Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales

Kevin D. Friedland

Colleen B. Mouw
University of Rhode Island, cmouw@uri.edu

Rebecca G. Asch

Ana Sofia Ferreira

Stephanie Henson

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

The University of Rhode Island Faculty have made this article openly available.
Please let us know how Open Access to this research benefits you.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

Citation/Publisher Attribution

This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales

Authors
Kevin D. Friedland, Colleen B. Mouw, Rebecca G. Asch, Ana Sofia Ferreira, Stephanie Henson, Kimberly J. W. Hyde, Ryan E. Morse, Andrew C. Thomas, and Damian C. Brady

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/gsofacpubs/642
Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales

Kevin D. Friedland1,*, Colleen B. Mouw2, Rebecca G. Asch3,4, A. Sofia A. Ferreira5, Stephanie Henson6, Kimberly J. W. Hyde1, Ryan E. Morse1, Andrew C. Thomas7, Damian C. Brady7

1National Marine Fisheries Service, 28 Tarzwell Dr., Narragansett, RI 02882, USA
2University of Rhode Island, Graduate School of Oceanography, 215 South Ferry Road, Narragansett, RI 02882, USA
3Princeton University, Program in Atmospheric and Oceanic Sciences, 300 Forrestal Road, Princeton, NJ 08540, USA
4Current address: East Carolina University, Department of Biology, 1000 East 5th Street, Greenville, NC 27858, USA
5School of Oceanography, University of Washington, Seattle, USA
6National Oceanography Centre, European Way, Southampton, UK
7School of Marine Sciences, University of Maine, Orono, ME, USA

Kevin D. Friedland (kevin.friedland@noaa.gov)
Colleen B. Mouw (cmouw@uri.edu)
Rebecca G. Asch (aschr16@ecu.edu)
A. Sofia A. Ferreira (asofiaaferreira@gmail.com)
Stephanie Henson (S.Henson@noc.ac.uk)
Kimberly J. W. Hyde (kimberly.hyde@noaa.gov)
Ryan E. Morse (ryan.morse@noaa.gov)
Andrew C. Thomas (thomas@maine.edu)
Damian C. Brady (damian.brady@maine.edu)

Keywords: phytoplankton, bloom, phenology, trend analysis, carbon cycle, productivity

*Correspondence: Kevin Friedland, National Marine Fisheries Service, 28 Tarzwell Dr., Narragansett, RI 02882, USA, E-mail: kevin.friedland@noaa.gov

Number of words in the Abstract: 292
Number of words in main body of the paper: 6626
Number of references: 77
ABSTRACT

Aim This study examined phytoplankton blooms on a global scale with the intention of describing patterns of bloom timing and size, the effect of bloom timing on the size of blooms, and time series trends in bloom characteristics.

Location Global.

Methods We used a change-point statistics algorithm to detect phytoplankton blooms in time series of chlorophyll concentration data over a global grid. At each study location, the bloom statistics for the dominant bloom, based on the search time period that resulted in the most blooms detected, were used to describe the spatial distribution of bloom characteristics over the globe. Time series of bloom characteristics were also subjected to trend analysis to describe regional and global change in bloom timing and size.

Results The characteristics of the dominant bloom was found to vary with latitude and in localized patterns associated with specific oceanographic features. Bloom timing had the most profound effect on bloom duration, with early blooms tending to last longer than later starting blooms. Bloom timing and duration had time series trends suggesting blooms were starting earlier and lasting longer, respectively, on a global scale. Blooms have also increased in size at high latitudes and decreased in equatorial areas based on multiple size metrics.

Main conclusions Phytoplankton blooms have changed on both regional and global scales, which has ramifications for the function of food webs providing ecosystem services. A tendency for blooms to start earlier and last longer will have an impact on the pathway of energy flow in ecosystems, differentially favoring the productivity of different species groups. These changes may also affect the sequestration of carbon in ocean ecosystems. A shift to earlier bloom timing is consistent with the expected effect of warming ocean climate conditions observed in recent decades.
Primary production in the oceans accounts for approximately half of the carbon fixed by photosynthesis on a global scale (Field et al., 1998). This production fuels the growth and reproduction of living marine resources and is a critical factor exerting control over which species produce harvestable surpluses, contributing to fishery yields (Ryther, 1969; Chassot et al., 2010; Stock et al., 2017) and global food security (Perry, 2011; Christensen et al., 2015). In addition to the production of continental shelf species that are exploited in fisheries, there is also significant trophic transfer between open ocean primary production and mesopelagic fishes on a global basis (Davison et al., 2013; Irigoien et al., 2014). Phytoplankton also serve as a central linkage in ecosystem function (Sigman & Hain, 2012) and the biogeochemical processes governing carbon flow and export flux (Doney et al., 2014; Laufkotter et al., 2016). Oceanic photosynthetic production is geographically variable due to complex biophysical factors controlling phytoplankton blooms that occur when the rate of cell reproduction exceeds the rates of mortality associated with death and grazing (Behrenfeld & Boss, 2014; Cherkasheva et al., 2014). Variability in blooms affect energy flow from phytoplankton production to pelagic and demersal communities both horizontally and vertically in the water column (Corbiere et al., 2007).

Bloom dynamics have been characterized on basin and global scales, identifying differing patterns of bloom phenology (bloom timing and duration) by latitude and oceanic provinces. Descriptions of the spatial organization of bloom patterns have been complemented with analyses of time series change in bloom dynamics utilizing a number of different sources of data. For example, a study with a geographic focus in the North Atlantic found that spring bloom timing has advanced for some temperate latitude regions and was delayed in other areas, whereas the fall and winter blooms have been mostly delayed (Taboada & Anadon, 2014). Other longer-term studies identified the effects of changing mixed layer dynamics on the relative strength of spring and fall blooms in the North Atlantic (Martinez et al., 2011) and widespread shifts in bloom phenology associated with broad-scale changes in the coupled atmosphere-ocean system (D’Ortenzio et al., 2012). Some of the most dramatic changes in bloom characteristics and phenology have occurred in the Arctic, where bloom maximums have advanced on the order of fifty days from 1997 to 2009 as a consequence of changes in seasonal ice cover (Kahru et al., 2011). Changes in bloom magnitude and timing impact energy pulses in the ecosystem, which in turn impact the growth and reproduction of higher trophic levels in the food web (Cushing, 1990; Hunt et al., 2002; Platt et al., 2003; Schweigert et al., 2013; Malick et al., 2015).

Climate variation can modify bloom timing and size through mechanisms that influence water column conditions such as the supply and ratio of nutrients and light availability. As climate systems
shift in response to anthropogenic forcing, there is a need to understand their impact on bloom
dynamics both retrospectively and in a forecasting context. As an example, in the Baltic Sea,
investigators have found that bloom duration has increased in recent years and were able to relate this
change in bloom dynamics to increasing water temperature and declining wind stress, which they
associated with global change (Groetsch et al., 2016). Change in climate conditions may act to modify
blooms through the direct effects of nutrient supply and grazing; additionally, changing distributions of
parasites associated with climate change will likely play a larger role in the dynamics of blooms and the
nature of bloom fixed carbon available to primary grazers (Frenken et al., 2016). Projections of bloom
dynamics by global earth system models (e.g., CanESM2, GFDL-ESM2M, HadGEM2-CC, IPSL-CM5A-MR,
MPI-ESM-LR, and NEMO-MEDUSA) suggest that regions dominated by seasonal blooms may see
diminished bloom events that are replaced by smaller seasonal blooms more typical of contemporary
subtropical regions (Henson et al., 2013). Other simulations suggest that future climate will greatly
change the nature of seasonal and permanent stratification features, which is one of the more
important physical factors controlling the onset and duration of blooms (Holt et al., 2016). Furthermore,
direct temperature effects on cell division rates and physiological processes could also influence bloom
timing in a warming climate (Hunter-Cevera et al., 2016).

In this paper, we describe the spatial and temporal dynamics of the dominant phytoplankton
blooms of the world. While phytoplankton phenology has been actively investigated, here we define
events detected using change-point statistics (Friedland et al., 2015; Friedland et al., 2016) as opposed
to other frequently used algorithms which generally rely on threshold methods and curve fitting
(Ueyama & Monger, 2005; Ji et al., 2010; Brody et al., 2013; Blondeau-Patissier et al., 2014; Marchese et
al., 2017). Furthermore, many of these methods rely on the availability of a full yearly cycle of data,
which is complicated by missing winter values from satellite products at high-latitudes (Cole et al., 2012;
Ferreira et al., 2014; Ferreira et al., 2015), though productive approaches to deal with this issue are
emerging (Marchese et al., 2017). The change-point approach provides distinct determinations of bloom
start and end, which allows exploration into the internal relationships among bloom characteristics,
such as between bloom start and measures of bloom size. This advantage of change-point analysis
provides an area of novelty compared to previous analyses of global, satellite-derived trends in
phytoplankton phenology (e.g., Kahru et al., 2011; Racault et al., 2012), which only examines trends in
one or two bloom characteristics (e.g., bloom start date, bloom duration) and did not consider how
different bloom characteristics relate to each other. Also our time series is 50-80% longer than the time
series used by these previous studies. Using this more mature remote sensing ocean color time series,
our analysis examines times series trends in bloom parameters on both regional and global scales, with summary data for specific latitudinal ranges.

METHODS

Chlorophyll data
We analyzed phytoplankton blooms using chlorophyll a concentration ([Chl]) data extracted from remote-sensing databases using a global 1° latitudinal/longitudinal grid centered on half degrees. [Chl] was based on measurements made with the Sea-viewing Wide Field of View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer on the Aqua satellite (MODIS), Medium Resolution Imaging Spectrometer (MERIS), and Visible and Infrared Imaging/Radiometer Suite (VIIRS) sensors. We used the GSM (Garver, Siegel, Maritorena Model) merged data product at 100 km and 8-day spatial and temporal resolutions, respectively, obtained from the Hermes GlobColour website (hermes.acri.fr/index.php). These four sensors provide an overlapping time series of [Chl] during the period 1998 to 2015 and were combined based on a bio-optical model inversion algorithm (Maritorena et al., 2010). The compiled time series from January 1, 1998 to December 27, 2015, consisted of 828 8-day [Chl] observations for each grid location. There were 38,433 grid locations with sufficient [Chl] to perform at least one bloom determination (at least one run of 23 time steps with 12 [Chl] observations), including some locations that were in inland waters which did not factor into the analysis. Some aspects of the analysis do not include data from high latitudes (>62° N/S) due to the increased frequency of gaps at these latitudes reflecting the limited period of available data during the year and the presence of sea ice and cloud cover, which both obscure ocean color satellite imagery.

Dominant plankton bloom analyses
Seasonal phytoplankton blooms, as evidenced by changes in [Chl], were detected using change-point statistics. In this study, we define a seasonal bloom as a discernable elevation in [Chl], one that is bracketed by distinct start and end points as identified using the change-point algorithm occurring within a 6-month time frame. For each grid location, the search for bloom events started with the first half-year block of the time series (the first 23 8-day [Chl] measurements), progresses to search for blooms during the next half-year block beginning with the second [Chl] measurement of the year, and then continues to step through the entire time series. Only half-year series with a minimum of 12
observations were considered for analysis; linear interpolation was used to fill missing values within the range of the data and missing values outside the range were filled with the first and last observations at the beginning or end of the time series, respectively. Hence, for each grid location, 806 bloom determinations were attempted (46 attempts per year x 17.5 years) and each detected bloom was associated with one of the 46 search start days of the year. From these data, we identified the search start day of the year that yielded the dominant bloom, which was defined based on the search window that yielded the highest number of bloom detections. If more than one start day yielded the highest number of bloom detections, the dates were sorted sequentially and the median day was used as the dominant bloom. With the 38,433 grid locations and factoring 806 bloom determinations per location, ~31 million bloom determinations were attempted.

Blooms were detected using the sequential averaging algorithm called STARS or “sequential t-test analysis of regime shifts” (Rodionov, 2004, 2006) which finds the change points in a time series. STARS algorithm parameters were specified a priori: the alpha level used to test for a change in the mean was set to $\alpha = 0.1$; the length criteria, the number of time steps to use when calculating the mean level of a new regime, was set to 5; and, the Huber weight parameter, which determines the relative weighting of outliers in the calculation of the regime mean, was set to 3. A bloom was considered to have occurred if there was a period bracketed by a positive and negative change-point. We ignored change-points (positive or negative) that occurred in the first or last two periods of the time series (8-day periods 1, 2, 22 and 23). The minimum duration of a bloom was three sample periods, which represents the minimum span the algorithm needed to find a positive followed by a negative change-point. This method has been used in previous analyses of US Northeast Shelf (Friedland et al., 2008; Friedland et al., 2015), Arctic (Friedland & Todd, 2012), and North Atlantic bloom patterns (Friedland & Todd, 2012; Friedland et al., 2016).

We extracted a suite of statistics to characterize the timing and size of each bloom event. For each location, we calculated bloom frequency as the percentage of the years with a detected bloom in study years with sufficient data to do a bloom determination. Bloom start was defined as the first day of the year of the bloom period. Bloom duration was defined as the number of days of the bloom period. Bloom intensity was the mean of the [Chl] during the bloom period which carries the unit mg m$^{-3}$ and reflects the biomass of the bloom. Bloom magnitude was the integral of the [Chl] during the bloom period and describes the overall size of the event considering that short and long duration blooms can have the same intensity. Magnitude can be calculated as the sum of the [Chl] during the blooms, which carries the unit mg m$^{-3}$; or, as the product of the mean [Chl] during the bloom and the duration in 8-day
periods, which carries the unit mg m$^{-3}$ 8-day. We used the latter unit designation to distinguish it from bloom intensity.

Effect of bloom timing on bloom characteristics

For each grid location, we examined the correlation between bloom start and duration, magnitude, and intensity of the dominant bloom. Pearson product-moment correlations were calculated and limited to grid locations with a minimum of eight detected blooms. Significant correlations with a probability level $\alpha < 0.05$ were highlighted in global maps. Given that regressions were performed on a grid cell-by-cell basis, it is possible that multiple testing could have led to excess accumulation of Type I error. However, spatial patterns shown herein generally remain consistent if a different threshold of statistical significance is used.

Trends in bloom parameters

We evaluated the time series changes in bloom parameters using Mann-Kendall non-parametric trend analysis. We calculated Kendall's tau test for the significance (two-tailed test) of a monotonic time series trend (Mann, 1945) for bloom start day, magnitude, intensity and duration of the dominant bloom. We also calculated Theil-Sen slopes of trend, which is the median slope joining all pairs of observations. In addition to absolute Theil-Sen slopes, we also calculated relative Theil-Sen slopes, where the slope is joining each pair of observations divided by the first of the pair before the overall median is taken. Trend tests and slope estimates were limited to grid locations with at least 10 detected blooms. Mean relative Theil-Sen slopes were calculated over 5° latitude and longitude bands excluding data from latitudes north and south of 62°N and 62°S, respectively. Absolute trends, calculated as the product of the absolute Theil-Sen slope and the length of study period, were summarized on a global and regional basis. In addition to the data requirements on number of blooms, outliers, as identified as estimates outside the range of ±2 standard deviations of the mean, were removed. Global mean trends were expressed by trend test probability intervals and cumulative intervals. While individual grid cells with probabilities > 0.05 inevitably have a Theil-Sen slope whose 95% confidence interval overlaps with zero, we nevertheless opted to examine all probability intervals in order to see if any global or regional patterns emerged in the direction and magnitude of the mean Theil-Sen slopes when examined across all grid cells. Probabilities were rounded to intervals of 0.1 such that interval 0.0 includes $p<0.05$, interval 0.1 includes 0.05≤$p<0.15$, etc. The cumulative trends are based on the same data as the interval trends summing data over each progressive probability interval. Regional trends were based on eight
subdivisions of the world ocean (see Fig. 1) and the contrast between oligotrophic and non-oligotrophic ocean areas, eutrophic and mesotrophic areas (see: ocean.acri.fr/multicolore for source of oligotrophic ocean mask). These regional trends were presented for probability interval 0.0 and cumulative interval 1.0 only.

Effects of abiotic factors on bloom parameters

We considered a suite of five abiotic factors that may be related to bloom timing and the size of blooms through regionally varying mechanisms. Sea surface temperature (SST) was extracted from the NOAA Optimum Interpolation Sea Surface Temperature Analysis datasets (OISST), which provides SST with a spatial grid resolution of 1.0° and temporal resolution of 1 month (Reynolds et al., 2002). The dataset uses in situ data from ships and buoys as a means of adjusting for biases in satellite data. Salinity, mixed layer depth, and zonal and meridional wind stress data were extracted from the Ocean Data Assimilation Experiment, which incorporates near-real time data into an ocean model to estimate ocean state parameters (Zhang et al., 2007). The data are distributed on a non-standard global grid (360 longitudinal data points by 200 latitudinal data points) that was resampled to a 1.0° grid resolution and temporal resolution of 1 month. Bloom parameters were correlated to the abiotic factors at monthly (month and year of the bloom) and annual (mean of the year of the bloom) time resolutions for each global grid location. We also we also calculated relative Theil-Sen slopes of abiotic factors and calculated mean slopes over 5° latitude and longitude bands excluding data from latitudes north and south of 62°N and 62°S, respectively.

RESULTS

Dominant bloom characteristics

The timing and size of the dominant bloom varied globally revealing distinct patterns often associated with latitudinal bands. Bloom frequency had an interquartile range of 67 and 89% over the global ocean (Fig. 2a), which may seem low considering we selected the detection time frame that produced the most bloom detections. An algorithm optimized to find the maximum number of blooms may be expected to detect a bloom in most years. However, the bloom duration constraint in our algorithm will result in characterization of bloom frequency less than 100% in areas where the dominant bloom tends to be a multi-season event. This can be seen in the North Atlantic frequency data where a segment of the
Northeast Atlantic has relatively low bloom frequency; detailed analysis of this region showed the blooms tended to be of long duration often exceeding the duration constraint resulting in non-detection in some years (Friedland et al., 2016). Most of the eastern North Pacific has bloom frequency closer to the lower end of the interquartile range contrasting the distinct latitudinal patterns found in the South Pacific. The South Atlantic and Indian oceans were dominated by high bloom frequencies. At the basin scale, the North Atlantic exhibited the widest region where blooms were observed with a high frequency.

The mean start day of the dominant bloom was arrayed primarily by latitude. At high latitudes in the southern hemisphere, the dominant bloom started near the end of the calendar year typically having start days in the 300s, November-December (Fig. 2b). This coincides with austral spring.

Progressing equatorward, start day of blooms at lower latitudes in the southern hemisphere shifted to earlier in the year over an approximate range of day 150 to 250 (June – August), which corresponds to austral winter. North of the equator, there was a band of bloom start days at the end of the calendar year with similar timing to the dominant bloom in the Antarctic. In the temperate Northern Hemisphere, there was a band of spring blooms with start days ranging from approximately day 50-150 (March – May), shifting to summer blooms in the high northern latitudes with start days in the 200s (June – July). Thus, in both hemispheres, there are similar latitudinal patterns where fall/winter blooms are dominant at low-to-mid latitudes and spring/summer blooms occur in subpolar and polar ecosystems.

Bloom magnitude was lowest in the oligotrophic ocean areas and highest in shelf seas and the northern hemisphere. Over much of the north Atlantic and Pacific, bloom magnitude was between 10.0-15.0 mg m\(^{-3}\) 8-day [1.0-1.2 log (mg m\(^{-3}\) 8-day +1); Fig. 2c]. For the areas of the globe between approximately 40°N to 60°S, bloom magnitude was typically <5.0 mg m\(^{-3}\) 8-day [< 0.8 log (mg m\(^{-3}\) 8-day+1)], with values in the oligotrophic ocean ranging from 0.5-1.5 mg m\(^{-3}\) 8-day [0.2-0.3 log (mg m\(^{-3}\) 8-day+1)]. Bloom intensity followed a similar pattern to bloom magnitude with its lowest values in the oligotrophic ocean and highest in shelf seas and the northern hemisphere (see Appendix S1). In the northern hemisphere above 50°N, bloom intensity was approximately 2.0-4.0 mg m\(^{-3}\) [0.5-0.7 log (mg m\(^{-3}\) +1)] and tended to be between 1.0-1.5 mg m\(^{-3}\) [0.3-0.4 log(mg m\(^{-3}\)+1)] over the latitude range of 40°N to 60°S. Bloom intensity in the oligotrophic ocean was <0.2 mg m\(^{-3}\) [< 0.1 log (mg m\(^{-3}\)+1)] in many areas.

Mean bloom duration of the dominant bloom was longest in much of the oligotrophic ocean and shortest in shelf seas and the higher latitude areas of the northern and southern hemispheres. Bloom duration tended to exceed 60 days, or two months, in these oligotrophic ocean areas and was often as short as one month in continental shelf ecosystems (Fig. 2d).
Effect of bloom timing on bloom duration and size

The timing of the dominant bloom was related to multiple measures of bloom size including bloom duration, magnitude, and intensity. Over global scales, bloom timing was negatively correlated to bloom duration, indicating that early blooms lasted longer than blooms that began later in the year (Fig. 3a). Very few grid locations had significant positive correlations (~0.1%) indicative of early blooms of short duration. Instead, fully half (50%) of the global grid was found to have significant negative relationship between bloom start and duration.

The correlation between bloom start and magnitude was less well developed (Fig. 3b), but reflected the strong correlation found with duration. Over the global grid, most locations had non-significant correlation between bloom start and magnitude (70%). For those locations with significant correlations, 98% had significant negative correlation indicating that early blooms produced high magnitude blooms. The latter result was most likely related to the underlying correlation between bloom start and duration, as duration is a key component in the calculation of magnitude; longer lasting blooms most likely have higher magnitudes. Locations with significant negative correlations between bloom start and magnitude tended to occur at mid-latitudes in both hemispheres.

The final relationship considered was that between bloom timing and intensity. These data produced the weakest correlation field with 82% of the global grid found to be non-significant. Of the significant correlations, 92% were significant positive correlations indicating that later starting blooms were of higher intensity or associated with higher mean [Chl] (Fig. 3c).

Relative trends in bloom parameters

The relative Thiel-Sen slopes of the bloom parameters of start day, magnitude, intensity, and duration reveal distinct regional and global patterns. Distinct clusters of negative trends in bloom start day (i.e., earlier blooms) can be seen in the southern Pacific, Atlantic and Indian oceans (Fig. 4a). Distinct clusters of positive trends in bloom magnitude (i.e., increasing magnitude) and bloom intensity (i.e., increases in intensity) can be seen across higher latitudes in both northern and southern hemispheres (Fig. 4b and 4c). Also negative trends in bloom magnitude and intensity were more common at low latitudes. Trends in bloom duration with both positive and negative signs occurred, making spatial patterns difficult to identify (Fig. 4d).

Mean relative Thiel-Sen slopes for bloom start day binned over latitude show that slopes tended to be negative over most latitudes with the largest relative change found in the southern hemisphere.
(Fig. 5a). Mean slopes for magnitude were positive at high latitudes and negative for bands around the equator (Fig. 5b), with positive slopes increasing with latitude. Mean slopes for intensity were arrayed by latitude in a similar fashion to magnitude (Fig. 5c). Mean relative Thiel-Sen slopes for bloom duration tended to be positive over most latitudes with exception of a group of five high latitude northern bands that were negative indicating a shortening of blooms at these latitudes (Fig. 5d).

Mean relative Thiel-Sen slopes for bloom start day binned over longitude show that slopes tended to be negative over most longitudes (Fig. 6a). Mean slopes for magnitude were positive for most longitudes with the exception of a cluster associated with the Indian Ocean (Fig. 6b). Mean slopes for intensity were arrayed by longitude in a similar fashion to magnitude (Fig. 6c). Mean relative Thiel-Sen slopes for bloom duration tended to be positive over most longitudes with exception of ranges of longitudes associated with Indian and Atlantic oceans (Fig. 6d). Compared to other variables, fewer slopes for bloom duration were significantly different from zero.

Effects of abiotic factors on bloom parameters

Our efforts to detect global scale relationships between abiotic factors and bloom characteristic yielded mixed results. The correlation analysis examining the effect of abiotic factors including SST, salinity, mixed layer depth, and wind stress did not reveal any comprehensive global relationships between these factors and dominant bloom dynamics. The monthly and mean annual correlations are presented in supporting information Appendix S2 (figures s2-1-10). These correlation fields are dominated by grid locations with non-significant correlations. However, some inference on the effect of the abiotic factors may be made by comparing their time series trend patterns to the patterns in time series trends in bloom parameters.

Relative Thiel-Sen slopes of trends in SST suggest the most dramatic changes in thermal condition have occurred at high latitudes associated with changes in patterns of sea ice extent and polar amplification of climate change, noting however that most of these data fall outside the latitude constraints (>62° N/S) used here in most analyses (Fig. 6a). At lower latitudes, SST trends were generally positive with the exception of the parts of the North Atlantic, the western North Pacific, and the eastern South Pacific. Salinity has increased and decreased dramatically in isolated high latitude locations in the North Atlantic, likely related to increase Arctic melting, where elsewhere over the global ocean there has been a high degree of variability in salinity (Fig. 6b). Mixed layer depth trends have been mostly positive apparently to a higher degree in the southern hemisphere, although a lot of spatial variability in trends is evident in the northern hemisphere (Fig. 6c). Both zonal and meridional wind stress have
generally decline globally, with a pattern of zonal wind decline most intense along certain lines of latitude (60° S, 30° S, 0°, 30° N, and 60° N) and meridional decline apparently circumscribing basin-scale oceanic gyres (Figs. 6d&e, respectively). Areas with the most intense declines in zonal wind stress correspond to the transition zones between trade winds and westerly winds.

Trends in abiotic factors were summarized by latitude and longitude in the same manner as bloom parameter trends were summarized in Figure 5. Mean relative Thiel-Sen slopes for SST binned over latitude show that slopes tended to be positive over most latitudes with the largest relative changes found at high latitudes, with a secondary peak just north of the equator (Fig. 7a). SST slopes were also positive over most longitudes with the exception of bands associated with parts of the North Atlantic, the western North Pacific, and the eastern South Pacific (Fig. 7b). There did not appear to be a pattern in the latitudinal distribution of salinity slopes; however, the longitudinal pattern suggests an anomalous freshening of the Indian Ocean compared to other ocean areas (Figs. 7c & d, respectively). Slopes of mixed layer depth are mostly positive over latitudinal intervals, with the higher values at higher latitudes and the only areas with negative slopes associated with the lower latitudes of the northern hemisphere (Fig. 7e). The increase in mixed layer depth appear highest in the Atlantic Ocean basin compared to other areas based on longitudinal summary of slopes (Fig. 7f). Mean slopes were almost all negative for zonal wind stress, over latitudes and longitude, with little patterning evident in either data summary (Figs. 7g & h, respectively). Likewise, mean meridional wind stresses were almost all negative as well, over latitudes and longitudes; however, there may be some level of patterning in the latitudinal distribution of mean slopes with the largest change occurring at high latitudes (Figs. 7i & j, respectively).

Mean Trends in bloom parameters

Trends expressed as change in bloom parameters over the study period suggest there have been substantial shifts in bloom timing and size. Bloom start day has shifted on the order of 3 days earlier on a global basis and for regions associated with statistically significant shifts, blooms have advanced on the order of two weeks (Fig. 8a). Bloom magnitude and intensity have both increased on a global basis on the order of 0.3 mg m$^{-3}$ 8-day and 0.05 mg m$^{-3}$, respectively, which represents about a 10% increase in both parameters (Fig. 8b&c). The increases in these parameters in regions associated with statistically significant shifts have been much greater and on the order of 0.9 mg m$^{-3}$ 8-day and 0.4 mg m$^{-3}$, respectively, which represents about a 35% increase again for both. Bloom duration has shifted on the
order of 2 days longer on a global basis and for regions associated with statistically significant shifts, blooms have lengthened on the order of one week (Fig. 8d).

The bloom trends partitioned by the eight subdivisions of the world ocean and the between oligotrophic and non-oligotrophic ocean areas differed from the global means in a number of ways. Bloom start had negative trends, indicating earlier blooms, in all ocean areas; but, the trend was greater in the southern oceans and in oligotrophic areas (Fig. 9a). For regions associated with statistically significant shifts, the North Atlantic had a positive bloom start trend suggesting that the bloom started approximately five days later whereas the other ocean areas had negative trends suggesting shifts of 1-3 weeks (Fig. 10a). Bloom magnitude and intensity had positive trends in the northern and southern oceans and between oligotrophic and non-oligotrophic regions (Fig. 9b&c). The tropical ocean areas either had zero or negative trends in these parameters. The pattern of change in magnitude and intensity in the regions associated with statistically significant shifts were nearly identical to the global averages, but the size of the shifts was larger when considering only statistically significant results (Fig. 10b&c). Bloom duration increased in all areas except the North Atlantic and tropical Indian oceans where trend confidence interval included zero (Fig. 10d). The pattern of change in duration in the regions associated with statistically significant shifts was similar to the global patterns; however, four regions had confidence intervals that included zeros (Fig. 10d).

DISCUSSION

Our analysis of phytoplankton blooms on a global scale suggests directional time series change in the timing, duration, and size of blooms, which portends changes in the functioning of marine ecosystems and carbon cycling from local to global scales (Ji et al., 2010). Notably, we provide evidence that blooms are initiating earlier in the year on a global scale, having shifted in timing on the order of weeks in some regions. Change in the time scale of blooms also seems to be occurring in respect to the timing of bloom cessation as evidenced by the global pattern of lengthening bloom duration. There have also been changes in the pattern of bloom size with blooms appearing to have increased in size at high latitudes and decreased at low latitudes in a gradated fashion. It is critical to understand these changes in blooms since they provide labile biomass that form the basis of food webs and are fundamentally important to the biogeochemical functioning of ecosystems (Sigman & Hain, 2012).

Though clearly not a test of hypotheses, the comparison of latitudinal and longitudinal patterns of trends may offer some insights on both global and regional changes in bloom dynamics. The latitudinal patterns in SST and meridional wind stress trends are similar to the latitudinal pattern in
bloom duration in that all show bimodal distributions at low latitudes. This particular pattern is consistent with an increase in bloom duration in the Baltic Sea that also coincided with warming temperatures and decreased winds (Groetsch et al., 2016). Likewise, there are features in the latitudinal pattern of mixed layer depth that match the latitudinal patterns in bloom magnitude and intensity trends. The most striking longitudinal pattern was found in the salinity data suggesting a potential relationship to bloom magnitude and intensity trends in the Indian Ocean. Finally, the advance in bloom timing over all latitudes may be related to the global change in wind stresses.

Our results compare similarly with previous global or basin-scale estimates of bloom parameters with accommodation for contrasts in regions and measurement methodology. Different bloom detection algorithms can provide varying errors of bloom phenology (Ferreira et al., 2014); and consequently, varying depictions of bloom dynamics (Brody et al., 2013). Our focus is on the dominant annual bloom occurring within a grid cell and on the main period of elevated bloom conditions constrained by the length of our detection time window. As a number of investigators have characterized (Sapiano et al., 2012; Taboada & Anadon, 2014), most areas of the globe are dominated by a single bloom with the exception of some regions that are characterized by a secondary bloom in regions predominately oriented in specific latitudinal bands. Despite this methodological difference, our characterization of bloom start is similarly patterned to previous global (Racault et al., 2012; Sapiano et al., 2012) and basin scale studies (Henson et al., 2009; Taboada & Anadon, 2014; Zhang et al., 2017).

However, our estimates of bloom duration are at variance with most studies owing to the contrast in methods applied between studies. In studies estimating bloom duration using a threshold approach (Siegel et al., 2002), bloom duration tended to be 2-fold longer than ours (Racault et al., 2012; Sapiano et al., 2012). However, the spatial patterns of long versus short bloom duration were consistent with our results. The measures of bloom size, here referred to as magnitude and intensity and variously named and applied by different investigators, were also similar between studies and generally followed climatological patterns of the distribution of [Chl] (Doney et al., 2003).

As ocean color time series have grown in length, there have been efforts to describe time series trends in bloom characteristics. Importantly, these efforts have included disciplined analyses of the requirements to detect trends in the face of noisy and incomplete data and whether trends can be attributed to climate change or not (Beaulieu et al., 2013; Henson et al., 2016), which Henson et al. (2013) estimates would require ~ 30 years of data to distinguish trends in bloom phenology from natural decadal variability. Given the results of these investigations, we approach our findings with caution, for as encouraging as it is to now have a nearly twenty-year time series of data, it is difficult to be conclusive.
about the description of trends and to attribute any of these trends to climate change. However, it is
reasonable to compare these trends to observed climate variation over the past two decades and
discuss whether these trends are consistent with future projections under different climate change
scenarios.

On a global scale, the spatial organization of areas with homogenous bloom dynamics appears
to have a high degree of zonal band patterning and more complex organization associated with
meridional bands (Sapiano et al., 2012). For example, mean relative Thiel-Sen slopes for bloom duration
tended to be positive over most latitudes with exception of a group of five high latitude northern bands,
which were negative indicating a shortening of blooms at these latitudes. Mean slopes for magnitude
and intensity were positive for most longitudes with the exception of a cluster associated with the
Indian Ocean.

Changes in bloom timing and size were not uniform over the globe. Owing to contrasts in
oceanographically defined functional regions and latitudinal patterns, changes in bloom dynamics will
likely have different regional impacts. An analysis of spring and fall blooms in the north Atlantic and
Pacific basins that employed a spectral decomposition approach for bloom detection characterized
regional scale time series change in bloom timing and magnitude (equivalent to bloom intensity as used
here) that hold many similarities to the patterns described in our analysis (Zhang et al., 2017). Bloom
timing was alternatively advanced and delayed on the order of weeks with coherent trends in matching
areas of both basins. It is difficult to compare our trends in bloom intensity to their trends in magnitude
since our spatial characterization is based on relative Thiel-Sen slopes. Similarly, in a study focused on
the North Atlantic, Taboada and Anadon (2014) provided estimates of bloom intensity trends that match
our study results; however, their method of estimating bloom timing trends were different from those
presented here. Racault et al. (2012) estimated trends in bloom duration on a global scale also using
linear regression and a time series restricted to the SeaWiFS time series only (1998-2007). Their
estimates of global trends in bloom duration were mostly negative indicating a tendency for blooms to
be shortened over global scales. We note, however, that their time series is shorter than that analyzed
here and bloom duration was estimated using a threshold approach (Siegel et al., 2002), which as noted
above provides estimates of bloom duration 2-fold longer than ours. Hence, they are estimating a
different aspect of phytoplankton dynamics as we are focusing on the discrete portion of the bloom
associated with highly elevated [Chl].

We view our results in the context of changes that have occurred and will likely occur to the
global climate system. Global thermal conditions are changing and it is important to consider change in
the level of system variability and its impact on ecosystems (Vazquez et al., 2017). For phytoplankton, change in thermal regime is having profound effects on atmospheric circulation and the forcing factors related to bloom development, which may be more important than the direct effect of change in thermal regime itself (Francis & Vavrus, 2015). Changing thermal regimes have been associated with shifting species composition of blooms, where for a fixed study site, blooms have become increasingly dominated by the genus Synechococcus (Hunter-Cevera et al., 2016). The changing role of cyanobacteria is expected to have a profound effect on plankton dynamics in a range of aquatic systems (Visser et al., 2016). We can also expect changes to the seasonal nature of blooms (Henson et al., 2013) and likely impacts on secondary production as well (Litchman et al., 2006). The change in dominant bloom timing we observed is consistent with the effect of an increase in global temperature and its role in mixed layer dynamics, though the rate of stratification and turbulent mixing remains unclear (Franks, 2015). The latitudinal changes in bloom magnitude and intensity are also consistent with the effects of global thermal change on phytoplankton community composition (Marinov et al., 2010), shifting communities to include members which are capable of different growth rates or resistance to grazing that allow for a change in [Chl]. These are changes to the nature of food chain production that warrant further investigation.

The only longitudinal area in the global ocean showing reductions in bloom magnitude, intensity, and duration corresponded roughly to the Indian Ocean over meridians approximately 50° to 100° E. Over relatively short time scales (1998-2004), Goes et al. (2005) and Gregg et al. (2005) have documented increases in net primary production in the western Indian Ocean. However, a recent study using the European Space Agency Ocean Color-Climate Change Initiative corroborate the current study's findings of a reduction in chlorophyll over the past 16 years (Roxy et al., 2016). These researchers attributed this decrease to a reduction in available nutrients in the euphotic zone because a large warming trend has increased stratification-induced trapping of nutrients in the deeper Indian Ocean. The confounding influence of increasing SST trends on mixing and phytoplankton growth rates make prediction of phytoplankton dynamics difficult especially in the Indian Ocean, an area experiencing the largest warming trend in the tropical ocean.

Change in phytoplankton bloom dynamics would be expected to impact the rate of flux of particulate organic carbon (POC) from the water column to the benthos. Parts of the world ocean are dominated by production cycles that are characterized by blooms associated with high concentrations of biomass whereas other regions have bloom features that are not as prominent, though in many cases, primary production can still be at a high level (Reygondeau et al., 2013). However, phytoplankton
 blooms, in particular, support conditions that result in the intense flux of POC (Reigstad et al., 2011; Belley et al., 2016). It follows that changes in the timing and size a bloom will affect the amount of POC exported to the benthos. Over most regions of the globe, blooms appear to have lasted longer which could result in an increase in POC flux. Bloom magnitude and intensity have changed over latitudinal ranges, most notably with decreased bloom magnitude at low latitude and increases at high latitudes. Similar changes in bloom magnitude across a range of latitudes were obtained in a study that used an earth system model that included data assimilation to examine changes in North Pacific bloom characteristics since the 1960s (Asch, 2013). Together these results indicate that POC fluxes to the benthos may increase at high latitudes, while decreasing at lower latitudes. These changes in bloom dynamics should be taken into account in global carbon flux estimation models.

This study provides substantial evidence to support the observation that early blooms are longer lasting blooms and conversely delayed bloom start is associated with shorter blooms. This phenomenon has been described previously on a global scale (Racault et al., 2012) and for the North Atlantic (Friedland et al., 2016), with the latter study exploring the hypothesis that bloom duration is in large measure shaped by grazing by zooplankton that have a diapause life cycle. It is important to note that despite using a different bloom measurement methodology, results from Racault et al. (2012) agree with the current study in the overall nature of the relationship, but differ in the fine scale regional patterning of this correlation.

The observational results of this study provide some level of validation for earth systems models that simulate global climate and ocean systems dynamics. Multiple earth system models suggest that climate change will have the greatest impact on bloom phenology at high latitudes (Henson et al., 2013). Under a business-as-usual emissions scenario, the month of maximum primary productivity is projected to advance by 0.5-1 months by the end of the 21st across many ocean ecosystems. The exception to this pattern is the oligotrophic sub-tropical gyres where delays in the timing of peak primary production have been projected. These changes have been attributed to earlier easing of light limitation due to increases in stratification (Henson et al., 2013). These future projections utilized earth system model outputs with a monthly resolution, so additional research that can detect finer scale changes in phenology is needed. One study that has used finer temporal resolution data from the NCAR Community Earth System Model (CESM) model assimilated historical data on atmospheric observations and sea surface temperature (Asch, 2013). In contrast to models of future projections, this study of historical patterns identified the largest trends in bloom phenology in oligotrophic areas (Asch, 2013), which may reflect an influence of inter-annual climate variability rather than climate change. Our
observational results are consistent with this pattern and, thus, provide an indication of the skill of the NCAR model, which did not assimilate any ocean color data.

Species composition of phytoplankton communities varies over global scales and is principally influenced by dispersion and competitive exclusion (Barton et al., 2010). However, species composition is also influenced by environmental conditions, such as mixing regimes and light conditions (Barton et al., 2015) leading to concerns that shifting thermal conditions will actuate shifts to smaller size taxa (Moran et al., 2010; Marinov et al., 2010). These smaller producers have different dynamics and vertical transport properties, which have the potential to affect the way an ecosystem functions and export flux (Mouw et al., 2016). Utilizing phytoplankton size estimated from remote sensing data (Kostadinov et al., 2016; Mouw et al., 2017), Mouw et al. (2016) contrasted the difference in export flux and transfer efficiency during times dominated by small and large cells within biogeochemical provinces. They found periods dominated by small cells to have both greater export flux efficiency and lower transfer efficiency than periods dominated by large cells. Rising temperatures will likely shift phytoplankton niches northward and are predicted to have the greatest potential impact on tropical phytoplankton diversity (Thomas et al., 2012). Considering the importance of species groups to the role of phytoplankton production, the phenology of various methods to determine phytoplankton size has been compared (Kostadinov et al., 2017) and the phenology of some methods has been connected to environmental conditions (Cabré et al., 2016; Soppa et al., 2016). However, the changes in phenology of various phytoplankton groups have yet to be explored, which could provide refinements to both retrospective and forecasted modelling efforts.

CONCLUSIONS

The timing and size of phytoplankton blooms have changed on both regional and global scales. This finding is important because blooms play a pivotal role in the flow of energy in marine ecosystems, impacting the way food webs work and the way these ecosystems provide a range of services. The dominant bloom was found to vary with latitude and in localized patterns associated with specific oceanographic features. Blooms have increased in magnitude and intensity at high latitudes and decreased in equatorial areas. Overall, blooms started earlier and lasted longer, with bloom timing having the most profound effect on bloom duration; early blooms tending to last longer than later starting blooms. This finding has the potential to impact phenological relationships between producer and consumer species such as mesozooplankton and higher trophic position fish and invertebrates. Timing mechanisms for reproduction in many species have evolved that ensure adequate forage for
early life stages, which may be impacted by changes in bloom timing. In regions where blooms last longer and are associated with higher [Chl], the dynamics of the biological pump are likely to alter the rate of carbon cycling and export in these ecosystems. A shift to earlier bloom timing is consistent with the expected effect of warming ocean climate conditions seen in recent decades. It is incumbent upon assessment and modelling practitioners to account for the dynamic variability of phytoplankton production.

ACKNOWLEDGEMENTS

We thank C. Stock and M. Scharfe for comments on an early draft of the paper and GlobColour (http://globcolour.info) for the data used in this study that has been developed, validated, and distributed by ACRI-ST, France.

Data Accessibility Statement

All chlorophyll concentration data is available as NCDF files from the GlobColour products databased located at: http://hermes.acri.fr/?class=archive.

Biosketch

Kevin Friedland is a researcher with the National Marine Fisheries Service at the Narragansett Laboratory in Rhode Island, USA. He holds a bachelors degree in ecology from Rutgers College in New Jersey and a doctorate from the College of William and Mary in Virginia. His dissertation research was on the distribution and feeding ecology of Atlantic menhaden. During his professional career, he has done research on menhaden, bluefish, sea herring, sturgeon, eel, cod, haddock, and salmon. His publications cover a range of topics including: estuarine ecology of fishes, functional morphology, feeding ecology, recruitment processes, fisheries oceanography, stock identification, ecosystem ecology, and climate change. His current research is on the effects of bloom phenology on ecosystem function. He has served as the chair of several International Council for the Exploration of the Sea (ICES) scientific working groups and is currently the US representative to SCICOM.

REFERENCES

Mann, H.B. (1945) Nonparametric tests against trend. Econometrica 13

Figure 1 Global map showing the extent of 1° latitudinal/longitudinal grid locations with at least 10 years with detected blooms color coded by eight subdivisions of the world ocean. Latitude limits of tropical subdivisions approximate the Tropic of Cancer and Capricorn. Red stippling marks grid locations representing oligotrophic ocean areas.
Figure 2 Bloom frequency (a), start day (b), magnitude (c), and duration (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Units: bloom frequency (percentage); bloom start day (day of the year), Day/Date: 50/Feb 19, 100/Apr 9, 150/May 29, 200/Jul 18, 250/Sep 6, 300/Oct 26, 350/Dec 15; bloom magnitude \[\log(\text{mg m}^{-3}\text{-day+1}) \]; and, bloom duration (days).
Figure 3 Correlation between bloom start day and duration (a), magnitude (b), and intensity (c) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations (p<0.05), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.
Figure 4 Relative Theil-Sen slope showing time series trends in start day (a), magnitude (b), intensity (c), and duration (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least ten years with detected blooms were included.
Figure 5 Mean relative Theil-Sen slope binned by 5° latitude and longitude groupings showing time series trends in start day (a and b, respectively), magnitude (c and d, respectively), intensity (e and f, respectively), and duration (g and h, respectively) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least ten years of detected blooms were included. Error bars are 95% confidence intervals and gray lines are LOESS smoothers using a span setting of 0.5.
Figure 6. Relative Theil-Sen slope showing time series trends in sea surface temperature (a), salinity (b), mixed layer depth (c), zonal wind stress (d), and meridional wind stress (e) based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015.
Figure 7. Mean relative Theil-Sen slope binned by 5° latitude and longitude groupings showing time series trends in sea surface temperature, salinity, mixed layer depth, zonal wind stress, and meridional wind stress (a,c,d,f,g by latitude and b,d,f,h,j by longitude, respectively) based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Error bars are 95% confidence intervals and gray lines are LOESS smoothers using a span setting of 0.5.
Figure 8 Mean global interval and cumulative trends in bloom start day (a), magnitude (b), intensity (c), and duration (d) versus Mann-Kendall trend test probability intervals. Trends are the product of Theil-Sen slopes for the dominant annual bloom and the number of years in the time series. Probability interval 0.0 includes $p<0.05$, interval 0.1 includes $0.05 \leq p < 0.15$, etc. Each interval estimate includes trends associated with that interval probability level only and are estimated from all data and from a subset excluding outliers. Cumulative trends are based on the same data as the interval trends summing data with each progressive probability interval. Only grid locations with at least ten years with detected blooms were included based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015 excluding data from latitudes north and south of 62°N and 62°S, respectively. Error bar are 95% confidence intervals.
Figure 9 Mean trends over ocean areas for bloom start day (a), magnitude (b), intensity (c), and duration (d) for areas regardless of significance level (all p-levels). Trends are the product of Theil-Sen slopes for the dominant annual bloom and the number of years in the times series based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015 excluding data from latitudes north and south of 62°N and 62°S, respectively. Grid locations are combined as per ocean areas and oligotrophic versus non-oligotrophic area as per figure 1 [N_Atl, N_Pac = North Atlantic and Pacific (red circles); S_Atl, S_Ind, S_Pac = South Atlantic, Indian, and Pacific (green squares); T_Atl, T_Ind, T_Pac = Tropical Atlantic, Indian, and Pacific (blue triangles); Olig, Non-Olig = Oligotrophic and Non-Oligotrophic areas (magenta diamonds)]. Only grid locations with at least ten years with detected blooms were included and outliers were excluded. Error bar are 95% confidence intervals.
Figure 10 Mean trends over ocean areas for bloom start day (a), magnitude (b), intensity (c), and duration (d) for areas with significant trends (p<0.05). Trends are the product of Theil-Sen slopes for the dominant annual bloom and the number of years in the times series based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015 excluding data from latitudes north and south of 62°N and 62°S, respectively. Grid locations are combined as per ocean areas and oligotrophic versus non-oligotrophic area as per figure 1 [N_Atl, N_Pac = North Atlantic and Pacific (red circles); S_Atl, S_Ind, S_Pac = South Atlantic, Indian, and Pacific (green squares); T_Atl, T_Ind, T_Pac = Tropical Atlantic, Indian, and Pacific (blue triangles); Olig, Non-Olig = Oligotrophic and Non-Oligotrophic areas (magenta diamonds)]. Only grid locations with at least ten years with detected blooms were included and outliers were excluded. Error bar are 95% confidence intervals.
Supporting information

Appendix S1 Bloom intensity [log (mg m$^{-3}$+1)] for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015.
Figure s2-1. Correlation between monthly SST and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations ($\rho < 0.05$), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.

Figure s2-2. Correlation between annual mean SST and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations ($\rho < 0.05$), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.
Figure s2-3. Correlation between monthly salinity and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations ($\rho<0.05$), blue makers indicate significant positive correlations, and beige makers indicate non-significant correlations.

Figure s2-4. Correlation between mean annual monthly salinity and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations ($\rho<0.05$), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.
Figure s2-5. Correlation between monthly mixed layer depth and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations (ρ<0.05), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.

Figure s2-6. Correlation between mean annual mixed layer depth and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations (ρ<0.05), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.
Figure s2-7. Correlation between monthly u-vector wind stress and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations ($\rho<0.05$), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.

Figure s2-8. Correlation between mean annual u-vector wind stress and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations ($\rho<0.05$), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.
Figure s2-9. Correlation between monthly v-vector wind stress and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations ($\rho<0.05$), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.

Figure s2-10. Correlation between mean annual v-vector wind stress and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations ($\rho<0.05$), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.