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ABSTRACT

This dissertation presents a two-part study of persistent sea surface tempera-

ture (SST) fronts based on global satellite observations. Its main goal is to achieve

a better description of these features at the global scale, while reducing the bias

in defining them. To this end, an algorithm was developed to detect and track

persistent fronts by relying on frontal probabilities. Frontal probability (or frontal

frequency) can be defined as the probability to observe a front relative to the

cloud cover. Long-term mean (29 years) and seasonally averaged frequency maps

were produced, showing the location of over 2,000 SST fronts for each map. The

algorithm, denoted automated detection algorithm or PFDA, is based on a sim-

ple concept, which is the determination of local maxima of frontal probability by

scanning the fields along lines of constant latitude and of constant longitude. The

ADA agrees well with satellite observations, and performs well in detecting fronts

with complex shapes or western boundary currents. This method can be applied

to other types of datasets, such as chlorophyll fronts, and presents the crucial ad-

vantage to remove subjectivity in finding fronts. Frontal properties, derived from

the Cayula-Cornillon algorithm were added to the geographic coordinates of the

fronts. Furthermore, the bathymetry and bathymetry gradient magnitude are also

part of the information provided by the PFDA at each frontal pixel.

Subsequently, we applied multivariate statistical analysis tools to evaluate

the presence of patterns among persistent fronts. We performed a principal com-

ponent analysis, followed by a k-means clustering procedure to partition fronts

into different types. Unsupervised machine learning applied to the problem of

oceanic fronts resulted in nine clusters, namely four clusters corresponding to shelf

and shelf-break fronts, two clusters representing the subpolar frontal system, one

matching the Kuroshio and Gulf Stream extensions, and the two last ones group-



ing the boundary currents and upwelling fronts respectively. The partitioning was

conducted based on the characteristics of the fronts, in an objective manner. Be-

cause this study was performed globally, we gained significant insights on poorly-

documented and newly-found SST fronts, but also on fronts that were previously

studied. These results also shifts the traditional way of understanding oceanic

fronts. In particular, it is interesting to see coastal and equatorial upwelling fronts

in the same cluster, just at it is intriguing to observe western and eastern bound-

ary currents being part of one unique cluster. While this study is mostly focused

on the statistical description of persistent SST fronts, its findings will certainly

bring a broader understanding of ocean’s submesocale dynamics, and is expected

to benefit the Oceanography community in the future.
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PREFACE

The dissertation is written in manuscript format and consists of two

manuscripts presented in separate chapters.

The first one will be submitted to the Journal of Geophysical Research and the

second will be submitted to Geophysical Research Letters for publication.

vii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

MANUSCRIPT

1 An automated method to track major persistent SST fronts . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Frontal probability . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Persistent Front Detection Algorithm (Persistent Front
Detection Algorithm (PFDA)) . . . . . . . . . . . . . 6

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Persistent fronts - long term mean . . . . . . . . . . . . . 11

1.3.2 Seasonal persistent fronts . . . . . . . . . . . . . . . . . . 17

1.3.3 Relation to bathymetry . . . . . . . . . . . . . . . . . . . 20

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 New findings and implications . . . . . . . . . . . . . . . 22

viii



Page

ix

1.4.2 Limitations of the PFDA and possible improvements . . . 23

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Global typology of persistent SST fronts . . . . . . . . . . . . . 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 k-means clustering . . . . . . . . . . . . . . . . . . . . . 35

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Cluster analysis . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Clustering commentary . . . . . . . . . . . . . . . . . . 53

2.4.2 Future improvements . . . . . . . . . . . . . . . . . . . . 57

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

APPENDIX

A Algorithm details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.1 Validation of CCA . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 Automated detection algorithm: noise reduction methods . . . . 63

B Global maps of persistent SST fronts . . . . . . . . . . . . . . . 66



B.1 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

x



LIST OF FIGURES

Figure Page

1 29-year averaged global frontal probability. . . . . . . . . . . . . 5

2 Flowchart of the automated detection method (ADA). . . . . . 7

3 Automated detection process. . . . . . . . . . . . . . . . . . . . 8

4 Frontal probability and persistent fronts in the Northwest Atlantic 13

5 Frontal probability and persistent fronts in European and
Eurasian Seas. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Persistent sea surface temperature (SST) fronts in the Mediter-
ranean Sea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Mediterranean Sea fronts, from Belkin et al., 2009. . . . . . . . 15

8 Surface geostrophic currents in the Mediterranean Sea, from
Poulain et al., 2012 . . . . . . . . . . . . . . . . . . . . . . . . . 16

9 Seasonal persistent fronts in East Asia. . . . . . . . . . . . . . . 19

10 Correlation between the bathymetry and the frontal probability 21

11 SST fronts in Patagonia, found by the PFDA (left) and drawn by
Belkin (from Belkin et al., 2009, right). . . . . . . . . . . . . . . 23

12 Coastal upwelling zone delimitation in the California current
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1 Skewness of the SST gradient. . . . . . . . . . . . . . . . . . . . 35

2 Davies-Bouldin index. . . . . . . . . . . . . . . . . . . . . . . . 37

3 Correlation matrix. FP: frontal probability, ∂xT: zonal SST

gradient, ∂yT: meridional SST gradient, ∇T: SST gradient
magnitude, ∆T: SST cross-frontal step, H: bathymetry, ∇H:
bathymetry gradient magnitude. . . . . . . . . . . . . . . . . . 38

4 Global map of persistent SST fronts clusters. . . . . . . . . . . . 43

xi



Figure Page

xii

5 Frontal probability distribution by cluster. . . . . . . . . . . . . 44

6 Zonal SST gradient distribution by cluster. . . . . . . . . . . . . 45

7 Meridional SST gradient distribution by cluster. . . . . . . . . . 46

8 SST gradient magnitude distribution by cluster. . . . . . . . . . 47

9 SST step distribution by cluster. . . . . . . . . . . . . . . . . . . 48

10 Bathymetry distribution by cluster. . . . . . . . . . . . . . . . . 49

11 Bathymetry gradient distribution by cluster. . . . . . . . . . . . 50

12 Tidal energy dissipation, from NASA. . . . . . . . . . . . . . . 54

13 Antarctic polar frontal system, from Moore et al. (1999) . . . . 55

14 SST gradient and SST step off Africa’s coast. . . . . . . . . . . . 56

15 Meridional SST gradient (K/km) for Western Boundary Currents. 57

A.1 Local maxima after the first pass (left) and the second pass (right). 63

B.2 Global map of persistent SST fronts for Winter, based on
AVHRR and MODIS . . . . . . . . . . . . . . . . . . . . . . . . 67

B.3 Global map of persistent SST fronts for Spring, based on
AVHRR and MODIS . . . . . . . . . . . . . . . . . . . . . . . . 68

B.4 Global map of persistent SST fronts for Summer, based on
AVHRR and MODIS . . . . . . . . . . . . . . . . . . . . . . . . 69

B.5 Global map of persistent SST fronts for Fall, based on AVHRR
and MODIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



LIST OF TABLES

Table Page

1 Frontal Pixel Properties . . . . . . . . . . . . . . . . . . . . . . 10

2 Large Marine Ecosystems, from Belkin et al., 2009 . . . . . . . 12

3 Frontal clusters by type. . . . . . . . . . . . . . . . . . . . . . . 53

xiii



MANUSCRIPT 1

An automated method to track major persistent SST fronts

by

Yackar L. Mauzole 1, Peter C. Cornillon 2

In preparation for submission to Journal of Geophysical Research

1PhD candidate, Graduate School of Oceanography, The University of Rhode Island, Narra-
gansett RI 02882. Email: yackar mauzole@my.uri.com

2Prof of Oceanography, Graduate School of Oceanography, The University of Rhode Island,
Narragansett RI 02882. Email: pcornillon@me.com

1



1.1 Introduction

Fronts are ubiquitous features found in the ocean. They can be thought of as

narrow boundaries separating water masses with distinct properties. In the case

of sea surface temperature (SST) fronts, they separate waters with different sea

surface temperature. SST fronts fall into roughly four groups:

1. Individual fronts, those that form and decay over short periods and are, in

general, of relatively small extent and occur as singletons. Examples of such

fronts are those associated with local meteorological forcing. The probability

of finding such a front at a given location is low.

2. Fronts that occur at the same location for long periods of time. An example

of fronts in this group are shelf break fronts. These fronts are generally tied

to bathymetry and they cover a broad range of spatial scales depending on

the bathymetric feature with which they are associated. The probability of

finding such a front at a given location is high.

3. Fronts delineating currents with large spatial scales. These tend to exist over

long scales, persist for long times but move laterally, hence, the probability of

finding such a front at a given location can be relatively small. The currents,

which define these fronts, are generally found on a planetary scale such as

western boundary currents.

4. Individual fronts, as in 1 above but, which occur regularly over a given region.

These are characterized, for example, by fronts in upwelling zones. Such

fronts tend to be short lived and of relatively small spatial scale but they

occur often in an extended region resulting in an overall increased probability

of finding a front in the region.

In this study, we are concerned with fronts that can be observed over relatively
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long periods of time at approximately the same location; i.e., primarily fronts

in group 2, but on occasion those in groups 3 and 4. Hereafter we call these

fronts persistent, and our efforts are focused on detecting and mapping the major

persistent SST fronts found in the global ocean. This study is based on several

satellite datasets available from 1982 to 2011, and we derived five global maps of

persistent fronts: one long-term mean and four seasonal maps, to account for the

seasonality of persistent SST fronts. In the following section, we detail the satellite

datasets used for this study and describe the principles of our method. Results

are presented in section 3, in which we examine the performance of the algorithm

in different scenarios. The major features of the algorithm and its limitations

are discussed in section 4, followed by the conclusions in section 5. Appendix

A provides additional information regarding the method to automatically locate

persistent fronts, while Appendix B shows the global maps of persistent SST fronts.

1.2 Data and Methods
1.2.1 Data

In this study, two types of maps were produced based on satellite observations:

a first map was based on Pathfinder Advanced Very High Resolution Radiometer

(AVHRR) data alone (Kilpatrick et al., 2001), while the second type, consisting

of four maps corresponding to the climatological seasons, rely on Pathfinder as

well as MODerate-resolution Imaging Spectroradiometer (MODIS) Terra and Aqua

data. The motivation behind using data from both MODIS sensors lies in the

fact that Pathfinder fields show limited coverage for the climatological seasons:

particularly in Winter, where cloud cover is significant , using data from three

satellites instead of one improves the mapping of persistent SST fronts. From our

data holdings at the University of Rhode Island (URI), about 30 years of Pathfinder

measurements were stored, from 1982 through 2011 with the exclusion of 1995, for

3



which there was no data. Regarding both MODIS satellites, we chose a time period

for which all three datasets were overlapping, i.e. from 2003 to 2011 included. For

both Aqua and Terra satellites, we chose the SST4 product, which is derived from

measurements in the 4µm mid-wave infrared atmospheric window (Kilpatrick et.

al, 2015). Within the framework of this study, we used all Level 3 global SST

nighttime fields available between 1982 and 2011, about 10,600 Pathfinder fields

and slightly more than 6,500 MODIS fields. We excluded daytime fields from our

analysis to avoid the bias introduced by diurnal warming. The region of study,

defined by a Plate-Carré projection of 0.0417◦×0.0417◦ pixels (roughly 4 km square

on the Equator), extends from 60◦N to 60◦S

1.2.2 CCA

In contrast to gradient based methods of front detection, the Cayula-Cornillon

Algorithm (CCA) is based on a histogram analysis of the SST fields. In the interest

of brevity, herein we summarize the principles underlying the CCA. For a detailed

description of the algorithm, the interested reader is referred to the original papers

(Cayula and Cornillon, 1992; Cayula and Cornillon, 1995; Cayula and Cornillon,

1996), which describe it in detail.

The algorithm relies on three levels of processing: the image level, the window level

and the pixel level. Cloud detection and cloud removal are performed at the picture

level, while front detection part is primarily done at the window and pixel levels.

The CCA examines histograms of the temperature values in 32x32 pixel windows:

if the histogram is unimodal, it suggests that there is only one SST population, i.e.

the water mass sampled is unique and has a uniform temperature. If however, the

distribution is bimodal, this implies that there are two water masses with distinct

SST signatures. In this case, the CCA will look for pixels in population A with

a pixel to the right or below belonging to population B. These pxiels correspond

4



to the location of a potential front separating the water masses of different SST .

At the local level, a contour following algorithm is implemented in order to con-

nect candidate frontal pixels into continuous frontal segments whenever possible.

Frontal properties, such as SST gradient and cross-frontal step, are computed and

associated with each frontal pixel in addition to their geographic coordinates.

1.2.3 Frontal probability

Major persistent SST fronts, the object of this study, were not detected di-

rectly from SST fields. Instead, we relied on maps of frontal probability or frontal

frequency. The frontal probability (F ) of a space-time region is a measure of the

number of pixels in that region flagged as frontal pixels (N) over the number of

pixels flagged as clear (C): F = N/C · 100%. In the work presented herein the

spatial portion of the space-time region is generally a single pixel, however this

need not be the case. Fig. 1 shows the frontal probability for the Pathfinder

dataset for the time period 1982-2011.

Figure 1: 29-year averaged global frontal probability based on AVHRR Pathfinder
4km SST dataset (1982-2011), processed with the Cayula-Cornillon algorithm.
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1.2.4 Persistent Front Detection Algorithm (Persistent Front Detec-
tion Algorithm (PFDA))

In this section, we provide a brief overview of the algorithm used to identify

persistent frontal locations in fields of frontal probability. The algorithm consists

of two major parts. The first part relates to the geometry of persistent frontal

regions – the one pixel wide line defining the location of the front and the width of

the frontal region. The second part of the algorithm determines properties such as

SST gradient, SST step, etc. associated with fronts in the region. The details of the

algorithm, the flowchart of which is presented in Fig. 2, can be found in Appendix

A. The objective of the algorithm was to reduce subjectivity in establishing maps

of SST fronts, and as such involves minimal human intervention. The first step is

to locate local maxima of frontal probability by scanning the image both vertically

and horizontally. The output of this step consists of binary arrays with 1 for frontal

pixels, 0 otherwise. Morphological operations such as dilatation and thinning are

then performed in order to connect the peaks (discrete points) into continuous

lines whenever possible; this corresponds to the fourth step in the flowchart. The

frontal segments indexing is the following step of the ADA: due to Matlab indexing

protocol which proceeds in decreasing latitudes, it is necessary to rearrange the

pixels of the fronts into monotonic series (step 6). Several noise reductions methods

were implemented (shown in the diamond-shaped elements in figure 2) to decrease

the noise and remove undesirable points from the fields of local maxima. The first

one consists of looking at the properties of the local peaks (relative height and

width), in order to discriminate stable fronts from background noise. The second

operation aims to decrease the number of spurs, short (several pixel) segments

attached to longer segments.

Another way of understanding how the first portion of the PFDA (the portion

associated with the geometry of the persistent fronts) functions is presented in

6



Frontal probability

Local max
1st pass

Peaks filt.

Local max
2nd pass

Morph. op.

Spurs rem.

Indexing

Extents
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Figure 2: Flowchart of the automated detection method (PFDA). Starting from a
frontal probability field, local maxima are detected (step 1) and filtered (step 2) to
derive a map of local maxima with less noise (step 3). Morphological operations
(dilatation and thinning) are performed to generate continuous lines (step 4). Spurs
are removed (step 5) and the pixels of each line are reordered and indexed (step
6). Lastly, extents to the frontal segments are added (step 7).

7



Figure 3: Automated detection process. The frontal probability field (upper left)
is weighted to reduce noise (upper right). Local maxima are detected (middle
left), and connected through morphological operations (middle right). Spurs are
removed (bottom left) and pixels of each segment are indexed (not shown). The
extents of the fronts (black dots) are computed by looking at the frontal probability
along the local normals (black lines, only plotted for the extremities of the fronts)
and saving the locations of the half-prominence of the probability peaks.
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Fig. 3. The PFDA begins with the frontal probability field obtained from the

3 × 3 median filtered SST field (upper left). The weighted frontal probability

(upper right) accentuates the difference between high probability features and

the surrounding lower probability background and is the basis of the subsequent

panels in Fig. 3: the local maxima (after filtering) are presented in the middle left

panel. The frequency peaks are then connected into lines, which results in some

spurs appearing on the two segments shown in the middle right panel. The spurs

are removed in the bottom left panel. This defines the location of pixels along

persistent frontal segments. The next step is to determine the locations of the

outer edges of the persistent frontal region, the black dots in the lower right panel

of Fig. 3. These are based on the probability distribution. The outer edge on a

given side is defined by the point, on the line locally normal to the frontal segment,

at which the probability is one half of the peak value plus the probability of the

first local minimum on that side.

The second major section of the PFDA is the determination of a suite of prop-

erties (listed in Table 1) for each persistent frontal pixel, based, in general, on other

data sources. The properties are the average values of the parameter over the width

of the persistent front; i.e., along the local normal at the persistent frontal pixel

of interest from one side of the persistent frontal region to the other. This allows

for the consideration of the fronts’ properties not just along the persistent front,

but over the width of the frontal region at that location as well. Table 1 also lists

the source of the data from which the parameters were obtained. Front probability

is based on the same distributions used to determine the location of persisitent

fronts. The bathymetric gradients and water depth were obtained from ETOPO1;

the gradient fields by convolving the meridional and zonal Sobel kernel with the

bathymetric field. The remaining parameters were obtained from the Pathfinder
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and MODIS datasets cited in section 1.2.1. All of the associated SST fields were

passed through the URI fronts/gradients workflow used to locate fronts with the

Cayula-Cornillon front detection algorithm. This resulted in three fields for each

input SST field: a zonal gradient field, a meridional gradient field and a frontal field

(with 1s for frontal pixels and missing values otherwise). As with the bathymetric

field, the SST vector gradient was obtained with the Sobel gradient operator. Each

of the gradient fields was then multiplied by the frontal field resulting in a gradient

value where there was a frontal pixel and missing values otherwise. Finally, these

fields were averaged, excluding missing values, over the period of interest (seasonal

or over the total dataset).

Table 1: Frontal Pixel Properties

Property Source
Front probability Probability distribution
Bathymetric gradient magnitude ETOPO 1
Water depth ETOPO 1
Meridional SST gradient http://sstfronts.org/opendap/
Zonal SST gradient http://sstfronts.org/opendap/
SST gradient magnitude http://sstfronts.org/opendap/
SST step http://sstfronts.org/opendap/
Chlorophyll-a concentration http://sstfronts.org/opendap/

1.3 Results

In this section, we first present the SST fronts located in selected regions

from the Pathfinder dataset only; i.e., obtained from the 30 year averaged frontal

probability field. We then show the results of the PFDA for seasonal SST fronts,

using a combination of Pathfinder and MODIS datasets. Assuming that persistent

fronts are highly correlated with bottom topography (Csanady, 1978; Hsueh and

Cushman-Roisin, 1983), we propose here three distinct scenarios, corresponding to

three different regions:

• a simple bathymetry, and a western boundary current;

10



• a complex bathymetry, and several marginal and enclosed seas;

• a complex bathymetry, marginal seas and a western boundary current.

The goal is to present how the PFDA fares in various situations and observe the

limitations of the algorithm, in particular in the instance of well-known meandering

western boundary currents, or when the fronts’ profiles are not linear. The first case

corresponds to the Northwest Atlantic region, including the Gulf of Mexico. The

second case describes the region of Europe and its neighboring seas. In particular,

we focus on the Mediterranean Sea by evaluating our results against the map of

Belkin et al. (2009) for this sea, as well as with other datasets (surface circulation

and a satellite-derived chlorophyll field). Lastly, we investigate the performance of

the PFDA in mapping seasonal persistent SST fronts for the East Asian region (case

3). The global maps for the long-term mean and the climatological seasons can be

found in Appendix B. For simplicity and consistency with the existing literature,

we divide our global domain into the large marine ecosystems (LMEs) delimited

in Belkin et al. (2009). The numbers in parentheses indicate the index of the

corresponding LME as attributed by Belkin in Table 2. The Caspian Sea was not

part of the original LMEs and is given the symbol (*).

1.3.1 Persistent fronts - long term mean

Northwest Atlantic - Gulf of Mexico Fig. 4 shows the frontal probability

for the Northeast Continental U.S., the Southeast Continental U.S., and the Gulf

of Mexico (LMEs 7, 6, and 5) along with the persistent fronts found by the algo-

rithm (red lines) and several isobaths. The majority of persistent coastal fronts

appear to be stable (with higher frontal probability than many of the other fronts

to be discussed), and readily found by the PFDA. More surprisingly, a fraction
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of the long-term mean paths of the Loop Current and of the Gulf Stream can

also be tracked, even though they are intermittent frontal systems (justifying the

fragmented paths in both instances). The western and eastern legs of the Gulf

Stream, seen south of Cape Hatteras are well detected by the PFDA, however the

remaining track of the Gulf Stream is lost east of 65◦W.

Europe, European and Eurasian seas Fig. 5 presents the southern part of

the Baltic Sea, the North Sea, the Mediterranean Sea, the Black Sea, the Sea of

Azov and the Caspian Sea. We chose this region (LMEs 22 to 26, plus the Eurasian

seas * and 62) for the complex patterns formed by the fronts. Indeed, in contrast

to the Northwest Atlantic, this region contains several enclosed and marginal seas,

in addition to a more convoluted bathymetry. In most seas, the vast majority of

the fronts mapped by the algorithm agree well with the frontal probability field.

In the Baltic Sea, most of the fronts previously documented (Belkin et al.,

2009) can be seen. In the North Sea, fronts along the coasts of Denmark and

Norway can be observed on top of the 25 m and 250 m isobaths, . A front is

Table 2: Large Marine Ecosystems, from Belkin et al., 2009

E. Bering Sea (1) North Sea (22) N. Australian Shelf (39)
Gulf of Alaska (2) Baltic Sea (23) N.E. Australian Shelf (40)
California Current (3) Celtic Biscay Shelf (24) E. Central Australian Shelf (41)
Gulf of California (4) Iberian Coast (25) S.E. Australian Shelf (42)
Gulf of Mexico (5) Mediterranean Sea (26) S.W. Australian Shelf (43)
S.E. U.S. Continental Shelf (6) Canary Current (27) W. Central Australian Shelf (44)
N.E. U.S. Continental Shelf (7) Guinea Current (28) N.W. Australian Shelf (45)
Scotian Shelf (8) Benguela Current (29) New-Zealand Shelf (46)
Newfoundland/Labrador Shelf (9) Aghulas Current (30) E. China Sea (47)
Hawaii (10) Somali Coastal Current (31) Yellow Sea (48)
Pacific Central America(11) Arabian Sea (32) Kuroshio Current (49)
Caribbean Sea (12) Red Sea (33) Sea of Japan (50)
Humboldt Current (13) Bay of Bengal (34) Oyashio Current (51)
Patagonian Shelf (14) Gulf of Thailand (35) Okhotsk Sea (52)
S. Brazil Shelf (15) S. China Sea (36) W. Bearing Sea (53)
E. Brazil Shelf (16) Sulu-Celebes Sea (37) Caspian Sea (*)
N. Brazil Shelf (17) Indonesian Sea (38) Black Sea and Sea of Azov (62)
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Figure 4: 29-year averaged frontal probability for the Northwest Atlantic and
corresponding persistent frontal segments . Red lines: PFDA output; white lines:
isobaths at -20m, -50m, -100m, -150m, and -750m.

Figure 5: 29-year averaged frontal probability for the European and Eurasian Seas,
and corresponding persistent frontal segments . Red lines: PFDA output; white
lines: isobaths at -25m, -50m, -75m, -250m, -1500m, and -2500m.
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found along Rockall plateau as well, northwest of Ireland. The English Channel

fronts were mapped successfully, in contrast to the fronts with lower frontal

probability, like the Central front mentioned by Belkin et al. (2009). Neither

the Biscay shelf front nor the Ushant front, which are generally considered to be

continuous (Belkin et al., 2009) , are found to be discontinuous by the PFDA, and

the front detected by the algorithm in the vicinity of the Gironde river as well.

To the south, fronts are found approximately parallel to and perpendicular to the

coastline along the Iberian peninsula. Those perpendicular to the coastline are

thought to be upwelling fronts. The northern part of the front associated with

the Canary current is detected as one long frontal segment.

Regarding the Mediterranean Sea, we compare our findings, Fig. 6 showing

persistent fronts (red lines) superimposed on the bathymetry, with the Fig. IV-7.1

from Belkin et al. (2009), reproduced as Fig. 7 here. Of the 12 fronts reported

by Belkin et al., two thirds are evident in Fig. 6, namely the North Balearic front,

the Ligurian front, the North Tyrrhenian front, the Sardinia-Sicily front, the North

Adriatic front, the Albanian front, the Ionian front, the Crete front and the Cyprus

front. With regard to the persistent fronts found by the PFDA but not discussed in

Belkin et al., the question naturally arises as to whether they are artifacts or real

fronts. We argue the latter in light of their close relationship to surface geostrophic

currents described by Poulain et al. (2012). We discuss this relationship in the

context of Poulain et al’s. Fig. 12 (reproduced here as Fig. 8) from west to east,

and from north to south.

Starting at the entrance of the Mediterranean Sea with the Alboran Sea, a

stable circular front is observed, associated with the Western Alboran gyre. Fronts

are found around the Balearic islands and in the Ligurian Sea, matching the North-
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Figure 6: Persistent SST fronts in the Mediterranean Sea, plotted on top of the
annotated bathymetry field. The isobaths are the same as in the previous map of
Europe.

Figure 7: Mediterranean Sea fronts, from Belkin et al., 2009

ern Current’s path. A few frontal segments align with the Algerian Current as well.

In the Tyrrhenian Sea, several fronts are present, and they follow the 1500 m and
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Figure 8: Surface geostrophic currents in the Mediterranean Sea, from Poulain et
al., 2012

2500 m isobaths along the Northern Tyrrhenian Gyre in particular. In the Adri-

atic Sea, several persistent fronts exist: one is associated with the Western Adriatic

current, while two others are related to the Northern and Southern Adriatic gyres

respectively. The fronts observed south of Sicily and of Italy appear to be related

to the Atlantic Ionian stream and the mid-Ionian jet. Several longer fronts are

found in the Levantine basin, following closely the 2500 m isobath. Stable frontal

activity is observed in the Aegean Sea and fronts found between Crete and Cyprus

may be associated with the Rhodes Gyre. Relative to the Ierapetra Gyre, several

stable fronts are detected. The front found northwest off Cyprus corresponds to

the Asian Minor Current. Lastly, we note that a persistent front is detected off

the Nile river along the 25 m isobath.

In their paper, Poulain et al. described the surface geostrophic circulation

in the Mediterranean Sea using a combination of drifters and satellite altimetry
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data, for the period 1992-2010. Most of the features they observed are collocated

with persistent fronts, supporting the idea that stable fronts may be associated to

geostrophic currents. Based on the description above, it becomes evident that the

PFDA results in a more detailed and more accurate detection of the fronts than

previously documented. The surface currents, the bathymetry, and the run-off

from the main rivers in the region (Rhone, Po, and Nile) give rise to a complex

network of fronts in the region, which are well detected by the PFDA.

Regarding the Eurasian Seas, the Black Sea (Fig. 5) has a moderate frontal

probability, which could be explained by a strong seasonal variability (Ginzburg

et al., 2004; Karimova, 2014). In fact, the 30-year average does not reflect the

stability of the fronts observed in this sea for each climatological season. Because

the frontal spatial distribution varies greatly by season, the resulting long-term

mean is lower than in the Caspian Sea, and more homogeneous as well. A unique

persistent SST front was detected in the Sea of Azov, corroborating the observations

of Karimova (2014). The structure of persistent fronts in the Caspian Sea is much

better defined than in the Black Sea. In addition, the PFDA frontal patterns in the

Caspian Sea align well with the surface circulation patterns described by Ibrayev

et al. (2010).

1.3.2 Seasonal persistent fronts

In this section, we focus on the Sea of Japan, the Yellow Sea, the East China

Sea as well as the Oyashio and the Kuroshio (LMEs 47 to 51). This corresponds

to the last case described earlier; a region with complex bathymetry, marginal

seas and a western boundary current. The goal is to evaluate the ability of the

algorithm to detect seasonal fronts in this context. Fig. 9 shows the seasonal

frontal probability maps for each respective climatological season. As explained
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in the previous section, we combined MODIS and Pathfinder datasets to generate

seasonal maps, in order to improve the coverage. We define the climatological

seasons as follows:

• Winter: January-February-March,

• Spring: April-May-June,

• Summer: July-August-September,

• Fall: October-November-December.

Here, the frontal probability corresponds to the count of frontal pixels over all 29

3-months sets divided by the count of clear pixels found over the same time period

for Pathfinder. For both Terra and Aqua, we combined the count of frontal pixels

and of clear pixels for the two datasets over the nine year period for which we

have MODIS data, resulting in two frontal probability fields for each season, one

for Pathfinder and one for MODIS. We applied the PFDA to each map and derived

two sets of local maxima, which we then summed. The sum of local maxima is

processed through the rest of the algorithm as described in the methods section and

Appendix A. In a similar manner to the previous regions, stable fronts obtained

with the PFDA are plotted with selected isobaths on the corresponding fields of

front probability (Fig. 9).

Planetary currents The long-term mean path of the Oyashio is detected in

every season, except Summer where a few short fronts are observed along Japan’s

coastline. Regarding the Kuroshio, several parts of the seasonal mean path are

readily distinguishable, specifically, the southern branch of the current found be-

tween Taiwan and Kyushu, and the northern branch flowing along the southern

18



Figure 9: Seasonal persistent fronts in East Asia. Red lines: PFDA output; white
lines: isobaths at -25m, -50m, -75m, -250m, -1500m, and -2500m.

19



coasts of Kyushu, Shikoku and Honshu. The length of the frontal segments corre-

sponding to the western boundary current varies by season. The southern branch

is segmented in Winter and Spring, and completely disappears in Summer. It is

observed again in Fall as two relatively long segments; the northern branch is at

its shortest in Winter (from 133◦E to 142◦E) and longest in Summer (130◦E to

148◦E). Interestingly, in contrast to the Oyashio, the Kuroshio does not follow one

unique isobath. Besides the main path, frontal segments are also detected by the

PFDA in Summer between 35◦N and 40◦N.

Marginal seas The seasonal variability of the persistent fronts present in the

marginal seas (Sea of Japan, Bohai Sea, Yellow Sea and East China Sea) is well

captured by the PFDA. Despite a lower frontal probability in Winter, frontal

activity was detected in the Sea of Japan. Similarly, in Summer, there are fewer

persistent fronts in the Yellow Sea and the East China Sea than during other

seasons. In some cases, frontal segments, which we believe should be continuous,

are identified by the PFDA as several disconnected segments. We believe that this

results from the removal of spurs, which were introduced in the step connecting

local maxima into continuous segments. Specifically, the PFDA is able to track, in

an objective manner, persistent fronts with a strong seasonal variability, however

the strong variability leads in many cases to a larger number of spurs than in

the 30-year averaged map. This may in turn alter the results of the algorithm

by shortening the original segments. The subpolar front found at 40◦N in the

summertime Japan Sea is a good example of this.

1.3.3 Relation to bathymetry

We derived the spatial correlation between the bathymetry and the frontal

probability, which the determination of the persistent SST fronts relies on. More
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Figure 10: Correlation between the 29-year averaged frontal probability for the
Northwest Atlantic and the bathymetry. Values between -0.4 and 0.4 are masked.
Magenta lines are the output of the algorithm.

specifically, we computed the Pearson correlation coefficient, defined as follows for

the variables X and Y :

r =
(X −X)(Y − Y )

σ(X) · σ(Y )
,

with σ being the standard deviation, and the overline denoting the mean of X and

Y respectively. In our case, the variables are the bathymetry and the long-term

mean frontal probability fields. The correlation coefficient was computed over a

sliding window of 9 pixels by 9, covering the entire global domain. We present

the spatial correlation by masking the values between -0.4 and 0.4, to highlight

higher values in figure 10. The magenta lines correspond to the output of the algo-

rithm and are seen often in places where the correlation or anti-correlation is high,

indicating that many persistent fronts have a tie to the underlying bathymetry.
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1.4 Discussion
1.4.1 New findings and implications

The Persistent Front Detection Algorithm described herein has been applied

to the probability distributions of SST fronts associated with three widely used

SST products, to produce global fields of peristent SST fronts and their properties.

The algorithm finds a significant fraction of the fronts broadly discussed in the

literature. In addition, the algorithm finds many persistent fronts not discussed in

the literature. This is especially true of regions, typically found in the Southern

Hemisphere, although not exclusively. A striking example are the persistent

fronts found on the Patagonia shelf (Fig. 11). As for the Mediterranean Sea, a

significantly larger number of persistent fronts are found than shown in existing

frontal maps of the region. Specifically, small fronts were detected over the

continental shelf, between -40◦S and -52◦S. Many of these fronts are of particular

interest in that they tend to be cross-shelf. In some cases, for example, the

approximately cross-shelf fronts at 47.5◦ s, which are not shown in Belkin et

al. (2009), follow a cross-shelf topographic features but others do not. One of the

reasons that the maps of Belkin et al. may not show these fronts is that their

analysis relied on an earlier, 9 km, version of the Pathfinder dataset than the one

used in this study.

The newly-found fronts detected by our method provide a more complete

picture of the submesoscale dynamics, even on a 30-year averaged field. Smaller

stable fronts are observed globally, challenging the notion that shorter fronts have

a shorter lifespan than longer ones. These findings could have a profound impact

on the understanding of the interactions between biogeochemistry and physics in

the ocean, in particular in the context of tracer transport or fluxes estimations at

the submesoscale.
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Figure 11: SST fronts in Patagonia, found by the PFDA (left) and drawn by Belkin
(from Belkin et al., 2009, right).

1.4.2 Limitations of the PFDA and possible improvements

While the PFDA appears to perform well in general, there are a few areas of

concern. In this section, we discuss four conditions for which the algorithm appears

to underperform and we propose improvements in three of the cases. The first two

cases relate to fronts in category 2 defined in the Introduction; i.e., fronts occuring

in the same location for long periods of time. The third case relates to upwelling

fronts, those in Category 4 and the final case relates to fronts associated with

western boundary currents, Category 3. Although we have made a distinction

here between problems associated with upwelling fronts and those with western

boundary currents, the distinction is weak in that western boundary currents are

often associated with other fronts in the region – these regions tend to be dy-

namically active hence fronts related to other features also occur there, tending to

broaden the probability distribution in addition to the broadening associated with

the meandering of the front. Furthermore, western boundary currents are only on
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example of fronts in Group 3, other fronts, such as eastern boundary currents, also

fall in Group 3 and may cause similar problems for the algorithm.

Short frontal segments In some cases the presence of numerous spurs occurring

after joining local maxima may result in a well defined region of high frontal

probability not being identified as a persistent front. The high probability ridge

along the coasts of Belgium and the Netherlands (Fig. 5) is a case in point. The

PFDA identifies the two ends of this ridge as persistent fronts, but misses the

middle portion. In order to remove some of the undesirable segments, we included

a threshold on the minimal length of the persistent fronts; i.e., segments with less

than 5 pixels were removed from the subsequent analysis. In the case of the English

Channel front, the local maxima formed two long series of points (which resulted

in the two persistent frontal segments (red lines) shown in Fig. 5), separated by

a few very short series of points in the middle of the front (which are missing

from the final output of the ADA). In order to remediate this problem, a similar

“reconstructing” algorithm to the one suggested above could be used to join frontal

segments which are likely to be continuous. Again, caution must be taken to not

reintroduce noise eliminated in the current version of the algorithm.

Upwelling fronts As discussed in the Introduction, SST fronts may be divided

into four general groups. One of the traits, which characterize these groups, re-

lates to the associated probability distributions. From this perspective, SST fronts

in Group 1 simply contribute to the very weak background in frontal probability,

while fronts in Groups 2 tend to be found in narrow bands of high frontal proba-

bility such as those observed off the east coast of the U.S. (Fig. 4). By contrast,

fronts associated with Group 4, upwelling fronts, are found in “frontal clouds”

extending from the coast, across the continental shelf well into deep water, such
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as the distribution seen off the coast of California (Fig. 1). These distributions are

comprised of many small-scale fronts, or upwelling filaments. Because these frontal

segments tend to be quite small (a few kilometers long at most) and ephemeral,

the diffuse clouds with which they are associated tend to be ‘lumpy’ with prob-

abilities ranging from 1.5% to 4.5% at most. As a result, the PFDA, which keys

on local maxima, does not perform well in such regions; the majority of the local

maxima detected in the first pass of the algorithm are flagged as noisy pixels and

discarded. However, in some cases, statistical anomalies associated with ‘lumps’

in the probability distribution result in segments, which pass the tests used to

eliminate non-persistent fronts. For example, in the (relatively weak) upwelling

region off the Iberian Peninsula, the along-coast fronts are detected accurately,

but the algorithm also detects persistent fronts normal to the coast extending west

of 10◦W. A potential remedy to this problem would be to add an additional level of

analysis for coastal upwelling regions, one designed to delineate regions of diffuse

probability. Such an algorithm, relying on discriminating frontal objects from their

background, has been implemented and tested for the California Current system

(Fig. 12). The results of this method are complementary to the output of the

original PFDA.

Planetary-scale fronts The probability distribution of fronts found in Group

3, those associated with large scale currents, tend to have aspects of fronts in both

Groups 2 and 4. Specifically, where the currents are topographically constrained,

the probability distribution consists of well defined ridges, which the algorithm

readily identifies as persistent fronts – the inner edge of the Gulf Stream off the

southeastern coast of the U.S. prior to separation from the continental margin

(Fig. 1) – and, where the currents are not topographically constrained, the prob-

ability distribution tends to be broad and ‘lumpy’, as in the case of the Gulf
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Figure 12: Frontal probability and coastal upwelling zone delimitation (red con-
tour) in the California current system.

Stream following separation from the continental margin (also Fig. 1). These large

/ planetary scale fronts are associated with:

• western-boundary currents,

• eastern-boundary currents,

• Equatorial currents, primarily those associated with the Intertropical Con-

vergence Zone (ITCZ), and

• polar currents, primarily associated with the Antarctic Circumpolar Current

(ACC).

The long-term mean path of the Gulf Stream was identified as a persistent front
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west of 65◦W and the seasonal path of the Kuroshio was accurately located up-

stream of the point of separation from the continental margin off of the coast of

Japan. However, the algorithm struggles to find a persistent front over significant

distances once these currents have moved into the open ocean. This is mainly

because the currents tend to meander significantly, resulting in the ‘lumpy’ prob-

ability distribution alluded to above, presenting the same algorithmic problems

found with upwelling fronts. A similar issue arises regarding fronts belonging to

the ITCZ, as their frontal probability is very low (below 1% typically) and dif-

fuse. Again, the majority of the local maxima detected in the first pass of the

algorithm are flagged as noisy pixels and discarded. In fact, no ITCZ fronts are

evident in the global maps presented in Appendix B. Lastly, with the exception of

topography-steered fronts, such as those found along the Kerguelen plateau, the

southern subpolar and polar fronts are not found by the algorithm. This is thought

to be the case because these fronts are composed of several branches, which tend

to meander both factors militating against identification of the fronts as persistent

1.5 Conclusion

In this study, a method to detect persistent SST fronts based on frontal prob-

ability fields derived from the Cayula-Cornillon algorithm was presented. Five

global maps of persistent SST fronts were produced, one based on the 4 km, 29-

year AVHRR Pathfinder dataset and one for each of the climatological seasons based

on the 4 km MODIS Aqua and Terra datasets, together with the Pathfinder dataset

covering the same ≈ 10-year period as the MODIS datasets.

In addition to locating persistent fronts, the algorithm also identifies a number

of properties associated with each frontal pixel and the approximate edge of the

persistent frontal region at each frontal pixel location. The latter are of particu-

lar interest in that they allow for the characterization of user defined properties
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associated with a persistent frontal segment or as a function of distance along the

front. For example, it would be straightforward to examine the change in frontal

step over time, or to examine fish catch in the persistent frontal region versus that

in the same general area but outside of the frontal zone.
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2.1 Introduction

Fronts are features found in the ocean, which are characterized by strong

gradients, separating distinct water masses. The first paper presented in this thesis

focused on detecting persistent sea surface temperature fronts, which are fronts

being observed at the same location over long periods of time (seasons, years, or

decades), acting as boundaries between waters with different surface temperatures.

Here, we investigate more in depth the properties of the persistent fronts detected

from the global long-term mean frontal probability field. In particular, we proceed

to a multivariate analysis to analyze how the frontal properties may or may not

be related to one another by relying on unsupervised machine learning techniques

(clustering). In the next section, we will introduce the statistical methods used

for this study and describe how they apply to the specific problem of oceanic

fronts. Results will be presented in section 3, where we will present the various

clusters found and their respective characteristics. Then, we will discuss whether

the results make sense in regards to the partitioning of the persistent sea surface

temperature (SST) fronts into different types or not in section 4, followed by the

conclusion in section 5.

2.2 Data and Methods
2.2.1 Data

As stated in the previous section, this study is a continuation of the work

on the automated detection of persistent SST fronts in the global ocean. Within

the framework of this thesis’ first chapter, we applied the Cayula-Cornillon

algorithm (Cayula and Cornillon, 1992; 1995) to several time series of SST fields,

measured through Advanced Very High Resolution Radiometer (AVHRR) and

MODerate-resolution Imaging Spectroradiometer (MODIS) over 29 and 9 years

respectively. As a result, frontal probability fields were derived for the long-term
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mean (AVHRR only) and for each climatological season (using a combination of

AVHRR and MODIS). We developed a method to detect and track SST fronts based

on the presence of local maxima in the frontal frequency maps, and obtained five

global maps showing the location of persistent fronts. These maps are presented

in Appendix B of this thesis.

This second study is focused on the statistical analysis of the SST fronts found

from the long-term mean probability field only. Besides the map showing the lo-

cation of persistent fronts, the Persistent Front Detection Algorithm (PFDA) also

determines several frontal properties, for each pixel. The characteristics of the

fronts can be divided into two categories, namely the intrinsic properties (SST gra-

dient, SST cross-frontal step, frontal probability), and complementary properties,

derived from other fields than SST More specifically, we used the information pro-

vided by ETOPO1, which is a 1 arc-minute global model of the Earth’s surface

developed by the National Centers for Environmental Information (NCEI) - NOAA,

to retrieve the ocean bathymetry and compute the bathymetry gradient magni-

tude. The gradient was computed using the Sobel operator, which consists in a

3x3 kernel, to obtain the zonal and meridional bathymetry gradient components.

The operator is given here for the zonal gradient. By using the transposed of the

kernel, we obtain the meridional gradient.

Sobel x-derivative kernel:

 +1 0 −1
+2 0 −2
+1 0 −1


We recall that the magnitude of a gradient can be expressed as:

|∇H| =
√

(∂xH)2 + (∂yH)2,

with H being the water depth.
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Persistent fronts were found to have an average length of 25 pixels. This lead

to over 100,000 pixels belonging to almost 4,000 persistent fronts for the long-

term mean field. While an exhaustive statistical analysis of the persistent fronts

may have been desirable, we chose to reduce our dataset by considering the mean

properties of each frontal line. Indeed, we assumed that the characteristics of each

front did not change much along its pixels, so that the mean could serve as a

good representative for the frontal pixels without too much loss of information. To

assert this assumption, we computed the skewness of the SST gradient magnitude

along each front over the global ocean. The figure 1 shows the distribution of the

skewness for all the fronts. We see that it is bounded between 2 and -2 for the

most part, indicating that the distribution of the SST gradient magnitude can be

approximated to a normal univariate distribution for each frontal line (George and

Mallery, 2010), and that the mean (and not the median) can be used in our case.

The skewness was computed for other properties as well and looked very similar

to figure 1 (not shown).

By reducing each front to its mean point, we can proceed to a multivariate

analysis of the persistent fronts by using only 3932 points, instead of over 100,000.

Thus for each front, we compute the mean value of each variable, namely:

• frontal probability,

• SST zonal gradient,

• SST meridional gradient,

• SST gradient magnitude,

• SST cross-frontal step,
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Figure 1: Skewness of the SST gradient magnitude for each persistent SST front
detected by the PFDA from the long-term mean observations. Black horizontal
lines indicate the +/- 2 limit.

• bathymetry,

• bathymetry gradient.

All the values are then gathered into a large matrix containing 3932 rows and

7 columns. This defines the dataset of our study.

2.2.2 k-means clustering

There are many available statistical tools to find patterns in a dataset. In par-

ticular, cluster analysis allows to group observations that are similar by clusters,

while separating observations that are dissimilar into distinct clusters (Rencher,

2002). Within the framework of multivariate analysis, classification can be under-

stood as a supervised machine learning technique. While it is an attractive machine

learning technique to determine the various types of persistent SST fronts, we chose

to use cluster analysis instead since it does not require to know the fronts types
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beforehand. Thus, we do not introduce bias from previous knowledge or experi-

ence, which could have influenced the results.

A popular clustering method is called k-means, which consists in partitioning ob-

servations into k clusters. It is an iterative method which requires to specify the

number of clusters ahead. First, k points are placed randomly in the variable

space; these are the seeds that will become the respective centroids of the clus-

ters. The method computes the distance between each point in the dataset and

the closest seed, and defines the first version of the clusters. The k points are

readjusted as centroids of the clusters, and the distance between the points and

the newly-located centroids is calculated again. Thus, the position of the centroids

are updated at each iteration, until the method converges to an optimal division

of the k clusters. The k-means procedure can be seen as a powerful tool to cluster

oceanic fronts based on their properties. Nevertheless, the difficulty of applying it

within the framework of this study lies in the determination of the optimal num-

ber of clusters, which is unknown a priori. We evaluate how many clusters we

should ideally work with by computing the Davies-Bouldin Index (DBI) (Davies

and Bouldin, 1979; Matlab documentation). The DBI relies on the ratio of the

intra-cluster distance and of the inter-cluster distance:

Dij =
di + dj
di,j

,

with di (dj) being the average distance between each point and the centroid of

the cluster i (j) to which they belong. The distance between the centroids of the

clusters i and j is di,j. Figure 2 shows the DBI for various values of k. We restrict

the maximum number of potential clusters to 10, and observe that the DBI reaches

a minimum for k=9, which corresponds to the optimal clustering solution. We

decided to proceed to the k-means clustering of our data with 9 clusters. The

results will be explained in the following section.
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Figure 2: Evolution of the DBI showing the optimal number of clusters (9) for the
k-means method.

2.3 Results

In this section, we present the characteristics of the nine clusters found by

the k-means method. We will first show the correlations between the variables of

our study (the frontal properties defined in the previous section). We performed

a Principal Component Analysis (PCA) on our dataset, to determine how the

variance of the data may be explained by the different variables. Unfortunately, no

conclusive findings were obtained. Following the presentation of the correlations,

we will discuss the differences between the various clusters.

2.3.1 Correlations

The matrix below corresponds to the correlation matrix, and is a 7x7 square

(and symmetric) matrix. Each column represents a variable:

We note that the correlations between variables are never high: the largest
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

FP ∂xT ∂yT ∇T ∆T H ∇H

1 −0.0435 −0.1216 0.0001 0.1082 0.4664 −0.3023
−0.0435 1 0.0477 0.1191 −0.1811 −0.0698 0.0254
−0.1216 0.0477 1 0.0214 −0.1676 −0.1770 0.2193

0.0001 0.1191 0.0214 1 −0.2841 −0.0444 0.0834
0.1082 −0.1811 −0.1676 −0.2841 1 0.2835 −0.1345
0.4664 −0.0698 −0.1770 −0.0444 0.2835 1 −0.3984
−0.3023 0.0254 0.2193 0.0834 −0.1345 −0.3984 1


Correlation matrix. FP: frontal probability, ∂xT: zonal SST gradient, ∂yT: merid-
ional SST gradient, ∇T: SST gradient magnitude, ∆T: SST cross-frontal step, H:
bathymetry, ∇H: bathymetry gradient magnitude.

correlation corresponds to the one between frontal probability and bathymetry, at

0.46. This goes along with the fact that no variable is highly correlated to one

another globally.

2.3.2 Cluster analysis

Clustering was performed on persistent SST fronts, for the long-term mean

case. Fig. 7 shows the results of the k-means clustering, the different colors rep-

resenting the nine clusters. For each cluster, the distributions of the variable are

plotted as histogram in the following pages. We decide to describe the various

clusters by discriminating them based on the average water depth corresponding

to the fronts belonging to each clusters. We consider three different categories of

fronts, namely:

• shallow-water fronts (H > -1000m),

• intermediate-water fronts (- 3000m < H < -1000m),

• deep-water fronts (H < -3000m).

Each category counts three clusters each. Within the framework of this study, we

first apply the clustering procedure to the dataset as is. The results presented here
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take into account the sign of the SST gradient components (zonal and meridional),

and of the SST step. In particular, we used the sign of the meridional gradient

to separate further the clusters within each category. However, when performing

the clustering analysis to the dataset without the effect of the sign on the SST

gradients: it lead to an optimal Davies-Bouldin index equal to 10, with a slightly

different partition of the fronts into the 10 clusters. We suppose that the sign of

the SST gradients may not help explain the physics behind the partitioning of the

oceanic fronts.

Shallow-water fronts Clusters 2, 4 and 6 correspond to persistent fronts found

in shallow regions. The average water depth below the observed fronts is respec-

tively -360m for cluster 2 (cyan) , -95m for cluster 4 (light blue), and -260m for

cluster 6 (dark blue), as seen in Fig. 7.

Unsurprisingly, the fronts belonging to these three clusters are found near the

coasts and in most marginal seas, such as the Bering Sea or the East China Sea. It

should be noted that in contrast to clusters 2 and 4, cluster 6 shows a dominantly

southward SST gradient . On the other hand, cluster 2 presents a larger frontal

probability than both clusters 4 and 6. These observations can be interpreted as

follows: fronts part of cluster 2 are the most persistent SST fronts present globally,

with an average frontal probability of 4.9%. They are mostly found over the first

few hundred meters, as are the fronts belonging to cluster 4 and 6. We can see from

figure 10 that the tail of the distribution for cluster 4 is much shorter, resulting in

an average water depth much smaller (fronts are found in areas where the water

depth is shallower than 100m).

Fronts from cluster 6, such as the Ushant front, the fronts in the Yellow Sea and

the fronts in the Gulf of Saint-Lawrence do not show a preferred direction for the

zonal SST gradient but have clearly a southward SST gradient, seen to be always
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in the direction away from the coastline. Similarly to fronts of cluster 2, the SST

step is strictly negative, meaning that the waters near the coast are colder than

on the other side of the fronts . We computed the correlation coefficients between

variables within each cluster. Fronts in cluster 6 are the only shallow fronts for

which the correlation between the meridional SST gradient and the cross-frontal

SST step is significant, at 0.8.

Intermediate-water fronts The clusters 3, 8 and 9 correspond to persistent

fronts found in regions where the bathymetry ranges from -1000m and -3000m.

The average water depth below the observed fronts is respectively -1665m for clus-

ter 3 (purple), -1740m for cluster 8 (red), and -2900m for cluster 9 (orange).

Persistent fronts found in cluster 3 are found near the coast, most of the time

following closely the local isobaths below -500m. These fronts are usually seen on

the western coast of U.S., Brazil, Somalia, India, China, and Tasmania, right over

the edge of the continental shelf. The average value of the SST gradient magnitude

is the second largest of all clusters with a value of 0.0864K/km, implying that the

fronts of this cluster are very energetic. A good example is the Kuroshio front,

and we note that some of the fronts in the Sea of Japan like the subpolar front are

also part of cluster 3.

Fronts from cluster 8 are mainly found on the eastern boundary of the various

ocean basins (Pacific: along Peru’s and Chile’s coastlines, Atlantic: the Canary

and the Benguela currents, and short frontal segments along western Australia’s

coast for the Indian Ocean). Interestingly, the seaward segment of the Gulf Stream

and the Malvinas current are also part of cluster 8. While it is common knowledge

that western boundary currents and eastern boundary currents exhibit distinct

characteristics, the k-means method groups some of them (not all: the Kuroshio

being an exception) in the same cluster. It is not clear why boundary currents
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belong to the same group. Remarkably, the two branches of the Gulf Stream each

belong to a different cluster. This may be explained when considering the sign of

their zonal and meridional SST gradients, showing that there is convergence be-

tween the branches. In fact, from figure 6, we see that the zonal SST gradient of

cluster 8 is predominantly westward (away from the coast for the eastern bound-

ary currents, and inward for the Gulf Stream and the Malvinas current), which

contrasts with clusters 3 and 9, with respectively an eastward SST gradient and a

gradient partly eastward, centered around 0. The main similarity between clusters

3, 8 and 9 is their large bathymetry gradient magnitude (above 2.6 in average).

The ninth and last cluster groups fronts in the equatorial upwelling and coastal

upwelling systems, in particular in the Pacific, and off Northwestern Africa. .

Corresponding to the nature of upwelling SST fronts, the average SST gradient

magnitude is the lowest of all the groups, at 0.0566K/km. While we would have

expected equatorial and coastal upwelling to be part of distinct clusters, fronts be-

longing to these systems have more in common with one another than with fronts

from any other cluster.

Deep-water fronts The clusters 1, 5 and 7 correspond to persistent fronts found

in deep-water regions. The average water depth below the observed fronts is re-

spectively -3950m for cluster 1 (green), -4840m for cluster 5 (yellow), and -4040m

for cluster 7 (light green).

From looking at figure 4, it is evident that clusters 1 and 7 represent the persistent

fronts of the Subpolar Front (SPF) . Both clusters show numerous similarities (in

figure 5, with the frontal probability distributions, as well as in figure 11 with

the bathymetry gradient distributions). Furthermore, the seventh cluster seems to

group the fraction of the SPF found above bathymetric features, such as fault lines

and underwater relief , in contrast to the first cluster. The main characteristics of
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these two clusters are strong anti-correlations between the meridional SST gradient

and the cross-frontal SST step (-0.85 for cluster 1, and -0.91 for cluster 7) which is

unique among all nine clusters. The average meridional SST gradient is the largest

of all clusters for cluster 7 at 0.0540K/km, slightly higher than the value for clus-

ter 1, at 0.0392K/km. Cluster 7 also has the largest SST gradient magnitude at

0.0899 K/km, and the largest temperature difference across the fronts in absolute,

at -0.8171K . Persistent SST fronts detected as part of the SPF are very energetic,

just as the fronts belonging to cluster 5. The major difference between cluster 5

and the other two ”deep” clusters is the direction of the meridional SST gradient:

it is southwards for cluster 5 and northwards for clusters 1 and 7. Cluster 5 counts

the fronts from the Kuroshio extension, the Gulf Stream extension, and part of

the California coastal upwelling system. A few fronts can also be observed in the

Sea of Japan. When computed exclusively for cluster 5, the correlation matrix

presents some interesting values, namely the correlation between the meridional

SST gradient and the SST step (0.92), the correlation between the meridional SST

gradient and the SST gradient magnitude (-0.61) and lastly the correlation between

the SST step and the SST gradient magnitude (-0.62). Cluster 5 is unique in that

there exists a relationship between the SST step, the meridional SST gradient and

the SST gradient magnitude. These fronts are mostly found in the open ocean, in

contrast to fronts from cluster 3, which appear in their vicinity.
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Figure 5: Frontal probability distribution by cluster.
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Figure 6: Zonal SST gradient distribution by cluster.
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Figure 7: Meridional SST gradient distribution by cluster.
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Figure 8: SST gradient magnitude distribution by cluster.
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Figure 9: Cross-frontal SST step distribution by cluster.
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Figure 10: Bathymetry distribution by cluster.
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Figure 11: Bathymetry gradient distribution by cluster.

50



2.3.3 Summary

In this section, we recall succinctly our results from the Principle Components

Analysis (PCA) and the k-means clustering. First, from applying the PCA to our

dataset, we observe that the first three principal components explain only 60%

of the total variance of the observations. The bathymetry is the variable which

contributes the most to the first principal component, while the SST gradient

magnitude and the meridional SST gradient are the main contributors to the sec-

ond and third components respectively. We chose to distinguish between the nine

clusters through their bathymetry, which lead to three groups of three clusters each.

Cluster 1, along with cluster 7, group fronts belonging to the Subpolar Front.

Both clusters have a strong northward SST gradient, anti-correlated to the SST

step. The fronts part of these clusters are very energetic, and while they are very

similar, the main difference between them lies in the fact that the fronts of cluster

7 seem steered by topographic features, in contrast to the fronts of cluster 1.

Clusters 2 and 4 corresponds to fronts found in very shallow areas (less than

500m depth). Typically, these fronts are found over the continental shelf like in

Patagonia, or in Australia for instance. Fronts from cluster 6 are also found in

shallow waters, but they have a clear southward SST gradient in contrast to fronts

from clusters 2 and 4. Typical fronts grouped in cluster 6 are the fronts found in

the Bering Sea, in the Gulf of Maine, and in the South China Sea.

Fronts from cluster 3 are also part of the coastal fronts, but they differ from the

fronts described above by being located exactly on the edge of the continental

shelf, as seen in the Labrador region, in Patagonia and near Japan. They also have

a large SST gradient magnitude, and their meridional SST gradient is correlated

to the SST step, which is unique among shelf fronts. These fronts are observed in
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regions where the water depth is intermediate, just like fronts from clusters 8 and

9. Cluster 8 represents fronts part of boundary currents systems (both western

-Gulf Stream, Malvinas current; and eastern -Humboldt, Canary and Benguela

currents-). The associated bathymetry gradient is large, as in the case of cluster

9. Fronts from cluster 9 correspond to fronts in equatorial and coastal upwelling

for the most part. While intuitively, one would distinguish between eastern and

western boundary currents on one hand, and between coastal upwelling (like

in Northwestern Africa) and equatorial upwelling in the Pacific on the other

hand, the k-means method find that persistent SST fronts from each category are

matched up in only two clusters.

Finally, cluster 5 is a bit unique in the sense that it contains fronts that are part of

the Kuroshio and the Gulf Stream extensions across the Pacific and the Atlantic.

These fronts are found over the deepest regions, with a water depth past -4800m

in average. They also have a very strong positive correlation between their SST

step and their meridional SST gradient, which is strictly negative (southward).

The table 3 summarizes our findings. For convenience, we introduce types to

fronts with similar patterns but belonging to distinct clusters. Type I corresponds

to a cluster with similar patterns as another cluster, then called type II. In the

case where there are three clusters with similarities, there will be three types.

2.4 Discussion

In this section, we will argue whether the k-means clustering makes sense from

a dynamical point of view, i.e. do the clusters found by this method correspond to

existing types of SST fronts or not. We will also discuss some possible developments

to expand the scope of the present study.
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2.4.1 Clustering commentary

Shelf fronts We ended the previous section with three different types of shelf

fronts, represented by three distinct clusters (2, 4 and 6). By comparing our

findings to existing literature on SST fronts, we can attest that shelf fronts of type

II correspond to tidal fronts. Indeed, the mechanisms behind the occurrence of

tidal fronts in shallow seas, such as the North Sea and other European Seas were

investigated several decades ago (Simpson and Pingree, 1978; Simpson and Bowers,

1981; Bowers and Simpson, 1987). As mentioned by the authors, the European

continental shelf is an area where the tidal dissipation accounts for about 10% of

the total global dissipation of the M2 tides. Through the development of satellite

altimetry, an estimate of the global dissipation of tidal energy (Egbert and Ray,

2000) was derived. Here, we show the map of tidal energy dissipation in figure

12. Regions where the tidal energy dissipation is very high in absolute value often

correspond to areas where light blue fronts from cluster 4 are observed (Bering Sea,

Australian Shelf, East China Sea, Patagonia, Gulf of Maine and English Channel).

Based on the existing literature on these fronts, We propose that these fronts are

associated to tides.

As discussed in the previous section, the main difference between the clusters

2 and 6 is the distribution of the meridional SST gradient, which is bimodal for

1 Subpolar type I
2 Shelf type I
3 Shelf-break -
4 Shelf type II
5 G.S. and Kuroshio extensions -
6 Shelf type III
7 Subpolar type II
8 Boundary currents Eastern/Western
9 Upwelling Coastal/Equatorial

Table 3: Frontal clusters. The first column corresponds to the cluster number.
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Figure 12: Tidal energy dissipation, from NASA, credits: Ray R.

cluster 2 and negative for cluster 6. In addition, fronts of cluster 2 present the

highest frontal probability in average, indicating that they are more stable than

fronts from cluster 4. Based on the seminal works of Chapman and Lentz (1994)

and Hsueh and Cushman-Roisin (1983), we can safely assume that fronts of cluster

2 are anchored by bathymetry and can be defined as topography-controlled fronts.

In regions like the Bering Sea, the Gulf of Maine or the Okhotsk Sea, shelf fronts

of type III (cluster 6) appear along other types of shelf fronts. From the analysis

of their properties, it seems that fronts of type III are similar to fronts of type

II, except for their meridional SST gradient and their bathymetry gradient. It is

not clear that these fronts are exclusively due to tides, and represent most likely a

combination of type I and type II.

Subpolar frontal system Looking at the clusters 1 and 7, we see that they

both correspond to the Subpolar front. As illustrated in figure 13, where the mean

path of the SPF is drawn over the bathymetry field (right plot), we can see that
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cluster 7 matches the segments following closely the bathymetric features, such as

the Kerguelen Plateau and the various ridges.The interesting point is the inclusion

of persistent fronts along the coasts of South Africa in these clusters. In particular,

around -20◦S, we see what could be counted as coastal upwelling (matching the

description of cluster 9), however when looking at the cross-frontal SST step and the

meridional SST gradient at that location, it is clear that the SST step is negative,

and that the SST gradient at this location is also positive, both in the same order

of magnitude than for the Subpolar fronts, as shown in figure 14.

Figure 13: Antarctic polar frontal system: all paths digitized from 1987 to 1993:
left, and mean path over bottom topography: right. From Moore et al. (1999)

Boundary currents We noticed in the previous section that the boundary cur-

rents were found in a unique cluster (cluster 8), which seemed counter-intuitive

given the vast contrast between western and eastern boundary currents. And while

the Gulf Stream was part of that cluster, its Pacific counterpart, the Kuroshio, be-

longs to cluster 3 (which corresponds to shelf-break fronts), just like one branch
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Figure 14: SST meridional gradient (K/km) and cross-frontal SST step (K) off
Africa’s coast.

of the Agulhas current. Looking more carefully at the western boundary currents,

we remark that the two branches of the Gulf Stream are red and purple (8 and 3);

the Agulhas branches are purple and light green (3 and 7); and lastly the Kuroshio

front is purple, with a very short red segment right under (8 and 3). When looking

at the zonal and meridional gradients, we see a ”convergence”, i.e. each of these

boundary current can be thought as dipoles with one inner branch and one outer

branch between which the thermal flux converges. In the Southern Hemisphere,

the light green front seen at the tip of South Africa is the outer branch of the Ag-

ulhas front. The reason that western boundary currents are associated with two,

roughly parallel, fronts is that they are advecting warm water very quickly pole-

ward. This makes them warmer than the water on both sides. On the shelf side

the gradient will be larger and facing seaward because the shelf waters are cooler

than those of the subtropcial interior. The gradients on the outer edge are weaker

and pointing shoreward. This feature uniquely distinguishes western boundary

currents from other planetary frontal systems, as shown in figure 15.
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Figure 15: Meridional SST gradient (K/km) for Western Boundary Currents, Gulf
Stream: left, Kuroshio: right, and Agulhas current: bottom.

2.4.2 Future improvements

From PCA to FPCA In the Data and Methods section, we introduced the

assumption that fronts could be represented by their mean value, thus reducing

their dimension from curves to single points. This approximation allowed us to

apply the Principal Component Analysis to our dataset, and to use the results in

the subsequent k-means clustering procedure with success. However, there exists

in statistics an extension of the PCA which takes into account the fact that the

frontal properties can have different values along each frontal line detected by the

automated method described in chapter 1. The functional Functional - PCA (FPCA)

(Tran, 2008) is considered an alternative to PCA to deal with curves such as oceanic

fronts, without compromising their complex nature. In this context, the FPCA
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could be applied instead of the PCA to define persistent fronts types.

Unsupervised clustering and pixel level Along with the assumption of using

the mean value of each front, we also deliberately chose a method of unsupervised

machine learning instead of a supervised classification procedure such as support

vector machine. The main reason lies in the fact that we did not want to introduce

bias in the clustering, but instead let the fronts and their properties ”speak for

themselves” without us assigning a front to one type or another. The caveat of

tagging fronts beforehand with a given type is that it is partly subjective: even

though the type of some well-documented fronts is already known, there are many

more persistent fronts for which the type is not known. Also, we do not exclude

the possibility of fronts being mixed-typed, which may hamper the results of a

classification. A limitation we did observe through this study was that by selecting

the number of clusters through the Davies-Bouldin index, our methodology became

partially supervised.

Another direction which was considered during this project was to apply the PCA

to the frontal pixels detected by the PFDA directly, as individual points instead of

an ensemble of curves. Therefore the dataset would consist of over 100,000 points

instead of 4000 as mentioned in the Data and Methods section. The motivation

behind using all the points instead of just the mean points was to see if indeed some

fronts could be of mixed types, in which case parts of their segments would belong

to one cluster while other parts would be found in a different cluster. Preliminary

results show that many of the shelf fronts described in our study are in fact mixed,

of type I and II (clusters 2 and 4), as defined in the previous section.

Seasonality While the automated detection method tracked persistent SST

fronts globally for the long-term mean (1982-2011) and each climatological sea-
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son, this chapter only dealt with the long-term mean dataset. Seasonal variability

is a crucial aspect of SST fronts, in particular when one wants to distinguish their

dynamics and types. We intend to apply the cluster analysis to the seasonal dataset

in the near future, and compare our results to the clustering of the long-term mean

dataset.

2.5 Conclusion

Within the framework of this study, we applied multivariate analysis methods

to the problem of sorting oceanic fronts, more specifically, persistent SST fronts

into different categories. We used the approximation that each front could be

represented by its mean point to proceed to a principal component analysis and

a k-mean clustering. The clustering resulted in the partition of our dataset into

nine clusters. Two of them represent the Subpolar front, three correspond to

the shelf fronts, with the distinction between topography-controlled fronts and

tidal-mixing fronts, plus one other comprising shelf-break fronts. In addition, one

cluster groups coastal and equatorial upwelling fronts, while the two last clusters

represent the boundary currents and the Gulf Stream and Kuroshio extensions

respectively. From our findings, we can conclude that clustering produces great

results regarding SST fronts and their various patterns. This chapter is a follow-

up of the first chapter of this dissertation where fronts were objectively detected

via an automated method. Here, we distanced ourselves from any subjectivity by

relying on an unsupervised machine learning technique to sort out SST fronts. We

believe that these results will provide insight in understanding under-documented

or previously unknown fronts, as well as shed some light into some similarities

between fronts thought before to be very different.
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APPENDIX A

Algorithm details

A.1 Validation of CCA

As a preliminary step, we first carried out a validation of the Cayula-Cornillon

Algorithm (CCA) to ensure the quality of the frontal pixels detected by the algo-

rithm. We designed two tests to evaluate the performance of the CCA relying

on two assumptions on fronts dynamics. We recall here that fronts are typically

thought as regions of strong gradients, and we will postulate that the in-front sea

surface temperature (SST) gradient at a given frontal pixel should be larger than

the SST gradient surrounding it. We set the threshold for the ratio to 1.5, i.e. the

in-front gradient should be at least 1.5 times larger than the out-of-front gradient.

Regarding the second hypothesis, for simplicity of the argument we assume that

fronts are linear objects. We compare the direction of the in-front SST gradient to

the local normal of a SST front and detect whenever the angle difference becomes

too large. Ideally, the SST gradient vector should coincide with the local normal

vector of the fronts detected by the CCA but we allow a range of +/ − 30◦. It

appears that the angle difference between the fronts’ normal and their SST gra-

dient is a more restrictive condition than the SST gradient ratio: while 80% of

the pixels were passing the test of the SST gradient ratio, only 40% passed the

second test. When combined, about 60% of the frontal pixels passed both tests.

A large number of pixels detected by the CCA showed a discrepancy between the

local normal direction and the SST gradient direction. We found out that their

spatial distribution was uniform over the global domain with no particular spatial

preference. In the event where frontal pixels belonging to a same frontal segment

did not all passed both tests, a system of recuperation was set up so that if one

”bad” pixel was found in the midst of a series of ”good” pixels, it would be re-
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Figure A.1: Local maxima after the first pass (left) and the second pass (right).

stored to preserve the integrity of the frontal segment as often as possible. This

last operation raised the percentage of kept pixels to 70%.The CCA was tested for

all three satellite datasets, and the valid pixels were saved to serve as base input

data, instead of the frontal pixels detected from the original SST fields.

A.2 Automated detection algorithm: noise reduction methods

From the flowchart presented in figure 2, we realized that local maxima were

first retrieved even in regions of very low frontal frequency, which was not desir-

able. Going further, we looked at the properties of the frontal probability peaks,

such as their relative height (prominence) and their width at mid-prominence

value. Peaks corresponding to stable fronts tend to have a very clear signal, when

compared to peaks attached to meandering fronts for instance. By implementing

threshold values to the prominence and the width of the local maxima peaks, we

were able to reduce the noise considerably as seen in figure A.1.

In many instances, points that should not have been connected were now

forming ”branches”, and a large number of spurs were observed, especially for the

seasonal maps were the ratio signal to noise was smaller than in the Pathfinder

dataset alone. We thus designed a side-algorithm to detect branching points

and disconnect some of the faulty parts in the frontal lines found by the ADA.
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The two criteria were the local direction of the branches, as well as their frontal

probability. In the case where three branches were connected, we would look at

the direction of each branch at the branching point and try to cut the branch

that would maximize the direction change of a segment. In the same manner, we

looked at the values of frontal probability surrounding the branching point to cut

the branch with the largest discrepancy. Following this operation, we assigned a

number to each frontal line mapped out, and made sure that their pixels were

indexed properly. Indeed, Matlab tends to order pixel by decreasing latitude

which lead to problematic indexing for non-monotonic segments.

Beyond selecting peaks based on their properties, we rely on the Otsu’s

thresholding method (Otsu, 1979) to further discriminate between local maxima

of interest and undesirable ones. The Otsu method is a well-known image

processing technique that allows one to separate objects from their background

by performing a histogram analysis of a given image. By assuming that there

are two distinct classes of pixels in the image (those belonging to the objects and

those part of the background), the method looks for an optimal threshold for

which the inter-class variance is maximized. Detailed derivations can be found

in the original paper and in Appendix A. We combined the Otsu algorithm with

a sliding window, passed over the whole frontal probability fields to determine

a local value of the Otsu threshold at any given pixel. This indicates for which

value of frontal probability we would be able to set the fronts apart from their

background.

After a first pass through the morphological operations, the branch cutting

and the indexing methods, we manually tagged valid fronts over a large region
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(Northern hemisphere) and compared the distribution of the local threshold for

this sample to the distribution for the general population of fronts. Having a

preexisting knowledge of what should be considered a valid front enabled us to

define a measure of the likelihood for a local maximum to be part of a valid front

based on their Otsu value. We introduce a weight w(k), which can be expressed

as the ratio of the area under the curve up to the value k to the area under the

whole curve. Accordingly, points with a threshold of 3% are 99% likely to be valid

stable fronts, which makes sense since higher Otsu thresholds are found in regions

of higher frontal frequencies, and larger frequencies indicate more stable fronts.

On the other hand, the probability for points with a threshold value of 1% to be

valid is about 8%. By multiplying the original frontal probability field by the Otsu

weight computed at each pixel, we derive a ”weighted” frontal probability field for

which high frequency values are accentuated while very low values are weighted

down and become negligible parts of the map. Figure 3 shows the resulting field,

where regions of low probability have become much less noisy than before (upper

left and right plots).
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APPENDIX B

Global maps of persistent SST fronts
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B.1 Acronyms

ACC Antarctic Circumpolar Current

AVHRR Advanced Very High Resolution Radiometer

CCA Cayula-Cornillon Algorithm

DBI Davies-Bouldin Index

FPCA Functional - PCA

ITCZ Intertropical Convergence Zone

LME large marine ecosystem

MODIS MODerate-resolution Imaging Spectroradiometer

NCEI National Centers for Environmental Information

NOAA National Oceanic and Atmospheric Administration

PCA Principle Components Analysis

PFDA Persistent Front Detection Algorithm

SPF Subpolar Front

SST sea surface temperature

URI University of Rhode Island
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