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ABSTRACT 

Encouraging Energy Efficiency: Pricing, Education, and Framing 

By 

Carrie A. Gill 

Doctor of Philosophy of Environmental and Natural Resource Economics 

University of Rhode Island 

 

The US residential sector consumed over 20 quadrillion Btu of energy in 2015, 

costing households billions of dollars in energy bills in addition to negative 

environmental and health externalities from conventional energy generation. Reducing 

energy consumption and promoting energy efficiency are critical for controlling costs, 

minimizing negative environmental impacts, and ensuring security of energy supply. 

Regulators and policy makers rely on a suite of strategies to promote energy efficiency 

and conservation. These strategies vary in degree of control over individual freedom of 

choice, effectiveness and impact, and political and practical feasibility. In this 

dissertation, I investigate the effects of three strategies to promote energy efficiency. 

In the first manuscript, I examine the effects of a time-varying residential 

electricity rate structure. One challenge of promoting energy efficiency is that the true 

marginal costs of electricity are not passed onto the majority of consumers who are 

charged a flat rate for electricity. I exploit quasi-random assignment of TOU rates and 

use a regression discontinuity framework to identify the causal effects of TOU pricing 

on four outcomes over the twelve months following treatment for high-use households. 

Though microeconomic theory predicts households shift consumption from peak to off-



	
  

peak hours, I find only suggestive evidence that this is the case. I find a decrease in 

level of peak consumption six to eight months following treatment along with a 

decrease in total consumption, suggesting energy conservation rather than load 

deferment and possibly indicating spillover effects of energy conservation into off-peak 

hours. I find evidence for decreases in electricity bill amounts, consistent with both 

more favorable marginal prices for households with already-low peak proportion and 

decreased consumption. 

In the second manuscript, I evaluate the effectiveness of in-school energy 

education lessons. Despite the prevalence of such education, there is little empirical 

evidence to support the efficacy of these programs on tangible outcomes outside of 

school. Using a differences-in-differences approach, I find evidence for short-term 

reductions on the order of eight percent in electricity use the day of a lesson regarding 

reducing phantom electric loads, with evidence of deferment in electricity use rather than 

reduction. I find no effect of lessons on energy pathways or wind energy on the days of 

the lessons. Findings show that energy education is potentially a valuable tool for 

encouraging energy efficiency and conservation, though the timing of lessons and 

curriculum content are critical to optimize treatment effects. 

In the third manuscript, I explore two facets of choice architecture that can 

encourage more energy-efficient behavior intentions. One challenge of promoting 

energy-efficient behavior change is status quo bias: limiting energy use often requires 

sacrificing convenience and comfort now and in the future. Using experimental data, I 

explore what temporal frame (e.g. daily, monthly, or yearly) minimizes status quo bias 

and encourages energy-efficient choices. Results suggest individuals are most willing to 



	
  

adopt energy-efficient behaviors when the cost savings are framed on a monthly basis, 

relative to daily and yearly frames. I investigate whether cognitive fluency – the 

perceived ease of processing information – could be an underlying mechanism. I find 

suggestive evidence that individuals are indeed most fluent with energy costs framed on a 

monthly basis, possibly because most individuals receive monthly energy bills. When 

individuals are faced with energy costs in relatively disfluent frames (daily and yearly), I 

find that energy efficiency intentions are greatest when given a context for total energy 

spending in a matching frame.   
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PREFACE 

This dissertation is written in three-manuscript form. The first manuscript is co-

authored with Corey Lang. It is being prepared for submission to the Journal of 

Environmental Economics and Management. The second manuscript is also co-authored 

with Corey Lang. It is being prepared for submission to the Journal of the Association of 

Environmental and Resource Economists. The third manuscript is co-authored with 

Stephen Atlas and David Hardisty. It is being prepared for submission to the Journal of 

Public Policy and Marketing. 

 

Manuscript 1: The effects of mandatory time-of-use pricing on high-consuming 

households using a regression discontinuity framework 

 

Manuscript 2: Learn to conserve? The effects of in-school energy education on at-home 

electricity consumption 

 

Manuscript 3: Matching costs to context: Status quo bias, temporal framing, and 

household energy decisions 
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Abstract 

Time-varying electricity rates are one way to encourage the optimal level of electricity 

consumption by passing along the marginal cost of electricity generation to consumers. 

Time of use (TOU) pricing is a coarse variant of real-time pricing, charging consumers 

a higher rate during hours of peak demand and a lower rate during off-peak hours. 

Because of marginal costs set to appease regulatory concerns about increasing 

electricity bills, such a rate structure gives rise not only to substitution between on- and 

off-peak consumption, but also produces income effects through decreased electricity 

bills. We exploit quasi-random assignment of TOU rates and use a regression 

discontinuity framework to identify the causal effects of TOU pricing on four outcomes 

over the twelve months following treatment for high-use households. Though 

microeconomic theory predicts households shift consumption from peak to off-peak 

hours, we find only suggestive evidence that this is the case. We find a decrease in level 

of peak consumption six to eight months following treatment along with a decrease in 

total consumption, suggesting energy conservation rather than load deferment and 

possibly indicating spillover effects of energy conservation into off-peak hours. We 

find evidence for decreases in electricity bill amounts, consistent with both more 

favorable marginal prices for households with already-low peak proportion and 

decreased consumption. 

 

Keywords: Time-of-Use Pricing; Electricity; Energy Conservation; Regression 

Discontinuity 
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1. Introduction 

One challenge of promoting residential energy efficiency is that the true costs of 

electricity are not passed onto the consumer. Most consumers face either a flat rate or 

inclining block rate pricing schedule, where rates are independent of total demand for 

electricity (FERC 2012). However, since electricity cannot be stored and must be 

generated in real time to meet demand, times of peak demand cause additional electricity 

generation facilities to come on board (Borenstein 2013). These additional facilities 

generate electricity that is often purchased at a higher wholesale cost either because the 

facilities are less efficient or because the producers have market power to increase 

marginal prices (Borenstein 2013, EIA 2014). Growing peak demand exacerbates the 

challenge of producing adequate supplies of electricity to meet varying demand 

throughout the year (NERC 2013). In regions where peak demand is met through the use 

of fossil fuel-based generation, reducing peak demand and variability can decrease 

emissions of greenhouse gases and pollutants (Holland and Mansur 2004). Because these 

costs are hidden to consumers, consumers have no incentive to reduce their electricity 

consumption (Borenstein 2002, 2005; Joskow and Wolfram 2012).  

Dynamic, real-time pricing, which translates the actual cost of electricity 

generation at any given time to the consumer, represents the opposite end of the spectrum 

from flat rate pricing. However, real-time pricing comes with regulatory and political 

concerns, including difficulty for the consumer to understand and adjust to time-varying 

prices (see Alexander 2010 for a review). Time-of-use (TOU) pricing is a coarse form of 

real-time pricing. Under a time-of-use pricing scheme, consumers pay a higher rate 

during pre-determined hours of peak demand and a lower rate during off-peak hours.  
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While over two million residents are enrolled in some form of TOU pricing (FERC 

2012), nearly all time-varying pricing schemes are optional for residential consumers, 

and may have either opt-in or opt-out defaults (e.g. Cappers et al. 2016, Hydro One 2008, 

Idaho Power Company 2006, Charles River Associates 2005, Strapp et al. 2007, 

Hammerstrom et al 2007, Navigant 2008, Hartway 1999). As utility regulators move 

toward time-varying pricing, it is critical to understand the effects on consumption and 

cost to the consumer across a variety of settings.  

One strategy to enact TOU pricing is to mandate certain households into the rate 

structure based on some criteria. We exploit a unique empirical setting in Connecticut, 

where households who exceed a threshold of 2,000 kWh in a single billing period are 

mandated into TOU pricing and may not switch back to flat rate pricing. Because 

households cannot precisely control their electricity consumption, exceeding this 

threshold may be considered as-good-as-random assignment of TOU pricing to high-use 

households. Therefore, this particular empirical setting lends itself very well to a 

regression discontinuity framework, allowing for identification of the causal effect of 

TOU pricing on several outcomes specifically for high-use households.  

We employ this framework to estimate local average treatment effects of 

exceeding this threshold – and being treated with TOU pricing – on proportion of 

consumption during peak hours, level of peak consumption, level of total consumption, 

and total electricity bill cost from one to twelve months following the exceedance. 

Though microeconomic theory predicts households would shift consumption from peak 

to off-peak hours, we only find suggestive evidence that this is the case. We find a 

decrease in level of peak consumption six to eight months following treatment along with 
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a decrease in total consumption, possibly indicating spillover effects of energy 

conservation into off-peak hours. Lastly, we find evidence for decreases in electricity bill 

amounts, consistent with both more favorable marginal prices for households with 

already-low peak proportion and decreased consumption.  

We make several important contributes to the literature. Generally, this research 

provides another point in the important conversation of how to appropriately encourage 

energy conservation through price incentives. Specifically, we investigate the causal 

effect of TOU pricing for the segment of high-consuming households, which has been 

overlooked in the literature. Furthermore, this research addresses a critical gap regarding 

the effectiveness of mandatory enrollment based on some criteria. There are several ways 

in which utility providers may enact TOU pricing, all with potential benefits and 

concerns. One option is to allow consumers to opt into TOU pricing. This option has 

traditionally had a low rate of uptake, with only certain consumers opting in (see for 

example Matsukawa 2001 or Aigner and Ghali 1989). For example, consumers who have 

flexibility to shift their usage throughout the day and could save money or who are 

environmentally concerned and view TOU pricing as a commitment device to reduce 

energy may be more inclined to opt into a time-varying rate structure. Utility providers 

could instead default consumers into TOU pricing and allow them to opt-out. This would 

capture another subset of consumers that are rather indifferent to the rate change 

(Cappers et al. 2016). If these consumers are engaged enough to be aware of the rate 

change, they may have some flexibility to shift load and either maintain the same energy 

expenditure or reduce their costs. However, if these indifferent consumers are also 

disengaged or fail to opt-out for other reasons, they may face higher electricity costs. A 
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third method of deploying TOU pricing is mandatory enrollment (Jessoe et al. 2014). 

Concerns over consumer welfare prevent across-the-board mandatory enrollment in TOU 

pricing (Alexander 2010). However, the compromise is to enroll only the highest-use 

customers into TOU pricing, allowing others to opt in as they prefer, may present 

relatively low regulatory risk.  

The paper is structured as follows. We review the literature on energy efficiency 

generally and TOU pricing specifically in Section 2 and describe the empirical setting in 

Section 3. We lay out our conceptual framework and corresponding hypotheses in 

Section 4. We describe the data in Section 5 and regression discontinuity method in 

Section 6. We present results and discussion in Section 7 and conclude with directions for 

future research and policy implications in Section 8. 

 

2. Literature Review 

 Utility providers face the challenge of providing just enough electricity to meet 

demand at any given time (Borenstein 2013). Each electricity generation plant can only 

generate electricity up to some capacity, before additional facilities must be brought on 

board to meet increased in demand. To prevent the occurrence of blackouts and 

brownouts, when utility providers triage who receives electricity, excess facilities are 

built that can generate additional electricity only during times of peak demand. However, 

the most efficient electricity generation facilities that can supply electricity at the lowest 

marginal cost are utilized first. Then during times of peak demand, additional, less-

efficient facilities are brought online. Higher marginal costs from the less-efficient 

facilities and relatively inelastic demand for electricity result in a large wholesale price. 
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Under a time-invariant pricing scheme, these higher costs are seen only by the utility 

provider and not by the consumer. This lack of information about marginal costs results 

in over-consumption by consumers, who face a rate lower than the true marginal cost of 

generation during hours of peak demand in their flat rate tariffs (Borenstein 2005, Joskow 

and Wolfram 2012).1 

 To address the problem of high demand from households during times of high 

peak total demand, utility providers and others have pushed for behavior change and 

demand response programs. There has been a growing movement for using concepts 

from psychology and behavioral economics to encourage energy efficiency (Allcott 2014, 

Gillingham and Palmer 2014, Allcott and Mullainathan 2010). One well-known example 

is the peer comparison on energy bills, which leverage social norms to encourage 

conservation (Allcott 2011). Demand response programs can include programmable 

thermostats, direct load control, and other technologies that can limit the amount of 

energy usage either by schedule or directly from the utility during hours of peak demand. 

These programs have been found to be relatively effective in reducing electricity 

consumption and shifting load demand, especially when paired with time-varying pricing 

schemes (see Newsham and Bowker 2010 and Faruqui and Sergici 2009 for reviews), 

though there is some evidence of strategic behavior to counteract direct load control 

technology (e.g. Lang and Okwelum 2014).  

Time-varying electricity prices offer another way to encourage efficiency, where 

consumers face costs that more closely reflect actual marginal costs. On the opposite side 

of the spectrum from flat rate pricing is dynamic real-time pricing, which changes with 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 There could also be under-consumption when consumers face marginal prices that are higher 
than the true marginal costs of electricity. 
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the fluctuations of marginal rates on the wholesale electricity market. One study of real-

time pricing finds consumers respond to real-time pricing by reducing demand during 

peak hours (Allcott 2011). In between flat rate and real-time pricing lie several course 

variants. Time-of-use (TOU) pricing, peak time rebates (PTR), and critical peak pricing 

(CPP) are three such schemes that either charge consumers a pre-determined premium to 

use electricity during pre-set hours of peak demand (TOU and CPP) or rebate consumers 

for reducing usage during hours of peak demand (PTR). If consumers are aware of the 

rates and can modify their energy consumption behavior, then they can better control 

their electricity usage and bills. However, if consumers are either unaware, do not 

understand, or are unwilling or unmotivated to change their behavior, time-varying rates 

may result in increased bills for consumers. Indeed, the literature has generally found that 

coupling time-varying pricing programs with salient information about marginal costs 

and electricity consumption (e.g. in-home displays (Jessoe and Rapson 2014) or glowing 

orbs (Allcott 2011)) or technology that enables increased control over consumption is 

more effective (Newsham and Bowker 2010).  

Prior research has explored the effects of coarse time-varying pricing schemes on 

residential electricity consumption, generally finding small reductions in electricity 

consumption due to TOU pricing, varying in both magnitude and significance (see 

Faruqui and Sergici (2009) and Newsham and Bowker (2010) for reviews). In a meta-

analysis of TOU pricing programs, Faruqui and Sergici (2010) find a three percent 

reduction in peak electricity load. Programs that couple TOU pricing with an enabling 

technology, such as a programmable thermostat that allows residents to set back the 

temperature when they are out of the home or during peak hours, tend to result in the 
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largest reductions (Newsham and Bowker 2010). Similarly, TOU pricing schedules 

coupled with critical peak pricing, days when there is an additional premium for 

electricity, result in larger electricity load reductions (Faruqui and Sergici 2010). Much of 

the recent literature studies programs in which participation is voluntary and open to all 

households (e.g. Cappers et al. 2016, Hydro One 2008, Idaho Power Company 2006, 

Charles River Associates 2005, Strapp et al. 2007, Hammerstrom et al 2007, Navigant 

2008, Hartway 1999). 

 A recent randomized control trial in California compared voluntary (opt-in) TOU 

enrollment to default (opt-out) TOU enrollment (Cappers et al 2016). Given the option to 

opt-in, 19.5 percent of households chose TOU pricing over their default inclining block 

rate schedule. However, only two percent of households actively opted-out of TOU 

pricing when it was the default pricing schedule. The households in each group also had 

differential energy savings, with households who actively opted into TOU pricing having 

roughly three times larger energy reductions than those who were defaulted in. This is 

evidence of a subset of consumers who are relatively disengaged from their energy 

pricing and/or unwilling or unable to change their demand. But while the average per-

customer energy savings were lower in the default TOU enrollment scenario, estimated 

benefits dwarfed those of an opt-in enrollment scenario due to increased participation. 

While studies of voluntary and default TOU pricing are critical to understanding the 

efficacy of time-varying pricing on demand, self-selection may bias the magnitudes of 

estimated effects (Aigner and Ghali 1989). The effects of mandatory enrollment in time-

varying pricing for high-use consumers have been largely overlooked. Moreover, the 

specific effects of mandatory enrollment for high-use consumers is important, as these 
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consumers are responsible for a significant amount of total electricity consumption and 

demand during peak hours. 

 Jessoe, Rapson, and Smith (2014) investigated the effects of a preliminary 

iteration of the TOU pricing program in this paper, finding reductions in total electricity 

usage. Our analysis extends their study in several ways. First, we use higher resolution 

data and are able to observe preferences for peak and off-peak electricity consumption 

under flat rate prices. Second, the threshold for being mandated onto TOU pricing is 

2,000 kWh for all households in our sample, while the threshold starts quite a bit higher 

at 4,000 kWh and then drops to 3,000 kWh for the households in Jessoe, Rapson, and 

Smith’s analysis. Third, there are a couple nuances due to the newness of the TOU 

pricing program that we do not face in our analysis, including a long time lag between 

exceeding the threshold and switching rates (households that exceeded as early as 

November 2006 were not switched to TOU rates until February 2008) and 

implementation glitches that failed to switch some households that actually exceeded the 

threshold. 

Jessoe and Rapson (2015) explore a mandatory TOU pricing program for high-

use consumers, but in the Commercial and Industrial (C&I) sector. In this program, C&I 

consumers who exceeded a certain consumption threshold within one billing period were 

mandated to TOU pricing and not allowed the option to switch to a different pricing 

schedule. For these consumers, the threshold started at 300 kW on June 1, 2008 and 

decreased by 100 kW each of the subsequent two years. Each time the threshold 

decreased, a number of C&I consumers exceeded the threshold and were mandated into 

TOU pricing. The authors use a regression discontinuity design to estimate the effects of 
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TOU pricing on future consumption for the set of firms that exceeded the June 1, 2010 

threshold, and find no significant change in electricity consumption due to TOU pricing. 

This empirical setting is very similar to the setting that residential consumers face in this 

study. 

 

3. Empirical Setting 

The United Illuminating Company (UI) services consumers in the greater New 

Haven area, Connecticut. On January 1, 2009, under the direction of the Public Utility 

Regulatory Authority, UI imposed a mandatory TOU pricing schedule for residential 

consumers who exceed 2000 kWh in a single monthly billing period.  Once a household 

exceeds this threshold, the household is notified and switched from a flat rate to TOU 

pricing within six months. It is important to note that households do not see an immediate 

rate change. For the households in our dataset, it typically took two monthly bills before 

they were switched to TOU rates (mean = 2.1 bills, standard deviation = 0.5 bills). 

Households are prohibited from switching back to flat rate pricing, with exceptions made 

for households containing a person with a serious medical condition who have a letter 

from a physician, houses undergoing repairs related to a storm, exceedances due to 

malfunction appliances with evidence of repair or replacement, and households that may 

have received an incorrect utility bill. However, all of these exceptions require that 

electricity rates were consistently below 20 percent of the threshold for the prior 24 

months, and any reversals that are approved are a one-time only exception (UI 2016). 

Table 1 presents rates for flat rate and TOU standard generation pricing schedules 

January 2013-2016 for standard service generation. Due to factors like demand and losses 
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in transmission and distribution, utility providers distinguish between summer and winter 

rates, with summer rates typically being higher. Charges under flat rate pricing are 

independent of the time of day, in contrast to TOU pricing, which charges a higher rate 

during hours of peak demand. On-peak hours are defined as noon – 8pm Monday through 

Friday. All other times, including Saturday and Sunday and holidays, constitute off-peak 

hours.  

[Table 1 about here] 

 

Flat rate tariffs range from $0.18 - $0.25 per kilowatt-hour (kWh). Under TOU 

pricing, off-peak rates ranged from $0.14 - $0.20 per kWh while on-peak rates ranged 

from $0.27 - $0.37 per kWh. TOU rates during on-peak hours were 1.7-2.4 times higher 

than off-peak rates over this time period. The proportion of consumption occurring 

during peak hours required for the total cost to be identical under both rate structures is 

given for both summer and winter months. This proportion varies between 0.29-0.31. A 

household that consumes more during peak hours than this proportion would face higher 

total costs under TOU pricing than under flat rate pricing, while households with a lower 

peak proportion would face lower electricity bills. We discuss distribution of peak 

proportion along with data in Section 5. 

 

4. Conceptual Framework 

Let 𝑝!! < 𝑝!! = 𝑝!! < 𝑝!! be prices for peak 𝑝! and off-peak 𝑝!  usage under flat 

rate 𝑝! and TOU 𝑝! price structures and 𝑄! = 𝑄! + 𝑄! be total consumption of energy 
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during peak and off-peak hours. The consumer’s problem is to maximize utility over 𝑄!, 

𝑄! subject to a budget constraint: 

 

max!!,!! 𝑈(𝑄!,𝑄!)         𝑠. 𝑡.        𝑝!𝑄! + 𝑝!𝑄! ≤ 𝐵  

 

where 𝐵 is the amount budgeted for electricity. Assume, for illustrative purposes, that 

utility is described by a Cobb Douglas utility function: 

 

𝑈 𝑄!,𝑄! = 𝑄!!𝑄!!!! 

 

where 𝛼 ∈ (0, 1). When the household is billed under flat rate pricing, they do not have 

to discriminate when to consumer energy due to a price differential. Therefore, we can 

think of the household as revealing information about their true preferences for 

consumption during peak and off-peak hours. Define 𝜃 ≡   𝑄! 𝑄! as the proportion of 

peak consumption and let 𝜃! represent a consumer’s initial preferences for peak and off-

peak consumption under flat rate pricing.  We can solve the utility maximization problem 

to gain insight into this preference parameter: 

 

ℒ = 𝑄!!𝑄!!!! + 𝜆(𝐵 − 𝑝!𝑄! + 𝑝!𝑄!) 

 

The first order conditions are 

 

𝜕ℒ
𝜕𝑄!

= 𝛼𝑄!!!!𝑄!!!! − 𝜆𝑝! = 0 

 

𝜕ℒ
𝜕𝑄!

= (1 − 𝛼)𝑄!!𝑄!!! − 𝜆𝑝! = 0 
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𝜕ℒ
𝜕𝜆

= 𝐵 − 𝑝!𝑄! + 𝑝!𝑄! = 0 

 

Using the first two conditions, we can solve each for 𝜆 and set them equal to each other to 

solve for 𝛼: 

 

𝛼𝑄!!!!𝑄!!!!

𝑝!
=
(1 − 𝛼)𝑄!!𝑄!!!

𝑝!
 

 

𝛼
(1 − 𝛼)

=
𝑄!
𝑄!

∙
𝑝!
𝑝!

 

 

𝛼 =
𝜌𝑄!

𝑄! + 𝜌𝑄!
 

 

where we define 𝜌 as the ratio of peak to off-peak prices, 𝜌 ≡ 𝑝! 𝑝!. In the case of flat 

rate pricing, 𝑝! = 𝑝! ⇒ 𝜌 = 1 and 𝛼 =   𝑄! 𝑄! =   𝜃!. In other words, 𝛼 is the 

proportion of usage during peak hours relative to total consumption. A household reveals 

their preferences under flat rate pricing, which gives us critical information about the 

shape of the household’s utility function. By knowing a single parameter 𝛼, we can make 

inferences about a household’s preferences for consumption under changing prices.  

We want to understand how consumption patterns change following a switch to 

TOU pricing along four dimensions: peak proportion, peak usage, total usage, and bill 

amount. To do so, it is necessary to solve the utility maximization problem for demand. 

Again using the first order conditions, we solve: 

 

𝑄! =
1 − 𝛼
𝛼

𝜌𝑄! 
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𝑄! =
𝐵
𝑝!
− 𝜌𝑄! 

 

𝑄!∗ =
𝛼𝐵
𝑝!

 

 

𝑄!∗ =
(1 − 𝛼)𝐵

𝑝!
 

 

We now have all the necessary calculations to formulate hypotheses of expected 

behavior under utility maximization. First consider change in peak proportion when a 

household is treated with TOU pricing. Recall that 𝜃! = 𝛼 is the household’s initial peak 

proportion and let 𝜃! be peak proportion under TOU rates. The change in peak proportion 

is given by: 

 

∆𝜃 ≡ 𝜃! − 𝜃! 

 

∆𝜃 =
𝑄!!

𝑄!! + 𝑄!!
− 𝛼 

 

∆𝜃 =

𝛼𝐵
𝑝!

(1 − 𝛼)𝐵
𝑝!

+ 𝛼𝐵𝑝!

− 𝛼 

 

∆𝜃 = 𝛼
𝑝!

1 − 𝛼 𝑝! + 𝛼𝑝!
− 1  

 

Under a TOU pricing scheme where 𝑝!   < 𝑝!   , we know that ∆𝜃 < 0, indicating a 

decrease in the proportion of electricity used during peak hours. Using 𝑝!   = 0.15,𝑝!   =
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0.30), there is a maximum change at 𝛼 = 0.59, but for typical preferences peak 

proportion decreases linearly as 𝛼 increases. 

 We can also infer how peak usage will change. It is convenient to normalize Δ𝑄! 

by peak consumption under flat rate prices. Using optimized demand derivations, 

 

Δ𝑄!
𝑄!!

=
𝑄!! − 𝑄!!

𝑄!!
 

 

Δ𝑄!
𝑄!!

=

𝛼𝐵
𝑝!

− 𝛼𝐵𝑝!
𝛼𝐵
𝑝!

 

 

Δ𝑄!
𝑄!!

=
𝑝! − 𝑝!
𝑝!

 

 

So the percentage change in peak usage is a function of flat rate prices and peak prices 

under TOU, and is independent of preferences for peak proportion. For 𝑝!   = 0.15,𝑝!   =

0.30, households would reduce peak usage by 33 percent. We can conduct a similar 

inference for total consumption.  

Δ𝑄!
𝑄!!

=
𝑄!! − 𝑄!!

𝑄!!
 

 

Δ𝑄!
𝑄!!

=

𝛼𝐵
𝑝!

+ (1 − 𝛼)𝐵𝑝!
− 𝛼𝐵𝑝!

− (1 − 𝛼)𝐵𝑝!
𝛼𝐵
𝑝!

+ (1 − 𝛼)𝐵𝑝!

 

 

Δ𝑄!
𝑄!!

=
𝑝! − 𝑝!
𝑝!

−
1
𝑝!
−
1
𝑝!

𝑝!𝛼 
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In other words, the percentage change in total load increases for small values of 𝛼 and 

decreases linearly with 𝛼. To illustrate this result using 𝑝!   = 0.15,𝑝!   = 0.30,𝑝!   = 0.20, 

households who use less than half their total electricity consumption during peak hours 

(representing typical real-world preferences) are expected to increase total load. This 

result is largely due to income effects. For customers who consume a peak proportion 

less than some value of 𝛼, the TOU price structure is designed such that most households 

will not see an increase in bills even in the absence of change in consumption patterns. 

Therefore, many households who change nothing would actually see bills decrease. 

However, Walras’s law states that households will adjust consumption to spend exactly 

their electricity budgets. Therefore, deriving changes to bill amounts using this micro 

theory framework lead to no change to bill amount for households with any value of 𝛼.  

 We can further explore how total consumption changes due to substitution and 

income effects. We use a Slutsky decomposition to find interim demand for peak and off-

peak consumption holding buying power constant. In other words, the household can still 

afford the original consumption bundle preferred under flat rates using TOU prices: 

 

𝐵! = 𝑝!𝑄!! + 𝑝!𝑄!! 

 

Consistent with prior findings, micro theory predicts households shift away from peak 

consumption, and the substitution effects dominate income effects for households using 

less than two-thirds of their electricity during peak hours. On the other hand, income and 

substitution effects both work to increase off-peak consumption for households with peak 

proportion preferences less than 𝛼 = 0.33. For households with preferences for more 
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peak consumption relative to total, a negative income effect attenuates a positive 

substitution effect for off-peak usage.  

This level of 𝛼 represents the break-even peak proportion; a household with 

preferences for this peak proportion would see identical bills under both flat rate and 

TOU pricing. More generally, we can solve for 𝛼 in terms of prices by setting total costs 

under each rate structure equal to each other: 

 

𝑇𝐶! = 𝑇𝐶! 

 

𝑝!𝑄! = 𝑝!𝛼𝑄! + 𝑝! 1 − 𝛼 𝑄! 

 

𝛼!" =
𝑝! − 𝑝!
𝑝! − 𝑝!

 

 

As the difference between peak and off-peak prices increases, the break-even level of 𝛼 

decreases. As mentioned previously, one regulatory concern is that households would be 

worse off from a change in rate structure. Therefore, prices are set such that most 

households have preferences for peak proportion that fall below this break-even point. It 

is important to note, however, that households with preferences toward peak proportion 

greater than 𝛼!" are still predicted to increase total consumption, as the substitution effect 

toward off-peak consumption dominates all other effects. More specifically, households 

with preferences for peak proportion less than 𝛼!"(𝑝!/𝑝!) are predicted to increase total 

consumption. 
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Using average winter rates for 2013-2016,2 the break-even proportion is equal to 

one-third. In other words, households that consume one third of total electricity during 

peak hours see no change in their electricity bill when they are switched from flat rate 

pricing to TOU pricing. We illustrate this in Figure 1, which plots a consumer’s budget 

constraint under flat rate pricing and indifference curve between peak consumption on the 

horizontal axis and off-peak consumption on the vertical axis. We use the break-even 

peak proportion to determine the shape of the utility function and corresponding 

indifference curves. The resulting optimal consumption bundle under flat rate pricing is 

represented at point 0. After rates change according to the TOU rate schedule, the 

consumer’s budget constraint shifts, allowing the consumer to increase utility by shifting 

load from peak hours to off-peak hours, as seen by the higher indifference curve. Lower 

total costs also result in a wealth increase, allowing for an increase in total consumption 

given the assumption that the household’s budget for electricity remains fixed. The 

optimal consumption bundle under TOU pricing is represented at point 1.  

[Figure 1 about here] 

 Note that any consumption bundle that lies along the same ray from the origin 

contains the same proportion of peak to off-peak consumption. Since bundle 1 lies to the 

left of the ray from the origin to bundle 0, peak proportion will decrease when the 

household switches from flat rate pricing to TOU pricing. This intuitive result holds for 

all levels of peak proportion and is the basis for our first hypothesis. We test for changes 

in peak proportion in each of the first twelve months after exceeding the threshold and 

being switched to TOU pricing. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  𝑝!"#$ = $0.20/𝑘𝑊ℎ; 𝑝!"#$ = $0.30/𝑘𝑊ℎ; 𝑝!"" = $0.15/𝑘𝑊ℎ	
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Figure 2 illustrates two additional scenarios for peak proportions below and above 

𝛼!". Note that all households with true preference for peak proportion less than 𝛼!" (i.e. 

with optimal consumption bundles laying on the budget constraint to the left of point 0) 

are structural “winners” in terms of decreased total costs under TOU pricing. Panel A of 

Figure 2 shows optimized consumption bundles for a households with a revealed 

preference for peak proportion 𝛼 = 0.1. In the absence of any change in usage patterns, 

such a household could maintain flat-rate electricity consumption patterns a see a 

decrease in their bill amounts. However, micro theory predicts that these households 

would strategize by substituting consumption from peak to off-peak hours. The difference 

in slopes of the rays from the origin to each optimized bundle shows only a small 

decrease in peak proportion. There is also an income effect, which allows the household 

to move to a higher utility and increase total consumption. While utility providers and 

regulators motivate TOU pricing as a way to decrease peak consumption and shift load to 

off-peak hours, increases in total consumption would attenuate predicted benefits of 

electricity conservation. In addition to testing for changes in peak proportion, we also 

investigate effects of TOU pricing on level of peak consumption and total consumption.  

Panel B of Figure 2 illustrates changes to optimal consumption for a household 

with a preference for higher peak proportion than 𝛼!". All households with preferences 

greater than 𝛼!" are structural “losers”. In other words, these households would face 

increased electricity bills if they make no changes to their peak and off-peak consumption 

patterns. In order to stay within the budget constraint, these households must shift to a 

lower utility. In this lower utility, peak proportion and total consumption both must 

decrease. 
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[Figure 2 about here] 

Several assumptions must hold for predictions of this conceptual framework to be 

realized. First, the rate changes must be salient to the household and the household must 

understand the consequences of the TOU marginal prices. In our empirical setting, 

households who exceed 1,750 kWh in a single billing cycle are sent a letter alerting them 

to the mandatory rate change policy if they exceed the threshold. Households who exceed 

the threshold are sent another letter notifying them that their rates will change within the 

next billing cycle.3 However the timing between high consumption and receiving a letter 

may not be immediate and, while we can assume households receive the letters, we 

cannot observe whether decision makers within the household pay attention to the letter 

or understand the consequences. Second, households must be able to shift load to off-

peak hours, engage in energy conservation behaviors, or invest in energy efficient capital 

improvements. It is possible, though, that some households may not be able to make 

these changes despite understanding the consequences of the rate change. Third, 

households must be motivated to make these changes. Finally, we make the assumption 

that households have a fixed budget for electricity and strive to maintain that budget 

rather than reallocating savings achieved under TOU pricing to other goods or increasing 

budget to maintain the same levels of peak and total consumption as under flat rate 

prices.  

One regulatory concern with mandating TOU rate structures is placing a burden 

on households that are limited in their ability to adjust consumption patterns, a burden 

that could disproportionately impact some socioeconomic populations. Therefore, TOU 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Both letters are included in Appendix B. 
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marginal prices are set in such a way that a majority of households would face lower 

electricity bills without changes to consumption. As we alluded to previously, these 

income effects may have the unintended consequence of increasing total consumption. 

We test for changes in electricity bill amount for the twelve bills following treatment to 

address this question. 

 

5. Data 

We obtained 15-minute interval electricity load data from April 30, 2013 to October 1, 

2016 for all households who were mandated into TOU pricing due to exceeding the 2000 

kWh threshold from November 2013 to September 2015,4 as well as for all households 

that consume at least 1500 kWh during the timeframes we use in the analysis (we 

describe these timeframes in the methods section). We exclude households that exceed 

the threshold but are not switched into TOU rates within six months, as this may be an 

indicator of households that qualify for an exemption from the mandatory rate change, 

and therefore arguably fundamentally different in their energy usage patterns. This leaves 

us with a final dataset of 7358 households, 1974 of which were mandatorily and 

irreversibly enrolled in TOU pricing.  

 Figure 3 gives a sense for seasonal variation in total electricity consumption. We 

plot daily consumption over the sample period, smoothed using a 7-day moving average. 

Electricity consumption spikes in both the cold winter months and hot summer months, 

ostensibly due to heating and cooling loads. These peaks in average electricity use also 

correspond to the occurrence of households exceeding the threshold. Figure 4 illustrates 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 i.e. We have data for households that switch rates during this timeframe that also have six months of data 
on flat rate pricing and twelve months of data following the rate change. 
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the number of households that exceed 2,000 kWh and that switch from flat rate to TOU 

pricing each month. The frequency of rate changes intuitively lags the seasonal peaks in 

electricity consumption, as households are more likely to exceed in the cold winter 

months and hot summer months. On average, rate changes occur 2.1 billing cycles 

following exceedance, with the majority of households being switch within the first 

couple billings cycles.  

[Figure 3 about here] 

[Figure 4 about here] 

 Under TOU pricing, marginal electricity prices are higher during noon-8pm on 

weekdays. Figure 5 shows an average load profile. Consumption is lowest overnight 

when most individuals are sleeping, peaks slightly in the morning hours when most 

individuals are getting up and getting ready for a traditionally scheduled work day, 

increases during afternoon hours, and peaks in the late afternoon and early evening when 

many individuals are getting home from work. The shaded gray area indicates peak 

hours. Since preferences for peak proportion of consumption affect predictions for effects 

on total consumption and electricity bill amounts, it is important to understand the trends 

and variation in peak proportion as well. Panel A of Figure 6 shows average peak 

proportion each month. Average peak proportion is relatively stable throughout the year, 

with only a slight shift to peak consumption during summer months (likely due to 

electricity-run air conditioning).   

[Figure 5 about here] 

[Figure 6 about here] 
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Panel B illustrates variation in peak proportion across households. Peak 

proportion is normally distributed with mean and median equal to 0.26 (sd = 0.037), 

indicating that 26 percent of electricity is consumed during peak hours. Within our data, 

monthly trends account for 24 percent of variation in peak proportion while household 

habits account for another 35 percent of variation. Together, 58 percent of variation in 

peak proportion is explained by month of sample and household. It is also important to 

note that 96 percent of the sample consume less than 𝛼!"#$%!!"!#. This leads to two 

important observations. First, regulators seem to have set the TOU marginal prices 

appropriately to ensure the majority of households do not face increases in electricity 

bills. Second, that the majority of houses stand to benefit from a rate change provides 

further motivation for our investigation of whether income effects lead to unintended 

increases in total consumption.  

We unfortunately do not have data on what kind of enabling technology (e.g. 

programmable thermostats) or feedback displays (e.g. in-home energy displays) the 

households have. Prior research has shown that these technologies are somewhat critical 

to achieving energy reductions with TOU pricing (e.g. Newsham and Bowker 2010, 

Baatz 2017).  

We aggregate consumption data to the bill-level for our analysis. Specifically, we 

calculate total consumption in each billing period, peak consumption, peak proportion, 

and bill amount. We additionally match household electricity data to assessor data to 

understand balance in observable characteristics between treatment and control groups. 
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6. Regression Discontinuity Method 

In our empirical setting, households that exceed the (arbitrary) threshold of 2000 

kWh in a single billing period are then treated with TOU pricing, while those failing to 

exceed the threshold are not treated (they remain on flat rate pricing). A household 

becomes treated when they exceed the threshold for the first time. We make the 

necessary and plausible assumption that households are unable to precisely control their 

exact level of electricity consumption. For even just one decision-maker, precise control 

of cumulative consumption over a billing cycle would be nearly impossible without 

instant feedback from an in home display or smart meter (and awareness of and desire to 

receive and act on this feedback). Furthermore, many households are likely to have more 

than one agent responsible for making energy-related decisions in the household.5 

Therefore, there is stochasticity in whether a household exceeds the threshold and, in a 

neighborhood around the threshold, treatment status can be assumed to be as good as 

random. The regression discontinuity (RD) design improves inference by effectively 

comparing observations in this neighborhood, exploiting this quasi-random treatment 

assignment to identify a causal effect of TOU pricing among plausibly similar households 

(Imbens and Lemieux 2007). In our case, we estimate the local average treatment effect 

of exceeding the threshold on (i) proportion of consumption during peak hours, (ii) level 

of peak consumption, (iii) total consumption, and (iv) total cost on electricity bills in one 

to twelve billing periods.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 Another source of exogenous variation is assignment to one of 17 billing cycles. Each billing cycle covers 
roughly 31 days of electricity use, but billing file dates are spread throughout the month (e.g. the December 
2013 bill for households on billing cycle 1 covers 11/4/2013 – 12/4/2013 while billing cycle 17 covers 
11/27/2013 – 12/27/2013). Since there are differences in the days covered (including associated weather, 
proportion of weekend and week days, holidays, etc.), some households would exceed the threshold under 
some billing cycles but fall short of the threshold under others. We discuss potential ways to exploit this 
variation to identify causal effects and related directions for future research in the conclusion. 
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 Each household is exogenously assigned to one of 17 billing cycles that determine 

start and end dates of each bill throughout the sample period. We group all households 

that receive a bill during each calendar month-year to form a cohort, and we apply the 

RD approach to each cohort. To illustrate, consider the cohort of households who receive 

a bill in December 2013. 1,510 households used between 1500 and 1999 kWh during 

their bills, while 141 households exceeded the 2000 kWh threshold for the first time. RD 

effectively compares households arbitrarily close to the threshold in terms of our three 

outcomes of interest. Figure 7 illustrates the RD approach. Total consumption in the 

cohort month is our running variable (horizontal axis), and we plot households with 

respect to total consumption and some outcome measure in some future month. We 

control for correlations between total consumption in the cohort month and the outcome 

variable, allowing for different relationships on either side of the threshold. We then 

estimate the magnitude of the discontinuity at the threshold, the local average treatment 

effect. In this particular illustration, suppose the outcome measure is peak consumption. 

Intuitively, we posit a positive correlation between total consumption and peak 

consumption, shown by the positive linear fits on either side of the threshold. The 

magnitude and direction of the discontinuity indicates that exceeding the threshold and 

being switched to TOU pricing causes a decrease in peak consumption. Such a finding 

would be consistent with hypotheses derived from our conceptual framework. 

Empirically, we model these outcomes as: 

𝑦!"!! = 𝛽𝐷!"#$% + 𝑓 𝐷!"#$% ,𝑦!";𝜸 + 𝜀!"     (7) 

where y is the outcome variable in billing period 𝑡 + 𝜏 for household 𝑖, where 𝜏 ranges 

from one to twelve months and 𝑡 is equal to the cohort month. The treatment variable is 
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𝐷!"#$%, an indicator equal to 1 if customer 𝑖 exceeds the threshold for the first time in 

their cohort billing cycle and 0 otherwise. The coefficient of interest is 𝛽, which is 

interpreted at the causal effect of being mandatorily enrolled in TOU pricing from flat 

rate pricing for households close to the threshold. We use several variations in functional 

form to control for the running variable on either side of the threshold, including linear, 

quadratic, cubic, and local-linear6, as well as present the average treatment effect 

estimated from a differences-in-difference model (i.e. comparing mean levels of the 

outcome measure for treatment and control groups without controlling for total 

consumption).  

We aggregate our RD approach by choosing the six cohort months that have the 

largest numbers of households that exceed the threshold for the first time: December 

2013, January 2014, February 2014, January 2015, February 2015, and August 2015. 

Households can be assigned to both treatment and control groups for different cohort 

months. For example, a household may consume 1600 kWh in December 2013, 1900 

kWh in January 2014, and 2100 kWh in February 2014. The household would be in the 

control group for December and January, and in the treatment group in February, and not 

have any observations in 2015. Since the dependent variable is an outcome in a future 

month 𝑡 + 𝜏, we are careful to remove households that eventually are treated from the 

control group for an analysis of treatment on an outcome in month 𝑡 + 𝜏 or after. We 

control for unobservable characteristics of each cohort month with fixed effects. We also 

acknowledge that the levels of outcome variables may differ systematically by bill cycle. 

For example, one bill cycle ending in month 𝑡 + 𝜏 may be several days shorter than 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 Specifically, we use the local linear estimation command by Calonico et al. (2014a, 2014b).  
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another, or the days in one bill cycle may include a holiday or different distribution of 

weekend and weekdays. We control for these unobserved differences by including bill 

cycle fixed effects. Furthermore, we cluster the error term at the household level to allow 

for correlation within household. Our aggregated model becomes: 

𝑦!"!! = 𝛽𝐷!"#$% + 𝑓 𝐷!"#$% ,𝑦!";𝜸  +  𝑐𝑜ℎ𝑜𝑟𝑡!" + 𝑏𝑖𝑙𝑙𝑐𝑦𝑐𝑙𝑒! + 𝜀!" (8) 

6.1  Balance of Observables 

To appropriately apply the RD framework, we must be reasonably convinced that 

potential outcomes of observations in the neighborhood of the threshold are continuous. 

In other words, we assume that future peak proportion, level of peak consumption, total 

consumption and bill amount for households in the neighborhood of the threshold would 

be continuous in the absence of a change in rate structure. This critical assumption allows 

us to attribute any discontinuity in future electricity consumption for households who just 

barely exceeded the threshold (i.e. were treated) relative to households who failed to 

exceed the threshold (i.e. were not treated) to the rate change rather than to other 

confounding factors.  

Because we cannot observe potential outcomes to test this assumption, we instead 

test for differences in observable house characteristics and electricity consumption trends. 

We use the model given in Equation 8 with each characteristic as the dependent variable. 

We restrict the sample to households that consume within 500 kWh of the threshold 

throughout the analysis and control flexibly for the running variable using a cubic 

polynomial fitted to each side of the threshold. Table 2 presents our results. Columns 1-5 

test for differences in house characteristics at the threshold. Treated households tend to 
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have lower assessed values ($38,000 difference), but treated and control households are 

statistically indistinguishable in terms of lot size, building area, year built, and number of 

bedrooms. Columns 6-8 test for differences in baseline consumption characteristics at the 

threshold. Baseline values use the four billing cycles prior to the cohort month. 

Differences in these characteristics for households at the threshold are statistically 

insignificant. These results lend confidence to the strength and appropriateness of the RD 

empirical framework. 

[Table 2 about here] 

6.2 McCrary Density Test 

We also want to ensure that households are not able to strategize their total 

consumption so as to avoid the mandatory rate change for exceeding the threshold. If 

households were able to avoid the rate change, it would compromise the as-good-as-

random experimental nature of the RD framework. Such a phenomenon would appear as 

bunching below the threshold in the density plot of consumption in the cohort months. 

We conduct a McCrary density test, which estimates a discontinuity in density at the 

threshold (McCrary 2008). Figure 8 illustrates this. We find no significant discontinuity 

at the threshold (log difference in density height at the threshold = 0.12, standard error = 

0.15). These results provide further confidence in applying the RD method to our 

empirical setting. 

[Figure 8 about here] 
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7. Results and Discussion 

We first present results for the outcome measure peak proportion six billing 

cycles following the cohort month in Table 3. By this time, all households that exceeded 

the threshold in their cohort month are guaranteed to be switched to TOU pricing. We 

estimate the average treatment effect on either side of the threshold without controlling 

for the running variable in Column 1. We control for total consumption in the cohort 

month on either side of the threshold using different functional forms in Columns 2-6, 

estimating the local average treatment effect. We present the coefficient estimate on an 

indicator for treatment status (i.e. exceeding 2000 kWh in the cohort month) and omit all 

other coefficients from the table. The estimated average treatment effect is negative and 

significant in Column 1, indicating that mean peak proportion is 0.006 less for the 

treatment group than for the control group six billing periods following initially 

exceeding the threshold. However, this estimate captures differences between households 

that may be relatively far from the threshold and plausibly not ideal counterfactuals. 

Applying the RD framework and controlling more flexibly for total consumption on 

either side of the threshold, the estimated local average treatment effect decreases in 

magnitude and statistical difference. This result indicates that there is no statistically 

distinguishable discontinuity in peak proportion at the threshold. 

[Table 3 about here] 

 We expect the treatment effect to change over time as households adjust to new 

rates, so we extend our analysis to twelve months after initial exceedance in the cohort 

month. Table 4 presents our main results across months and outcome measures. Each cell 

is the coefficient estimate for the treatment indicator for a separate regression of outcome 
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𝑡 + 𝜏 months later on treatment status (results from twelve regressions are reported in 

each column). All models control for total consumption on either side of the threshold in 

the cohort month using a cubic polynomial, include cohort and bill cycle fixed effects, 

and cluster errors at the household level.7 

[Table 4 about here] 

Column 1 presents the causal effect of treatment on peak proportion. Recall that 

our microeconomic conceptual framework predicted decreases in peak proportion 

following the rate change. While coefficient estimates are mostly negative, they are also 

largely statistically indistinguishable from zero with the exception of peak proportion 

seven months later. This coefficient is interpreted as a 0.0125 reduction in peak 

proportion seven months following initially exceeding the threshold and being switched 

to TOU pricing. Recall that mean peak proportion in our sample is 0.26, so this reduction 

indicates a shift of 4 percent of peak consumption to off-peak hours. In sum, the 

statistical insignificance indicates that we cannot reject the null hypothesis of TOU 

pricing causing a change in proportion of consumption during peak hours relative to total, 

and is inconsistent with microeconomic predictions. 

 One potential explanation for why peak proportion does not change in response to 

higher peak rates is that households may decrease peak consumption in tandem with off-

peak consumption, maintaining the same proportion. Such a case could indicate that 

either the household is not utility maximizing, or that household preference for peak 

proportion change, possibly due to spillover effects. For example, if the household 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 Full tables with all model specifications for each outcome measure are available in Appendix A: Tables 
1A-4A. 
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develops energy efficient habits to decrease rather than defer peak electricity 

consumption, these habits may also apply to behaviors in off-peak hours. Another 

possibility is that a household invests in energy-efficiency improvements (e.g. an energy 

efficient dishwasher, washing machine, or other electronics) in order to decrease peak 

consumption. Such investments would necessarily also decrease off-peak consumption 

without changing peak proportion. We can glean inference into whether spillover effects 

exist in our analysis of peak and total consumption. 

 Column 2 presents estimated treatment effects on peak consumption while 

Column 3 presents effects on total consumption.  The effects of TOU on these two 

outcomes follow generally similar patterns. First, results suggest an increase in both peak 

and total consumption the first month after exceeding the threshold. This increase is a bit 

counterintuitive. Most households receive a letter during the first month after exceeding 

the threshold that alerts them to the rate change. With this letter being the only difference 

between treatment and control households during this month, it is possible that 

households are responding to the letter. Then the question becomes why consumption 

increases rather than decreases. We can speculate that households somehow 

misunderstand the consequences and parameters of TOU pricing as explained in the 

letter, though this intuitively seems like an unlikely scenario. We estimate small positive 

effects on consumption turning to negative effects for two to five months after 

exceedance, though these estimates are statistically insignificant. 

 We estimate significant reductions in peak and total consumption six to eight 

months following exceeding the threshold. For six months after exceedance, households 

enrolled in TOU pricing use 30 kWh less electricity during peak hours and 88 kWh less 
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electricity in total. For households in our sample, these reductions represent an eleven 

percent decrease in peak proportion and nine percent reduction in total consumption.8 At 

six months after exceedance, all treated households have been formally notified and 

enrolled in TOU pricing. The timing of these reductions align with intuition about when 

households may respond to their first electricity bills under the new rate structure. 

However, the effect magnitudes decrease after eight months and become statistically 

indistinguishable from zero. Interestingly, we estimate a positive, significant increase in 

both peak and total consumption twelve months following initial exceedance of the 

threshold, which is admittedly puzzling.  

Overall, these results suggest that TOU pricing may cause households to reduce 

electricity consumption, but these effects may be temporary as households adjust. The 

effect sizes for reductions in total consumption are larger than the magnitudes of 

reductions for peak consumption. This indicates two things. First, these results show that 

households respond to TOU pricing by changing consumption during both peak and off-

peak hours, which may partially explain why we fail to find a significant change in peak 

proportion. Second, the relatively larger magnitudes of reductions in total consumption 

more than encompass the changes in peak consumption. This finding provides some 

suggestive evidence of positive spillover effects. Households may respond to TOU 

pricing by making adjustments that affect their consumption throughout the day, rather 

than specifically during peak hours. Furthermore, that the effect seems to be temporary 

and then attenuate suggests that household responses are along the lines of energy 

efficient behavior modifications, rather than investments in energy efficiency 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 Mean peak load per billing period = 264 kWh. Mean total load per billing period = 989 kWh. 
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improvements to appliances, electronics, or infrastructure. These effects can also provide 

insight into the question of whether income effects cause increases in consumption for 

the 95 percent of households who face lower electricity bills under TOU pricing without 

having to adjust usage patterns. Generally negative or insignificant treatment effects point 

to households reallocating electricity bill savings to other goods rather than to increasing 

electricity consumption. However, the significant increase in peak and total consumption 

twelve months following treatment is cause for concern, and motivates the need for 

additional research to investigate the long-term impacts of TOU rate structures and 

marginal cost levels. 

Finally, we test whether electricity bills change due TOU pricing enrollment. 

Estimated treatment effects given in Column 4 generally echo the effects on consumption 

in sign and statistical significance. We find an increase in total cost for the first bill 

following treatment and then see fairly consistent reductions. Treatment effects are 

statistically nonzero for six to nine months following treatment, with estimated savings of 

$15-22. This reduction represents an 8-11 percent decrease in monthly electricity bill 

amounts for these months. These reductions conform to the idea that marginal prices are 

set such that most households would see either a reduction or no change in bill amount, 

and provide evidence for the effectiveness of regulatory choices. 

7.1 Falsification Test 

We conduct a falsification test using a false threshold at 1900 kWh in each cohort 

month. We control for the running variable below the false threshold, between the false 

and true thresholds, and above the true threshold. Table 5 presents the estimated 

coefficients on both the false and true treatment indicators, with each panel 
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corresponding to one of our four outcome measures and each column corresponding to 

the number of months following treatment (i.e. each panel-column is its own regression). 

We expect the coefficients on the false treatment indicators to be consistently statistically 

insignificant, with the coefficients on the true treatment indicators to generally follow the 

same pattern in sign, magnitude, and statistical significance as in the main results. Results 

show only two statistically significant coefficients on the false treatment indicator, and 

there does not appear to be an obvious pattern that would be cause for concern about 

application of the RD framework to this particular empirical setting. Furthermore, 

coefficients on the true treatment indicators generally echo the main results, though 

statistical significance is slightly diminished. Overall, these results provide support for 

our empirical method and lend confidence to the robustness of our results. 

[Table 5 about here] 

 
8. Conclusion 

Our research address the question of how TOU electricity rate structures impact 

the segment of high-consuming households. We exploit a unique empirical setting where 

households that exceed a consumption threshold within one billing period are 

mandatorily and irreversibly switched from flat rate pricing to TOU pricing. Imprecise 

control over consumption and the assumption of potential outcomes across this threshold 

allow us to estimate the causal local average treatment effect of TOU pricing on four 

outcome measures in the twelve months following treatment. Microeconomic theory 

predicts unequal marginal prices would lead to substitution effects that would decrease 

the proportion of consumption occurring during peak hours, and the way the marginal 
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prices are chosen would lead to income effects that could increase total consumption. In 

contrast, we find only suggestive evidence that peak proportion decreases as a result of 

TOU pricing. Instead, we find evidence of a short-term decrease in peak and total 

consumption on the order of ten percent beginning six months after treatment. This level 

of conservation is consistent with reductions found in prior literature (Newsham and 

Bowker 2010; Baatz 2017; Jessoe, Rapson, and Smith 2014). The combination of 

decreased consumption and differential marginal prices leads to expected reductions in 

electricity bill amounts of $15-22. While negative point estimates for effects on 

consumption and bill amount are generally negative for all months, the statistically 

significant effects do not persist throughout the study period. 

 Our findings lead to several interesting observations and directions for future 

research. First, the combination of results regarding peak proportion and consumption 

variables suggest that households may be engaging in energy efficient behavior change, 

at least in the short term. Instead of deferring electricity use to off-peak hours, thereby 

decreasing peak proportion, households seem to be engaging in energy conservation with 

spillovers from peak to off-peak hours. This overall decrease, instead of only a decrease 

during peak hours, may point to the costs of load deferment being higher than the costs of 

small one-time changes (e.g. replacing incandescent light bulbs with LED bulbs) or habit 

formation (e.g. turning off lights when leaving a room regardless of the time of day). 

Decreased consumption also suggests that households may reallocate savings to other 

goods rather than to additional electricity use.  

However, the short-term nature of energy conservation and savings on energy 

bills, with effects that indicate an increase in consumption twelve months after treatment 
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motivate the need for more study to understand how these effects change over time. It is 

possible that households take longer than twelve months to adjust to the new rate 

structure, possibly engaging in energy conservation in the short-term but increasing 

consumption in the long-term due to wealth effects. Since we do not have information on 

prevalence of enabling technology or feedback displays, we cannot know how salient the 

change in prices or household usage is to the household. Prior research shows that higher 

energy reductions may be possible when TOU is coupled with such technology 

(Newsham and Bowker 2010, Baatz 2017), so evidence of small and insignificant 

reductions may point to lack of technology or low salience of prices.  

 We also suspect that the insignificant effects on peak proportion may be masking 

heterogeneity in response to TOU pricing. Marginal rates are chosen such that the 

majority of households would see reduced electricity bills under TOU pricing relative to 

flat rate pricing given no changes to electricity consumption patterns. Preliminary 

evidence points to significant differences in response between households with below-

average peak proportion and households with above-average peak proportion, and 

particularly households near or above the break-even peak proportion. Future research 

should explore heterogeneity response further. 

 Finally, our findings generally point to decreases in electricity bill amounts due to 

switching to TOU pricing. This indicates that regulators are setting rates effectively to 

avoid distributional concerns about changes to consumer welfare. Future research should 

seek to understand characteristics of households with high peak proportion under flat 

rates resulting in bill increases under TOU pricing. 

  



 
 

38 

References 

 

Alexander, Barbara R. "Dynamic pricing? Not so fast! A residential consumer 
perspective." The Electricity Journal 23.6 (2010): 39-49. 

Aigner, Dennis J., and Khalifa Ghali. "Self‐selection in the residential electricity time‐of‐
use pricing experiments." Journal of Applied Econometrics 4.S1 (1989): S131-
S144. 

Allcott, Hunt. "Rethinking real-time electricity pricing." Resource and energy 
economics 33.4 (2011): 820-842. 

Allcott, Hunt. "Social norms and energy conservation." Journal of Public 
Economics 95.9 (2011): 1082-1095. 

Allcott, Hunt. "Paternalism and energy efficiency: an overview." Annual Review of 
Economics 8 (2016): 145-176. 

Allcott, Hunt, and Sendhil Mullainathan. "Behavior and energy 
policy." Science 327.5970 (2010): 1204-1205. 

Analytics, R. L. W. "AmerenUE Residential TOU Pilot Study Load Research Analysis-
2005 Program Results." AmerenUE. St Louis, MO (2006). (formerly Puckett and 
Hennessy) 

 
Baatz, Brendon. (2017). Rate Design Matters: The Intersection of Residential Rate 

Design and Energy Efficiency. American Council for an Energy-Efficient 
Economy, Report U1703. 

Board, Ontario Energy. "Ontario Energy Board smart price pilot final report." Toronto, 
ON, July (2007). (formerly Strapp) 

 
Borenstein, Severin. "The long-run efficiency of real-time electricity pricing." The 

Energy Journal (2005): 93-116. 
 
Borenstein, Severin. "Time-varying retail electricity prices: Theory and 

practice." Electricity deregulation: choices and challenges (2005): 317-357. 
 
Borenstein, Severin. "Effective and equitable adoption of opt-in residential dynamic 

electricity pricing." Review of Industrial Organization 42.2 (2013): 127-160. 
 
Borenstein, Severin, Michael Jaske, and Arthur Rosenfeld. "Dynamic pricing, advanced 

metering, and demand response in electricity markets." Center for the Study of 
Energy Markets (2002). 

 



 
 

39 

Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik. "Robust data-driven 
inference in the regression-discontinuity design." Stata Journal 14.4 (2014): 909-
946. 

 
Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik. "Robust Nonparametric 

Confidence Intervals for Regression‐Discontinuity Designs." Econometrica 82.6 
(2014): 2295-2326. 

 
Cappers, Peter., et al. “Time-of-Use as a Default Rate for Residential Customers: Issues 

and Insights.” Lawrence Berkeley National Laboratory, LBNL-1005704. (2016). 
https://emp.lbl.gov/sites/all/files/lbnl-1005704_0.pdf 

Charles River Associates. Impact Evaluation of the California Statewide Pricing Pilot. 
(2005). 

Energy Information Administration, 2017. FAQs. 
https://www.eia.gov/tools/faqs/faq.cfm?id= 97&t=3 

Energy Information Administration, 2014. Annual Energy Outlook with Projections 
2014. 

Government Printing Office. https://www.ferc.gov/legal/staff-reports/12-20-12-demand-
response.pdf 

Faruqui, Ahmad, and Sanem Sergici. "Household response to dynamic pricing of 
electricity: a survey of 15 experiments." Journal of regulatory Economics 38.2 
(2010): 193-225. 

 
Federal Energy Regulatory Commission (2012). Assessment of Demand Response and 

Advanced Metering. https://www.ferc.gov/legal/staff-reports/12-20-12-demand-
response.pdf 

Gillingham, Kenneth, and Karen Palmer. "Bridging the energy efficiency gap: Policy 
insights from economic theory and empirical evidence." Review of Environmental 
Economics and Policy 8.1 (2014): 18-38. 

 
Hammerstrom, D. J., et al. "Pacific northwest gridwise testbed demonstration 

projects." Part I. Olympic Peninsula Project 210 (2007). 
 
Hartway, Rob, Snuller Price, and Chi-Keung Woo. "Smart meter, customer choice and 

profitable time-of-use rate option." Energy 24.10 (1999): 895-903. 
 
Herter, Karen. "Residential implementation of critical-peak pricing of electricity." Energy 

Policy 35.4 (2007): 2121-2130. 
 



 
 

40 

Holland, Stephen P., and Erin T. Mansur. "Is real-time pricing green? The environmental 
impacts of electricity demand variance." The Review of Economics and Statistics 
90.3 (2008): 550-561. 

Hydro One (2008) Hydro One Networks’ Time of Use Pricing Pilot Project Results. 
Report number EB-2007-0086. 
http://www.ontarioenergyboard.ca/documents/cases/EB-2004-
0205/smartpricepilot/TOU_Pilot_Report_HydroOne_20080513.pdf 

Idaho Power Company (2006) Time-of-day and Energy Watch Pilot Programs Final 
Report. 
http://www.puc.idaho.gov/fileroom/cases/elec/IPC/IPCE0502/company/20060329
PILOT%20PROGRAMS%20FINAL%20REPORT.PDF 

Imbens, Guido, and Karthik Kalyanaraman. "Optimal bandwidth choice for the 
regression discontinuity estimator." The Review of economic studies (2011): 
rdr043. 

 
Imbens, Guido W., and Thomas Lemieux. "Regression discontinuity designs: A guide to 

practice." Journal of econometrics 142.2 (2008): 615-635. 
 
Jessoe, Katrina, and David Rapson. "Commercial and Industrial Demand Response 

Under Mandatory Time‐of‐Use Electricity Pricing." The Journal of Industrial 
Economics 63.3 (2015): 397-421. 

 
Jessoe, Katrina, and David Rapson. "Knowledge is (less) power: Experimental evidence 

from residential energy use." The American Economic Review 104.4 (2014): 
1417-1438. 

 
Jessoe, Katrina, David Rapson, and Jeremy B. Smith. (2014). "Towards understanding 

the role of price in residential electricity choices: Evidence from a natural 
experiment." Journal of Economic Behavior & Organization 107: 191-208. 

 
Joskow, Paul L., and Catherine D. Wolfram. "Dynamic pricing of electricity." The 

American Economic Review 102.3 (2012): 381-385. 
 
Lang, Corey, and Edson Okwelum. "The mitigating effect of strategic behavior on the net 

benefits of a direct load control program." Energy Economics 49 (2015): 141-148. 
 
Matsukawa, Isamu. "Household response to optional peak-load pricing of 

electricity." Journal of Regulatory Economics 20.3 (2001): 249-267. 
 
McCrary, Justin. "Manipulation of the running variable in the regression discontinuity 

design: A density test." Journal of econometrics 142.2 (2008): 698-714. 
 



 
 

41 

Navigant Consulting (2008) Evaluation of Time-of-Use Pricing Pilot, Prepared for 
Newmarket Hydro Ltd. 

Newsham, Guy R., and Brent G. Bowker. "The effect of utility time-varying pricing and 
load control strategies on residential summer peak electricity use: a 
review." Energy policy 38.7 (2010): 3289-3296. 

 
Nichols, Austin. "rd 2.0: Revised Stata module for regression discontinuity 

estimation." Available at ideas. repec. org/c/boc/bocode/s456888. html (2011). 
 
North American Electric Reliability Corporation (NERC), 2013. 2013 Summer 

Reliability Assessment. 
http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2013SRA
_Final.pdf 

Rocky Mountain Institute (2006) Automated Demand Response System Pilot. 
https://www.smartgrid.gov/files/Aumated_Demd_Response_System_Pilot_Volu
me_1_Intro_Exec_Summa.pdf 

United Illuminating. (2016) Exceptions to Mandatory Time of Day (TOD). Procedure. 

 

  



 
 

42 

Tables and Figures 

 
Figure 1. Optimized Consumption Bundles for Break-Even Peak Proportion 

 
Notes: Figure illustrates budget constraints, indifference curves, and utility-optimized 
consumption bundles under flat rate pricing (solid) and TOU pricing (dashed). Parameters include 
flat rate price = $0.20/kWh, on-peak price = $0.30/kWh, and off-peak price = $0.15, which reflect 
average prices 2013-2016. We assume a Cobb-Douglas utility function with alpha = 0.333, which 
is the break-even peak proportion. 
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Figure 2. Optimized Consumption Bundles for Low and High Peak Proportion 

Panel A. Low peak proportion 

 

Panel B. High peak proportion 

 

Notes: Figure illustrates budget constraints, indifference curves, and utility-optimized 
consumption bundles under flat rate pricing (solid) and TOU pricing (dashed). Parameters include 
flat rate price = $0.20/kWh, on-peak price = $0.30/kWh, and off-peak price = $0.15, which reflect 
average prices 2013-2016. We assume a Cobb-Douglas utility function with alpha below (Panel 
A) and above (Panel B) the break-even peak proportion. 
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Figure 3. Daily Load over Sample Period 

 

Notes: Figure illustrates daily load over the sample period, smoothed using a 7-day moving 
average.  
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Figure 4. Patterns of Exceedances and Rate Changes 

Panel A. Number of Households that Incur Rate Changes each Month 

 

Panel B. Number of Households that Incur Rate Changes each Month 

 
Notes: Figure shows the number of households who exceed 2,000 kWh in a billing period (Panel 
A) and change rates (Panel B) in each month. Bars are stacked in Panel B, with the gray area 
representing households who were mandatorily enrolled in TOU pricing and the black area 
representing households who voluntarily opted into TOU pricing (households who opt-in are 
removed from the main analysis due to concerns about selection bias). An average of 93 
households switch rates per month during Nov 2013 – Sept 2015.  
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Figure 5. Average Load Profile 

 

Notes: Figure illustrates daily load over the sample period, smoothed using a 7-day moving 
average. Gray shaded area indicates peak hours of noon-8pm (weekdays only).  
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Figure 6. Variation in Monthly Peak Proportion 

Panel A. Peak proportion throughout the year 

 

Panel B. Distribution of peak proportion 

 

Notes: Figure illustrates trends and variation in monthly peak proportion, defined as the ratio of 
peak consumption to total consumption over each calendar month. Panel A shows average peak 
proportion per month. Panel B shows the distribution of peak proportion using a kernel density 
estimator (mean = 0.26). 
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Figure 7. Regression Discontinuity Framework 

 

Notes: In our empirical setting, households that have total consumption greater than 2000 kWh in 
a single billing cycle are treated. This picture illustrates this threshold for a cohort month (i.e. for 
all households who receive a bill during the month). The outcome measure (peak proportion, peak 
consumption, total consumption, total cost) is plotted along the vertical axis. We estimate the size 
of the discontinuity at the threshold. This illustration shows the causal effect of exceeding the 
threshold would be a decrease in the outcome measure. 
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Figure 8. McCrary Density Plot 

 

Notes: Figure shows density of observations around the threshold. The log difference in height of 
density at the threshold = 0.121 (standard error = 0.150). 
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Table 1. Flat Rate and TOU Pricing Schedules

Effective Date Summer Rate Winter Rate
Summer On-

Peak Rate
Summer Off-

Peak Rate

Summer Break 
Even Peak 
Proportion

Winter On-
Peak Rate

Winter Off-
Peak Rate

Winter Break 
Even Peak 
Proportion

1/1/13 $0.187 $0.179 $0.294 $0.139 0.31 $0.270 $0.139 0.30
7/1/13 $0.192 $0.183 $0.321 $0.139 0.29 $0.291 $0.139 0.29
9/5/13 $0.199 $0.190 $0.324 $0.143 0.31 $0.295 $0.143 0.31
10/1/13 $0.201 $0.192 $0.326 $0.145 0.31 $0.297 $0.145 0.31
1/1/14 $0.196 $0.189 $0.317 $0.147 0.29 $0.290 $0.147 0.29
2/1/14 $0.197 $0.189 $0.317 $0.147 0.29 $0.290 $0.147 0.29
7/1/14 $0.201 $0.192 $0.345 $0.144 0.28 $0.312 $0.144 0.29
8/14/14 $0.208 $0.199 $0.351 $0.150 0.29 $0.318 $0.150 0.29
1/1/15 $0.249 $0.241 $0.370 $0.195 0.31 $0.342 $0.195 0.31
7/1/15 $0.201 $0.194 $0.310 $0.153 0.30 $0.285 $0.153 0.31
1/1/16 $0.211 $0.205 $0.308 $0.168 0.31 $0.287 $0.168 0.31
7/1/16 $0.195 $0.187 $0.319 $0.141 0.30 $0.291 $0.141 0.31
Average $0.203 $0.195 $0.325 $0.151 0.30 $0.297 $0.151 0.30

Flat Rate Time-of-Use Rates

Notes: All rates are given in $/kWh. Rates include charges for generation, distribution, transmission, bypassable FMCC, combined transmission 
assessment, competitive transition assessment, and non-bypassable FMCC. Summer includes June - September. Winter includes October - May. 
On-peak hours are noon - 8pm Monday - Friday. Off-peak hours include all other hours, weekends, and holidays. Break even peak proportion is 
the proportion of consumption during peak hours relative to total consumption such that a household would see an identical bill under either rate 
schedule.
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Table 2. Balance of Observable Characteristics
(1) (2) (3) (4) (5) (6) (7) (8)

Characteristic:
Lot Size 

(0.001 acres)

Assessed 
Total House 

Value ($)
Building Area 

(sqft) Year Built Bedrooms
Baseline 

Consumption
Baseline Peak 

Proportion
Baseline 

Total Cost

Treatment -123.2 -37,859* -92.89 -4.138 -0.00330 -8.426 -0.00214 -1.576
(137.7) (21,747) (146.6) (4.130) (0.116) (30.70) (0.00636) (6.385)

Observations 812 1,540 956 1,254 1,197 1,335 834 1,127
Notes: Table shows balance of observable characteristics across treatment and control groups. Each column reports the coefficient on an indicator 
for treatment, controlling for total consumption in the cohort month using a local-polynomial (robust RD). The dependent variable differs across 
columns and corresponds to a house characteristic using assessor data or a baseline characteristic, calculated by averaging the four bills prior to the 
cohort month. Standard errors are clustered at the household level. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 
respectively.
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Table 3. Average Treatment Effect across Models
DV = Peak Proportion (t+6) (1) (2) (3) (4) (5)

Model: Diff-in-Diff
RD: 

Linear
RD: 

Quadratic
RD: 

Cubic
RD: Local 

Linear

Treatment Indicator -0.00670*** -0.00560* -0.00469 -0.00405 0.00101
(0.00169) (0.00319) (0.00446) (0.00538) (0.00739)

Experimental Month FE Y Y Y Y N
Bill Cycle FE Y Y Y Y N
Observations 8,496 8,496 8,496 8,496 989
R-squared 0.0570 0.0570 0.0575 0.0575 .
Adj. R-squared 0.055 0.054 0.055 0.054 .
Notes: Table presents estimates of treatment effect from several specifications on peak proportion 
six months following treatment. Columns 1 presents results from a differences in differences 
model. Columns 2-4 present the local average treatment effect by controlling for the running 
variable (consumption during the cohort month) using a linear, quadratic, or cubic functional 
form on either side of the threshold. Column 5 presents a local average treatment effect using 
robust local-linear RD. Columns 1-4 additionally include fixed effects for cohort month and bill 
cycle. Standard errors in parentheses are clustered at the household level. *, **, and *** indicate 
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 4. Treatment Effect on Outcome Measures in Future Months
(1) (2) (3) (4)

DV: Peak Proportion
Peak 

Consumption
Total 

Consumption Bill Amount

Treatment t+1 -0.000339 23.88* 95.14** 17.60**
(0.00455) (13.35) (43.47) (8.224)

Treatment t+2 -0.00183 9.821 49.51 -0.823
(0.00481) (12.95) (46.99) (8.701)

Treatment t+3 0.00118 6.698 24.54 -4.258
(0.00489) (11.55) (42.46) (7.756)

Treatment t+4 -0.00350 -1.344 11.83 -4.962
(0.00509) (10.39) (40.25) (7.719)

Treatment t+5 -0.00473 -13.24 -32.19 -13.17
(0.00518) (13.59) (47.59) (9.711)

Treatment t+6 -0.00405 -30.43** -87.52* -22.49**
(0.00538) (14.49) (49.14) (9.889)

Treatment t+7 -0.0125** -37.65*** -79.63* -21.78**
(0.00545) (13.79) (46.97) (9.334)

Treatment t+8 -0.00469 -24.00** -63.53 -19.50**
(0.00540) (11.32) (41.98) (8.175)

Treatment t+9 0.00454 -5.889 -43.48 -15.37**
(0.00520) (10.56) (37.96) (7.361)

Treatment t+10 -0.00561 2.125 21.34 -4.571
(0.00628) (12.49) (43.26) (8.414)

Treatment t+11 -0.00205 18.09 62.31 5.027
(0.00538) (15.68) (51.56) (10.07)

Treatment t+12 -0.00170 29.55* 100.3* 9.562
(0.00494) (16.73) (57.79) (10.88)

Notes: Table presents local average treatment effects on four outcome measures. Each cell is the 
treatment effect from one regression, controlling for total consumption during the cohort month using a 
cubic polynomial on either side of the threshold. Standard errors are shown in parentheses. *, **, and *** 
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 5. Falsification Tests
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Treatment Effect: 1 month later 2 months 3 months 4 months 5 months 6 months 7 months 8 months 9 months 10 months 11 months 12 months

Panel A: DV = Peak Proportion

False Treatment Indicator 0.00519 0.00843 0.0103 -0.00197 -0.00382 -0.0226 -0.00344 -0.00461 0.000414 0.0198 0.0210 0.00543
(0.0117) (0.0114) (0.0130) (0.0129) (0.0131) (0.0138) (0.0140) (0.0136) (0.0144) (0.0143) (0.0151) (0.0142)

True Treatment Indicator 5.76e-05 -0.00477 0.00220 -0.00285 -0.00356 9.00e-06 -0.0129** -0.00385 0.00598 -0.00600 -0.000763 0.00139
(0.00511) (0.00533) (0.00571) (0.00581) (0.00594) (0.00610) (0.00629) (0.00627) (0.00585) (0.00692) (0.00636) (0.00595)

Panel B: DV = Peak Consumption

False Treatment Indicator 11.40 -33.15 -4.581 -17.56 -7.349 21.26 40.14 9.133 2.566 30.58 11.79 27.32
(27.18) (27.35) (24.84) (28.03) (35.13) (36.68) (33.88) (26.80) (23.97) (27.40) (32.70) (37.11)

True Treatment Indicator 24.76* 6.926 6.086 1.392 -3.721 -25.77 -38.01** -18.78 0.958 11.16 26.14 32.51*
(14.61) (14.14) (12.63) (11.51) (13.74) (15.86) (15.76) (12.56) (11.41) (13.63) (16.75) (17.99)

Panel C: DV = Total Consumption

False Treatment Indicator -19.74 -189.8** -41.54 -53.98 14.83 168.2 149.2 39.95 0.915 41.16 -24.49 69.55
(85.46) (96.30) (85.96) (94.61) (109.6) (114.7) (105.9) (90.08) (83.00) (91.88) (102.4) (116.2)

True Treatment Indicator 106.0** 52.86 19.05 21.30 -2.550 -85.61 -71.68 -42.25 -16.91 59.15 80.73 91.75
(44.93) (50.26) (45.49) (43.06) (46.56) (52.47) (49.93) (43.85) (40.98) (46.32) (54.50) (61.51)

Panel D: DV = Bill Amount

False Treatment Indicator -2.468 -35.45* -7.862 -14.41 5.911 32.20 30.26 10.04 0.529 8.548 -3.274 12.60
(16.20) (18.18) (16.24) (18.91) (22.24) (23.00) (21.09) (17.92) (16.26) (18.24) (20.09) (22.20)

True Treatment Indicator 19.52** -0.353 -5.311 -3.039 -7.704 -22.17** -20.17** -15.27* -10.04 3.164 8.383 8.048
(8.507) (9.323) (8.346) (8.289) (9.657) (10.59) (9.875) (8.534) (7.950) (9.026) (10.66) (11.61)

Notes: Table presents results of a falsification test. Each panel-column presents results from one regression that includes a false threshold at 1900 kWh in the cohort month, with cubic 
control of the running variable interacted with both true treatment indicator and false treatment indicator. Standard errors are shown in parentheses. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% levels, respectively.
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Appendix A: Tables 

 

  

Table 1A. Treatment Effect in Future Months Across Specifications
DV = Peak Proportion (1) (2) (3) (4) (5)

Model: Diff-in-Diff
RD: 

Linear RD: Quadratic
RD: 

Cubic
RD: Local 

Linear

Treatment t+1 -0.00256* -0.00224 0.00113 -0.000339 0.00270
(0.00131) (0.00247) (0.00362) (0.00455) (0.00762)

Treatment t+2 -0.00358** -0.00244 0.00322 -0.00183 -0.00472
(0.00140) (0.00267) (0.00389) (0.00481) (0.00562)

Treatment t+3 -0.00485*** -0.00359 0.00447 0.00118 -0.00137
(0.00151) (0.00283) (0.00408) (0.00489) (0.00501)

Treatment t+4 -0.00443*** -0.00712** -0.00212 -0.00350 -0.00481
(0.00152) (0.00290) (0.00417) (0.00509) (0.00623)

Treatment t+5 -0.00339** -0.00405 -0.00173 -0.00473 -0.0101*
(0.00155) (0.00295) (0.00422) (0.00518) (0.00564)

Treatment t+6 -0.00670*** -0.00560* -0.00469 -0.00405 0.00101
(0.00169) (0.00319) (0.00446) (0.00538) (0.00739)

Treatment t+7 -0.00715*** -0.00792** -0.0112** -0.0125** -0.00752
(0.00173) (0.00324) (0.00459) (0.00545) (0.00599)

Treatment t+8 -0.00398** -0.00106 -0.00203 -0.00469 -3.48e-05
(0.00170) (0.00319) (0.00448) (0.00540) (0.00614)

Treatment t+9 -0.00321* 0.00260 0.00668 0.00454 0.00515
(0.00165) (0.00313) (0.00438) (0.00520) (0.00577)

Treatment t+10 -0.00372** -0.00584* -0.00344 -0.00561 -0.00668
(0.00174) (0.00339) (0.00500) (0.00628) (0.00620)

Treatment t+11 -0.00440** -0.00217 0.00184 -0.00205 -0.00239
(0.00175) (0.00324) (0.00453) (0.00538) (0.00817)

Treatment t+12 -0.00371** -0.000965 0.00215 -0.00170 -0.00544
(0.00160) (0.00298) (0.00421) (0.00494) (0.00640)

Notes: Table presents estimated treatment effect on peak proportion, with each row estimating the effect of 
treatment on peak proportion in future months. Column 1 presents results from a differences in differences 
model. Columns 2-4 present the local average treatment effect by controlling for the running variable 
(consumption during the cohort month) using a linear, quadratic, or cubic functional form on either side of 
the threshold. Column 5 presents a local average treatment effect using robust local-linear RD. Columns 1-
4 additionally include fixed effects for cohort month and bill cycle. Each cell is the treatment effect from 
one regression, with the treatment effects shown from 72 regressions in total. R-squared values range from 
0.037-0.368. Standard errors are shown in parentheses. *, **, and *** indicate statistical significance at the 
10%, 5%, and 1% levels, respectively.
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Table 2A. Treatment Effect in Future Months Across Specifications
DV = Peak Consumption (1) (2) (3) (4) (5)

Model: Diff-in-Diff
RD: 

Linear RD: Quadratic
RD: 

Cubic
RD: Local 

Linear

Treatment t+1 107.8*** 23.80*** 38.71*** 23.88* 0.208
(4.231) (7.591) (10.61) (13.35) (15.82)

Treatment t+2 53.72*** 22.43*** 28.44*** 9.821 -32.88*
(4.241) (7.559) (10.47) (12.95) (17.66)

Treatment t+3 23.95*** 12.97* 22.63** 6.698 -8.329
(3.759) (6.786) (9.556) (11.55) (15.38)

Treatment t+4 7.134** 0.201 3.128 -1.344 -1.234
(3.520) (6.325) (8.740) (10.39) (11.17)

Treatment t+5 -7.538** -4.693 -10.99 -13.24 -21.24
(3.786) (7.190) (11.05) (13.59) (13.69)

Treatment t+6 -22.20*** -16.85** -31.74*** -30.43** -40.14**
(4.263) (8.034) (11.93) (14.49) (17.35)

Treatment t+7 -23.13*** -19.04** -36.33*** -37.65*** -29.91**
(4.387) (8.112) (11.61) (13.79) (15.12)

Treatment t+8 -14.41*** -11.95* -23.85** -24.00** -14.99
(3.775) (6.794) (9.452) (11.32) (12.15)

Treatment t+9 -3.978 -8.966 -7.120 -5.889 1.480
(3.295) (6.071) (8.632) (10.56) (10.81)

Treatment t+10 18.70*** 4.438 6.127 2.125 5.898
(4.075) (7.161) (10.17) (12.49) (16.27)

Treatment t+11 45.89*** 24.47*** 27.36** 18.09 1.251
(5.129) (9.098) (12.79) (15.68) (20.05)

Treatment t+12 67.92*** 39.29*** 43.98*** 29.55* 1.534
(5.591) (9.908) (13.67) (16.73) (22.97)

Notes: Table presents estimated treatment effect on peak consumption with each row estimating the effect 
of treatment on peak consumption in future months. Column 1 presents results from a differences in 
differences model. Columns 2-4 present the local average treatment effect by controlling for the running 
variable (consumption during the cohort month) using a linear, quadratic, or cubic functional form on 
either side of the threshold. Column 5 presents a local average treatment effect using robust local-linear 
RD. Columns 1-4 additionally include fixed effects for cohort month and bill cycle. Each cell is the 
treatment effect from one regression, with the treatment effects shown from 72 regressions in total. R-
squared values range from 0.085-0.382. Standard errors are shown in parentheses. *, **, and *** indicate 
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 3A. Treatment Effect in Future Months Across Specifications
DV = Total Consumption (1) (2) (3) (4) (5)

Model: Diff-in-Diff
RD: 

Linear RD: Quadratic
RD: 

Cubic
RD: Local 

Linear

Treatment t+1 432.5*** 109.6*** 146.0*** 95.14** -25.66
(14.68) (25.52) (35.04) (43.47) (51.86)

Treatment t+2 239.1*** 110.7*** 104.9*** 49.51 -103.3
(16.18) (28.27) (38.10) (46.99) (64.41)

Treatment t+3 118.9*** 70.71*** 74.60** 24.54 -32.61
(14.01) (24.99) (34.93) (42.46) (56.56)

Treatment t+4 46.25*** 30.99 26.24 11.83 21.42
(12.92) (23.30) (33.26) (40.25) (41.68)

Treatment t+5 -17.01 -6.018 -38.14 -32.19 -39.58
(12.87) (24.24) (38.13) (47.59) (46.81)

Treatment t+6 -55.95*** -41.18 -95.75** -87.52* -120.0**
(14.02) (26.36) (39.72) (49.14) (48.40)

Treatment t+7 -56.70*** -37.67 -83.55** -79.63* -61.44
(14.09) (26.08) (38.26) (46.97) (45.44)

Treatment t+8 -41.75*** -38.43* -76.46** -63.53 -45.52
(12.52) (23.01) (33.85) (41.98) (39.76)

Treatment t+9 -8.462 -48.62** -55.69* -43.48 -9.113
(11.65) (21.11) (31.02) (37.96) (41.50)

Treatment t+10 80.90*** 31.91 23.94 21.34 40.80
(14.31) (24.65) (35.04) (43.26) (54.91)

Treatment t+11 177.2*** 88.52*** 82.86* 62.31 -14.29
(17.12) (30.25) (42.42) (51.56) (55.80)

Treatment t+12 270.6*** 142.4*** 135.9*** 100.3* -0.923
(19.85) (34.68) (47.84) (57.79) (66.81)

Notes: Table presents estimated treatment effect on total consumption with each row estimating the effect 
of treatment on total consumption in future months. Column 1 presents results from a differences in 
differences model. Columns 2-4 present the local average treatment effect by controlling for the running 
variable (consumption during the cohort month) using a linear, quadratic, or cubic functional form on 
either side of the threshold. Column 5 presents a local average treatment effect using robust local-linear 
RD. Columns 1-4 additionally include fixed effects for cohort month and bill cycle. Each cell is the 
treatment effect from one regression, with the treatment effects shown from 72 regressions in total. R-
squared values range from 0.077-0.463. Standard errors are shown in parentheses. *, **, and *** indicate 
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 4A. Treatment Effect in Future Months Across Specifications
DV = Bill Amount (1) (2) (3) (4) (5)

Model: Diff-in-Diff
RD: 

Linear RD: Quadratic
RD: 

Cubic
RD: Local 

Linear

Treatment t+1 82.49*** 20.81*** 27.49*** 17.60** -1.693
(2.775) (4.821) (6.624) (8.224) (9.522)

Treatment t+2 33.26*** 10.32** 10.52 -0.823 -28.73**
(2.950) (5.220) (7.070) (8.701) (11.93)

Treatment t+3 11.83*** 3.261 4.987 -4.258 -13.87
(2.519) (4.526) (6.370) (7.756) (10.30)

Treatment t+4 0.788 -1.750 -2.727 -4.962 -0.599
(2.440) (4.418) (6.334) (7.719) (8.059)

Treatment t+5 -9.973*** -7.328 -13.96* -13.17 -10.39
(2.586) (4.930) (7.777) (9.711) (9.379)

Treatment t+6 -17.27*** -13.61*** -25.07*** -22.49** -28.25***
(2.794) (5.272) (7.988) (9.889) (9.486)

Treatment t+7 -17.01*** -12.81** -22.34*** -21.78** -17.18*
(2.792) (5.175) (7.623) (9.334) (9.033)

Treatment t+8 -14.59*** -13.50*** -21.28*** -19.50** -15.18*
(2.475) (4.535) (6.640) (8.175) (8.014)

Treatment t+9 -8.943*** -16.27*** -17.14*** -15.37** -9.678
(2.251) (4.106) (6.034) (7.361) (7.453)

Treatment t+10 8.204*** -2.011 -3.314 -4.571 -0.619
(2.776) (4.786) (6.820) (8.414) (10.82)

Treatment t+11 28.58*** 11.34* 9.845 5.027 -9.758
(3.347) (5.897) (8.280) (10.07) (11.29)

Treatment t+12 42.34*** 18.85*** 17.58* 9.562 -9.395
(3.725) (6.515) (9.005) (10.88) (12.97)

Notes: Table presents estimated treatment effect on bill amount with each row estimating the effect of 
treatment on bill amount in future months. Column 1 presents results from a differences in differences 
model. Columns 2-4 present the local average treatment effect by controlling for the running variable 
(consumption during the cohort month) using a linear, quadratic, or cubic functional form on either side of 
the threshold. Column 5 presents a local average treatment effect using robust local-linear RD. Columns 1-
4 additionally include fixed effects for cohort month and bill cycle. Each cell is the treatment effect from 
one regression, with the treatment effects shown from 72 regressions in total. R-squared values range from 
0.080-0.428. Standard errors are shown in parentheses. *, **, and *** indicate statistical significance at the 
10%, 5%, and 1% levels, respectively.
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Table 5A. Treatment Effect on Outcome Measures in Future Months
(1) (2) (3) (4)

DV: Peak Proportion
Peak 

Consumption
Total 

Consumption Bill Amount

Treatment t+1 0.00544 -45.11 -213.5 -40.30
(0.0162) (61.30) (197.1) (37.37)

Treatment t+2 0.0120 -97.81 -446.6* -89.05*
(0.0207) (68.81) (265.0) (49.55)

Treatment t+3 -0.0348 -157.1 -316.2 -76.88
(0.0268) (108.3) (446.2) (82.55)

Treatment t+4 -0.0283 30.69 330.4 44.60
(0.0316) (69.33) (311.4) (57.12)

Treatment t+5 -0.0186 99.00 464.9* 72.22
(0.0412) (61.76) (244.4) (44.38)

Treatment t+6 -0.0638 58.14 374.5 58.11
(0.0430) (70.62) (253.7) (48.28)

Treatment t+7 -0.0452 95.26 400.8 67.79
(0.0396) (112.1) (332.2) (66.37)

Treatment t+8 -0.0302 81.51 390.0 67.67
(0.0382) (97.65) (302.0) (61.45)

Treatment t+9 -0.0161 40.21 188.3 25.56
(0.0401) (89.19) (276.0) (57.08)

Treatment t+10 -0.0194 11.60 91.67 6.475
(0.0527) (69.45) (235.2) (47.03)

Treatment t+11 0.0203 1.303 -84.44 -30.90
(0.0411) (79.77) (303.1) (59.02)

Treatment t+12 0.00251 -10.91 -56.05 -26.86
(0.0354) (150.8) (599.1) (118.4)

Notes: Table presents local average treatment effects on four outcome measures. Each cell is the 
treatment effect from one regression, controlling for total consumption during the cohort month 
(December 2013 only) using a cubic polynomial on either side of the threshold. Standard errors are 
shown in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, 
respectively.



 
 

60 

Appendix B: Rate Change Alert and Notification of Rate Change Letters 

 

 UNITED ILLUMINATING  

PROCEDURE NAME: 
EXCEPTIONS TO MANDATORY TIME OF DAY (TOD) 

PROCEDURE NUMBER: 
CF-004 

 
EXHIBIT C—Rate Change Alert Letter:  R to RT (English version) 
UI Account No.: {AccNo} 

 

Dear {SoldTo}, 

As part of Connecticut’s regulatory policies to control peak energy use and lower cost, the United Illuminating 
Company (UI) is working with the Public Utilities Regulatory Authority (PURA) to help customers manage rising 
electric costs and provide tools that will help control energy use and cost.   

Our records show that you are currently on our standard residential rate, Rate R, and that your monthly electric 
use exceeded 1,750 kilowatt-hours (kWh) in at least one billing period during the past 12 months. 

If your consumption should exceed 2,000 kWh during any future billing cycle, you will be placed on UI’s time-of-
day rate, known as Rate RT.  Rate RT gives you the opportunity to control your energy bill, and helps reduce 
peak demand on the regional electric grid by shifting some of your consumption to off-peak hours. 

When compared to your present rate, Rate RT charges less for electricity used during off-peak hours, 8 p.m. 
until noon Monday through Friday, plus all hours Saturday and Sunday.  Electricity used during on-peak hours, 
noon to 8 p.m. weekdays, costs more than your current rate. The off-peak period consists of many more hours 
than the on-peak period.  

You can take advantage of the lower off-peak rate by using large appliances/equipment such as dishwashers, 
washers, clothes dryers, dehumidifiers, and, air conditioners, during off-peak hours. You can also control your 
peak use by using energy efficient equipment such as CFL and LED lighting, energy star appliances, set-back 
thermostats and pool pump timers. 

 If you do not want to switch to Rate RT, you should monitor your electricity use to make sure you do not 
consume over 2,000 kWh during any billing cycle.  Once you have been switched to Rate RT, you cannot be 
switched back — even if you reduce your consumption. Depending on their particular usage pattern, UI has 
found that many customers pay about the same under Rate R and Rate RT; however, UI’s time-of-day rate 
offers you the opportunity to lower your bill.  If you believe you would benefit from Rate RT, you may switch by 
calling UI at 800-722-5584. 

To learn more about the energy efficiency and conservation programs UI offers to help you reduce your energy 
consumption and cost, visit UI’s website, uinet.com, or call UI at 800-722-5584 (800-7-CALL UI).  A full 
explanation of Rate RT can also be found on UI’s web site, www.uinet.com, located under the Rate/Tariffs 
option.  

In addition, to learn how you may be able to further lower your electric bill by choosing an alternate electric 
supplier, please visit Connecticut’s Energy Information Website, EnergizeCT.com.  From the home page, click 
“Choose Your Electric Supplier.” Your generation rate appears on your electric bill under the “Generation 
Services Charge” line item. You may also call 877-WISE USE (877-947-3873) or call UI at the number shown 
above.     

    

Sincerely, 

The United Illuminating Company 
Customer Care Center 

Origin Date: 08/04/2011 Revision Date: 09/15/2016 Page 13  
Owner Name & Title: Jill Thomas, Manager, Business Management 
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 UNITED ILLUMINATING  

PROCEDURE NAME: 
EXCEPTIONS TO MANDATORY TIME OF DAY (TOD) 

PROCEDURE NUMBER: 
CF-004 

 

EXHIBIT D—Mandatory Switch Letter:  R to RT (English version) 
UI Account No.: {AccNo} 

 

Dear {SoldTo}, 

UI is required to switch any customer whose electric usage exceeds 2,000 kilowatt-hours (kWh) in a single 
month, to its time-of-day rate, Rate RT, to comply with state regulatory policy designed to reduce peak energy 
use and help customers control their costs. 

Our records show your account exceeded the 2,000 kWh threshold during at least one billing period in the last 
12 months.  Accordingly, we are required to switch you from our standard residential rate, Rate R, to the time-of-
day rate, Rate RT. 

Your rate will be permanently changed to Rate RT within your next billing cycle. Please note that this is required 
by the Public Utilities Regulatory Authority.   

Under Rate RT, you can control your electric bill and reduce costs by shifting more of your consumption to off-
peak periods. Rate RT charges less for electricity used during off-peak hours, 8 p.m. until noon Monday through 
Friday, plus all hours Saturday and Sunday. Electricity used during on-peak hours, noon to 8 p.m. weekdays, 
costs more than what you are presently paying. 

You can take advantage of the lower off-peak rate by using large appliances/equipment such as dishwashers, 
washers, clothes dryers, dehumidifiers, and, air conditioners, during off-peak hours. 

To learn about the energy efficiency and conservation programs UI offers to help you reduce your energy 
consumption and cost, visit UI’s website, uinet.com, or call UI at 800-722-5584 (800-7-CALL UI) to speak with a 
Customer Care associate.  A full explanation of Rate RT can also be found on uinet.com, located under the 
Rate/Tariffs option.  

In addition, to learn how you can further lower your electric bill by choosing an alternate electric supplier, please 
visit Connecticut’s Energy Information Website, EnergizeCT.com.  From the home page, click “Choose Your 
Electric Supplier”, then click on “Compare your electric supplier and save.” Your rate appears on your electric bill 
under the “Generation Services Charge” line item. You may also call 877-WISE USE (877-947-3873) or call UI 
at the number shown above.   

Sincerely, 

The United Illuminating Company 
Customer Care Center 

  

Origin Date: 08/04/2011 Revision Date: 09/15/2016 Page 15  
Owner Name & Title: Jill Thomas, Manager, Business Management 
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Appendix C: Empirical Challenges of Difference-in-Differences 

One may argue that a good robustness check would use a difference-in-

differences (DID) empirical framework. With such a rich dataset, the DID framework 

could be interpreted at resulting in a causal effect because we could control for so much 

variation using a large set of household and time fixed effects. However, there is an 

interesting empirical challenge using DID with this dataset. I describe the data in full 

below, along with the method and results. I do not interpret these results causally, but 

instead see the results as upper and lower bounds on the true causal treatment effect 

estimated using a regression discontinuity design. 

C.1 Spike in Consumption Prior to Rate Change 

It is informative to narrow down our sample to only customers who are mandated 

into TOU pricing due to exceeding the 2,000 kWh threshold in a single billing cycle. In 

Figure 1C, we aggregate consumption over each monthly bill and present the number of 

households that exceed the threshold during each billing cycle. In this figure, billing 

cycle 0 represents the first bill that a household receives under TOU pricing. In other 

words, the household is being charged TOU rates for the entire month and sees their first 

bill with the new charges at the end of the month. There are a couple notable points in 

this plot. First, most households are switched to TOU pricing within four months of 

initially exceeding the threshold. This could indicate several months when the household 

is using a large amount of electricity but does not have information about how continuing 

this level of electricity use will affect their bills. Seeing a change in rates, corresponding 

to larger bills, may be a financial shock to households and induce a significant reduction 

in electricity. In another scenario, these few months of high electricity consumption may 
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occur over the winter holidays or cold winter months, when electricity use is high due to 

heaters running, family or friends visiting, or children being home from school. Rate 

changes would not occur until the milder (and less eventful) early spring, in agreement 

with the spikes in rate changes occurring in February through April each year. By the 

time households see a change in rates, the changes in their electricity bills may be offset 

due to decreased electricity consumption, possibly attenuating the impact felt by the rate 

change and associated changes in electricity consumption.  

The second notable point about Figure 1C is that for about five percent of 

households who are mandated into TOU pricing, they again exceed the 2,000 kWh 

threshold per bill about a year after their initial exceedance. An even smaller proportion 

exceed two years afterwards. We can infer two things from this pattern. For the 

households who continue to exceed the threshold around the same time each year, this 

level of electricity consumption appears to represent a structural change in usage patterns. 

For example, a household may add an additional family member to the household or 

grow their energy-intensive capital stock, which would increase electricity consumption 

across all months of the year and push the household over the threshold for those months 

that are most energy intensive (i.e. due to heating in winter). Or a household may build an 

addition, which requires more electricity to heat in the winter and would cause a 

recurring exceedance of the threshold each year.  

 

Figure 1C. Rate of Exceedance in Event Time 
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On the other hand, a large proportion of households who exceed the threshold 

prior to their rate change do not exceed the threshold after the rate change. We can 

interpret this in two ways. If this level of electricity use is not random, then we would 

have to infer that the household is on a trajectory towards higher consumption. Following 

the switch to TOU pricing, the customer adjusts energy-related behaviors at home or 

invests in energy efficient capital stock, thereby reducing consumption in the months 

following the rate change. In this instance, we would be able to compare mean 

consumption before and after the rate change to understand the effects of TOU pricing. 

However, the initial exceedance of some household may represent a random draw from 

the high-use tail of their energy consumption distribution. In this case, their consumption 

during the month of exceedance is abnormal relative to their typical consumption habits. 

Consumption would then likely decrease in the following months matching typical usage 

patterns. Simply comparing mean consumption before to after the rate change would then 

be misleading, as the abnormal exceedance would inflate mean consumption prior to the 
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rate change. In this case the difference in means could not be interpreted as the causal 

effect of TOU pricing.  

 

Figure 2C. Mean Load in Event Time 

 

 

Figure 2C further illustrates this point. The plot shows mean daily load leading up to and 

following the rate change from flat rate to TOU pricing (which occurs at bill zero). The 

spike in consumption just prior to the rate change is clear, and seemingly abnormal 

relative to typical rates of consumption at other times. This is potentially suggestive that 

this high level of consumption is more along the lines of a fluke, in which case we should 

take care in designing our empirical approach and interpreting our results. 
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C.2 Panel Data Framework 

 

We exploit the richness and high resolution of our data by using panel data 

methods to control for time-invariant customer characteristics and daily average 

electricity consumption across all customers.  We estimate the model 

𝑦!" = 𝛽𝐷!"#$% + 𝛼! + 𝜏! + 𝜀!       (1C) 

where 𝑦!" is electric load for customer 𝑖 at time 𝑡. We aggregate 15-minute interval data 

to hourly usage.9 𝐷!"#$% is an indicator equal to 1 if customer 𝑖 is being billed under TOU 

pricing at time 𝑡 and 0 otherwise. We include household fixed effects, 𝛼!, to control for 

each household’s typical energy usage. In our preferred model, we interact customer 

fixed effects with hour-of-the-day dummy variables, to flexibly control for each 

customer’s usage at each hour of the day. We also include a time fixed effect, which 

controls for events that affect consumption across all households (e.g. weather, holidays). 

In our preferred model, this time fixed effect controls for average usage across all 

households in every hour of our sample period. We cluster errors at the household level 

to allow for correlation in usage for each household. In this model, 𝛽 is our coefficient of 

interest and is interpreted as the difference in mean hourly load under TOU pricing from 

under flat rate pricing, ceteris paribus. A significant, negative 𝛽 would indicate reduced 

electricity consumption under TOU pricing, while an insignificant 𝛽 would indicate that 

electricity consumption under TOU pricing is statistically indistinguishable from 

consumption under flat rate pricing. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 The primary driver of doing so was limitations with computer memory in running such a large 
data set, cutting an original dataset of around 200 million customer-interval observations to nearly 
50 million customer-hour observations. We are not concerned with any loss of information 
because our dataset is so rich.  
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 In the above model, other households who have not yet switched to TOU pricing 

serve as the counterfactual to those who have switched in identifying the coefficient of 

interest. These households are plausibly a reasonable counterfactual because they are all 

high-use households and all eventually are switched into TOU pricing. However, towards 

the end of our sample period, the number of households in the counterfactual declines as 

more and more are switched into TOU pricing. Therefore, we also run the above model 

with data aggregated at the daily level including a control group of 3,000 high-use 

households who remain on flat rate pricing throughout the sample period. The inclusion 

of these households informs the time fixed effect only, since there is no variation in the 

indicator for TOU pricing and hence household fixed effects absorb that information.  

We also estimate the change in consumption during peak hours following the 

change to TOU pricing from flat rate pricing. We calculate the proportion of total daily 

load that is consumed during peak hours of noon – 8pm Monday through Friday. We 

estimate the following model 

𝑝!" = 𝛽𝐷!"#$% + 𝛼! + 𝜏! + 𝜀!       (2C) 

where 𝑝!" is the proportion of load consumed during peak hours and the remaining 

variables are defined as above. In this model, we omit weekend days, which are 

considered off-peak. 

 Finally, we address the empirical challenge of interpreting the seemingly 

abnormal spike in consumption just prior to being switched onto TOU pricing. Our 

concern is that this spike represents unintentional or short-term increased consumption, 

inconsistent with typically load patterns. Therefore, including data from this period in our 

model would inflate the treatment effect as households would revert to mean 
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consumption after the spike regardless of being treated. We attempt to control for this in 

two ways. First, we omit the first month a household exceeds the threshold. Second, we 

omit from the first month a household exceeds the threshold through the first month they 

are on TOU pricing (i.e. before the household gets their first bill under the new pricing 

schedule). Our thinking is that households have yet to receive feedback about their 

abnormal consumption until they receive their first bill with the new rates. We should 

consider the range of treatment effects to represent upper and lower bounds of how 

consumption changes following the switch to TOU pricing. 

C.3 Results 

Table 1C builds up to our preferred model using Equation 1. Column 1 is essentially a t-

test of the difference in mean electricity consumption on flat rate pricing to TOU pricing. 

Column 2 additionally controls for customer-specific levels of consumption, Column 3 

interacts the customer fixed effect with hour of the day, and Column 4 adds an hour-of-

sample fixed effect. Columns 1 – 4 only include households that change rates during the 

sample period. Column 5 repeats Column 4 but using data aggregated at a daily level. 

Column 6 extends Column 5 by also including a set of high-use households that remain 

on flat rate pricing throughout the sample period. In our preferred model (Column 4), we 

see a significant difference in mean hourly electricity load of 0.300 kWh, roughly 20 

percent of hourly load.10 Inclusion of the control group in Column 6 (using daily 

aggregated data) leaves the results largely unchanged.  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 Mean hourly load is 1.50 kWh and mean daily load for households who change rates is 36.1 
kWh. 
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Table 1C. Main Results of Panel Data Method 

 

 

 We use the Frisch-Waugh-Lovell method to evaluate individual coefficients for 

each household using hourly data, and plot the distribution of these coefficients in Figure 

3C. The mean of these coefficients agrees with the coefficient estimate in Column 4, but 

there is a surprising amount of variation. For some households, electricity consumption 

following their rate change increases, but the majority of households sees a decrease in 

electricity consumption. Some households even see much lower consumption. One 

empirical concern we have is that the magnitude of reduction is driven by an accidental 

or abnormal, short-term increase in consumption on flat rate pricing. If this is the case, 

our estimate would be biased upwards and our interpretation of the effect would be 

misleading.  

 

Table 2: Main Results of Panel Data Method
(1) (2) (3) (4) (5) (6)

DV Hourly Load Hourly Load Hourly Load Hourly Load Daily Load Daily Load

DTOU -0.112*** -0.150*** -0.151*** -0.300*** -7.295*** -7.936***
(0.0128) (0.00876) (0.00876) (0.0115) (0.277) (0.228)

Customer FE N Y N N Y Y
Customer-Hour of Day FE N N Y Y N N
Hour of Sample FE N N N Y N N
Day of Sample FE N N N N Y Y
Observations 46,031,006 46,031,006 46,030,958 46,030,958 1,904,122 4,143,150
R-squared 0.00177 0.129 0.213 0.319 0.413 0.398
Adjusted R-squared 0.002 0.129 0.212 0.318 0.412 0.397
Notes: Each column estimates the effect of TOU pricing on electricity load. The dependent variable is hourly electricity load for 
N=2,156 households (Columns 1-4) or daily load for N=2,156 households (Column 5) or N=5,212 households The coefficient of 
interest is on the indicator variable DTOU equal to 1 if the customer is under TOU pricing and 0 otherwise. Column 1 represents 
simple differences in average hourly loads when facing flat rate and TOU pricing. Subsequent models build on Column 1 by 
including various fixed effects (FE) to account for time-invariant customer characteristics and unobservable time trends. 
Column 6 additionally includes a control group of high-use households who remain on flat rate pricing throughout the sample 
period. Robust standard errors are shown in parentheses and are clustered at the customer level. *** p<0.01, ** p<0.05, * p<0.1
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Figure 3C. Distribution of Treatment Effects 

 

 

To account for this, we systematically exclude data from the month that the 

household first exceeds the 2,000 kWh threshold. Table 2C presents these results. 

Column 1 repeats the results from Column 6 of Table 2 for reference. Column 2 excludes 

the bill during which the household first exceeds the threshold. Column 3 excludes from 

the first month of exceedance up to the time the household receives a bill on TOU 

pricing. Intuitively, as we exclude these months, the magnitude of change in electricity 

consumption decreases. Our most conservative interpretation is Column 3, where there is 

no statistically distinguishable difference in consumption under either pricing schedule. 

While there is no way to understand the underlying causes of the spike in consumption 

that puts households into TOU pricing from our dataset alone, we can at minimum view 



 
 

71 

these results as upper (Column 1) and lower (Column 3) bounds for a treatment effect 

(roughly no effect to 20 percent daily load reduction). Column 4 presents the results 

estimating Equation 2. We find a small but statistically significant decrease in the 

proportion of electricity consumed during peak hours. 

 

Table 2C. Excluding the pre-rate change spike in electricity, peak proportion 

 

  

Table 3: Excluding the pre-rate change spike in electricity, peak proportion
(1) (2) (3) (4)

DV = Daily Load Peak Proportion

DTOU -7.280*** -2.586*** 0.123 -0.00614***
(0.327) (0.327) (0.350) (0.000857)

Customer FE Y Y Y Y
Day of Sample FE Y Y Y Y
Observations 1,431,905 1,383,879 1,286,774 1,369,925
R-squared 0.385 0.384 0.396 0.242
Adjusted R-squared 0.384 0.383 0.395 0.241
Notes: Each column estimates the effect of TOU pricing on electricity load. The dependent 
variable is daily electricity load for N=1,592 households. The coefficient of interest is on the 
indicator variable DTOU equal to 1 if the customer is under TOU pricing and 0 otherwise. All 
columns include customer and day of sample fixed effects. Column 1 uses all data. Column 2 
excludes the first month that a household exceeds the threshold. Column 3 excludes from the first 
month of exceeding the threshold through the first bill on TOU pricing. Column 4 estimates the 
difference in mean proportion of electricity consumed during peak hours for weekdays only, 
including all data. Robust standard errors are shown in parentheses and are clustered at the 
customer level. *** p<0.01, ** p<0.05, * p<0.1
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Abstract 

Environmental education for school students, including lessons on recycling, water 

conservation, and energy reduction, is a popular measure aimed at increasing 

environmental knowledge, promoting environmental attitudes, and increasing pro-

environmental behaviors. Despite the prevalence of such education, there is little 

empirical evidence to support the efficacy of these programs on tangible outcomes 

outside of school. This paper contributes a robust empirical analysis of a series of energy 

lessons in the United States. Using a differences-in-differences approach, we find 

evidence for short-term reductions on the order of eight percent in electricity use the day 

of a lesson regarding reducing phantom electric loads, with evidence of deferment in 

electricity use rather than reduction. We find no effect of lessons on energy pathways or 

wind energy on the days of the lessons. Findings show that energy education is 

potentially a valuable tool for encouraging energy efficiency and conservation, though 

the timing of lessons and curriculum content are critical to optimize treatment effects. 

 

Keywords: Energy Education; Electricity; Energy Conservation; Interfamily learning  
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1. Introduction 

 
Among the suite of strategies to promote sustainable environmental behaviors, 

environmental education for school children is a popular non-price measure to nudge pro-

environmental behavior. Environmental education for school students, including lessons 

on recycling, water conservation, and energy reduction, aims to increase environmental 

knowledge, promote environmental attitudes, and increase pro-environmental behaviors. 

Despite the prevalence of such education, there is little empirical evidence to support the 

efficacy of these programs on tangible outcomes outside of school. 

The link between in-school education and knowledge, attitude, and behavior at 

the household level is indirect. Education programs target students, including elementary-

aged children who have little explicit agency in household management decisions. 

However, evaluations of environmental education programs show that, while modest, 

there is potential for intergenerational influence between child and family (see Duvall and 

Zint (2007) for a review). For example, children treated with environmental education in 

school encourage their families to engage in pro-environmental behaviors including 

energy-saving behaviors (Hiramatsu et al., 2014), recycling (Evans and Gill, 1996), and 

decreasing household waste (Grodzinska-Jurczak et al., 2003). While the literature on 

energy behavior, and conservation specifically, is extensive (see Abrahamse et al. (2005) 

for a review), there have been few evaluations of in-school energy education as a non-

price mechanism to nudge residential energy efficiency. 

This research seeks to understand the effects of an in-school energy education 

program on household electricity consumption. We conduct a case study examining the 
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effects of such lessons using household daily electricity load panel data for households of 

all students who received a lesson within one school, as well as for a set of randomly 

chosen control households from which we construct an appropriate counterfactual. We 

employ a differences-in-differences framework to estimate changes in electricity use on 

the days of energy lessons. Our results are consistent with intuition about how curriculum 

content might affect energy use at home. We find reductions in electricity consumption 

on the order of eight percent on the day of an energy lesson about reducing phantom 

electric loads. However, we find an increase in load two days following the lesson of the 

same magnitude, suggesting deferment of electricity use rather than true conservation. 

We fail to find effects of lessons on energy pathways and wind energy. Though we 

cannot say with certainty why we only see an effect of the lesson on phantom electric 

loads and not energy pathways or wind energy, our intuition points to lesson content. The 

lesson on phantom loads has direct action items for reducing electricity use at home, 

while the other lessons offer a more indirect link from content to conservation. We 

additionally explore heterogeneity in treatment effect for the lesson on phantom loads 

along dimensions of baseline consumption and house characteristics using assessor data.  

While small sample size limits our statistical precision, our results suggest that higher-

consuming households may reduce more on the day of the lesson, and that reductions 

may be smaller for newer houses with higher assessed values and enhanced for larger 

houses. 

Through this analysis, we make two primary contributions to the literature. First, 

we provide critical empirical evidence of how energy education for school students 

affects electricity use at home, adding a much-needed data point in the sparse literature 
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on energy education. Most studies of energy education rely on self-reports, with mixed 

findings on energy-related behavior change (DiMatteo et al. 2014, Zografakis et al. 

2008). Of the two empirical analysis of energy education on consumption, one fails to 

find any effect while the other finds small reductions in aggregate geographic locations 

near schools (Osbaldiston and Schmitz 2011, Agarwal et al 2017). However, neither 

program is directly comparable to the energy lessons in this analysis because of the 

components and timing of the education treatment. 

Second, our findings add to the body of literature on intergenerational learning by 

showing that in-school energy lessons have an affect on energy-related behaviors at 

home, especially when lesson content includes direct action items for energy reduction. 

Our findings have important implications for environmental education policy, suggesting 

that energy education may be an effective way to encourage energy conservation. 

However, we find that this effect is temporary and results in deferment rather than 

reduction. Future research is needed to understand how to optimize timing of energy 

lessons and curriculum content to achieve deeper and persistent energy reductions at 

home. 

 

2. Literature Review 

According to the most recent Residential Energy Consumption Survey, US 

households consumed over 10 quadrillion Btu of energy in 2009, resulting in over 1,100 

million metric tons of carbon dioxide emissions (EIA 2017). Three-quarters of this 

energy was used for space heating, appliances, electronics, and lighting (EIA 2013). 

However, with concerns over climate change mitigation, pollution from electricity 



 
 

77 

generation, and consumer welfare, both policy makers and environmentalists have been 

working to encourage energy efficiency and conservation. Broadly speaking, 

interventions aimed to reduce energy use can be categorized as either a price incentive or 

non-price mechanism.  

Price incentives are the typical recommendation of classical economists, and 

include strategies to adjust the cost of energy that is passed onto the consumer. In the 

electricity market, most consumers face either a flat rate or inclining block rate pricing 

schedule, where rates are independent of total demand for electricity (FERC 2012). 

However, since electricity cannot be stored and must be generated in real time to meet 

demand, times of peak demand cause additional electricity generation facilities to come 

on board, which generate electricity that is often purchased at a higher wholesale cost 

(Borenstein 2013, EIA 2014). Growing peak demand exacerbates the challenge of 

producing adequate supplies of electricity to meet varying demand throughout the year 

(NERC 2013). In regions where peak demand is met through the use of fossil fuel-based 

generation, reducing peak demand and variability can decrease emissions of greenhouse 

gases and pollutants (Holland and Mansur 2004). Because these costs are hidden to 

consumers, consumers have no incentive to reduce their electricity consumption 

(Borenstein 2002, 2005; Joskow and Wolfram 2012). Newsham and Bowker 2010 and 

Faruqui and Sergici 2009 provide reviews of various pricing schemes. 

One alternative price incentive is dynamic real-time pricing, which translates the 

actual cost of electricity generation at any given time to the consumer. However, real-

time pricing comes with regulatory and political concerns, including difficulty for the 

consumer to understand and adjust to time-varying prices (see Alexander 2010 for a 
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review). Time-of-use pricing is a coarse form of real-time pricing. Under a time-of-use 

pricing scheme, consumers pay a higher rate during pre-determined hours of peak 

demand and a lower rate during off-peak hours (Cappers et al 2016, Hydro One 2008, 

Idaho Power Company 2006, Charles River Associates 2005, Strapp et al. 2007, 

Hammerstrom et al 2007, Navigant 2008, Hartway 1999, Gill and Lang in prep). In a 

similar structure, critical peak pricing charges consumers a premium for electricity use 

only during hours of peak demand on specific high-demand days (Wolak 2006, Charles 

River Associates 2005, Violette et al 2007). These pricing schemes can be seen as sticks 

rather than carrots, punishing consumers for high use rather than rewarding them for 

reduced use. On the other hand, peak time rebates actually pay consumers for not using 

electricity during critical peak periods (Strapp et al 2007, Wolak 2006, Navigant 2008, 

Herter et al 2007). Finally, increasing block rate pricing charges consumers increasing 

marginal prices per kilowatt-hour depending on total consumption (Reiss and White 

2005). Price incentives are generally shown to decrease energy consumption, though with 

varying effectiveness (Newsham and Bowker 2010). For example, Ito (2014) shows that 

consumers respond to average prices rather than marginal prices when facing an 

increasing block rate price structure, affecting desired effects of nonlinear pricing on 

electricity consumption and consumer welfare. The effectiveness of price incentives 

increases when coupled with non-price strategies (Newsham and Bowker 2010). 

Non-price strategies include mandatory energy efficient standards for buildings 

and appliances (Costa and Kahn 2011, Jacobsen and Kotchen 2013), demand response 

programs including direct load control (Summit Blue 2004, KEMA 2006), commitment 

devices and goal setting (Becker 1978, Harding and Hsiaw 2014), social comparisons 
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(Allcott 2011), feedback (Jessoe and Rapson 2014, Carrico and Riemer 2011), and 

education (Agarwal et al 2017). For example, direct load control programs allow the 

utility provider to automatically curtail sources of electricity use, like air conditioners, in 

response to total demand during critical peak periods. One reason why direct load control 

programs are effective is because they obviate the need for behavior change by the 

consumer. While programs such as this have been shown to be effective, consumer 

behavior during off peak hours can attenuate predicted energy conservation benefits 

(Newsham and Bowker 2010, Wolak 2011, Lang and Okwelum 2015). There has been a 

growing movement for using concepts from psychology and behavioral economics to 

encourage energy efficiency (Allcott 2014, Gillingham and Palmer 2014, Allcott and 

Mullainathan 2010). One well-known example is the peer comparison on the OPower 

home energy reports. Allcott (2011) finds this comparison leads to a persistent two 

percent reduction in electricity use. 

Energy feedback and in-home energy displays can be considered as one type of 

education geared toward educating energy-related decision-makers about energy use and 

cost in real-time. These methods have been shown to be effective, especially when 

coupled with price incentives like critical peak pricing (Jessoe and Rapson 2014, 

Newsham and Bowker 2010). However, these measures rely on some base knowledge of 

how to reduce energy use in the home, and motivation to do so. Towards the first point, 

suggestions for electricity reduction and energy efficiency improvements popular on 

energy bills (notably also on OPower home energy reports) provide some additional 

education about how to reduce energy use at home. In-school energy education for 

students can also provide critical information about actions to reduce energy 
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consumption, as well as some key motivation in the form of persistent nudging from 

eager children. 

Utilities expend significant effort and resources on energy education, funded in 

part by consumers and mandated by state and federal legislation. The goal of energy 

education programs is to reduce energy consumption in order to even out daily and 

seasonal energy demand, save consumers money on utility bills, and curb greenhouse 

gases emissions. These programs promote behaviors that reduce energy consumption in 

the short-term (i.e., unplugging appliances when not in use) and in the long-term by 

increasing propensity to acquire energy efficient capital stock (i.e., purchasing Energy 

Star certified appliances) (Allcott and Rogers, 2014). However, the tangible effect of 

energy education in schools on energy consumption at home is not well understood.  

While the literature on energy behavior and conservation is extensive (see 

Abrahamse et al. (2005) for a review), there have been few evaluations of in-school 

energy education. Although the NEED Project (www.need.org) conducts knowledge 

assessments of their energy education curricula, they do not address the behavioral 

impacts of energy education. Two studies that rely on before and after surveys find 

contradicting effects of energy education for in elementary and junior high school. 

DiMatteo et al. (2014) finds increases in energy knowledge but not self-reported changes 

in behavior, while Zografakis et al. (2008) do find an increase in self-reported energy-

saving behaviors and a decrease in ‘energy-squandering’ behaviors. 

The majority of literature on environmental education in general, and energy 

education in particular, are problematic for several reasons. First, they rely on self-

reported behavior change, which is likely to be overstated (Geller, 1981). Second, they 
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used methods that fail to construct a counterfactual, compare treatment to control, or used 

a randomized framework, thereby potentially biasing the estimated treatment effect. 

Third, they do not quantify a treatment effect in terms of actual energy consumption, 

falling short of what is needed to properly evaluate the impacts that energy education will 

have on electricity use and its consequences. While some studies find evidence of 

increased self-reported pro-environmental behavior and intergenerational learning 

following energy education, there are no robust research studies that empirically estimate 

the effects of in-school education on observable, quantifiable outcomes at the household 

level. This research seeks to estimate the effects of in-school energy education on student 

household energy consumption. 

A recent empirical study of an energy education program in Singapore provides 

some evidence for the effects of energy lessons on household electricity consumption. 

Argawal et al. (2017) use a quasi-experimental approach to estimate changes in total 

monthly electricity consumption aggregated for households within 2 km from a school 

that participated in an energy savings campaign. The campaign included frequent energy 

lessons and an energy savings challenge with a 10% home electricity reduction goal and 

prizes for households that reduce the most. As such, the campaign is not directly 

comparable to the energy education program in our research. However, the findings 

suggest decreases in electricity consumption for households near treated schools relative 

to households farther from treated schools on the order of 1-2%. The authors of the study 

claim this is evidence of both effective nudging and spillover effects to neighbors without 

school children. However, there are several limitations of this study, including potential 
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selection bias, possible contamination between the treatment and control groups, and 

confoundedness of the energy education with competition and challenge aspects. 

Osbaldiston and Schmitz (2011) attempted to conduct an empirical analysis of 

two one-hour interventions in ninth grade science classes in a Midwestern US city. 

Researchers collected household electricity consumption data of participating students 

and gathered additional data through a pre- and post-survey administered to students and 

mailed to parents four weeks after the intervention. However, the authors find no 

significant difference in household electricity consumption across years before and after 

the energy program and estimates are not included in the published article. 

A related vein of literature seeks to understand the impact of water conservation 

education. Of these, only one study empirically examines change in water usage at the 

household level. Geller et al (1983) find that educational pamphlets elicit no discernable 

effect on household water usage and posit that only one household member fully receives 

educational treatment by actively engaging with the pamphlet when it is delivered.  

 

3. Background on eesmarts energy lessons 

The United Illuminating Company (UI) is a public electrical utility that serves the 

Greater New Haven area in Connecticut. Mandated by legislation in 1998, UI and four 

other Connecticut utilities administer the Energy Efficiency Board (EEB), now part of the 

brand Energize Connecticut SM. The EEB represents public and private interests by 

assisting utilities in developing and implementing energy efficiency programs (CEEF, 

2014). Funding for energy efficiency programs is provided through the Connecticut 

Energy Efficiency Fund (CEEF), government initiatives, and grants. The CEEF uses the 
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Combined Public Benefits Charge, a surcharge on consumer utility bills. Funding for 

EEB energy efficiency programs in Connecticut totaled $142M in 2013, 41% of which 

was spent on the residential sector (CEEF, 2014). 

 Among other services, Energize Connecticut programming includes community 

and childhood education. eesmarts is one of Energize Connecticut’s energy education 

programs and has delivered curricula to K-12 students since 2001. In 2013, eesmarts 

conducted professional development regarding renewable energy and energy efficiency 

to 466 educators through the Capitol Region Education Council (CREC) (CEEF, 2014). 

eesmarts lessons cover energy basics, including energy systems, conventional energy 

generation, and renewable energy sources, and highlight energy conservation behaviors at 

home. In 2013, Energize Connecticut programs, administered by the Utilities, cost $1M 

for K-12 education, with $1M budgeted for 2014. Despite legislation, costs to consumers, 

and effort on the part of UI, returns to in-school energy education programs are poorly 

understood.  

 In the 2015-2016 academic year, educators delivered eesmarts programming to 

over 500 students in the Greater New Haven area. We study the effects of three eesmarts 

lessons delivered to all fourth and fifth graders at one school. The first lesson taught 

students about ‘phantom’ electric loads – the electricity used by appliances even when 

they are turned off. This lesson introduced students to basic concepts of electricity, 

including types of energy, types of fuel and electricity sources, and compared electricity 

use of common household appliances. Students participated in two exercises that are 

particularly relevant to reducing electricity at home. First, they recorded which 

appliances or equipment they used the previous day (e.g. iPad, TV, lights) and estimated 
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how much energy they used in total. Second, students used a wattmeter to measure and 

record how much electricity various appliances use, both when the appliances are on and 

off.11 Students then came up with recommendations for how they could reduce their 

electricity use at home. Because of the direct ties linkages between this lesson and 

electricity conservation, we focus on the effects of this lesson in our main analysis. The 

second lesson described energy pathways. During this lesson, students built circuits to 

understand how electricity flows and manifests itself, including as light, heat, and sound. 

The third lesson discussed wind energy systems and included an activity to understand 

the impacts of different turbine blade shapes. The same educator taught all lessons, and 

all students were encouraged to discuss the lessons with their families at home. 

 

4. Methods 

We employ a differences-in-differences empirical framework to identify the 

effects of three energy lessons on household electricity consumption. Intuitively, we may 

expect a school student to talk about something novel or exciting that happened at school 

at home after school hours. For engaged families, it is not unreasonable to think that such 

a conversation would include takeaways from an energy lesson. Such communication 

would provide one mechanism for interfamily learning about energy conservation. 

Furthermore, some families may even act on specific conservation behaviors or 

experiment with energy use throughout the house. Therefore, we hypothesize that 

electricity use decreases on days of energy lessons. However, the energy lessons are only 

a small part of a student’s busy schedule. As much of the literature shows, permanent 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 Activity instructions included in the Appendix. 
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behavior change is extremely difficult to achieve. In the absence of persistent reminders 

and feedback about energy conservation, there is limited incentive to continue to reduce 

energy use. Therefore, we are primarily interested in changes to household electricity use 

on the day of a lesson. 

To test this hypothesis, we rely on a differences-in-differences model that 

compares the treatment group (households with a student who received an energy lesson) 

to the control group (households who do not contain a student who received an energy 

lesson) and examines whether there is differential energy use on the day of the lesson. 

The basic empirical model is as follows: 

𝑙𝑜𝑎𝑑!" = 𝛽!𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦! + 𝛽!𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻! 

+𝛽!𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻! + 𝜀!"    (1) 

where 𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦! is a binary variable equal to one if an energy lesson occurred on day 

𝑡,  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻! is a binary variable equal to one if household 𝑖 contains a student who 

received an energy lesson, and 𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻! is the interaction of the 

two. The dependent variable is electricity load for each household 𝑖 on each day 𝑡. The 

coefficient of interest is on the interaction term, 𝛽!, and is interpreted as an average 

change in kilowatt-hour (kWh) usage for treated households on the day of the lesson 

relative to control households. A negative, significant coefficient indicates a reduction in 

electricity consumption. The error term 𝜀!" is clustered at the household level to allow for 

correlations in electricity use within each household unit.  

 The rich nature of our dataset allows us to additionally control for unobservable 

characteristics that may affect electricity consumption. We extend the model in Equation 
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1 to control for unobservable household-level average electricity use with a household-

specific fixed effect, 𝛼!. Household fixed effects flexibly control for time-invariant 

factors including family size, house characteristics, preferences for AC use or heating, 

household appliances, etc. We also control for average electricity use each day of the 

sample using a time fixed effect, 𝜃!. These fixed effects flexibly account for determinants 

of electricity use on each day, including weather, time of day, and day of week norms, 

without imposing an assumption about the functional form of these relationships. With 

these fixed effects, our model becomes: 12 

𝑙𝑜𝑎𝑑!" = 𝛽!𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻! +   𝛼! + 𝜃! + 𝜀!"   (2) 

We make two more modifications to the basic model. First, we include the 

summation of coefficients on the three days prior to each lesson, the third term in 

Equation 2, to test the assumption of parallel trends between the treatment and control 

groups within the differences-in-differences framework. Doing so bolsters our confidence 

that we have an appropriate counterfactual for the treatment group. Second, we 

hypothesize the effect of the lessons attenuates quickly, within a few days. We make the 

assumption that the effect will attenuate completely within one week following the 

lesson, and estimate changes in electricity use for each of the seven days following the 

lessons. Doing so provides insight into how the effect of energy lessons changes over 

time. Our full specification is: 

𝑙𝑜𝑎𝑑!" = 𝛽!𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻! 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 Note that the fixed effects take the place of the other terms from Equation 1. In other words, 
𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!" is accounted for through the day fixed effect and 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻!" is accounted for through 
the household fixed effect. 
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+ 𝛽!!𝑁𝑒𝑥𝑡𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻!!
!

!!!
 

+ 𝛽!!𝑃𝑟𝑖𝑜𝑟𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻!!
!

!!!
 

+  𝛼! + 𝜃! + 𝜀!"        (3) 

Our coefficient of interest is again on 𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻!, a binary 

variable equal to one if a lesson occurred on day 𝑡 for household 𝑖 and zero otherwise. 

The second term in Equation 3 tests for continued changes in electricity consumption 

over the seven days following each energy lesson. 𝑁𝑒𝑥𝑡𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻!! is a 

binary variable equal to one if household 𝑖 received a lesson 𝜏 days before day 𝑡, and zero 

otherwise. The coefficient estimate for 𝛽!! indicates a change in electricity load on 𝜏 days 

following the lesson. Coefficients that are significantly distinguishable from zero would 

indicate possible persistence of the treatment effect. 𝑃𝑟𝑖𝑜𝑟𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻!! is a 

binary variable equal to one if household 𝑖 received a lesson 𝜏 days after day 𝑡, and zero 

otherwise. If our assumption of parallel trends holds, then the coefficient estimates for 𝛽!! 

would be insignificant, indicating the electricity use prior to treatment is statistically 

indistinguishable between the treatment and control groups. These coefficients provide 

evidence for quality of the control group as an appropriate counterfactual for the 

treatment group.  

4.1 Exploration of Heterogeneity in Treatment Effect 

Our main analysis focuses solely on the effects of the lesson on phantom power 

due to the direct linkages with electricity conservation. In a classic scenario using 

differences-in-differences, there is measurement of the dependent variable prior to some 
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treatment and then after the treatment. In our empirical setting, we have not just one, but 

three treatment dates. Running the model given by Equation 3 would results in an 

estimated treatment effect that is averaged over the three lessons. However, two potential 

issues arise with doing so. First, the estimated treatment effect will be smaller in 

magnitude (and potentially lower in statistical significance) if one or two of the lessons 

do not affect electricity consumption at home. Second, since the lessons are spread 

throughout the academic year, if the treatment group responds differently to changes in 

season, then the same control group may not be an appropriate counterfactual. For 

example, we can imagine a scenario where a treatment group household increases use of 

heat or air conditioning in response to colder or hotter weather more so than households 

without children or with lower income families in the control group. With the use of 

household fixed effect, which essentially subtract mean daily load for each household, 

differences in extreme electricity use between treatment and control could bias the 

estimated treatment effect. To account for these complications, we estimate the treatment 

effect of each lesson instead of all lessons on average. We use a sample period that 

includes 30 days prior to the lesson, the day of the lesson, and seven days following the 

lesson.  

 We investigate whether the lessons have different effects on electricity use at 

home. It is plausible that the content of the lesson matters, and curriculum that includes 

action items for reducing electricity at home may result in deeper energy reductions at 

home. On the other hand, perhaps any lesson on energy prompts discussion of energy use 

at home and provides a reminder or cue to engage in energy efficient behaviors. In other 

words, the mechanism linking energy lessons to energy conservation may be that the 



 
 

89 

lessons are reminders, rather than instructions. Therefore, understanding how curriculum 

relates to electricity conservation has critical implications for curriculum development 

and timing of lessons depending on programmatic goals. One limitation of our empirical 

setting is that all students received the same lessons on the same days (i.e. Phantom 

Power was the first lesson for all students and all students received this lesson on October 

27, 2015). Therefore, we must interpret results with caution because the order of the 

lessons is confounded with the content of the lesson.  

Finally, we investigate heterogeneity in treatment effect by several characteristics. 

We first explore differences in treatment effect by level of electricity consumption. While 

higher-consuming households potentially have more opportunities to reduce electricity 

use, lower-consuming households may be more motivated to conserve either because 

they already have energy efficient capital stock, but may not be engaging in energy-

efficient household habits, or because they are more financially constrained. Then, we 

explore heterogeneity based on house characteristics. We focus on four characteristics: 

assessed value, gross area, number of bedrooms, and year built. While assessed value is 

highly correlated with square footage and neighborhood, it may also be an indication of 

improvements due to remodeling. Remodeled houses may have more efficient features, 

such as insulation. Above median assessed value may also be an indicator of wealth of 

the household. Wealthier households may be more likely to have many energy-

consuming appliances and electronics, which family members could turn off or unplug to 

conserve electricity. Gross area and number of bedrooms are both indicators of house 

size. It is possible that larger houses have more opportunity for energy reductions. Newer 

homes may include more electronics that can either be unplugged or turned off, or that 
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allow for easy and precise control of energy use, such as for heating or cooling. These 

features of newer homes may provide more energy savings opportunities. To test for 

heterogeneity, we interact the variable of interest with a binary variable equal to one for 

households who are above median13 in each characteristic, based on the treatment group: 

𝑙𝑜𝑎𝑑!" = 𝛽!𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻! 

+  𝛽!𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻!   𝑥  𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐! 

+  𝛼! +   𝜃! + 𝜃!  𝑥  𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐! + 𝜀!"    (3) 

We additionally interact day fixed effects with the indicator for high consumption to 

control differentially for high-consuming control households.  

 

5. Data 

In the 2015-2016 academic year, 586 students received energy lessons in UI’s 

territory. We made a substantial attempt to obtain data for all students, but most schools 

declined to share the necessary information we needed to match student households with 

electricity data. We obtained data for 65 fourth and fifth grade students at a Catholic 

school in the Greater New Haven area that received three energy lessons. An educator 

delivered programming on phantom power sources on October 27, 2015, energy 

pathways on January 12, 2016, and wind energy on May 10, 2016. We obtained 

electricity consumption data from July 1, 2014 – October 5, 2016 for N=50 households14 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 Splitting by treatment group median maximizes the sample size in each bin (e.g. there are an equal 
number of treated households above and below median). 
14 Data for ten households were not obtained due to students living outside the utility’s territory, two 
households contain two students who are siblings, and three households could not be matched due to issues 
with addresses.   
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that contain a student. We additionally obtained electricity consumption data for N=1,485 

households selected at random by United Illuminating.15 Depending on meter type 

installed at each house, data were provided at 15-minute intervals, peak and off-peak 

hours, or at the daily level. We aggregated all data to consumption per day for each 

household, resulting in a dataset of N=756,804 household-day observations. 

 Figure 1 plots a 7-day smoothed moving average of daily electricity consumption 

treated and untreated households. Mean daily load for the treatment group is significantly 

higher than for untreated households (means = 31.1 kWh/day for treated households and 

18.6 kWh/day for control households, t(1535) = -5.37). This difference is likely due to 

several socioeconomic and demographic factors. All households in the treatment group 

contain at least one child, whereas only 34% of households in New Haven contain a child 

under 18 years old (US Census 200016). According to 2015 American Community Survey 

estimates for New Haven, family households earn nearly $17,000 more in annual income 

than non-family households.17 Furthermore, all households in the treatment group 

presumably have sufficient disposable income to enroll their child(ren) in a non-public 

school.18  

[Figure 1 about here] 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 One possible concern is that the randomly selected control households may contain a student who 
received an energy lesson at a different school. However, we are not concerned about this possibility 
because the chances of contamination are roughly 0.16% (468 treated student households not included in 
our treatment group divided by a residential customer base of roughly 290,000 households). 
16 https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk 
17 Median family household income = $45,540. Median non-family household income = $27,724. (ACS 
2015) https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk 
18 To illustrate: tuition for one student is $4,500 per year, with ancillary costs including a $25 application 
fee, uniform purchases, and annual fundraising requirements. 
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One empirical concern is that the untreated group, which is comprised of 

randomly chosen households, may not be an adequate counterfactual for the treatment 

group. We construct a counterfactual for the treatment group by choosing control 

households with a mean daily load for the thirty days before each lesson that is 

sufficiently close to the mean daily load of each treatment household in that time period. 

We match each treatment household to the k=2 nearest neighbors, with replacement, 

within a caliper of 1 kWh mean daily load. In order to capture the most appropriate 

counterfactual, we construct a control group for each lesson specifically, using the thirty 

days prior to that lesson to calculate mean daily load. Figure 2 illustrates the agreement 

between treatment and control groups for each lesson. 

[Figure 2 about here] 

We additionally obtain assessor data for N=41 single family homes in the 

treatment group and N=55 homes in the control group for houses transacted since 1995.19 

We use this data to test for heterogeneity in treatment effect by house characteristics. 

 

6. Results and Discussion 

We present main results in Table 1. The dependent variable is daily load for each 

household, with the coefficient of interest on 𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻! interpreted 

as a kWh reduction in electricity use on the day of lesson 1 relative to the control group. 

Column 1 interacts binary variables for days prior to, day of, and after the lesson with a 

binary variable indicating treatment status. Column 2 instead uses household and day 

fixed effects. The preferred model is Column 2 and Figure 3 illustrates the results of this 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
19 Of course a larger sample would be ideal, and this analysis should be viewed as strictly exploratory. 
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model. The coefficients on the prior day indicators are all insignificant, which show no 

statistically discernible difference in electricity load the three days leading up to the 

lesson and provide evidence for the appropriateness of the constructed control group. 20 

[Table 1 about here] 

The coefficient of interest is on the interaction 𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻!, 

which estimates the reduction in load on the lesson day for the treatment group relative to 

control. The coefficient estimate is negative and significant at the 10 percent level, 

indicating a 2.5 kWh reduction in electricity use on the day of the lesson for households 

that contain a student who received the lesson, an eight percent decrease in electricity 

load relative to baseline. While the majority of coefficients on the next day indicators are 

statistically insignificant, the coefficient estimate for two days following the lesson is 

positive and similar in magnitude to our coefficient of interest. This could be an 

indication that households defer electricity use the day of the lesson to two days 

following the lesson. For example, households may defer doing a load of laundry, 

watching television, or using a computer. Importantly, evidence of deferment indicates a 

net zero reduction in electricity load due to the energy lesson.  

[Figure 3 about here] 

Table 2 compares results of the preferred model from Table 1 using various 

control groups. This table is meant as a robustness check to ensure the consistency of our 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20 Table 1A and Figure 1A in the Appendix present results from the same models using a control group 
comprised of randomly chosen households. Note that the coefficient on the indicator for treatment status, 
7.894, in Column 1 is further evidence of the difference between treatment and control groups, and 
incentive for constructing a more appropriate counterfactual through nearest neighbor matching. In 
contrast, this coefficient in Column 1 of Table 1 of the main paper (using matching methods) is both 
smaller in magnitude and statistically insignificant. 
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main finding that electricity consumption is reduced on day of the energy lesson. 

Columns 1-4 use a constructed counterfactual with k=1 through 4 neighbors, 

respectively. Column 5 uses all neighbors within the 1 kWh/day caliper.  

[Table 2 about here] 

The coefficient of interest is negative and significant Columns 2-5, indicating a 

reduction in electricity use on the order of six to eight percent on the day of the lesson. 

The coefficient of interest in Column 1 is similarly negative, though larger in magnitude 

with larger standard errors. Consistency of the coefficient of interest lends confidence to 

our main finding of a short-term reduction in electricity consumption on the days of 

energy lessons. Across all columns, the coefficient estimate on the two days later 

indicator is positive, though significance is lost in Column 5. Again, this suggests an 

increase in electricity load two days following the lesson, and provides evidence of the 

treatment effect being caused by deferral of load rather than reduction in load. 

[Table 3 about here] 

Next, we explore differences in treatment effect by lesson. Table 3 presents the 

results of this analysis, where each column represents each lesson.21 Column 1 repeats 

results of the preferred model in Table 1. Column 2 (3) uses the same model but for the 

sample period of 30 days before the second (third) lesson, the day of, and seven days 

following. For each column, the control group is constructed by matching each treated 

unit to two nearest neighbors based on mean daily baseline load for the thirty days prior 

to the lesson, subject to a caliper of 1 kWh/day. Coefficients on the three prior day 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
21 Tables 2A and 3A in the Appendix present results from models with one through four nearest neighbors 
and all neighbors, subject to the caliper of 1 kWh/day, for each of lessons 2 and 3 respectively. 
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indicators are statistically insignificant for all columns, indicating good agreement 

between treatment and control groups. Results fail to show a significance difference in 

load on the days of lessons 2 and 3. Interestingly, we see a significant increase in load for 

two to four days following the third lesson, roughly equal to a ten percent increase in 

daily use for each day relative to baseline. While we cannot rule out this finding being an 

odd effect of the lesson on wind energy, our intuition suggests this effect may be more 

likely due to some other event or occurrence common to all houses of fourth and fifth 

graders in this particular school. Lesson content, timing, and dates are confounded in our 

empirical setting, so we cannot disentangle whether the absence of treatment effects of 

the second and third lesson is due to lesson content (specifically a lack of energy saving 

action items) or due to other factors. However, that we find a treatment effect for the 

lesson most directly applicable to energy conservation is suggestive that lesson content 

matters.  

Lastly, we explore heterogeneity in treatment effect by several characteristics. 

Table 4 presents results from this analysis for the lesson on Phantom Power, which was 

the only lesson to have a statistically significant treatment effect.22 Column 1 investigates 

heterogeneity in treatment effect by baseline electricity consumption. We fail to find a 

statically distinguishable difference in electricity use the day of the lesson between 

above- and below-median consuming households, though the signs on the coefficients 

suggest higher-consuming households may reduce more on the day of the lesson. 

Columns 2-5 explore differences based on house characteristics. All coefficients on 

𝐿𝑒𝑠𝑠𝑜𝑛𝐷𝑎𝑦!  𝑥  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝐻!are negative, indicating reductions in electricity 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
22 Analogous results for the other lessons are included in the Appendix: Tables 4A and 5A. 
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consumption for households below median in each characteristic. Signs of coefficients on 

the interactions with the characteristics suggest that these reductions may be smaller for 

newer households with higher assessed values and enhanced for larger households. While 

the magnitudes and signs of the coefficients of interest are interesting – and could align 

with intuition – the standard errors are unfortunately large due to our limited sample size. 

This is an area ripe for future research. 

[Table 4 about here] 

 

7. Conclusion 

In this study, we conduct an empirical analysis of the effects of in-school energy 

lessons for fourth and fifth grade students on household electricity consumption. Using a 

differences-in-differences empirical framework, we compare electricity load on the day 

of the energy lesson and on seven days after between households with students who 

received the energy lesson and control households that closely match treated households 

in mean daily baseline load. We estimate energy reductions on the order of 2.5 kWh on 

the day of a lesson regarding phantom loads, roughly equivalent to eight percent of mean 

daily load. However, we see an increase in load of roughly the same magnitude two days 

following the lesson, suggesting deferment of electricity use rather than conservation. 

We fail to find an effect of lessons about energy pathways and wind energy on 

electricity consumption the days of those lessons. Our empirical setting cannot allow us 

to causally attribute this difference in treatment effects to the content of the lessons due to 

confoundedness with timing and ordering of the lessons. For example, we cannot rule out 

that students become desensitized to the novelty of the energy lessons by the second 
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lesson. However, intuition points to the curriculum content as a driver of the effect. The 

curriculum for the lesson on phantom loads includes direct action items for the students 

to take home. We also investigate whether there is a difference in treatment effect for 

high-consuming households or households with certain house characteristics.  The 

magnitudes of the coefficient estimates suggest that the treatment effect may be larger for 

high consuming households and families in larger homes, but smaller for households in 

higher valued or more recently constructed homes. However, our small sample of treated 

households limits our ability to identify heterogeneity in treatment effect with statistical 

precision. 

This study contributes an empirical case study to the literature on energy 

education. While there are benefits to a case study-style analysis using all students from 

one school, there are also critical limitations that influence our interpretation of the 

treatment effect. Most importantly, this case study is of a private, Catholic school, which 

arguably differs from other schools both in socio-economic demographic characteristics 

and other unobservable characteristics. For example, one could argue that the households 

who went through the effort to enroll their children in a private school are also more 

motivated than households whose children attend public school. More motivated 

households may also be more receptive to behavior change or more likely to discuss 

energy lessons with their children after school. Therefore, the effects we find may 

represent an upper bound on changes in energy use due to in-school lessons. 

 Future research should address this limitation by including a more diverse set of 

schools in the analysis. With a larger sample size and experimental design, empirical 

analysis would also be able to tease out effects lesson content and timing, as well as 



 
 

98 

investigate heterogeneity in effect by student grade, household socioeconomic or 

demographic characteristics, household characteristics, and consumption levels. 
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Tables and Figures 

Figure 1. Electricity consumption 

	
  

	
  

Notes: Figure illustrates smoothed daily load using a 7-day moving average. The treatment group 
is composed of N=50 households who contain a student who received all three energy lessons 
(mean daily load = 31.1 kWh/day). Vertical reference lines denote the energy lesson: Phantom 
Power occurred on 10/27/2015, Energy Pathways occurred on 1/12/2016, and Wind Energy 
occurred on 5/10/2016. The untreated group is composed of N=1485 randomly chosen 
households (mean daily load = 18.6 kWh/day). 
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Figure 2. Electricity consumption 
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Notes: Figure illustrates mean daily load for the treatment and control groups smoothed using a 7-
day moving average. The control group (N=85 households) is constructed by matching on mean 
daily load for 9/26/2015-10/26/2015, using the two nearest neighbors with replacement and a 
caliper of 1 kWh/day). Treated households without a match within the caliper are dropped. N=48 
households remain in the treatment group.  
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Figure 3. Treatment effect over time for lesson 1 on phantom power 

 

 

Notes: Figure plots coefficient estimates for three days prior to the date of lesson 1, the day of the 
lesson, and the seven days following the lesson. This figure illustrates results in Column 2 of 
Table 1. Error bars indicate the 90% confidence interval around the point estimate. 
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DV = Daily Load [kWh] (1) (2)

Treatment HH 0.486
(2.013)

Lesson Day 0.375
(1.295)

Lesson Day x Treatment HH -1.771 -2.463*
(1.609) (1.479)

1 Next Day x Treatment HH -0.202 -0.334
(1.243) (1.121)

2 Next Day x Treatment HH 1.496 2.495**
(1.303) (1.175)

3 Next Day x Treatment HH -1.165 -1.469
(1.257) (1.057)

4 Next Day x Treatment HH 1.151 0.175
(1.500) (1.242)

5 Next Day x Treatment HH 3.697** 2.207
(1.694) (1.538)

6 Next Day x Treatment HH 1.524 1.145
(1.375) (1.154)

7 Next Day x Treatment HH -0.904 -0.557
(1.316) (1.136)

1 Prior Day x Treatment HH -1.648 -1.713
(1.346) (1.248)

2 Prior Day x Treatment HH 1.429 1.951
(1.409) (1.326)

3 Prior Day x Treatment HH -2.778* -1.906
(1.649) (1.544)

Household Fixed Effects N Y
Day Fixed Effects N Y
Observations 5,103 5,103
R-squared 0.00551 0.689
Adjusted R-squared 0.001 0.678

Table 1. Treatment Effect of Lesson 1

Notes: Dependent variable is mean daily load for N=48 treatment 
households and N=85 control households 9/26/2015-11/3/2015. 
Column 1 uses a differences-in-differences model while Column 2 
adds household and day fixed effects. Errors are clustered at the 
household level. *, **, and *** indicate significance at the 10%, 
5%, and 1% levels. 
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DV = Daily Load [kWh] (1) (2) (3) (4) (5)

Lesson Day x Treatment HH -3.299 -2.463* -2.306* -2.015* -2.058**
(2.022) (1.479) (1.282) (1.176) (0.967)

1 Next Day x Treatment HH 0.275 -0.334 -0.878 -1.009 -1.221
(1.402) (1.121) (1.033) (0.989) (0.839)

2 Next Day x Treatment HH 2.721** 2.495** 2.172* 2.023* 1.254
(1.292) (1.175) (1.108) (1.056) (0.964)

3 Next Day x Treatment HH -0.167 -1.469 -1.414 -1.222 -1.487*
(1.014) (1.057) (0.968) (0.919) (0.813)

4 Next Day x Treatment HH 0.718 0.175 0.266 -0.359 -0.504
(1.324) (1.242) (1.130) (1.117) (0.965)

5 Next Day x Treatment HH 2.313 2.207 1.843 1.384 2.201
(1.583) (1.538) (1.474) (1.443) (1.346)

6 Next Day x Treatment HH 1.879 1.145 0.711 0.719 0.872
(1.249) (1.154) (1.136) (1.091) (1.000)

7 Next Day x Treatment HH 0.815 -0.557 -0.405 -0.281 0.367
(1.161) (1.136) (1.037) (0.979) (0.856)

1 Prior Day x Treatment HH -0.957 -1.713 -1.451 -0.935 -0.517
(1.360) (1.248) (1.106) (1.040) (0.874)

2 Prior Day x Treatment HH 0.852 1.951 1.332 1.018 1.772
(1.486) (1.326) (1.322) (1.319) (1.224)

3 Prior Day x Treatment HH -1.451 -1.906 -2.077 -1.656 -1.469
(1.900) (1.544) (1.440) (1.377) (1.236)

Household Fixed Effects Y Y Y Y Y
Day Fixed Effects Y Y Y Y Y
Observations 3,532 5,103 6,716 7,988 29,842
R-squared 0.696 0.689 0.698 0.700 0.708
Adjusted R-squared 0.683 0.678 0.688 0.690 0.699
Caliper 1 1 1 1 1
Neighbors 1 2 3 4 all

Table 2. Treatment Effect of Lesson 1

Notes: Dependent variable is mean daily load 9/26/2015-11/3/2015. The treatment group contains N=48 households. 
The control group is constructed by matching on mean daily load for 9/26/15-10/26/2015. Each column uses a 
different number of nearest neighbors, all subject to a caliper of 1 kWh/day. Errors are clustered at the household 
level. *, **, and *** indicate significance at the 10%, 5%, and 1% levels. 
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DV = Daily Load [kWh] (1) (2) (3)

Lesson Day x Treatment HH -2.463* -0.0134 -0.404
(1.479) (1.326) (1.062)

1 Next Day x Treatment HH -0.334 -0.456 0.102
(1.121) (1.392) (0.927)

2 Next Day x Treatment HH 2.495** -0.232 -0.538
(1.175) (1.229) (1.080)

3 Next Day x Treatment HH -1.469 -0.512 2.481**
(1.057) (1.191) (1.176)

4 Next Day x Treatment HH 0.175 1.309 3.452***
(1.242) (1.381) (1.272)

5 Next Day x Treatment HH 2.207 -0.443 2.762**
(1.538) (1.374) (1.110)

6 Next Day x Treatment HH 1.145 -1.771 -0.454
(1.154) (1.584) (0.887)

7 Next Day x Treatment HH -0.557 -1.543 0.364
(1.136) (1.525) (0.834)

1 Prior Day x Treatment HH -1.713 -0.288 -1.456
(1.248) (1.205) (1.263)

2 Prior Day x Treatment HH 1.951 1.677 1.509
(1.326) (1.341) (1.138)

3 Prior Day x Treatment HH -1.906 0.257 -0.263
(1.544) (1.280) (1.234)

Household Fixed Effects Y Y Y
Day Fixed Effects Y Y Y
Observations 5,103 5,403 5,219
R-squared 0.689 0.739 0.767
Adjusted R-squared 0.678 0.730 0.758

Table 3. Treatment Effect of Lessons 1, 2, and 3

Notes: Dependent variable is mean daily load for thirty days prior to each lesson, the 
day of the lesson, and seven days following the lesson. Each column corresponds to a 
lesson. Lesson 1 (column 1) occurred on 10/27/2015. Lesson 2 (column 2) occurred 
on 1/12/2016. Lesson 3 (column 3) occurred on 5/10/2016. The control group is 
constructed by matching on mean daily load for thiry days prior to the lesson using 
two nearest neighbors subject to a caliper of 1 kWh/day. Errors are clustered at the 
household level. *, **, and *** indicate significance at the 10%, 5%, and 1% levels. 
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Table 4. Heterogeneity in Treatment Effect of Lesson 1
DV = Daily Load [kWh] (1) (2) (3) (4) (5)

Characteristic = 

Above 
Median 

Consumption

Above 
Median 
Value

Above 
Median 

Gross Area

Construction 
Newer than 

1955
More than 

3 Bedrooms

Lesson Day x Treatment HH -0.760 -2.468 -0.341 -2.763 -1.769
(1.247) (2.108) (1.244) (2.585) (2.044)
-4.825 0.454 -4.087 1.296 -1.634
(3.325) (3.701) (3.653) (3.510) (4.711)

Household Fixed Effects Y Y Y Y Y
Day Fixed Effects Y Y Y Y Y
Day x Characteristic FE Y Y Y Y Y
Observations 5,103 3,681 3,681 3,681 3,681
R-squared 0.694 0.657 0.656 0.656 0.656
Adjusted R-squared 0.681 0.640 0.639 0.639 0.639

Lesson Day x Treatment HH 
x Characteristic

Notes: Dependent variable is mean daily load for thirty days prior to the lesson, the day of the lesson, and seven days 
following the lesson. Each column explores heterogenetiy in the treatment effect by some characteristic, a binary 
variable equal to one if the household is above (treatment group) median for that characteristic. Median consumption = 
24.5 kWh/day averaged over all days prior to the first lesson. Median assessed house value = $186,690. Median gross 
area = 3,274 square feet. Median year of construction = 1955. Median number of bedrooms = 3 bedrooms. The control 
group is constructed by matching on mean daily load for thiry days prior to the lesson using two nearest neighbors 
subject to a caliper of 1 kWh/day. Errors are clustered at the household level. *, **, and *** indicate significance at the 
10%, 5%, and 1% levels. 
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Appendix 

 
Phantom Power: Kill-a-Watt Activity Instructions for Students 

 
  

Name:  ___________________________________________ 
 

KILL-A-WATT ACTIVITY 
 
Part 1:   
 
OBJECTIVE 
By the end of this lesson, students will be able to: 
• Determine the number of watts an electrical device uses. 
 
 
MATERIALS / EQUIPMENT 
x Variety of household electric devices including devices that have a “stand by” power feature and others 

that have on/off switches. Use electrical devices such as computers, printers, speakers, pencil 
sharpeners, desk lamps, vacuum cleaners, power chair charger, camera charger, cordless drill 
charger, fan, coffee maker, digital clock, cell phone charger,  

x Power strips 
x Extension cords 
x Kill-A-Watt meters (* two versions now available: regular and EZ) 
x Optional: electric bill  
 
TIME: 30 minutes 
 
 
PROCEDURE 

1.  Look at the appliances and predict which device you think needs the most power and why. 
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________ 

 
Watts: The amount of energy a device uses in performing its function; the SI derived unit used to 
measure power, equal to one joule per second. In electricity, a watt is equal to current (in amperes) 
multiplied by voltage (in volts). 

 
NOTE:  Pay attention to the instructions for using the Kill-A-Watt meter and the safety warning 
about using electricity. 
 

2. Follow your teacher’s directions as to which appliance to begin your testing. 
3. Attach the Kill-A-Watt meter as instructed. 
4. Turn the appliance on and allow it to run for one minute.  
5. Record the number of watts drawn by the appliance. 
6. Which device recorded the most number of watts?  _________________________________ 
7. Which device used the lowest wattage?  __________________________________________ 
8. Why do you think the results were as recorded?  ____________________________________ 

___________________________________________________________________________ 
___________________________________________________________________________ 

9. Was your prediction correct?  _______________ 
10. Share your findings in the class discussion. 
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DV = Daily Load [kWh] (1) (2)

Treatment HH 7.894***
(1.993)

Lesson Day 0.797***
(0.275)

Lesson Day x Treatment HH -3.324** -2.147**
(1.492) (0.966)

1 Next Day x Treatment HH -1.513* -1.161
(0.818) (0.817)

2 Next Day x Treatment HH -0.329 1.079
(1.016) (0.957)

3 Next Day x Treatment HH -1.964** -1.900**
(0.950) (0.841)

4 Next Day x Treatment HH -0.572 -0.806
(1.186) (1.037)

5 Next Day x Treatment HH 2.525* 2.078
(1.401) (1.333)

6 Next Day x Treatment HH -0.0175 0.136
(1.301) (1.159)

7 Next Day x Treatment HH -0.476 0.0258
(0.965) (0.874)

1 Prior Day x Treatment HH -1.061 -0.791
(0.960) (0.909)

2 Prior Day x Treatment HH 1.163 1.718
(1.258) (1.241)

3 Prior Day x Treatment HH -2.517* -1.974
(1.451) (1.417)

Household Fixed Effects N Y
Day Fixed Effects N Y
Observations 36,819 36,819
R-squared 0.0132 0.850
Adjusted R-squared 0.013 0.845

Table 1A. Treatment Effect of Lesson 1

Notes: Dependent variable is mean daily load for N=49 treatment 
households and N=932 control households 9/26/2015-11/3/2015. 
Column 1 uses a differences-in-differences model while Column 2 
adds household and day fixed effects. Errors are clustered at the 
household level. *, **, and *** indicate significance at the 10%, 
5%, and 1% levels. 
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Figure 1A. Treatment effect over time 

 

 
Notes: Figure plots coefficient estimates for three days prior to the date of lesson 1, the day of the 
lesson, and the seven days following the lesson. This figure illustrates results in Column 2 of 
Table 1A. Error bars indicate the 90% confidence interval around the point estimate. 
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DV = Daily Load [kWh] (1) (2) (3) (4) (5)

Lesson Day x Treatment HH -0.105 -0.0134 -0.939 -1.441 -1.045
(1.795) (1.326) (1.181) (1.138) (0.948)

1 Next Day x Treatment HH 0.117 -0.456 -0.990 -0.964 -1.011
(1.795) (1.392) (1.306) (1.236) (1.083)

2 Next Day x Treatment HH 0.0501 -0.232 -0.433 -0.560 -0.414
(1.641) (1.229) (1.136) (1.079) (0.904)

3 Next Day x Treatment HH -0.192 -0.512 -1.025 -1.978* -1.786**
(1.608) (1.191) (1.095) (1.083) (0.886)

4 Next Day x Treatment HH 0.959 1.309 1.316 0.527 -0.136
(1.954) (1.381) (1.208) (1.208) (0.958)

5 Next Day x Treatment HH -0.156 -0.443 -0.772 -1.503 -1.576
(1.757) (1.374) (1.269) (1.228) (1.058)

6 Next Day x Treatment HH -2.216 -1.771 -2.515* -2.746** -1.705
(1.939) (1.584) (1.467) (1.378) (1.194)

7 Next Day x Treatment HH -1.218 -1.543 -2.258 -2.577* -2.188*
(1.935) (1.525) (1.396) (1.366) (1.217)

1 Prior Day x Treatment HH -0.195 -0.288 -0.307 -0.544 -0.610
(1.486) (1.205) (1.097) (1.051) (0.927)

2 Prior Day x Treatment HH 1.588 1.677 1.680 1.050 1.415
(1.587) (1.341) (1.273) (1.247) (1.112)

3 Prior Day x Treatment HH 0.201 0.257 0.357 0.228 0.223
(1.308) (1.280) (1.223) (1.199) (1.126)

Household Fixed Effects Y Y Y Y Y
Day Fixed Effects Y Y Y Y Y
Observations 3,744 5,403 6,948 8,500 28,536
R-squared 0.746 0.739 0.725 0.717 0.694
Adjusted R-squared 0.736 0.730 0.716 0.708 0.685
Caliper 1 1 1 1 1
Neighbors 1 2 3 4 all

Table 2A. Treatment Effect of Lesson 2

Notes: Dependent variable is mean daily load 12/11/2015-1/19/2016. The treatment group contains N=48 households. 
The control group is constructed by matching on mean daily load for 12/11/15-1/11/2016. Each column uses a 
different number of nearest neighbors, all subject to a caliper of 1 kWh/day. Errors are clustered at the household 
level. *, **, and *** indicate significance at the 10%, 5%, and 1% levels. 
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DV = Daily Load [kWh] (1) (2) (3) (4) (5)

Lesson Day x Treatment HH 0.681 -0.404 -0.448 -0.438 -1.149
(1.191) (1.062) (1.004) (0.999) (0.908)

1 Next Day x Treatment HH 0.514 0.102 0.254 0.704 0.378
(1.135) (0.927) (0.858) (0.850) (0.724)

2 Next Day x Treatment HH -0.0970 -0.538 -0.350 -0.107 -0.310
(1.308) (1.080) (1.033) (1.019) (0.871)

3 Next Day x Treatment HH 2.882** 2.481** 2.496** 2.535** 2.103**
(1.247) (1.176) (1.118) (1.139) (1.042)

4 Next Day x Treatment HH 3.726** 3.452*** 3.405*** 3.564*** 3.630***
(1.515) (1.272) (1.151) (1.124) (0.924)

5 Next Day x Treatment HH 4.089*** 2.762** 3.060*** 2.402** 2.065**
(1.198) (1.110) (1.039) (1.024) (0.881)

6 Next Day x Treatment HH -0.179 -0.454 -0.188 -0.498 -0.865
(0.841) (0.887) (0.842) (0.832) (0.749)

7 Next Day x Treatment HH 0.863 0.364 0.431 0.553 0.322
(0.968) (0.834) (0.776) (0.758) (0.652)

1 Prior Day x Treatment HH 0.467 -1.456 -0.821 -0.790 -0.909
(1.005) (1.263) (1.090) (1.019) (0.798)

2 Prior Day x Treatment HH 2.431* 1.509 1.290 1.204 1.345
(1.245) (1.138) (1.065) (1.048) (0.920)

3 Prior Day x Treatment HH 0.161 -0.263 -0.134 0.233 1.379
(1.437) (1.234) (1.161) (1.138) (1.035)

Household Fixed Effects Y Y Y Y Y
Day Fixed Effects Y Y Y Y Y
Observations 3,609 5,219 6,708 7,907 32,066
R-squared 0.789 0.767 0.760 0.745 0.739
Adjusted R-squared 0.781 0.758 0.752 0.737 0.732
Caliper 1 1 1 1 1
Neighbors 1 2 3 4 all

Table 3A. Treatment Effect of Lesson 3

Notes: Dependent variable is mean daily load 4/9/2016-5/17/2016. The treatment group contains N=48 households. 
The control group is constructed by matching on mean daily load for 4/9/16-5/9/2016. Each column uses a different 
number of nearest neighbors, all subject to a caliper of 1 kWh/day. Errors are clustered at the household level. *, **, 
and *** indicate significance at the 10%, 5%, and 1% levels. 
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Table 4A. Heterogeneity in Treatment Effect of Lesson 2
DV = Daily Load [kWh] (1) (2) (3) (4) (5)

Characteristic = 

Above 
Median 

Consumption

Above 
Median 
Value

Above 
Median 

Gross Area

Construction 
Newer than 

1955
More than 

3 Bedrooms

Lesson Day x Treatment HH -1.543 -0.470 -6.627*** -2.111 -2.207
(1.496) (2.772) (1.472) (2.532) (2.045)
3.821 -1.073 5.712** 2.555 4.780

(2.563) (3.618) (2.483) (3.258) (3.573)

Household Fixed Effects Y Y Y Y Y
Day Fixed Effects Y Y Y Y Y
Day x Characteristic FE Y Y Y Y Y
Observations 5,403 2,030 2,030 2,030 2,030
R-squared 0.746 0.728 0.727 0.724 0.726
Adjusted R-squared 0.735 0.709 0.708 0.706 0.707

Lesson Day x Treatment HH 
x Characteristic

Notes: Dependent variable is mean daily load for thirty days prior to the lesson, the day of the lesson, and seven days 
following the lesson. Each column explores heterogenetiy in the treatment effect by some characteristic, a binary 
variable equal to one if the household is above (treatment group) median for that characteristic. Median consumption = 
24.5 kWh/day averaged over all days prior to the first lesson. Median assessed house value = $186,690. Median gross 
area = 3,274 square feet. Median year of construction = 1955. Median number of bedrooms = 3 bedrooms. The control 
group is constructed by matching on mean daily load for thiry days prior to the lesson using two nearest neighbors 
subject to a caliper of 1 kWh/day. Errors are clustered at the household level. *, **, and *** indicate significance at the 
10%, 5%, and 1% levels. 
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Table 5A. Heterogeneity in Treatment Effect of Lesson 3
DV = Daily Load [kWh] (1) (2) (3) (4) (5)

Characteristic = 

Above 
Median 

Consumption

Above 
Median 
Value

Above 
Median 

Gross Area

Construction 
Newer than 

1955
More than 

3 Bedrooms

Lesson Day x Treatment HH 0.527 -2.033 -2.166 -5.562** -2.280
(0.880) (3.060) (3.046) (2.710) (2.396)
-3.925 -2.181 -1.688 4.320 -2.453
(2.652) (3.533) (3.625) (3.060) (2.950)

Household Fixed Effects Y Y Y Y Y
Day Fixed Effects Y Y Y Y Y
Day x Characteristic FE Y Y Y Y Y
Observations 5,219 1,907 1,907 1,907 1,907
R-squared 0.774 0.711 0.712 0.714 0.711
Adjusted R-squared 0.765 0.690 0.692 0.694 0.690

Lesson Day x Treatment HH 
x Characteristic

Notes: Dependent variable is mean daily load for thirty days prior to the lesson, the day of the lesson, and seven days 
following the lesson. Each column explores heterogenetiy in the treatment effect by some characteristic, a binary 
variable equal to one if the household is above (treatment group) median for that characteristic. Median consumption = 
24.5 kWh/day averaged over all days prior to the first lesson. Median assessed house value = $186,690. Median gross 
area = 3,274 square feet. Median year of construction = 1955. Median number of bedrooms = 3 bedrooms. The control 
group is constructed by matching on mean daily load for thiry days prior to the lesson using two nearest neighbors 
subject to a caliper of 1 kWh/day. Errors are clustered at the household level. *, **, and *** indicate significance at the 
10%, 5%, and 1% levels. 
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Abstract 

 
One challenge of promoting energy-efficient behavior change is status quo bias: limiting 

energy use often requires sacrificing convenience and comfort now and in the future. 

Using experimental data with hypothetical scenarios, we explore what temporal frame 

(e.g. daily, monthly, or yearly) minimizes status quo bias and encourages energy-efficient 

intentions. Results suggest individuals are most willing to adopt energy-efficient 

behaviors when the cost savings are framed on a monthly basis, relative to daily and 

yearly frames. We investigate whether cognitive fluency – the perceived ease of 

processing information – could be an underlying mechanism. We find suggestive 

evidence that individuals are indeed most fluent with energy costs framed on a monthly 

basis, possibly because most individuals receive monthly energy bills. When individuals 

are faced with energy costs in relatively disfluent frames (daily and yearly), we find that 

energy efficiency intentions are greatest when given a context for total energy spending 

in a matching frame.  

 
Keywords: Status Quo Bias, Temporal Framing, Energy Conservation, Energy 

Efficiency, Behavior Change 
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1. Introduction 

The US residential sector had a total consumption of 20,558 trillion Btu of energy in 

2015, amounting to billions of dollars spent on household energy bills in addition to 

negative environmental and health externalities from conventional energy generation 

(EIA, 2017). Uptake of energy efficient technologies has been quite slow, in spite of the 

large savings available (the "energy paradox", Jaffe & Stavins, 1994). One low-cost way 

to nudge more energy-efficient decisions is to make the costs and savings of energy 

choices more salient. Indeed, information about costs is becoming more prevalent (e.g. 

cost comparisons of CFL versus incandescent light bulbs on product packaging, and 

savings of energy-efficient alternatives for household decisions on utility electric bills) 

and consumer responses to energy labels have been studied for nearly four decades (e.g. 

McNeill & Wilke, 1979). Yet there is substantial variation in how these costs and savings 

are presented (e.g. per day, per month, per year) and we lack a comprehensive framework 

to understand how individuals respond to this information.  

With large potential for savings on energy bills and information about the costs of 

energy-inefficiency, why aren’t individuals making more energy-efficient choices? For 

individuals who typically engage in energy-inefficient household habits and purchases, 

status quo bias could be a contributing factor towards energy consumption and persistent 

inefficiency (Samuelson & Zeckhauser, 1988). For example, individuals were more likely 

to keep a contractor’s arbitrary light bulb choice, despite zero switching cost and the 

potential for future monetary savings (Dinner et al., 2011). In addition, limiting energy 

use often requires sacrificing comfort or convenience, which may make behavior change 

difficult (Kahneman, Knetsch, & Thaler, 1990). Emphasizing the costs of energy-
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inefficient choices and the benefits of energy efficiency may help overcome reluctance to 

energy-efficient behavior change (Novemsky & Kahneman, 2005).  

Our research explores which temporal frame (per day, per month, per year) for 

presenting the costs of energy decisions is optimal for promoting energy-efficient 

choices. We conduct four studies drawing from two online populations. Findings from 

hypothetical scenarios indicate that presenting monthly costs of energy-inefficient 

behaviors decreases the influence of status quo energy behaviors on energy efficiency 

intentions (Study 1). We hypothesize this is because individuals are most easily able to 

think about monthly costs relative to daily and yearly costs (Studies 2 and 3). We find 

that supplementing information about costs of energy inefficiency with explicit 

information about typical energy spending in a matching frame increases intentions to 

engage in energy efficiency relative to providing the same information in mismatching 

frames (Study 4). This research contributes to two bodies of literature. First, we show that 

ease of processing may present a boundary of status quo bias. Second, we contribute to 

the literature on choice architecture, specifically regarding household energy decisions. 

Recent literature has compared the effects of long-term temporal framing on energy 

efficient choices, and has generally found that longer timeframes that are within the 

lifecycle of the product are most effective. However, our findings show that the ease of 

processing information in a given temporal frame also plays a role in consumer choice. 

We start with a literature review in Section 2. We describe choice architecture 

broadly and non-price strategies to encourage energy efficiency and conservation 

specifically. We turn to concepts from behavioral economics and marketing to give 

context to our research question. In light of these underpinnings, we formulate our 
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hypotheses regarding how cost frames can affect status quo bias, cognitive fluency as a 

possible mechanism, and how we can operationalize costs and contexts to encourage 

energy efficiency in Section 3. Section 4 presents the results of the four studies in which 

we test our hypotheses. We first provide an overview of all studies and a description of 

the general experimental design. Within this section, we then present each study with 

specific details on methods, data, results, and discussion. We conclude with a general 

discussion of all four studies and implications for energy policy in Section 5. 

 

2. Literature Review  

The motivation for reducing energy use is clear: energy conservation can save 

households money on their electricity bills, reduce greenhouse gas emissions and mitigate 

climate change, and reduce pollution. Given the extent of energy consumption in the 

residential sector, encouraging household energy-efficient behavior change represents a 

significant strategy to conserve energy and mitigate externalities of electricity generation 

(Dietz et al., 2009). Economists, policy makers, and others have developed strategies to 

encourage energy efficiency ranging in degree of autonomy for the decision maker. For 

example, at one end of the spectrum are policies like residential direct load control – 

where utility providers control the level of electricity consumption of household 

appliances, such as by set backs on air conditioning temperatures during hours of peak 

demand – and regulations that mandate certain levels of energy efficiency, such as fuel 

efficiency standards for cars, energy efficiency standards for appliances, or prohibition of 

energy-inefficient products like incandescent light bulbs. While such policies may be 

effective in reducing energy use, they take away autonomy from the individual. At the 
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other end of the spectrum are nudges and non-price strategies that preserve individual 

freedom of choice while still encouraging energy efficient choices.  

 Any decision context is an opportunity to nudge individuals toward choices that 

are socially desirable, such as energy efficiency. Choice architecture is the framework for 

how to display choices to decision makers, including what content to present and how to 

present it (Johnson et al., 2012; Thaler et al., 2014). There is an emerging body of 

literature that provides evidence of the effects of choice architecture on decisions (see 

Johnson et al., 2012 for a review of choice architecture tools). While neoclassical 

microeconomic theory predicts individual choice is independent of how the choice is 

described, there is a vast body of literature documenting violations of descriptive 

invariance. Conditions of these violations inform choice architecture. For example, one 

prevalent tool of choice architecture is defaults. Johnson and Goldstein (2003) showed 

that individuals were more likely to be organ donors when defaulted into the program and 

allowed to opt out rather than having to actively opt into the program. Each individual is 

faced with the same alternatives – to be enrolled as an organ donor or to not be enrolled 

as an organ donor – but the way the decision is set up affects the end choice.  

 Policy makers have turned to concepts from choice architecture as a low-cost and 

politically feasible way to encourage pro-environmental behaviors without restricting the 

consumer’s choice set. Within the larger context of measures to reduce energy 

consumption, choice architecture is a non-price strategy that fits alongside recommended 

behavioral interventions (Allcott & Mullainathan, 2010), including peer comparisons 

(Allcott, 2011; Allcott & Rogers, 2014), commitment devices and goal setting (Becker, 
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1978; Harding & Hsiaw, 2014), feedback (Jessoe & Rapson, 2014; Carrico & Riemer, 

2011), and education (Agarwal et al., 2017; Gill & Lang, 2017), among others.  

Enacted in 1975, the Energy Policy and Conservation Act requires that new 

appliances be labeled with energy consumption information and new vehicles be labeled 

with information about fuel consumption. This information necessarily enters into the 

choice architecture of energy-consuming product purchase decisions and energy-related 

behavior decisions. Therefore, the way information about energy consumption and costs 

is presented affects individual choice.  Over the years, these labels have been subject to 

criticism and redesign to improve ease of use and information communication. For 

example, Larrick and Soll (2008) highlight the difficulty in interpreting the miles per 

gallon figure in terms of fuel-efficient vehicle choices. The recently revised fuel economy 

labels (2013) additionally report gallons per hundred miles, two measures of fuel cost, 

and information about greenhouse gas emissions. These additional measures not only 

make information about comparative fuel use easier to access, but the number of 

measures add weight to the fuel attribute in consumer choice, provide a signpost to 

consider environmental preferences23, and provide a reference point against which to 

weigh attribute levels (Ungemach et al., 2014; Weber et al., 1988; Costa & Kahn, 2013; 

Larrick et al., 2015). These labels provide otherwise missing information about energy 

consumption and cost to consumers, and remove one barrier to consumers considering 

this attribute in their decision-making process (Newell & Siikimaki, 2014). By definition, 

information like energy labels is inherently subject to choice architecture, and decisions 

about what information to present and how to present it affect the consumer’s choices. In 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
23 Though consumers may react differentially to the connection between pro-environmental 
preferences and fuel economy based on political ideology (Gromet et al., 2013). 



 
 

126 

this paper, we seek to understand the role of temporal framing – over what time period 

energy-related costs and benefits are aggregated – in energy-related household choices. 

Prior research has explored effects of temporal framing of energy costs in product 

evaluation, but there are some gaps in the literature that prevent comprehensive 

understanding of these effects (Kaenzig & Wustenhagen, 2010). Most of this literature 

has focused on long-term temporal frames (per year or longer) and suggest that 

consumers put more weight on attributes whose levels are framed on longer terms 

(Larrick et al., 2015; Burson et al., 2009; Pandelaere et al., 2011; Kaenzig & 

Wustenhagen, 2010). Hutton and Wilkie (1980) found increased purchase intentions for 

energy-efficient refrigerators when lifecycle cost information was provided more so than 

when annual cost information was provided. Similarly, Hardisty et al. (2014) find that 

providing 10-year energy costs generally encourages more energy-efficient choices than 

providing 1-year or 5-year costs. While long-term temporal frames make intuitive sense 

for durable goods, like vehicles and houses, unreasonably long frames may prompt the 

consumer to feel manipulated, be too abstract to fully comprehend, or be unreasonable 

timeframes to consider for behavior change or short-term decisions. For example, it may 

not make sense to the consumer to think of the cost savings of washing a load of laundry 

with cold water rather than hot water on a yearly or ten-yearly basis.  

One notable study looks at shorter-term temporal frames. McNeill and Wilke 

(1979) found no differences in a set of measures regarding refrigerator evaluation when 

typical energy costs were framed in monthly versus yearly terms. In a study on 

preferences for fuel efficiency, Camilieri and Larrick (2014) find that providing 

information about fuel costs per 100 miles encouraged more fuel-efficient vehicle choices 
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than when fuel costs were framed per 15,000 miles, and less efficient choices than a per 

100,000 mile framing. In sum, the literature suggests that presenting energy costs on 

larger scales may be most effective at encouraging energy-efficient choices, but the 

findings are inconclusive for how individuals respond to smaller scales and suggest there 

may exist a nonlinearity in response.  

 

3. Conceptual Underpinnings and Hypotheses  

How we frame costs and savings influences how individuals perceive their 

choices. Since we are considering gains and losses with respect to individuals’ budgets 

and changes in comfort and convenience, it is reasonable to look to prospect theory for 

inference on how to present the costs and savings of behavior change. Central to prospect 

theory is the concept of loss aversion: individuals dislike losses more than they like 

equivalent gains (Kahneman & Tversky, 1979). Under the framework of prospect theory 

(Kahneman & Tversky, 1979) and principles of hedonic editing (Thaler, 1985), 

individuals maximize utility by aggregating costs (pay $y per year) and segregate savings 

(save $x per day). This allows individuals to capitalize on the asymmetric shape of 

prospect theory’s value function. However, other research suggests individuals have 

limited ability to cope with multiple losses at the same time (Linville & Fischer, 1991). 

Individuals prefer to break up negative events to different days, which seemingly points 

toward segregating costs instead.  

Evidence from a third vein of literature suggests individuals tend to neglect small 

recurring costs, the Pennies-a-Day (PAD) effect (Gourville, 1998; 2003). Under PAD, 

individuals may be more likely to spend $x per day to get the comfort and convenience 
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associated with energy-inefficient choices. For example, individuals were more likely to 

donate $1 per day to a charitable organization than $350 per year, despite equal payment 

schemes between the two frames (i.e. automatic deductions from a monthly paycheck), 

and that individuals compared the daily donation to other small, recurring expenses like 

coffee and taxi fares (Gourville, 1998). However, there is no research on whether this 

phenomenon extends to small, recurring monetary gains, such as savings and associated 

benefits from engaging in an energy-efficient household behavior, or whether individuals 

stick with energy-inefficient behaviors when the costs are framed narrowly. If PAD 

extends to small gains, individuals may just round down small recurring savings from 

engaging in energy efficiency. There is evidence, though, that periodic pricing prompts 

individuals to consider repeat experiences of the purchase in question. As applied to 

recurring decisions about energy-related behaviors, narrowly framed savings may make 

the inconveniences or discomforts associated with a switch to energy efficiency more 

salient (Atlas & Bartels, 2017). In other words, messaging about saving $x per day by 

taking energy-efficient colder showers may call to mind the daily discomfort of each 

colder shower and steer individuals away from efficient choices. 

Novemsky and Kahneman (2005) posit several boundaries of loss aversion. They 

find that loss aversion is attached to the benefits of the good rather than the attributes. In 

other words, an individual is willing to give up one good to get another that provides the 

same benefits without loss aversion. They also find that individuals do not exhibit loss 

aversion for goods intended to be exchanged (e.g. cash). Our research investigates 

whether choices about temporal framing can minimize loss aversion for energy 

inefficiency. We operationalize this through a scenario that sets up a status quo level of 
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energy consumption and present individuals with relative costs of energy-inefficient and 

energy-efficient choice alternatives. Theory is conflicted about how consumers may react 

to narrow cost frames when it comes to behavior decisions. Theory generally supports 

broader frames as most encouraging product uptake, but gives little guidance on how 

broader frames affect behavior change decisions. As we describe later, we posit that 

frames that make cost information most easy to process will best encourage energy-

efficient choices. Specifically, we test the hypothesis: 

H1:  Status quo behavior influences intention to engage in energy efficiency 

differentially across cost frames – specifically, status quo bias is minimized when 

consumers are most easily able to process cost information. 

We find that individuals exhibit status quo bias in their choices when costs are 

framed as daily and yearly, but not when costs are framed as monthly. We look to ease of 

cognitive processing and fluency with monthly framing of costs to understand the 

cognitive processes underlying this interesting result. Cognitive fluency – the subjective 

experience of ease of processing information – may further influence how individuals 

perceive information about costs and savings when making energy decisions. Fluency has 

been shown to affect several areas of judgment, with messages that are easier to process 

being linked to judgments of truth, preference, confidence, and familiarity (Alter & 

Oppenheimer, 2009). For example, Song and Schwarz (2008) found that individuals had 

stronger intentions to exercise and cook when the instructions were visually easy to read. 

In relation to fuel-efficient vehicle choices, Camilieri and Larrick (2014) find preliminary 

evidence that scale familiarity may be driving their finding of more fuel-efficient vehicle 

choices when fuel costs were presented per 100 miles rather than per 15,000 miles. 
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Individuals have an intuitive sense for which units and scales are most familiar, and place 

more decision weight on attributes with familiar scales (Lembregts & Pandelaere, 2013). 

Furthermore, individuals find it difficult to translate between units and are prone to 

incorrect comparisons when performing calculations to determine impacts of fuel and 

energy consumption (e.g. Heinzle, 2012; Larrick & Soll, 2008). Moreover, weighing 

tradeoffs between energy alternatives and their attributes can feel difficult, and this 

disfluency may encourage individuals to stick with status quo behaviors (Novemsky et 

al., 2007). This body of literature suggests that we may be able to overcome decision 

avoidance and encourage energy-efficient behavior choices by increasing fluency when 

presenting costs of inefficiency. 

We hypothesize that individuals are most familiar with monthly energy bills, and 

are therefore able to process cost savings information most easily when the framing 

matches their implicit context. By providing an easy-to-process context for the magnitude 

of the costs or savings, individuals may be more easily able to understand the benefits of 

alternatives in the choice set and more likely to overcome status quo bias. We test the 

hypothesis: 

H2:  Individuals are most fluent with monthly framing of energy costs. 

We elicit measures of fluency with the temporal frame and confirm that individuals are 

more fluent with the monthly presentation of costs relative to daily and yearly frames. 

Furthermore, individuals’ stated preferences for monthly cost frames provide additional 

evidence that individuals think of energy expenditures in monthly terms. 
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If fluency between the cost frame and an implicit context for that frame can 

influence individuals’ decisions, then we hypothesize that providing an explicit context 

for energy spending in a matching frame can make relatively disfluent frames easier to 

process. We define context as the typical frame of energy costs (i.e. a monthly energy 

bill). In other words, the monthly energy bill for total household energy use is the context 

for the marginal costs of energy-related behavior choices. In addition to information 

about costs of energy-inefficient behavior alternatives, we explicitly provide a context for 

typical spending on household energy. We manipulate whether these two pieces of 

information match in temporal frame and compare energy-efficient intentions for 

participants who were given context and costs in a matching frame to those given costs 

and context in different frames (i.e. inefficiency costs $x per day and typical energy 

spending $y per year). We specifically test the hypothesis 

H3:  Individuals have a higher intention to engage in energy efficiency when 

costs are framed in the same way as total spending context. 

As predicted, we find that individuals indicated higher intentions for energy-efficiency 

when given cost and context in matching frames, and particularly if these frames were 

broad (i.e. per year).  

	
  

4. Studies 

4.1 Overview 

We test our hypotheses through four experimentally designed studies. The 

primary advantage of conducting experiments is that we can isolate the specific effects of 

nuances in how decisions are presented. In such a controlled setting, random assignment 
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of treatment conditions also allows us to interpret differences in response as causal. We 

rely on hypothetical scenarios and self-reported behavior intentions, which could lead to 

biased estimates of treatment effects in a non-experimental setting. However, we expect 

such biases (e.g. inflated intentions of pro-environmental behavior) to occur with equally 

likelihood across all treatment conditions due to random assignment. Therefore, our 

online studies provide a solid foundation for hypothesis testing. Due to the hypothetical 

nature of the scenarios, we interpret treatment effects as changes in intention to make 

energy efficient choices rather than actual changes in energy efficiency. In this section, 

we first outline the general experimental design and elements common across all studies. 

Then, we describe each study along with specific details of the method and design, 

results, and discussion of results as pertains to our hypotheses. 

4.2 General Experimental Design 

We conduct four online surveys from 2015-2016 drawing participants from two 

online populations: Amazon Mechanical Turk and Qualtrics. Each study was completed 

in less than 20 minutes and all respondents were compensated for their time.  

The primary component similar across all studies was a scenario based around a 

household energy decision between energy-inefficient and energy-efficient alternatives. 

The decision varied between some studies, but typically included a behavioral choice 

rather than a purchase. For example, we asked individuals about with what water 

temperature they would wash their laundry. The behavior is to choose a water 

temperature and the alternatives ranged from hot water, which is energy-inefficient 

because hot water requires energy to heat, to cold water, which is energy-efficient 
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because cold water achieves the same outcome while using less energy comparatively.24 

Individuals read the scenario and are given information about the costs of choosing the 

energy-inefficient alternative. The main treatment is random assignment of how the cost 

information is framed – per day, per month, or per year.    

4.3 Study 1: Boundaries of Status Quo Bias 

In our first study, we investigate which temporal framing of costs encourages the 

most energy-efficient choices. We presented individuals with scenarios about household 

energy-related behavior decisions. We asked individuals what they would choose given a 

randomly assigned status quo behavior and information about the energy costs or savings 

of switching behaviors. According to literature on status quo bias, we expect to find that 

individuals’ intentions are a function of their randomly assigned status quo, across all 

cost frame conditions. If individual behavior intention is consistent with the literature on 

cost framing, we would expect costs aggregated over longer temporal frames would 

encourage the most energy-efficient choices, while individuals may neglect costs or 

savings that are framed narrowly. A deviation from expected findings may suggest that 

existing theory about longer-term cost frames does not extend to narrower frames. 

Furthermore, any affect of cost frame on status quo bias would provide evidence for a 

potential boundary of status quo bias, with implications for how to best describe costs of 

household energy behaviors to motivate behavior change. 

Method 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
24 Some may argue that the same outcome is not achieved using hot and cold water because they 
have a prior belief that hot water gets laundry cleaner than cold water. However, many of today’s 
detergents are specifically formulated for use in cold water, rendering the same outcome. 
Furthermore, even if individuals have a strong preference for washing laundry with hot water, 
these preferences would show up as noise due to the experimental design of the study.   
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Participants. We recruited 353 on-line participants to complete a study on 

household decisions through Amazon Mechanical Turk.25 Participants received an 

average of $1.50 for completing the study. Average time to complete was 11.3 minutes 

(sd = 6.8 minutes).  

Procedure. Participants were presented with two scenarios about household 

energy-related decisions in a between-subjects survey design.26 First, they were faced 

with a decision between using hot or cold water to wash laundry. Then, they had to 

choose between using or not using a second household refrigerator. Through random 

assignment, participants were told to consider a status quo of either an energy-efficient 

behavior alternative (e.g. always using cold water to wash laundry; not using a second 

refrigerator) or the energy-inefficient alternative (e.g. using warm or hot water to wash 

laundry; using a second refrigerator). Participants with an energy-efficient (inefficient) 

status quo were presented with the cost (savings) of engaging in the energy-inefficient 

(efficient) behavior alternative behavior. Costs and savings were randomly presented as 

daily, monthly, or yearly for each participant.  

All participants first saw a description of the scenario and then answered a 

question to confirm their scenario status quo. For example, participants assigned the 

inefficient status quo and yearly frame condition saw: “Suppose you often use warm 

water, but you are considering whether to use only cold water for your laundry. If you 

always use cold water, you will save $63.00 per year on energy costs. What do you think 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
25 Two individuals failed a survey-level attention check. Exclusion of these individuals from 
analysis does not substantially alter results. 
26 The study included three additional scenarios, but results from these scenarios were discarded 
due to concerns about overwhelming the participants and quality of data. Only the first two 
scenarios were used in this analysis. Full text of scenarios is included in the Appendix, as are 
similar results for analysis using all scenarios. 
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you would do?” Participants used a 0-10 slider scale (shown in Appendix A) to indicate 

their likelihood of engaging in the energy-inefficient or energy-efficient behavior 

alternative. Our dependent measure is each individual’s response to this question 

averaged over the two scenarios. Individuals also answered a short series of questions 

related to the scenarios, environmental concern, construal level, cognitive reflection, and 

loss aversion.27  

Results 

Figure 1 shows intention to engage in energy efficient behavior, averaged over the 

two scenarios for each status quo and frame condition. In the daily and yearly frames, 

participants were influenced by their status quo, but not in the monthly condition. We 

used analysis of variance to analyze differences in behavior intention between the status 

quo groups, the temporal frame conditions, and the interaction between the two. There 

were main effects of status quo, F(1, 347) = 15.93, p = .0001, temporal frame, F(2, 347) 

= 4.67, p = .0099, and the interaction, F(2, 347) = 4.33, p = 0.0139.  

[Figure 1 about here] 

In the daily condition, participants preferred efficient behaviors more strongly 

when that was their assigned status quo, t(113) = 3.9376, p = .0001, d = 0.735. Likewise, 

participants in the yearly condition also showed statistically significant differences in 

their behavior intentions, in line with their assigned status quos, t(117) = 2.7845, p = 

0.0063, d = 0.511. However, participants assigned to the monthly frame showed no 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
27 Measures of construal level, cognitive reflection and numeracy, loss aversion, and 
environmental concern are included in the Appendix, as are additional methodology details about 
scale construction. 
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difference in behavior intention as a function of status quo, t(117) = 0.0781, p = .9378, d 

= 0.014, and they tended toward energy-efficient choices relative to participants assigned 

the inefficient status quo in the daily and yearly conditions. For individuals assigned a 

status quo energy-efficient behavior, there was no effect of temporal frame, F(2, 347) = 

1.46, p = .233, 𝜂  ! = .02. However, there was an effect of temporal frame for individuals 

assigned an energy-inefficient status quo, F(2, 347) = 7.69, p < 0.001. We replicate main 

findings even when controlling for loss aversion, environmental concern, cognitive 

reflection, stated actual frequency of engaging in the energy efficient behavior, and 

typical energy bill spending. 

 We investigated a number of individual differences, including loss aversion, 

environmental concern, construal level, cognitive reflection and numeracy, stated actual 

frequency of engaging in the energy efficient behavior, and typical energy bill spending. 

We find neither a main effect of loss aversion (p = 0.180) nor an interaction between loss 

aversion and status quo (p = 0.404). Environmental concern is significant in predicting 

behavior intention (p < 0.001) but does not interact with the treatment (p = 0.791) or 

affect main findings. Construal level does not produce a main effect (p = 0.661) or an 

interaction (p = 0.863). Cognitive reflection, given by the number of correct responses to 

five tasks (e.g. the bat and ball problem), is not significantly correlated with behavior 

intention (p =0.276) and does not interact with treatment (p = 0.536). Stated actual status 

quo frequency of engaging in energy-efficient behaviors measured on a 5-point Likert 

scale and averaged over the two scenarios has neither a main effect (p = 0.320) nor 

interaction (p = 0.535). Finally, we find neither a main effect of typical energy spending 

(p  = 0.474) nor an interaction with treatment (p = 0.356). 
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We also find that individuals tend to neglect small recurring savings. A main 

effect of temporal frame, F(1, 347) = 1.426, p < 0.001, indicates that individuals in the 

daily condition selected a behavior intention that was less energy efficient than 

individuals who saw monthly or yearly frames, given an energy-inefficient status quo. 

This suggests that the Pennies-a-Day effect (Gourville, 1998) extends to the small 

recurring savings that accrue from adopting energy-efficient household habits and 

switching to more efficient behavior alternatives. In other words, we found that 

individuals given an energy-inefficient status quo were more likely to forgo savings from 

switching to energy-efficient behavior alternatives when the gains from doing so were 

framed as daily, relative to monthly or yearly. 

Discussion 

Data support our hypothesis that individuals are influenced by status quo 

behaviors (H1). Interestingly, we found significant effects of status quo when monetary 

consequences were framed as yearly or daily, but not monthly. We also found evidence 

that the Pennies-a-Day effect – neglect for small recurring costs – extends to neglect for 

small recurring savings. This study showed how costs and savings of energy decisions are 

framed makes a difference in how likely individuals are to engage in energy efficiency.  

One possible explanation for a decreased sensitivity to status quo bias is ease of 

cognitive processing of monthly costs and savings. Many individuals typically receive a 

monthly energy bill, and by framing the costs and savings of energy decisions as 

monthly, individuals may be more readily able to evaluate monetary consequences in 

relation to their typical household energy expenses. This ease of processing may then 

make the value of the costs or savings more salient relative to typical energy expenses, 
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and allow individuals to be more calculating in their energy decisions. We test this 

hypothesis in Studies 2-4. 

4.4 Study 2: Fluency with monthly framing 

In our second study, we test whether individuals are more easily able to process 

monthly costs relative to other temporal frames. We present individuals with one of five 

scenarios, with the same experimental conditions as Study 1. Specifically, we randomly 

assign individuals to either an energy efficient or inefficient status quo and present the 

costs of changing behavior in either a daily, monthly, or yearly frame. We then ask 

individuals five questions to measure fluency with the temporal frames. We find that 

individuals are more fluent with monthly costs and savings than with daily or 

yearly/seasonal costs and savings. 

Method 

Participants. We recruited 1,199 online participants to complete a short survey on 

household decisions through Amazon Mechanical Turk. The average time to complete 

the survey was 2.4 minutes (sd = 3.9 minutes). 

Procedure. Each participant was randomly presented with one of five scenarios 

regarding shower water temperature, bus ridership, light bulb choice, use of a space 

heater, and use of a window air conditioning unit.28 Individuals were randomly assigned 

to a status quo (energy efficient or inefficient) and temporal frame of costs/savings (per 

day, per month, per year for scenarios 1-3 or per season for scenarios 4-5) similar to 

Study 1. Our dependent variable is intention to engage in energy efficiency as measured 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
28 Text of the scenarios and additional measures are provided in the Appendix. 
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by individuals’ responses to the question “What would you do?” Individuals indicated 

their intentions using a 0-10 slider scale between definitely engaging in the energy 

efficient behavior or the inefficient behavior.  

Individuals then indicated their fluency using a seven-point Likert scale on four 

measures: ease of estimating the financial impacts of the decision, ease understanding of 

the decision, clarity of the decision, and clarity of the financial impacts. Text of the 

scenarios and fluency measures are provided in the appendix. We aggregated responses 

to fluency measures using a standardized Cronbach’s alpha (alpha = 0.811). Participants 

also ranked how involved they were in making the decision on a seven-point Likert scale 

(Minvolvement = 5.93, sd = 1.18), and how much they care about saving money and the 

environment on five-point Likert scales (Msaving money = 4.49, sd = 0.77; Menvironment = 4.02, 

sd = 0.95).  

Results and Discussion 

Using the Cronbach’s alpha index of fluency measures across all five scenarios, we find 

significantly higher fluency scores for individuals who are presented with monthly costs 

rather than other temporal frames (Mmonth = 0.079, Mother = -0.039, t(1197) = 2.42, p = 

0.016). Analysis of variance confirms a significant effect of frequency on fluency (F(2, 

1196) = 3.11, p = 0.045). Figure 2 plots mean fluency for each temporal frame condition, 

with higher values indicating higher fluency. Fluency is significantly positively 

correlated with intention to engage in energy efficiency (beta = 0.47, se = 0.119, t(1198) 

= 3.97, p < 0.001), though the variance in our dependent measure explained by this effect 

is small (r-squared = 0.012). 
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[Figure 2 about here] 

We can further investigate how fluency changes for different temporal frames. 

Scenarios 1-3 use the temporal frames per day, per month, and per year, while scenarios 

4-5 regarding use of AC and heat present costs per season instead of per year. First, we 

restrict our sample to only individuals who saw scenarios 1-3 and re-index the fluency 

measures (alpha = 0.811).  We continue to see a marginally significant difference in 

fluency means between individuals who saw monthly costs and those who saw daily or 

yearly costs (Mmonth = 0.066, Mother = -0.033, t(912) = 1.77, p = 0.077). We do the same 

analysis for individuals who saw scenarios 4-5 (alpha = 0.804) and find a marginally 

significantly higher level of fluency for individuals in the monthly condition (Mmonth = 

0.118, Mother = -0.058, t(283) = 1.77, p = 0.079). 

 Study 2 reveals that individuals find it easier to understand decisions about energy 

use when the costs of choice alternatives are framed as monthly, providing support for 

H2. Despite using a range of scenarios, two of which include seasonal instead of yearly 

cost frames, fluency seems to be highest with monthly costs. In Study 3, we further 

explore what temporal frame individuals tend to use when they think about their energy 

expenditures and costs of energy-related behaviors. 

4.5 Study 3: Experience with and preference for monthly framing 

In contrast to Study 2, which elicits fluency with a randomly assigned cost frame, 

Study 3 directly asks individuals for their preferences in frame. Among other components 

(not included in this paper), individuals were given a scenario where they were asked to 

recommend which cost frame should be used to easily convey costs of energy inefficient 
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behaviors to their neighbors. Then they were asked to indicate their preferred way of 

thinking about various expenses, including costs of energy-related behaviors and their 

energy bill. Individuals overwhelmingly prefer monthly cost framing. In combination 

with Study 2, we build evidence in support of monthly framing of costs being the easiest 

to process. 

Method 

Participants. We recruited 315 online participants to complete a short survey on 

household decisions from the Qualtrics panel of respondents. The average time to 

complete the survey was 14.3 minutes (sd = 12.2 minutes). All participants were screened 

to ensure they pay their own energy bills. 

Procedure. Individuals were presented with a scenario regarding how to frame 

costs of energy-related household behaviors.29 In this scenario, individuals are told that 

their neighbors each have energy meters in their homes. Each individual was randomly 

assigned to one of three treatment conditions, and were told that their neighbors saw total 

household energy expenditures either per day, per month, or per year on their energy 

meters. They were then asked to advise a neighbor that wanted to design flyers with a 

cost frame that would be most easy to understand. Individuals ranked each frame on a 7-

point Likert scale from “doesn’t make any sense at all” to “make complete sense.” Then 

individuals chose only one frame to recommend to the neighbor.  

Next, individuals were given a scenario in which they were designing a flyer to 

convey costs of several various activities. Individuals indicated which frame made the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
29 Full text provided in the Appendix. 
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most sense for each activity, choosing from a selection of seven frames (per day, per 

week, per month, per year, trip, per load, per fill-up). Activities included both energy-

related activities and non-energy activities. Finally, individuals responded to a set of 

control questions, not included in this analysis. 

Results and Discussion 

When asked to rate cost frames on a 7-point Likert scale, individuals rated all 

frames as making sense (Mday = 4.94 sd = 0.117, Mmonth = 4.99 sd = 0.115, Myear = 4.84 sd 

= 0.118). However, monthly framing was rated significantly more sensible than the 

yearly frame (t(314) = 1.70, p = 0.091; difference in means not significant between 

month and day frames t(314) = 0.54, p = 0.587). Individuals then chose one of the three 

frames to recommend as the frame that made the most sense to use to communicate costs 

of energy-related household decisions. Figure 3 illustrates the results of this question. A 

majority of individuals recommended describing costs in the monthly frame (N=130, 

41.3%). The remaining individuals were approximately split between daily and yearly 

frames: N=88 (27.9%) recommended daily framing while N=97 (30.8%) recommended 

yearly framing. Interestingly, more individuals recommended monthly framing than daily 

or yearly regardless of the framing used in their neighbors’ energy meters. We argue this 

is further evidence for the ease of processing energy-related costs per month. 

[Figure 3 about here] 

Then, we elicited preferred cost frames for nine activities. Table 1 summarizes 

these results. Individuals preferred monthly framing for all activities except for the 

activities about washing laundry, driving, and grocery shopping. Of particular interest, 
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71.4 percent of individuals consider their energy bills on a monthly basis. This exercise 

provides additional evidence for monthly framing being both easy to process and 

familiar, and supporting H2.  

[Table 1 about here] 

4.6 Study 4: Providing context for unfamiliar frames  

Studies 1-3 showed that individuals respond differently to temporal frames, and 

that framing costs of energy efficiency may reduce status quo bias (Study 1). The 

findings regarding fluency in Study 2 suggest that ease of cognitive processing plays a 

role in the effectiveness of monthly framing in the absence of an explicit context for 

energy spending (or other relevant comparison metric). Study 3 provides additional 

evidence that monthly framing is not only easiest to process but also explicitly preferred. 

The scenarios in Studies 1 and 2 rely on individuals’ implicit contexts for energy 

decisions, and we posit their monthly energy bills serve as this context. This begs the 

question of whether we can enhance the fluency of typically less-fluent temporal frames 

by providing an explicit context (e.g. for energy spending) in the same temporal frame. 

Study 4 has two aims. First, we explicitly test the hypothesis of cognitive fluency for 

matching the frame of behavior-specific costs to the frame of typical household energy 

expenses. In other words, if people are given a daily energy bill, do daily costs work 

better? Second, we test whether broad (i.e., yearly) framing of both costs and typical 

expenses encourages more energy-efficient behavior intentions than narrow (i.e., daily) 

framing. 

Method 



 
 

144 

Participants. We recruited 132 participants for a fifteen-minute online survey 

through Qualtrics. Participants (51% male, 49% female) had an average age of 48 years 

and an average household income of $50,000 – 59,999 with at least some college.  All 

participants were screened to ensure they pay their own energy bills. 

Procedure. Participants were presented with three scenarios: laundry water 

temperature, use of a second fridge, and light bulb choice, as in previous studies. 

Following a description of the scenario, we presented typical household energy spending 

in a randomly assigned frame (daily or yearly), representing an explicit context for easy 

evaluation of costs of choosing an energy-inefficient behavior alternative. Participants 

saw the costs of engaging in the energy-inefficient alternative in a randomly assigned 

frame (daily or yearly), which either matched the typical spending context or did not.30 

Our dependent measure was similarly defined as in Studies 1 and 2, and we average over 

the three scenarios to generate our dependent measure for each individual. Figure 4 

shows an example of how typical energy spending and scenario-specific costs were 

presented. We also solicited fluency using the same four measures as in Study 2. 

[Figure 4 about here] 

Results and Discussion 

Figure 5 shows that intention to choose energy efficient behaviors are strongest 

when the cost frame and the typical spending frame are matched. In other words, a daily 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
30 Some participants were instead assigned to monthly frames of typical spending context and 
costs of energy-inefficiency. We do not present results from these conditions here due to concerns 
about unintentionally prompting individuals to instead think about their own monthly spending. 
We argue that using daily and yearly conditions, which are relatively less familiar than a monthly 
frame, provides a cleaner experimental context to examine the effects of matching versus non-
matching frames.  
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cost frame works best when matched with a daily spending bill, and a yearly cost frame 

works best when matched with a yearly spending bill. In analysis of variance, we do not 

see a significant main effect of cost frame (F(1, 128) = 0.82, p = 0.366) but there is a 

marginal main effect of spending frame (F(1, 128) = 3.70, p = 0.056) and a statistically 

significant interaction effect (F(1, 128)=5.47, p = 0.021). Pairwise comparisons reveal a 

significant effect of cost frame when daily typical spending is presented (t(63) = 2.178, p 

= 0.033), but an insignificant effect of cost frame when yearly typical spending is 

presented (t(65) = 1.070, p = 0.289). These results provide partial support for H3, though 

we cannot statistically distinguish between behavior intentions with matching or 

mismatching contexts when individuals see an annual total spending context.  

[Figure 5 about here] 

We were unable to test for fluency as a mediator due to suspected ceiling effects. 

Fluency measures were on seven-point Likert scales (Mfluency measures = 6.31, sd = 0.80). 

Thirty-eight percent of individuals chose a seven for all measures, while 92 percent had 

an average raw fluency score greater than five, resulting in very little variation among 

respondents. We think the potential cause for reported high fluency was the clarity of the 

images used to portray costs and typical spending. We also see higher intentions for 

energy efficiency in Study 4 relative to Study 1. Though the scenarios are not directly 

comparable, this suggests that providing an explicit context for energy spending may 

increase fluency, which may in turn elicit more energy-efficient behavior intentions. 

5. General Discussion  

In four studies, we investigate how individuals respond to cost frames within the 

context of energy-related household decisions. Prior literature has mainly focused on 
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longer-term temporal framing of costs, ranging from one year to the life cycle of the 

product in question (Kaenzig & Wustenhagen, 2010; Hutton & Wilkie, 1980; Hardisty et 

al., 2014; Larrick et al., 2015). We extend this work in two ways. First, we focus on 

short-term temporal frames to build a more comprehensive understanding of how 

individuals respond to cost framing in general. Second, our scenarios involve costs 

related to household behaviors rather than product purchases. We find that intentions to 

engage in energy efficient behaviors are subject to status quo bias when the costs or 

savings of behavior change are framed as per day or per year. However, individuals who 

see costs and savings framed on a monthly basis overcome status quo bias in their 

behavior intentions. This provides evidence that is potentially inconsistent with current 

thinking about cost framing, which recommends using longer-term frames to promote 

product purchase. Furthermore, in the same vein as Novemsky et al. (2005) with 

boundaries of loss aversion, we show a possible boundary of status quo bias. 

We postulate that cognitive fluency plays a role in why monthly cost framing 

minimizes status quo bias. Prior literature on cognitive fluency links easy-to-process 

attributes to judgments of truth, preference, and ease (Alter & Oppenheimer, 2009). 

Therefore, a cost frame that is more cognitively fluent may affect individual choices. In 

two studies, we find evidence that monthly framing is easiest to process and the preferred 

unit to describe costs of several household choices. This finding is consistent across a 

randomized experiment that elicits fluency through a set of measures, and in stated 

preference-style measures. We also see that over seventy percent of individuals think 

about their energy expenses in monthly terms. Prevalence of monthly energy bills may 

provide an implicit context against which to evaluate or understand the costs of energy-
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inefficient behavior alternatives. Findings from these studies point to cognitive fluency as 

a possible boundary of status quo bias, and one that we may be able to leverage to further 

encourage energy efficient choices.  

A fourth study ditches implicit monthly framing to explore the benefits of 

providing an explicit context for relatively disfluent cost frames. If our conceptual 

framework is an accurate description of the decision making process regarding household 

energy choices, then we would expect that manipulations of explicit context framing to 

match cost framing would increase energy-efficient behavior intentions. Consistent with 

this framework, we find that individuals have the greatest intention to engage in energy 

efficiency when they see a context for total household energy expenditures in a frame that 

matches information about the costs of a specific energy-inefficient behavior, relative to 

receiving an explicit context in a mismatched frame.  

Our findings suggest two additional tools that choice architects can consider. 

First, we show that cognitively fluent framing can reduce status quo bias. If a policy 

maker’s goal were to encourage some behavior that is hindered by attachment to the 

status quo, then framing the costs of inaction in a frame that is easier to process could 

lead to more decisions to act. To illustrate with an example outside of energy contexts, 

consider the choice of whether to purchase relatively healthy fresh produce or 

comparatively unhealthy prepared foods at the grocery store. Individuals tend to think 

about their budgets for groceries in weekly terms.  Advocates for healthy eating that want 

to encourage purchases of fresh produce instead of prepared foods could consider 

framing the additional costs of unhealthy foods relative to fresh produce in terms of costs 
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per week. Future research should expand on how fluent framing and descriptions might 

be able to counteract other biases, like default bias and loss aversion.  

The second tool available to choice architects is providing a context against which 

to evaluate disfluent cost frames. We find that providing an explicit context for frames 

that are relatively difficult to think about increases behavior intention. The PAD literature 

recommends using narrow framing because doing so elicits comparisons to trivial 

recurring purchases. However, we find that framing costs as daily is less easy to process 

than equivalent monthly costs. Future research should investigate how providing explicit 

contexts could enhance the PAD effect. To illustrate with an example from one of 

Gourville’s (1998) motivating studies, individuals were asked about intentions to donate 

to a charity and provided the donation amount in a narrow frame ($0.85 per day) or a 

broad frame ($300 per year). While individual donation intentions were highest with the 

narrow cost frame, it is possible that disfluency with daily framing within the context of 

donations attenuated this effect, and that providing an explicit context for this amount 

(e.g. average daily spending on other products somehow related to charitable giving, or 

even perhaps setting up a contrast with daily spending on selfish purchases) could further 

increase donation intentions.  

It is also worth further investigating how fluency with the magnitude of the cost 

impacts choice. PAD finds that narrowly framed costs call to mind other familiar small 

costs, like a cup of coffee. But some very small costs (e.g. $0.11 per day relative cost of 

incandescent light bulbs) may not have a clear comparison, and this disfluency with 

magnitude may also play a role in how individuals respond to PAD framing. To this 

point, providing an explicit context against which to compare very small, narrowly 
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framed costs could increase fluency by increasing ease of recall of comparable trivial 

recurring purchases. 

 We face several limitations in our studies. Ideally, we would have liked to run a 

formal statistical test of cognitive fluency as a mediator. However, we were limited by 

the high fluency ratings of aspects of the energy decisions. One possible cause of high 

fluency ratings is the explicit (versus implicit) context given. Future research should 

investigate changes in behavior intention when there is an implicit versus explicit context 

for total energy expenditures. We suspect that individuals evaluated costs against an 

implicit context of monthly spending on energy bills in the absence of an explicit context. 

Study 4 attempted to manipulate fluency by providing an explicit context of total 

household energy spending in a relatively unfamiliar frame (per day or per year).  

However, providing an explicit context regardless of frame may render all aspects of the 

decision easy to process, and hence contributed to the ceiling effects we found with our 

fluency measure. Instead, future research could compare across product or behavior 

categories where individuals use contexts in different frames. For example, researchers 

could present costs in various frames and compare intentions for energy efficiency (with 

the context for total spending being on a monthly basis) to intentions to, say, substitute 

less expensive produce for more expensive prepared foods (with the context for total 

grocery budgets being on a weekly basis). To be consistent with findings from this 

research, we would expect to see status quo bias when energy costs are framed other than 

monthly and food costs are framed other than weekly.  

Additionally, future research should compare monthly cost framing to annual and 

longer-term framing, to provide a more comparable result to literature on longer-term 
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frames. Future research could also investigate alternative mechanisms that decrease status 

quo bias, for example evaluability of the costs or the changes in underlying judgments 

due to increased fluency. Song and Schwarz (2008) found that individuals were 

significantly more likely to engage in certain behaviors when the instructions for doing so 

were cognitively fluent. In terms of energy-related household decisions, cognitively 

fluent cost framing could cause individuals to think of the behavior changes as easy to do, 

increase preference for the energy efficient alternative, or allay underlying doubt about 

actual savings by increasing judgments of ease, preference, or truth. Lastly, future 

research should include an incentive compatible experiment. Our studies relied on 

hypothetical scenarios, in which hypothetical bias may affect individuals’ responses and 

inflate intentions for energy efficiency. A field experiment in particular would be 

beneficial to understand the external validity of our findings, both within an energy 

conservation context as well as in other decisions. 

Our findings have important implications for how to convey information about 

energy choices, both in framing and in content. Specifically, policy makers and energy 

conservation advocates should consider framing costs of energy-inefficient choices in the 

frame that is most fluent for the target audience. While prior literature recommends 

describing costs over longer time horizons, our research prompts another call to think of 

costs in terms of shorter horizons if those frames are easiest to process. We suspect these 

guidelines are particularly appropriate for costs of energy-related behaviors rather than 

energy-consuming products. In the case of using a frame that could be less fluent, a 

context against which to weigh those costs should also be provided. 

  



 
 

151 

References 

	
  

Agarwal, S., Rengarajan, S., Sing, T. F., & Yang, Y. (2017). Nudges from school 
children and electricity conservation: Evidence from the “Project Carbon Zero” 
campaign in Singapore. Energy Economics, 61, 29-41. 

 
Allcott, H. (2011). Social norms and energy conservation. Journal of Public 

Economics, 95(9), 1082-1095. 
 
Allcott, H., & Mullainathan, S. (2010). Behavior and energy policy. Science, 327(5970), 

1204-1205. 
 
Allcott, H., & Rogers, T. (2014). The short-run and long-run effects of behavioral 

interventions: Experimental evidence from energy conservation. The American 
Economic Review, 104(10), 3003-3037. 

 
Alter, A. L., & Oppenheimer, D. M. (2009). Uniting the tribes of fluency to form a 

metacognitive nation. Personality and social psychology review. 
 
Atlas, S., & Bartels, D., “Periodic Pricing Revisited: Beyond Pennies-a-Day.” working 

paper (2016) 

Becker, L. J. (1978). Joint effect of feedback and goal setting on performance: A field 
study of residential energy conservation. Journal of applied psychology, 63(4), 
428. 

 
Burson, K. A., Larrick, R. P., & Lynch Jr, J. G. (2009). Six of one, half dozen of the 

other: Expanding and contracting numerical dimensions produces preference 
reversals. Psychological Science, 20(9), 1074-1078. 

 
Camilleri, A. R., & Larrick, R. P. (2014). Metric and scale design as choice architecture 

tools. Journal of Public Policy & Marketing, 33(1), 108-125. 
 
Carrico, A. R., & Riemer, M. (2011). Motivating energy conservation in the workplace: 

An evaluation of the use of group-level feedback and peer education. Journal of 
environmental psychology, 31(1), 1-13. 

 
Costa, D. L., & Kahn, M. E. (2013). Energy conservation “nudges” and environmentalist 

ideology: Evidence from a randomized residential electricity field 
experiment. Journal of the European Economic Association, 11(3), 680-702. 

 
Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C., & Vandenbergh, M. P. (2009). 

Household actions can provide a behavioral wedge to rapidly reduce US carbon 
emissions. Proceedings of the National Academy of Sciences, 106(44), 18452-
18456. 



 
 

152 

 
Dinner, I., Johnson, E. J., Goldstein, D. G., & Liu, K. (2011). Partitioning default effects: 

why people choose not to choose. Journal of Experimental Psychology: 
Applied, 17(4), 332. 

 
Energy Information Administration. Office of Energy Statistics, US Department of 

Energy. (2017). February 2017 Monthly Energy Review (DOE/EIA-
0035(2017/2)). Washington, DC. 
https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf 

Frederick, S. (2005). Cognitive reflection and decision making. The Journal of Economic 
Perspectives, 19(4), 25-42. 

 
Gill, C. and Lang, C. (2017). Learn to Conserve? The effects of in-school energy 

education on at-home electricity consumption. working paper. 

Gourville, J. T. (1998). Pennies-a-day: The effect of temporal reframing on transaction 
evaluation. Journal of Consumer Research, 24(4), 395-408. 

 
Gourville, J. T. (2003). The effects of monetary magnitude and level of aggregation on 

the temporal framing of price. Marketing Letters, 14(2), 125-135. 
 
Gromet, D. M., Kunreuther, H., & Larrick, R. P. (2013). Political ideology affects 

energy-efficiency attitudes and choices. Proceedings of the National Academy of 
Sciences, 110(23), 9314-9319. 

 
Harding, M., & Hsiaw, A. (2014). Goal setting and energy conservation. Journal of 

Economic Behavior & Organization, 107, 209-227. 
 
Hardisty, D. J., Shim, Y., & Griffin, D. (2014). Encouraging energy efficiency: Product 

labels activate temporal tradeoffs. Vancouver, British Columbia, Canada: 
University of British Columbia Sauder School of Business. Contact David 
Hardisty. 

 
Heinzle, S. L. (2012). Disclosure of energy operating cost information: A silver bullet for 

overcoming the energy-efficiency gap?. Journal of Consumer Policy, 35(1), 43-
64. 

 
Hutton, R. B., & Wilkie, W. L. (1980). Life cycle cost: A new form of consumer 

information. Journal of Consumer Research, 6(4), 349-360. 
 
Jaffe, A. B., & Stavins, R. N. (1994). The energy paradox and the diffusion of 

conservation technology. Resource and Energy Economics, 16(2), 91-122. 
 
Jessoe, K., & Rapson, D. (2014). Knowledge is (less) power: Experimental evidence 

from residential energy use. The American Economic Review, 104(4), 1417-1438. 
 



 
 

153 

Johnson, E. J., & Goldstein, D. (2003). Do defaults save lives?. Science, 302(5649), 
1338-1339. 

 
Johnson, E. J., Shu, S. B., Dellaert, B. G., Fox, C., Goldstein, D. G., Häubl, G., ... & 

Wansink, B. (2012). Beyond nudges: Tools of a choice architecture. Marketing 
Letters, 23(2), 487-504. 

 
Kaenzig, J., & Wüstenhagen, R. (2010). The effect of life cycle cost information on 

consumer investment decisions regarding eco‐innovation. Journal of Industrial 
Ecology, 14(1), 121-136. 

 
Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1990). Experimental tests of the 

endowment effect and the Coase theorem. Journal of political Economy, 98(6), 
1325-1348. 

 
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under 

risk. Econometrica: Journal of the econometric society, 263-291. 
 
Larrick, R. P., & Soll, J. B. (2008). The MPG illusion. SCIENCE-NEW YORK THEN 

WASHINGTON-, 320(5883), 1593. 
 
Larrick, R. P., Soll, J. B., & Keeney, R. L. (2015). Designing better energy metrics for 

consumers. Behavioral Science & Policy, 1(1), 63-75. 
 
Lembregts, C., & Pandelaere, M. (2013). Are all units created equal? The effect of 

default units on product evaluations. Journal of Consumer Research, 39(6), 1275-
1289. 

 
Linville, P. W., & Fischer, G. W. (1991). Preferences for separating or combining 

events. Journal of personality and social psychology, 60(1), 5. 
 
Lipkus, I. M., Samsa, G., & Rimer, B. K. (2001). General performance on a numeracy 

scale among highly educated samples. Medical decision making, 21(1), 37-44. 
 
McNeill, D. L., & Wilkie, W. L. (1979). Public policy and consumer information: Impact 

of the new energy labels. Journal of Consumer Research, 6(1), 1-11. 
 
Newell, R. G., & Siikamäki, J. (2014). Nudging energy efficiency behavior: The role of 

information labels. Journal of the Association of Environmental and Resource 
Economists, 1(4), 555-598. 

 
Newsham, G. R., & Bowker, B. G. (2010). The effect of utility time-varying pricing and 

load control strategies on residential summer peak electricity use: a 
review. Energy policy, 38(7), 3289-3296. 

 



 
 

154 

Novemsky, N., & Kahneman, D. (2005). The boundaries of loss aversion. Journal of 
Marketing research, 42(2), 119-128. 

 
Novemsky, N., Dhar, R., Schwarz, N., & Simonson, I. (2007). Preference fluency in 

choice. Journal of Marketing Research, 44(3), 347-356. 
 
Pandelaere, M., Briers, B., & Lembregts, C. (2011). How to make a 29% increase look 

bigger: The unit effect in option comparisons. Journal of Consumer 
Research, 38(2), 308-322. 

 
Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of 

risk and uncertainty, 1(1), 7-59. 
 
Smith, N. C., Goldstein, D. G., & Johnson, E. J. (2013). Choice without awareness: 

Ethical and policy implications of defaults. Journal of Public Policy & 
Marketing, 32(2), 159-172. 

 
Song, H., & Schwarz, N. (2008). If it's hard to read, it's hard to do processing fluency 

affects effort prediction and motivation. Psychological Science, 19(10), 986-988. 
 
Thaler, R. (1985). Mental accounting and consumer choice. Marketing science, 4(3), 199-

214. 
 
Thaler, R. H. and Sunstein, C. R. and Balz, J. P., Choice Architecture (December 10, 

2014). The Behavioral Foundations of Public Policy, Ch. 25, E. Shafir, ed. (2012). 
Available at SSRN: https://ssrn.com/abstract=2536504 or 
http://dx.doi.org/10.2139/ssrn.2536504 

Ungemach, C., Camilleri, A. R., Johnson, E. J., Larrick, R. P., & Weber, E. U. (2014). 
Translated attributes as a choice architecture tool. Durham, NC: Duke University. 

 
Vallacher, R. R., & Wegner, D. M. (1989). Levels of personal agency: Individual 

variation in action identification. Journal of Personality and Social 
psychology, 57(4), 660. 

 
Weber, M., Eisenführ, F., & Von Winterfeldt, D. (1988). The effects of splitting 

attributes on weights in multiattribute utility measurement. Management 
Science, 34(4), 431-445. 

 
 

   

  



 
 

155 

Tables and Figures 

	
  

Figure 1. Energy efficient behavior intentions by status quo condition and cost frame 

	
  

 

Notes. Figure illustrates intention to engage in energy efficient behavior as a function of status 
quo and assigned frame of costs or savings, averaged across scenarios in Study 1. 
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Figure 2. Fluency by cost frame 

 

 

Notes: Figure illustrates Cronbach’s alpha of fluency measures by cost frame in Study 2.  
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Figure 3. Stated preference for cost frame 

 

Notes: Figure shows number of individuals who recommended each cost frame. N=315 
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Figure 4. Energy meter context and cost sticker 

 

 

Notes: Participants saw the above images depicting typical energy spending (left) and costs of 
energy-inefficient choice alternatives (right). Energy meters showed daily and yearly frames 
($3.75 per day, $1,370 per year). Cost labels showed daily and yearly frames ($0.11 per day, $40 
per year). 
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Figure 5. Energy efficient behavior intention cost frame and total expenditure context 

 

 

Notes: Figure shows intention to engage in the energy-efficient alternative by cost and context 
condition in Study 4. Measures of energy efficiency intentions were highest when an explicit 
context for typical energy spending was provided in a frame that matched the frame of cost of 
energy-inefficient choices. 
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Cost per day per week per month per year per trip per load per fill up

Washing laundry with hot water 
instead of cold 4.8 10.2 30.2 10.8 1.9 41.3 1.0

Using two refrigerators instead of 
one 13.3 4.1 49.8 30.5 1.6 0.3 0.3

Driving a gas-powered vehicle 
instead of an electric vehicle 3.5 11.1 25.7 14.6 10.2 0.6 34.3

Using a space heater or window air 
conditioner 19.4 6.0 56.2 16.5 0.6 0.6 0.6

Using incandescent instead of CFL 
or LED light bulbs 20.6 2.9 45.1 29.2 1.6 0.3 0.3

Going to the grocery store 3.5 31.8 26.0 4.4 33.0 0.3 1.0

My energy bill 9.2 2.5 71.4 15.2 0.6 0.6 0.3

My movie budget 3.2 7.3 44.8 23.5 20.0 0.6 0.6

Taking public transportation to work 
instead of a personal vehicle 11.8 14.3 27.3 11.1 31.8 1.6 2.2

Table 1. Stated preferences for cost frames

Notes: Cells indicate percentage of N=315 individuals who prefer each frame for the costs in each row. Percentages sum to 100% in each row. 
Darker shading indicates higher percentage.
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Appendices 

Appendix A: Sample slider measuring energy-efficient behavior intention 

 

 

 

Note: Slider was anchored at 5. Responses were reverse coded (definitely energy efficient choice 
= 10, definitely energy inefficient choice = 0). 

  

  



 
 

162 

Appendix B: Full text of scenarios used in main analysis of Study 1 

Scenario: Laundry 

Scenario description 

When doing the laundry, you can choose what water temperature your washing machine 

uses. Some people choose to use warm or hot water because they think warmer water is 

most effective for cleaning laundry. However, warm and hot water use more energy than 

cold water.  

 

Status quo manipulation 

For this scenario, suppose you often use [warm/cold] water.  

 

Status quo condition check 

This scenario asks you to assume that you currently use a certain type of water. What 

temperature is the water in this scenario?  

o warm 

o cold 

 

Suppose you often use [warm/cold] water, but you are considering whether to use 

[cold/warm] water for your laundry. 
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Cost frame manipulation 

If you always use cold water, you will save 17 cents per day on energy costs. 

If you always use cold water, you will save $5.25 per month on energy costs. 

If you always use cold water, you will save $63.00 per year on energy costs. 

If you often use warm water, you will pay 17 cents more per day for energy costs. 

If you often use warm water, you will pay $5.25 more per month for energy costs. 

If you often use warm water, you will pay $63.00 more per year for energy costs. 

 

What do you think you would do? Please answer on the following scale, where 0 means 

that you definitely would use only cold water and 10 means that you definitely would use 

warm water. 

 

Scenario: Second refrigerator 

Scenario description 

Many homes have a second fridge or freezer. They are typically used for additional food 

storage or convenience, and are typically located in a garage, basement or another room 

in the house. Suppose you own a second fridge, and are deciding what to do with it. If it's 

plugged in, you can use it to keep things cold, but you must pay for its energy costs. If it's 

not plugged in, it you can store it in the house, give it away or sell it. 
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Status quo manipulation 

For this scenario, suppose you own a second fridge and your second fridge is [plugged 

in/not plugged in]. 

 

Status quo condition check 

This scenario asks you to assume something about your fridge. In the scenario, is it 

currently plugged in? 

o Yes, it is plugged in 

o No, it is not plugged in 

 

Suppose you are considering whether to disconnect [connect] a second fridge in your 

home.  

 

Cost frame manipulation 

If you disconnect the second fridge, you will save 33 cents per day on energy costs. 

If you disconnect the second fridge, you will save $10.00 per month on energy costs. 

If you disconnect the second fridge, you will save $120.00 per year on energy costs. 

If you connect the second fridge, you will pay 33 cents more per day on energy costs. 

If you connect the second fridge, you will pay $10.00 more per month on energy costs. 
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If you connect the second fridge, you will pay $120.00 more per year on energy costs. 

 

What do you think you would do? Please answer on the following scale, where 0 means 

that you definitely would disconnect the fridge and 10 means that you definitely would 

connect the fridge. 
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Appendix C: Main analysis of Study 1 using all five scenarios 

Figure 1A shows mean behavior intention averaged across all five scenarios. In an 

ANOVA, there were main effects of status quo (F(1, 347) = 6.67, p = .0102), temporal 

frame (F(2, 347) = 8.38, p = .0003), and the interaction (F(2, 347) = 18.34, p = 0.0607). 

In the daily condition, participants preferred efficient behaviors more strongly when that 

was already their status quo, t(113) = 2.465, p = 0.015, d = 0.460. Likewise, participants 

in the yearly condition also showed statistically significant differences in their behavior 

intentions, in line with their assigned status quos, t(117) = 2.337, p = 0.0211, d = 0.429. 

However, participants assigned to the monthly frame showed no difference in behavior 

intention as a function of status quo, t(117) = 0.449, p = 0.0.654, d = .0824.  

The results from this analysis are consistent with those presented in the main 

paper. Additional scenarios include decisions about whether to shower with warmer or 

cooler water, ride the bus to work or commute using a personal vehicle, and whether to 

use a space heater or window air conditioning unit (based on each individual’s response 

to a question about which is more applicable to them). 
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Figure 1A. Energy efficient behavior intention averaged across five scenarios by status 

quo condition and cost frame 
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Appendix D: Independent measures and scale construction used in Study 1 

Cognitive reflection and numerical ability items were taken from Atlas and 

Bartels (2017), based originally on Frederick (2005) and Lipkus, Samsa, and Rimer 

(2001). Scale was constructed as the proportion of correct responses (mean = 0.40, sd = 

0.28, min = 0, max = 1). Similarly, we measured construal level using the four items in 

Atlas and Bartels (2017) originally from Vallacher and Wegner’s (1989) 24-item 

Behavioral Identification Form. Scale was constructed as the proportion of abstract 

descriptions (mean = 0.60, sd = 0.22, min = 0, max = 1). We constructed a scale about 

environmental concern using four measures. Together, these measures had a Cronbach’s 

𝛼 of 0.866 and ranged from -2.4 to 1.6 (mean = 0, sd = 0.84).  

 

Typical Energy Spending 

Approximately how much did you spend on your energy bill last month? 

o $0 

o $1-50 

o $51-100 

o $101-200 

o $201-300 

o $301-400 

o $401-500 

o $501+ 

o I don’t remember 
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Actual status quo 

Please identify how often you do the following behaviors: 

[measured on a 5-point Likert scale from Always – Never] 

o Wash my clothes using only cold water 

o Use a second refrigerator in my home 

o Shower using cooler water 

o Take a bus to work 

o Use a personal vehicle to commute to work 

o Use a window AC unit in my home 

o Use a space heater in my home 

 

Perceived discomfort or inconvenience 

How much discomfort, inconvenience, or effort would you experience following each of 

the following behaviors? 

[measured on a 4-point Likert scale from Severe – Little to none] 

o Always washing clothes in cold water (instead of using warm or hot water) 

o Removing a second refrigerator from the home 

o Always shower using cool or cold water (instead of warm or hot water) 

o Using public transportation instead of a personal vehicle 

o Removing a window AC unit from one room in my home 
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o Removing a space heater from your home 

 

Environmental concern 

Please select the option that best describes your opinion: 

[measured on a 5-point Likert scale from Strongly agree – Strongly disagree] 

o I care about the environmental impact of my energy choices 

o I frequently think about the environmental impact of my energy choices 

o I am an environmentally conscious person 

o I value how environmentally conscious I appear to others 

 

Cognitive reflection and numerical ability 

Next we will ask you a few brain teasers. Please answer the following as best you can. 

[Correct answers in parentheses.) 

o A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How 

much does the ball cost? (5 or 0.05) 

o In a lake, there is a patch of lilypads. Everyday, the patch doubles in size. If it 

takes 48 days for the patch to cover the lake, how long would it take for the patch 

to cover half the lake? (47) 

o A 21 page album contains 480 photos. Each page displays either 18 large photos 

or 24 small photos. How many pages display small photos? (17) 

o In the ACME PUBLISHING SWEEPSTAKES, the chance of winning a car is 1 
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in 1,000. What percent of tickets of ACME PUBLISHING SWEEPSTAKES win 

a car? (0.1) 

o Suppose you have a close friend who has a lump in her breast and must have a 

mammogram. Of 100 women like her, 10 of them actually have a malignant 

tumor and 90 of them do not. Of the 10 women who actually have a tumor, the 

mammogram indicates correctly that 9 of them have a tumor and indicates 

incorrectly that 1 of them does not have a tumor. Of the 90 women who do not 

have a tumor, the mammogram indicates correctly that 81 of them do not have a 

tumor and indicates incorrectly that 9 of them do have a tumor. The table below 

[omitted here] summarizes all of this information. Imagine that your friend tests 

positive (as if she had a tumor), what is the likelihood that she actually has a 

tumor? (Please enter a percent.) (50) 

 

Construal level 

[Concrete (versus abstract) items are denoted with a *.] 

Any behavior can be described in many ways. For example, one person might describe a 

behavior as “writing a paper,” while another person might describe the same behavior as 

“pushing keys on the keyboard.” Yet another person might describe it as “expressing 

thoughts.” This form focuses on your personal preferences for how a number of different 

behaviors should be described. Below you will find several behaviors listed. After each 

behavior will be two different ways in which the behavior might be identified. For 

example: 
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 1. Attending class 

  a. sitting in a chair 

  b. looking at a teacher 

Your task is to choose the option, a or b, that best describes the behavior for you. Simply 

select the option you prefer. Be sure to respond to every item. Please mark only one 

alternative for each pair. Remember, mark the description that you personally believe is 

more appropriate for each pair. 

1. Making a list 

o a. Getting organized 

o b. Writing things down* 

2. Voting 

o a. Influencing the election 

o b. Marking a ballot* 

3. Taking a test 

o a. Answering questions* 

o b. Showing one’s knowledge 

4. Eating 

o a. Getting nutrition 

o b. Chewing and swallowing* 

 

Loss aversion 
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Consider a bet based on the toss of a (fair) coin. If the coin turns up heads then you win 

$20, and if the coin turns up tails you lose $2. Would you make this bet? For each of the 

following bets, please indicate if you would make the bet: 

[individuals selected “yes” or “no”] 

o HEADS: win $20 – TAILS: lose $2 

o HEADS: win $20 – TAILS: lose $5 

o HEADS: win $20 – TAILS: lose $10 

o HEADS: win $20 – TAILS: lose $15 

o HEADS: win $20 – TAILS: lose $20 

o HEADS: win $20 – TAILS: lose $25 
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Appendix E: Full text of scenarios used in main analysis of Study 2 

 

Individuals saw one of the following scenario descriptions 

- Most people shower in temperatures ranging from 115 degrees (very hot) to 

around 65 degrees (cold). While many people find warmer showers to be more 

pleasant than cooler showers, warmer showers cost more than cooler showers. 

- Suppose you live near a bus route that is convenient for your work commute and 

you also own a car. You must decide whether to drive or take the bus to work 

every day. If you take the bud your commute will take 20-30 minutes longer. 

Driving a personal vehicle to and from work is more convenient than the bus, but 

you must pay for the additional fuel cost. 

- Most lamps and lighting fixtures are compatible with incandescent light bulbs, 

LEDs and CFL (compact fluorescent) light bulbs. Some people choose to use 

incandescent light bulbs because they prefer the color and tone of their light. 

However, incandescent light bulbs use more energy than LED and CFL light 

bulbs. 

- Many homes have an air conditioner (AC) installed in a window to keep a room 

cool during the hot months. Suppose you own a window AC unit, and are 

deciding what to do with it. If you don’t use it you can store it in the house, give it 

away, or sell it. If you use it, the air conditioner will help you keep the room cool 

during the summer, but you must pay the energy costs. 

- Many homes have a portable space heater to keep a room warm during the colder 

months. Suppose you own a portable space heater, and are deciding what to do 
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with it. If you don’t use it you can leave it unused in the house, give it away, or 

sell it. You can use it to keep the room warm during the winter, but you must pay 

the energy costs. 

 

Status quo manipulation and check 

For this scenario, suppose you currently [do the energy efficient/inefficient alternative]. 

This scenario asks you to assume that you currently [do a certain type of behavior]. What 

is [the behavior]? 

- example: For this scenario, suppose you currently use cooler water to shower. 

This scenario asks you to assume that you currently use a certain type of water. 

What temperature is the water in this scenario? 

o warmer 

o cooler 

 

Cost manipulation 

Suppose you currently [do the energy efficient/inefficient alternative]. You are 

considering switching to [do the other alternative]. If you [do the alternative] you will 

[pay/save] $x per [day/month/year] on energy costs. 

- example: Suppose you currently shower using warmer water. You are considering 

switching to take showers using 15 degrees cooler water. This would be a 

noticeable, but not painful, difference in water temperature. If you use cooler 

water, you will save 12 cents per day on energy costs. 
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Dependent measure 

What do you think you would do? Please answer on the following scale, where 0 means 

that you definitely would take cooler showers and 10 means that you definitely would 

take warmer showers. (note: reverse code) 

 

Fluency measures [7-point Likert scale from Very Difficult – Very Easy] 

- Estimating how the energy decision would financially impact me was… 

- Understanding what the energy decision meant was… 

- The description of the financial impact seemed… 

- The description of the energy decision seemed… 

 

Involvement [7-point Likert scale from Not at all involved – Very involved] 

- How involved were you in the energy decision?  

 

Concern about money [5-point Likert scale from Not at all – A lot] 

- How much do you care about saving money?  

 

Concern about environment [5-point Likert scale from Not at all – A lot] 

- How much do you care about saving the environment?  
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Appendix F: Text used in main analysis of Study 3 

 

Recommended cost frame  

Now, suppose that in your neighborhood, most of your neighbors have energy meters in 

their houses. The meters have different settings for how to display energy costs. You 

know that all of your neighbors have left the meter on its default setting, which displays 

household energy expenses in the same way as the meter below. 

[energy meter] Energy spending is [$3.75 per day/$114 per month/$1,370 per year] 

 

Write a sentence or two describing the energy meter that your neighbors see, including 

how much they typically spend on their home energy. 

[open-ended response] 

 

Suppose a neighbor is designing a flyer to tell other households in your neighborhood 

about the costs of various energy-related choices at home, similar to the yellow label you 

saw in the previous scenario. 

 

Your neighbor wants to ensure that the costs are easy to understand, and asks for your 

suggestions on the following ways to describe the costs. Please rate each description 

below. 
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[7-point Likert scale: Doesn’t make any sense at all – Makes complete sense] 

- “… costs $0.10 per day” 

- “… costs $3.10 per month” 

- “… costs $36.50 per year” 

 

Which description would you recommend that your neighbor use? [multiple choice 

selection] 

- “… costs $0.10 per day” 

- “… costs $3.10 per month” 

- “… costs $36.50 per year” 

 

Preferred frame  

Suppose you were designing a label like the yellow label you saw before. You want to 

convey the costs of various household activities and alternatives so that your neighbors 

understand the costs easily. To do this, you want to describe costs in a way that seems the 

most natural. 

 

For example, you might say that eating at a restaurant instead of buying groceries costs 

$50 more per week or $200 more per month. Or you might say that leaving the lights on 

at home all day instead of turning them off costs $1 more per day or $0.20 more per 

lamp. 
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Please select the description that you think makes the most sense for each activity below. 

There is no right or wrong answer – just select the choice that makes the most sense to 

you. 

[multiple choice; frames include cost per day, cost per week, cost per month, cost per 

year, cost per trip, cost per load, cost per fill-up] 

- My movie budget 

- Using a space heater or window air conditioner 

- Driving a gas-powered vehicle instead of an electric vehicle 

- Using incandescent light bulbs instead of LED or CFL bulbs 

- Going to the grocery store 

- Taking public transportation to work instead of driving my own car 

- My energy bill 

- Washing laundry with hot water instead of cold water 

- Using two refrigerators instead of one 
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