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ABSTRACT

The focus of this thesis is on some contemporary problems in the field of

difference equations and discrete dynamical systems. The problems that I worked

on range global attractivity results to all types of bifurcations for systems of

difference equations in the plane.

The major goal was to investigate the impact of nonlinear perturbation and the

introduction of quadratic terms on linear fractional difference equations such as

the Beverton-Holt as well as the Sigmoid Beverton-Holt Model with delay that

describes the growth or decay of single species.

The first Manuscript was on the study of the following equation:

xn+1 = p+
x2
n

x2
n−1

(1)

Which was an open problem suggested by Dr. Kulenović. It is a a perturbation of

the linear fractional difference equation:

xn+1 = p+
x2
n

x2
n−1

The solutions of Equation(1) undergo very interesting dynamics as I showed that

the variation of the parameter p can cause the exhibition of the Naimark-Sacker

bifurcation. I compute the direction of the Naimark-Sacker bifurcation for the

difference equation (1) and I provide an asymptotic approximation of the closed

invariant curve which comes to existence as the unique positive equilibrium point

loses its stability. Moreover tools and global stability result to provide a region of

the parameter where local stability implies global stability of the equilibrium.



In my second Manuscript, I considered the difference equation:

xn+1 =
xn

Cx2
n−1 +Dxn + F

(2)

where C,D and F are positive numbers and the initial conditions x−1 and x0

are non-negative numbers. Equation (2) which is also a non-linear perturbation

of the Beverton Holt model, belongs to the category of difference equations with

a unique positive equilibrium that exhibit the Naimark-Sacker bifurcation. The

investigation of the dynamics of such equation is very challenging as it depends on

more than one parameter. However I give a method for proving that its dynamics

undergoes the Naimark-Sacker bifurcation. Moreover I compute the direction

of the Neimark-Sacker bifurcation for this difference equation and provide the

asymptotic approximation of the invariant closed curve. Furthermore I give the

necessary and sufficient conditions for global asymptotic stability of the zero

equilibrium as well as sufficient conditions for global asymptotic stability of the

positive equilibrium.

The following theorem is the major result that I relied on to prove global

asymptotic stability of the equilibria in my first two Manuscripts:

Theorem 1 Let I be a compact interval of the real numbers and assume that

f : I3 → I is a continuous function satisfying the following properties:

1. f(x, y, z) is non-decreasing in x and non-increasing in y and z

2. The system

{
f(M,m,m) = M
f(m,M,M) = m

has a unique solution M = m in I.

Then the equation xn+1 = f(xn, xn−1, xn−2) has a unique equilibrium x̄ in I and



every solution of it that enters I must converge to x̄. In addition, x̄ is globally

asymptotically stable.

As of my third manuscript, I focused on providing some possible scenarios for

general discrete competitive dynamical systems in the plane. I applied the results

achieved to a class of second order difference equations of the form:

xn+1 = f(xn, xn−1), n = 0, 1, . . .

where the function f(x, y) is decreasing in the variable x and increasing in the

variable y. In my proofs I relied on a collection of well established theorems and

results. Furthermore I illustrate my results with an application to equation:

xn+1 =
x2
n−1

cx2
n−1 + dxn + f

, n = 0, 1, . . . (3)

With initial conditions x−1 and x0 arbitrary nonnegative numbers and parameters

c, d, f >0. Equation. (3) is a special case of:

xn+1 =
Cx2

n−1 +Dxn + F

cx2
n−1 + dxn + f

, n = 0, 1, . . .

which of great interest to the field of difference equation and special cases of

it were considered by different scholars. It also turns out to be a non-linear

perturbation of the Sigmoid Beverton-Holt model. I characterize completely the

global bifurcations and dynamics of equation.(3) with the basins of attraction

of all its equilibria and periodic solutions. Moreover I provide techniques to

investigates cases that are not covered by the established theorems in the theory

of competitive maps.

Finally in my fourth manuscript I considered extending some existing theo-

rems and proving some new global stability results, namely for difference equations



that are of the form

xn+1 = f(xn, xn−1)

where f(x, y) is either increasing in the first and decreasing in the second variable,

or decreasing in both variables. In addition I illustrate my results with examples

and applications. I also provide a new proof for Pielou’s equation (a mathematical

model in population dynamics).
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1.1 Introduction and Preliminaries

In this paper I consider the difference equation

xn+1 = p+
x2
n

x2
n−1

, n = 0, 1, . . . , (4)

where the parameter p is positive number and the initial conditions x−1 and x0 are

positive numbers. Notice that if x−1, x0 6= 0 in equation (5) then xn > 0, n ≥ 1,

and so without loss of generality we can assume that x−1 > 0, x0 > 0. This implies

that our results are global. Clearly equation (27) has the unique equilibrium point

x̄ = p+ 1. Linear fractional version of equation (27)

xn+1 = p+
xn
xn−1

, n = 0, 1, . . . , (5)

was considered in [3], where it was proved that the unique equilibrium x̄ = p + 1

of equation (5) is globally asymptotically stable. Introduction of quadratic terms

into equation (5) changes the local stability analysis and consequently the global

dynamics as well. In particular, quadratic terms introduces the possibility of

Naimark-Sacker bifurcation and the existence of locally stable periodic solution,

see [6] for several similar examples.

The linearized equation of equation (5) at the equilibrium point x̄ = p+ 1 is

zn+1 =
2

p+ 1
zn −

2

p+ 1
zn−1, n = 0, 1, . . . ,

with the characteristic equation

λ2 − 2

p+ 1
λ+

2

p+ 1
= 0,

and the characteristic roots

λ± =
1± i

√
2p+ 1

p+ 1
.

Since

|λ±| =
√

2

p+ 1

2



it is clear that that the equilibrium point x̄ = p + 1 is asymptotically stable if

p > 1, non-hyperbolic if p = 1 and unstable if p < 1. In all cases the eigenvalues

are complex conjugate numbers which indicates the presence of the Naimark-Sacker

bifurcation at p = 1. We will prove that indeed the equilibrium point x̄ = p+ 1 is

globally asymptotically stable if p ≥
√

2 and that the Naimark-Sacker bifurcation

takes the place at p = 1. Our tool in proving global asymptotic stability of equation

(5) is the result in [3, 5]. We conjecture that the equilibrium point x̄ = p + 1 is

globally asymptotically stable if a > 1. Furthermore, we give some numeric values

of parameter a with corresponding periodic solutions. Our bifurcation diagram

indicates a complicated behavior and possible chaos for the values p < 1.

Now, for the sake of completeness I give the basic facts about the Naimark-

Sacker bifurcation.

The Hopf bifurcation is well known phenomenon for a system of ordinary

differential equations in two or more dimension, whereby, when some parameter

is varied, a pair of complex conjugate eigenvalues of the Jacobian matrix at a

fixed point crosses the imaginary axis, so that the fixed point changes its behavior

from stable to unstable and a limit cycle appears. In the discrete setting, the

Naimark-Sacker bifurcation is the discrete analogue of the Hopf bifurcation.

The Naimark-Sacker bifurcation occurs for a discrete system depending on a

parameter, λ say, with a fixed point whose Jacobian has a pair of complex conjugate

µ(λ), µ̄(λ) which cross the unit circle transversally at λ = λ0.

The following result is referred as the Naimark-Sacker bifurcation Theorem

[1, 4, 7, 8, 11].

3



Theorem 2 (Naimark-Sacker bifurcation) Let

F : R× R2 → R2; (λ, x)→ F(λ,x)

be a C4 map depending on real parameter λ satisfying the following conditions:

(i) F (λ,0) = 0 for λ near some fixed λ0;

(ii) DF (λ,0) has two non-real eigenvalues µ(λ) and µ̄(λ) for λ near λ0 with

|µ(λ0)| = 1;

(iii) d
dλ
|µ(λ)| = d(λ0) < 0 at λ = λ0 (transversality condition);

(iv) µk(λ0) 6= 1 for k = 1, 2, 3, 4. (nonresonance condition).

Then there is a smooth λ-dependent change of coordinate bringing F into the form

F (λ,x) = F(λ,x) +O(‖ x ‖5)

and there are smooth function a(λ), b(λ), and ω(λ) so that in polar coordinates the

function F(λ, x) is given by(
r̃

θ̃

)
=

(
|µ(λ)|r + a(λ)r3

θ + ω(λ) + b(λ)r2

)
. (6)

If a(λ0) < 0, then there is a neighborhood U of the origin and a δ > 0 such that for

|λ− λ0| < δ and x0 ∈ U , then ω-limit set of x0 is the origin if λ > λ0 and belongs

to a closed invariant C1 curve Γ(λ) encircling the origin if λ < λ0. Furthermore,

Γ(λ0) = 0.

If a(λ0) > 0, then there is a neighborhood U of the origin and a δ > 0 such that for

|λ− λ0| < δ and x0 ∈ U , then α-limit set of x0 is the origin if λ < λ0 and belongs

to a closed invariant C1 curve Γ(λ) encircling the origin if λ > λ0. Furthermore,

Γ(λ0) = 0.

4



Consider a general map F(λ0,x) that has a fixed point at the origin with

complex eigenvalues µ(λ0) = α(λ0) + iβ(λ0) and µ̄(λ0) = α(λ0)− iβ(λ0) satisfying

α(λ0)2 + β(λ0)2 = 1 and β(λ0) 6= 0. Assume that

F(λ0,x) = A(λ0)x + G(λ0,x) (7)

where A is the Jacobian matrix of F evaluated at the fixed point (0, 0), and

G(λ0,x) :=

(
g1(λ0, x1, x2)
g2(λ0, x1, x2)

)
.

Here I denote µ(λ0) = µ, A(λ0) = A and G(λ0, x) = G(x). We let p and q be the

eigenvectors of A associated with µ satisfying

Aq = µq, pA = µp, pq = 1

and Φ = (q, q̄). Assume that

G

(
Φ

(
z
z̄

))
=

1

2
(g20z

2 + 2g11zz̄ + g02z̄
2) +O(|z|3)

and

K20 = (µ2I − A)−1g20,

K11 = (I − A)−1g11,

K02 = (µ̄2I − A)−1g02.

(8)

Let

G

(
Φ

(
z
z̄

)
+

1

2
(K20z

2 + 2K11zz̄ + K02z̄
2)

)
=

1

2
(g20z

2 + 2g11zz̄ + g02z̄
2)

+
1

6
(g30z

3 + 3g21z
2z̄ + 3g12zz̄

2 + g03z̄
3) +O(|z|4), (9)

then

a(λ0) =
1

2
Re(pg21µ̄).

The following result from [9] gives an approximate expression for the invariant

curve from Theorem 5.

5



Corollary 1 Assume a(λ0) 6= 0 and λ = λ0 + η where η is a sufficiently small

parameter. If x̄ is a fixed point of F then the invariant curve Γ(λ) from Theorem

5 can be approximated by(
x1

x2

)
≈ x̄ + 2ρ0Re

(
qeiθ

)
+ ρ2

0

(
Re
(
K20e

2iθ
)

+ K11

)
,

where

d =
d

dη
|µ(λ)|

∣∣∣∣
λ=λ0

, ρ0 =

√
−d
a
η, θ ∈ R.

Here ”Re” represents the real parts of the complex numbers.

The second section of the paper gives global asymptotic stability result for the

values of parameter p ≥
√

2 and the third section gives the reduction to the normal

form and computation of the coefficients of the Naimark-Sacker bifurcation and

the asymptotic approximation of the invariant curve. My computational method is

based on the computational algorithm developed in [9] rather than more often used

computational algorithm in [10]. The advantage of the computational algorithm

of [9] lies in the fact that this algorithm computes also the approximate equation

of the invariant curve in the Naimark-Sacker theorem, which is not provided by

Wan’s algorithm. Here I give numeric and visual evidence that the approximate

equation of the invariant curve is accurate. See Figure 4.

1.2 Global Asymptotic Stability

I use the method of embedding of equation (27) into higher order difference

equation to which we apply one of global attractivity results [2] . By substituting

xn = p+

(
xn−1

xn−2

)2

in equation (27) we get:

xn+1 = p+

(
p

xn−1

+
xn−1

x2
n−2

)2

.

6



Now by substituting for xn−1 in the term xn−1

x2n−2
of the last equation we we obtain

xn+1 = p+

(
p

xn−1

+
p

x2
n−2

+
1

x2
n−3

)2

. (10)

From equation (10) we observe that p<xn<p+ (1 + 1
p

+ 1
p2

)2 for n ≥ 4.

Also from (27) and (10) we have:

 xn+1 − p =
(

xn
xn−1

)2

xn+1 − p =
(

p
xn−1

+ p
x2n−2

+ 1
x2n−3

)2 .

Consequently (
xn
xn−1

)2

=

(
p

xn−1

+
p

x2
n−2

+
1

x2
n−3

)2

,

which implies:

xn+1 = p+
pxn
x2
n−1

+
xn
x2
n−2

. (11)

Replacing xn in (11) by p+
(
xn−1

xn−2

)2

we obtain the equation

xn+1 = p+
p2

x2
n−1

+
p+ xn
x2
n−2

. (12)

Observe now that every solution of equation (27) is also a solution of equation

(12), with initial values x−2, x−1 and x0 = p+ ( x0
x−1

)2.

Observe also that it is of the form xn+1 = f(xn, xn−1, xn−2) where :

f(u, v, w) = p+
p2

v2
+
p+ u

w2

.

Theorem 3 If p ≥
√

2 then the equilibrium x̄ = p+ 1 of equation (27) is globally

asymptotically stable.

Proof. First I show that every interval I of the form [p,U ] where U ≥ p(p2+p+1)
(p2−1)

with p > 1 is invariant for the function f .

7



Let U > p then I = [p,U ] is invariant if and only if for all u, v, w ∈

I, f(u, v, w) ∈ I that is:

p ≤ p+
p2

v2
+
p+ u

w2
≤ U .

As p ≤ u, v, w ≤ U we have that: p ≤ f(u, v, w) ≤ p + 1 + 1
p

+ U
p2

. We also know

that if U satisfies: p+ 1 + 1
p

+ U
p2
≤ U then we have

f(u, v, w) ≤ U .

It follows that given p > 1 such U exists and therefore I is invariant for f where

U ≥ p(p2+p+1)
(p2−1)

. In the following we may assume p > 1 and U = p(p2+p+1)
(p2−1)

, so I is

invariant for f .

Next, I prove that I is an attracting interval, that is every solution of equation

(11) must enter the interval I. Observe that given the initial values x−2, x−1 and

x0 for equation (11), we have xn > p for n ≥ 1.

Now if x3 ≤ U then xn ∈ [p,U ] for all n ≥ 3. Otherwise, from equation (12)

given that xn−2 , xn−3 > p we have

xn < p+ 1 +
1

p
+
xn−1

p2
,

that is if we set A = p+ 1 + 1
p

xn<A+
xn−1

p2
.

Thus by induction we can conclude that

xn < A
1− ( 1

p2
)n−3

1− 1
p2

+
x3

(p2)n−3
. (13)

It is straightforward to check that when x3 > U the right hand side of (13) is

a decreasing sequence that converges to A
1− 1

p2
. This limit is in fact U = p(p2+p+1)

(p2−1)
.

It follows that there must exist k > 3 such that: p < xk < U . Otherwise xn must

converge to U which is impossible.

8



Thus we have xk−1, xk−2 > p and xk ≤ U , hence xk+1 ∈ [a,U ]. Now it follows

by induction that xn ∈ [p,U ] for n ≥ k. Consequently every solution of equation

(11) must enter the interval [p,U ].

Now we check the conditions of Theorem A.0.5 [3], see also [5]:{
f(M,m,m) = M
f(m,M,M) = m

⇔

{
M = p+ p2+p+M

m2

m = p+ p2+p+m
M2

.

From the second equation we get

M2 =
p2 + p+m

m− p
. (14)

On the other hand the system is equivalent to:{
(M − p)m2 = p2 + p+M
(m− p)M2 = p2 + p+m

⇔
{
Mm2 = pm2 + p2 + p+M
mM2 = pM2 + p2 + p+m.

By subtracting the second equation from the first we obtain:

Mm(m−M) = p(m−M)(m+M)− (m−M)

and given that m 6= M we have:

Mm = p(m+M)− 1

which implies:

M =
pm− 1

m− p
. (15)

Equations (14) and (15) yield

(pm− 1)2

(m− p)2
=
p2 + p+m

m− p
,

which implies:

(pm− 1)2 = (p2 + p+m)(m− p).
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This leads to the following quadratic equation:

m2(p2 − 1)−m(p2 + 2p) + p2(p+ 1) + 1 = 0,

which discriminant is

∆ = (p2 + 2p)2 − 4(p2 − 1)(p2(p+ 1) + 1)

and

∆ = −4p5−3p4 +8p3 +4p2 +4 = (
√

2−p)(4p4 +(3+4
√

2)p3 +3
√

2p2 +2p+2
√

2).

It is clear that when p >
√

2 there is no real solutions and when p =
√

2 there is

one unique solution m = p + 1 = M . Consequently if p ≥
√

2 the conditions of

Theorem A.0.5 [3] or Theorem 1 [5] are fully satisfied and therefore every solution

must converge to the unique equilibrium (p+ 1). 2

Figure 1. a) Phase diagrams when n = 10, 000 and a) p = 1.02 b) p = 1.12

Conjecture 1 The equilibrium point x̄ = p+ 1 of equation (5) is globally asymp-

totically stable if p > 1.

10



Figure 2. Bifurcation diagrams in the (p− x) plane.

Figure 3. Periodic orbit for a) p = 0.01 b) p = 0.15 c) p = 0.5901 (See Table 1)
for numeric values.

p Period of the sol. Solution

0.01 7 {0.877631, 0.01, 0.0101298, 1.03613, 10462.3, 1.01959× 108,
9.49713× 107, 0.877631}

0.15 20 {574.846, 2023.71, 12.5435, 0.150038, 0.150143, 1.1514,
58.9583, 2622.2, 1978.22, 0.719138, 0.15, 0.193507, 1.81422,
88.0493, 2355.59, 715.88, 0.242359, 0.15, 0.533058, 12.7789}

0.5901 19 {0.804816, 0.597988, 1.14217, 4.23826, 14.3595, 12.0691,
1.29653, 0.60164, 0.805431, 2.38228, 9.33854, 15.9565,

3.50965, 0.638479, 0.623195, 1.5428, 6.71883, 19.5558, 9.06166}

Table 1. Periodic solutions for some values of p.

1.3 Reduction to the normal form

If we make a change of variable yn = xn − x̄, then the transformed equation

is given by

yn+1 =
(p+ yn + 1) 2

(p+ yn−1 + 1) 2
− 1, n = 0, 1, . . . . (16)

Set

un = yn−1 and vn = yn for n = 0, 1, . . .

11



and write equation (27) in the equivalent form:

un+1 = vn (17)

vn+1 =
(p+ vn + 1)2

(p+ un + 1)2
− 1.

Let F be the corresponding map defined by:

F

(
u
v

)
=

(
v

(p+v+1)2

(p+u+1)2
− 1

)
. (18)

Then F has the unique fixed point (0, 0) and the Jacobian matrix of F at

(0, 0) is given by

JacF(0, 0) =

(
0 1
− 2
p+1

2
p+1

)
.

It is easy to see that

F

(
u
v

)
=

(
0 1
− 2
p+1

2
p+1

)(
u
v

)
+ F1

(
u
v

)
, (19)

where

F1

(
u
v

)
=

(
0

(p+v+1)2

(p+u+1)2
+ 2u

p+1
− 2v

p+1
− 1

)
.

The eigenvalues of JacF(0, 0) are µ(p) and µ(p) where

µ(p) =
1 + i

√
2p+ 1

p+ 1
, |µ(p)| =

√
2

p+ 1
.

One can prove that for p = p0 = 1 we obtain µ(p0) = 1 and

µ(p0) =
1

2
+
i
√

3

2
, µ2(p0) = −1

2
+
i
√

3

2
, µ3(p0) = −1, µ4(p0) = −1

2
− i
√

3

2
,

which implies that µk(p0) 6= 1 for k = 1, 2, 3, 4. Furthermore, we obtain

d

dp
|µ(p)| = − 1√

2

(
1

p+ 1

)3/2

,
d|µ(p)|
dp

∣∣∣∣
p=p0

= −1

4
< 0.

The eigenvectors of JacF(0, 0) corresponding to µ(p) and µ(p) are q(p) and

q(p), where

q(p) =

(
1− i

√
2p+ 1

p+ 1
, 1

)T
.

12



Substituting p = p0 = 1 into (39) we get

F

(
u
v

)
= A

(
u
v

)
+ G

(
u
v

)
, (20)

where

A = JacF(0, 0)|p=1 =

(
0 1
−1 1

)
and G

(
u
v

)
:=

(
0

(v+2)2

(u+2)2
+ u− v − 1

)
.

Hence, for p = p0 system (37) is equivalent to

(
un+1

vn+1

)
= A

(
un
vn

)
+ G

(
un
vn

)
. (21)

Define the basis of R2 by Φ = (q, q̄), where q = q(p0), then we can represent

(u, v) as

(
u
v

)
= Φ

(
z
z̄

)
= (qz + q̄z̄) =

(
1
2

(
1 + i

√
3
)
z̄ + 1

2

(
1− i

√
3
)
z

z̄ + z

)
.

By using this, we have

G

(
Φ

(
z
z̄

))
=

(
0

(z̄+z+2)2

( 1
2(1+i

√
3)z̄+ 1

2(1−i
√

3)z+2)
2 + 1

2

(
−1 + i

√
3
)
z̄ − 1

2

(
1 + i

√
3
)
z − 1

)
.

(22)

Thus we obtain that

g20 =
∂2

∂z2
G

(
Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

1
4
i
(√

3 + 5i
)) ,

g11 =
∂2

∂z∂z̄
G

(
Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0
1

)
,

g02 =
∂2

∂z̄2
G

(
Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

−1
4
i
(√

3− 5i
)) ,

(23)

and

K20 = (µ2I − A)−1g20 =

(
−1

2
− i
√

3
4

5
8
− i
√

3
8

)
,

K11 = (I − A)−1g11 =

(
1
1

)
,

K02 = (µ̄2I − A)−1g02 = K20.

(24)
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By using K20, K11 and K02 we have that

g21 =
∂3

∂z2∂z̄
G

(
Φ

(
z
z̄

)
+

1

2
K20z

2 + K11zz̄ +
1

2
K02z̄

2

)∣∣∣∣
z=0

=

(
0

− i
√

3
8

)
. (25)

It is easy to see that pA = µp and pq = 1 where

p =

(
i√
3
,
1

6

(
3− i

√
3
))

and

a(p0) =
1

2
Re(pg21µ̄) = − 1

16
< 0.

Figure 4. Trajectories with 10000 iterates and invariant curve given by (26) for a)
p = 0.999 b) p = 0.99.

Thus I prove the following result:

14



Theorem 4 There is a neighborhood U of the equilibrium point x̄ = p + 1 and a

ρ > 0 such that for |p − 1| < ρ and x0, x−1 ∈ U , the ω-limit set of solution of

equation (27), with initial condition x0, x−1 is the equilibrium point x̄ if p > 1 and

belongs to a closed invariant C1 curve Γ(p) encircling the equilibrium point x̄ if

p < 1. Furthermore, Γ(1) = 0 and the invariant curve Γ(p) can be approximated

by the parametric equation(
x1

x2

)
≈
(
p+ 1 + 2

√
1− p

(√
3 sin θ + cos θ

)
− (p− 1)

(√
3 sin 2θ − 2 cos 2θ + 4

)
p+ 1 + 4

√
1− p cos θ − 1

2
(p− 1)

(√
3 sin 2θ + 5 cos 2θ + 8

) )
.

(26)

Proof. The proof follows from above discussion and Theorem 5 and Corollary 2.

2

Figure 1 shows convergence to the equilibrium for the values of p slightly

larger than 1 which visually confirms Conjecture. Figure 2 shows the bifurcation

diagrams on the parametric interval [0, 1.1] and [0.90, 1.29] indicating that equation

(26) might have some solutions which do not converge to the equilibrium. Figure

3 shows some periodic solutions for different values of p.

Figure 4 shows 10000 points of the solution and the invariant curve given with

the approximate equation (26). Resemblance is remarkable.
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2.1 Introduction and Preliminaries

In this paper I consider the difference equation

xn+1 =
xn

Cx2
n−1 +Dxn + F

, n = 0, 1, . . . , (27)

where the parameters C,D and F are positive numbers and the initial conditions

x−1 and x0 are positive numbers.

Equation (27) can be considered as a nonlinear perturbation of the Beverton-

Holt difference equation

xn+1 =
xn

Dxn + F
, n = 0, 1, . . . , (28)

which is a major mathematical model in population dynamics see [1, 13]. Further-

more, it is similar in appearance to the linear fractional equation of the form

xn+1 =
xn

Cxn−1 +Dxn + F
, n = 0, 1, . . . , (29)

which was considered in [5]. Both equations (28) and (29) exhibit a global asymp-

totic stability of either zero or positive equilibrium solutions and exchange of sta-

bility bifurcation. As we will see in this paper the introduction of quadratic term

will substantially change dynamics and will introduce the existence of a locally

stable periodic solution and possibly chaos. I will show that local asymptotic sta-

bility of the zero equilibrium will also implies its global asymptotic stability. In

the case of the positive equilibrium solution I will show that such statement is

true in some subspace of the parametric region of local asymptotic stability and I

pose the conjecture that the same property holds in the complete region of local

asymptotic stability. Our tool in proving global asymptotic stability of the positive

equilibrium solution consists of embedding considered equation into higher order

equation and using global attractivity results for maps with invariant boxes, see

[3, 5, 7]. Related rational difference equations which exhibit similar behavior were

considered in [4, 8].
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Now, for the sake of completeness I give the basic facts about the Neimark-

Sacker bifurcation.

The Hopf bifurcation is well known phenomenon for a system of ordinary

differential equations in two or more dimension, whereby, when some parameter is

varied, a pair of complex conjugate eigenvalues of the Jacobian matrix at a fixed

point crosses the imaginary axis, so that the fixed point changes its behavior from

stable to unstable and a limit cycle is generated.

In the discrete setting, the Neimark-Sacker bifurcation is the discrete analogue

of the Hopf bifurcation. The Neimark-Sacker bifurcation occurs for a discrete

system in the plane depending on a parameter, λ say, with a fixed point whose

Jacobian matrix has a pair of complex conjugate eigenvalues µ(λ), µ̄(λ) which

crosses the unit circle transversally at λ = λ0. In this case the periodic solution,

which is in general, of unknown period appears and is locally stable. In this paper

we use Murakami computational approach, see [12] to find an asymptotic formula

for an invariant locally attracting curve in the phase plane, which represents a

periodic solution.

The following result is referred as the Neimark-Sacker bifurcation theorem,

see [2, 6, 9, 11, 15].

Theorem 5 (Neimark-Sacker bifurcation) Let

F : R× R2 → R2; (λ, x)→ F(λ,x)

be a C4 map depending on real parameter λ satisfying the following conditions:

(i) F (λ,0) = 0 for λ near some fixed λ0;

(ii) DF (λ,0) has two non-real eigenvalues µ(λ) and µ̄(λ) for λ near λ0 with

|µ(λ0)| = 1;

19



(iii) d
dλ
|µ(λ)| = d(λ0)>0 at λ = λ0 (transversality condition);

(iv) µk(λ0) 6= 1 for k = 1, 2, 3, 4 (nonresonance condition).

Then there is a smooth λ-dependent change of coordinate bringing F into the form

F (λ,x) = F(λ,x) +O(‖ x ‖5)

and there are smooth functions a(λ), b(λ), and ω(λ) so that in polar coordinates

the function F(λ, x) is given by

F :

(
r
θ

)
−→

(
|µ(λ)|r + a(λ)r3

θ + ω(λ) + b(λ)r2

)
. (30)

If a(λ0) < 0, then there is a neighborhood U of the origin and a δ > 0 such that for

|λ− λ0| < δ and x0 ∈ U , then ω-limit set of x0 is the origin if λ < λ0 and belongs

to a closed invariant C1 curve Γ(λ) encircling the origin if λ > λ0. Furthermore,

Γ(λ0) = 0.

If a(λ0) > 0, then there is a neighborhood U of the origin and a δ > 0 such that for

|λ− λ0| < δ and x0 ∈ U , then α-limit set of x0 is the origin if λ > λ0 and belongs

to a closed invariant C1 curve Γ(λ) encircling the origin if λ < λ0. Furthermore,

Γ(λ0) = 0.

Consider a general map F(λ0,x) that has a fixed point at the origin with

complex eigenvalues µ(λ0) = α(λ0) + iβ(λ0) and µ̄(λ0) = α(λ0)− iβ(λ0) satisfying

α(λ0)2 + β(λ0)2 = 1 and β(λ0) 6= 0. Assume that

F(λ0,x) = A(λ0)x + G(λ0,x) (31)

where A is the Jacobian matrix of F evaluated at the fixed point (0, 0), and

G(λ0,x) :=

(
g1(λ0, x1, x2)
g2(λ0, x1, x2)

)
.
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Here we denote µ(λ0) = µ, A(λ0) = A and G(λ0, x) = G(x). We let p and q be

the eigenvectors of A associated with µ satisfying

Aq = µq, pA = µp, pq = 1

and Φ = (q, q̄). Assume that

G

(
Φ

(
z
z̄

))
=

1

2
(g20z

2 + 2g11zz̄ + g02z̄
2) +O(|z|3)

and

K20 = (µ2I − A)−1g20

K11 = (I − A)−1g11

K02 = (µ̄2I − A)−1g02

. (32)

Let

G

(
Φ

(
z
z̄

)
+

1

2
(K20z

2 + 2K11zz̄ + K02z̄
2)

)
=

1

2
(g20z

2 + 2g11zz̄ + g02z̄
2)

+
1

6
(g30z

3 + 3g21z
2z̄ + 3g12zz̄

2 + g03z̄
3) +O(|z|4), (33)

then

a(λ0) =
1

2
Re(pg21µ̄).

The next result of Murakami [12] gives an approximate formula for the periodic

solution.

Corollary 2 Assume a(λ0) 6= 0 and λ = λ0 + η where η is a sufficient small

parameter. If x̄ is a fixed point of F then the invariant curve Γ(λ) from Theorem

5 can be approximated by(
x1

x2

)
≈ x̄ + 2ρ0Re

(
qeiθ

)
+ ρ2

0

(
Re
(
K20e

2iθ
)

+ K11

)
,
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where

d =
d

dη
|µ(λ)|

∣∣∣∣
λ=λ0

, ρ0 =

√
−d
a
η, θ ∈ R.

Here ”Re” represents the real parts of those complex numbers.

2.2 Local and global stability

The equilibrium solutions of Equation (27) is the positive solution of the

equation Cx̄2 +Dx̄+ F − 1 = 0, that is

x̄ =

√
D2 + 4C(1− F )−D

2C
, 0 < F < 1

and the origin x̄0 = 0. The linearized equation associated with Equation (27) about

the equilibrium point x̄ is

zn+1 = pzn + qzn−1

where

p = fu(x̄, x̄) and q = fv(x̄, x̄).

Now the following results hold:

Lemma 1 For the equilibrium point x̄0 the following holds:

(i) If F > 1 the equilibrium point x̄0 is locally asymptotically stable.

(ii) If F < 1 the equilibrium point x̄0 is a saddle point.

(ii) If F = 1 the equilibrium point x̄0 is non-hyperbolic.

(iv) If F ≥ 1 the equilibrium point x̄0 is globally asymptotically stable.

The proof of part (iv) follows from the fact that every solution {xn} of Equation

(27) satisfies

xn+1 =
xn

Cx2
n−1 +Dxn + F

≤ xn, n = 0, 1, . . .

which shows that {xn} is non-increasing sequence and so convergent. Consequently

limn→∞ xn = 0. The proofs of parts (i)− (iii) are immediate.
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Lemma 2 The positive equilibrium x̄ satisfies the following:

(i) If F < 1
2

and C < 2D2

(1−2F )2
or 1

2
≤ F < 1, the equilibrium point x̄ is locally

asymptotically stable.

(ii) If F < 1
2

and C > 2D2

(1−2F )2
, the equilibrium point x̄ is a repeller.

(iii) If F < 1
2

and C = 2D2

(1−2F )2
, the equilibrium point x̄ is non-hyperbolic.

Proof. One can see that

p = fu(x̄, x̄) =
−D

√
4C(1− F ) +D2 + 2C +D2

2C
,

and

q = fv(x̄, x̄) = −

(
D −

√
4C(1− F ) +D2

)2

2C
< 0,

q − p− 1 =
3D
(√

4C(1− F ) +D2 −D
)

+ 4C(F − 2)

2C
< 0,

q + p− 1 =
D
(√

4C(1− F ) +D2 −D
)

+ 4C(F − 1)

2C
< 0,

q + 1 =
D
√

4C(1− F ) +D2 + 2CF − C −D2

C
.

The rest of the proof follows from Theorem 2.13 [6]. 2

Now I give a global asymptotic stability result for the positive equilibrium

solution. I will show that local asymptotic stability of the positive equilibrium will

also imply its global asymptotic stability in substantial subregion of the parametric

space.

Theorem 6 Assume that F < 1 and

C ≤ 3D2

4(1− F )
. (34)

Then the positive equilibrium of Equation (27) is globally asymptotically stable.

23



Proof. Clearly we can consider solutions of Equation (27) which are positive, that

is for which x0 > 0. The substitution yn = D
xn

transforms Equation (27) into the

equation

yn+1 = 1 +

(
F +

C

D2y2
n−1

)
yn = f(xn, xn−1), n = 0, 1, . . . . (35)

One can easily show that Equation (35) has a unique equilibrium ȳ =
D

x̄
. I will

show that ȳ is globally asymptotically stable when F<1 and C ≤ 3D2

4(1− F )
. Our

major tool is global asymptotic stability result in [5], more precisely Theorem 1.4.5

[5]. Now I will check the assumptions of this theorem.

1. Clearly f(x, y) is non-decreasing in x and non-increasing in y.

2. There exists an interval I such that f : I × I → I. Indeed I =
[ 1

1− F
, U
]

where U ≥ D2

(1−F )(D2−C(1−F ))
.

If x, y ∈ I then

f(x, y) = 1 +
(
F +

C

D2y2

)
x ≥ 1 + Fx ≥ 1 +

F

1− F
=

1

1− F
.

On the other hand for any U ≥ D2

(1−F )(D2−C(1−F ))
we have f(U,

1

1− F
) ≤ U .

Therefore f(x, y) ∈ I, which shows that I is an invariant interval for f .

Next, consider the system of equations
f(M,m) = M

f(m,M) = m

⇔


M = 1 +

(
F + C

D2m2

)
M

m = 1 +
(
F + C

D2M2

)
m,

which is equivalent to :
Mm2(1− F )D2 − CM = m2D2

mM2(1− F )D2 − Cm = M2D2,
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and show that M = m.

Subtracting the second equation from the first we get:

(1− F )D2(m−M)Mm+ C(m−M) = D2(m−M)(m+M).

If M 6= m then we have: Mm(1 − F )D2 + C = D2(M + m) ⇔ M =

D2m− C
(m(1− F )− 1)D2

, which implies

D2m− C
(m(1− F )− 1)D2

=
1

1−
(
F + C

D2m2

) .
Thus m satisfies the following quadratic equation:

D2((1− F )C −D2)m2 + CD2m− C2 = 0,

with discriminant ∆ = C2D2(4C(1− F )− 3D2). Clearly for C <
3D2

4(1− F )
there

are no real solutions and for C = 3D2

4(1−F )
there is the unique solution m =

2c

D2
= ȳ.

Consequently, all conditions of Theorem 1.4.5 [5] are satisfied and every so-

lution of Equation (35) which enters the interval I must converge to the unique

equilibrium ȳ.

To show that ȳ is globally asymptotically stable, it is sufficient to show that

every solution of Equation (35) must enter I. Observe that by Equation (35)

yn+1 ≥ 1 +

(
F +

C

D2U2

)
yn, n = 0, 1, . . .

and so by the result on difference inequalities, see [10]

yn ≥
1

1− A
− ε, A = F +

C

D2U2
, ε > 0

Since U can be chosen to be large there exists N ≥ 0 such that yn ≥
1

1− F
for all

n ≥ N . Furthermore as we can choose U ≥ D2

(1−F )(D2−C(1−F ))
to be as large as we

wish, I can conclude that every solution of Equation (35) must enter and remain

in I.
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Thus I conclude that the unique positive equilibrium x̄ of Eq.(27) is globally

asymptotically stable for C ≤ 3D2

4(1− F )
.

2

Based on my simulation I state the following

Conjecture 2 The equilibrium point x̄ of equation (27) is globally asymptotically

stable if it is locally asymptotically stable.

2.3 Reduction to the normal form

In this section I bring the system that corresponds to Equation (27) to the

normal form which can be used for computation of relevant coefficients of Neimark-

Sacker bifurcation.

Assume that 0 < F < 1
2
. If we make a change of variable yn = xn − x̄, then

the transformed equation is given by

yn+1 =
x̄+ yn

C (x̄+ yn−1) 2 +D (x̄+ yn) + F
− x̄, n = 0, 1, . . . . (36)

Set

un = yn−1 and vn = yn for n = 0, 1, . . .

and write Equation (27) in the equivalent form:

un+1 = vn (37)

vn+1 =
x̄+ vn

C (x̄+ un) 2 +D (x̄+ vn) + F
− x̄.

Let F be the corresponding map defined by:

F

(
u
v

)
=

(
v

x̄+v
C(x̄+u)2+D(x̄+v)+F

− x̄

)
. (38)

Then F has the unique fixed point (0, 0) and the Jacobian matrix of F at

(0, 0) is given by

JacF(0, 0) =

(
0 1

− 2Cx̄2

(Cx̄2+Dx̄+F )2
Cx̄2+F

(Cx̄2+Dx̄+F )2

)
.
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A straightforward calculation shows that

F

(
u
v

)
=

(
0 1

− 2Cx̄2

(Cx̄2+Dx̄+F )2
Cx̄2+F

(Cx̄2+Dx̄+F )2

)(
u
v

)
+ F1

(
u
v

)
, (39)

where

F1

(
u
v

)
=

(
0

v+x̄
C(u+x̄)2+F+D(v+x̄)

+
x̄(2Cux̄−(F+x̄(D+Cx̄))2)−v(Cx̄2+F)

(F+x̄(D+Cx̄))2

)
.

The eigenvalues of JacF(0, 0) are µ(C) and µ(C) where

µ(C) =

√
2
√

∆ + 2C +D2 −D
√

4C(1− F ) +D2

4C

where

∆ = 2C2(8F − 7)− 2CD2(F + 2) +D4 + (6CD −D3)
√

4C(1− F ) +D2.

One can prove that for C = C0 = 2D2

(1−2F )2
we obtain |µ(C0)| = 1 and

µ(C0) =
1

4

(
2F + 1 + i

√
(3− 2F )(2F + 5)

)
,

µ2(C0) =
1

8

(
4F 2 + 4F − 7

)
+

1

8
i
√

(3− 2F )(2F + 5)(2F + 1),

µ3(C0) =
1

16

(
8F 3 + 12F 2 − 18F − 11

)
+

1

16
i
√

(3− 2F )(2F + 5)
(
4F 2 + 4F − 3

)
,

µ4(C0) =
F 4

2
+ F 3 − 5F 2

4
+

1

32
i
√

(3− 2F )(2F + 5)
(
8F 3 + 12F 2 − 10F − 7

)
− 7F

4
+

17

32
.

One can see that µk(C0) 6= 1 for k = 1, 2, 3, 4 and

|µ(C)|2 =
−D

√
4C(1− F ) +D2 − 2CF + 2C +D2

C
.

Furthermore, we get

d

dC
|µ(C)| =

D

√
−D
√

4C(1−F )+D2−2CF+2C+D2

C

2C
√

4C(1− F ) +D2
,

and

d|µ(C)|
dC

∣∣∣∣
C=C0

=
(2F − 1)3

4D2(2F − 3)
> 0.
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The eigenvectors corresponding to µ(C) and µ(C) are q(C) and q(C), where

q = q(C0) =

(
1

4

(
2F − i

√
(3− 2F )(2F + 5) + 1

)
, 1

)T
.

Substituting C = C0 into (39) we get

F

(
u
v

)
= A

(
u
v

)
+ G

(
u
v

)
, (40)

where

A = JacF(0, 0)|C=C0
=

(
0 1
−1 F + 1

2

)
and

G

(
u
v

)
:=

 0
(2F − 1) (2u(Du− 2F + 1) + (4F 2 − 1) v)

2 (4F 2(Dv + 1)− 4F (D(u+ v) + 1) +D(2u(Du+ 1) + v) + 1)
−
(
F + 1

2

)
v + u

 .

Hence, for C = C0 system (37) is equivalent to

(
un+1

vn+1

)
= A

(
un
vn

)
+ G

(
un
vn

)
. (41)

Define the basis of R2 by Φ = (q, q̄).

Let(
u
v

)
= Φ

(
z
z̄

)
= (qz+q̄z̄) =

(
1
4

(
2Fz + i

√
(3− 2F )(2F + 5)(z̄ − z) + 2F z̄ + z + z̄

)
z̄ + z

)
.

By using this, one can see that

g20 =
∂2

∂z2
G

(
Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

D
(

2F
(
−2F−3i

√
(3−2F )(2F+5)+2

)
+i
√

(3−2F )(2F+5)+11
)

8F−4

)
,

g11 =
∂2

∂z∂z̄
G

(
Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0
D

)
,

g02 =
∂2

∂z̄2
G

(
Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

D
(

2F
(
−2F+3i

√
(3−2F )(2F+5)+2

)
−i
√

(3−2F )(2F+5)+11
)

8F−4

) .

(42)
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and

K20 = (µ2I − A)−1g20 =

=

 −
8
(
−4iDF 2+6DF

√
(3−2F )(2F+5)−D

√
(3−2F )(2F+5)+4iDF+11iD

)
(2F−1)(4F 2−9)

(
−4iF 2+2

√
(3−2F )(2F+5)F+

√
(3−2F )(2F+5)−4iF+7i

)
(√

(3−2F )(2F+5)−2iF−i
)2(
−4iDF 2+6DF

√
(3−2F )(2F+5)−D

√
(3−2F )(2F+5)+4iDF+11iD

)
2(2F−1)(4F 2−9)

(
−4iF 2+2F

√
(3−2F )(2F+5)+

√
(3−2F )(2F+5)−4iF+7i

)

 ,

K11 = (I − A)−1g11 =

(
2D

3−2F
2D

3−2F

)
,

K02 = (µ̄2I − A)−1g02 = K20.

(43)

By using K20, K11 and K02 we have that

g21 =
∂3

∂z2∂z̄
G

(
Φ

(
z
z̄

)
+

1

2
K20z

2 + K11zz̄ +
1

2
K02z̄

2

)∣∣∣∣
z=0

=

(
0

4D2
(

2F
(

6F+i
√

(3−2F )(2F+5)−16
)

+3i
√

(3−2F )(2F+5)+1
)

(1−2F )2(4F 2−9)

)
.

(44)

Next we have that pA = µp and pq = 1 where

p =

(
2i√

(3− 2F )(2F + 5)
,−

(3− 2F )(2F + 5)− i(2F + 1)
√

(3− 2F )(2F + 5)

2 (4F 2 + 4F − 15)

)
.

One can see that

a(C0) =
1

2
Re(pg21µ̄) =

4D2

(1− 2F )2(2F − 3)
< 0.

Theorem 7 Let 0 < F < 1
2

and

x̄ =

√
D2 + 4C(1− F )−D

2C
.

Then there is a neighborhood U of the equilibrium point x̄ and a ρ > 0 such that

for ∣∣∣∣C − 2D2

(1− 2F )2

∣∣∣∣ < ρ

and x0, x−1 ∈ U , the ω-limit set of solution of Equation (27), with initial condition

x0, x−1 is equilibrium point x̄ if

C <
2D2

(1− 2F )2
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and belongs to a closed invariant C1 curve Γ(C) encircling the equilibrium point x̄

if

C >
2D2

(1− 2F )2
.

Furthermore, Γ(C0) = 0 and invariant curve Γ(C) can be approximated by(
x1

x2

)
≈
(
x̄
x̄

)
+ 2ρ0Re

(
qeiθ

)
+ ρ2

0

(
Re
(
K20e

2iθ
)

+ K11

)
where

ρ0 =
(1− 2F )3/2

√
C(1− 2F )2 − 2D2

4D2
.

Proof. The proof follows from above discussion and Theorem 5 and Corollary 2.

See Figure 6 for a graphical illustration. 2

Figure 5. Bifurcation diagrams in (C, x) plane for D = 0.11, F = 0.31 and
C = 0.168.
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Figure 6. (a) Trajectory for D = 0.11, F = 0.31 and C = 0.166 where C0 = 0.16759
b) Trajectory for D = 0.11, F = 0.31 and C = C0 = 0.16759. (c)-(d) Trajectories
and invariant curve (red) for D = 0.11, F = 0.31 and C = 0.168.
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3.1 Introduction

Consider the second-order quadratic fractional difference equation

xn+1 =
x2
n−1

cx2
n−1 + dxn + f

, n = 0, 1, . . . (45)

where the initial conditions x−1 and x0 are arbitrary nonnegative numbers and the

parameters satisfy that c, d, f>0. Notice that Equation (45) is a special case of

the equation

xn+1 =
Cx2

n−1 +Dxn−1 + F

cx2
n + dxn + f

, n = 0, 1, . . . (46)

where the initial conditions x−1 and x0 are arbitrary nonnegative numbers and the

parameters satisfy C,D, F, c, d, f ≥ 0, C + D + F > 0, c + d + f > 0, c + D > 0,

and C + d > 0. For Equation (45) I will define precisely the basins of attraction

of the equilibrium points and period-two solutions. My investigation of the global

character of Equation (45) will depend on the theory of competitive systems.

Both Equations (45) and (46) are special cases of the general second-order

quadratic fractional difference equation

xn+1 =
Ax2

n +Bxnxn−1 + Cx2
n−1 +Dxn + Exn−1 + F

ax2
n + bxnxn−1 + cx2

n−1 + dxn + exn−1 + f
, n = 0, 1, . . . , (47)

where all parameters are nonnegative numbers and the initial conditions x−1 and

x0 are arbitrary nonnegative numbers such that the solution is well-defined. Many

special cases of Equation (47) have been studied in [1, 2, 11, 13] etc.

The first systematic study of global dynamics of a special quadratic fractional

case of Equation (47) where A = C = D = a = c = d = 0 was performed in [1, 2].

Another special case of Equation (47)

xn+1 =
x2
n−1

ax2
n + bxnxn−1 + cx2

n−1

, n = 0, 1, . . .

was given in [9] and uses the theory of monotone maps in the plane. Indeed, in [9]

the unique coexistence of a unique locally asymptotically stable equilibrium point
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and a locally asymptotically stable minimal period-two solution was obtained.

Equation (45), on the other hand, can have as many as three fixed points and up

to three period-two solutions and its dynamics is similar to the dynamics of

xn+1 =
x2
n−1

bxnxn−1 + cx2
n−1 + f

, n = 0, 1, . . .

investigated in [18]. The possible dynamic scenarios for Equation (45) will be

our motivation for getting the corresponding results for the general second order

difference equation in section 3.3.

Many other interesting special cases of Equation (47) are studied in [11, 13,

14, 19, 20], which reveal the potential for rich dynamical behaviors that include the

Allee effect, period-doubling bifurcation, Neimark-Sacker bifurcation, and chaos.

Equation (45) has an interesting special case when d = 0;

xn+1 =
x2
n−1

cx2
n−1 + f

, n = 0, 1, . . . (48)

the well-known sigmoid Beverton-Holt equation whose interesting dynmaics is

given in [18]. Thus Equation (45) can be considered as a perturbation of Equation

(48).

3.2 Preliminaries

In this section I provide some basic facts about competitive maps and systems

of difference equations in the plane.

Definition 1 Let R be a subset of R2 with nonempty interior, and let T : R→ R

be a map (i.e., a continuous function). Set T (x, y) = (f(x, y), g(x, y)). The map T

is competitive if f(x, y) is non-decreasing in x and non-increasing in y, and g(x, y)

is non-increasing in x and non-decreasing in y. If both f and g are nondecreasing

in x and y, we say that T is cooperative. If T is competitive (cooperative), the
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associated system of difference equations{
xn+1 = f(xn, yn)
yn+1 = g(xn, yn)

, n = 0, 1, . . . , (x−1, x0) ∈ R (49)

is said to be competitive (cooperative). The map T and associated difference equa-

tions system are said to be strongly competitive (strongly cooperative) if the adjec-

tives non-decreasing and non-increasing are replaced by increasing and decreasing.

First I provide some theorems from [16, 17] used in [9] that will be of

particular importance in my investigation of the global dynamics of Equation

(45).

Theorem 8 Let T be a competitive map on a rectangular region R ⊂ R2. Let

x ∈ R be a fixed point of T such that ∆ := R ∩ int (Q1(x) ∪ Q3(x)) is nonempty

(i.e., x is not the NW or SE vertex of R), and T is strongly competitive on ∆.

Suppose that the following statements are true.

a. The map T has a C1 extension to a neighborhood of x.

b. The Jacobian JT (x) of T at x has real eigenvalues λ, µ such that 0 < |λ| <

µ, where |λ| < 1, and the eigenspace Eλ associated with λ is not a coordinate axis.

Then there exists a curve C ⊂ R through x that is invariant and a subset of

the basin of attraction of x, such that C is tangential to the eigenspace Eλ at x, and

C is the graph of a strictly increasing continuous function of the first coordinate

on an interval. Any endpoints of C in the interior of R are either fixed points or

minimal period-two points. In the latter case, the set of endpoints of C is a minimal

period-two orbit of T .

We shall see in Theorem 10 that the situation where the endpoints of C

are boundary points of R is of interest. The following result gives a sufficient
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condition for this case.
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Theorem 9 For the curve C of Theorem 8 to have endpoints in ∂R, it is sufficient

that at least one of the following conditions is satisfied.

i. The map T has no fixed points nor periodic points of minimal period two

in ∆.

ii. The map T has no fixed points in ∆, det JT (x) > 0, and T (x) = x has no

solutions x ∈ ∆.

iii. The map T has no points of minimal period-two in ∆, det JT (x) < 0, and

T (x) = x has no solutions x ∈ ∆.

For maps that are strongly competitive near the fixed point, hypothesis b. of

Theorem 8 reduces just to |λ| < 1. This follows from a change of variables that

allows the Perron-Frobenius Theorem to be applied. Also, one can show that in

such case no associated eigenvector is aligned with a coordinate axis. The next

result is useful for determining basins of attraction of fixed points of competitive

maps.

Theorem 10 (A) Assume the hypotheses of Theorem 8, and let C be the curve

whose existence is guaranteed by Theorem 8. If the endpoints of C belong to ∂R,

then C separates R into two connected components, namely

W− := {x ∈ R\C : ∃y ∈ C with x �se y} and W+ := {x ∈ R\C : ∃y ∈ C with y �se x} ,

such that the following statements are true.

(i)W− is invariant, and dist(T n(x), Q2(x))→ 0 as n→∞ for every x ∈ W−.

(ii)W+ is invariant, and dist(T n(x), Q4(x))→ 0 as n→∞ for every x ∈ W+.

(B) If, in addition to the hypotheses of part (A), x is an interior point of R

and T is C2 and strongly competitive in a neighborhood of x, then T has no periodic
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points in the boundary of Q1(x)∪Q3(x) except for x, and the following statements

are true.

(iii) For every x ∈ W− there exists n0 ∈ N such that T n(x) ∈ intQ2(x) for

n ≥ n0.

(iv) For every x ∈ W+ there exists n0 ∈ N such that T n(x) ∈ intQ4(x) for

n ≥ n0.

If T is a map on a set R and if x is a fixed point of T , the stable set Ws(x)

of x is the set {x ∈ R : T n(x)→ x} and unstable set Wu(x) of x is the set{
x ∈ R : there exists {xn}0

n=−∞ ⊂ R s.t. T (xn) = xn+1, x0 = x, and lim
n→−∞

xn = x

}
When T is non-invertible, the set Ws(x) may not be connected, can consist of

infinitely many curves, orWu(x) may not be a manifold. The following result gives

a description of the stable and unstable sets of a saddle point of a competitive

map. If the map is a diffeomorphism on R, the sets Ws(x) and Wu(x) are the

stable and unstable manifolds of x.

Theorem 11 In addition to the hypotheses of part (B) of Theorem 10, suppose

that µ > 1 and that the eigenspace Eµ associated with µ is not a coordinate axis.

If the curve C of Theorem 8 has endpoints in ∂R, then C is the stable set Ws(x)

of x, and the unstable set Wu(x) of x is a curve in R that is tangential to Eµ at x

and such that it is the graph of a strictly decreasing function of the first coordinate

on an interval. Any endpoints of Wu(x) in R are fixed points of T .

The following result is for strictly order preserving maps [23]. The result is

stated for a partial order � in Rn, but it also holds in Banach spaces.
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Theorem 12 (Order Interval Trichotomy of Dancer and Hess, [23]) Let

u1 � u2 be distinct fixed points of a strictly order preserving map T : A → A,

where A ⊂ Rn, and let I = Ju1, u2K ⊂ A. Then at least one of the following holds.

(a) T has a fixed point in I distinct from u1 and u2.

(b) There exists an entire orbit {xn}n∈Z of T in I joining u1 to u2 and satisfying

xn � xn+1.

(c) There exists an entire orbit {xn}n∈Z of T in I joining u2 to u1 and satisfying

xn+1 � xn.

Corollary 3 If a and b are stable fixed points, then there exists a third fixed point

in Ja, bK.

The following result is a direct consequence of Theorem 29.

Corollary 4 If the nonnegative cone of � is a generalized quadrant in Rn, and if

T has no fixed points in Ju1, u2K other than u1 and u2, then the interior of Ju1, u2K is

either a subset of the basin of attraction of u1 or a subset of the basin of attraction

of u2.

A simple consequence of this result is the following

Corollary 5 If monotone map T has exactly three fixed points a � b � c, where b

is stable, then the interior of Ja, cK is a subset of the basin of attraction of b.

The following theorem from [5] applies to Equation (45):

Theorem 13 Let I be a set of real numbers and f : I×I → I be a function which

is non-increasing in the first variable and non-decreasing in the second variable.

Then, for every solution {xn}∞n=−1 of the equation

xn+1 = f (xn, xn−1) , x−1, x0 ∈ I, n = 0, 1, ... (50)
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the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 of even and odd terms of the solution

do exactly one of the following:

(i) Eventually they are both monotonically increasing.

(ii) Eventually they are both monotonically decreasing.

(iii) One of them is monotonically increasing and the other is monotonically

decreasing.

The consequence of Theorem 28 is that every bounded solution of Equation (50)

converges to either an equilibrium, a period-two solution, or to the point on the

boundary, so we try to determine the basins of attraction of these solutions.

Remark 1 We say that f(u, v) is strongly decreasing in the first argument and

strongly increasing in the second argument if it is differentiable and has first partial

derivative D1f negative and first partial derivative D2f positive in a considered

set. The connection between the theory of monotone maps and the asymptotic

behavior of Equation (50) follows from the fact that if f is strongly decreasing in

the first argument and strongly increasing in the second argument, then the second

iterate of a map associated to Equation (50) is a strictly competitive map on I× I

(see [17]).

Set xn−1 = un and xn = vn in Equation(50) to obtain the equivalent system

un+1 = vn
vn+1 = f(vn, un)

, n = 0, 1, . . . .

Let T (u, v) = (v, f(v, u)). The second iterate T 2 is given by

T 2(u, v) = (f(v, u), f(f(v, u), v))

and it is strictly competitive on I × I, see [17].

Remark 2 The characteristic equation of Equation (50) at an equilibrium point

(x̄, x̄):

λ2 −D1f(x̄, x̄)λ−D2f(x̄, x̄) = 0, (51)
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has two real roots λ, µ which satisfy λ < 0 < µ, and |λ| < µ, whenever f is strictly

decreasing in first and increasing in second variable. Thus the applicability of

Theorems 8-11 depends on the nonexistence of a minimal period-two solution.
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3.3 Main Results

In this section I present some global dynamics scenarios for competitive system

(49) which will be applied to Equation (45).

Theorem 14 Consider the competitive map T generated by the system (49) on a

set R with a non-empty interior.

(a) Assume that T has seven fixed points E1, . . . , E7 such that five belongs to the

west and south boundaries of the region R and two fixed points are interior

points. Moreover assume that E1 and E2 belong to the west boundary, E3 is

South-west corner of the region R and E4 and E5 are on the south boundary

of R, such that E1 �se E2 �se E3 �se E4 �se E5. Moreover assume that

E6 �ne E7 and that E6 /∈ JE2, E4K and E7 ∈ JE1, E5K. Finally assume that

E1, E3, E5 are locally asymptotically stable, E6 is a repeller and E2, E4 are

saddle points. If E7 is either a saddle point or non-hyperbolic point of stable

type and T has no period-two solutions then all solutions which start between

the stable manifolds Ws(E2) and Ws(E4) converge to E3, all solutions which

start between the stable manifolds Ws(E2) and Ws(E7) converge to E1 and

all solutions which start between the stable manifolds Ws(E4) and Ws(E7)

converge to E5.

(b) Assume that T has exactly six fixed points E1, . . . , E6, where the points have

the same configuration and points E1, . . . , E5 have the same local character

as in part (a), while E6 is non-hyperbolic point of unstable type. If T has

no period-two solutions then there exist two increasing continuous curves C1

and C2, C2 �se C1 emanating from E6 such that all solutions which start

between C1 and C2 converge to E6. Furthermore, all solutions which start

between the stable manifolds Ws(E2) and Ws(E4) converge to E1, and all
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solutions which start above Ws(E2) ∪ C2 converge to E1 and all solutions

which start below Ws(E4) ∪ C1 converge to E5.

(c) Assume that T has exactly nine fixed points E1, . . . , E9, where the points

E1, . . . , E7 have the same configuration and the same local character as

in (a). Assume that the fixed points E8, E9 are saddle points such that

E8 ∈ JE1, E7K and E9 ∈ JE7, E5K. Assume that T has no period-two solutions

then all solutions which start between the stable manifolds Ws(E2) and

Ws(E4) converge to E3, all solutions which start above Ws(E2) ∪ Ws(E8)

converges to E1, and all solutions which start below Ws(E4) ∪Ws(E9) con-

verge to E5. Finally, all solutions which start between the stable manifolds

Ws(E8) and Ws(E9) converge to E7.

Proof.

(a) The existence of the global stable and unstable manifolds of the saddle fixed

points is guaranteed by Theorems 8 - 11. In any case all stable manifolds

Ws(E2),Ws(E4) andWs(E7) has an end point at E6 andWs(E7) has another

end point at (∞,∞).

In view of Theorem 10 every solution which starts between the stable mani-

folds Ws(E2) and Ws(E4) eventually enters intJE2, E4K and so it converges

to E3.

If the initial point (x0, y0) is above Ws(E2) ∪ Ws(E7) one can find the

point (xl, yl) on the y-axis and a point (xu, yu) ∈ Ws(E2) ∪ Ws(E7), such

that (xl, yl) �se (x0, y0) �se (xu, yu). This will imply that T n((xl, yl)) �se

T n((x0, y0)) �se T n((xu, yu)), and so T n((x0, y0)) ∈ intJE1, E7K eventually.
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Now, in view of Corollary 7 T n((x0, y0))→ E1 as n→∞.

In a similar way the case when the initial point (x0, y0) is below Ws(E4) ∪

Ws(E7) can be handled.

(b) The existence of the global stable and unstable manifolds of the saddle fixed

points is guaranteed by Theorems 8 - 11. Both global stable manifolds

Ws(E2) and Ws(E4) have an end point at E6. The existence of curves

C1 and C2 follows from Theorem 8. The proof that the region between the

stable manifoldsWs(E2) andWs(E4) eventually enters intJE2, E4K and so it

converges to E3 is the same as in part (a).

In a similar way as in the proof of part (a) we can show that if the initial

point (x0, y0) is above Ws(E2) ∪ C2 it will eventually enter intJE1, E6K and

so it will converge to E1. In a similar way we can show that if the initial

point (x0, y0) is below Ws(E4) ∪ C1 it will eventually enter intJE6, E5K and

so it will converge to E5.

Finally, if the initial point (x0, y0) is between C1 and C2 then one can find the

point (xl, yl) ∈ C2 and a point (xu, yu) ∈ C1, such that (xl, yl) �se (x0, y0) �se

(xu, yu). This will imply that T n((xl, yl)) �se T n((x0, y0)) �se T n((xu, yu)),

and so T n((x0, y0))→ E6 as T n((xu, yu))→ E6, T
n((xl, yl))→ E6.

(c) The proof that the region between the stable manifoldsWs(E2) andWs(E4)

is the basin of attraction of E3 is same as in part (a) and will be omitted.

The proof that all solutions which start above Ws(E2) ∪Ws(E8) converges

to E1 and all solutions which start below Ws(E4) ∪Ws(E9) converge to E5

is same as in part (a) and so will be ommitted.

If the initial point (x0, y0) is between Ws(E8) and Ws(E9) then one can

find the point (xl, yl) ∈ Ws(E8) and a point (xu, yu) ∈ Ws(E9), such that
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(xl, yl) �se (x0, y0) �se (xu, yu). This will imply that T n((xl, yl)) �se

T n((x0, y0)) �se T n((xu, yu)), and so T n((x0, y0)) ∈ intJE8, E9K as

T n((xu, yu)) → E9, T
n((xl, yl)) → E8 as n → ∞. Now in view of Corol-

lary 8 T n((x0, y0))→ E7 as n→∞.

2

In the case of Equation (50) we have the following results which are direct appli-

cations of Theorem 14.

Theorem 15 Consider Equation (50) and assume that f is decreasing in first and

increasing in the second variable on the set (a, b)2.

(a) Assume that Equation (50) has three equilibrium points E0 �ne E− �ne E+,

where E0 is locally asymptotically stable, E− is repeller and E+ is either sad-

dle point or a non-hyperbolic point of stable type. Furthermore assume that

Equation (50) has two minimal period-two solutions {P1, Q1}, {P2, Q2} such

that P2 �se P1 �se E0 �se Q1 �se Q2 and E−, E+ ∈ JP2, Q2K \ JP1, Q1K. If

{P1, Q1} is a saddle point and {P2, Q2} is a locally asymptotically stable, then

every solution which starts between the stable manifolds Ws(P1) and Ws(Q1)

converges to E0 while every solution which starts off Ws(P1) ∪ Ws(Q1) ∪

Ws(E+) converges to the periodic solution {P2, Q2}.

(b) Assume that Equation (50) has two equilibrium points E0 �ne E, where E0

is locally asymptotically stable and E+ is a non-hyperbolic point of unstable

type. Furthermore assume that Equation (50) has two minimal period-two

solutions {P1, Q1}, {P2, Q2} such that P2 �se P1 �se E0 �se Q1 �se Q2 and

E−, E+ ∈ JP2, Q2K \ JP1, Q1K. If {P1, Q1} is a saddle point and {P2, Q2} is

a locally asymptotically stable, then every solution which starts between the

stable manifolds Ws(P1) and Ws(Q1) converges to E0 while every solution
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which starts above Ws(P1) ∪ C2 and below Ws(Q1) ∪ C1 converges to the

periodic solution {P2, Q2}. Finally every solution which starts between C1

and C2 converges to E.

(c) Assume that Equation (50) has three equilibrium points E0 �ne E− �ne E+,

where E0 and E+ are locally asymptotically stable and E− is repeller. Fur-

thermore assume that Equation (50) has three minimal period-two solutions

{P1, Q1}, {P2, Q2}, {P3, Q3} such that P2 �se P1 �se E0 �se Q1 �se Q2 and

E−, E+ ∈ JP2, Q2K \ JP1, Q1K and P2 �se P3 �se E+ �se Q3 �se Q2 .

If {P1, Q1} and {P3, Q3} are saddle points and {P2, Q2} is a locally asymp-

totically stable, then every solution which starts between the stable manifolds

Ws(P1) andWs(Q1) converges to E0 and every solution which starts between

the stable manifolds Ws(P3) and Ws(Q3) converges to E7 while every solu-

tion which starts off in the complement of the basins of attractions of E0, E7,

{P1, Q1} and {P3, Q3} converges to the periodic solution {P2, Q2}.

Proof. In view of Remark 1 the second iterate T 2 of the map T associated with

Equation (50) is strictly competitive and does not have any period-two points.

(a) By noticing that the period-two points of T are the fixed points of T 2, two

period-two solutions {P1, Q1}, {P2, Q2} become four fixed points of T 2. Ap-

plying Theorem 14 part (a) to T 2 we complete the proof.

(b) In view of Remark 1 the second iterate T 2 of the map T associated

with Equation (50) is strictly competitive and has six equilibrium points

E1 = P2, E2 = P1, E3 = E0, E4 = Q,E5 = Q2 and E6 = E. Apply-

ing Theorem 14 part (b) to T 2 we conclude that lim
n→∞

T 2n((x0, y0)) = E0

for every (x0, y0) between the stable manifolds Ws(P1) and Ws(Q1) . Fur-

thermore, we also have that lim
n→∞

T 2n+1((x0, y0)) = lim
n→∞

T
(
T 2n ((x0, y0))

)
=
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T
(
lim
n→∞

T 2n ((x0, y0))
)
= T (E2) = E2, where we utilize continuity of the map

T . Consequently lim
n→∞

T n((x0, y0)) = E0. The proof of other cases is similar.

(c) By noticing that the period-two points of T are the fixed points of T 2, three

period-two solutions {P1, Q1}, {P2, Q2}, {P3, Q3} become six fixed points of

T 2. Applying Theorem 14 part (c) to T 2 we complete the proof.

2

3.4 Case Study: Equation (45)
3.4.1 Local stability analysis for Equilibria

An equilibrium point for of Eq.(1) must satisfy:

x̄ =
x̄2

cx̄2 + dx̄+ f

i.e.

x̄ = 0 or cx̄2 + (d− 1)x̄+ f = 0

Therefore Eq.(1) corresponds to the following:

1. The unique equilibrium E0 = (0, 0) if: d ≥ 1 or ( d<1 and (d−1)2−4fc<0)

2. Two equilibrium points E0 and E∗ = (1−d
2c
, 1−d

2c
) if: d<1 and (d−1)2−4fc = 0

3. Three equilibrium points E0 and E± = (
(1−d)±

√
(1−d)2−4fc

2c
,

(1−d)±
√

(1−d)2−4fc

2c
)

otherwise.

If we denote F (u, v) =
v2

cv2 + du+ f
then Eq.(1) has the following linearized equa-

tion:

zn+1 = pzn + qzn−1,

Where

p =
∂F

∂u
(x, x) =

dx̄2

(cx̄2 + dx̄+ f)2
, q =

∂F

∂v
(x, x) =

2x̄(dx̄+ f)

(cx̄2 + dx̄+ f)2
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If x̄ = 0 then clearly p = q = 0

If x̄ 6= 0 then by the equilibrium equation:

p = −d and q = 2(d+
f

x̄
) = 2(1− cx̄)

Proposition 1

Given that c>0 , d>0 , f>0

1. The equilibrium E0 is locally asymptotically stable for all values of parameter.

2. If d<1 and (d − 1)2 − 4fc = 0 then: The positive equlibrium point E∗ is

non-hyperbolic of unstable type.

3. If d<1 and (d−1)2−4fc>0 then the equilibrium point E− is a repeller while

the stability of E+ is subject to the following conditions:

(a) E+ is locally asymptotically stable if: (d− 1)2 − 4fc>4d2

(b) E+ is non-hyperbolic of stable type if (d− 1)2 − 4fc = 4d2

(c) E+ is a saddle point if (d− 1)2 − 4fc<4d2

Proof.

1. Since p = q = 0 for x̄ = 0 then E0 corresponds to the unique eigenvalue

λ = 0, thus E0 is locally asymptotically stable for all values of c ,d and f .

2. As p = −d and q = 2(1− cx̄) then the chacteristic equation is given by:

λ2 + dλ− 2(1− xx̄) = 0
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and given that: x̄∗ = 1−d
2c

we have:

λ2 + dλ− (d+ 1) == 0

which corresponds to: λ+ = 1 and λ− = −(d + 1). The latter indicates

clearly that E∗ is non-hyperbolic of unstable type.

3. The roots of the characteristic equation are: λ+ =
−d+
√
d2+8(1−cx̄)

2
>0 and

λ− =
−d−
√
d2+8(1−cx̄)

2
<0

For E−:

Since x̄−<
1−d
2c

one can easily check that:
√
d2 + 8(1− cx̄−) > (2 + d) which

implies λ+>1.

On the other hand one can use the fact that x̄−<
1+d
2c

to show that λ−<− 1.

As of E+:

Since x̄+>
1−d
2c

one can similarly show that λ+<1.

Moreover a simple algebraic verification shows the following:

i |λ−|<1 for 4d2<(1− d)2 − 4fc

ii |λ−| = 1 for 4d2 = (1− d)2 − 4fc

iii |λ−|>1 for 4d2>(1− d)2 − 4fc

Consequently we conclude that: E− is a repeller whenever it exists while:

i E+ is locally asymptotically stable: for 4d2<(1− d)2 − 4fc

ii E+ is non-hyperbolic of stable type: for 4d2 = (1− d)2 − 4fc

iii E+ is a saddle point: for 4d2>(1− d)2 − 4fc

2
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3.4.2 Local stability analysis of minimal period two solutions

Here I present the results about the existence and the stability of minimal

period two solutions of Eq.(1)

Theorem 16

Given that c>0 , d>0 , f>0

1. If 4fc>1 then Eq.(1) has no minimal period two solutions.

2. If 4fc = 1 then Eq.(1) has a minimal period two solution:

{Px = ( 1
2c
, 0), Py = (0, 1

2c
)}

3. If (d−1)2−4d2 ≤ 4fc<1 then Eq.(1) has two minimal period two solutions:

{
P 1
x

(
1−
√

1−4cf
2c

, 0
)
, P 1

y

(
0, 1−

√
1−4cf
2c

)}
and

{
P 2
x

(
1+
√

1−4cf
2c

, 0
)
, P 2

y

(
0, 1+

√
1−4cf
2c

)}
.

4. If 4fc<(d − 1)2 − 4d2 then Eq.(1) has three minimal period two solutions:{
P 1
x , P

1
y

}
,
{
P 2
x , P

2
y

}
and

{
P i∓, P i

±
}

where:

P i
∓ = (

1+d−
√

(1−d)2−4d2−4fc

2c
,

1+d+
√

(1−d)2−4d2−4fc

2c
)

and:

P i
± = (

1+d+
√

(1−d)2−4d2−4fc

2c
,

1+d−
√

(1−d)2−4d2−4fc

2c
)

Proof. For the sake of obtaining minimal period two solutions we must seek the

ordered pairs (φ, ψ) that satisfy the following system of equations:



φ =
φ2

cφ2 + dψ + f

ψ =
ψ2

cψ2 + dφ+ f

It follows that:

If ψ = 0 the first equation becomes cφ2 − φ+ f = 0 . . . (∗)
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If φ = 0 then the second equation turns into cψ2 − ψ + f = 0

If φ 6= 0 and ψ 6= 0 then the system is equivalent to:
cφ2 + dψ − φ+ f = 0

cψ2 + dφ− ψ + f = 0

⇒ c(φ2 − ψ2) + d(ψ − φ) + (ψ − φ) = 0

Now given that φ 6= ψ we get φ = 1+d
c
− ψ which implies:

cψ2 − (1 + d)ψ +
1 + d

c
+ f = 0 . . . (∗∗)

thus for solution of the form (0, ψ) or (φ, 0) by equation(*) we must have 1−4fc ≥ 0

and for solutions of the form (φ, ψ), φ 6= 0, ψ 6= 0 by equation (**) we must have

(1− d)2 − 4d2 − 4fc>0. Consequently:

1. If 4fc>1 then 1−4fc<0 and (1−d)2−4d2−4fc<0.It follows that equations

(*) and (**) have no real solutions, thus Eq.(1) has no minimal period two

solutions.

2. If 4fc = 1 equation (*) has the unique solution 1
2c

and equation (**) has

no real solutions. It follows that {Px, Py} is the unique minimal period two

solution of Eq.(1).

3. If (1 − d)2 − 4d2 ≤ 4fc<1: the quadratic equation (*) has two solutions

1±
√

1−4fc
2c

while equation (**) has one unique solution which is an equilibria

φ = ψ = x̄+. Therefore Eq.(1) has two minimal period two solutions:{
P 1
x

(
1−
√

1−4cf
2c

, 0
)
, P 1

y

(
0, 1−

√
1−4cf
2c

)}
and

{
P 2
x

(
1+
√

1−4cf
2c

, 0
)
, P 2

y

(
0, 1+

√
1−4cf
2c

)}
.
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4. If 4fc<(1− d)2 − 4d2 Then equation (*) has the solutions: 1±
√

1−4fc
2c

while equation(**) has the solutions:
1+d±
√

(1−d)2−4d2−4fc

2c
.

Therefore Eq.(1) has three minimal period two solutions:{
P 1
x , P

1
y

}
,
{
P 2
x , P

2
y

}
together with:{

P i
∓ = (

1+d−
√

(1−d)2−4d2−4fc

2c
,

1+d+
√

(1−d)2−4d2−4fc

2c
)

}
{
P i
± = (

1+d+
√

(1−d)2−4d2−4fc

2c
,

1+d−
√

(1−d)2−4d2−4fc

2c
)

}
.

2

Now consider the following substitution: un = xn−1 and vn = xn then the behavior

of the solutions of Eq.(1) can be investigated by the following two dimensional

system:


un+1 = vn

vn+1 =
u2
n

cu2
n + dvn + f

. (52)

which corresponds to the following map:

T

(
u
v

)
=

(
v

h (u, v)

)
=

 v
u2

cu2 + dv + f

 . (53)

The second iteration of the map T is given by:

T 2

(
u
v

)
= T

(
v

h (u, v)

)
=

(
h (u, v)

h (v, h (u, v))

)
=

(
G (u, v)
H (u, v)

)
,

where:

H(u, v) =
v2

cv2 + dh(u, v) + f

clearly the map T 2 is competitive and its Jacobian matrix is given by:
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JT 2 (u, v) =

 ∂G

∂u
(u, v)

∂G

∂v
(u, v)

∂H

∂u
(u, v)

∂H

∂v
(u, v)

 ,

Where:

∂G

∂u
(u, v) =

2u(f + dv)

(cu2 + f + dv)2

∂G

∂v
(u, v) = − du2

(cu2 + f + dv)2

∂H

∂u
(u, v) = − 2duv2(f + dv)

(du2 + (cu2 + f + dv) (cv2 + f))2

∂H

∂v
(u, v) =

v

(
d(2cu2+2f+3dv)u2

(cu2+f+dv)2
+ 2f

)
(

du2

cu2+f+dv
+ cv2 + f

)2

The following theorem describes the local stability of minimal period two solutions

of Eq.(1) whenever they exist.

Theorem 17

1. The minimal period two solutions {Px, Py} are non-hyperbolic of stable type.

2. The minimal period two solutions {P 1
x , P

1
y } are saddle points while {P 2

x , P
2
y }

are locally asymptotically stable.

3. The minimal period two solutions {P i
∓, P

i
±} are saddle points.

Proof.
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1. The minimal period solutions {Px, Py} exist when 4fc = 1, thus the Ja-

cobian matrix of the second iterate of the map T at Px and Py is the following:

JT 2 (Px) =

(
1 −d
0 0

)
, JT 2 (Py) =

(
0 0
0 1

)
both correspond to the eigenvalues λ1 = 0 and λ2 = 1 therefore {Px, Py} are

non-hyperbolic of stable type.

2. (a) For {P 1
x , P

1
y }; the Jacobian matrix is of the form:

JT 2

(
P 1
x

)
=

(
1 +
√

1− 4cf −d
0 0

)
, JT 2

(
P 1
y

)
=

(
0 0
0 1 +

√
1− 4cf

)
.

Both with eigenvalues λ1 = 0 and λ2 = 1 +
√

1− 4cf . Clearly {P 1
x , P

1
y }

are saddle points.

(b) As of {P 2
x , P

2
y }; the corresponding Jacobian matrix is given by:

JT 2

(
P 2
x

)
=

(
1−
√

1− 4cf −d
0 0

)
, JT 2

(
P 2
y

)
=

(
0 0
0 1−

√
1− 4cf

)
.

Both with eigenvalues λ1 = 0 and λ2 = 1 −
√

1− 4cf<1. Clearly

{P 2
x , P

2
y } are locally asymptotically stable.

3. Now at the interior period two solutions {P i
∓, P

i
±}

JT 2

(
P i
∓
)

=

 −dc+
√
−c2(d(3d+2)+4cf−1)

c
+ 1 −d

−
d
(
−dc+c+

√
−c2(d(3d+2)+4cf−1)

)
c

(d−1)dc−
√
−c2(d(3d+2)+4cf−1)

c
+ 1


and

JT 2

(
P i
±
)

=

 −dc−
√
−c2(d(3d+2)+4cf−1)

c
+ 1 −d

d
(
c(d−1)+

√
−c2(d(3d+2)+4cf−1)

)
c

(d2−d)c+
√
−c2(d(3d+2)+4cf−1)

c
+ 1


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Observe that:

p = TrJT 2

(
P i
∓
)

= TrJT 2

(
P i
±
)

= 2 + d(d− 2)

q = DetJT 2

(
P i
∓
)

= DetTrJT 2

(
P i
±
)

= 4(d2 + cf)

Moreover:

|p|>|1 + q| ⇔ (d− 1)2 − 4d2>4cf (condition of existence)

Consequently; the interior period two solutions {P i
∓, P

i
±} are saddle points

whenever they exist.

2

Remark 3 Observe that the interior period two solutions {P i
∓, P

i
±} exist if and

only if:

1. d<1
3

; since (d− 1)2 − 4d2>4cf ⇒ (d− 1)2 − 4d2>0⇒ (1− 3d)(1 + d)>0

2. There are 3 equilibrium points E0, E−, E+ where E+ is L.A.S
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3.4.3 Global dynamics of Eq.(1)

In this section, I present the global dynamics for all the possible values of

parameters of Eq.(1). First I provide the following three figures that describe all

possible bifurcations produced by different values taken by (4fc).

Figure 7. Bifurcation for: d<1
3

Figure 8. Bifurcation for: 1
3
≤ d<1

Figure 9. Bifurcation for: 1 ≤ d
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Theorem 18

If 4fc>1, then the equilibrium E0 is globally asymptotically stable. see Figure 10,

Proof. First observe that every solution of Eq.(1) is bounded; as for xn−1 6= 0

xn+1 =
x2
n−1

cx2
n−1 + dxn + f

=
1

c+ dxn
x2n−1

+ f
x2n−1

<
1

c

Moreover, by theorem 28 subsequences {x2n}∞n=0 and {x2n+1}∞n=0 are eventually

monotonic.

Now as 4fc>1 there are no minimal period two solutions we conclude that both

x2n and x2n+1 must converge to the unique equilibrium x̄ = 0. 2

Theorem 19 Let B(.) denote the basin of attraction.

1. The sets [0,+∞)× {0} and {0} × [0,+∞) are invariant by T 2.

2. If 4fc = 1 then:

(a) ( 1
2c
,+∞)× {0} ⊂ B (Px)

(b) {0} × ( 1
2c
,+∞) ⊂ B (Py)

(c) {0} × (0, 1
2c

) ∪ (0, 1
2c

)× {0} ⊂ B (E0)

3. If 4fc<1 then:

(a) (1−
√

1−4cf
2c

,+∞)× {0} ⊂ B (P 2
x )

(b) {0} × (1−
√

1−4cf
2c

,+∞) ⊂ B
(
P 2
y

)
(c) (0, 1−

√
1−4cf
2c

)× {0} ∪ {0} × (0, 1−
√

1−4cf
2c

) ⊂ B (E0)

Proof.

1. let α ≥ 0, then: T 2(α, 0) = ( α2

cα2+f
, 0) and T 2(0, α) = (0, α2

cα2+f
) which implies

that: The sets [0,+∞)× {0} and {0} × [0,+∞) are invariant by T 2.
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2. First recall that every solution of Eq.(1) is bounded and by theorem

6 every solution must either converge to an equilibrium or a minimal

period two solution. It follows that every solution generated by T 2 must

converge to an equilibrium. Now consider {sn}∞n=1 the solution with initial

s1 = (x1, 0) ∈ ( 1
2c
,+∞)× {0} then:

T 2(xn, 0) = (xn+1, 0) = ( x2n
cx2n+f

, 0) and observe that: xn+1 − xn =

−xn(cx2n−xn+f)
cx2n+f

(a) If 4fc = 1 one can easily show that xn is monotone decreasing thus:

i. If xn>
1
2c

then sn = (xn, 0)→ ( 1
2c
, 0)

ii. If xn<
1
2c

then sn = (xn, 0)→ (0, 0)

(b) If 4fc<1 one can easily show that xb is monotone decreasing

in: (0, 1−
√

1−4fc
2c

) ∪ (1+
√

1−4fc
2c

,+∞) and monotone increasing in

(1−
√

1−4fc
2c

, 1+
√

1−4fc
2c

) thus:

i. If xn ∈ (1−
√

1−4fc
2c

,+∞) then sn = (xn, 0)→ (1+
√

1−4fc
2c

, 0).

ii. If xn ∈ (0, 1−
√

1−4fc
2c

) then sn = (xn, 0)→ (0, 0).

The remaining part of the proof follows similarly by considering solutions of

the form:

sn = (0, xn).

2

Theorem 20

If 4fc = 1 Then Eq.(1) has:

• One Unique equilibrium point E0 locally asymptotically stable.
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• One minimal period-two solution {Px, Py} = {( 1
2c
, 0), (0, 1

2c
)} non-hyperbolic

of stable type.

There exist two invariant curves C1 and C2 which are graphs of strictly increasing

continuous functions of the first coordinate on an interval with endpoints in Px

and Py respectively. Basins of attraction of the minimal period-two solutions are

B (Px) = C1 ∪W+ (C1) and B (Py) = C2 ∪W− (C2) ,

while the basin of attraction of the equilibrium point E0 is the region between curves

C1 and C2 i.e.

B (E0) =W− (C1) ∩W+ (C2) .

See Figure 11.

Figure 10. One equilibrium; 4fc>1
Figure 11. One equilibrium, one P-2;
4fc = 1

Proof. The Jacobian matrix of the second iterate of the map at Px is given by:

JT 2 (Px) =

(
1 −d
0 0

)
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with two eigenvalues λ1 = 0 associated with the eigenvector

(
d
1

)
and λ2 = 1

which corresponds the the eigenvector

(
1
0

)
.

Observe that the eigenvector associated with λ1 is not parallel to the x-axis and

the map T 2 is strongly competitive. It follows by theorems 8-11 and 15; that

there exists an invariant curve C1 through the point Px which a subset of Ws(Px).

Moreover C1 is the graph of a strictly increasing continuous that separates the first

quadrant into two connected subregions: an upper one W− (C1) and a lower one

W+ (C1) where:

B(Px) = C1 ∪W+(C1)

. As of the Jacobian matrix of Py : JT 2 (Py) =

(
0 0
0 1

)
, it has two eigenvectors

that are parallel to the coordinate axis;

(
1
0

)
,

(
0
1

)
corresponding to λ1 = 0

and λ2 = 1 respectively. By Hartman Grobman theorem [22], we know that there

exist a C1 curve C through Py that is tangential at Py to the eigenspace associated

with λ = 0 such that T 2(C) ⊂ C.

Claim 1

The stable manifold at Py is a linearly strongly ordered curve in the northeast or-

dering, where it is given for δ positive and small enough as : Ws
loc(Py) = {(t, φ(t)) :

0 ≤ t ≤ δ}

Proof.(of Claim 1)

First Recall that (0, 1
2c

)× (0, 1
2c

) ⊂ B(E0).

Now let u0>0:

Since T 2 is strongly competitive we have: T 2 (Py)�se T
2
(
u0,

1
2c

)
and that implies:

T 2
(
u0,

1
2c

)
∈ int (Q4 (Py)) . So, there exists a ball Bε

(
T 2
(
u0,

1
2c

))
such that:

Bε

(
T 2
(
u0,

1
2c

))
⊂ int (Q4 (Py)) . Since the map T 2 is continuous on R2

+, there
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exists a ball Bδ1

((
u0,

1
2c

))
such that:

T 2

(
Bδ1

((
u0,

1

2c

)))
⊂ Bε

(
T 2

(
u0,

1

2c

))
⊂ int (Q4 (Py)) ,

which implies T 2n (u, v)→ (0, 0) when n→∞ for all points (u, v) ∈ Bδ1

((
u0,

1
2c

))
.

It follows that: Ws
loc(Py) ∩ int (Q4 (Py)) = ∅ Now observe that φ′(0) = 0 as its

curve must be tangential to the horizontal eigenspace. Moreover φ′′ ≥ 0 in a small

neighborhood of t = 0 otherwise:

φ′′ ≤ 0 ⇒ there exists δ>0 such that φ′(t) is decreasing in (0, δ) ⇒ φ′(t) ≤ 0 in

(0, δ)

⇒ φ(t) ≤ 1
2c

in (0, δ) which contradicts the fact that Ws
loc(Py) ∩ int (Q4 (Py)) = ∅.

Therefore for sufficiently small δ1: Ws
loc(Py) = {(t, φ(t)) : 0 ≤ t ≤ δ1} is

linearly ordered in the northeast ordering and as T 2 is competitive: Ws
loc(Py)∩R2

+

can be extended to an unbounded curve (global stable manifold) C2, see [16, 17].

2

Hence the curve C2 separates the region into two connected components an upper

subregion W− (C2) and a lower subregion W+ (C2).

Clearly the basin of attraction of Py is B (Py) = C2 ∪ W− (C2), and finally the

basin of attraction of the zero equilibrium E0 is:

B (E0) =W+ (C2) ∩W−(C1)

2

Theorem 21

If (d ≥ 1 and 4fc<1) or (d<1 and (d− 1)2<4fc<1), then Eq.(1) has:
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• One unique equilibrium point E0 which is locally asymptotically stable.

• Two minimal period two solutions
{
P 1
x , P

1
y

}
which are saddle points and{

P 2
x , P

2
y

}
which are Locally asymptotically stable.

There exist global stable manifolds Ws (P 1
x ) and Ws

(
P 1
y

)
which are basins of

attractions of
{
P 1
x , P

1
y

}
and the unstable manifolds have the following form:

Wu
(
P 1
x

)
= {(x, 0) : x ∈ A} ,Wu

(
P 1
y

)
= {(0, y) : y ∈ A} .

where A = (0, 1+
√

1−4cf
2c

) \ {1−
√

1−4cf
2c

}

The basin of attraction of the equilibrium point E0 = (0, 0) is the region between

the global stable sets

B(E0) =W−
(
P 1
x

)
∩W+

(
P 1
y

)
.

Basin of attraction of the minimal period-two solutions
{
P 2
x , P

2
y

}
is given with the

following

B
(
P 2
x

)
=W+

(
P 1
x

)
, B

(
P 2
y

)
=W−

(
P 1
y

)
.

See Figure 12.

Proof. Recall that:

JT 2

(
P 1
x

)
=

(
1 +
√

1− 4cf −d
0 0

)
,

with eigenvalues λ1 = 0 with eigenvector

(
d√

1−4fc+1

1

)
and λ2 =

√
1− 4fc + 1

associated with the eigenvector

(
1
0

)
. Thus there exists a local stable manifold

at P 1
x that is linearly strongly ordered in the north east ordering with P 1

x as an

endpoint. As T 2 is competitive the local stable manifold can be extended to a curve

Ws (P 1
x ) which separates the region into two connected components W+ (P 1

x ) and

W− (P 1
x ). on the other hand

JT 2

(
P 1
y

)
=

(
0 0
0 1 +

√
1− 4cf

)
.
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with eigenvalues λ1 = 0 with eigenvector

(
1
0

)
and λ2 =

√
1− 4fc + 1 associated

with the eigenvector

(
0
1

)
.

By Theorem 19 we know that (0, 1−
√

1−4fc
2c

)× (0, 1−
√

1−4fc
2c

) ⊂ B(E0), thus we know

that the local stable manifold at P 1
y is tangential the horizontal Eigenspace but

cannot enter the box (0, 1−
√

1−4fc
2c

)× (0, 1−
√

1−4fc
2c

). I conclude that the local stable

manifold at P 1
y is a linearly strongly ordered curve (in the northeast ordering) with

P 1
y as an endpoint. Similarly we conclude its extension to a global stable manifold

Ws
(
P 1
y

)
which separates the region into two connected componentsW+

(
P 1
y

)
and

W−
(
P 1
y

)
.

Finally by the uniqueness of the stable manifold of the saddle point P 1
x we know

that no solution in W+(P 1
x ) will converge to P 1

x , on the other hand all solutions

are bounded and we know that by monotonicity of the map T every solution must

converge to an equilibrium. It follows that B(P 2
x ) = W+(P 1

x ) and analogously

B(P 2
y ) =W+(P 1

y )

2

Figure 12. One equilibrium, two P-2
Figure 13. Two equilibriums, two P-2

65



Theorem 22

If d<1 and (d− 1)2 = 4fc<1, the Eq.(1) has:

• E0 is locally asymptotically stable,

• E∗ =
(

1−d
2c
, 1−d

2c

)
is a non-hyperbolic point of unstable type,

and two minimal period-two solutions:

• {P 1
x , P

1
y } =

{(
1−
√

1−4fc
2c

, 0
)
,
(

0, 1−
√

1−4fc
2c

)}
are saddle points,

• {P 2
x , P

2
y } =

{(
1+
√

1−4fc
2c

, 0
)
,
(

0, 1+
√

1−4fc
2c

)}
are locally asymptotically stable.

• There exist global stable manifoldsWs (P 1
x ) andWs

(
P 1
y

)
which are the basins

of attraction of the periodic solutions {P 1
x , P

1
y } and which are tangential at

the equilibrium point E∗.

• There exists a global stable manifold Ws (E∗) contained in Q1(E∗) which is

the basin of attraction of the equilibrium E∗.

The Basin of attraction of equilibrium point E0 is the region between

those stable manifolds i.e.

B (E0) =W−
(
P 1
x

)
∩W+

(
P 1
y

)
.

The basins of attraction of P 2
x and P 2

y are given by:

B
(
P 2
x

)
=W+ (Sx) , where Sx =Ws

(
P 1
x

)
∪Ws (E∗) ,

B
(
P 2
y

)
=W− (Sy) , where Sy =Ws

(
P 1
y

)
∪Ws (E∗) .

See Figure 13.
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Proof.

The existence and orientation of the global stable manifold at P 1
x can be determined

as in theorem 21. However in general the orientation can be determined by studying

the curvature of the local curves given by:

Ws
loc

(
P 1
y

)
= {(t, φ1(t) : 0 ≤ t ≤ δ1} and Ws

loc (P 1
x ) = {(φ2(t), t) : 0 ≤ t ≤ δ2} for δ1

and δ2 small enough, where if f(x, y) and g(x, y) are the coordinate functions of

T 2:

φ1(f(t, φ1(t))) =g(t, φ1(t)), φ1(0) =
1−
√

1− 4fc

2c
, φ′1(0) = 0.

φ2(g(φ2(t), t)) =f(φ2(t), t), φ2(0) =
1−
√

1− 4fc

2c
, φ′2(0) = 0

This is useful when the local curve is tangent parallel to the axis at the fixed point

which is the case here for P 1
y .

By differentiating both sides of the equation above we get:

φ′′1(0) =
gxx(0, φ1(0))

(fx(0, φ1(0)))2 − gy(0, φ1(0))
=

d(1−
√

1− 4fc)

f(d+ 2cf − d
√

1− 4fc)
>0

which confirms the argument used in theorem 21. I conclude the existence of curves

C1 and C2 (global stable manifolds) which are linearly ordered in the northeast

ordering. Furthermore the curves cannot intersect the interior of the sets Q2(E∗)∩

R2 and Q4(E∗)∩R2, as the monotonicity of T 2 forces the latter sets to be invariant.

Thus T−2n(P ) → E∗ for all P ∈ Cl, l = 1, 2, therefore C1 and C2 are also center

manifolds of E∗.

On the other hand by letting T 2(f(x, y), g(x, y) the center manifold φ(x) must

satisfy:

φ(f(x, φ(x))) = g(x, φ(x))

By using a Taylor expansion substitution we can approximate the center manifold

by:

φ(x) = x−
c
(
x− 1−d

2c

)2

d+ 2
−

2c2
(
x− 1−d

2c

)3

(d+ 2)3
+O

(
|x− 1−d

2c
|4
)
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The dynamics on the center manifold are given by the reduced difference equation

un+1 = f(un, φ(un)) which has the following asymptotic representation:

un+1 =
1− d

2c
+

(
un −

1− d
2c

)
−

2c
(
un − 1−d

2c

)2

d+ 2
+

2c2d
(
un − 1−d

2c

)3

(d+ 2)3
−...+O

(
|un −

1− d
2c
|5
)

Clearly ū = 1−d
2c

is a semi-stable fixed point for the latter scalar difference equation,

it follows that E∗ is a semi=stable fixed point for T 2, furthermore the coefficient

of the lowest nonlinear term in the reduced map is negative thus by [21] the local

basin of attraction of the equilibrium E∗ is a one dimensional curve. I conclude

that there is a unique center manifold curve U which satisfies T 2(U) ⊂ U . Moreover

U is tangential to the eigenspace associated with λ = 1 namely Span
{(

1
1

)}
.

It follows that U is contained in Q1(E∗) and is linearly ordered in the northeast

ordering and therefore can be extended to an unbounded curve C (The global stable

manifold).

Now for all point q ∈ W− (P 1
x ) ∩ W+

(
P 1
y

)
there exist qx ∈ Ws (P 1

x ) and qy ∈

Ws
(
P 1
y

)
such that:

qy �se q �se qx which implies that: T 2n(qy) �se T 2n(q) �se T 2n(qx), but we know

that:

T 2n(qy)→ P 1
y and T 2n(qx)→ P 1

x

Consequently there exist N such that:

P 1
y �se T 2N(q) �se P 1

x

It follows by theorem 19 that q ∈ B(E0). As of the basins of attractions of P 2
x and

P 2
y The proof is analogous to the one given in theorem 21. 2

Theorem 23
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If d<1 and (d− 1)2 − 4d2<4fc<(d− 1)2, then Eq.(1) has:

Three equilibrium points

• E0 : locally asymptotically stable,

• E− : repeller,

• E+ : is a saddle point

and two minimal period-two solutions:

•
{
P 1
x , P

1
y

}
: saddle points,

•
{
P 2
x , P

2
y

}
: locally asymptotically stable.

• There exist global stable manifoldsWs (P 1
x ) andWs

(
P 1
y

)
which are the basins

of attraction of the periodic solutions {P 1
x , P

1
y } and which are tangential at

the equilibrium point E−.

• There exists a global stable manifold Ws (E+) which is an unbounded curve

of an increasing function contained in Q1(E+)∪Q3(E+) with an endpoint at

E−. Ws (E+) is the basin of attraction of the equilibrium E+.

• There exist a global unstable manifold Wu (E+) which is a curve of a

decreasing function contained in Q2(E+) ∪ Q4(E+) with endpoints P 2
x and

P 2
y .

• The Basin of attraction of equilibrium point E0 is the region between those

stable manifolds i.e.

B (E0) =W−
(
P 1
x

)
∩W+

(
P 1
y

)
.
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• The basins of attraction of P 2
x and P 2

y are given by:

B
(
P 2
x

)
=W+ (Sx) , where Sx =Ws

(
P 1
x

)
∪Ws (E+) ,

B
(
P 2
y

)
=W− (Sy) , where Sy =Ws

(
P 1
y

)
∪Ws (E+) .

See Figure 14.

Proof.

The existence ofWs(P 1
x ) andWs(P 1

y ) as well as the basin of attraction of E0 were

discussed in theorem 22.

The existence of the stable Ws (E+) and the unstable manifold Wu (E+) follows

from theorem8-11 and 15. The basins of attraction of P 2
x and P 2

y were discussed

in theorem 21. 2
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Figure 14. Three equilibriums, two P-2 Figure 15. Three equilibriums, two P-2

Theorem 24

If d<1 and 0<(d− 1)2 − 4d2 = 4fc, then Eq.(1) has:

Three equilibrium points

• E0 : locally asymptotically stable,

• E− =
(

1−3d
2c
, 1−3d

2c

)
: repeller,

• E+ =
(

1+d
2c
, 1+d

2c

)
: non-hyperbolic point of stable type

and two minimal period-two solutions:

• {P 1
x , P

1
y } : saddle points and

• {P 2
x , P

2
y } : locally asymptotically stable.

• There exist global stable manifoldsWs (P 1
x ) andWs

(
P 1
y

)
which are the basins

of attraction of the periodic solutions {P 1
x , P

1
y } and which are tangential at

the equilibrium point E−.
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• There exists a global stable manifold Ws (E+) which is an unbounded curve

of an increasing function contained in Q1(E+)∪Q3(E+) with an endpoint at

E−. Ws (E+) is the basin of attraction of the equilibrium E+.

• The Basin of attraction of equilibrium point E0 is the region between those

stable manifolds i.e.

B (E0) =W−
(
P 1
x

)
∩W+

(
P 1
y

)
.

• The basins of attraction of P 2
x and P 2

y are given by:

B
(
P 2
x

)
=W+ (Sx) , where Sx =Ws

(
P 1
x

)
∪Ws (E+) ,

B
(
P 2
y

)
=W− (Sy) , where Sy =Ws

(
P 1
y

)
∪Ws (E+) .

See Figure 15.

Proof.

The existence and orientation of the global stable manifold Ws(E+) follows from

theorems 8-11 and 15. The remaining of the proof is analogous to the discussions

in theorems 21 and 22. 2

Theorem 25

If d<1 and 4fc<(d− 1)2 − 4fc then Eq.(1) has:

Three equilibrium points:

• E0 is locally asymptotically stable,

• E− is repeller,

• E+ is locally asymptotically stable,
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and three minimal period-two solutions:

•
{
P 1
x , P

1
y

}
are saddle points,

•
{
P 2
x , P

2
y

}
are locally asymptotically stable,

•
{
P i
∓, P

i
±
}

are saddle points.

• There exist global stable manifoldsWs (P 1
x ) andWs

(
P 1
y

)
which are the basins

of attraction of the periodic solutions {P 1
x , P

1
y } and which are tangential at

the equilibrium point E−.

• The Basin of attraction of equilibrium point E0 is the region between those

stable manifolds i.e.

B (E0) =W−
(
P 1
x

)
∩W+

(
P 1
y

)
.

• There exists a global stable manifold Ws
(
P i
∓
)

which is an unbounded curve

of an increasing function contained in Q1((P i
∓) ∪ Q3((P i

∓) with an endpoint

at E−. Ws
(
P i
∓
)

is the basin of attraction of the equilibrium P i
∓.

• There exists a global stable manifold Ws
(
P i
±
)

which is an unbounded curve

of an increasing function contained in Q1((P i
±) ∪ Q3((P i

±) with an endpoint

at E−. Ws
(
P i
±
)

is the basin of attraction of the equilibrium P i
±.

• The Basin of attraction of equilibrium point E+ is the region between those

stable manifolds i.e.

B (E+) =W−
(
P i
±
)
∩W+

(
P i
∓
)
.

• There exist a global unstable manifold Wu
(
P i
∓
)

which is a curve of a de-

creasing function contained in Q2(P i
∓) ∪Q4(P i

∓) with endpoints P 2
y and E+.
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• There exist a global unstable manifold Wu
(
P i
±
)

which is a curve of a de-

creasing function contained in Q2(P i
±) ∪Q4(P i

±) with endpoints P 2
x and E+.

• The basins of attraction of P 2
x and P 2

y are given by:

B
(
P 2
x

)
=W+ (Sx) , where Sx =Ws

(
P 1
x

)
∪Ws

(
P i
±
)
,

B
(
P 2
y

)
=W− (Sy) , where Sy =Ws

(
P 1
y

)
∪Ws

(
P i
±
)
.

See Figure 16.

Figure 16. Three equilibriums, three P-2

Proof.

The existence and orientation of the stable manifold Ws
(
P i
∓
)

follows from theo-

rems 8-11 and 15.Moreover it cannot intersect another manifold or the boundary

of the region at any point as the latter sets are invariant. Thus it must have an

endpoint at E−. Similarly the existence and orientation of the unstable manifold

Wu
(
P i
∓
)

is given by theorem [theorem part 1].

On the other hand Wu
(
P i
∓
)
∩ J(P i

∓, E+K 6= ∅ and J(P i
∓, E+K is invariant. Thus

Wu
(
P i
∓
)

cannot leave the latter set and must end at E+. Analogous arguments
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and conclusions also hold for Ws
(
P i
±
)

and Wu
(
P i
±
)
. In addition we know that

for p∓ ∈ Ws
(
P i
∓
)

and p± ∈ Ws
(
P i
±
)
:

T 2n(p∓)→ P i
∓ and T 2n(p±)→ P i

±

.

Furthermore for all p ∈ W−
(
P i
±
)
∩ W+

(
P i
∓
)
. there exist p∓ ∈ Ws

(
P i
∓
)

and

p± ∈ Ws
(
P i
±
)

such that:

p∓ �se p �se p± ⇒ T 2n(p∓) �se T 2n(p) �se T 2n(p±) for all n ≥ 0

. It follows that there exists N>0 such that T 2N(p) = q ∈ JP i
∓, P

i
±K. Thus there

exist q∓ ∈ Wu
(
P i
∓
)

and q± ∈ Wu
(
P i
±
)

such that:

q∓ �se q �se q± ⇒ T 2n(q∓) �se T 2n(q) �se T 2n(q±) for all n ≥ 0

. where

T 2n(q∓)→ E+ and T 2n(q±)→ E+

which implies that T 2n(q)→ E+ ⇒ T 2n(p)→ E+ I conclude that:

B (E+) =W−
(
P i
±
)
∩W+

(
P i
∓
)
.

As of Ws(P 1
x ), Ws(P 1

y ), B(E0) , B(P 2
x ) and B(P 2

y ) the proof is analogous to the

discussion in theorems 21 and 22. 2
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4.1 Introduction and Preliminaries

The following results were obtained first in [13, 14] and were extended to the

case of higher order difference equations and systems in [14, 17, 21, 23, 24].

Theorem 26 Let [a, b] be a compact interval of real numbers and assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non-decreasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is

non-increasing in y ∈ [a, b] for each x ∈ [a, b];

(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,M) = m and f(M,m) = M, (54)

then m = M .

Then

xn+1 = f(xn, xn−1), n = 0, 1, . . . (55)

has a unique equilibrium x ∈ [a, b] and every solution of Eq.(55) converges to x.

Theorem 27 Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non-increasing in both variables;

(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,m) = M and f(M,M) = m, (56)

then m = M .

Then Eq.(55) has a unique equilibrium x ∈ [a, b] and every solution of Eq.(55)

converges to x.
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Similar results has been proved for other two cases of coordinate-wise mono-

tone function f , see [14]. These results have been very useful in proving attractivity

results for equilibrium or periodic solutions of Eq.(55) as well as for higher order

difference equations and systems of difference equations, see [6, 9, 14, 15]. The-

orems 26 and 27 have attracted considerable attention of the leading specialists

in difference equations and discrete dynamical systems and have been generalized

and extended to the case of maps in Rn, see [17], and maps in Banach space with

the cone, see [21] and [23, 24], as well as in the case of monotone mappings in

partially ordered complete metric spaces, see [4, 2].

The global behavior of solutions of Equation (55) in the case where f is either

increasing in both variables or decreasing in the first and increasing in the second

variable is well described by the following result from [1, 5].

Theorem 28 Let I be a set of real numbers and f : I × I → I be a function

which is either non-increasing in the first variable and non-decreasing in the second

variable or non-decreasing in both variables. Then, for every solution {xn}∞n=−1 of

Equation (55) the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 of even and odd terms of

the solution are eventually both monotonic.

The consequence of Theorem 28 is that every bounded solution of (55) con-

verges to either an equilibrium or a period-two solution or to the point on the

boundary where equation is not defined, see [3, 10]. Thus the most important

question becomes determining the basins of attraction of these solutions. The an-

swer to this question follows from an application of theory of monotone maps in

the plane, which was developed in [18, 19, 23].

The global behavior of solutions of Equation (55) in the case where f is either

decreasing in both variables or increasing in the first and decreasing in the second

variable is much more complicated and it can range from global asymptotic stability
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of the unique equilibrium as in the cases of difference equations

xn+1 = a+
xn
xn−1

, n = 0, 1, . . . , a > 0, x−1, x0 > 0, (57)

see [14],

xn+1 =
a+ xn
A+ xn−1

, n = 0, 1, . . . , a, A > 0, x−1, x0 ≥ 0, (58)

[20], and

xn+1 =
a

xn
+

A

xn−1

, n = 0, 1, . . . , a, A > 0, x−1, x0 > 0, (59)

[14] to the conservative chaos as in the case of Lyness’ difference equation

xn+1 =
a+ xn
xn−1

, n = 0, 1, . . . , A > 0, x−1, x0 > 0, (60)

or the following difference equation

xn+1 =
a

xn−1(1 + xn)
, n = 0, 1, . . . , a > 0, x−1, x0 > 0, (61)

see [8]. Also such equations may exhibit Neimark-Sacker bifurcation such as

xn+1 = a+
x2
n

x2
n−1

, n = 0, 1, . . . , a > 0, x−1, x0 > 0, (62)

see [12] and global convergence to singular zero solution

xn+1 =
ax2

n

xn + xn−1

, n = 0, 1, . . . , a > 0, x−1, x0 > 0. (63)

The proofs for Equations (57) and (59) are using the embedding of corre-

sponding equations into higher order difference equations and then higher order

version of Theorems 26 and 27. The proof for Equation (59) is based on a con-

struction of the sophisticated Lyapunov function in the region of the parameters

where Theorem 26 is not applicable, see [20]. The proofs of global behavior of

solutions of Equations (60) and (61) are based on KAM theory and some results

from algebraic and projective geometry.
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In this paper we show that we can use the theory of monotone maps to im-

prove results of Theorems 26 and 27 in the case where f is either increasing in

first and decreasing in second argument or is decreasing in both arguments. In

fact, we will give an interesting special result which shows that under certain mild

condition the local stability implies global asymptotic stability. Our method will

be based on embedding Equation (55) into related monotone two dimensional sys-

tem of difference equations to which we will apply the global attractivity theorems

of monotone systems. This will imply the global asymptotic stability of an equi-

librium of the corresponding monotone two dimensional system as well as global

asymptotic stability of the equilibrium of Equation (55).
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In the following I provide an application of theorem (54) for higher order

difference equations.

Example 1

A new proof for Pielou’s second order difference equation:

Pielou’s equation is a mathematical model in population biology that was

introduced by Pielou as a discrete analogue of the logistic equation with delay,

see [6, 14] and was investigates by [ references] using various method. in the

following I will provide an alternative proof of the global stability of the positive

equilibrium using The M-m theorem.

Pielou’s equation is given by:

xn+1 =
Axn

1 + xn−1

, x−1 ≥ 0, x0>0 and A>1

By using the following change of variable zn =
1

xn
we get:

zn+1 =
zn
A

+
zn

Azn−1

(64)

Now by using the embedding method we can use zn =
zn
A

+
zn

Azn−1

and substitute

in equation (64) as follows:

zn+1 =
zn
A

+
1

Azn−1

(
zn
A

+
zn

Azn−1

)

zn+1 =
1

A2
+
zn
A

+
1

A2zn−2

(65)

Eq. (65) is of the form zn+1 = f(zn, zn−1, zn−2),and has has a unique fixed point

z̄ = 1
A−1

. To apply the theorem first we show that f(x, y, z) has an invariant

interval I =
[

1
A2 , U

]
: where U ≥ A2+1

A(A−1)
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Let x, y, z ∈ I and f(x, y, z) = 1
A2 + x

A
+ 1

A2z
> 1
A2 , then:

1
A2<f(x, y, z) ≤ 1

A2 + U
A

+ A2

A2 = 1
A2 + 1 + U

A
= A2+1

A2 + U
A
≤ U(A−1)

A
+ U

A
= U

⇒ f(x, y, z) ∈ I.

Next is to solve the system:


M = f(M,m,m)

m = f(m,M,M)

⇔


M = 1

A2 + M
A

+ 1
A2m

m = 1
A2 + m

A
+ 1

A2M

⇔


Mm(A−1)

A
= 1

A2 + m
A2 (∗)

mM(A−1)
A

= 1
A2 + M

A2 (∗∗)

By subtracting Eq.(*) from Eq.(**) we get:M
A2 − m

A2 = 0⇒M = m.

I conclude that every solution of Eq.(65) with initial conditions in I must converge

to the unique equilibrium z̄. As I can choose U ≥ A2+1
A(A−1)

to be arbitrarily big, I

can also conclude that every solution of Eq.(65) with positive initial conditions

must converge to the unique positive equilibrium z̄ = 1
A−1

.

Consequently is x̄ = A− 1 is globally asymptotically stable for Pielou’s equation.
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Remark 4 The connection between the theory of monotone maps and the asymp-

totic behavior of Equation (55) follows from the fact that if f is strongly increasing

in both variables, then a map associated to Equation (55) is a cooperative map on

I2 while the second iterate of a map associated to Equation (55) is a strictly co-

operative map on I2. If f is strongly decreasing in first variable and increasing in

the second variable, then a map associated to Equation (55) is a competitive map

on I2 while the second iterate of a map associated to Equation (55) is a strictly

competitive map on I2.

Set xn−1 = un and xn = vn in Equation (55) to obtain the equivalent system

un+1 = vn
vn+1 = f(vn, un)

, n = 0, 1, . . . .

Now a map associated to Equation (55) is F (u, v) = (v, f(v, u)). Then F maps I2

into itself and the second iterate T := F 2 is given by

T (u, v) = (f(v, u), f(f(v, u), v)) .

and it is clearly strictly cooperative on I2, when f is increasing in both arguments

and competitive on I2, when f is decreasing in first and increasing in second

variable. Unfortunately, there is no such a result in the case when f is either

decreasing in both variables or increasing in the first and decreasing in the second

variable.

Remark 5 The characteristic equation of Equation (55) at an equilibrium point

(x̄, x̄) is

λ2 − pλ− q = 0, (66)

where p = fx(x̄, x̄) and q = fy(x̄, x̄). If f is increasing in both arguments then

Equation (66) has two real roots λ, µ which satisfy λ < 0 < µ, and |λ| < µ. Here

Dif, i = 1, 2 denotes the partial derivative with respect to the i-th variable.
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The following result is for strictly order preserving maps [7]. The result is

stated for a partial order � in Rn, but it also holds in Banach spaces.

Theorem 29 (Order Interval Trichotomy of Dancer and Hess, [7]) Let

u1 � u2 be distinct fixed points of a strictly order preserving map T : A → A,

where A ⊂ Rn, and let I = Ju1, u2K ⊂ A. Then at least one of the following holds.

(a) T has a fixed point in I distinct from u1 and u2.

(b) There exists an entire orbit {xn}n∈Z of T in I joining u1 to u2 and satisfying

xn � xn+1.

(c) There exists an entire orbit {xn}n∈Z of T in I joining u2 to u1 and satisfying

xn+1 � xn.

Corollary 6 If a and b are stable fixed points, then there exists a third fixed point

in Ja, bK.

The following result is a direct consequence of Theorem 29.

Corollary 7 If the nonnegative cone of � is a generalized quadrant in Rn, and if

T has no fixed points in Ju1, u2K other than u1 and u2, then the interior of Ju1, u2K is

either a subset of the basin of attraction of u1 or a subset of the basin of attraction

of u2.

A simple consequence of this result is the following

Corollary 8 If monotone map T has exactly three fixed points a � b � c, where b

is stable, then the interior of Ja, cK is a subset of the basin of attraction of b.
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4.2 Main Results

The next result is an extension and improvement of Theorem 26.

Theorem 30 Let [a, b] be a compact interval of real numbers and assume that

f : [a, b]2 → [a, b]

is a continuous function one fixed point x ∈ [a, b] such that:

(a) f(x, y) is non-decreasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is

non-increasing in y ∈ [a, b] for each x ∈ [a, b];

(b) System (54) has at most three solutions;

(c) p− q < 1, where p and q are defined in Remark 5.

Then x is globally asymptotically stable in [a, b].

Proof. Set

m0 = a and M0 = b

and for i = 1, 2, . . . set

Mi = f(Mi−1,mi−1), mi = f(mi−1,Mi−1), i = 0, 1, . . . . (67)

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . ≤Mi ≤ . . . ≤M1 ≤M0

and

mi ≤ xk ≤Mi for k ≥ 2i+ 1.

Set

m = lim
i→∞

mi and M = lim
i→∞

Mi.

Then

M ≥ lim sup
i→∞

xi ≥ lim inf
i→∞

xi ≥ m (68)
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and by the continuity of f ,

m = f(m,M) and M = f(M,m).

Now if m = M = x̄ we are done by Theorem 26. Otherwise m < M , which means

that system (67) has three equilibrium points (m,M) �ne (x̄, x̄) �ne (M,m) and

that the ordered interval J(m,M), (M,m)K is invariant. Since system (67) is a

competitive system the global attractivity of its equilibrium E(x̄, x̄), in view of

(68) would imply the global attractivity and so global asymptotic stability of x̄ as

the equilibrium of Equation (55). It is interesting to note that the condition for

local stability of x̄ as the equilibrium of Equation (55) is different from the the

condition for local stability of E(x̄, x̄) as the equilibrium of system (67). Indeed,

the Jacobian matrix of system (67) evaluated at E is

J =

[
p q

q p

]
,

with eigenvalues λ± = p ± q. In view of the fact that p > 0, q < 0 the condition

|λ±| < 1 becomes equivalent to the condition

p− q < 1. (69)

Now in view of Corollary 8 the interior of the ordered interval J(m,M), (M,m)K is

attracted to E.

The well known condition for local asymptotic stability of the equilibrium x̄,

under the restrictions p > 0, q < 0 is that

p+ q < 1,−1 < q. (70)

Clearly, condition (69) implies (70), which means whenever E is local attractor for

system (67) then x̄ is local attractor for Equation (55), but converse is not true.

2

The next result is an extension and improvement of Theorem 26.
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Theorem 31 Let [a, b] be a compact interval of real numbers and assume that

f : [a, b]2 → [a, b]

is a continuous function one fixed point x ∈ [a, b] such that::

(a) f(x, y) is non-increasing in both variables;

(b) System (56) has at most three solutions;

(c) q > −1, q + p > −1, where p and q are defined in Remark 5.

Then x is globally asymptotically stable in[a, b]

Proof. Set

m0 = a and M0 = b

and for i = 1, 2, . . . set

Mi = f(mi−1,mi−1), mi = f(Mi−1,Mi−1), i = 0, 1, . . . . (71)

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . ≤Mi ≤ . . . ≤M1 ≤M0

and

mi ≤ xk ≤Mi for k ≥ 2i+ 1.

Set

m = lim
i→∞

mi and M = lim
i→∞

Mi.

Then (68) holds and by the continuity of f ,

m = f(M,M) and M = f(m,m).

Now if m = M = x̄ we are done by Theorem 27. Otherwise m < M , which means

that system (71) has three equilibrium points (m,m) �ne (x̄, x̄) �ne (M,M) and
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that the ordered interval J(m,m), (M,M)K is invariant. System (71) implies that

Mi and mi are solutions of the following first order difference equation

yi+1 = G(yi−1), i = 0, 1, . . . , (72)

where

G(u) = f(f(u, u), f(u, u))

is an increasing function. If the equilibrium x̄ is global attractor for Equation (72)

then it is also global attractor for Equation (55).

The Jacobian matrix of system (71) evaluated at E is

J =

[
0 p+ q

p+ q 0

]
,

with eigenvalues λ± = q. The well known condition for local asymptotic stability

of the equilibrium E(x̄, x̄) of system (71), under the restrictions p, q < 0 is that

q > −1 and q + p > −1, which shows that E is locally stable. Since system (71)

is anti-cooperative, using the result for global attractivity of such systems [11] we

conclude that E attracts the interior of the box J(m,m), (M,M)K, which completes

the proof.

2

Remark 6 Theorems 26 and 27 were originally applied to the difference equation

xn+1 =
a+ bxn + cxn−1

A+Bxn + Cxn−1

, n = 0, 1, . . . , (73)

where all parameters and the initial conditions x−1, x0 are non-negative and such

that A+Bxn +Cxn−1 > 0 for every n. It is interesting to observe that in the case

of Equation (73), the condition (56) has only the equilibrium solution x̄ as solution

and so in this case the condition (56) is automatically satisfied. Furthermore, the

condition (54) can have only one solution (m,M),m < M so the condition (b) of

Theorem 30 is automatically satisfied for Equation (73).
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4.3 Examples

In this section we give some examples of difference equations where Theorems

30 and 31 apply.

Example 2 Equation

xn+1 =
1

Bxn + Cxn−1

, n = 0, 1, . . . , (74)

where B,C > 0, x−1, x0 ≥ 0, x−1 + x0 > 0 was considered in [14], where we proved

that every solution of this equation converges to the unique equilibrium x̄ = 1
B+C

.

We used the method of limiting sequences in [14]. Here we use Remark 6 to prove

this result. Indeed, we need to find an invariant and attracting interval [L,U ].

Choose 0 < L < U such that LU = 1
B+C

and x−1, x0 ∈ [L,U ] we have that

f(xn, xn−1) =
1

Bxn + Cxn−1

≤ 1

(B + C)L
= U

and

f(xn, xn−1) =
1

Bxn + Cxn−1

≥ 1

(B + C)U
= L.

Since (56) is automatically satisfied every solution of Equation (74) converges to

the unique equilibrium, which is globally asymptotically stable.

Example 3 Equation

xn+1 =
1

A+Bxn + Cxn−1

, n = 0, 1, . . . , (75)

where A,B,C > 0, x−1, x0 ≥ 0 was considered in [14], where we proved that

every solution of this equation converges to the unique equilibrium x̄. Here we

use Remark 6 to prove this result. Indeed, we only need to find an invariant and

attracting interval [L,U ]. Choose L = 0, U = 1/A. If x−1, x0 ∈ [L,U ] we have that

L = 0 ≤ f(xn, xn−1) =
1

A+Bxn + Cxn−1

≤ 1

A
= U

Since (56) is automatically satisfied the unique equilibrium of Equation (74) is

globally asymptotically stable.
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Example 4 Equation

yn+1 =
yn + p

yn + qxn−1

, n = 0, 1, . . . , (76)

where p, q > 0, y−1, y0 ≥ 0, y−1 + y0 > 0 was considered in [14], where we proved

that every solution of this equation converges to the unique equilibrium ȳ for all

parameter values except for the parametric region p < q < 1 + 4p. Here we will

use Theorem 30 to prove global asymptotic stability of the unique equilibrium ȳ

for p < q < 1 + 4p. As we have shown in [14] the interval [q/p, 1] is an invariant

and attracting interval for Equation (76) when q > p. We only need to check the

condition (b) of Theorem 30 to prove our statement. Indeed

fu(ȳ, ȳ) =
qȳ − p

ȳ2(q + 1)2
, fu(ȳ, ȳ) = − q(p+ ȳ)

ȳ2(q + 1)2
,

where

f(u, v) =
u+ p

u+ qv
.

Now the condition fu(ȳ, ȳ)− fv(ȳ, ȳ) < 1 after simplification yields

(q − 1)ȳ < 2p, (77)

which is clearly satisfied if q ≤ 1. If q > 1 then after straightforward simplifications

condition (77) becomes equivalent to

p(q + 1)2(q − 1− 4p) < 0,

which holds. Thus we prove the following result.

Theorem 32 The unique equilibrium of Equation (76) is globally asymptotically

stable.
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Finally I introduce the following global stability result that can be useful when

the maps are not monotone or continuous:

Corollary 9 Let S ⊆ R2 , f : S → R and I a compact interval of the real line.

Suppose there exists a continuously differentiable function G : I × I → I satisfying

the following properties:

1. G(x, y) is non-decreasing in x and non-increasing in y

2. for all m,M ∈ I, m ≤ x, y ≤M ⇒ G(m,M) ≤ f(x, y) ≤ G(M,m)

3. G(x, y) has a unique fixed point x̄ in I

4.

{
G(M,m) = M
G(m,M) = m

(a) has ”a unique solution M = m = x̄ in I

” or ” alternatively:

(b) has ”three solutions (x̄, x̄) ,(M,m) and (m,M) where M 6= m

and Gx(x̄, x̄)−Gy(x̄, x̄)<1”

Then:

1. x̄ is also a unique fixed point for f(x, y) in I

2. every solution of the difference equation xn+1 = f(xn, xn−1) in I must con-

verge to x̄.

The proof of this corollary is similar to the proof of theorems 30 and 54.

93



Example 5

Consider the equation:

xn+1 = f(xn, xn−1) =
a+ xn

A+Bxn + xn−1

(78)

Consider the function G(x, y) = a+x
A+(B+1)y

. which is non-decreasing in x and

non-increasing in y.

One can show that: G(x, y) has one unique positive fixed point and has an

invariant interval: [0, U ] for u ≥ a
A−1

provided that A>1. Furthermore:

for all M,m ∈ I, m ≤ x, y ≤M implies :

a+m

A(B + 1)M
≤ a+ x

A+Bx+ y
≤ a+M

A+ (B + 1)m

Thus

G(m,M) ≤ f(x, y) ≤ G(M,m)

In addition the system

{
G(M,m) = M
G(m,M) = m

has one solution since:


M =

a+M

A+ (B + 1)m

m =
a+m

A(B + 1)M

⇒


a+M = AM + (B + 1)Mm

a+m = Am+ (B + 1)mM

By subtracting

one equation from the other we get:

M −m = (A− 1)(M −m) but as A>1 the latter implies M = m. I conclude that

every solution of Eq.78 in the interval [0, U ] must converge to the unique positive

equilibrium. On the other hand since we can choose U ≥ a

A− 1
arbitrarily large,

I conclude that the positive equilibrium of Eq.78 is globally asymptotically stable.

94



List of References

[1] A. M. Amleh, E. Camouzis, and G. Ladas, On the Dynamics of a Rational
Difference Equation, Part I, Int. J. Difference Equ. 3(2008), 1–35.
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[13] M. R. S. Kulenović, G. Ladas, and W. S. Sizer, On the recursive sequence
xn+1 = αxn+βxn−1

γxn+Cxn−1
, Math. Sci. Res. Hot-Line 2(1998), 1–16.

95
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