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ABSTRACT 
 

The goals of this study were to determine whether formic and acetic acid could be 

quantified from the Deep Convective Clouds and Chemistry Experiment (DC3) 

through post-mission calibration and analysis and to optimize a reagent gas mix with 

CH3I, CO2, and O2 that allows quantitative cluster ion formation with hydroperoxides 

and organic acids suitable for use in future field measurements. There is a scarcity of 

organic acid measurements in the upper troposphere under stormy conditions with 

which to compare and assess photochemical and transport theory. DC3 observations 

made in May and June 2012 extending from the surface to 13 km over the central 

United States during convective storm conditions would be a significant addition to 

our knowledge base. Organic acid measurements were made with a chemical 

ionization mass spectrometer (CIMS) aboard the NCAR Gulfstream-V platform in 

DC3. The primary objective of the CIMS was to observe hydrogen peroxide and 

methyl hydroperoxide though it recorded signals attributed to iodide clusters of formic 

and acetic acid at 173 and 187 townsend, respectively. Both organic acids were targets 

of opportunity as the reagent ion (I
-
) needed for clustering was not specifically used in 

the field. However an iodide source gas (iodomethane, CH3I), was used during pre-

mission experiments and a residual amount adsorbed onto the inlet surfaces was found 

to be bleeding off the plumbing in the field.  Post-mission laboratory experiments 

were performed to determine the CIMS instrument’s sensitivity to these organic acids 

under iodomethane outgassing and the varying water vapor and sample flow 

conditions encountered during DC3 flights. Laboratory calibration experiments with 

varying iodomethane concentrations, inlet pressures, and water vapor mixing ratios 



 

 

were performed.  Calibrations for hydrogen peroxide and methyl hydroperoxide were 

used to tune the reagent gas mixture composed of CH3I, CO2, and O2 to best match the 

observed sensitivities for hydrogen peroxide and methyl hydroperoxide in DC3.  

Formic and acetic calibration functions were fit to the water vapor and sample flow 

results.  Formic acid displays both a water vapor and inlet pressure dependence, 

whereas, acetic acid sensitivity was found to be independent of water vapor and inlet 

pressure within the range of conditions encountered in DC3 and the laboratory. These 

laboratory calibrations were further evaluated by comparison to in-flight calibrations 

from the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) to 

confirm the reliability of the fits and laboratory methodology. The laboratory and field 

calibration work showed very good correspondence for hydrogen peroxide, methyl 

hydroperoxide, and acetic acid.  However, the apparent formic acid sensitivity fits 

gave a factor of two greater sensitivity than observed in the FRAPPE formic acid field 

calibrations.  Further comparison to ground and prior airborne measurements suggest 

the calibration problem lies in the FRAPPE field calibration and the laboratory work 

was valid for formic acid as it was for DC3 and FRAPPE peroxides and FRAPPE 

acetic acid.  Subsequently, the laboratory calibration fits were applied to quantify DC3 

formic and acetic acid.  A DC3 research flight (RF 03) case study is presented to 

illustrate formic and acetic acid behavior when air from a high biogenic source region 

with identifiable convective storm outflow was sampled. 
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1. INTRODUCTION 
 

 Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic 

sources. A representation of the biogeochemical cycle of HFo and HAc is shown in 

Figure 1 and some of the major sources are discussed here. Primary emissions for both 

include biomass burning, biogenic sources, and motor vehicles (Khare et al. 1999; 

Paulot et al. 2011). Secondary production is a significant source for both acids 

especially from biogenic precursors, secondary organic aerosols, and photochemical 

production from volatile organic compounds (VOCs) and oxygenated volatile organic 

compounds (OVOCs)  (Khare et al. 1999; Paulot et al. 2011).   For example, an 

indirect VOC source of HFo is the ozonolysis of isoprene which is released naturally 

by vegetation (Khare et al. 1999).  Models, laboratory work, and field measurements 

agree that the ozonolysis of isoprene is a significant source of HFo (Khare et al. 1999). 

The oxidation of other biogenic compounds will also release both acids. 

Unfortunately, a great deal of uncertainty remains concerning the yield and 

mechanisms of these in situ chemical reactions although the critical component is the 

source strength and fate of the Criegee biradical from alkene ozonolysis 

RC=CH2+ O3 →RCHO+HCOO
- 

(Millet et al. 2015).   

Biomass burning provides an important primary and secondary source of both 

acids to the atmosphere. HAc has a larger direct source from biomass burning than 

HFo (Paulot et al. 2011). Most HFo and HAc produced in biomass plumes occur via 

secondary production from VOC precursors. Both organic acids have been measured 

as primary emissions in motor vehicular exhaust with greater HAc relative to HFo 
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(Kawamura, Ng, and Kaplan 1985). It is hypothesized that both organic acids are 

released as a result of incomplete combustion which is supported by the high organic 

acid concentration measured in used oil (Kawamura, Ng, and Kaplan 1985). 

Secondary organic aerosols are another potential source for HFo and HAc, 

though this is a poorly quantified production pathway. The role of organic acids in 

secondary organic aerosol (SOA) aging has become more widely recognized and 

studied in the last ten years. SOAs are formed by the chemical transformation of 

atmospheric organic compounds through oxidation of gas-phase species (Fuzzi and 

Andreae 2006). Photochemical aging alters the physical and chemical properties of 

aerosols in the atmosphere (Fuzzi and Andreae 2006). Field studies (INTEX-B and 

ARCPAC 2008) generated data that support a positive correlation between HFo and 

HAc production and organic aerosol aging in the atmosphere. It is hypothesized that 

SOA aging releases both acids into the atmosphere. Current models underestimate the 

level of HFo and HAc especially when there are no large biogenic or anthropogenic 

sources nearby (Paulot et al. 2011). For example, HFo and HAc measured in Asian air 

masses sampled during INTEX-B were expected to have lower concentrations due to 

scavenging; however, both acids were present at high concentrations which indicates 

that there must have been a secondary source for both acids (Paulot et al. 2011; 

Dunlea et al. 2009). SOA production of these acids could account for the gap between 

modeled and observed concentrations. Paulot et al. (2011) remark that there is a 

positive correlation between the concentration of HFo and the level of aerosols 

present. These data help support the hypothesis that organic acids are released or co-

formed during the aerosol formation and aging process.  Similar evidence was 
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collected during ARCPAC 2008, which showed the relationship between HAc and 

black carbon along with aerosol organic content. This work indicated a potential 

missing precursor for HFo and HAc coupled with biomass burning (Paulot et al. 

2011). Until the recent advancement in measurement technology, it was difficult to 

measure these aging processes due to the short time scale over which they occur. 

Current atmospheric models cannot explain the magnitude and evolution of 

atmospheric SOAs. Paulot et al.’s (2011) comparison of model and field 

measurements found that models may be underestimating the concentrations of both 

organic acids by up to 50%. More accurate measurements of HFo and HAc in the 

atmosphere would contribute to our understanding of SOA aging processes and 

improve atmospheric models. 

HFo and HAc have the potential to be used as convective transport tracers. The 

water solubility for both acids is dependent on the pH due to dissociation. Below pH 4, 

HAc is more soluble than HFo (Pandis and Seinfield 2006). Above pH 4, HFo is more 

soluble because it has a more efficient dissociation  (Pandis and Seinfield 2006). Barth 

et al. (2007) modeled various mid-latitude storms for peroxides and HFo.  Hydrogen 

peroxide (HP) and methyl hydroperoxide (MHP) are used as deep convective transport 

tracers (Barth et al. 2007; Snow et al. 2007).  HP has a higher Henry’s Law constant 

(H = Caq/P) than MHP (O'Sullivan et al., 1996); therefore, HP will be removed in a 

storm cloud preferentially via wet deposition. Very little MHP was scavenged in Barth 

et al.’s (2007) modeled storms: about 7%. Barth et al. (2007) found that HFo in 

modeled convective outflow was small when assuming the initial aqueous and gas-

phase concentrations were zero. However, the amount of HFo present depends on the 
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storm type (affecting aqueous phase HFo production) and cloud and rainwater pH 

(Barth et al. 2007). The majority of HFo formed in clouds is in the aqueous phase. 

Barth et al. (2007) determined that it may be possible to use HFo to detect cloud-

processed air though it is highly dependent on cloud conditions and the initial 

concentration of HFo. Unfortunately, there is minimal observational literature using 

HFo and HAc as deep convective system transport tracers.  

Measurements reported here were obtained using a newer analytical technique 

for atmospheric measurements known as chemical ionization mass spectrometry 

(CIMS). The major advantages of using CIMS are the rapid response time and 

increased sensitivity (Crounse et al. 2006; Messer et al. 2000). CIMS directly 

measures chemical species of interest based upon the molecule’s mass-to-charge ratio 

(m/z) and can rapidly monitor and alternate between several mass-to-charge ratios. A 

faster sampling rate makes it possible to detect reactions on the storm scale (10s to 

100s of meters). The CIMS individual m/z sampling rate is about 0.1 s
-1

 but it takes 

about 1 s to sample all selected m/z values. These rates correspond to distances of 0.02 

- 0.2 km for an aircraft traveling at 200 m/s, such as the G-V used in DC3, and the 

horizontal scale of a deep convective storm is on the order of 10 km. While CIMS 

instruments have been used to measure many trace atmospheric species, there have 

been limited measurements of peroxides and organic acids. 

A recent example of airborne measurements for HFo using CIMS was 

performed by Le Breton et al. (2012). They reported one flight day worth of data and 

measured HFo mixing ratios between 34.4 pptv and 358 pptv with an average of 142.4 

pptv (Le Breton et al. 2012). This was an informative study because they were able to 
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distinguish three different urban plumes with elevated levels of HFo.  This work 

highlights the ability of CIMS to perform rapid, sensitive measurements in-flight. This 

thesis expands Le Breton’s iodide reagent chemistry work to both HFo and HAc. 

HP and MHP were target species of interest measured using CIMS during the 

Deep Convective Clouds and Chemistry (DC3) campaign in 2012. DC3 focused on 

studying atmospheric chemistry and transport under deep convective storm conditions 

in the central and eastern United States. Prior to the DC3 mission, an initial mixture of 

CH3I in nitrogen (unknown mixing ratio) was used in the peroxide CIMS instrument. 

This reagent mixture did not produce an ion for the measurement of MHP and was 

discontinued before DC3.   A second mixture composed of CO2 in pure air and 

blended with pure nitrogen was tested.  This reagent mix yielded ion signals for HP 

and MHP clusters with CO2•O2
-
 and O2

-
, respectively. At the start of DC3, it was 

observed that ambient air samples gave significant signals at the ion cluster masses 

corresponding to 173 (I
-
•HCOOH) and 187 (I

-
•CH3COOH) townsend. It was 

discovered that residual CH3I was bleeding off the reagent gas plumbing and acting as 

a dilute source of I
-
.  Normal reagent CH3I gas concentrations used in CIMS are 

sufficient to suppress O2
-
 ion chemistry.  Fortuitously, the residual CH3I was suitable 

to allow O2
-
, CO2•O2

-
 and potentially I

-
 ion chemistries to be used simultaneously.  

Therefore, iodide cluster masses for I
-
, I

-
•H2O, I

-
•H2

18
O, I

-
•H2O2, I

-
•HCOOH, and I

-

•CH3COOH were monitored during DC3. The expectation was post-mission 

laboratory calibrations could be developed permitting quantification of the organic 

acid mixing ratios.  The goal of this work was two-fold: determine HFo and HAc 

sensitivities encountered during DC3 and optimize a reagent gas mix with CH3I, CO2, 
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and O2 that allows the clustering of both peroxides and both organic acids to be used 

in future field measurements.  

2. METHODS 
 

2.1 Instrumental Configuration  

 

Continuous gas analysis was performed using a chemical ionization mass 

spectrometer (THS Instruments, Inc., Atlanta, GA). The chemical ionization mass 

spectrometer (CIMS) is adapted for peroxides and organic acids and is used in a 

negative ion mode.  This thesis focuses on HFo and HAc, which form cluster ions with 

the iodide reagent ion, I
-
, at 173 (I

-
•HCOOH) and 187 (I

-
•CH3COOH) townsend, 

respectively. The CIMS normally operates in a “hop” mode, whereby specific mass-

to-charge ratios are sampled sequentially.  The sample and analytical system is 

depicted schematically in Figure 2.   Critical system elements include: gas delivery 

inlet with calibration system, the CIMS, exhaust lines, and a data acquisition and 

control system.  The CIMS is further composed of an ion generation and reaction 

system, ion selection (declustering ion guide and quadrupole), multi- ion counting 

detector, controlling electronics, and vacuum pump system.  

Ambient, or sample, air enters the CIMS system through a PFA Teflon inlet. In 

the laboratory, synthetic air mixtures are delivered to the inlet.  In airborne field work, 

the inlet is external to the fuselage and aerodynamically designed to minimize the 

collection, volatilization, and subsequent analysis of large aerosol and droplet 

material. The inlet is heated to minimize artifacts by the adsorption of the target gases 

onto the inlet walls. Calibrations are performed by standard addition to the sample air 

stream.  The calibration gas flows continuously and a “draw-back” design is employed 
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to modulate between sample air and sample air with calibration gas added.  In the 

“draw-back” mode a 2-way valve is opened and a pump, regulated by a mass flow 

controller (MFC), pulls the calibration gas flow and a small excess flow of sample air 

to waste.  In this configuration sample air without standard is measured.  When the 

valve is closed, the “draw-back” is off and calibration gas is added to the sample air 

stream. A detailed discussion of the different calibration set-ups is given in Section 

2.3.  Analytical blanks are determined by passing the sample air stream, with or 

without calibration gas, through an organic acid trap.  A three-way solenoid valve is 

used to select between the sample air stream or sample air after passing through the 

trap. A description of the different traps tested is in Section 2.4. Last the inlet flow is 

split with a portion being pumped to waste and the remainder is introduced to the 

CIMS system.  The excess sent to waste is used to increase the sample volume relative 

to the plumbing surface area which minimizes instrumental material effects on the 

sample.   

In the CIMS, the sample air passes through a series of chambers to form, 

select, and quantify the organic acid ion clusters.  The first chamber is the ion-sample 

reaction cell, RXN in Figure 2.  In the reaction cell, the sample air is mixed with a 

reagent ion stream (discussed fully in Section 2.5) of which the bulk is pure nitrogen 

and controlled by MFCs. The reagent gas passes through a commercial electrostatic 

eliminator (NRD, Inc., Grand Island, NY) which contains 20 mCi of 
210

Po, an alpha 

emitter, and thus develops the requisite reagent ion stream.  Sample air is introduced 

into the reaction cell through a critical orifice.  The sample-reagent ion stream is 

pumped out of the RXN cell through a second critical orifice into the collisional 
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dissociation chamber, CDC in Figure 2, which breaks apart weak ion clusters in order 

to lower background signal counts. The remaining ion clusters are mass filtered and 

counted by a quadrupole mass spectrometer and multi-channel ion detector. 

In this work both the sample-in and exit critical orifices were of fixed 

diameter.  The gas volume flow rate across an orifice depends upon the area of the 

orifice and the pressure differential across the orifice.  Upstream of the inlet orifice the 

pressure is at ambient level.  Downstream of the outlet orifice the pressure is 

effectively zero.  The manufacturer (THS Instruments, Inc., Atlanta, GA.) optimized 

the CIMS orifice areas to have a reaction cell pressure of 22 hPa given the vacuum 

pump system.  This provides the maximum yield of cluster ions and peak sensitivity 

and was not further evaluated.  Reaction cell pressure is measured and actively 

controlled at 22 hPa by manipulating the pure nitrogen flow rate of the reagent stream.  

For groundwork with relatively constant ambient pressure in the inlet, the reagent 

nitrogen and the sample flow rates are effectively constant and nominally 2.0 and 2.8 

slpm (standard liters per minute at T = 273.15 K and P = 1013.25 hPa), respectively.  

However in airborne operations, the inlet pressure decreases with altitude as does the 

sample flow rate into the RXN chamber, and it is necessary to increase the reagent 

nitrogen flow rate to maintain a constant pressure within the CIMS flow sections.  The 

effect of sample inlet pressure or sample flow rate on instrument response was 

examined in the laboratory (Section 2.2).  For future airborne work, the sample fixed 

size critical orifice will be replaced by a variable size orifice which will maintain 

constant sample and reagent gas flow rates. 
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2.2 Laboratory Set-up  

 

In the laboratory different field conditions are simulated by varying the water 

vapor and/or the inlet pressure of the sample air stream as depicted in Figure 3. A zero 

air generator (Aadco Instruments Inc., Cleves, OH) supplies the sample air stream to 

prevent the addition of organics and excess water into the system. This air stream is 

split between dry and humidified lines. The dry line comes directly from the Aadco.  

The water concentration in the humidified line is controlled with two gas washing 

bottles and a gas-water equilibration coil immersed in a water bath kept routinely at 

288 K (Figure 4). By changing the ratio of air flow through the dry and humidified 

lines, it is possible to alter the overall water vapor in the air stream entering the CIMS. 

Most laboratory work was done with the coil water bath at 288 K which gives a 

maximum reaction cell water vapor mixing ratio of 4500 ppm. Normal room 

temperature is controlled at 293 K.  Higher humidity work was performed to expand 

the reaction cell water vapor mixing ratio range to 7800 ppm for comparison to 

literature data (Lee et al. 2014; Baasandorj et al. 2014).  The temperature in the coil 

water bath was raised to 298 K and the laboratory room temperature was increased to 

303 K to prevent the water vapor from condensing on the tube walls (Thanks to Dallas 

Hazard). 

 The inlet pressure is controlled after the humidification with a needle valve (P, 

Figure 3) and a pressure transducer.  The needle valve is able to approximate the 

atmospheric altitude conditions (sea level to 14 km, approximately 120 hPa) 

experienced in the field. The sample flow rate changes as a function of altitude 

(ambient pressure) which will impact the signal response and sensitivity.  
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2.3 Calibration Configuration  

 

The HFo and HAc standards (HCOOH, > 95% and CH3COOH, 99.9%, 

respectively) were obtained from Sigma-Aldrich. There is a <1% HAc impurity in the 

HFo standard and 2.0-2.5% water for stabilization. Laboratory prepared microfluidic 

and coil aqueous standards were not standardized against a primary reference material. 

In FRAPPE microfluidic aqueous standards were verified by titration against sodium 

hydroxide (Santa Monica College 2014).  The percent errors between the theoretical 

and titrated concentrations for FRAPPE were 1.00% and 1.51% for HFo and HAc, 

respectively.  The sensitivities are reported with three significant figures (Table 2) for 

all work as a result of this small error. The FRAPPE aqueous standards were titrated 

post-mission (2 months later) as well. The standard solutions did not decay 

substantially with time. There was a 1.91% and 3.67% percent decrease in 

concentration by the end of the campaign for both HFo and HAc.  

Calibrations were performed with coil or microfluidic injection. The laboratory 

coil calibration system (Figure 5a) allowed the organic acids to be added in the sample 

air stream prior to entering the CIMS. Zero air (200 or 400 sccm) was passed through 

a glass coil in a water bath (nominally 288 K) along with the liquid organic acid 

standard. HFo (0.3 mM) and HAc (0.9 mM), were acidified (0.02 N H2SO4) to keep 

each acid in its protonated form and thereby ensure partitioning into the gas phase 

according to each acid’s Henry’s Law constant. The calibration gas was added to the 

sample air stream after humidification. The higher humidity work was done with the 

coil calibration system; therefore, the calibration coil temperature was increased to 

298 K. The Johnson et al. (1996) temperature dependent Henry’s Law constants were 
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chosen because they provided the closest relationship between the microfluidic and 

coil work. The Henry’s Law constants for HFo are 17.87 and 8.79 M/hPa at 288 and 

298 K, respectively (Johnson, Betterton, and Craig 1996). The Henry’s Law constants 

for HAc are 8.43 and 4.05 M/hPa at 288 and 298 K, respectively (Johnson, Betterton, 

and Craig 1996).  

Two versions of the microfluidic system were used to inject the liquid standard 

into the CIMS via nitrogen gas line. For the first set-up (Figure 5b) the standard, an 

aqueous HFo and HAc mixture (1 mM each), contained in a Hamilton glass syringe 

was injected using a single syringe pump (1 x 10
-6

 L/min aqueous flow rate, KD 

Scientific Inc., Holliston, MA). The liquid standard was vaporized in a heating block 

(328 K) into a gaseous N2 stream (0.4 slpm). The disadvantage of this system is that it 

can only calibrate for peroxides or organic acids. In DC3, a single syringe was used 

and the priority measurements were the peroxides.  After DC3, a second system 

(Figure 5c) was set up which allows for calibration of peroxides and organic acids.  

Both peroxide and organic acid standards are evaporated into a N2 gas stream (0.4 

slpm) via mixing-Ts and equilibrated in a mixing jar. This system uses two syringes; 

therefore, the flow rate is halved (500 x 10
-9

 L/min) and the aqueous concentrations of 

the organic acids are doubled (2 mM) to prevent water saturation of the N2 gas while 

maintaining a similar reaction cell sensitivity factor (Section 2.8). Both microfluidic 

standard addition systems can be contained within the CIMS instrument rack. In-flight 

calibrations were done as part of the FRAPPE program (Section 2.7) in the summer of 

2014 with the second microfluidic set-up.  These standard additions along with 

laboratory calibrations are used to reduce organic acid data for DC3.  
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2.4 Blank Configuration  

 

The laboratory blank work used either a Carulite-200® trap or Aadco zero air.  

Carulite-200® (Carus Corporation, Peru, IL), a magnesium dioxide/ copper oxide 

catalyst, is an effective ozone and peroxide destruction catalyst.  It further proved to 

be effective in removing but not destroying the organic acids as well. Unfortunately at 

low organic acid concentrations there can be a positive trap response due to outgassing 

from the Carulite-200®.  For some laboratory experiments Aadco air was used to 

represent the blank as it is free of organic acids.  

During FRAPPE (Section 2.7) three different traps were tested for organic 

acids: Cu/NaHCO3, Na2CO3, and NaOH. The Cu/NaHCO3 trap scrubbed the organic 

acids and HP but generated a positive trap response at 80 townsend which is 

monitored for MHP. It is possible that the trap was releasing ozone (O3∙O2) or a MHP 

hydrocarbon precursor which is also at 80 townsend. The Carulite 200® trap was 

added after the Cu/NaHCO3 trap which successfully eliminated the positive trap 

response at 80 townsend. While this trap configuration removed both peroxides and 

organic acids the HAc equilibration time was too long for inflight blanks. The HAc 

blank did not level out over the 90 second blank. The NaOH (5%) trap only removed 

organic acids. Running the air sample through the Carulite 200® and then the NaOH 

trap removed both peroxides and organic acids with limited outgassing. The blank 

equilibration time (30-45 seconds) was much shorter than with the Carulite 200® and 

Cu/NaHCO3 trap. The Na2CO3 trap is a mixture of  sodium carbonate (5 g), glycerol 

(5 g), water (250 mL), and methanol (250 mL) based on the EPA SOP (EPA 2009). 

This trap was tested with and without the NaOH trap. Unfortunately, there was an 
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outgassing of compounds which interfered at the masses used to measure HAc and 

HP; possibly from contaminants in the glycerol or methanol used to prepare the trap or 

from in situ chemical reactions leading to HAc and/or HP production on the Na2CO3 

trap. One example is 

CH3OOH + CH3CO  CH3C(O)OH + CH3O
• 

which could lead to the formation of HAc in the trap (Hermans, Jacobs, and Peeters 

2007). It is also possible that an isomer was formed such as glycolaldehyde which has 

the same molecular weight as HAc. 

2.5 Reagent Gas 

 

The iodomethane (CH3I) reagent gas laboratory calibrations were performed 

using two different mixing ratios of CH3I in N2.  The initial iodomethane mixture 

(0.33% in N2) was prepared similarly to Le Breton et al.’s work (2012) with the 

exception water vapor was not added.  The dynamic range of the iodomethane MFC 

was insufficient to reduce the iodomethane concentration of the “Le Breton” mixture 

enough to represent DC3 as O2
-
 ion signals were too small.  The 0.33% iodomethane 

mixture was then serially diluted twice with N2 gas – first to 0.025% and then to 5 

ppm.  The latter dilution was used with a MFC to prepare custom reagent gas blends 

of CH3I, CO2, O2, and N2 sufficient to yield responses for both I
-
 and O2

-
 cluster ions 

which overlapped those observed in DC3.  A mixing cross was used to blend the CO2 

in air (400 ppm), the CH3I in N2 (5 ppm), and the pure N2 reagent gases (Table 1). 

Each gas flow was controlled via MFCs.  

Calibrations at the different inlet pressures and specific humidities were 

performed.  The CO2 in air mass flow rate was held constant at 0.080 slpm.  The 5 
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ppm CH3I mixture was added at 5 different flow rates ranging from 0.0005 to 0.0025 

slpm in 0.0005 slpm increments. Table 1 lists the CH3I, CO2, and O2 mixing ratios in 

N2 of the reagent gas blend as a function of CH3I mass flow rate and inlet pressure 

(recall N2 flow varies with inlet pressure to maintain a constant reaction cell pressure). 

This made it possible to explore how changing CH3I will impact the signal response of 

both peroxides and both organic acids. During the variable CH3I experiments, blanks 

were performed using the Aadco system. For each inlet pressure (120, 180, 360, 600, 

and 1013 hPa), the different CH3I flow rates were all performed in one day to avoid 

daily instrumental variance.  

2.6. Deep Convective Clouds and Chemistry Experiment  

 

The Deep Convective Clouds and Chemistry (DC3) field campaign was 

conducted in the central United States from May 18 to June 30, 2012 and took 

advantage of semi-permanent research weather radars in Colorado, Texas/Oklahoma, 

and Alabama. Details regarding the DC3 science objectives and plan are available at 

UCAR EOL (http://www.eol.ucar.edu/field_projects/dc3) and the data archive is 

available at UCAR EOL (http://data.eol.ucar.edu/master_list/?project=DC3). The 

CIMS was onboard the NCAR Gulfstream-V (GV) which flew 22 research flights. 

Our primary chemical species of interest in the field were HP and MHP; however, raw 

data are available for HFo and HAc as well.  A total of three aircraft participated in the 

campaign: the German Aerospace Center (DLR) Falcon, the NASA DC-8, and the 

GV.  Ancillary chemical and meteorological date are used to interpret the HFo and 

HAc measurements from the GV.   
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The reagent gas during DC3 was CO2 (400 ppm, 0.080 slpm) in ultrapure air 

blended with pure N2. The CO2•O2 reagent gas optimized the HP and MHP signal 

response (O’Sullivan, personal communication, January 2012).  Procedural blanks 

were obtained using a Carulite 200® trap. HP and MHP calibrations were performed 

using the single syringe microfluidic system described in Section 2.3.  The solution 

standards were 5.7 mM for HP and 4.8 mM for MHP and the syringe flow rate was 1 x 

10
-6

 L/min.   

2.7 Front Range Air Pollution and Photochemistry Experiment  

 

 The Front Range Air Pollution and Photochemistry Experiment (FRAPPE) 

consisted of 15 research flights over the northern Colorado Front Range from July 17 

to August 18, 2014. The CIMS was flown on the NCAR C-130 as part of a multi-

platform campaign. Details regarding the FRAPPE science objectives and plan are 

available at UCAR EOL (https://www.eol.ucar.edu/field_projects/frappe) and the data 

archive is available at NASA Data Archive (https://www-air.larc.nasa.gov/cgi-

bin/ArcView/discover-aq.co-2014?C130=1).  FRAPPE was the first campaign using 

the two-syringe microfluidic calibration system and three-mixture blended reagent ion 

scheme. The CO2 (400 ppm, 0.080 slpm) in ultrapure air was mixed with CH3I (5 ppm 

in N2, 0.0005 slpm) into the N2 stream.  The peroxide calibrations were performed 

with a mixed standard of HP (15.9 mM), MHP (14.9 mM), and isotopically labeled 

MHP (CD3OOH, 14.9 mM). The organic acid calibrations were performed with a 

mixed HFo (5.88 mM) and HAc (5.88 mM) standard. The syringe flow rates were 

each 325 x 10
-9

 L /min.  Three different trap sets were used during FRAPPE to 

determine procedural blanks (see Section 2.4). RF01 through RF05 and RF07 used 
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only the Carulite 200® trap. RF06 used the Carulite 200® and NaHCO3 trap in series. 

RF08 through RF 15 used the Carulite 200® and NaOH traps in series.  The latter 

provide the best combination of peroxide and organic acid blanks. 

2.8 Data Analysis  

 

 The organic acid reaction cell mixing ratios (sensitivity factors) were 

calculated for both the peroxides and organic acids.  The reaction cell pressure was 

kept constant at 22 hPa. The cell temperature was between 298 and 308 K as randomly 

checked during flight and in the laboratory. These mixing ratios or concentrations are 

directly proportional and mixing ratio was simply used as the analyte measure of 

choice.  For standard addition using the coil equilibration sources, the reaction cell 

mixing ratio is given by: 

 Xcoil rxncell = (
C

H⁄

P1013

) * (
Fc

FAadco

) * (
Fsample

FCIMS

) (1) 

where C is the aqueous concentration of the standard in the coil (molar, M), H is the 

Henry’s Law constant (M / hPa), P1013 is the coil reference pressure (1013 hPa), Fc is 

the mass flow rate of air through the coil (slpm), FAadco is the total flow (slpm) through 

the inlet prior to the inlet pressure valve, Fsample is the mass flow rate across the 

reaction cell critical orifice (slpm), and FCIMS is the mass flow rate across the reaction 

cell outlet critical orifice (4.68 slpm).  Fsample is calculated by difference by subtracting 

the reagent gas and N2 mass flow rates from FCIMS.  

Alternatively when using the microfluidic addition system, the standard gas 

mixing ratio in the reaction cell is calculated by:   
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  Xsyr rxncell =  
Fstd * c * Fsyr * 

22.4
𝐹𝑠𝑡𝑑

 * Fsample

Fexcess + Fsample

FCIMS⁄  (2) 

where c is the aqueous concentration of the standard within the syringe (M), Fsyr is the 

syringe aqueous flow rate (L min
-1

), 22.4 (L mole
-1

) is a conversion factor for standard 

liters of gas per mole of substance at STP (273.15 K and 1013.25 hPa),  Fstd is the 

mass flow rate of the standard carrier gas, Fexcess is the inlet excess (slpm) removed 

from the CIMS to increase the sample size (Section 2.1), and FCIMS and Fsample are the 

same as above. 

The peroxide and organic acid sensitivity factors are impacted by the inlet 

pressure because changing the pressure affects the sample flow (Fsample), the inlet 

excess flow (Fexcess), and the reagent N2 flow (FN2). As ambient pressure decreases the 

sample and excess flow rates decrease and FN2 increases.  

Table 2 shows the calculated sensitivity factors used for both organic acids 

with respect to the inlet pressure for the three calibration systems: coil, one-syringe, 

and two-syringe. As discussed above, only the FRAPPE aqueous standards were 

standardized against a primary reference material. There is a small percent error so it 

is assumed that both laboratory and FRAPPE standards are accurate to three 

significant figures.  

The water vapor mixing ratio in the reaction cell is used to develop sensitivity 

factors as a function of specific humidity.  It was calculated assuming water 

equilibration in the humidified line at the set point temperature of the coil water bath 

(normally 288 K and occasionally 298 K; see above):  
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 Xwater rxncell= (
Psat,288K

P1013

) * (
FH2O

FAadco

) * (
Fsample

FCIMS

) (3) 

where Psat (hPa)  is the water saturation pressure at 288 K (or 298 K), FH2O is the air 

flow rate (slpm) through the humidified line and P1013, FAadco, Fsample, and FCIMS are the 

same as above.  

All of the sensitivities (cts/ppb) reported here are corrected for the aging of the 

ion source. Polonium-210 has a half-life of 138 days and as the ion source decays 

there is a decrease in signal response. The signal response needs to be corrected so that 

experiments from different points in time can be compared regardless of the age of the 

ion source. This correction treats the signal response as measured with a new ion 

source. In the field, new ion sources are used because of licensing and shipping 

constraints.  In the laboratory, the polonium source is replaced annually because of 

decrease in activity and licensing agreements. The correction factor is the fraction of 

the actual signal response (N) to the signal response from a new ion source (N0) in the 

radioactive decay equation (N/N0 = exp(-tλ)). The correction factor was applied to the 

experiments if the ion source had decayed at least 25%  

All organic acid data reported here are for the HFo and HAc iodide clusters at 

173 (I
-
•HCOOH) and 187 (I

-
•CH3COOH) townsend, respectively.  Any laboratory 

sensitivities (cts/ppb) reported are blank subtracted. 

3. RESULTS 
  

The following results establish the calibration process used to quantify the DC3 

organic acids. The coil and one-syringe microfluidic work was with the “Le Breton” 

iodomethane regent gas mixture (Section 3.1). After previous work with HP and MHP 
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found that sensitivity is water and pressure dependent, organic acid work with the Le 

Breton mixture was used to check the published method. There was a pressure 

dependency for both organic acids for the one-syringe calibration system though it 

was not the same relationship as with the diluted Le Breton mixture. The diluted Le 

Breton iodomethane mixture (Section 3.2) was prepared because the original mixture 

was too concentrated to accurately tune to DC3. The water and pressure dependencies 

were explored in greater detail for this diluted mixture and laboratory fits were derived 

for both organic acids (Section 3.3). HFo was fit as a function of water and pressure 

and HAc was fit with a constant value. The laboratory calibration technique (of 

altering water vapor and inlet pressure) was verified by comparing laboratory and 

FRAPPE sensitivities (Section 3.4). HFo laboratory calibrations were a factor of two 

greater than FRAPPE. HAc had good agreement between laboratory and FRAPPE as 

did the HP and MHP oxygen clusters though they are not reported here. The diluted 

Le Breton mixture was assessed at five different flow rates to find a balance between I
-
 

and O2
-
 ion clusters. Different iodomethane flow rates were also tested to find the most 

appropriate iodomethane mixing ratio for DC3.  Laboratory calibrations for the HP 

iodide cluster were compared to DC3 HP calibrations (Section 3.5) to determine the 

appropriate iodide flow rate. Finally, the study regions for DC3 are described and 

vertical profiles for both organic acids in each region are presented (Section 3.6).  

3.1 Le Breton Mixture  

 

The laboratory calibration sensitivities for the coil (open circles) and a one-

syringe microfluidic standard addition system (dots) were compared as a function of 

reaction cell water vapor for HFo and HAc. The results are shown in Figures 6 and 7, 
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respectively. In this comparison, the 0.33% iodomethane reagent gas mixture (the “Le 

Breton” mixture) was used.  The organic acid sensitivities at five different inlet 

pressures were determined (120, 180, 360, 600, and 1013 hPa) and these are identified 

in Figures 6 and 7 as well. Only experiments at the two highest pressures (600 and 

1013 hPa) were conducted using the coil calibration system.  The laboratory coil 

sensitivities are a factor of two to three greater than the microfluidic sensitivities for 

HFo and comparable for HAc using the Johnson et al. (1996) Henry’s Law constants. 

The error bars represent one standard deviations and the calculations are described in 

Appendix A. There is a pressure dependency for both organic acids. The highest 

sensitivity for both acids was at the lower inlet pressures (120, 180, and 360 hPa). The 

pressure dependency is greater for HAc. Since this iodomethane mixing ratio was not 

used for field calibrations this pressure dependency was not explored further. Both the 

coil and microfluidic HFo sensitivities increase as the water mixing ratio increases. 

The microfluidic HAc measurements show no trend with water in the sampled range 

identifiable outside of the daily signal noise. The coil HAc measurements decrease 

above a water mixing ratio of 2000 ppm. 

A wide range of Henry’s Law constants ranging from 5.43 to 13.2 M/hPa and 

5.43 to 9.18 M/hPa have been reported for HFo and HAc at 298.15 K, respectively 

(Sander 1999).  The coil and microfluidic laboratory calibration systems compare the 

best with the Johnson et al. (1996) Henry’s Law constants. Laboratory derived 

Henry’s Law constants were calculated as well (Table 3). The laboratory calculated 

Henry’s Law constants for HAc are similar to the Johnson et al. (1996) values. This 

indicates that Johnson et al. (1996) accurately quantified the HAc gas-phase 
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partitioning. The laboratory calculated Henry’s Law constants for HFo are lower than 

the Johnson et al. (1996) values. The difference in Henry’s Law constants could be 

due to a higher gas-phase partitioning through the coil system than measured by 

Johnson et al. (1996).  Therefore, the HFo mixing ratio in the reaction cell is greater 

than expected which results in an overestimation of the sensitivity of the CIMS 

towards HFo. This overestimation explains the difference between the coil and 

microfluidic system.  

For both the coil and one-syringe microfluidic calibration systems, there is an 

overall increase in HFo sensitivity throughout the water vapor range examined.  At the 

higher water mixing ratios the HFo sensitivity begins to plateau. The lower pressure 

work has a linear relationship because only low water vapor mixing ratios are 

possible. The HAc water vapor dependence is insignificant and within the daily 

variance for the various pressure runs. The HAc coil sensitivity decreases above a 

water mixing ratio of 2000 ppm. For the purpose of this work, the HAc and water 

relationship with the Le Breton iodomethane mixture is treated as negligible.  

3.2 Diluted Le Breton Mixture  

 

Peroxides and organic acids were calibrated together with the two-syringe 

microfluidic calibration set-up described in Section 2.3. Five different iodomethane 

flow rates (0.0005 to 0.0025 slpm) were assessed with the second iodomethane 

mixture (5 ppm in N2) for the blended CH3I and CO2•O2
-
 reagent gas. The CIMS 

precision and accuracy were calculated using laboratory work at the 0.0005 slpm 

iodide flow rate because this was used for FRAPPE and DC3. The HFo and HAc 

precision (1 standard deviation of the blank signal response) are 15.4 and 15.0 ppt, 
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respectively. It is outside of the scope of this work to determine inflight precision.  

The instrumental accuracy was estimated using calibration precision and is 23.3% and 

25.0% accurate for HFo and HAc, respectively.  

 The amount of iodide present in the CIMS was monitored with the iodide and 

water cluster (I
-
•H2

18
O) at 147 townsend (Figure 8). This cluster provided a quick 

response as the water and iodomethane were altered. The HFo and HAc sensitivities as 

a function of the reaction cell water mixing ratio along with the standard deviations 

are in Figures 9 and 10, respectively. The same inlet pressure work as above was 

performed for each iodomethane flow rate. The individual pressures are not listed to 

simplify the figures.   

 As with the Le Breton calibration work above, the HFo sensitivity increased 

as a function of water and there is no trend for HAc outside of the instrumental 

variance.  The lowest HFo and HAc sensitivities are at 1013 hPa which is unexpected 

because the most water and I
-
 is present in the reaction cell at ambient pressure. As a 

result, it was hypothesized that the highest sensitivity (especially for HFo) would be at 

ambient pressure. Since this was not the case, the dynamics between iodomethane, 

pressure, and water for both acids were investigated.    

The impact of iodomethane on sensitivity was examined using the maximum 

sensitivity at each inlet pressure for both acids as a function of the iodomethane flow 

rate. This is illustrated in Figures 11 and 12 for HFo and HAc, respectively. Both acids 

are fit with a linear and quadratic fit and 95% confidence intervals. Three outlier 

points for HFo at 600 hPA were removed from the data set as they fell well outside the 

95% confidence interval for both fits. One day of HAc work at 1013 hPa was 
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markedly below the rest of the work at that pressure so that day was removed as well 

from any subsequent work. While it is possible that this low day is due to human error, 

there is not a similar decrease in sensitivity for HFo or the peroxides. Visually both 

fits represent the data (with the exception of 600 hPa for HFo) so the F-test was used 

to determine the best fit. It was found that there is no significant difference between 

the fits for both acids at all the pressures within the tested flow rate range.  The sixth 

panel in Figures 11 and 12 show maximum sensitivity regardless of pressure as a 

function of iodomethane flow rate. The standard deviation bars represent the impact of 

pressure on sensitivity. The sensitivity for both organic acids tripled from the lowest 

(0.0005 slpm) to the highest (0.0025 slpm) iodomethane flow rate.  

3.3 Water and Pressure Dependencies and Calibration Fits  

 

Water and pressure dependencies were studied using the ratio of the sensitivity 

to the maximum sensitivity. Only the work at the 0.0005 slpm iodomethane flow rate 

is reported. This ratio removed the bias of daily variation in the instrument. An 

average of this sensitivity ratio for each water vapor value was used to combine the 

different experimental days. These ratios as a function of the reaction cell water vapor 

are shown in Figures 13 and 14 for HFo and HAc, respectively. The sixth panel shows 

all the pressures together as a function of the water mixing ratio. For each pressure, the 

maximum sensitivity (ratio of one) for HFo was at the highest water vapor mixing 

ratio. The HAc maximum sensitivity was not at the same water mixing ratio for the 

different pressures or between days. This is why the ratio is always less than one.  The 

lowest HAc sensitivity was always within 50% of the maximum sensitivity regardless 
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of pressure. This supports what was seen above that the HAc-water relationship is 

small and not a critical determining factor to the sensitivity.  

These ratios were not sufficient to study pressure dependencies. The 

sensitivities at each pressure were calculated using the sensitivity ratios and the 

averaged maximum sensitivity for each pressure. This calculated sensitivity will be 

referred to as the “cleaned-up sensitivity”. The cleaned-up sensitivities were calculated 

for each iodomethane flow rate though only the sensitivities at 0.0005 slpm are 

reported. The cleaned-up sensitivities (and one standard deviation) for HFo at each 

pressure as a function of the reaction cell water vapor are in Figure 15. Even with the 

cleaned-up sensitivity there is still a noticeable difference between the pressures as 

seen in the sixth panel.  Therefore the HFo fit must be a function of water and 

pressure. The HFo sensitivity initially increases with water vapor and reaches an 

asymptote at the highest water mixing ratios – especially at higher pressure which also 

has the largest water mixing ratio. A Michaelis-Menten fit  

 y = 
Ax

B+x
+C (4) 

is used to represent this increase and subsequent plateau in sensitivity at higher water. 

The water dependency coefficients for HFo also change as a function of pressure.  As 

mentioned above the highest pressure (1013 hPa) sensitivity was unexpectedly low. 

Therefore, the three coefficients were determined without 1013 hPa. The equations for 

the three coefficients are  

 

A = exp ((
-6.5x10

6

P3 ) + (
2.7x10

5

P2 ) + (
-1.0x10

3

P
) + 11.0) 

B =  exp ((
2.1x10

5

P2 ) + (
-9.7x10

2

P
) + 9.02) 

(5) 
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C =  exp (-6.2x10
-6

P2+4.6x10
-3

P+7.4) 

where P (hPa) is pressure. The pressure and water fit (Figure 15 – black line) 

represents the data well with the exception of 1013 hPa which is overestimated when 

compared to the water fit (Figure 15 – green line). The calculated pressure fit values 

(A, B, and C) are higher than the measured work for 1013 hPa. The fit without 1013 

hPa is used for HFo from this point forward. The cleaned-up sensitivities (and one 

standard deviation) for HAc as a function of reaction cell water vapor for each 

pressure along with the water fit (green line) are in Figure 16. The sixth panel shows 

all the pressures together as a function of reaction cell water vapor.  There is a 

pressure dependency; however, the difference in sensitivities for the pressures is small. 

Several different fits as a function of water and/or pressure were considered but none 

of them accurately reproduced the laboratory or field sensitivities or contributed 

enough explanation of variance to warrant additional fitting terms. It was decided to 

use an average constant value (752.5 cts/ppb) for HAc sensitivity. The laboratory data 

and fits are compared to field data to confirm the accuracy of the fits.   

3.4 FRAPPE Organic Acid Calibrations   

 

In-flight calibrations from FRAPPE are compared to the cleaned-up laboratory 

sensitivities for HFo and HAc (Figures 17 and 18). The laboratory data are the same as 

Figures 9 and 10. Both laboratory and FRAPPE calibrations used the second CH3I 

mixture (5 ppm, 0.0005 slpm) and CO2•O2 (400 ppm CO2, 0.080 slpm) as the blended 

reagent gas with the two-syringe microfluidic calibration set-up. The laboratory 

sensitivities (blue squares) were corrected for the aging 
210

Po ionization source. The 

HFo laboratory calibrations are a factor of two higher than the in-flight calibrations 
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with the 1013 hPa calibrations closest to the in-flight calibrations. Even though the 

laboratory calibrations are higher the trend is the same. Both the FRAPPE and 

laboratory sensitivities increase as a function of reaction cell water vapor. The low 

water laboratory calibrations are when the system is “dry” and the only water comes 

from the syringe addition. The lowest in-flight calibrations were during RF04. The 

HAc calibrations align between laboratory and field measurements with a few 

exceptions. All in-flight calibrations from RF04 and one from RF11, all with similar 

water mixing ratios, are significantly lower than the rest of the in-flight calibrations. 

The laboratory fits were tested using the FRAPPE calibration data and reasonably 

represented the in-flight calibrations.  

3.5 DC3 Hydrogen Peroxide Calibrations  

 

The final calibration step was to determine which iodomethane flow rate of the 

5 ppm in N2 mixture best represented DC3 conditions. This was done using HP 

because it clusters with iodide and was calibrated for during DC3. The laboratory 

sensitivity for the HP and iodide cluster at 161 townsend (I
-
•H2O2) as a function of 

reaction cell water vapor is in Figure 19 for the five different iodomethane flow rates. 

As expected, the HP sensitivity increases as the proportion of iodomethane in the 

reaction cell increases. The different iodomethane flow rates were compared to DC3 

in-flight calibrations though they are not all shown here. The 0.0005 slpm 

iodomethane laboratory calibrations (blue squares) for I
-
•H2O2 correspond well with 

the DC3 in-flight calibrations (Figure 20).  Therefore the laboratory derived fits for 

HFo and HAc using the 0.0005 slpm iodomethane flow rate will be used to quantify 

both organic acids during DC3.  



 

27 

 

3.6 DC3 Study Regions and Organic Acid Vertical Profiles   

 

DC3 focused on the chemical and meteorological properties of deep 

convective systems in three regions. The NCAR GV flight tracks for all flights are in 

Figure 21 and divided into three study regions indicated by colored boxes: Colorado 

(red), Oklahoma-Texas (magenta), and the eastern states from Arkansas to the 

Carolinas (green). All in-flight data for hydroperoxides (HP and MHP) and organic 

acids (HFo and HAc) are in Figures 22, 23, and 24 for the three study regions as a 

function of altitude. The symbols are the median values, the thicker lines are the 

interquartile range, and the thin lines are the 10
th

 and 90
th

 percentile range.  Any 

stratospherically influenced air is removed by filtering out high ozone (greater than 

150 ppb) and low carbon monoxide (less than 70 ppb).  There is a decrease in HP 

throughout the altitude profile for all three study regions. There is a decrease in MHP 

for the bottom 6 km and then a small increase at higher altitudes due to deep 

convection. All three study regions show deep convective transport at high altitudes 

based on the enhancement of MHP relative to HP. 

 Each study region has higher HAc mixing ratios compared to HFo. In general, 

all three profiles have a decrease in HFo up to 6 km followed by an increase either 

back to boundary layer mixing ratio values or higher (a so called “C” shape). This 

profile is most pronounced in the Eastern region. The Eastern region also has the 

highest altitude measurements and the HFo sensitivity starts to decrease again above 

12 km.  The highest mixing ratios of both organic acids in the Oklahoma-Texas region 

were measured at 2 km. The Colorado HFo profile has more HFo at the top of the 

profile than in the boundary layer. The HAc altitude trend is not as strong in any of the 
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study regions though the mixing ratio decreases up to 6 km. The Eastern region has 

the biggest difference between both acids at high altitude.  The largest range of mixing 

ratios (represented by the 10
th

-90
th

 percentile) is in the Oklahoma-Texas region and is 

reflected in the peroxide and organic acid profiles.  

4. DISCUSSION 
 

4.1 Ionization Chemistry and Water Sensitivity Dependence  

 

Jones et al. (2014), Le Breton et al. (2012), and Lee et al. (2014) have observed 

a HFo sensitivity dependence on water vapor. Lee et al. (2014) has shown HAc 

sensitivity to vary with water vapor.  HFo and HAc sensitivities were examined over a 

range of water vapor mixing ratios from a few ppm to 20,000 ppm with a combination 

of laboratory and field measurements.  

The following ion chemistry is invoked to account for HFo's observed 

sensitivity dependence on water vapor.  

I
-
 + HCOOH  I

-
•HCOOH  

I
-
 + H2O  I

-
•H2O  

I
-
•H2O + HCOOH  I

-
•HCOOH + H2O 

I
-
• HCOOH + H2O I

-
• H2O + HCOOH 

With the addition of a little water, the reaction to form I
-
•HCOOH occurs faster than to 

I
-
•H2O from an I

-
•HCOOH•H2O intermediate cluster (Lee et al, 2014). Lee et al (2014) 

found the sensitivity plateaus and declines when the reaction cell water was above 

2200 ppm. Unlike Lee et al. (2014), our HFo sensitivity did not decrease towards the 

higher water mixing ratios though it did plateau - especially the ambient pressure work 

(1013 hPa). The water mixing ratio in the reaction cell could not be increased enough 



 

29 

 

to achieve a decline in sensitivity. The maximum water mixing ratio in the reaction 

cell during laboratory experiments was 7800 ppm.  The FRAPPE in-flight calibrations 

covered a larger water mixing ratio yet there was still no decline in sensitivity.  It is 

likely that variations in the CIMS configurations cause the differences in response as a 

function of water. Lee et al. (2014) used a permeation tube and not a gaseous mixture 

to add the iodide. It is possible that a difference in the total amount of iodide available 

impacts clustering preference. Their standard addition system differed from ours as 

well as they had no water present in their driest conditions. We never had a completely 

dry system as the standards were prepared in aqueous solutions. Lee et al. (2014) also 

had a higher reaction cell pressure (90 hPa) which could impact reaction cell 

chemistry.  Le Breton et al. (2012) did not discuss a decrease in sensitivity as a 

function of water but they did note that water was needed to promote clustering. They 

added water to the reagent gas to ensure ion clustering. Jones et al (2014) found a 

decrease in sensitivity at the lowest water mixing ratios as a result of an insufficient 

water source to promote clustering. Both Le Breton et al. (2012) and Jones et al. 

(2014) used similar reaction cell pressures (~22 hPa) to our work. Even though all 

these systems use iodomethane for HFo clustering the differences reflect the impact 

instrumental modifications can have. This is why it is important for each CIMS to be 

calibrated extensively for all target species.  

Lee et al (2014) found a decrease in HAc sensitivity with the addition of any 

water to the system. Using Lee et al. (2014) as a guide our HAc sensitivity should 

obey the following reaction sequence.  

I
-
+ M + CH3COOH  I

-
 • CH3COOH+ M 
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I
-
• CH3COOH + H2O I

-
• H2O + CH3COOH 

However, we found no significant decrease in sensitivity in this CIMS configuration 

as a function of water in either the laboratory or during FRAPPE.  The HAc sensitivity 

is low and there is no appreciable water relationship outside of instrumental variance. 

There is minimal other literature data available for the HAc and iodide cluster. Acetate 

is a commonly used reagent gas for CIMS systems; therefore, HAc is not detected.  

HAc has been measured using proton transfer reaction mass spectroscopy (PTR-MS) 

and HAc sensitivity decreased with the addition of water (Baasandorj et al. 2014). 

Unfortunately, a direct comparison is not possible as this a different instrumental set-

up and reagent chemistry.  

4.2 Ionization Chemistry and Iodide Concentration Dependence  

 

The goal of the dual reagent gas system was to monitor HP, MHP, HFo, and 

HAc. This requires a balance between the iodide and oxygen chemistry. In general, as 

the proportion of iodomethane increases the sensitivity of the CO2 and O2 clusters 

decreases. The negative impact on sensitivity is greater for MHP than HP as discussed 

earlier. MHP is an important target species and it is critical to find a reagent ion 

balance that does not reduce the sensitivity significantly. This CIMS is not as sensitive 

to HAc as HFo thus a decrease in iodide results in a larger reduction of HAc 

sensitivity. Finding a balance between the two reagent gases ultimately depends on a 

balance between MHP and HAc. The lowest iodomethane flow rate was chosen for 

FRAPPE as there was a quantifiable HAc addition with a minimal impact on MHP. 

Based on the HP and iodide cluster (at 161 townsend) this iodomethane flow rate also 

represents the iodide mixing ratio during DC3.  It was fortuitous that there was enough 
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iodide present during DC3 to promote organic acid clustering without significantly 

impairing the MHP sensitivity.  

4.3 Ionization Chemistry and Pressure Dependency  

 

It was originally thought that the HFo maximum sensitivity would be at the 

highest pressure since that is the highest water mixing ratio and HFo sensitivity 

increases as a function of water. However, the highest pressure actually had the lowest 

sensitivity for both organic acids. At the 0.0005 slpm iodomethane flow rate, the 

maximum sensitivities for HFo and HAc were at 600 and 360 hPa, respectively. 

Unfortunately, at this time it is not possible to fully understand the underlying cause.  

Pressure dependency will not be an issue for future work with this CIMS as a variable 

orifice will be added that maintains constant sample and reagent gas flow rates. It is 

possible that this pressure dependency is a function of the iodide-oxygen relationship 

in the reaction cell. As discussed above, the addition of iodide results in a decrease in 

sensitivity of the oxygen dependent clusters (i.e. MHP). However, it had not been 

explored that the oxygen could negativity impact the iodide clusters. A chemical 

computational diagnosis to test the strength of the ion clusters is not accessible at this 

time. This limits the extent to which this problem can be investigated.  Even though 

this situation will be resolved for future field work it still needs to be explored for past 

missions. A potential reason for the unexpected pressure relationship is discussed here.  

The ratio of iodide to oxygen through the ion source is constant regardless of 

the inlet pressure because the only source of oxygen is from the CO2•O2 reagent gas. 

The iodide to oxygen ratio varies inside the reaction cell due to the oxygen in the 

sample flow. The changing sample flow rate results in a dilution of iodide with respect 
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to oxygen as pressure is increased. Therefore, if there is a negative impact on the 

iodide chemistry it would be at the greatest sample flow rate (1013 hPa) as this 

represents the greatest oxygen addition to the system which is seen for both organic 

acids. However, if this was a linear relationship then the greatest sensitivity should be 

at 120 hPa. As this was not the case it is likely that there is a threshold for the iodide 

sensitivity and not a linear dilution factor. It is possible that at 600 hPa HFo is still 

able to efficiently cluster with iodide though greater than 600 hPa the proportion of 

oxygen becomes too large to support iodide clustering. As mentioned above, the 

CIMS is not as sensitive to HAc which could explain why the maximum sensitivity is 

at an even lower inlet pressure (360 hPa) than HFo. Therefore, the original thought 

process that the highest sample flow rate would result in the highest HFo sensitivity is 

flawed. Using calibration fits as a function of inlet pressure eliminates the need to 

fully comprehend the mechanism of the iodide loss in sensitivity. The HFo 

sensitivities showed the greatest dependency on inlet pressure and are fit as a function 

of water and pressure. HAc also had a pressure dependency though the addition of a 

pressure dependency term does not add significant improvement to the HAc fit and is 

not used. 

4.4 Ethanol Interference 

 

Concentrated ethanol responds at 173 townsend (I
-
•C2H6OH) and can be used 

as a CIMS system leak check. The CIMS sensitivity towards ethanol was tested to 

confirm that ethanol could serve as a leak check without significant ambient signal 

interference. Ethanol was added via the 2-syringe microfluidic and coil standard 

addition systems. The microfluidic standard (~ 6mM) was prepared to be equivalent to 
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HFo standard during FRAPPE.  The coil standard (0.2 mM) was prepared at a similar 

concentration to MHP due to the similarities in the Henry’s law constant. The Henry’s 

Law constant (0.20 M/hPa) used for the coil system was from Sander (1999) and is 

temperature independent. Similar to HFo, ethanol’s sensitivity increased with the 

addition of water though ethanol’s sensitivity was significantly lower than HFo at both 

the minimum (100x lower) and maximum (30x lower) water concentrations used in 

the laboratory. Baasandorj et al (2014) performed similar work with a PTR-MS and 

found HFo’s sensitivity to be 5-20x higher than ethanol. We strongly recommend 

verifying that the ethanol measured in the study region is low (background mixing 

ratios).  

4.5 DC3 Case Study:  Research Flight 03 

 

The DC8 and GV sampled convection in the Alabama radar region during 

Research Flight 3 (RF 03) on May 21, 2012 and the flight tracks for both aircraft are 

in Figure 25. The GV sampled convective outflow at several altitudes along the 

Alabama-Tennessee border (19:00 to 20:45 UTC) and then executed a spiral descent 

to 0.9 km before returning back to base.  HFo and HAc measurements as a function of 

time and altitude are in Figure 25. The altitude (m) is also given as a function of time 

for reference. The maximum HFo and HAc mixing ratios were 720 ppt and 1900 ppt, 

respectively. The largest HFo mixing ratios were between 8 and 10 km during the 

storm sampling with the peak at 8.6 km. The largest HAc mixing ratios sampled were 

at the lowest altitude.  The ratio of HFo to HAc is less than one for the majority of the 

flight reflecting the substantial HAc sampled regardless of altitude. Higher HAc 
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relative to HFo was measured during the whole campaign in each of the study regions 

(Figures 22, 23 and 24).  

Previous field measurements have reported varied results about the proportion 

of HFo to HAc. Reiner et al. (1999) and Talbot et al. (1996) reported greater HAc 

relative to HFo (up to twice as much HAc as HFo).  Millet et al. (2015) sampled HFo 

and HAc during the summer over the US Southeast. Millet et al.’s HFo mixing ratios 

are an order of magnitude higher than reported here though HAc mixing ratios are 

within Millet et al.’s standard deviation. Millet et al. sampled during warm, sunny 

days (June and July) which is conductive to HFo formation.  Deep convective storms 

were the priority for DC3 (May and June) which leads to a preferential sampling of 

cloudy, damp days. The high solubility of HFo and the large extent of vertical mixing 

characteristic of these storms likely led to a preferential sampling of conditions that 

would dilute, and possibly remove, HFo.  

The altitude profile for HFo has a “C” shape with higher mixing ratios near the 

surface and at high altitude (above 6 km). HAc follows a similar trend with a weaker 

gradient. For the majority of flights during DC3 there is little change for HAc as a 

function of altitude. The eastern region flights, especially RF 03, have the most 

pronounced “C” shape. The majority of available literature data for HFo and HAc do 

not sample the full DC3 altitude range (0 – 13 km). Millet et al. (2015), Reiner et al. 

(1999), and Talbot et al. (1996) all report a decrease in HFo with altitude though only 

Reiner et al. and Talbot et al. sampled above 7 km. The location and time of year will 

also impact the organic acid mixing ratios and altitude profiles. Tablot et al. and 

Reiner et al. both sampled in different global regions and at a different time of year 
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(fall). Considering the diverse sources for both acids and the in situ gas-aqueous phase 

dynamics it is not surprising that this pattern is not seen consistently. 

The Alabama-Tennessee border region is dominated by biogenic and 

anthropogenic emissions especially from Birmingham (Barth et al. 2014). The HFo 

measured between 8 and 10 km was higher than in the boundary layer. This could be 

the result of in situ photochemical production from biogenic precursors. Most reported 

chemical tracers do not show a similar elevation between 8 to 10 km with the 

exception of methanol. Methanol is a biogenic tracer and was measured by the Trace 

Organic Air Analyzer (TOGA, NCAR) onboard the GV. The methanol mixing ratio as 

a function of altitude is in Figure 26. Millet et al. (2015) found the strongest 

correlation between methanol and HFo which supports the importance of biogenic 

sources in this region. There is minimal data available for other biogenic tracers 

during RF 03 though moderate isoprene (600 ppt), a known HFo precursor, was 

sampled during the lower altitude leg over Tennessee. The elevated HFo was 

measured in a storm outflow as indicated by the increase of MHP relative to HP 

(Figure 25). Therefore it is possible that this increase in HFo is the result of in situ 

photochemistry from biogenic precursors lofted up.  

A large portion of the flight was at high altitude which can be impacted by 

stratospheric air masses. The chemical composition of the stratosphere is different and 

this will impact the chemical dynamics. The high ozone in the stratosphere could 

result in an ozone artifact in the CIMS measures at 80 townsend (O3•O2). The two 

stratospherically influenced air masses (identified by high ozone and low carbon 

monoxide) are removed.  
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Convection in Alabama was the weakest of the three study regions (Barth et al. 

2014). Convective outflow is characterized by a relative increase of MHP to HP.  

Convective transport is identified above 8 km with the strongest outflow above 10 km. 

This is confirmed by Barth et al. (2014) using other soluble and boundary layer tracers 

in conjunction with peroxides. There is an enhancement of HAc relative to HFo at the 

highest altitude (above 10 km) during RF 03 though at this time it is not enough 

evidence that organic acids can be used as convective transport tracers. Peroxides are a 

more reliable convective transport tracer because there is a clear reversal in the 

relationship between the two from the surface (HP>MHP) to the storm outflow 

(MHP>HP). The solubilities of organic acids are more complicated due to the pH 

dependency and thus not as reliable of a tracer. HFo and HAc could be used as a 

secondary tracer especially in a biogenically dominated region. Using organic acids as 

convective transport tracers needs to be investigated further.  

There was a descent to 0.9 km towards the end of the flight over Tennessee. 

There was an increase in HFo and the highest measured HAc for this flight. As 

mentioned above, Tennessee is known for high biogenic emissions. An air quality 

cancer study in Tennessee found elevated levels of acetaldehyde in the summer 

primarily as the result of secondary formation from biogenic VOCs (Díaz-Robles, Fu, 

and Reed 2013). The OH oxidation of acetaldehyde forms HAc from the peroxy acetyl 

radical. Acetaldehyde, also measured with the TOGA, is shown as a function of 

altitude in Figure 26. Acetaldehyde increased from 100 ppt at 10 km to 800 ppt near 

the surface. The lower HFo response near the surface could be because HFo was 

scavenged in the storm. HFo is more soluble than HAc at typical rain pH values. 
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Unfortunately, there is no low altitude work during the other flights in the region for 

comparison. There are higher altitude flights in this region that see the elevated HAc 

relative to HFo though the mixing ratios are higher for RF 03 than the other flights. 

There were only two days classified as Alabama storm sampling and RF 03 was the 

stronger case (Barth et al. 2014). The other flight had less than 500 ppt for both acids 

when sampling in a similar region. It is possible the stronger storm lofted more 

organic acid precursors than during the other flight. The other difference is that there 

should be more iodomethane earlier on in the campaign which could result in a 

difference of sensitivities. However, flights in other regions later in the campaign still 

saw substantial responses for both acids.  

5. CONCLUSIONS 

 

This work successfully replicated Le Breton’s iodomethane reagent gas 

mixture for the measurement of HFo and HAc. Based on microfluidic and coil 

experiments it was possible to calculate Henry’s Law constants for both organic acids 

which are comparable to literature values. A blended reagent gas mixture (CO2 in air 

and CH3I) was developed and deployed in the field during FRAPPE measuring HP, 

MHP, HFo, and HAc. Calibration fits using the blended reagent gas were determined 

for HFo (as a function of inlet pressure and water) and HAc (an average value 

independent of inlet pressure and water). These calibration fits made it possible to 

quantify both organic acids measured during DC3. All three DC3 study regions were 

characterized by greater HAc relative to HFo throughout the altitude profile. Both 

organic acids had a “C” shaped altitude profile for the majority of the flights. A test 
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case, RF 03, was highlighted which represents a deep convective storm influenced by 

biogenic tracers.  
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TABLES 
 

 

Table 1:  Reagent gas mixing ratios as a function of CH3I and N2 mass flow rate 

Inlet Pressure (hPa) 
1013 600 360 180 120 

N2 Mass Flow Rate (slpm) 
2.03 2.99 3.98 4.23 4.27 

CO2 (ppm) 
15 10.4 7.9 7.4 7.4 

O2 (ppm) 
7512 5212 3941 3712 3678 

CH3I Mass Flow Rate (slpm) CH3I (ppb) 

0.0005 1.2 0.81 0.62 0.58 0.57 

0.0010 2.3 1.6 1.2 1.2 1.1 

0.0015 3.5 2.4 1.8 1.7 1.7 

0.0020 4.7 3.3 2.5 2.3 2.3 

0.0025 5.9 4.1 3.1 2.9 2.9 
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Table 2: Sensitivity factors for the different calibration systems (coil, 1-syringe, and 2-

syringe) for both formic (m/z 173) and acetic (m/z 187) acid 

 

Pressure (hPa) 1013 600 306 180 120 

m/z 173 

Coil – 288 K 0.297 X X X X 

Coil – 298 K 0.603 0.357 X X X 

1-Syringe 1.63 1.12 0.749 0.731 0.885 

2- Syringe 1.67 1.20 0.546 0.574 0.780 

              

m/z 187 

Coil – 288 K 2.07 X X X X 

Coil – 298 K 4.32 2.55 X X X 

1-Syringe 1.63 1.12 0.749 0.731 0.885 

2- Syringe 1.67 1.20 0.546 0.574 0.780 
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Table 3: Comparison of literature and laboratory derived Henry’s Law constants for 

formic and acetic acid 

 

Author Temperature (K) 
Formic Acid  

(M/hPa) 

Acetic Acid 

(M/hPa) 

Johnson, Betterton, 

and Craig (1996) 
288 17.9 + 2.6 8.42 + 0.82 

Johnson, Betterton, 

and Craig (1996) 
298 8.78 + 1.3 4.05 + 0.39 

This thesis 288 13.8  7.37 

This thesis 298 5.58 4.67 
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FIGURES 
 

 

 

 
 

 

 

 

 

 

 

Figure 1: Representation of the biogeochemical cycle for formic and acetic acid with 

an emphasis on the sources (blue) and sinks (purple).  
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Figure 3: The laboratory schematic for the humidification and inlet pressure 

experiments. The inlet pressure is controlled by a needle valve (P) and pressure gauge. 

Detailed layouts for the humidification and coil standard addition systems are found in 

Figures 4 and 5, respectively. The CIMS box represents the inlet and subsequent 

instrumental set-up found in Figure 2. All laboratory experiments used the Aadco 

(zero air generator) as the air source regulated by mass flow controllers (MFC). 
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Figure 6: Formic acid sensitivities as a function of reaction cell water vapor for 120, 

180, 360, 600, and 1013 hPa for the coil calibration and one-syringe microfluidic 

calibration systems with the 0.33% iodomethane reagent gas (Le Breton mixture). The 

bars represent one standard deviation as calculated in Appendix A.  
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Figure 7: Acetic acid sensitivities as a function of reaction cell water vapor for 120, 

180, 360, 600, and 1013 hPa for the coil calibration and one-syringe microfluidic 

calibration systems with the 0.33% iodomethane reagent gas (Le Breton mixture). The 

bars represent one standard deviation as calculated in Appendix A.  
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Figure 8:  Iodide and water cluster (I
-
•H2

18
O) signal response for the five different 

iodomethane flow rates (0.0005 – 0.0025 slpm) of the 5 ppm iodomethane mixture. 

Different pressures (120, 180, 360, 600, and 1013 hPa) were tested but are not 

identified. 
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Figure 9: Formic acid sensitivity for the different iodomethane flow rates using the 5 

ppm iodomethane mixture. Calibration work at different pressures (120, 180, 360, 

600, and 1013 hPa) was performed but are not identified. The bars represent one 

standard deviation as calculated in Appendix A.  
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Figure 10: Acetic acid sensitivity for the different iodomethane flow rates using the 5 

ppm iodomethane mixture. Calibration work at different pressures (120, 180, 360, 

600, and 1013 hPa) was performed but are not identified. The bars represent one 

standard deviation as calculated in Appendix A. 
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Figure 11: Formic acid maximum sensitivity at each iodomethane flow rate for the 5 

ppm mixture regardless of reaction cell water vapor. The black line is the linear fit and 

95% confidence interval. The green line is the quadratic fit and 95% confidence 

interval. The sixth panel (bottom right) is the average maximum sensitivity and one 

standard deviation regardless of pressures at each flow rate.  
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Figure 12: Acetic acid maximum sensitivity at each iodomethane flow rate for the 5 

ppm mixture regardless of reaction cell water vapor. The black line is the linear fit and 

95% confidence interval and the green line is the quadratic fit and 95% confidence 

interval. The sixth panel (bottom right) is the average maximum sensitivity and one 

standard deviation regardless of pressures at each flow rate. 
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Figure 13: Formic acid sensitivity ratio (sensitivity/ maximum sensitivity) for the 5 

ppm iodomethane mixture at 0.0005 slpm and one standard deviation. The sixth panel 

(bottom right) includes all the sensitivity ratios together identified by pressure. 
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Figure 14: Acetic acid sensitivity ratio (sensitivity/ maximum sensitivity) for the 5 

ppm iodomethane mixture at 0.0005 slpm and one standard deviation. The sixth panel 

(bottom right) includes all the sensitivity ratios together identified by pressure. 
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Figure 15: Formic acid “cleaned-up” sensitivity (sensitivity ratio multiplied by the 

averaged maximum sensitivity) for the 5 ppm iodomethane mixture at 0.0005 slpm. 

The bars are one standard deviation. The green line is the water only fit and the black 

line is the water and pressure fit.  The sixth panel (bottom right) includes all the 

sensitivities together identified by pressure.  
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Figure 16: Acetic acid “cleaned-up” sensitivity (sensitivity ratio multiplied by the 

averaged maximum sensitivity) for the 5 ppm iodomethane mixture at 0.0005 slpm. 

The bars are one standard deviation. The green line is the water only fit.  The sixth 

panel (bottom right) includes all the sensitivities together identified by pressure.  
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Figure 17: Formic acid sensitivity for FRAPPE in-flight calibrations and laboratory 

iodomethane calibrations (blue squares). Both FRAPPE and laboratory calibrations 

used the two-syringe microfluidic set-up with the 5 ppm iodomethane mixture (0.0005 

slpm).  
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Figure 18: Acetic acid sensitivity for FRAPPE in-flight calibrations and laboratory 

iodomethane calibrations (blue squares). Both FRAPPE and laboratory calibrations 

used the two-syringe microfluidic set-up with the 5 ppm iodomethane mixture (0.0005 

slpm).  
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Figure 19: Hydrogen peroxide sensitivity (I
-
•H2O2) for the five different CH3I flow 

rates (0.0005 – 0.0025 slpm) of the 5ppm iodomethane mixture. Calibration work at 

different pressures (120, 180, 360, 600, and 1013 hPa) was performed but are not 

identified.  
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Figure 20: Hydrogen peroxide sensitivity for DC3 in-flight and laboratory CH3I 

calibrations (blue squares).  DC3 calibrations used the one-syringe microfluidic set-up 

and the CO2•O2 reagent gas. Laboratory calibrations used the two-syringe microfluidic 

set-up and the 5 ppm iodomethane mixture (0.0005 slpm).  
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Figure 22: Altitude profile for hydroperoxides (HP – hydrogen peroxide, MHP – 

methyl hydroperoxide) and organic acids (HFo – formic acid, HAc- acetic acid) for 

the Colorado region of DC3. All data have stratospherically influenced air removed 

(O3> 150 ppb and CO < 70 ppb).   
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Figure 23: Altitude profile for hydroperoxides (HP – hydrogen peroxide, MHP – 

methyl hydroperoxide) and organic acids (HFo – formic acid, HAc- acetic acid) for 

the Oklahoma-Texas region of DC3. All data have stratospherically influenced air 

removed (O3 > 150 ppb and CO < 70 ppb). 
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Figure 24: Altitude profile for hydroperoxides (HP – hydrogen peroxide, MHP – 

methyl hydroperoxide) and organic acids (HFo – formic acid, HAc- acetic acid) for 

the Eastern region of DC3. All data have stratospherically influenced air removed (O3 

> 150 ppb and CO < 70 ppb). 
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Figure 25: DC3 RF 03 Case Study: the GV and DC8 flight tracks, altitude profiles for 

the hydroperoxides (HP – hydrogen peroxide, MHP – methyl hydroperoxide) and 

organic acids (HFo – formic acid, HAc- acetic acid), and times series for the 

hydroperoxides and organic acids along with the altitude track. All data have 

stratospherically influenced air removed (O3 > 150 ppb and CO < 70 ppb). 
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Figure 26: DC3 RF 03 case study: altitude profiles for methanol and acetaldehyde 

from the TOGA instrument with stratospherically influenced air removed (O3 > 150 

ppb and CO < 70 ppb). 
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APPENDIX A: ERROR PROPAGATION 
 

The sensitives for the different calibration systems are a function of signal 

response and reaction cell sensitivity factors. The error propagation has to account for 

error associated with both the signal response and sensitivity factor.  The signal 

response error results from fluctuations in the signal and is treated as the standard 

deviation of the averaged counts. The sensitivity factor error comes primarily from 

instrumental sources (i.e. mass flow controllers). The general error equation 

(regardless of calibration source) is 

 𝛿𝑆 = 𝑆 ∗ √(
𝛿𝐶𝑡𝑠

𝐶𝑡𝑠
)

2

+ (
𝛿𝑋𝑟𝑥𝑛 𝑐𝑒𝑙𝑙

𝑋𝑟𝑥𝑛 𝑐𝑒𝑙𝑙
)

2

 (A1) 

where cts is the CIMS raw signal response and Xrxncell is the reaction cell sensitivity 

factor. Both the coil and microfluidic error propagation use the sample flow rate. The 

error associated with the sample flow rate is  

 𝛿𝐹𝑠𝑎𝑚𝑝𝑙𝑒 = 𝐹𝑠𝑎𝑚𝑝𝑙𝑒 ∗  √(
𝛿𝐹𝑁2

𝐹𝑁2
)

2

+ (
𝛿𝐹𝑟𝑒𝑎𝑔

𝐹𝑟𝑒𝑎𝑔
)

2

 (A2) 

where FN2 is the nitrogen flow rate and Freag is the reagent flow rate.  

The coil system sensitivity (Eqn 1) error must account for the error associated 

with the sample flow rate (Fsample) and the calibration flow (Fm = Fc/FAadco). It is 

assumed that the error in the standard preparation is much smaller than the other 

sources of error and is neglected. It is also assumed that the error in Henry’s Law 

constants are negligible.  The coil system reaction cell (Eqn 1) error (𝛿 Xrxncell, coil) is  
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 𝑋𝑟𝑥𝑛𝑐𝑒𝑙𝑙,𝑐𝑜𝑖𝑙 = 𝑋𝑟𝑥𝑛𝑐𝑒𝑙𝑙,𝑐𝑜𝑖𝑙 ∗ √(
𝛿𝐹𝑚

𝐹𝑚
)

2

+ (
𝛿𝐹𝑠𝑎𝑚𝑝𝑙𝑒

𝐹𝑠𝑎𝑚𝑝𝑙𝑒
)

2

 (A3) 

 

where δFm is  

 

 𝛿𝐹𝑚 = 𝐹𝑚 ∗ √(
𝛿𝐹𝑇

𝐹𝑇
)

2

+ (
𝛿𝐹𝐶

𝐹𝐶
)

2

 (A4) 

where FT is the total flow (Aadco: dry and humidified and calibration (Fc)). 

The microfluidic sensitivity (Eqn 2) error (δXrxncell,syr) needs to account for the 

sample and excess flow rates. It is assumed that the error in the syringe flow rate is 

negligible and FCIMS is treated as a “true value”.  

 𝛿𝑋𝑟𝑥𝑛𝑐𝑒𝑙𝑙,𝑠𝑦𝑟 =
𝐹𝑠𝑦𝑟

𝐹𝐶𝐼𝑀𝑆
∗ 𝑋𝑟𝑥𝑛𝑐𝑒𝑙𝑙,𝑠𝑦𝑟 ∗ √(

𝛿𝐹𝐵

𝐹𝐵
)

2

+ (
𝛿𝐹𝑠𝑎𝑚𝑝𝑙𝑒

𝐹𝑠𝑎𝑚𝑝𝑙𝑒
)

2

 (A5) 

and δFB is  

 𝛿𝐹𝐵 = 𝐹𝐵 ∗ √(𝛿𝐹𝑠𝑎𝑚𝑝𝑙𝑒)
2

+ (𝛿𝐹𝑒𝑥𝑐𝑒𝑠𝑠)2 (A6) 

 

for FB which is Fsample + Fexcess. The two-syringe microfluidic system will be slightly 

different because there are two reagent gases but the general formula is the same.  
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