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ABSTRACT

XY-positioning is an important task in industrial applications. The improve-
ment of the speed of positioning while keeping good accuracy can increase produc-
tivity and is therefore highly desirable. The studied H-frame system is a parallel
xy-positioning device, which due to less moved masses is potentially capable of
fast acceleration and therefore faster positioning then traditional stacked systems.
One feature of the system which enables its parallel structure is the use of one long
timing belt to transmit the power of the two stationary motors to the end-effector
stage. The use of an elastic transmission element also causes the biggest disadvan-
tage of the system, an uncertainty of end-effector position, since the end-effector
position, for practical as well as economical reasons, is not available as feedback
signal for controlling the system. This means that even if an accurate tracking of
the desired motor angles was achieved, the end-effector position may still deviate
from the desired path, due to stretching in the belt. Another effect making an
accurate control difficult is the presence of nonlinear friction in the system. This
thesis addresses the development of an accurate control system, which is a require-
ment to be able to utilize the advantages that the parallel structure of the H-frame
system provides.

In order to be able to develop an accurate control strategy, the dynamic be-
havior in the presence of nonlinear friction as well as the flexibility of the belt has
to be understood. An accurate dynamic model is needed for the development of
most sophisticated controllers. That is why in this work first a one-axis belt drive
positioning system is studied and a dynamic model for it is derived. The findings
from this simpler one-axis case are then utilized to derive a dynamic model for the
two axis H-frame system. First a detailed 20"*-order model of the system is being

derived, which then based on assumptions is simplified to a lower order 8th_order



case. Nonlinear friction is considered for the one-axis as well as for the simplified
8th_order H-frame case. Experimental results are utilized to verify that the derived
models can resemble the dynamics of the system. The model can be used for sim-
ulating different controllers before implementing them on the real system as well
as it can be used to develop sophisticated controllers. The model is verified with
experimental data from the real system. Furthermore the performance of PID-
and PD-controllers are studied in simulation as well as experimentally.

It is found that PID- and PD-controllers, due to the disadvantages the system
has described above, are not sufficient control strategies for high-speed tracking.
However the dynamic nonlinear model derived in this work gives future researchers
the tool to develop more sophisticated controllers, in order to solve the problem of

accurate control of the H-frame system.
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CHAPTER 1

Introduction

1.1 The H-frame positioning system general setup

The device to be studied is an XY-positioning system. The system is able to
position a stage or so called end-effector in a horizontal plane. The end-effector can
be equipped with a tool or some kind of other payload which needs to be positioned
in z and y. The system is called H-frame positioning system. This name refers to
the layout of the system, which is shown in Figure 1.1 that looks like a capitalized
H. There are two parallel tracks along which a bridge is lead through on linear ball
bearing-blocks. On the bridge there is a third track mounted, perpendicular to
the first two tracks, on which a cart slides. Those three tracks form a capitalized
H. On each end of the two parallel tracks sits one pulley, where the ones at the
lower end are directly attached to the motor shaft. On each end of the track on
the bridge, there are two pulleys. The open timing belt is guided around those 8
pulleys. The open ends are both attached to the cart, which runs on the bridge.
The system shows a parallel configuration, meaning that the actuator drive system
is not an open kinematic chain. This parallel setup enables to have two stationary
motors, which generates a couple of advantages in dynamic behavior, which is
explained later. Another specialty of the system studied is the use of only one long
timing belt, which wraps around the whole system including the motor pulley,
to transform the rotational motion of the motor shafts into a linear z-motion
of a bridge and a linear y-motion of a cart relative to the moving bridge. The
overlapping of those two linear motions creates the zy-motion of the end-effector.

The motors used for the system are geared DC-brush type (gear ratio 5.9:1)
and are equipped with encoders (321084%‘%) measuring the angular position of

the motor shaft. Those motors are interfaced through amplifiers by a controlling

.
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Figure 1.1. General layout of the H-frame positioning system

Personal Computer (PC). The PC interacts with the motors through 12-bit D /A-
converters and a 24-bit counter board. That means it can send input signals to each
one of the motors, as well as reading out the encoder signals. The D/A- and A/D-
converters work at a sampling time Tsqmp = 0.001s and have a input /output range
4+10V. The PC output Voltage is amplified by amplifiers before send to the motors
as their input voltage. Furthermore the system has 4 limit switches placed at each
end of the linear axis for safety reasons to shut down the motors in case of a runaway
condition as well as for homing. Those Limit switches are interfaced by the PC
through a parallel port. There are also two laser-displacement measuring devices
(Model: optoNCDT; Manufacturer: MICRO-OPTRONIC Dresden) mounted onto
the system that measure the z- and y-position of the end-effector. Those lasers

however, for reasons explained later as well as for their comparably small measuring



range of about 10cm?, which does not cover the whole workspace, are only used for
verifying purposes of the actual end-effector position and not as feed back signals
for control. Figure 1.2 shows a picture of the H-frame system the way it is set up

in the Robotics Lab.

Figure 1.2. H-frame positioning system

1.2 Motivations for the studying of the H-frame system

The special layout of the H-frame system has certain advantages over
nonparallel traditional XY-positioning tables. The parallel configuration with
its stationary motors is very different from most commonly used serial stacked
Systems. Those stacked systems are built up from two independent linear
Positioning-axes. One of those axes, including the driving motor and all mechan-

ical parts needed to transmit the rotational motion of the motor into a linear




position of the stage, is then mounted perpendicular onto the other axis. The
overlapping of the motion of those two independent linear axes gives then the
position in z and y. For arbitrary moition the top axis has to be moved by the
bottom axis when that one moves, which results in a comparably big mass to be
moved. The H-frame however with its parallel setup has comparably less masses
to accelerate, since the motors are stationary and do not have to be moved and
the mechanical parts to transmit the motor power to the end-effector are not
heavy metal parts, like for example ball screws, but a relatively light belt. Those
less masses to move result in less inertia and therefore in the ability to accelerate
quicker and due to that a faster positioning with comparable motor power.
Another advantage of the H-frame is a relatively low profile. Compared to stacked
systems, which have to arrange their axis in two levels, in order to move one
through the other, the H-frame can be designed to be entirely in one plane. This
makes the H-frame ideal for applications, which might have some constraints in
space in the z-direction.

The H-frame can also be seen as a low cost alternative to the traditional XY-
positioning tables, since less precision parts are needed to transmit the rotational
motion of the motors into a linear motion of the end-effector. Pulleys and timing
belts are comparably cheap machine parts, which are standardized. Furthermore
belt drives are known to be insensitive with regards to wheel alignment, which

lowers costs for production and they are also comparably quiet power transmission

Systems.

However with those multiple advantages also comes the biggest disadvantage
for the H-frame system. This is that the timing belt is an elastic transmission

element, compared to rigid elements like ball screws. This elasticity of the belt




results in an uncertainty of exact end-effector position especially in non steady
state modes like change in direction as well as due to nonlinear friction. This
uncertainty results out of the fact, that the actual measured and controlled
signals are the motor angles instead of the end-effector position. This is because
a measurement system able to measure the position of the end-effector accurately
over the whole workspace is not practical since it would be very expensive. To
address this limitation, an adequate control strategy based on feedback of the
motor angles will be investigated in this thesis. That is the reason why in this
work a dynamic model will be developed and different control strategies will be

explored to find a solution to solve this major disadvantage.

The solution for this problem is especially desirable since XY-positioning ta-
bles are widely used in industry and a device showing the same accuracy as tra-
ditional systems, but being able to position faster due to the advantages stated
above, would increase productivity, by allowing more units being processed per
unit of time.

The H-frame positioning system could be imagined for applications like laser cut-
ting or welding, where the tool would be mounted on the end-effector, which cuts
or welds sheets underneath the device. Also applying glue on a two dimensional
part could be an application, in which the end-effector has to follow a trajectory
closely. Pick and place tasks, for which the end-effector could be equipped with a
gripper, is a rather point to point (PTP) task for the H-frame system. Less fitting
however, due to the disadvantage of the flexible transmission link the belt, would

be an application with major reaction forces like milling or drilling tasks.




1.3 Kinematics of the H-frame system

The motion of the end-effector in z- and y-direction is, as mentioned before,
generated by an overlapping of the rotations of the two motors. This section will
show the relationship between the rotations of the motors and zy-motion of the
end-effector.
The linear axis are shown in Figure 1.1 and the positive rotation for each of the
motors are defined as the mathematical positive rotation around the z-axis pointing
outward from the paper plane. So that the motor torques shown in Figure 1.1 are
positive torques.
Turning only one motor while keeping the other one still, results in a linear motion
of the end-effector in a 45° angle towards the zy-coordinate system. A positive
rotation of motor 1 results in a motion in negative z and negative y, while a
negative rotation of the same motor would cause a motion in positive z and y.
Similarly a positive rotation of motor 2 while holding motor 1 still would cause
a motion in positive z- and negative y-direction and a negative rotation a linear
motion of the end-effector in negative x and negative y . Figure 1.3 shows the
linearized rotational axis ¢; and ¢, which are the motor shaft angles of motor 1
and motor 2 respectively, as they lie towards the zy-coordinate system describing
the end-effector position.

By multiplying the pulley radius r with the motor angles, linearized rotations can
now be expressed as vectors in the ¢7r@sor-coordinate system, and the zy-position
of the end-effector can be seen by looking at the z- and y-component of the vector
sum of those ¢;7- and p,r-vectors. A motion only in z-direction is being generated
by rotating the motors by the same amount in opposite direction, while a motion
only in y-direction is being generated by rotating both motors the same amount

in the same direction. Through varying the amounts of rotation for each motor a
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Figure 1.3. Relation rotational axis vs. linear axis

motion in any angle towards the z-axis can be reached.

This relation can be expressed in a matrix equation shown in equation 1.1.
Az | | =ir ar Apy
[Ay } - [ -5 —lr} [AWJ -

1.4 Literature Review

Survey of literature was performed related to previous work on control of
positioning systems with flexible transmission elements. There was no publica-
tions found describing a similar parallel zy-positioning system as the studied H-
frame system, which works with stationary motors and one timing belt. Most
Ty-positioning systems described were stacked ball screw systems or stacked belt
drive systems.

One publication was found [1] that describes the control of a stacked ball screw
ZY-positioning system, but addresses the problem that ball screws as well have a,

finite stiffness and therefore lead to a difference between end-effector position and

motor position. A torsional displacement feedback control was proposed to improve



the tracking in this work. In [2] a positioning system consisting of two stacked belt
drive axis is studied. The use of elastic transmission elements (the belts) lead
to the described uncertainty in end-effector position. An observer based sliding
mode control strategy is used in that work to address this problem. Both those
very different proposed control strategies in the above mentioned works have in
common, that an accurate model of the system has to exist to be able to successfully
implement those strategies. They also identify the elastic transmission as well
as nonlinear friction as the two major challenges in accurately controlling xy-
positioning systems.

Further literature review dealing with nonlinear friction and elastic transmis-
sion elements for only one axis systems has also been carried out. Methods pro-
posed to control one axis belt drive systems found in the literature are fuzzy-logic
[3], sliding mode methods combined with Lyapunov design [4] and feed-forward
compensator under maximum acceleration and velocity constraints [5]. References
[6] and [7] propose adaptive control strategies to address the problems caused by
nonlinear friction. Again for the majority of those control strategies proposed an
accurate model of the system to be controlled has to be accessible.

From the above we can see that nonlinear friction as well as the flexibility
of the transmission element plays a major role in choosing an appropriate control
strategy. It can also be seen, that for most control strategies proposed in the
literature to handle those challenges an accurate model description of the system

dynamics is needed.

1.5 Scope of the Thesis
In order to accurately control the H-frame system the dynamics including the
nonlinearities have to be understood. Also most sophisticated control strategies,

as the literature review revealed, require an accurate model of the dynamics of the



system to be controlled. This is why in this work, first a simple one-axis system
is studied to understand the effects related to belt drive positioning systems. For
this system a linear as well as a nonlinear model is being derived, simulated and
verified by comparing it with experimental data.

The findings from those studies are utilized to derive first a linear model of
the H-frame system. A 20*"-order model was derived using Lagrange approach.
The model is then simulated and verified with experimental results from the real
system. To simplify computational efforts, it is examined if the 20*"-order linear
system can be simplified to a lower order system. Assumptions are made and a new
8*h_order model obtained and verified by comparing it to the open loop simulation
results of the 20*"-order model as well as to the experimental data. Based on this
simplified model a nonlinear model of the H-frame system is derived and verified.

Finally the performance of basic controllers to control the H-frame system are
examined both in simulation utilizing the obtained nonlinear model and on the
real system. Specifics of the H-frame system that have to be considered in order to
control it accurately are pointed out in that process. Also the effects of challenges,
like the uncertainty of end-effector position due to an elastic transmission between
the controlled motors and the end-effector as well as the presence of nonlinear

friction, onto accurate control of the system are discussed.




CHAPTER 2

The One-Axis Model

In order to familiarize with the dynamic characteristics of a belt driven posi-
tioning system as well as to verify assumptions that where being made concerning
for example the friction and the stiffness of the belt, a 1-axis positioning system

as shown in Figure 2.1 was studied first.

Figure 2.1. One-Axis System

2.1 Equations of Motion

In order to acquire the equations of motion describing the dynamic behavior
of such a system, the timing belt was assumed to have the behavior of linear
springs with a stiffness k;; ¢ = 1,2,3 as shown in Figure 2.2, also linear friction
was assumed. So that the Forces of the timing belt onto the cart as well as on
the pulleys are of the form Fy, = k * Al, the friction force acting on the car is of
the form Fy, = b * v, and the friction torques acting on the pulleys are of the
form 74, = B *wye. Where Al, B, b, v, and wy are the difference in belt length,
rotational and the linear friction coefficient and the linear relative velocity as well

as the relative angular velocity respectively.

10



13

X2

Xy
k1 k2
M

- rrtmnmmaty
<P1\( l @3

A A

ka
WVAVAVAY

Figure 2.2. One-Axis System with coordinates and assumed belt behavior

Through the application of Newton’s Laws of motion, it was easy to find the

following system of Equations of Motion that describe the dynamic behavior of the

system.
S ’ 1 1 Bl . ™
= — — k1 — — P e — 2.1
$1 (17 — To)7 17 + (p3 — 1) i ) = (2.1)
% 'k ; k b -
Ty = (p1r— 332)—]\/} = (2g = 8037)*“]\; - _M332 (2-2)
5 (z rrk ! ( )2k LB, (2.3)
= (x, — rko— — - = e o= :
©3 2 — ¥3 2 T Y3 — ¥1 3 7 A ©3

Where 1,02 and x5, are rotational and linear coordinates as shown in Figure 2.2,
J; (i = 1,2) is the inertia of the pulleys, M is the mass of the cart, b and B;
(i = 1,2) are friction coefficients, r the radius of the pulleys and 7/ is the Motor
Torque applied, which is given by

K KK, .
™™ = Et‘/m = —_tff—(pl (24)

Where Vin is the input voltage given to the Motor and therefore the input signal
to the one-axis belt drive system. K;, K, and R are the torque constant, the
back-emf constant and the resistance of the motor respectively.

In order to easily simulate the system in Simulink the model now was trans-

ferred into State Space form(8].

x = Ax+bu

y = cx+du (2.5)

11



Where A is called the system matrix, b the input vector, ¢ the output vector and

d the feedthrough coefficient. By defining the state variables as:

1 = @1 T2 = ¢
T3 = T, T4 = T (2.6)
Ts = @3 Te = ¥3

We get the following expressions for the matrices.

System Matrix

0 1 0 0 0 0
k14k3)r? B KiK. r2 r?
S el s S U 0
0 0 0 1 0 0
A= By 0 _kitks b ks 0 (2.7)
M M M M
0 0 0 0 0 1
r2 r2 (k2+k3)r? B
ks 0 i -l R
Input Vector
e ———— S
K
R
0
b=1| (2.8)
0
U
Output Vector
c=[100000] (2.9)
Feedthrough coefficient
d=0 (2.10)

2.2 Determination of the Parameters

In order to reflect the dynamic behavior of the system accurately the param-
eters of friction, inertia and mass as well as stiffness have to be determined. After
finding values for those parameters, the accuracy of the model has to be verified by
experimental data, since not all of the parameters can be determined as accurately

and easily as for example the mass of the cart.
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2.2.1 Stiffness

The stiffness of the belt sections were assumed to be of the form

_AE

"=

(2.11)

where A is the cross-section-area of the Belt E is the E-Modulus and ! the length
of the belt section.

Since a timing belt consists of teeth and belt regions without teeth the cross-
section cannot be chosen trivially. However if the regions with and without teeth
are being considered as a serial connection of two springs as shown in Figure 2.3,
then it can be seen that as a good assumption the cross-section can be chosen to
be the one of the region without teeth.

This is because the equation for the effective stiffness of serial springs is.

ki Knt

N e R A AYA Zan AVAVAV e

A, \ Ant

Figure 2.3. Timing belt as a serial connection of two springs

ktknt

—_— 2.12
ke + kpy (2.12)

kefs =

Therefore since A; >> A,; and also k; >> k,;, this leads to the transformation of

equation 2.12 to
AnE
l

kEff ~ knt = (213)

2.2.2 Inertia & Mass

For the derivation of the dynamic model the mass of the belt is assumed to
be negligible compared to the inertia of the pulley as well as to the mass of the
cart. So that the mass of the cart and the inertia of the pulleys and not the mass

of the belt are effecting the dynamic behavior of the system.

13



While the mass of the cart can be easily and precisely determined by disas-
sembling and scaling it, the inertia of the pulleys could only be approximated. The
approximation is based on the calculations obtained from a Solid Works model of
the pulley, which has slight uncertainties since the exact aluminium alloy is not
known. Also the geometry of the Solid Works model marginally differs from those

pulleys used in the system.

2.2.3 Friction

The friction of the system is assumed to be viscous friction, which is propor-
tional to a friction coefficient b (B for the friction torques of the pulleys). The value
of the coefficient is affected by different effects, the configuration of the surfaces
rubbing against each other is one example for those effects, the lubrication of the
ball bearings of the pulleys another.

Since values for the friction coefficient for this system were not available, ex-
perimental values for similar elements as used in the system, which were previously
determined in the Robotics Lab, where used for the dynamic model. However it
should be noted, that those friction values are probably the least accurate from

the above due to this approximation.

2.3 Simulation of the One-Axis model

To verify the dynamic model as well as the assumptions made regarding the
three stiffness coefficients, inertia and friction the dynamic model was simulated in
Simulink and compared to experimental data gained from the real system. There-
fore open loop tests where run on the real system as well as open loop simulations
with previously obtained model. To compare the open loop response of the dy-
namic model and the real system a 0.25 seconds impulse of different voltages (10V,

5V) was imputed into the system and the angle position (converted into meters
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by multiplying with the pulley radius) and the velocity of the motor pulley were
recorded.

In the real system the data was recorded by a data collection software pro-
grammed in Visual Basic that utilized the encoder measurements of the motor.
For the dynamic system the A-Matrix as well as the b-, and c-Vectors of the state
space model where computed with the above chosen parameters in Matlab and
then simulated in Simulink utilizing the block diagram shown in Figure 2.4.

The c-Matrix in this case is a 2x6 Matrix of the form

——»| dmout
: i Postion output
% ety » }{y :2(;803 ™ to' Wokspace
Inpulsinput Eynamicplant model s
length 0.2558¢ of the helt drive-gydem

Velogcity output
to Wotkspace

Figure 2.4. Block Diagram showing the open loop simulation setup

=1010000 21
which computes an 2x1 output vector containing the motor angle and the motor
velocity. This vector is then split up in its elements and stored in the workspace
for plotting purposes.

The simulation has been carried out for 5V and 10V input voltages and then
plotted in comparison to the data acquired by the testing in the real system. This
gave the plots shown in Figure 2.5 and 2.6.

In those plots it can be seen, that the response of the simulated system does
not match the experimental system very well. Even though the dynamics seem
to be captured well, the response of the simulated system is less than what was

observed in the real system. However since the dynamics seem to match in general
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pretty well it was assumed, that not the model itself was wrong, but the approxi-
mated values for the inertia, stiffness and friction coefficient parameters where not
accurately chosen.

In order to figure out what impact on the system either one of those param-
eters have, each one of them was changed while keeping the other two constant.
Therefore plots were produced in which one of the parameters was doubled as well
as halved, and the other parameters were left unchanged. This was made for each
one of the three parameters. Those plots are shown in Figure 2.7-2.14.It can be
seen from those plots, that friction has by far the biggest influence regarding the
magnitude of the response. Inertia and stiffness have minor effects on the dynamics
of the system. It can be seen that the change in stiffness does not apprecia-

Motor Position with different stiffness
(Input 10V, Open Loop)
021

e | xstiffness

— 1 [2xstiffnESS

0.16

014

012

01}

Position (m)

0.08

0.06

0.04 -

0.02

1 1 1

2 2.05 21 2.15 2.2 2.25 2.3 2.35
Time (s)

Figure 2.7.

bly change the position response. Only the oscillation seen in the velocity profile

changes marginally when changing the stiffness factor by 2.  Since the inertia
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Motor Velocity with different inertia
(Input 10V, Open Loop)
08r

s | Xinetia

0.6
— 1] [2Xinertia
0.5 1 == =m0 Oxinertia
)
E o4
2
'
oS 03
]
>
0.2
0.1
0
_01 1 1 1 1 1 1 1 S
2 2.05 21 2.15 2.2 2.25 2.3 2.35
Time (s)
Figure 2.12.

of the system determines the speed of the response, the plots show as expected a
slower response for higher inertia. However the final position is the same, since a

higher inertia also leads to a slower deceleration after shutting off the motor.
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The next step was to find the correct coefficients for each of the parameters,
in order to match the simulation response with the response of the real system.
In this process it was discovered, that the real system shows nonlinear behavior,
which was not included in the derivation of the dynamic model. This nonlinear
behavior is assumed to be mainly created by nonlinear friction. Due to the non-
linearity it is not possible to find just one set of parameters that fit the response
of the real system for 10V input as well as for 5V input.

When this system is placed under closed loop control, it will be operated
closer to 5V than to 10V. 10V is also the maximum which the computer that
controls the system can provide through the D/A-card. An input to the system of
about 10V would mean that the controller is in saturation, which is an undesirable
state and therefore should not occur for too long. Due to those two reasons, it
was decided, that a good match of the characteristics around 5V is more desirable
than for 10V. Therefore for further steps which require a linear model, the 5V
correction coefficients to the parameters will be used. The parameters for that

case are displayed in Table 2.1.

Figures 2.15-2.16 show the response of the simulation versus the real system

response for the set of correction factors that fit the 5V input well.
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Variable Value
Radius T 0.0194m
Stiffness k1 1.3276){105%
ks 1.3276x10°X
ks 5.8885x10*%
Friction B 0.0021Nms
20.3259 L=
Inertia & Mass J 6.3x10 5K gm?
0.362Kg
Motor constants K; 23x10_3NTm
K. 23x107% -
R 0.71 ©2

Table 2.1. Parameters for the one-axis dynamic model
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2.4 Nonlinear Model of the One-Axis System

As shown above the linear model can accurately reflect the response to only
one certain input voltage. In control applications however the input voltage is not
necessarily well predictable and most certainly not constant, since in closed loop
control the input voltage to the plant is error driven. Therefore it is desirable to
come up with a nonlinear simulation model, which reflects the nonlinearities and
therefore can give a better idea if the chosen linear control strategies are robust
enough to run on the nonlinear system.

The source of the nonlinearity is believed to be nonlinear friction. Initially the
friction in the modeling was assumed to be strictly viscous friction and therefore
proportional to the speed. This in turn means that around zero velocity the friction
force/torque is practically zero. From experience we know that this however is not
the case.

In the literature [7] a commonly used model for nonlinear friction can be

found, shown in equation 2.15.

F¢ = bv + sign(v) F, + Sign(v)Fse"FT”?‘ (2.15)

The model consists of three terms describing three different friction related effects.
The first term describes the so called viscous friction, which is what was assumed
so far. The second term accounts for the Coulomb friction, which is an offset
value depending on the direction of motion. This effect accounts for the fact that
for velocities close to zero the friction force is not zero. The third and last term
is called Stribeck effect. It is based on the observation that the friction drops a
certain amount after motion has started. Fy, F, and F; in the equation are called
the friction force, the Coulomb force and the static force respectively, F;, is the

Stribeck related positive parameter and b the viscous friction coefficient. The
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three effects as well as their combined effect is visualized in Figure 2.17.

The Stribeck effect however has a major effect only for small velocities and

Nonlinear friction model containing the

Stribeck effect as well as viscous and Coulomb friction
1.5 T

Nonlinear friction

= == == \/igscous friction

''''' Coulomb friction -

Stribeck effect -~

Friction force (N)

5
-0.05 0 0.05
Velocity (m/s)

Figure 2.17. Nonlinear friction, Stribeck effect, viscous and Coulomb friction

therefore can be neglected in this belt drive case. This changes the nonlinear
friction model from equation 2.15 to equation 2.16, leaving only the viscous and

the Coulomb friction.

Fy = bu + sign(v) F, (2.16)

Similarly a friction torque can be expressed by changing the forces in the equation
to torques, the linear velocity to angular velocity and by adjusting the parameters.
Figure 2.18 shows the friction model described in equation 2.16.

In order to model the nonlinear friction and simulate it in Simulink the
strictly linear State Space block can not be used anymore to represent the now

nonlinear plant. To be able to account for the nonlinearity each equation from

26



Nonlinear friction model

containing viscous and Coulomb friction
1.5 T

Nonlinear friction

Friction force (N)

-15 -
-0.05 0 0.05

Velocity (m/s)

Figure 2.18. Nonlinear friction model, viscous and Coulomb friction

the set of equations of motion has to be represented as a block diagram. Simulink
offers all necessary blocks like integrators, gains and summation blocks to be able
to model differential equations. To be able to do so the equations of motions
are brought into a form which is easy to represent in Simulink block diagrams.
Equations 2.17 through 2.19 show the set of equations of motion in this form
utilizing the elements of the state space vector to represent the displacement,

velocity and acceleration of the original coordinates shown in equation 2.6.

1
2 = 7( — (z17 — @3)rky + (25 — T1)7%ks — 74, + TM) (2.17)
1
. 1
Ty = M((»’Uﬁ" — x3)k1 — (x3 — T57)k2 — Ff) (2'18)
1
1;6 E= 7((373 — x5r)rk2 — (1,'5 - 1‘1)7”2k'3 = Tf2> (2.19)
2

Figure 2.19, shows as an example, how equation 2.17 is transferred into a Simulink

27



| =
1
) B auc_“!cn Taut
5 . Embeqded
o Pl T Tauet | MATLAB Function|
b b 4 T evaluating
1 ‘TauActivel Friction:Torque
<
- P
BuSpring’ » " e n
& VO’@ e : velodiy '—’@
w‘.‘ b 154 Integrator.
unt. L bty acceleration-tovelocity
KR
%

KEKeWR

5

Figure 2.19. ¢, axis nonlinear friction block diagram

block diagram. The diagram takes the displacements z1, z3 and z5 as well as the
Voltage input to the motor V;,, as an input and returns the velocity z5 of the motor
pulley. In the upper left hand corner of the block diagram it can be seen how the
displacements z,, z3 and x5 are used to calculate the spring torque which is applied
to the motor pulley through the belt. This part of the block diagram represents
the first two terms in the bracket of equation 2.17. In the lower part of the diagram
is shown how the input Voltage V;,, as well as the fed back velocity z, are used to
calculate the motor torque 75; according to equation 2.4. Finally the Embedded
Matlab function in the upper half of the block diagram is computing the nonlinear
friction torque 74,. This function is taking the motor pulley velocity x5, the two
constants By and 7., which are the viscous friction coefficient and the Coulomb
torque respectively, as well as the sum of the spring and the motor torque (the
active torque acting on the pulley) as inputs and returns the friction torque 7v,.
Table 2.2 shows the code that is being computed while executing that function.
The function is first calculating a temporary friction torque T tomp” Friction
torques and friction forces have the characteristic to only oppose a motion, however
they would not actually change the direction of the motion, since it is a passive
force/torque. This is where the coulomb friction model creates a problem if not

implemented properly. The offset values of friction force/torque close to zero may
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function Tauf = fcn(phidot,B1,Tauc_1,TaulActive)
Tauf_tmp=Blxphidot+sign(phidot)*Tauc_1;
if phidot>=-0.01 &% phidot<=0.01 && abs(TauActive)<=Tauc_1
Tauf=TauActive;
else
Tauf=Tauf _tmp;
end

end

Table 2.2. Code to calculate nonlinear friction

actually change the direction of motion. This is what the if-loop in the function
is preventing, it sets the actual friction torque if greater then the active torque
(in this case the sum out of motor torque and spring torque) in a velocity band
close to zero equal to the active torque in order to cancel out the acting torques
and to prevent a change in direction of motion. This friction torque is then being
subtracted from the acting torques, which completes the bracket expression. The
result of that substraction is then divided by J;, which according to equation 2.17
then gives the acceleration of the motor pulley. The acceleration is then integrated
to obtain the velocity.

A similar block diagram is generated for each one of the equations of motion,
with each having a function to account for the nonlinear friction occurring in that
axis. Those 3 block diagrams are then assembled together as subsystems as shown
in Figure 2.20.

In this setup the output velocities from each axis block diagram are integrated to
obtain the position, which completes together with the velocities the whole state
vector. The position is also fed back as the input to the axis block diagrams. The
block diagram in Figure 2.20 is again stored in a sub system to get a similar open
loop simulation setup (Figure 2.21) as in the linear case. The motor gain seen in
this block diagram is the amplifier gain, which is also present in the real system,

which in the linear case is included in the input vector b.
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Figure 2.21. nonlinear one-axis open loop simulation setup

With this nonlinear model of the plant it should now be possible to find
one set of parameters including the Coulomb friction force/torques that makes it

possible to match the 5V as well as the 10V experimental data. The set of friction

parameters that were found, that made this possible are given in Table 2.3.

Figures 2.22 and 2.23 show the results of the nonlinear simulation with the
above stated friction parameters compared to the experimental data. It can be
seen, that now both the 5V and the 10V input experimental data can be matched

well in contrast to what could be experienced with the linear friction simulation

(Figures 2.15 and 2.16).
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Variable Value

Viscous friction coefficients B 0.0016Nm s

B, 0.0016Nm s

b 19.0424%
Coulomb force/torque Tt 0.0150Nm
Tey 0.0150Nm

E, 0.2000V

Table 2.3. Set of friction parameter one-axis nonlinear model
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5V and 10V Open Loop input
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2.5 Discussion of the Results

In this chapter a linear dynamic model representing the dynamic behavior
of the studied one-axis belt drive system was first derived. After parameters were
determined was be shown that this model can match experimental results obtained
from the real system. However due to nonlinear behavior of the system this one set
of parameters was valid for only one input voltage. Nonlinear friction was found to
be the major source of the nonlinearities. Therefore a nonlinear model reflecting
the nonlinear friction was derived. It was shown that with this nonlinear model
experimental data for multiple input voltages could be matched in simulation.

With those findings the next step is to utilize them to find a dynamic model for

the H-frame system.
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CHAPTER 3

The Two-Axes H-frame Model

After successfully finding a dynamic model for the one-axis system, the next
step was to utilize the findings to find a dynamic model for the H-frame two-axes

positioning system shown in Figure 3.1.
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1
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Ty
a)
N

Figure 3.1. H-frame System

3.1 Equations of Motion for the H-frame System
For a complex system like the H-frame system the technique of drawing free
body diagrams and using d’Alemberts principle is not the best choice, even though

theoretically possible using that technique, the derivation will be to complex, which
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can easily lead to errors. The better choice is using Lagrange’s Equations (equa-

tion 3.1[9]) to get the set of equations of motion.

%(%)—%:Q;C fof F=1,2,.x.4 (3.1)

For this matter in the first step generalized coordinates g; have to be defined.
Since the belt sections between the pulleys are again assumed to be springs all the
pulleys can to some degree rotate freely from each other. Therefore generalized
angular coordinates @1 to g are assigned to the pulleys. Additionally the stage
can move in two directions, that is why two linear generalized coordinates z and
y are introduced. This gives a total of 10 generalized coordinates, which should
correspond to ten degrees of freedom of the system, if the coordinates are chosen
correctly. Since each of the 8 pulleys as well as the stage in two directions can
move while all others are fixed it can be seen that the system has ten degrees of
freedom. Figure 3.2 illustrates how the generalized coordinates are introduced to

the system.

The L-function in equation 3.1 is called the Lagrangian[9] and is defined as
L=T-V (3.2)

Where T is the kinetic energy of the system and V' is the term for the potential
energy. The next step is to come up with expressions for the kinetic and the
potential energy.

The kinetic energy of the whole system can be summed up from the kinetic
energy of every element containing inertia, in this case all 8 pulleys as well as the
stage, where the stage has kinetic energy in y direction (only the cart) and one in
x direction (the bridge including the cart). Those kinetic energy terms turn out

to be:
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Figure 3.2. Generalized coordinates introduced to the H-frame System

Cart (only in y direction)

1

Teart = §Mcarty2 (33)
Bridge (including the Cart)
1 .2
Tb’ridge = 5 bridgeL (34)
Pulleys 1-4
1. .,
Tpl = §J1Q01 (35)
I .
Tpo = 500" (3.6)
|
T = 5]39032 (3.7)
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1

Tpy = 2J4¢42
Pulleys 5-8

1 . 1 .
Tp5 = §J5g052 + Emp5x2

P .91 "
Tye = §J6806 + 5Meed

1. 1 .
Ty = §J7<P72 + imsz

1. .o 1 9
Tpg = §J8Q08 + o M8

(3.8)

(3.9)
(3.10)
(3.11)

(3.12)

The potential energy that is occurring in the system is exclusively stored in

the belts, which act like linear springs. There is no potential energy due to gravity

since the movement, as the system is setup in the Robotics Lab, is only in the

horizontal plane. Therefore the potential energy term can be summed up of the

potential energy stored in the 9 belt sections. Those belt sections are the left

and right long outer sections (k; and k3), the 4 shorter belt sections between the

bridge pulleys and the 4 corner pulleys (ks — kg), the shorter parallel belt sections

in between the bridge pulleys and the cart (k; and kg) and the long belt section

parallel to the bridge (ko). From now on we will refer to them as belt sections 1

through 9 according to their stiffness k; ¢ = 1,2,...,9 as shown in Figure 3.2. The

potential energies stored in the belt sections are:

Belt Section 1 and 2

1
i = §k1(9017"—8037“)2

1
‘/2 = —2—k2(—g027‘+9047“)2

Belt Sections 3-6

1
‘/3 = 5]433(—@17’ — ©5T — I)Q
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1
Vi = §k4(¢27”+9067’ — x)? (3.16)

1
Vs = §k5(<p37" + @7r + )2 (3.17)
1
Vé = 5]{36(—@47“ — gT + II?)Q (318)
Belt Sections 7-8
1 2
Vi = thil—pm ) (3.19)
1
Vs = §k8(<,08r - y)2 (3.20)
Belt Section 9
1
Vo = 5799(9057‘ — per)? (3.21)

Using the results from equations 3.3-3.21 the Lagrangian can be written as:

1 1 1 1 1 1
L = M i b =Mopigeed® + = Jibs% + —Jatn? 4 — Jsifa® - —Juths
5 Y +2 bridge® +21<P1 +22902 +23<ﬂ3 +24<P4
1 . 1 . 1 . 1 .
+ '§J5(P52 + §mp5:c2 + §J6g062 + 57711,61'2
1 ) 1 . 1 . 1 .
+ §J7§072 + §mp7x2 ~+ §J8(P82 + §mp8:c2
1 1
— 5k1(<#717” 0 i 5k2(—<ﬂ27‘ + pgr)?
1 1
- §k3(—g01r — 5T — x)2 - 5]124((,027“ + g1 — x)Q
1 9 1 2
— §k5(cp3r + or +1)° — §k6(—<p4r — Qg + )
1 1 1
- §k7(—<ﬂ77" +y)* — §k8(<PsT —y)? - §k’9(s057° — per)” (3.22)

After deriving the Lagrangian, an expression for the non-conservative gener-
alized forces Q7° has to be found. The non-conservative forces are defined by the

equation 3.23 [9]
LN

Q=) Fi W (3.23)

k=1
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and can be found by looking at the virtual work done by those non-conservative

forces through
5WTIC

(5qj

Qe = for j=1,2,...,10. [9] (3.24)

Where §W" is the non-conservative virtual work and dg; (for j=1,2,...,10)
are the possible virtual displacements along the generalized coordinates. The non-
conservative forces acting on the H-frame system are the Motor torques 7y, and
T, as well as the friction forces and torques occurring in the sliders and the pulley

bearings. Therefore the non-conservative virtual work acting on the system is

oWne = _ybcartéy - j;bbridgedx + (TMl - Blgbl)(sgpl + (TMz - 329.02)6@2
—B3p30p3 — Bypsdps — Bspsdps — Bepedps

—B7¢70p7 — Bgpgdyps (3.25)

Where 73y, is described similar to the one axis model and is given by equation 3.26.

:&V; _KtKe .

L — s =13 2

TM™;

Now by calculating the derivatives in equation 3.1 and 3.24, where ¢; to qio
are x,y and ¢; to @g respectively, and plugging them into equation 3.1 the set of
equation of motions describing the dynamic behavior of the H-frame system can

be evaluated. These equations of motions are:

1
T = [—(/-Cg + ks + ks + k6)117 - bbridge:t
Mbridge )
—ksroy + karpa — ksrips + keroy — karps — ksror + kers] (3.27)
. 1 )
y = [— (k7 + ks)y — bearty) + krrir + kgryg) (3.28)

cart
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P1

2

P3
2
Ps
D6
2

P8

1
I[—k;g'f‘l‘ == (k)l + k3)7‘2901 = (Bl +

R
K
+kir¥ps — ksr?ps + #th]
1 KK,
—[—karz — (ky + ky)r%py — (By + =2
Jo R

K
+k27“2904 = k47'2906 + Et‘/ém]

KiK.

1 )
7[—74757"35 + k11?01 — (K1 + ks)r’ps — Bsgs — ksr?eq]
3

1 .
:-]—-U{IGTQZ + k’z?"2g02 — (kg + kG)T2§04 = B4g04 = ksT’ztpg]
4

1
Js
1
Je

—[—ksrz — kar®p1 — (ks + ko)rps — Bs@s + kor*e)

[karx — k47"2g02 + k9T2g05 — (ks + kg)r2806 — Bge)

1 ;
j—[—‘k‘57’l’ + ]{577'@/ — k‘57“2(p3 = (k5 + k7)7"2g07 — B7(,07]
7

1 )
78[k6m" + kgry — ker2ps — (ke + k:g)r2<p8 — Bgs]

(3.29)

(3.30)

(3.31)
(3.32)
(3.33)
(3.34)
(3.35)

(3.36)

This set of equations of motion is again being transformed into state space

form [8], for the purpose of simulation.

X = Ax+ Bu

y = Cx+Du

(3.37)

Where A, B, C and D are called the system matrix, input matrix, output matrix

and feedthrough matrix respectively. The states are defined as followed:

T

zs3

T5

X7

Tg

x Ty =1 Z11 = P4
(] Ty =Y T13 = 5
1 Te = Y1 T15 = Pe
o) Ty = P2 T17 = @7
3 T10 = Y3 T19 = g

39

T12 = P4

T4 = Q5
T16 = Y6
T18 = 957

Tao = P3

(3.38)



3.2 Determining the Parameters

Now after a mathematical description of the dynamics of the system is found
the next task is to define the parameters in order to be able to simulate the system.
For the H-frame the same assumptions are made regarding stiffness and friction,
as for the one-axis system. This means that for the stiffness, only the length of the
belt sections have to be measured, for the inertia the masses of the cart as well as
for the bridge have to be scaled and for the friction the same parameters are used
as for the one-axis model. Additionally the correction factors for the good match

for 5V input, as gained from the testing of the one-axis model are utilized.

3.3 Verifying the Model by Open Loop Simulation

After obtaining the dynamic model, simulations have to show if the mathemat-
ical description of the system matches the behavior observed in the real system.
For this matter open loop simulations are carried out and the resultant data is
compared with the data obtained from test runs on the real H-frame system. The
open loop simulation is again being done in Simulink, with a very similar setup
(see Figure 3.3) as for the one-axis system. The Model is again represented by
a state space block in which the A- and b-Matrix of the model are utilized, the
c-Matrix in this setup is a 20 by 20 identity matrix, in order to be able to store
the whole state vector. Furthermore is unlike in the one-axis case the input to the

plant is a 2 by 1 vector.

Signal 1 e . L
E * _AX*BU +———{Statevector_Hframe_20th
Signal 2 F—— y= Cx+Du
Step input 20th orderH-frame Statevector sred to workepace
to Plant model

Motor1 and Motor.2

Figure 3.3. H-frame 20*"-order model open loop simulation setup
For the open loop test a motion in z-direction as well as one in y-direction is
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being studied. Therefore the system is being applied with -4V to both motors for
the y-motion and -4V to motor 1 and 4V to motor 2 for the z-motion. With some
further corrections of the parameters based on the experiences from the one-axis
tests, a set of parameters could be found to match the dynamic response of the
H-frame system well, for the combination of 4V and -4V inputs. These parameters
are listed in Table 3.1.

The results of the simulation are shown in Figure 3.4-3.7.

Variable Value
Radius r 0.0194m
Stiffness ki 1.781x104;1yl—
ks 1.781x10* X
ks 2.5013x10*L%
ka 2.5013x10*%
ks 1.2565x10° %
ke 1.2565x10° X
kz 8.4456x10*X
ks 3.5011x104X
ko 2.2585x10*%
Friction By, B,,...,Bs 0.0021Nms
- 23.2224 &=
Biride 46.4449 I
Inertia & Mass | Ji, Ja,...,Js | 5.6x107°K gm?
Meort 0.446K g
Miridge 4.07Kg
Motor constants K, 23X10_3NT’”
K. 23x1073 1
R 0.71 Q

Table 3.1. Parameters for the H-frame 20*"-order model
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3.4 Discussion of the Results

The plots in Figures 3.4-3.7 show that the derived dynamic model is gener-
ally able to reflect the open loop response of the H-frame system. However some
deviations from the experimental data can be observed.
In Figure 3.5 in the upper plot a small initial (= 0.2mm) oscillation of the end-
effector in z-direction can be seen, which is not reflected in the model in the same
amount. Deviations like that could be caused by the assumption that the belt is
a massless linear spring. Since the belt in the real system does have a mass and
therefore its own dynamic behavior lateral vibration could occur, which lead to
those initial oscillations. It should be noted though that those initial oscillations
are comparably small effects and therefore the assumption to model the belt as
massless linear springs remains valid.
Also the end-effector does not return to a perfect £ = 0 position after that oscilla-
tion. This is probably an effect of nonlinear friction, which lets the end-effector not
return to the same equilibrium position. For the y-axis, there is no oscillation in
the response and the simulation and experimental data have almost perfect match.
However, the y-position of the end-effector of the experimental data saturates at
a certain value. This can be explained with the measuring range of the laser
measuring device (limited to 10cm) used to collect the end-effector position data.
When the end-effector leaves the limited measuring range of the measuring device
the laser keeps reporting the last valid measured displacement. Even though the
end-effector keeps traveling in y-direction the laser is not able to report the actual
position after it left the measuring range. A further effect, which can be observed
in the upper plot of this figure due to the relatively small z-scale, is the random
measuring noise. This is why it seems like the end-effector oscillates with a very

small amplitude around its steady state value, however since the measurement sig-
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nal gets perturbed by noise a statement to wether there is an oscillation with such
a small amplitude or not can not be made with certainty.

Another deviation of simulated and experimental response, which is to be pointed
out here, is in the bottom plot of Figure 3.7. In this plot the amplitude of the
beginning oscillation is reflected through the simulation, but the shape looks dif-
ferent. Furthermore the experimental data shows a motion of the end-effector in
y-direction (0.5mm at 0.2sec) while the simulated y-position settles at zero. This
is most likely cause by a slight difference of the two used motors in the real system,
since two motors are never exactly alike. Again the difference in the z-scale for
both of the plots in this figure has to be considered. The amount of motion in
y-direction (sub mm) is comparably small to the motion in z-direction that can
be experienced at the same time.

It should also be noted that even though not verified at this point, it is expected
that those good results again are only valid for one set of input voltages as it was
experienced for the one-axis case. So that for good results for multiple sets of in-
put voltages nonlinear friction has to be considered also for the H-frame dynamic

model.

45



CHAPTER 4

The simplified 8th order Model

Even though the dynamic model with a 20x20 sate space A-Matrix as shown
in the last chapter does reflect the dynamic behavior of the H-frame system well,
the size of the model could cause problems. Although Simulink does not seem to
have a problem simulating a system of that size, for controlling purposes it could
be a problem. For example if a state feedback control strategy was chosen to be
implemented, an observer would have to run on the controlling personal computer
which estimates the 18 not measured states. This is a big computational effort,
which could turn out to be difficult to do in real time. It would also generate too
much computational effort if this 20th order model was transferred into a Simulink
block diagram, in order to simulate the nonlinear friction, similarly as it was done
for the one-axis system. Since in that case 10 nonlinear axis have to be modeled
and evaluated. For those reasons, in this chapter approximations will be made to

reduce the order of the system in order to reduce later computational effort.

4.1 Assumptions to decrease the Order of the Model

In order to reduce the order of the system we could assume that the inertia
of all the pulleys not driven by a motor is lumped into the two motor pulleys. So
that

Im, = 4Jp for i=1,2 (4.1)

where Jy, are the new inertias of the motor pulleys and J, are the inertias of the
single pulleys as proposed in the previous chapter. However before doing that,
a close look at the actual motion of the H-frame positioning system has to be
taken. If the motions in z- and in y-direction are compared, this assumption is

only valid for motion in y-direction. This is because if the system is solely moved
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in the z-direction, the cart itself does not move relative to the bridge and therefore
the four pulleys attached to the bridge do not rotate either. This in turn means
that the rotational inertia of those pulleys, does not effect the overall dynamics of
the system for motion in z-direction. Hence the assumption made in equation 4.1
would lead to too much rotational inertia for this kind of motion. For motion in
the z-direction only the inertia of the corner pulleys opposite of the motors, which

rotate, have to be lumped into the motor pulleys. So that equation 4.1 changes to

Ju, =2J, for i=1,2 (4.2)

1

However for those lumped inertias now only the z-direction response would match
with the real system response and the y-direction response does not. This is since
for motion in y-direction the bridge pulleys do turn and therefore the inertias have
to be considered. As a solution for this, the missing inertia for the y-motion is being
lumped into the cart, which moves solely in y-direction (Mass of the cart is included
in Myrigge, however only M, will be changed and My,;q4 stays unchanged). In
order to convert the rotational parameters J, into a translation parameter a con-
version factor of ;12— has to be multiplied. So the new mass parameter of the cart
is

Mearte = Meari + 4,75 43)
Where M_4+,, is the parameter of the previous 20*"-order model and M orig is the
parameter of the new simplified 8**-order model. In a similar fashion, the friction
has to be treated and therefore has to be lumped partially into the motor pulleys
and into the cart. Equations 4.4 and 4.5 show the new friction coefficients for the

motor pulleys and the cart of the simplified 8-order model.

By, = 2B, for i=1,2 (4.4)

k3

1
bcartg = bcart20+4Bpﬁ (45)
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Where again B)y, and b+, are the viscous friction parameters of the new simplified
8th_order model and By and begrty, are the viscous friction parameters of the 20th-
order model as proposed in the previous chapter.

Now since all pulleys except the two motor pulleys are ideal pulleys on which
neither inertia forces nor friction or external forces act, they do not have to be con-
sidered with generalized coordinates, since they do not effect the dynamic behavior
of the system. Therefore only four generalized coordinates have to be introduced
to the system, two of which are angular coordinates ¢, and ¢, describing the mo-
tion of the two motor pulleys. The remaining two are the linear coordinates x and
y describing the motion of the end-effector, as shown in Figure 4.1.
Since those 6 pulleys (all except for the motor pulleys) do not have their own
degree of freedom anymore, the belt now only forms 3 effective springs. One in
between motor pulley 1 and the cart ( k; ), another one in between the cart and
motor pulley 2 ( &, ) and the third one in between motor pulley 1 and motor pulley
2 ( ky ). Figure 4.1 illustrates this.

The belt stiffness k;, k. and k; can be determined as the effective stiffness of

the corresponding serial springs of the prior model. These are given by:

Ky ksky

ko — 4.6

Y7 Koyks + Kok + koks (48)
kokeks

k, = 4.7

keoks + koks + keks (47)
kyk

ky Lol L (4.8)

B kskg + kaks + kskg

After those preliminary considerations the kinetic and potential energy terms

can be derived.
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Figure 4.1. H-frame with generalized coordinates for the simplified model

4.2 Equations of motion for the 8th order Model

Kinetic Energy

Cart (only in y-direction)

Bridge (including cart)

Motor Pulleys 1 and 2

1 .
Tcart = §Mcarty2
1 .
Tbridge = 5 bridgex2
1 .
I = 5Im B
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Potential Energy

Left and Right Belt Sections (k; and k,)

1
Vi = §kl(golr +z+ y)2

1
Vo = sk(-pr+z—y)’

Belt Section in between the Motor pulleys (k)

1
% = Ekb(—goﬂ‘ + ©ar — 21‘)2

From those terms the Lagrangian L is assembled

1 . 1 . 1 . 1 )
L=T-V = §Mcart?/2 S §beridge$2 + §JM1 9012 + §JM29022
1 1
—sh(or + 2 +y)* = Sh(—por + 7 - y)?

1
——§k‘b(—tp17' + Qor — 217)2

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

The next step is to consider the non-conservative forces Q7°. As in the prior

model the motor torques 7y, have to be treated as non-conservative forces and

also the friction forces of the cart and the bridge have to be treated the same

way as in the prior model. As discussed before, the friction torques in the pulleys

only occur in the motor pulleys and the friction coefficients are the lumped frictions

coefficients By, as derived before. Therefore the virtual work acting on this system

is given by.

W™ = —Ubeartdy — ThoridgedT + (Tar, — B, P1)001 + (Tag, — By $2)0p2  (4.17)
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1 .
T:D2 = §JM2 (1022

Potential Energy

Left and Right Belt Sections (k; and k)

1
Vi = 5kl(<ﬁ1r+ﬂl+y)2

1
Vo = She(—por +2-y)’

Belt Section in between the Motor pulleys (k)

1
‘/b = 5]%(—@17" + Qo — 2113)2

From those terms the Lagrangian L is assembled

1
L=T-V = §Mcart92 +

1
2

1 1
—ikl(%?‘ ) 5’%(—8027“ +z—y)°

1
—§kb(—<p17" + or — 2:5)2

. 1 . 1 .
]\4177’111_:;65132 A §JM1 $1” + §JM29022

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

The next step is to consider the non-conservative forces Q7°. As in the prior

model the motor torques 7, have to be treated as non-conservative forces and

also the friction forces of the cart and the bridge have to be treated the same

way as in the prior model. As discussed before, the friction torques in the pulleys

only occur in the motor pulleys and the friction coefficients are the lumped frictions

coeflicients By, as derived before. Therefore the virtual work acting on this system

is given by.

W™ = _ybcartéy == i.bbridgeax + (TMl - BMﬁPl)&pl + (TMQ - BM2@2)5§02 (417)
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where the motor torques are described by

K KK,
ni = Vi~ —go# i=12 (4.18)

Substituting equations 4.16—4.18 into Lagrange’s equation (equation 4.19[9])
where n = 4 and ¢ through g4 are z, y, ¢1 and @2 respectively gives the set
of equations of motion (equation 4.20—4.23) that describe the dynamic behavior

of this simplified system.

d (0L oL
el b i e O for j=1,2,... 4.1
(2] - - dri=ten (4.19)
e 1 .
r = - (kr + ki + 4]%).’1} - bbridge$ -+ (kr - kl)y
Miridge
—-(k)l’l” + kaT‘)QDQ] (420)
. 1 .
i = 3 [‘ (—kr + ki)a — (ke + Ky = beare) — irpr = Krripz| (4:21)
cart
1
Y = |:— (kl + 2]%)7‘.7: — kyry — (kb + kl)TQQ,Ol
it
KK, . . K
—(Ba + —2)¢1 + ksr?p2 + —Vi,, (4.22)
R R
1
P2 = 3 [(kr + 2ky)r — Ky + kyror — (B + kr)r¥pe
M
KK, . K
_(BMZ + _t_R_)(:O? + ﬁtVQini\ (423)

This set of equations of motion again similar to the 20th order model can be
transferred into state space form. However instead of having a 20 by 20 A-Matrix,
now the A-Matrix is only of the size 8 by 8. Hence the state vector is only 8 by 1

with the states being:
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(4.24)

The Matrices for this Model are as followed.

System Matriz

[0 1 0 0 0 0 0 0
a1 Qg2 @z 0 axs 0 axy O
0 0 0 1 0 0 0 0
asn 0 a3 aga ags 0 ayr 0
0O 0 0 0 0 1 0 0 (4.25)
agg 0 as3 0 aes aes aer O
0 0 0 0 0 0 0 1
| agm 0 agg 0 ags 0 agr ass |
Where the matrix elements are:
E L k + k, + 4k
- Miridge
Gy = = Bbridge
Miridge
=t ] k — k,
B Miridge
o L kl + 2kb
» Mividoe
a _ kr + 2ky
. Mbridge
PR ITIee k — k,
SR Mcart
B Mcart
a . bca.rt
“ Meart
ne = Deart
= Mca'rt
ay; = kr
<N Mcartr
e ki + 2kbr
61 = 7
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4.3 Verifying the Model by Open Loop Simulation

agsy — —ET
1
_ ki + ky 9
Ags — —Tr
1
_ BM1 KtKe
i (JMI = s
- ko o
Ag7 — .]er
kr+2kb
agy = JM T
2
k.
agy — —JMT
2
. ) 2
ags — JMZ’I”
kr+kb 2
agy — __71\4__r
2
B By,  KiKe
o= (JM2 R,
Input Matriz
0 0 W
0 0
0 0
0 0
B=1 0 o0
K
RJny 0
0 0
K
\_ 0 RJMQ
Output Matriz
c_[o000100
B0 e g 9l
Feedthrough Matriz
00
o=[5 o)

(4.26)

(4.27)

(4.28)

The parameters for the this simplified model according to the applied assump-

tions are displayed in Table 4.1. To verify that the assumptions are right and this

simplified model shows the same dynamic behavior as the 20*"-order model and
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Variable Value
Radius T 0.0194m
Stiffness ky 1.3167x10* %
By 1.0791x10X
ks 8.0492x103X
Friction B 0.0042Nms
B 0.0042Nms
B 45.5517 Y=
Bbridge 46.4449 &=
Inertia & Mass Jui 1.12x107* K g m?
Jare 1.12x107*K g m?
Moot 1.0412K g
Myridge 4.07Kg
Motor constants K, 23x10-3 4
K. 23x10% -2
R 0.71 Q

Table 4.1. Parameters for the H-frame 8*"-order model

o4

therefore as the real H-frame system, open loop simulations will be carried out.
For those tests the same specifications regarding Voltage input as for the 20%-order
model are chosen and the resulting data is compared to the experimental as well
as the 20t"-order simulation data. For the Simulink simulation the same block
diagram setup (see Figure 3.3) as for the 20t"-order model is used. However now

the plant state space matrices in the state space block are those of the 8*-order

The plots in Figures 4.2 through 4.5 show that the simplified 8th order model
has almost the exact same dynamic response as the 20th order model and therefore

also matches the experimental data well. This leads to the conclusion that those
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assumptions made at the beginning of this chapter give a simplified lower order
model, which approximates the prior 20th order model response very well and
therefore as well reflects the dynamic behavior of the H-frame positioning system.
Due to this conclusion and because of the advantages the lower order model has,
the simplified model will be used for further work in this thesis.

In Figures 4.3 and 4.5 the same differences between experimental and simulation

data as already pointed out in chapter 3 can be observed.

4.4 Nonlinear Model of the H-frame System

Similar to the one axis case, the 8*"-order model is a strictly linear model and
hence if those plots in Figures 4.2-4.5 would be redone for different input voltages
with the same set of parameters shown in Table 4.1 it could be seen that the
experimental and simulation data would not match as perfectly for those different
voltage inputs. That is why for simulation purposes a nonlinear model for the
H-frame System is desirable. This is why similar to the one-axis case a Simulink
model shall be produced that reflects the nonlinear behavior of the system.

The first step to do so is again to bring the equations of motion shown in
equations 4.20-4.23 into a form suited for expressing them in Simulink block

diagrams. Equations 4.29-4.32 show the equations of motion in that form.

1
Ty = |:(—.Z'1 + x3 + T.’I)7)k‘T + (—1171 — Py — 7‘335)]{)1
Mbridge
+(—4.’L‘1 = 27‘$5 + 21".’L‘7)kb = Ffz (429)
. 1
Ty = M [(xl — 3 — T$7)kr + (—.’El =&3 = T1E5)k[ = ny (430)
cart
: _ 1 _ . ] i _ 2 2
T = —|(—rzy —rzs —1rTs)k) + (—2rxy — rizs + rixy)ky
Ity
+Tm, — TfMl] (4'31)
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1
Ty = = [(myl —rz3 — r’z7)k, + (2rzy + rlzs + rlzy)ky
M

—{-7’1‘/12 = TfM2:| (432)

Those 4 equations are now being expressed as block diagrams similar to that shown
in the one axis case and stored in subsystems. They represent the two rotational
motor axes, which have additional inputs Vj,, and V,, to compute the motor
torques and look similar to the block diagram shown in Figure 2.19, and the 2
linear end-effector axes with their specific nonlinear frictions. The friction force
in each of those axes is being computed with embedded Matlab functions with
similar code as shown in Table 2.2. Those subsystems are then assembled to form

the nonlinear H-frame model as shown in Figure 4.6.

Open loop simulations, that have been carried out for different input voltages,
show the expected. The linear model matches the experimental data only for the
amount of input voltage, for which it was tuned for (-4V/-4V and -4V /4V), however
it deviates from the experimental responses for different inputs. The nonlinear
model however is able to match also the different input voltages well. Table 4.2

shows the set of friction parameters, that were obtained to give those results.

The input Voltages for which the open loop simulation was carried out where
("Motor 1 input” /”Motor 2 input”) -2V /-2V, -2V /2V, -4V /-4V, -4V /4V, -6V /-6V
and -6V /6V. This gives us 3 different motions in z-direction as well as 3 different

motions in y-direction. Figures 4.7 through 4.18 show the results.
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Figure 4.6. Nonlinear H-frame Simulink model

Variable Value
Viscous friction coefficients By, 0.0036 Nm s
By, | 0.0036Nms
beart | 35.29440
Dpriagge | 32.5114%
Coulomb force/torque Teaty 0.05Nm
Toaty 0.05Nm
Foars 0.4N
S 2N

Table 4.2. Set of friction parameter H-frame nonlinear model
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4.5 Discussion of the Results

Figures 4.7, 4.11 and 4.15 show similar differences in the amplitude of starting
oscillations between simulation and experimental response as already discussed in
chapter 3. This leads to the conclusion that those oscillations observed on the
real system are caused by an effect other then nonlinear friction not represented
in the dynamic model. In Figures 4.9 and 4.13 the slight motion in y-direction
of the experimental data can be seen. Those are effects not represented through
the model, however they are relatively small compared to the effects of nonlinear
friction.
The goal to find a model, which can be used to simulate a well matching response
for different sets of input voltages was achieved. It can be seen that the linear model
matches the experimental response only for 4V input, for which the parameters
were verified. However for 2V and 6V input the linear simulation clearly deviates
from the experimental results. Where as the simulation of the nonlinear model in
contrast matches the experimental data equally well for each set of input voltages.
This shows, as expected, that nonlinear friction is an important factor in the
dynamic response of the H-frame system and need to be modeled to get an accurate

dynamic response.

4.6 Influence of End-effector XY-position towards Belt Stiffness

Since the stiffness of the belt sections are given by

_AE

b=

(4.33)

and the length of the belt sections [ is a function of the position of the end-effector
in z and y, then the stiffness is a function of the xy-position. All simulations so
far have assumed, that the stiffness of the belts are constant. Therefore in this
section we study the effect of this change in stiffness on the dynamic behavior of

the system.
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The first step to do so is to quantify the dependents of every single stiffness
(ky through kg) on z and y. The stiffness k; through k¢ depend on z- and
y-position of the end-effector as described in the following equations. Where A
is the cross section of the belt without the teeth, as explained before, E is the
E-Modulus of the belt and [, through ly are the belt section length measured at

0-position of the end-effector located in the very middle of the H-frame system.

Stiffness constant with respect to x and y

_AE
-4

k;

for i=1,2,9 (4.34)

The lengths of the belt sections in between the left motor pulley and the left
stationary corner pulley (k,), as well as the one in between the right motor pulley
and the right stationary corner pulley (k2) and also the one along the bridge (ko,
which is not attached to the cart, do not change while performing motion in z-

and y-direction.

Stiffness changing only with respect to

b= e §=34 (4.35)
li -

L (4.36)
li+x

The belt sections in between the stationary corner pulleys and the bridge (ks and
ke) get longer through a positive motion in x direction. At the same time the belt
sections between the motor pulleys and the bridge (k3 and k4) get shorter through

the same motion.

Stiffness changing only with respect to y

_AE
ity

ke (4.37)
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_AE
ls—y

ks (4.38)

Only dependent on a change in y are those two belt sections along the bridge which
are connected to the cart (k7 and kg).

Those above stated equations can now be plugged into equations 4.6 through
4.8 in order to obtain the stiffness k;,k, and k,, which are represented in the

simplified 8th order model of the H-frame system.

kiksk; AFE
k= = 4.39
! kiks + k1k7 + krks (l] + 15+ l7) +x+y ( )
kakeks AE
By = - 4.40
k2k6 + kzkg + kakg (l2 + lﬁ + lg) +x—vy ( )
ky = i = (4.41)

kgkg + k3k4 + k4k9 N (l3 + l4 + lg) — 2z

To show the change in stiffness due to the change in xy-position, Figure 4.19
and 4.20 show the stiffness where one of the coordinates, z or y, is held constant
and the other one is changed over the workspace of the H-frame system. The
plots show that there is a notable change in stiffness when the end-effector is
moving through the workspace. While moving in y-direction k; and k, change by
a factor of about 1.5 over the whole workspace. For a travel through the entire
workspace in x-direction the change of k;, is most significant. It is changed by a
factor of about 3. Those results imply that the change in stiffness as a function of
Xy-position cannot be neglected with regard to end-effector position. So that for a
accurate control over the whole workspace this change in stiffness has to be kept
in mind. However for small displacements, as explored in the next chapter (1lin by

lin motion or 0.0254m by 0.0254m), the effect is rather negligible.
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CHAPTER 5

PID-control of the H-frame positioning system

After obtaining a dynamic Model for the H-frame positioning system the ob-
jective is to use this model to come up with a control strategy for an accurate
position control. The most commonly used and basic control strategy is the PID-
algorithm. Since this algorithm is also easy to implement, this will be the first

controller to look into for position control of the H-frame system.

5.1 Introduction to PID-control of the H-frame System

PID is a closed loop control strategy, which acts on the error that is defined
by the difference between the desired reference input r and the actual plant output
Y.

e=r—y (5.1)

The PID[10] algorithm consists of three different control actions. These are the
Proportional, Integral and Derivative control actions.

The Proportional control part generates a controller output up proportional
to the error e. This proportionality is defined by the proportional gain Kp. Equa-

tion 5.2 shows the transfer function of the proportional part.
Uup = K pE€E (52)

Proportional control by itself however tends, depending on the type of the input
as well as the controlled plant, to settle at an equilibrium leaving a steady state
error.

A way to possibly minimize the steady state error is to introduce integral
control action. The integral part does not only act on the error, but it acts on the

integral of the error and therefore on the error history. This error integral is being
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multiplied by the integral gain K to obtain the integral part. In the time domain

this is represented as:
t
ur(t) = /0 e(t)dt  for u(0)=0, (5.3)

which translates into the s-domain transfer function shown in equation 5.4.

1
U'I:Klge (54)

The integral part however has the potential to make the response overshoot and
oscillate or even unstable, because the integral control output will increase until
the error changes sign, which means an overshoot.

An oscillation can be prevented by introducing the third part of the PID-
controller. The derivative part generates a control output proportional to the rate
of change of the error. The proportionality is defined by the derivative gain Kp.

In the time domain the derivative action is being expressed as

up(t) = Kp %(e) (5.5)

and in the s-domain, it is represented as
Up = KDGS. (56)

Note that a controller based only on the derivative action does not work since
even a large but constant error would not generate any controller output. The
derivative term has to be handled with special caution, since if implemented to a
real system it can cause problems, because it amplifies measurerment noise which
might occur in the system.

Those three control outputs up,u; and up are summed up to get the PID

control output u. Equation 5.7 shows the PID-controller transfer function.
1
u=(Kp+K; - +Kp s)e. (5.7)
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Figure 5.1. PID-control loop

Figure 5.1 shows the general setup for a PID-control loop.

The H-frame positioning system is a multiple input multiple output (MIMO)
system. The two voltages to the motors are the inputs and the z-position and
the y-position are the outputs. The PID-control however is strictly for single in-
put single output (SISO) systems. Thus the PID-implementation is not trivial.
Furthermore the output that is desired to be controlled, the z- and y-position,
is not accessible as a feedback signal. This is because a measuring system able
to accurately measure the xy-position over the whole workspace is expensive and
therefore not economically. However the motor angles of the two motors are acces-
sible as feedback signals. The motors are equipped with encoders, which measure
the motor angles. Thus theoretically accurate control of the motor angles also
controls the xy-position of the end-effector since the kinematic relation between
motor angles and xy-position is known. This is of course only if the transmis-
sion elements between the motors and the end-effector are rigid. However since
the belt is not perfectly rigid, an error in end-effector position is possible even if
the motors are controlled perfectly. Nevertheless since the motor angles are the
only possible feedback signals that indicate the output position and at the same
time are economically available, those are chosen to be the feedback signals. To
minimize the error occurring due to the nonrigid relationship between feedback
signals and end-effector xy-position, which is the actual output that is desired to

be controlled is one objective of a successful position control. Because PID-control
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is intended for SISO systems as explained above, two separate parallel PID-control
loops will be implemented. Each controller will control the angular position of one
motor. These two control loops should let the motors follow a desired trajectory
perfectly so that the end-effector follows a desired path plus a possible error due to
the stretch of the belt. Figure 5.2 shows the general setup of the two PID-control
loops.

In the diagram 751, Tar2, €M1, €Mm2, U1, Uz, Yumi and Yo are the desired motor

Ymi
. PID-controller
'm1 em1 Motor 1 Um1
Kep+Ki1/s+Kps -
Plant | Xy-position
(H-frame)
- S PID-controller
b(? > Motor 2 Tz Vil
- Ke+ K 1s+Kps

Figure 5.2. PID-control of the H-frame system

angle inputs for motor 1 and 2, the error in motor angle for motor 1 and 2, the
controller outputs from the PID-controllers controlling motor 1 and 2 and the mea-
sured actual motor angles for motor 1 and 2 respectively. It also shows the setup
with two separate parallel feedback loops for each motor. The desired output is
the xy-position, however the measured and fed back signals are the motor angles.

The PID-controller used in the real system is a special kind called PID-
controller with reset windup. This special routine accounts for the fact that even
though in theory the controller output can be unbounded, however in real systems
natural upper and lower bounds to the controller output are likely to exist, which
bound the controller output inside a certain range. For the H-frame system those
natural bounds are the D/A-converter output limits, which can only provide a

maximum of 10V and a minimum of -10V output.
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The PID-controller with reset windup logic first computes only the sum of the pro-
portional and the derivative control outputs. It then checks if this already exceeds
the upper or lower possible control outputs. If it does, the code does not calculate
the integral control output at all and sets the output to the maximum or minimum
output value depending on the case. More importantly it does also not add the
current error to the error integral. If the controller output of the proportional and
the derivative part does not exceed the maximum or minimum then first a trial
integral value is computed and it is checked if the trial value if added to the rest
does bring the overall value to exceed the limits. If that is the case the output is
bounded to the limit and only the active integral part is added to the sum of the
error. This routine prevents the integral part from winding up while not having
an effect on the controller output. This in turn prevents the response from having
a big overshoot. The Visual Basic code which is used to compute the controller

output based on the above stated ideas is given in the Appendix A.

5.2 Test trajectory
To get comparable results and therefore to be able to make a statement of the
accuracy the position control as well compare different strategies with each other
a fixed test trajectory has to be agreed on. This test trajectory was chosen to be a
lin by lin (0.0254m by 0.0254m) square. To make the case more realistic the legs
of the square are not being driven through with a constant speed profile, which
would result in a displacement profile as shown in Figure 5.3, since this is not being
done in practice either. Velocity profile like that would cause major overshoots on
each corner, because a deceleration and acceleration is not intended.
Therefore for better corner tracking it is common to use a velocity profile which
allows a certain acceleration at the start and deceleration towards the end position.

It is chosen to have a constant acceleration and deceleration at the beginning and
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the end of each one of the legs. Let the acceleration time T, be equal to the
deceleration time Ty = T,. Also let f, be a factor which relates the acceleration

time T}, to the overall time 7" that is needed to run through the whole leg. So that
Ti= ful’ (5.8)

For the test trajectory f, is chosen to be 0.2 and the maximum velocity which is
also the velocity of the constant travel portion vmas is chosen to be 6%‘ (0.1524%).
Figure 5.4 shows the velocity profile for one leg corresponding to a desired dis-
placement of lin.

The velocity is defined by the following equations.

v=2’-:',‘,ft for 0<t<T,
V = Umaz for T,<t<T-T, (5.9)
v:vmam—"’;:’t for T-T,<t<T
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Velocity profile with constant acceleration and deceleration
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Figure 5.4. Velocity profile with constant acceleration and deceleration

In order to get the desired displacement those equations have to be integrated with

respect to time. This gives the trajectory equations 5.10,

X =
T =
€T =

xo+%1—’%f“‘t2 for 0<t<T,
20 + 3VUmac Ty + Vimaz(t — T,) for T,€t<T~T,

To + 3UmacTa + Vmaz (T — 2T5,) (5.10)

HUmaz(t — (T — To)) — 322 (t — (T —Ta))? for T—T,<t<T

where 7, is a a random starting position from where the motion is initiated.

Figure 5.5 shows the desired trajectory with constant acceleration and deceleration.

In the equations for the position there are three parameters vp,q;, 1" and 7,. Since

T, is related to T" through f,, Upmae is a parameter that we want to be able to chose,

however instead of choosing the time 7" that is needed for the motion we would

rather be able to choose the distance d to be traveled. That is why a relation

between 7" and d is required. We can get it by setting the last one of the position

76



Trajectory with constant acceleration and deceleration
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Figure 5.5. Trajectory with constant acceleration and deceleration

equations equal to zo + d at t = T". That gives us the following relation

d
T ol 1) e

and allows us to have three parameters, which can be chosen to uniquely determine
the trajectory. Those parameters are fa, Umaz and d.
With those preliminary considerations its is easy to define a trajectory in = and
y that follows our chosen lin by lin square with acceleration and deceleration on
every leg. Figure 5.6 shows the desired end-effector trajectory.

Since the xy-position of the end-effector is not controlled directly however, this
xy-trajectory has to be translated into desired motor angles for motor 1 and motor
2. This can easily been done with the kinematic relationship derived in chapter

one between the motor angles and the xy-position of the end-effector.
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Trajectory for test square
with constant acceleration and deceleration for each leg
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Figure 5.6.

This now gives us the desired reference inputs for our test square r3;; and rpyo.

Figure 5.7 shows the reference inputs versus time.

5.3 PID simulation setup

In order to find a PID setup which allows an accurate position control, the
nonlinear model, derived in the previous chapter, will be utilized to first simulate
the PID-control to understand the mechanisms and optimize the settings before
implementing the control on the real system. Figure 5.8 shows the Simulink block
diagram used to simulate the PID-control of the H-frame system.

The subsystem in the middle of the diagram contains the nonlinear model. The
two embedded Matlab functions contain the code to generate the PID-controller
output with the reset windup strategy; the code is very similar to the one shown
in Appendix A, just translated into Matlab syntax. The zero order hold blocks in

front and behind those embedded functions simulate the interface of the controlling
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Reference inputs to the motors for square test trajectory
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Figure 5.8. PID-controlled H-frame nonlinear model Simulink block diagram

digital personal computer and the continuous real world. The zero order hold

blocks are equivalent to the D/A- and A/D-converter in the real system. The
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zero order holds to the left of the function blocks sample the continuous input
signal at a sampling time of Ty4mp = 0.001s, while the ones to the right of the
PID-controllers hold the digital output of the PID-controller, which is evaluated
at each sampling time, for one sampling period until a new controller output is
computed to generate quasi continuous plant input signal. This is exactly how the
Personal computer in the real system does it through its data acquisition board.
The unit delay blocks save the input value for exactly one sampling period. This
is been done so the PID function blocks can store variables in order to use them
for their calculations in the next sampling interval. This is used for having access
to the previous error which is used to generate the rate of change of the error for
the derivative part of the PID, as well as for saving the error integral from one
interval to the next.
5.4 PID-controller Performance in Simulation
5.4.1 Controller Gains Kp = 150, K; = 100 and Kp =4

The first simulation of this PID-setup is being performed with the previ-
ously mentioned test square path (f, = 0.2, d = 1lin (0.0254m), and vVpae = 6%"
(0.1524%) ) and a set of controller gains, which have been proven to give a fairly
good result on the real system. That set of gains is Kp = 150, K; = 100 and
Kp = 4. The resulting xy-end-effector-path for this simulation is given in Fig-
ure 5.9.

It is seen that the end-effector does not follow the desired path. The first thing
that catches the eye are the overshoots when changing from a z-motion to a y-
motion. When changing from y- to z-motion however there is not such an over-
shoot. This makes sense since when moving in z-direction the whole bridge is being
moved and has to be stopped, but when moving in y-direction only the light cart

is being moved. The bridge due to its bigger mass has more inertia so it overshoots
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End-effector path, PID-control
Kp=150, Ki=100 and Kd=4
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Figure 5.9.

more at the end of the leg.
Another thing that can be observed is the rather big offset in the steady state
motion along the legs from the desired path in the 274, 37¢ and 4 leg.

Table 5.1 summarizes the deviation measured perpendicular to the desired path.

Those characteristics will later be used to verify any improvement.

15 leg 274 leg 3 leg 4% leg
Overshoot Undershoot
at the end of the leg | 5.82x107* | -1.74x10™* | 5.02x10~4 /
in m
Offset
|max| 3.35x107° | 2.72x10~* | 1.15x107* | 1.05x10*
inm

Table 5.1. Path deviations PID-control; K, = 150, K; = 100 and Kp = 4
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5.4.2 Influence of Nonlinear Friction

In order to improve the performance, the reasons for the deviation from the
desired path have to be understood. The cause for the overshoot is easily identified
as the inertia that the axis have. This is supported by the fact that there is only a
substantial overshoot for a motion in z-direction since the bridge has significantly
more mass than the cart. However a reasoning for the observed offset is not as
trivially explainable.
The first explanation that comes to mind is, that due to the nonlinear friction and
the compliance of the belt, a certain stretch in the belt could remain, which does
not create enough spring force to overcome the offset coulomb friction of the linear
axis. However that would mean if we plot the encoder position translated into
zy-end-effector position with equation 5.12, no offset should remain, but that is
not the case. Figure 5.10 shows that plot.

It can bee seen that a rest stretch of the belt due to nonlinear friction is not the
only explanation for the offset observed. To better be able to compare the error
of the end-effector position a new plot is being introduced. Figure 5.11 shows the
error of the end-effector from its desired value. However since for now only the
actual deviation from the desired position, but not the lag in time is of interest,
the plot shows for each leg only the perpendicularly measured error from the leg
that is being driven through at that time. So in leg one only the deviation from
the y-position is being shown, for leg 2 only the deviation from the z-position and
so on. The plot shows the errors in y-direction for the simulated end-effector path
laying above the desired path as positive and vise versa, for the error in z-direction
a simulated path right of the desired path is shown as a positive and left of the
desired path as a negative error. Figure 5.11 shows the end-effector error and the

end-effector error based on the motor angles in this kind of plot.
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End-effector path for ideal rigid belt based on motor angles
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This plot shows even clearer that even though the nonlinear friction combined
with a rest stretch has some effect on the offset, however the biggest amount of

this offset is caused by some other effect.

5.4.3 Influence of Inequality in Motor Errors

To investigate the cause for the offset, the actual controlled variables, the
motor angles have to be examined more closely. Figure 5.12 shows the desired
motor angles versus the actual motor angles.

The plots reveal, that the actual motor angles always lag behind the desired
motor angles. This normally would not be a major factor, if the lag in time for
both motors is equally the same, meaning that the absolute value of the errors are
equal. Figure 5.13 shows the difference between actual motor angle and desired
motor angle at any time for each one of the motors and the figure shows that the

absolute errors for both motors are not equal.
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Error from desired shape end-effector, PID-control
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Motor angles error under PID-control
Kp=150, Ki=100 and Kd=4
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Figure 5.13.

To understand how an inequality of the motor angle errors causes the offset, a
closer look at the kinematic of the H-frame system has to be taken. As explained in
the first chapter, the superposition of the rotation of the two motors is causing the
motion in z and y of the end-effector. An y-motion is generated by a rotation of
the same amount of the motors in the same direction and an z-motion is obtained
if the motors rotate the same amount in opposite direction. If the motors rotate
by different amounts, motions in z- and y-directions are generated. To visualize
the relationship between motor rotation and zy-motion, the motor angles can be
visualized, by multiplying them by the radius r as a set of linear perpendicular
coordinates positioned at the same origin as the linear zy-coordinates, but mir-
rored along x and rotated negative 45°, as shown in Figure 5.14. In those set of

coordinate we can now plot the linear displacement due to each motor rotation
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as two separate vectors. The vector sum of those vectors is giving the according
position of the end-effector. Figure 5.14 shows an example of a motion in positive
y-direction, where both motors lag the same amount in time.

In the diagram 4.5 and a4 are the desired motor angles at that point in time,

P1r
lag in time

v

Figure 5.14. Effect of equal motor errors onto zy-position

while @140 and @oq¢ are the actual (experimental or simulated) motor angles at
that time instant. In Figure 5.14 the motor errors e, r and e,,r have the same
length that means the motor angles lag the desired motor angles by the same
amount. This, as it can be seen in the figure, results in an overall error e along
the negative y-axis. This again for a positive y-motion would only result in a lag
in time, but not in an cross-axis error.

If however one of the errors is larger then the other, then the overall error vec-
tor would no longer be only in negative y-direction, but also would have an z-
component. This z-component is what is causing the offset in z-direction while
moving along the leg in y-direction. Figure 5.15 shows this effect for motor 2 error

(ep,r) being larger than the motor 1 error (ey,r).

Those observations on the cause of the offset in each leg suggests that the
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N lag in time
A

Figure 5.15. Effect of unequal motor errors onto zy-position

offset can be minimized or optimally even eliminated, by either eliminating the
lag in time for each motor or if that is not possible then trying to generate equal

absolute errors in both motors to minimizing the deviation from the shape.

5.4.4 PID-controller Final Value Theorem

Lets first examine if theoretically zero error in the motor angles is possible.
For this examination we look only at one input output pair, such as for example
motor 1 voltage input and motor 1 angle output. For this purpose the state space
description of the linear 8" order system in chapter 4, needs to be slightly altered.
First the input matrix B is changed into an input vector b by using only the first
column of B, which describes the input to motor one. Also the output matrix C

needs to be changed into an output vector c that looks like the following.
c=[00001000] (5.13)

Those changes give us a description for the SISO system which has the motor
voltage 1 as an input and the motor angle 1 as an output, which is the system con-
trolled by the PID-controller 1. Making those changes Matlab gives the following

poles and zeros for that system.
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Poles Zeros
—20.01 + 329.037 | —20.27 + 279.97¢
—20.01 — 329.03z | —20.27 — 279.97%
—21.98 + 249.3: —17.82 + 1443
—21.98 — 249.3: —17.82 — 1444

—15.61 —23.15

—43.9 0

0 /
0 /

Table 5.2. Poles & Zeros for the SISO system controlled by PID-controller 1

The fact that the system has one zero equal to 0 (26 = 0) and two poles equal
to 0 (s7 = sg = 0) suggests that it has a transfer function G(s) of the form shown

in equation 5.14.

s(numeratorpolynomial,es(s))

G(s) = (5.14)

s2(denominatorpolynomial,es(s))

Where (numeratorpolynomial,.s(s) is the numerator polynomial after factorizing
s out and denominatorpolynomial,es(s) is the denominator polynomial after fac-
torizing s out. That an s in the numerator and an s? in the denominator can be
factored out can be seen by looking at the zeros and poles of the system respec-
tively.

The PID-controller transfer function C(s) is

= KDS2+KPS+K1
5 ;

C(s) (5.15)

The closed loop error e(s) can be derived from the block diagram in Figure 5.1 as:

r(s)

“8) = 13C6)a0)

(5.16)

Where 7(s) is is the desired input signal, and C(s) and G(s) the controller and
plant transfer functions respectively.
The input signal 7(s) can be characterized as a ramp during the steady state, the

travel with constant velocity. Which is also the state in which the offset occurs.
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Therefore the input r(s) has in the s-domain the form

r(s) = g [11] (5.17)

where m is the slope of the ramp. To verify if the PID-controller can theoretically
eliminate the motor angle error entirely we want to look at the steady state error
ess. The steady state error is defined as the remaining error in steady state for
t — 0o. In order to find that error at ¢ — oo the so called Final Value Theorem([11]
is used.

tll'r& elt) = ll_r% [se(s)] (5.18)

Where e(t) is the error function in the time domain.

Therefore the steady state error in this case is given by the following relation.

€ss = lim {3—1%5] (5.19)

Substituting equations 5.14, 5.15 and 5.17 into equation 5.19 gives

) 1
ess ¥ .191—r>r(l) [s? ]. + KD82+KPS+KL s(numerath’(’lynmnialrest(s)) ’ (520)
s s2(denominatorpolynomialrest(s))

Which can be simplified to

ess = lim
s—0

ms
2 2 numeratorpolynomialrest(s) :| : (521)
S + (KDS + KPS + KI) denom’inatarpolynomialrest (3)

numeratorpolynomialrest(s)
denominatorpolynomialrest(s)

Since is a finite nonzero value (Gest(0) # 0), because only

nonzero poles and zeros are left in those polynomials, the expression further sim-

plifies to
€gs = e =
T 0 + KIGrest(O)

0 (5.22)

This shows that theoretically a PID-controller controlling such a system can make
the system follow a ramp without steady state error. Which leads to the question

why we do see an error tracking the desired motor angle input (see Figure 5.12).
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The answer is that the steady state error is calculated for ¢ — oo, but in the short
time in which the motor actually is supposed to track a ramp before the intended
deceleration starts to change direction, the response does not get into steady state

mode.

5.4.5 Controller Gains Kp = 150, K; = 1500 and Kp =4
An increasing of the K;-gain could theoretically help reach a steady state error
of zero quicker. To verify the effect of an increase of K; onto the system the K;
values in both controllers are being increased to 1500 and the simulation is being
repeated (see Figure 5.17.
Looking at the plot comparing the desired and the actual motor angles (Fig-

Motor angles, PID-control
Kp=150, Ki=1500 and Kd=4
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----- Desired Motor 2 | |
Simulated Motor 1
Simulated Motor 2

Motor angle (rad)
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Time (s)

Figure 5.16.

ure 5.16) shows that indeed now the actual motor angle response gets pulled quicker
towards an zero error during the ramp input sections and in some occasion seems

even to turn out to be zero. However what also can be seen is, that it now per-
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forms rather poorly at those sections where the motors get decelerated, where it
now overshoots. This is a direct consequence from increasing the K-gains. The
integral part acts on the error history, but does not react to a change in error
quickly enough. The change in the sign of the error when overshooting the desired
trajectory, does decrease the error integral, however this is only done rather slowly
since the error integral is increasing during the whole time while it was lagging the
input. This delay in reacting to the change in the input signal causes the output
to overshoot. And furthermore it is expected that if the K;-gains are increased
further, that already during the ramp section an overshoot occurs, since the inte-
gral output does not decrease until the error sign changes. This would cause an
oscillation around the desired input and further decrease the quality of the result.
Both those effects could be lessened by an increase of the Kp-gains. Since that
would on the one hand damp out the oscillation and on the other hand increase
the quickness of the controller to act on change in the input signal. Unfortunately
though tests on the real system showed, that a Kp value of 4 is already close to
the maximum possible. Since the derivative part of the PID-controller tends to
amplify measurement noise which occurs in the real system. This would quickly
drive the controller output into saturation making a control of the system impos-
sible.

The end-effector response also reveals the weakness of an increasing of the K-
gains. The Overshoot on the corners are so big that it takes almost the whole
following leg to return to the desired zy-position.

Table 5.3 shows the deviations from the desired shape for this PID-setup. It shows
the major increase in overshoot at the corners, while an improvement in offset is
actually reached. However those offset values are rather theoretical in nature, since

it takes the system a majority of the length of each leg to actually return from the
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End-effector path, PID-control
Kp=150, Ki=1500 and Kd=4
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huge overshoot to a steady state offset that is why for most of the lag the offset is
bigger than the steady state offset shown in the table.

15 leg 27 Jeg 3" leg 4™ leg
Overshoot
at the end of the leg | 1.52x1073 | 6.32x10~* | 1.55x102 | 6.2x1074
inm
Offset
|max| 3.9x107° | 1.2x107* | 1.39x107* | 1.06x10~4
inm

Table 5.3. Path deviations PID-control; K, = 150, K; = 1500 and Kp = 4

5.4.6 Influence of Integral Action on Motor Error Inequality

Since a total elimination of the motor angle tracking error is not possible,
we look next to see if it is possible to get equal tracking errors for both motors
so that the resulting error is only a lag in time, but does not effect the shape.

In order to eliminate the error inequality we first examine what is causing this
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inequality. Looking at Figure 5.13 which shows the error in motor angle for each
motor brings to attention, that for the first leg the errors seem to be equal but
opposite and therefore equal in absolute value. However in the further progress of
the graph the errors built out very different curves and are generally not equal in
absolute value anymore. This behavior suggests that the integral part of the PID-
controller might have an effect on the inequality in error, since that part acts on the
history of the error, and it produces different controller outputs for different error
histories. This in turn generates a different input to each of the motors, which leads
to different errors and thus to a different error integral. Looking at the desired
motor trajectories compared with the actual angles (Figure 5.12) strengthens this
suspicion.

At the beginning of the run both motors start with an error integral of zero. Since
both motors lag behind the desired values, they both built up their error integrals
rather equally. However now when starting the second lag the direction of motor
2 changes while motor 1 keeps turning in the same direction. That means that the
error integral of motor 1 further windup while the error of motor 2 changes sign
causing the error integral to decrease. This leaves the motors with totally different
integral controller output which effects the overall controller output. Figure 5.18
shows the history of the error integral multiplied by the K;-gain for the case where

K = 100.

5.5 PD-controller performance in simulation

Now that we identified a source for the inequality of the motor errors a strategy
has to be found to avoid the inequality and therefore improve the tracking of the
desired path. The influence of the different error integrals would be eliminated
if the K-gains would be set to zero and therefore instead of an PID-controller a

PD-controller is being used.
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Figure 5.18.

5.5.1 PD-controller final value theorem

In order to see the ability of such an controller to track a ramp, which is still the
major component of the desired trajectory the final value theorem is being stressed
one more time. The expression for the error stays the same as for the PID-controller
(equation 5.16) as well as the plant transfer function G(s) (equation 5.14). However
now the controller transfer function C(s) is not any longer the one of a PID-

controller but the one of an PD-controller shown in equation 5.23.
C(S)ZKDS+KP (5.23)

With those changes the steady state error derived from the final value theorem

(equation 5.18) is.

1
ess = lim [s— .
550 2 s(numeratorpolynomialrest(s))
&L+ (KD s+ KP) s2(denominatorpolynomial rest(s))

(5.24)
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Which simplifies to

' m
ess = lim

oy numeratorpolynomialrest(s) :
s+ (KD s+ Kp ) denominatorpolynomialrest(s)

(5.25)

Again arguing that the fraction containing the rest of the plant transfer function
is an finite nonzero value for s = 0 leaves the expression for the steady state error

as
m

Css = KrGonn(0) #0 (5.26)
Even though this suggests, that for finite K, steady state error will never vanish,
the PD-controller could still give better results then the PID-controller. This is
since it has been shown, due to an increase of overshoot, a zero steady state error
before changing directions is not possible for a PID-controller as well. Therefore
since the PD-controller reduces the inequality in motor error, which causes the

offset and since the value of the steady state error can be minimized by increasing

Kp, the PD-controller might perform better than the PID-controller.

5.5.2 Controller Gains Kp =150 and Kp =4
Again simulation is being carried out to quantify the improvement. Figure 5.19

shows the end-effector path for that case. From this plot already an improvement
in offset can be made out especially in the second leg.

Figure 5.20 shows the error in shape. It shows also the improvement in offset.

If we look at the error in motor angle for this case (Figure 5.21) we can see that
the motor errors for both motors are more equal then for the PID-case. Which
proves the point, that the integral part of the controller was a big source for the

inequality. Table 5.4 shows the summarized errors of the end-effector position.
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Motor angles error under PD-control
Kp=150 and Kd=4
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15t leg 274 Jeg 3" leg 4™ leg
Overshoot Undershoot
at the end of the leg | 4.5x107* | -2.99x10~* | 4.55x10~* /
in m
Offset
|max| 3.24x107° | 1.37x10~* | 0.67x10~° | 1.46x10~*
in m

Table 5.4. Path deviations PD-control; K, =150 and Kp = 4

5.5.3 Controller Gains Kp = 175 and K, =4

Looking at the derivation of the steady state error, it is suggested, that through
an increase of Kp the error can be minimized, which should also have a positive
effect on the offset. It has been experienced however that an increase in K p has a
negative effect on the overshoot of the end-effector at the corners. Increasing the
Kp-gain in turn has a positive effect on the overshoot. However as mentioned ear-

lier the K'p-gain is limited in the real system due to its characteristic of amplifying
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the measurement noise. Simulations revealed that an increase of the proportional
gain to Kp = 175 gives better results in offset while keeping the overshoot at the
level of the first PID case. Figures 5.22 through 5.24 show the result for that case.

The shape of the motor error curves look very similar to the previous case, but it

End-effector path, PD-control
Kp=175 and Kd=4

0.025 +
Simulated end-effector path
Desired path
0.02
E 0.015 4
K]
x
v
> 0.01f
0.005
of A |
0 0.005 0.01 0.015 0.02 0.025
x=-axis (m)
Figure 5.22.

can be seen that the total amount of error is less then in the previous case, which

is the reason for the improvement in offset.

Table 5.5 shows that the new gains could improve the offset while keeping the

15 leg 274 leg 3 leg 4™ leg
Overshoot Undershoot
at the end of the leg | 5.5x107* | -2.15x107* | 5.54x10~* /
inm
Offset
|max| 3.37x107% | 1.12x10~* | 1.05x107° | 1.43x10~4
in m

Table 5.5. Path deviations PD-control; Kp = 175 and Kp = 4
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overshoot at a comparable level as for the PID case.

5.6 Comparison of the Performance of the Controllers in Simulation
Table 5.6 compares the performance of the controllers studied in this chapter
with each other by taking the first PID-controller (Kp = 150, K; = 100 and

Kp = 4) as a baseline.

Controller Gains | Performance | 1% leg [ 29 leg | 3" leg | 4% leg
type type
PID Kp =150 | overshoot 100% | 100% | 100% /
K; =100
Kp=4 offset 100% 100% 100% 100%
Kp =150 | overshoot | 260.5% | 361.1% | 308.8% /
K; = 1500
Kp=4 offset 116.4% | 44.1% | 120.9% | 101%

PD Kp =150 | overshoot | 77.3% | 175.9% | 90.6% /
Kp=14

offset 96.7% | 50.4% | 5.8% | 139.1%

Kp =175 | overshoot | 94.5% | 122.8% | 110.4% /
Kp=4

offset 100.6% | 41.2% | 9.1% | 136.2%

Table 5.6. Compared performances of the studied controllers

Table 5.6 shows that overall the last controller (PD, Kp = 175, Kp = 4)
shows the best performance. While keeping the overshoots on the same level as
well as the offset for leg 1 the offsets for the legs 2 and 3 could be improved. The
biggest improvement was in leg 3 with 90.9% offset reduction compared to the first

PID-controller.

5.7 Experimental Performance of the Controllers on the Real System
As a next step, we need to investigate this controller performance on the real

system. In order to change the PID-controller into an PD-controller no further
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programming steps have to be taken. The code of the PID reset windup algorithm
shown in Appendix A can be used with the only change, that now the K gains
are set to be zero.

First the PID controller (Kp = 150, K; = 100 and Kp = 4) is being tested
as a baseline to check if the PD solution can give similar improvement in the

real system as could be observed in simulation. Figure 5.25 shows the result, the

deviations are summarized in Table 5.7.

End-effector path, PID-controlled
Kp=150, Ki=100 and Kd=4
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0.02+
E 0.015
2
*
g
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Figure 5.25.

Next the PD-controller with Kp = 175 and Kp = 4 is being tested. Fig-
ure 5.26 shows the end-effector path, while Table 5.8 summarizes the results.

Table 5.5 and 5.6 show that the offset in the legs 1, 2 and 4 are improved, but
an unexpected increase in offset for leg 3 is experienced. Looking at the plot of

the error in motor angle (Figure 5.27) shows that Motor 1 seems to have a smaller
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15 leg 279 Jeg 39leg | 4™ leg
Overshoot Undershoot
at the end of the leg | 7.4x107* | -2x10~* | 3.2x10~* /
inm
Offset
|max| 1x10~4 3.8x10~* 1x10~* | 1.2x10~4
inm

Table 5.7. Path deviations PID-control; Kp = 150, K; = 100 and Kp = 4

End-effector path, PD-controlled
Kp=175 and Kd=4
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x-axis (m)
Figure 5.26.
15 leg 27 leg 391eg | 4% leg
Overshoot Undershoot
at the end of the leg | 6.2x107* | -4x10~* | 4.9x10~* /
inm
Offset
|max| 7x107° 2x10~4 3.4x107% | 1.9x1074
inm

Table 5.8. Path deviations PD-control; Kp = 175 and Kp = 4

error over the whole run.

A reason for that could be, that Motor 1 is slightly stronger then Motor 2, which
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Motor angles error under PD-control
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Figure 5.27.

can not be prevented, since two motors can never have the same exact performance.

In order to compensate for that the controller gains for the Motor 2 control loop can

be increased slightly while the gains for the Motor 1 control loop stay unchanged.

Figure 5.28 shows the error in motor angles when motor 2 gains are increased by

10%.

Compared to the case with equal controller gains for both motors, the error

15 leg 274 eg 39 leg | 4" leg
Overshoot Undershoot
at the end of the leg | 7.4x107* | -1.4x10~* | 4.3x10~* /
in m
Offset
|max| IO | 2.3x107 | 1.2x107* | 8x10~°
in m

Table 5.9. Path deviations PD-control increased gains Motor 2

plot now looks more equal. And consequently the offsets improved, as shown in
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Motor angles error under PD-control
Kp=175 and Kd=4; Motor 2 gains increased
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Figure 5.28.

End-effector path, PD-controlled
Kp=175 and Kd=4; Motor 2 gains increased
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Figure 5.29.
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Figure 5.29 and Table 5.9.

5.8 Comparison of Experimental and Simulated Performance

Next the simulated and the experimental data for the closed loop control of
the H-frame system is compared to evaluate how well the model can predict the
response of the real system. Figure 5.30 shows the end-effector path for simulation
and experiment for the PID-case (Kp = 150, K; = 100 and Kp = 4), Figure 5.31
shows the same plot for the PD-case (Kp = 175 and Kp = 4). Figure 5.31

End-effector path, PID-controlled
Kp=150, Ki=100 and Kd=4;
experimental vs. simulation

0.025 |
Actual end-effector path
Desired path
002r g [ .=i=. - Simulated end-effector path
E 0.015
R
x
P
> o001}
0.005 |
o i 1
0 0.005 0.01 0.015 0.02 0.025
x=-axis (m)
Figure 5.30.

reveals a certain deviation between experimental and simulated end-effector path.
The deviations in the third leg are most significant. As mentioned before this is
most likely caused by a difference in motor performance, which is not reflected in
the dynamic model. Compensating this by increasing the controller gains for the
weaker motor, motor 2, should minimize the deviations of simulation and experi-

mental path.
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End-effector path, PD-controlled
Kp=175 and Kd=4;
experimental vs. simulation
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Figure 5.32 shows the end-effector path for simulation and experiment where the
different performance of the motors is compensated by increasing the gains for
motor 2 in the experiment. As expected Figure 5.32 shows a better match of
simulation and experimental results. This strengthens the assumption, that the
different performance of the motors is one factor for the deviation of simulation
and experimental results. Therefore for further comparison of simulation and ex-
perimental results the experimental motor 2 gains will stay increased, in order to
compensate for the difference in motor performance.

Even though a certain deviation is still observable it can also be seen that the
model reflects the dynamics of the real system generally well. It can be observed
in Figure 5.32 that size and shape of the overshoots at the end of leg one and
three are matched well by the simulation. Also the tendency of the real system to

undershoot at the end of leg 2 is reflected by the simulation based on the nonlinear
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End-effector path, PD-controlled
Kp=175 and Kd=4; Motor 2 gains increased;
experimental vs. simulation
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Figure 5.32.

dynamic model. The major deviations are experienced in the offsets. An explana-
tion for that can be found by looking again at the end-effector path derived from
the encoder angles assuming rigid belt conditions. Figure 5.33 shows the error in
shape of the actual end-effector and the end-effector based on the encoders for the
experimental data. It shows that the encoder based end-effector position is very
close to the desired position in the steady state cases while traveling along the leg.
This suggests that the effect of nonlinear friction in the linear axis combined with
a rest stretch in the belt has a bigger effect on the end-effector position on the
real system then the simulation suggested, which leads to the deviations between
simulation and experimental end-effector path.

To further generalize our findings a couple further tests where carried out.
First the length of the legs of the test trajectory was changed to 2in by 2in (0.0508m

by 0.0508m). Figure 5.34 shows the end-effector path for simulation and experi-
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Figure 5.33.

ment for this altered case. No noticeable change of performance can be experienced
for this slightly altered case. The first impression, that the overshoots are smaller
is explained by the larger scale of this plot.

Another possible alternation in the test trajectory is to change the maximum speed
Umaz- For the next test the length of the legs is reset to lin (0.0254m), but the
speed Umgg is changed from 62 (0.1524) to 3% (0.07622). Figure 5.35 shows
that as expected the overshoots at the end of the legs decreased, due to slower
travel and therefore less acceleration and inertial forces while changing direction.
It also shows that since the desired path does not get overshot by the end-effector
the nonlinear friction causes the end-effector to stay inside the desired path at
all time. The most significant observation in this plot however is the deviation
of simulated and experimental end-effector path in the fourth leg. This suggests

that as mentioned before the nonlinear friction does have bigger effect on the real
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system than reflected by the model. However taking also into account that for the
second leg simulation seems to match the experimental path well, suggests that
not only the axes traveling on defines the amount of nonlinear friction. It seems,
that also other effects as for instance direction of travel or position seem to have

an effect on it.

5.9 Discussion of the Results

In this chapter it is shown that the nonlinear dynamic model derived in this
thesis is able to match the general characteristics of the H-frame system under
closed loop control. Also some minor deviations between simulation and experi-
mental data could be observed. Approaches to further improve the model’s reflec-
tion of the real system behavior are discussed in the next section.

Furthermore it was shown that unequal motor angle errors are major contrib-
utor to the deviation from the desired path in form of offsets in the legs. The
integral part of the PID-controller first examined was identified as the major cause
of those inequalities and a reduction to a PD-controller was proposed to improve
the performance.

However it was also shown in experiments on the real H-frame system that the
offset caused by nonlinear friction and rest stretch in the belt sections is a major
source of error. This error cannot be entirely eliminated by how the controller
is setup. This is because it occurs outside the control loop. Since the feed back
control signals are the motor angles, which as Figure 5.33 shows are controlled
fairly well, the PD-controller as well as the PID-controller can not eliminate this
error. This shows that a basic control strategy like PID or PD is not suitable for

accurately controlling the position tracking for the H-frame system.
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5.10 Further Research

Based on the findings in this work the following section points out further
research and design improvements which can improve the tracking capability of
the H-frame system.

The results obtained for the closed loop control of the H-frame system showed
that the error caused by the stretch in the timing belt has a large contribution to
the overall error. For the system that is assembled in the Robotics Lab it is believed
that the relation between moved masses and friction forces and the stiffness of the
used timing-belt is not optimal. The use of a stiffer timing belt could improve
the results and minimize the error contributed by the elastic transmission element.
However to effectively increase the stiffness of the belt, the cross-section-area of the
belt would have to be increased, which would also cause a major change of many
other elements of the H-frame system like the pulleys. It also has to be understood
that this could only minimize the error contributed by the timing-belt, but since
a timing-belt will always remain a flexible transmission element the error cannot
be completely eliminated.

Also an improvement of the reflection of the real system behavior by the
model, derived in this work, is desirable especially if intended to use for sophisti-
cated controller design and implementation.

To further improve the model, differences in the performance of the motors, which
were revealed in this work should be further examined and quantified. This, if con-
sidered in the model, would enable the model to reflect the real system behavior
even more closely. Also a more accurate determination of the friction parameters
for coulomb friction as well as for viscous friction experimentally would be desir-
able. In this work the coefficients were determined through the response of the

whole system, which could have lead to an overlapping of effects. The examina-
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tion of the parameters separate from each other could also reveal differences for
example in the friction of the two motors, which are currently believed to have the
same friction coefficients.

Most importantly though, the model derived in this work can be used to over-
come the challenges in the accurate positioning of the H-frame system by utilizing
it for the design and implementation of more sophisticated controllers. All those
control strategies addressed in the literature review in chapter 1 are potentially
suitable for an improvement of the positioning. However the implementation of
them for the H-frame system is far from being trivial. This is because all of the
papers mentioned in the literature review were working either only with one axis
systems, or if considering a xy-positioning, one actuator was always clearly related
to a certain movement of the end-effector in either the x- or y-direction. This is
not the case for the H-frame system. The coupling of both actuator movements
makes the implementation of those listed control strategies more challenging.
However this work, through the derivation of the nonlinear dynamic model, pro-
vides future researchers with a tool to design as well as simulate the performance of
sophisticated control strategies, that can solve the problems that were pointed out
in this work, which will lead to a more accurate control of the H-frame positioning

system.
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APPENDIX

Visual Basic Code for PID-controller with Reset Windup

The code that generates the PID-controller output for each Motor is given
in this Appendix. It is written in Visual Basic syntax in which the controlling
program on the PC controlling the H-frame system is written. The function takes
the number of the motor for which the control output is suppose to be computed,
the actual encoder position and the desired motor position as inputs and returns
the desired controller output. The variables Tsamp, prev_errl, prev_err2, integM1,
integM2, kpM1, kpM2, kdM1, kdM2, kiM1 and kiM2 are global variables, which
are declared globally in the calling function.

Public Function PIDCont(ByVal vactual As Double,...
ByVal vdes As Double, ByVal activemotor As Integer) As Single

Dim mpd# ’Prop & derivative term
Dim mp# ’Prop term

Dim md# ’Derivative term

Dim m! ’Control output

If Tsamp < O Then
End
End If
err = (vdes - vactual)

If activemotor = 1 Then
mp = kpM1 * err
md = kdM1 * (err - prev_errl) / Tsamp
mpd = mp + md
If mpd >= Max Then ’apply limits to output

mpd = Max

Elself mpd <= Min Then
mpd = Min

End If

itrial=integMl+kiMl*err*Tsamp ’Integrator Trial value
m = mpd + itrial '
If (itrial >= 0) Then ’Check the max limit
If (m > Max) Then
integMl = Max - mpd
m = Max
Else ’Not in limit
integMl = itrial
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End If
End If

If itrial < O Then ’Check the min limit
If (m < Min) Then
integM1l = Min - mpd

m = Min
Else

integMl = itrial
End If

End If

prev_errl = err ’Update prev_err term for next scan

ElselIf activemotor = 2 Then
mp = kpM2 * err
md = KdM2 * (err - prev_err2) / Tsamp
mpd = mp + md
If mpd >= Max Then ’apply limits to output

mpd = Max

ElseIf mpd <= Min Then
mpd = Min

End If

itrial=integM2+kiM2*err*Tsamp ’Integrator Trial value
m = mpd + itrial
If (itrial >= 0) Then ’Check the max limit
If (m > Max) Then
integM2 = Max - mpd

m = Max
Else ’Not in limit
integM2 = itrial
End If

End If

If itrial < O Then ’Check the min limit
If (m < Min) Then
integM2 = Min - mpd

m = Min
Else

integM2 = itrial
End If

End If
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prev_err2 = err ’Update prev_err term for next scan
End If

PIDCont = m
End Function
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