated at 1146 

top left in each panel.  1147 

 1148 

Figure 5. Box and whisker plots of summary statistics in the twilight zone (red) and 1149 

midnight zone (blue) for each parameterization (Exponential, Ballast, Martin et al. 1150 

[1987] global b value, Henson et al. [2012] regional b values, and Guidi et al. [2015] 1151 

regional b values).  These box and whisker plots account for all simulated provinces 1152 

(11 total).  1153 

 1154 

Figure 6. Target diagrams displaying average model skill at each region (SANT, 1155 

PEQD, PSAE, NADR) for the exponential model, Martin curve, and ballast model in 1156 

the twilight zone (red) and midnight zone (blue). The black circle is the normalized 1157 

standard deviation of the observed POC flux. Symbols within the circle indicate that 1158 

the parameterization captures the observed POC flux more accurately than using the 1159 

mean of the observed data (Modeling Efficiency (ME) > 0) at each region.  1160 

 1161 

Figure 7. Simulated POC flux (black) with standard deviation (gray) compared with 1162 

observed POC flux (blue) using the global b value of Martin et al. [1987] (column 1), 1163 

regional b value of Henson et al. [2012] (column 2), and regional b values of Guidi et 1164 

al. [2015] (column 3) at four provinces (SANT, PEQD, PSAE, NADR). Depth is 1165 

relative to the surface. Twilight zone extends from 100m – 1000m and midnight zone 1166 

is >1000m.  1167 

 1168 

Figure 8. Cross plot of simulated POC flux versus observed POC flux using the 1169 

global b value of Martin et al. [1987], Henson et al. [2012] regional b values, and 1170 

Guidi et al. [2015] regional b values at four provinces (SANT, PEQD, PSAE, 1171 

NADR). Colors represent depth below surface: the upper twilight zone (100-500m), 1172 
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lower twilight zone (500-1000m), upper midnight zone (1000-2500m), and lower 1173 

midnight zone (2500-4000m). The reliability index (RI) for each zone is indicated at 1174 

top left in each panel. 1175 

 1176 

Figure 9. A: Range of b values for each province. Light gray bar uses data in the 1177 

twilight and midnight zone while dark bars only use data in the midnight zone. B: 1178 

percentage of observations in the midnight zone for each province. C: Histogram of 1179 

normalized occurrence of b values fit to observations in the twilight and midnight 1180 

zone D: Histogram of normalized occurrence of b values fit to observations in the 1181 

twilight and midnight zone. Red line is at Martin et al. [1987] global b value of 0.858. 1182 

Dotted lines are the 25th percentile and 75th percentile. Solid black line is the median. 1183 

𝛥pCO2 is relative to pCO2 with b=0.858 [Kwon et al., 2009]. 1184 
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