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ABSTRACT 
 

Thousands of hydrophobic organic contaminants (HOCs) are present in air and 

water worldwide, yet we know little about how these chemicals’ concentrations vary 

spatially and temporally, or what biological effects they have in concert.  The first four 

studies described in this dissertation present data from a sampling campaign in which 

passive polyethylene samplers (PEs) deployed throughout the lower Great Lakes 

region (Lake Erie and Lake Ontario) from 2011 to 2014.  Results were used to deduce 

air-water fluxes and analyze spatial trends of the truly gaseous and dissolved fraction 

of three distinct groups of HOCs: polycyclic aromatic hydrocarbons (PAHs), 

polycyclic musks (PCMs), and organic flame retardants (OFRs), with the goal of 

better understanding how sources and physico-chemical properties determine the 

environmental transport and spatial distribution of these HOCs.  The specific 

objectives of these studies were to determine whether gaseous and dissolved HOCs 

exhibited positive correlation with regional population density within 25 km of each 

site in the lower Great Lakes region, investigate whether diffusive air-water exchange 

of HOCs was primarily leading to volatilization from, or absorption into, the lakes’ 

surface waters, and investigate health risks of ambient urban air by measuring 

aromatic hydrocarbon receptor (AhR)-mediated potency of the truly gaseous mixture 

of HOCs accumulated in PEs deployed in air on the Lake Erie shoreline near 

Cleveland (OH).  Results showed that the radius at which strongest correlation 

between gaseous HOC concentration and human population was observed depended 

on vapor pressure, and a relationship between the maximum distance where significant 

correlation occurred and compound vapor pressure is presented for amassed PAH, 



 

 

PBDE, and PCM data.  Air-water exchange calculations based on simultaneously 

deployed air and water PEs indicated that diffusive exchange of PAHs was variable 

based on compound and season.  PCMs were found to be volatilizing from the lakes’ 

surface waters, suggesting that Lake Erie and Lake Ontario were acting as secondary 

sources of PCMs, while PBDEs were absorbed into surface waters.  Bioassay 

experiments performed on PE extracts showed that <30% of AhR-mediated potency 

for gaseous air extracts was explained by target compounds measured via chemical 

analysis, suggesting that targeted analysis may underestimate health risks posed by 

gas-phase ambient air.   

The fifth and sixth studies described in this dissertation focused on measuring 

uptake of emerging and legacy HOCs into PEs to inform future calculation of ambient 

air and water concentrations from PE measurements.  PE uptake profiles over 21-day 

deployments were used to determine whether target compounds reached equilibrium 

during deployment, and PE-water and PE-air partitioning coefficients (KPEW and KPEA) 

were calculated.  KPEW values for PAHs agreed fairly well with empirical values from 

literature in most cases, while values for PCMs and OPEs were generally lower than 

predicted based on chemical properties, suggesting that PE-derived concentrations for 

these compounds may be underestimated when using this approach.   

The seventh and final study included in this dissertation presents 

concentrations of dissolved organophosphate esters (OPEs), a group of emerging 

OFRs with atypical physico-chemical properties, derived from PEs deployed in the 

North Atlantic deep ocean from 2014-2015 and in Canadian Arctic surface waters 

during the summers of 2015 and 2016 to investigate long-range transport of OPEs to 



 

 

remote aquatic environments.  For the first time, estimated concentrations of OPEs in 

polar ocean surface water and remote ocean deep water are reported.  The greatest 

concentrations of OPEs were measured in Canadian Arctic surface waters, with the 

chlorinated OPE species most abundant.  OPEs exhibited unexpectedly flat vertical 

profiles in the North Atlantic Fram Strait, possibly due to a high degree of mixing 

and/or release of dissolved-phase OPEs from sinking particles.  This study 

demonstrated that OPEs are widespread, even in remote environments, and that 

concentrations are much greater than those of other OFRs in the Arctic, suggesting 

that OPEs should be a priority for further study.  
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PREFACE 
 

This dissertation is written and organized in the manuscript format according 

to URI Graduate School guidelines for dissertation preparation.  It is a compilation of 

7 manuscripts, 3 of which have been published.  The first manuscript (Chapter 2) was 

published in Environmental Science & Technology in June 2014 with authors C. 

McDonough, M. Khairy, D. Muir, and R. Lohmann.  The second manuscript (Chapter 

3) was published in Environmental Science & Technology in August 2016 with 

authors C. McDonough, G. Puggioni, P. Helm, D. Muir, and R. Lohmann.  The third 

manuscript (Chapter 4) was published in Environmental Science & Technology in 

September 2016 with authors C. McDonough, P. Helm, D. Muir, G. Puggioni, and R. 

Lohmann.  The fourth manuscript is formatted for submission to Environmental 

Health Perspectives, the fifth manuscript is formatted for submission to 

Environmental Science & Technology Letters, the sixth manuscript is formatted for 

submission to Chemosphere, and the seventh manuscript is formatted for submission 

to Environmental Science & Technology.  Appendix A contains a list of acronyms 

used throughout the dissertation.  Appendix B is a compilation of Great Lakes passive 

sampling campaign data for additional sampling years not presented in the 

manuscripts.   

 

 

 

 

 



 

 
 

ix 

TABLE OF CONTENTS 
           

ABSTRACT .................................................................................................................. ii	  
ACKNOWLEDGMENTS ............................................................................................ v	  
DEDICATION ........................................................................................................... vii	  
PREFACE ................................................................................................................. viii	  
TABLE OF CONTENTS ............................................................................................ ix	  
LIST OF TABLES ....................................................................................................... xi	  
LIST OF FIGURES ................................................................................................... xvi	  
CHAPTER 1 .................................................................................................................. 1	  
INTRODUCTION ........................................................................................................ 1	  
CHAPTER 2 ................................................................................................................ 15	  
SIGNIFICANCE OF POPULATION CENTERS AS SOURCES OF GASEOUS 
AND DISSOLVED PAHS IN THE LOWER GREAT LAKES ............................. 15	  
CHAPTER 3 ................................................................................................................ 82	  
POLYCYCLIC MUSKS IN THE AIR AND WATER OF THE LOWER GREAT 
LAKES:  SPATIAL DISTRIBUTION AND VOLATILIZATION FROM 
SURFACE WATERS ................................................................................................. 82	  
CHAPTER 4 .............................................................................................................. 143	  
SPATIAL DISTRIBUTION AND AIR-WATER EXCHANGE OF ORGANIC 
FLAME RETARDANTS IN THE LOWER GREAT LAKES ............................ 143	  
CHAPTER 5 .............................................................................................................. 223	  
INVESTIGATING ARYL HYDROCARBON-MEDIATED POTENCY OF 
GAS-PHASE AMBIENT AIR USING IN VITRO BIOASSAYS AND PASSIVE 
SAMPLING ............................................................................................................... 223	  
CHAPTER 6 .............................................................................................................. 264	  
PARTITIONING OF DISSOLVED ORGANIC FLAME RETARDANTS AND 
SYNTHETIC FRAGRANCES FROM WASTEWATER INTO 
POLYETHYLENE PASSIVE SAMPLERS .......................................................... 264	  
CHAPTER 7 .............................................................................................................. 306	  
DIFFUSIVE UPTAKE OF GASEOUS HYDROPHOBIC ORGANIC 
CONTAMINANTS FROM AMBIENT AIR INTO POLYETHYLENE PASSIVE 
SAMPLERS ............................................................................................................... 306	  
CHAPTER 8 .............................................................................................................. 342	  



 

 
 

x 

DISSOLVED ORGANOPHOSPHATE ESTERS IN THE NORTH ATLANTIC 
OCEAN AND ARCTIC OCEAN ............................................................................ 342	  
CHAPTER 9 .............................................................................................................. 368	  
CONCLUSION ......................................................................................................... 368	  
APPENDIX A ............................................................................................................ 376	  
LIST OF ABBREVIATIONS .................................................................................. 376	  
APPENDIX B ............................................................................................................ 378	  
ADDITIONAL GREAT LAKES HOC CONCENTRATIONS FROM 2011-2014 
PASSIVE SAMPLER CAMPAIGNS IN AIR AND WATER .............................. 378	  
 



 

 
 

xi 

LIST OF TABLES 
 

Table 2-1. Average gaseous and dissolved PAH concentrations in Lake Erie and Lake 

Ontario..........................................................................................................................46 

Table S2-1.  Lake Erie Monitoring Summary for Air and Water Passive Samplers, 

2011..............................................................................................................................55 

Table S2-2. Lake Ontario Monitoring Summary for Air and Water Passive Samplers, 

2011.............................................................................................................................56 

Table S2-3. Over-Land and Over-Water Trajectories Arriving at Coastal Sites.........59 

Table S2-4.  Major Rivers within 10 km of Aqueous Sampling Sites…………….....59 

Table S2-5.  Percent Recovery for Internal Standard Spikes.......................................62 

Table S2-6. Detection Limits and Percent Detection...................................................62 
 
Table S2-7. Physico-chemical Parameters Used in This Study...................................63 
 
Table S2-8.  Characterization of Sampling Sites Using Population Data Extracted 
 
from GRUMPv1............................................................................................................64 
 
Table S2-9.  Atmospheric PAHs (pg/m3) ....................................................................65 
 
Table S2-10. Aqueous PAHs (pg/L) ...........................................................................68 
 
Table S2-11.  Mass Transfer Coefficient.....................................................................74 
 
Table S2-12.  Flux Ratio..............................................................................................75 
 
Table S2-13. Net Flux..................................................................................................77 
 
Table 3-1. Average Dissolved PCMs (pg/L) Summarized Regionally......................108 

Table 3-2. Average Gaseous PCMs (pg/m3) Grouped By Site Type.........................108 

Table 3-3. Comparison of Simulated Air-Water Exchange Fluxes to PE-Derived and 

Grab Sample-Derived Exchange Fluxes.....................................................................112 



 

 
 

xii 

Table S3-1: Deployment Summary for 2011-2012 Air and Water PEs.....................124 

Table S3-2.  Buoys Used for Temperature and Wind Data........................................127 

Table S3-3.  Average Matrix Spike Recoveries.........................................................128 

Table S3-4.  Relative Percent Difference (RPD) between Duplicate Samples…......128 

Table S3-5.  Mean Blank Concentrations and Detection Limits................................128 

Table S3-6.  Typical Detection Limits per Volume Air or Water………………......129 

Table S3-7.  Percent Detection of PCMs in Air and Water.......................................129 

Table S3-8.  Selected and Derived Physico-Chemical Properties..............................130 

Table S3-9.  Average Estimated Percent Equilibration..............................................131 

Tabls S3-10.  PCM Fugacity Ratios. .........................................................................135 

Table S3-11.  PCM Air-Water Exchange Mass Transfer Coefficients......................136 

Table S3-12.  PCM Air-Water Exchange Fluxes.......................................................137 

Table 4-1.  Average Dissolved PBDEs (pg/L) ± Standard Deviation........................170 

Table 4-2.  Average Gaseous PBDEs (pg/m3) ± Standard Deviation. ......................170 

Table S4-1.  Deployment Summary...........................................................................183  

Table S4-2.  Buoys Used for Temperature and Wind Data.......................................186 
 
Table S4-3.  Average Matrix Spikes..........................................................................187 
 
Table S4-4.  Mean Blank Concentration and Detection Limits.................................188 
 
Table S4-5.  Typical Detection Limits per Volume Air or Water..............................189 
 
Table S4-6.  Percent Detection in Air and Water PEs................................................190 
 
Table S4-7.  Selected and Derived Physico-Chemical Properties..............................191 
 
Table S4-8.  Mean Percent Equilibrium.....................................................................192 
 
Table S4-9.  Dissolved Organic Flame Retardant Concentrations.............................193 
 



 

 
 

xiii 

Table S4-10. Gaseous Organic Flame Retardant Concentrations..............................197 
 
Table S4-11. RPDs for Simulate and PE- or Grab Sample-Derived Faw...................205 
 
Table S4-12.  Best-fit [DOC] from Active-Passive Comparison...............................208 
 
Table S4-13. BDE Fugacity Ratios............................................................................209 
 
Table S4-14.  Mean Summer PAH Concentrations in Air.........................................210 
 
Table S4-15.  Mean Summer PAH Concentrations in Water....................................211 
 
Table S4-16.  Average Wind Direction During Deployments...................................215 
 
Table S4-17.  Predicted Average Wind Direction at Sampling Sites.........................218 
 
Table 5-1.  Sampling Site Characteristics..................................................................247 

Table 5-2.  Relative Potency and Maximum Efficacy of PE Extracts.......................251 

Table 5-3.  BaP Equivalents Derived from Chemical Analysis and Bioassays.........251 

Table S5-1. Target compounds and abbreviations used.............................................255 

Table S5-2. Summary of all PAH concentrations in dosing solutions.......................258 
 
Table S5-3: Summary of all OPE concentrations in dosing solutions.......................259 
 
Table S5-4: Summary of all BFR concentrations in dosing solutions.......................260 
 
Table S5-5.  Correlation (r2) between groups of PAHs in dosing solutions..............262 
 
Table S5-6.  Correlation (r2) between OPEs in dosing solutions...............................262 
 
Table S5-7.  Correlation (r2) between OPEs and PAH groups...................................262 
 
Table S5-8.  Induction equivalency factors (IEFs) ....................................................263 
 
Table S6-1.  List of Study Target Compounds ……………………………..………290 
 
Table S6-2.  PE Field Blank results and detection limits………………………...…291 
 
Table S6-3.  Percent extraction efficiency for target compounds……………..……292 

Table S6-4.  PUF Field Blank Concentrations………………………………...……293 



 

 
 

xiv 

 

Table S6-5.  Selected and derived physico-chemical properties from literature for 

target PAHs……………………………………………………………………….…294 

Table S6-6.  Selected and derived physico-chemical properties from literature for 

target PCMs and nitromusks……………………………………………...…………295 

Table S6-7.  Selected and derived physico-chemical properties from literature for 

target OPEs………………………………………………...……………………..…296 

Table S6-8. DOC concentrations and percent in the truly dissolved phase…...……300 

Table S6-9. Comparison of PE-derived and active sampling-derived water 

concentrations for PAHs and PCMs…………………………………………...……301 

Table S6-10. Comparison of PE-derived and active sampling-derived water 

concentrations for OPEs………………………………………………………..……302 

Table S6-11. Log KPEW values derived from active and passive sampling data……303 

Table 7-1.  KPEA (298 K) or lower-bound estimates from 21-day PEs and mean active-

derived gaseous concentrations………………………………………………….......327 

Table S7-1.  List of target compounds……………………………………...………330 

Table S7-2. Physico-chemical properties for target compounds……………....……332 

Table S7-3.  Ambient Concentrations Derived from Active Sampling……….……335 

Table S7-4.  Concentrations Accumulated in Polyethylene Over Time……………338 
 
Table S8-1. Summary of Samples…………………………………………..………362 
 
Table S8-2. Blank concentrations……………………………………………..……363 

Table S8-3.  PRC loss data from deep mooring PEs………………………..………363 



 

 
 

xv 

Table S8-4.  Percent equilibrium predicted to be reached by each OPE during deep 

mooring deployments………………………………………………………..………364 

Table S8-5.  Percent equilibrium predicted to be reached by each OPE during surface 

water deployments……………………………………………………………..……364 

Table S8-6: Selected Physicochemical Properties of Target Compounds……….…365



 

 
 

xvi 

LIST OF FIGURES 
 
 
Figure 2-1.  Average gaseous Σ15PAH (A) and dissolved Σ18PAH (B) in Lake Erie and 

Lake Ontario………………………………………………………………………….41 

Figure 2-2.  Average atmospheric concentrations of gaseous PAHs at each site 

correlated well with population within 20 km………………………………………..42 

Figure 2-3.  Correlation strength varied with population radius considered………...43 

Figure 2-4.  Relative significance of population within 20 km and 3 km…………...44 

Figure 2-5.  Net air-water flux of four PAHs………………………………………..45   

Figure S2-1.  2011 Air and Water Deployment Locations and Abbreviations…...…54 

Figure S2-2.  Prevailing Wind Direction……………………………………………58 

Figure S2-3.  Lake Erie and Lake Ontario Watershed….………………………...…60 

Figure S2-4.  Percent Composition of PAHs……………………….…….……….…70 

Figure S2-5. Principal Component Analysis of Air and Water PAH Profiles…….....71 

Figure S2-6.  Vapor Pressure and Radius of Max Concentration-Population 

Correlation……………………………………………...………………………….…72 

Figure S2-7.  Temperature and Gaseous Ʃ15PAH Concentration. ………..…………72 
 
Figure S2-8. Temporal Trends in Precipitation and River Discharge………....….…73 
 
Figure S2-9.  Flux Ratio (CPEw/CPEa – 1) with Propagated Error……………………78 
 
Figure 3-1.  Average summer HHCB and AHTN (Σ2PCM) concentrations throughout 

the lower Great Lakes………………………………………………………….……109 

Figure 3-2.  Correlation of dissolved and gaseous Σ5PCM and surrounding population 

density……………………………………………………………………...………..110 



 

 
 

xvii 

Figure 3-3.  Predicted air-water exchange fluxes based on simulated air and water 

HHCB concentrations……………………………………………..……………...…111 

Figure 3-4.  Summer air-water exchange fluxes of AHTN and HHCB……….……113 

Figure S3-1.  Locations of Air Sites Relative to Buoys………………………….…127 

Figure S3-2.  HHCB and AHTN Fugacity Ratios……………………………..……132 

Figure S3-3.  Summary of Dissolved PCMs Over Multiple Deployments…………133 

Figure S3-4.  Summary of Gaseous PCMs Over Multiple Deployments………..…134 

Figure S3-5.  PE-Derived Air-Water Exchange Fluxes for Scenario 1…………….138 
 
Figure S3-6.  Great Lakes Coastal Boundary Zone from Bathymetry………...……139 
 
Figure 4-1.  Average Dissolved (top) and Gaseous (bottom) PBDEs during Summer 

Deployments…………………………………………………………………...........171 

Figure 4-2.  Average Summer PBDE Air-Water Exchange Fluxes (pg/m2/day)…...172 

Figure 4-3.  Maximum Distance (km) Yielding Significant Correlation between 

Gaseous Concentration and Population………………………………………..……172 

Figure 4-4.  Dissolved PBDEs and Population Density……………….…....………173  

Figure 4-5.  Predicted Dissolved ∑12BDE (pg/L) Across Lake Erie and Lake 

Ontario………………………………………………………………………………174 

Figure S4-1.  BDE 47 Air-Water Exchange Fluxes: Scenario 1……………………204 

Figure S4-2.  BDE 47 Air-Water Exchange Fluxes: Scenario 2……………………205 

Figure S4-3.  Average Percent Composition of Major Congeners: Dissolved 

PBDEs……………………………………………………………………………….206 

Figure S4-4.  Average Percent Composition of Major Congeners: Gaseous 

PBDEs……………………………………………………………………...………. 206 



 

 
 

xviii 

Figure S4-5.  Comparison between Southern Population Wedge and Circular 

Radius……………………………………………………………..…………………213 

Figure S4-6.  Average Wind Direction During Deployments at Available 

Meteorological Buoys………………………………………………………….……216 

Figure S4-7.  Predicted Average Wind Direction from Ordinary Kriging…………217 
 
Figure S4-8.  Variance or Dissolved PBDE Predictions from Bayesian Kriging…..218 
 
Figure S4-9.  Distributions of Estimated Parameters for Bayesian Kriging…..……219 
 
Figure S4-10.  Cross-Validation for Bayesian Kriging of Dissolved PBDEs………219 
 
Figure 5-1.  Map of PE deployment sites in the Greater Cleveland Area………..…257 

Figure 5-2.  Concentration and composition of PAHs and OPEs in dosing solutions 

and ambient air……………………………………………………………..……..…249 

Figure 5-3.  Dose-response curves for triplicate cell exposures to PE extract dilution 

curves……………………………………………………………………………..…250 

Figure 5-4.  Map of BaPEqbio and dosing solution Σ40PAH and Σ12OPE concentrations 

from each site…………………………………..……………………………………252  

Figure 5-5.  Relative contribution of PAHs to BaPEqchem………………….………253 

Figure S5-1.  Schematic of sample treatment………………………………………250 

Figure S5-2.  BaP Dose-Response Curve………………………………………..…261 

Figure S5-3.  Principal component analysis (PCA) of PAHs in dosing 

solutions………………………………………………………………………..……261 

Figure 6-1.  Ambient concentrations of PCMs and OPEs.…………...…….………283 

Figure 6-2.  PCM and nitromusk concentration in PEs over the 21-day 

deployment…………………………………………………………………………..284 



 

 
 

xix 

Figure 6-3.  Concentrations of PAHs in PEs over the 21-day deployment……..…..285   

Figure 6-4.  Concentrations of OPEs in PEs over the 21-day deployment …….…..286 

Figure 6-5.  Percent equilibrium reached by PRCs during deployment………...…..287   

Figure 6-6.  Comparison of KPEW values for PAHs from this study and from 

literature…………………………………………………………………….…...…..287  

Figure 6-7.  Comparison of KPEW values for OPEs from this study and derived from 

chemical properties from literature.……………………….…… ………….…...…..288   

Figure 6-8.  Comparison of KPEW values for PCMs from this study and derived from 

chemical properties from literature.……………………….…… ………….…...…..289 

Figure S6-1.  Water concentrations of PAHs from high-volume active water 

sampling……………………………………………………..………………………297 

Figure S6-2.  Predicted PE uptake profiles…………………………………………298 

Figure S6-3.  Best-fit value for thickness of the diffusive boundary layer…………299 

Figure 7-1. Gaseous concentrations of PAHs, PCMs, and OPEs in East Providence air 

from active sampling…………………………………………………….….…...…..324 

Figure 7-2.  Concentrations of BDEs and NHFRs in East Providence air from active 

sampling ………….……………………………………………………………..…..325 

Figure 7-3.  Uptake profiles of OPEs, BDEs, NHFRs, and PCMs in PEs over 2-day 

deployment.…………………………………….………….…… ………….…...…..326 

Figure S7-1.  Sampling set up at the East Providence…………………...…………321 

Figure S7-2.  Concentrations of gaseous HMW PAHs and alkyl/sub-PAHs derived 

from active air sampling…………………………………………………….………334 

Figure S7-3.  Percent equilibration of performance reference compounds…………336 



 

 
 

xx 

Figure S7-4.  Uptake profile examples for PAHs in PEs………………………...…337 

Figure 8-1.  Locations of surface water deployments in lakes and seawater, air 

monitoring sites, and deep moorings ………….……………………………......…..359 

Figure 8-2.  Depth profiles showing estimated dissolved concentrations of Cl/Br-

OPEs………………………………………………………………………………....360 

Figure 8-3. Surface water concentrations of Cl-OPEs……………………………...360 

Figure 8-4. Depth profiles showing estimated dissolved concentrations of alkyl/aryl-

OPEs………………………………………………………………….……………...361 

Figure 8-5. Surface water concentrations of alkyl/aryl-OPEs…….………………...361 

Figure S8-1. Best-fit value for the thickness of the water boundary layer……….…366 

Figure S8-2.  Range of OPE concentrations estimated depending on physico-chemical 

properties chosen…………………………………………………………….………367 

Figure 9-1.  Interpolated dissolved Σ5PCM concentrations…………………...……374 

Figure 9-2.  Linear correlation between dissolved PCM concentrations and PCM 

volatilization fluxes …………………………………………………………………374 

Figure 9-3.  Interpolated gaseous Σ12BDE concentrations……………………….…375 

Figure 9-4.  Inverse linear correlation between gaseous BDE concentrations and 

absorptive BDE fluxes………………………………………………………………375 

 
 

     



 

 
 

1 

CHAPTER 1 
 
	  

INTRODUCTION 

 

Thousands of hydrophobic organic contaminants (HOCs) are present in air and 

water worldwide, yet we know little about how these chemicals’ concentrations vary 

spatially and temporally or what biological effects they have as a complex mixture.1  

HOCs are of particular concern because they are often persistent, capable of long-

range transport, and bioaccumulative.  In this dissertation, three types of HOCs 

representing distinct use patterns and sources were investigated: polycyclic aromatic 

hydrocarbons (PAHs), polycyclic musks (PCMs), and organic flame retardants 

(OFRs).   

Compounds Included in This Study.  PAHs are ubiquitous HOCs that originate as 

byproducts of incomplete combustion of carbonaceous material.  PAHs, along with 

their substituted analogs, are the principle carcinogenic component of ambient 

atmospheric aerosol.2,3  Major sources of atmospheric PAHs include emissions from 

vehicles, coal burning power plants, and biomass burning.4  Concentrations of PAHs 

in urban areas near the Great Lakes are typically in the 40-100 ng/m3 range, with 

lower concentrations in residential and rural areas.5–7  One of the few studies to 

measure aqueous PAHs in Great Lakes surface waters observed that concentrations 

were greatest in Lakes Erie and Ontario, where they reached about 5 ng/L.8 

PCMs are synthetic fragrance compounds widely used as additives in personal 

care products and household cleaners.9  They are ubiquitous in aquatic environments, 

with concentrations generally in the 1-1000 ng/L range in rivers and lakes.10–13  AHTN 
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and HHCB, two of the most widely used PCMs, have been measured previously in 

Lake Erie and Lake Ontario sediment cores14 and in water and air of Lakes Michigan, 

Erie, and Ontario.11,15,16  PCMs have also been detected recently in remote open ocean 

and polar environments.17,18  PCMs in both air and water are found at greater 

concentrations in more populated areas,15,19  and wastewater treatment plants outfalls  

have been identified as importance point sources of these compounds to the aquatic 

environment.20,21  

PCMs accumulate in biota, including marine mammals, fish, birds, shrimp, and 

mussels.22,23  A significant fraction of PCMs is present in the gaseous fraction of 

ambient air, and they are capable of being absorbed through human skin.15,24,25  While 

PCMs are not acutely toxic at typical environmental concentrations, sub-lethal effects 

such as impaired estrogenic function and weakened xenobiotic defense responses have 

been observed.26,27   

OFRs are added to consumer goods such as furniture upholstery, textiles, and 

electronics to slow combustion and meet flammability standards.  Three groups of 

OFRs, polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and 

novel halogenated flame retardants (NHFRs), were investigated in this study.  

Previous studies have shown that PBDEs are toxic, persistent, and bioaccumulative, 

and so they have been phased out of usage and manufacture in the United States and 

Canada, with the last formulation no longer used as of 2013.  Despite regulation, 

PBDEs continue to be found in Great Lakes air and water, and in-use products are 

expected to act as continuous sources of PBDEs past 2020.28   
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NHFRs and OPEs are increasingly being used as replacements for the PBDEs, 

and OPEs, in particular, have often been presented as safer alternatives.29  NHFRs 

have been measured in the Great Lakes air in the low pg/m3 range, and in water 

intermittently at low concentrations.8,30,31  While PBDEs and many NHFRs display 

properties typical of other legacy HOCs of concern, some OPEs, particularly the 

chlorinated OPEs, are distinct in that they are more polar and more soluble, and are 

sometimes designated as persistent, mobile organic chemicals (PMOCs) because of 

their propensity for waterborne transport.32  For this reason, many traditional modeling 

tools predict that OPEs should be incapable of long-range transport.33  However, OPEs 

have been measured in air at much greater concentrations than PBDEs and NHFRs in 

the Great Lakes region,8,34,35 and have recently been detected at concentrations an 

order of magnitude greater than other OFRs in the atmosphere of remote polar and 

open ocean regions.36–38  The transport mechanisms by which OPEs are reaching these 

remote locations are largely unknown.  In Chapter 8 of this dissertation, retrospective 

analysis of passive samplers deployed at North Atlantic deep mooring and Canadian 

Arctic surface water sites was done to measure dissolved OPEs in these remote 

environments and learn more about their long-range transport.  

Polyethylene Passive Samplers.  Polyethylene passive samplers (PEs) are sheets of 

low-density polyethylene that accumulate HOCs passively over time via diffusion.  

Passive samplers have been used to analyze spatial trends and identify sources of 

emerging and legacy contaminants on global, regional, and citywide scales,19,39–42  and 

are also being developed as personal exposure monitors.43–45  While total and particle-

bound concentrations of many HOCs have been measured in many previous studies, 
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much less is known about the concentration, composition, and health effects of truly 

gaseous and dissolved HOCs, which is the fraction PEs select for.  Due to this 

selectivity, PEs simultaneously deployed in different media are becoming an 

increasingly popular approach for measuring diffusive fluxes of HOCs, including air-

water exchange fluxes.46–48  Furthermore, PEs are promising tools for achieving high 

spatial resolution and monitoring remote areas because they are cost-effective, require 

no electricity, and can be deployed with little training.  

 Despite the many advantages of using PEs, interpreting results can be 

challenging because the rate at which air or water is sampled cannot be set at a 

constant value, as with active sampling techniques.  To allow for in situ calibration, 

PEs are often loaded with performance reference compounds (PRCs), which are non-

native compounds with similar properties to the compounds of interest, prior to 

deployment.49  Numerous models have been developed to use PRC loss data to 

approximate the percent equilibration (f) reached by target compounds during PE 

deployment, which allows for calculation of ambient concentrations in the surrounding 

media.50–53  The rate of uptake into PEs depends on a compound’s affinity for the 

membrane, represented by its PE-air or PE-water partitioning coefficient (KPEA or 

KPEW, respectively), and its molecular diffusivity in air, water, and PE.  This presents a 

challenge in interpreting passive sampling data for emerging contaminants with poorly 

constrained physico-chemical properties.  In Chapters 6 and 7 of this dissertation, 

uptake of PAHs, PCMs, and OFRs into PEs from water and air are investigated.  In 

these studies, results are compared to measurements from co-deployed active air and 

water sampling and KPEA and KPEW values are estimated.  
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Pollutants and Population.  Numerous studies have described relationships between 

air pollutant concentrations and population density, proximity to urban centers, 

building density, or percent urban land cover.6,19,41,54,55  Concentrations of many of the 

target compounds in this study have been shown to decrease with distance from urban 

centers, identifying urban/industrialized regions as sources to the surrounding 

environment.   Hafner et al. showed that concentrations of atmospheric PAHs were 

significantly linearly correlated with population density within 25 km of sampling 

sites around the world.56  This same 25 km radius has since been used in other studies 

to characterize sites in the Great Lakes region, and significant correlations between 

atmospheric HOCs and human population have been observed.6  However, most of 

these studies have focused on one population center, or measured concentrations at 

only a handful of sampling sites.  Furthermore, very few studies have analyzed the 

relationship between population and aqueous concentrations of HOCs.  

Understanding how HOCs correlate with easily attainable geographical 

parameters like population density allows for more accurate spatial predictions of air 

and water HOC concentrations in areas where it is not feasible to measure directly, 

and helps to identify areas in need of future monitoring.  In Chapters 2 to 4 of this 

dissertation, the relationship between human population density and concentrations of 

PAHs, PCMs, and PBDEs were investigated.   

Air-Water Exchange of HOCs.  Many previous studies have identified atmospheric 

deposition as an important source of HOCs in aqueous environments.57,58  Air-water 

diffusive exchange fluxes, however, have not been measured in Lakes Erie and 

Ontario. Melymuk et al. postulated that gaseous absorption may be a significant 
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source of PAHs to Lake Ontario, and volatilization from surface waters may account 

for significant losses of volatile PAHs from near-shore surface waters.16  

Volatilization was also estimated to be a significant loss mechanism for PCMs in Lake 

Michigan and Lake Ontario, suggesting that the Great Lakes may be a secondary 

source of PCMs to the atmosphere.11,16  In Chapters 2 to 4 of this dissertation, 

simultaneously deployed air and water PE pairs were used to calculate air-water 

exchange fluxes of PAHs, PCMs, and PBDEs in the lower Great Lakes.  

AhR-Mediated Potency of Gaseous Environmental Mixtures.  Extensive research 

has established that particle-phase HOCs, particularly PAHs, pose a serious health risk 

to humans.2,59  However, few studies have investigated health risks associated with the 

gaseous fraction of ambient air, which humans are exposed to via respiration and 

dermal uptake.60  The gaseous fraction of ambient air has a distinct composition 

compared to the particle-bound fraction, and so health risks associated with this 

fraction are not readily predictable from studies of particulate matter.3    

 Previous studies have shown that the gaseous fraction of ambient air pollutants 

appears to be responsible for a significant portion of the aryl hydrocarbon receptor 

(AhR)-mediated potency associated with ambient air, though measured compounds in 

these studies could account for less than 30% of the potency measured from 

bioassays.61–64  AhR activation is linked to a wide variety of biological effects 

including cell growth and proliferation, tumor promotion, immunological effects, and 

endocrine disruption.65   

 While previous studies have noted that gaseous HOCs should not be ignored 

in risk assessments, they were all carried out using high-volume air samplers or 
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passive polyurethane foam (PUF) samplers, which are less selective for gaseous HOCs 

than PEs.66  In Chapter 5 of this dissertation, in vitro bioassays were used to measure 

AhR-mediated potency of extracts from PEs deployed in air along the Lake Erie 

shoreline to investigate the biological relevance of the truly gaseous fraction of 

ambient air and identify compounds that correlate with, and may possibly contribute 

to, observed AhR-mediated potency.   

 

Overall, this dissertation contributes to scientific knowledge of how HOCs 

with diverse properties, sources, and uses enter both heavily industrialized and remote 

aquatic environments, and how these compounds affect human health as 

environmentally relevant mixtures.  The work also demonstrates a wide range of 

applications for PEs, from obtaining ambient air and water concentrations of a variety 

of gaseous and dissolved HOCs, to calculate air-water diffusive fluxes and measuring 

biological potency of gas-phase mixtures isolated from urban ambient air.   
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ABSTRACT  

Polyethylene passive samplers (PEs) were used to measure concentrations of 

gaseous and dissolved polycyclic aromatic hydrocarbons (PAHs) in the air and water 

throughout the lower Great Lakes during summer and fall of 2011.  Atmospheric 

Σ15PAH concentrations ranged from 2.1 ng/m3 in Cape Vincent (NY) to 76.4 ng/m3 in 

downtown Cleveland (OH).  Aqueous Σ18PAH concentrations ranged from 2.4 ng/L at 

an offshore Lake Erie site to 30.4 ng/L in Sheffield Lake (OH).  Gaseous PAH 

concentrations correlated strongly with population within 3-40 km of the sampling site 

depending on the compound considered, suggesting that urban centers are a primary 

source of gaseous PAHs (except retene) in the lower Great Lakes region.  The 

significance of distant population (within 20 km) versus local population (within 3 

km) increased with sub-cooled liquid vapor pressure.  Most dissolved aqueous PAHs 

did not correlate significantly with population, nor were they consistently related to 

river discharge, wastewater effluents, or precipitation.  Air-water exchange 

calculations implied that diffusive exchange was a source of phenanthrene to surface 

waters, while acenaphthylene volatilized out of the lakes.  Comparison of air-water 

fluxes with temperature suggested that the significance of urban centers as sources of 

dissolved PAHs via diffusive exchange may decrease in warmer months. 

 

INTRODUCTION 

 Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that 

originate from oil spills as well as anthropogenic and natural combustion processes.  

Major sources include fossil fuel combustion, metal production, waste incineration, 
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residential and commercial biomass burning, and vehicular emissions.1–5  PAHs are 

often associated with densely populated areas, especially in industrialized 

countries.3,4,6,7  PAHs and their transformation products are a primary carcinogenic 

component of urban air pollution and health effects resulting from chronic exposure 

are a serious concern.8,9   

 Polyethylene passive samplers (PEs) are cost-effective, simple tools with lower 

detection limits than traditional active sampling techniques.  Instead of pumping air or 

water through a filter, PEs accumulate hydrophobic organic contaminants (HOCs) 

over time via diffusion, accumulating only truly dissolved or gas-phase molecules.10  

Concentrations of truly dissolved HOCs are of interest because this fraction is 

available for direct diffusive exchange between water and other reservoirs such as air, 

biota, or sediment.  

 The use of PEs facilitates simultaneous spatially resolved measurements and 

calculations of air-water diffusive exchange rates.  For most HOCs, concentrations 

measured by PEs reflect a time-integrated concentration representative of the entire 

deployment period.  For compounds that equilibrate during deployment, 

concentrations reflect the most recent concentration the sampler was exposed to.  PEs 

have previously been used to measure HOCs in water and air11–13 and to calculate air-

water gradients of HOCs, but this method has not been applied to the lower Great 

Lakes.14–16  

 Lake Erie and Lake Ontario are the smallest of the Great Lakes by volume and 

have estimated residence times of 2.7 and 7.5 years, respectively.17  About 80% of 

Lake Erie’s water is supplied by the Detroit River, which is fed by Lake Huron via 
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Lake St. Claire.  Among the Great Lakes, Lake Erie is the shallowest (average depth 

19 m), warmest, and most biologically productive.18,19  Lake Ontario is much deeper 

(average depth 86 m) and primarily receives water from Lake Erie via the Niagara 

River.19  Currents in the Great Lakes are weak (a few cm/s) with complex temporal 

variability that depends on recent atmospheric conditions.  In the summertime, 

circulation is generally counterclockwise (Figure S2-3).20  The lakes are stratified 

from May through October and well-mixed for the remainder of the year.20   

 Heavy urbanization and valuable ecosystems often coincide along the shores of 

the lower Great Lakes.  Atmospheric deposition from urban sources has been 

identified as a major source of gaseous and particle-bound HOCs to the region’s 

aquatic environment.2,7,21,22  Concentrations of total atmospheric PAHs have been 

shown to correlate strongly with population in this region and urban centers have been 

linked to significantly increased loadings of contaminants to the lakes.23,24  In some 

cases, however, the lakes have been found to act as a source of HOCs via 

revolatilization.25,26  Much of the previous work describing sources of atmospheric 

pollution to the Great Lakes is based on a limited number of air monitoring sites as 

part of the Integrated Atmospheric Deposition Network (IADN).  While this data is 

indispensible in determining baseline concentrations and temporal trends of persistent 

organic pollutants (POPs) in the Great Lakes, more detailed knowledge of spatial 

trends is crucial to identify major sources and transport pathways.   

 The objectives of this study were to (i) provide baseline concentrations of 

gaseous and dissolved PAHs in Great Lakes air and water, (ii) evaluate the importance 

of urban regions as sources of dissolved PAHs by investigating the relationship 
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between population and PAH concentration, and (iii) determine whether the lower 

Great Lakes are sources or sinks for dissolved PAHs.  

 

MATERIALS AND METHODS 

Passive Sampling Procedures.  A map of all monitoring sites and a table outlining 

temporal coverage and meteorology are provided in the Supporting Information 

(Figure S2-1, Table S2-1 & S2-2) along with information on sampler preparation and 

deployment.  PEs were spiked with performance reference compounds (PRCs) via a 

method adapted from Booij et al.27 and sent to trained volunteers throughout the Great 

Lakes region with the aim of completing three 8-week deployments at each site.  After 

deployment, volunteers returned samplers via overnight delivery. 

 Four sites formed an east-west transect along Lake Ontario’s southern shore.  

The westernmost site, Grimsby (ON), was an offshore buoy monitored by 

Environment Canada.  On Lake Erie, samplers were deployed at nine US shoreline 

sites and six offshore sites monitored by Environment Canada.  Samplers were 

deployed at the offshore sites once, during late summer.  Samplers at Gibraltar Island 

(OH) and Toledo (OH) were deployed once during late spring/early summer.  

Meteorological Information & Site Characteristics.  Monthly wind speed averages 

during the sampling campaign ranged from 3.8 m/s in July to 6.1 m/s in November, 

with the greatest average wind speeds offshore of Toledo.  Average air temperatures 

ranged from 7.7 °C in April to 24.3 °C in July and the mean deployment temperature 

for all sampling periods was 18.6±1.8 °C.  Surface water temperatures were generally 

very similar to air temperatures and ranged from 3.7˚ C (Lake Ontario in May) to 
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25.1˚ C (Lake Erie in July).28  There were westerly prevailing winds during the 

sampling campaign for most of the study region (Figure S2-2, Table S2-3).29,30  

Precipitation and river discharge were lowest during June and July while flows in late 

spring and early fall were similar.31  Locations near major rivers are listed in Table S4.  

Sample Analysis.  All PEs were spiked with deuterated PAHs and extracted twice, 

each time for 18 hours.  Air PEs were extracted with ethyl acetate followed by hexane.  

Aqueous PEs were extracted with dichloromethane followed by hexane.  Extracts 

were concentrated to approximately 100 µL and p-terphenyl-d14 was added as an 

injection standard.  Extracts were analyzed using an Agilent 6890 GC coupled to an 

Agilent 5973 MSD in electron ionization (EI) selected ion monitoring (SIM) mode.  

PAH analysis and quality control procedures are further outlined by Khairy et al.11  

 PAH concentrations were corrected for internal standard recoveries (Table S5) 

and blank-subtracted using the field blank relevant to the sampling site.  If no field 

blank for the site was available, the average concentration from all available field 

blanks was used.  More information on quality assurance and quality control is in the 

Supporting Information.  

Determination of Sampling Rate and Ambient Concentration.  The uptake of 

HOCs by PEs is described in detail by Lohmann32 and PE-air partitioning is detailed 

by Khairy et al.11  To determine ambient PAH concentrations from concentrations in 

polyethylene, site-specific sampling rates were estimated via a method adapted from 

Booij et al.33  The average air sampling rate was 28±17 m3/day and the average 

aqueous sampling rate was 112±57 L/day.  For more details, see the Supporting 

Information and Tables S1 and S2.  
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Physico-chemical Parameters.  Sampler-matrix partition coefficients used to 

calculate ambient concentrations for each PAH are listed in Table S7, along with other 

physico-chemical properties.  Temperature-adjusted partition coefficients were 

obtained using mean temperature during the deployment period for the nearest 

meteorological buoy or weather station and the modified van’t Hoff equation, as in 

Khairy et al.11  The enthalpy of vaporization (ΔHvap) was used to account for KPEA-

temperature sensitivity and internal energy of dissolution (ΔUw) for KPEW-temperature 

sensitivity.  

Population Analysis.  Population data for each sampling site are presented in Table 

S8.  Total population within a circular area with a 1-cell (about 1 km) radius was 

calculated using the Focal Statistics tool in ArcMap.  The process was repeated for 

larger radii to create a dataset of the total population within 1, 2, 3, 5, 10, 15, 20, 25, 

30, 40, and 50 km of each of the sampling locations.  More information about the 

population dataset is in the Supporting Information. 

Air-Water Exchange Rates.  The difference between equilibrium concentrations of 

an HOC in two PEs deployed in different matrices is proportional to the difference in 

the compound’s chemical activity between those two matrices.14,15  Air-water 

exchange gradients can therefore be determined from the ratio of PAH concentrations 

in PEs deployed simultaneously in air and water, corrected to equilibrium 

concentrations using PRC loss data.  Details of air-water exchange calculations are 

shown in the Supporting Information.  
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RESULTS AND DISCUSSION 

PAHs in Air.  Average atmospheric Σ15PAH  ranged from 2.1 ng/m3 in Cape Vincent 

(NY) to 76.4 ng/m3 at George T. Craig air sampling station in downtown Cleveland 

(OH).  The spatial distribution of Σ15PAH is shown in Figure 2-1A.  Concentrations of 

all PAHs during each deployment are detailed in Table S9.  Gaseous PAHs were 

dominated by phenanthrene (28–60%) and fluorene (6–48%) (Figure S2-4).  Typical 

concentrations ranged from below the detection limit to 40.3 ng/m3 and 14.6 ng/m3 for 

phenanthrene and fluorene, respectively.  Methylphenanthrenes accounted for 3-5% of 

Σ15PAH at the offshore sites and 6-10% of Σ15PAH at shoreline sites.  4-5-ring PAHs 

made up no more than 10% of total PAHs, with PAHs of greater molecular weight 

than chrysene (high molecular weight (HMW) PAHs) accounting for <1% of Σ15PAH.  

Ratios of gaseous Flra/Flra+Pyr were ≥0.6 and Phn/ΣMPhns>1 at all sites, suggesting 

that gaseous PAHs were primarily combustion-derived.34    

 The two sites in Cleveland consistently displayed the greatest concentrations of 

gaseous PAHs except retene throughout the deployment season.  Retene is often 

considered to be indicative of wood smoke or pulp/paper mill effluent, as opposed to 

fossil fuel combustion.35,36  Retene was greatest west of Cleveland in Sheffield Lake, 

but even here accounted for less than 0.7% of total gaseous PAHs.  In contrast, Ruge 

found retene to be a significant component of gaseous PAH profiles at many sites on 

Lake Superior.37  

 Principal component analysis (PCA) using the FactoMineR package38 in the 

statistical programming language R39 was employed to visualize similarities and 

differences between PAH profiles (Figure S2-5).  Profiles were similar at all sites with 
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the exception of Sheffield Lake, Rochester, and the Cleveland sites, which were 

clustered separately.  The clustering of most sites in the same region of the plot 

suggests that sources of PAHs were similar across the study region.  Profiles in 

Cleveland may have been distinct due to nearby point sources.  In addition to impacts 

from vehicular emissions associated with heavy traffic in downtown areas, these sites 

were within 5 km of a greater number of industrial point sources (primarily chemical 

manufacturing, petroleum industry, and metalworking facilities) compared to the other 

sites using the EPA Toxic Release Inventory (TRI).40 

 Comparison with Literature Values.  Sun et al. reported mean gaseous 

concentrations from the 1990s to 2003 of 16 PAHs, 13 of which were measured 

here.23  They reported 7.2 ng/m3 at Sturgeon Point, a semi-urban site south of Buffalo, 

1.2 ng/m3 at Point Petre, a northern Lake Ontario site representative of background, 

and 73.4 ng/m3 in Chicago (IL).23  Concentrations of individual PAHs in Cleveland 

reported here were comparable to those reported by IADN for Chicago. Gaseous PAH 

profiles showed dominance of phenanthrene and fluorene, as reported here.  

 PAH concentrations in this study were comparable to those measured by Ruge 

at urban locations along the shore of Lake Superior.37  Melymuk et al. measured a total 

gaseous PAH concentration of 51 ng/m3 in downtown Toronto (ON), comparable to 

Cleveland and Rochester concentrations in this study.6  Concentrations in this study 

were lower than those reported for Alexandria, Madrid, or Lake Chaohu, China and 

greater than concentrations on the Taiwan coast.11, 41–43  Total (aerosol and dissolved) 

2-3-ring PAHs near Lake Victoria, East Africa were lower than 2-3-ring gaseous 

PAHs in Cleveland, but greater than the remainder of the deployment sites.44    
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 Gaseous PAHs and Population.  Sampling sites were classified as urban, 

semi-urban, rural, or remote based on population within 3 km (Table S8).  Mean 

Σ15PAH for each type of site are summarized in Table 1.  For both lakes, the greatest 

concentrations of gaseous PAHs were observed at urban sites.  However, Σ15PAH was 

not significantly different based on site classification using a one-way analysis of 

variance (ANOVA; p > 0.05).  There were no obvious changes in PAH profile 

composition based on whether the site was urban, semi-urban, rural, or remote (Figure 

S2-4A).  

  To explore relationships with population in more detail, population within 

discrete radii of 1 to 40 km from each site were compared to average atmospheric 

PAH concentrations to determine the importance of local versus distant contributions 

in determining PAH concentrations.  Total gaseous PAHs correlated most strongly 

with population within a 20 km radius around each site (r2
20 km = 0.73, p < 0.001, n = 

17, SE=11.3) (Figure 2-2).  Significant correlations (0.58 < r2 < 0.77, p < 0.001) were 

observed for all measured PAHs at some radius, with retene exhibiting the weakest 

correlation (r2
1 km = 0.30 at a radius of 1 km, p = 0.02, SE=0.02). This is most likely 

due to retene’s association with wood smoke, as opposed to fossil fuel combustion.35, 

36  Strong correlations suggest that urban centers are a primary source of gaseous 

PAHs (except retene) in the lower Great Lakes region.  

 For each PAH, the strength of the correlation between population and 

concentration varied as we changed the radius used to characterize population at the 

site (Figure 2-3).  All compounds except retene displayed a bimodal relationship, with 

two radii of maximum correlation.  This relationship was less pronounced for the low 
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molecular weight (LMW) PAHs than HMW PAHs.  Strong similarities between 

correlation profiles (e.g., the 5-6-ring PAHs) suggest similar sources and affinities for 

transport.  

 Hafner and Hites suggested that the significance of local sources in 

determining Great Lakes HOC concentrations varies based on a compound’s 

atmospheric lifetime.7  The atmospheric lifetimes of gaseous PAHs are determined 

primarily by susceptibility to hydroxyl degradation and gas-particle partitioning.7   

Anthracene exhibited a distinctly shaped correlation curve with two maxima at radii 

25 km (r2
25 km = 0.77) and 5 km (r2

5 km = 0.77) (Figure 2-3).  Anthracene has a short 

lifetime (1.5 hrs) with respect to hydroxyl radical degradation relative to other PAHs, 

which may explain why stronger correlation is observed at short distances than for 

other 3-ring PAHs,45,46 but this does not explain the comparable correlation at 25 km.  

Acenaphthylene is expected to have a similar lifetime to anthracene (1.6 hrs)45 and 

exhibited stronger correlations with more local population than fluorene.  

 Fluorene is often observed to be more stable with respect to photochemical 

oxidation than similarly-sized PAHs (average lifetime 22 - 26 hrs)45,47 but more distant 

sources did not become more significant for this compound due to its longer lifetime.  

Fluorene correlated less strongly with population than acenaphthylene at all radii, but 

the divergence was largest at shorter distances.  

 Gaseous HMW PAHs are expected to have short atmospheric residence times 

due to reaction with hydroxyl radicals, which may contribute to the increased 

relevance of local versus long-range sources that was observed for these compounds.7  
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These results suggest that reaction with hydroxyl radicals limited the importance of 

sources distant from sampling sites. 

 The degree to which a given PAH partitions from gaseous to particulate phase 

and thus is not detected by PEs depends on the composition and concentration of 

ambient aerosol as well as temperature and vapor pressure.48–50  Sub-cooled liquid 

vapor pressures (pL/Pa) for all PAHs (except methylphenanthrenes and retene, for 

which data was not available) were determined for average deployment temperature 

(18.6 °C) using empirical regressions from Paasivirta et al.51  Log (pL/Pa) was plotted 

against the radius where maximum population-concentration correlation was seen for 

each compound in Figure S2-6.  Excluding anthracene, PAHs with pL > 10-4 Pa were 

most highly correlated with population within a 20 km radius, while PAHs with pL < 

10-4 Pa were most highly correlated with population within 3 km.  Other studies have 

observed similar values for log(pL) at which PAHs transition from being primarily 

gaseous to particle-bound.26,52,53  

 While S2-6 highlights maximum correlation, many PAHs exhibited significant 

correlation with population at both 20 km and 3 km.  As shown in Figure 2-4, the 

relative significance of correlation at 20 km versus 3 km (r2
20 km/r2

3 km) was 

significantly correlated with log(pL) (r2 = 0.62, p < 0.005, n = 13, STE = 0.1), 

suggesting the existence of two sources of varying importance depending on PAH 

volatility.  The relatively greater importance of local sources in determining 

concentrations of gaseous HMW PAHs could be due to the partitioning of these 

compounds to relatively cleaner background aerosols at remote sites as described by 

Gustafson et al.54  Due to their lower vapor pressure, gaseous HMW PAHs are more 
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likely than 2-3-ring PAHs to partition into the particulate phase where they will not be 

measured by PEs and may be deposited more readily via wet or dry deposition.43,55,56  

 Previous studies have reported that coastal areas receiving cleaner air from 

over water bodies exhibit lower atmospheric PAH concentrations than would be 

predicted based on surrounding population.57  Concentrations of total atmospheric 

PAHs were lower in Buffalo and Oswego than Cleveland or Rochester, though these 

sites were classified similarly in terms of population.  One explanation is that 

prevailing westerly winds brought over-lake air towards Buffalo and Oswego, diluting 

the urban plume.  Offshore measurements confirmed that air masses over Lake Erie 

had relatively lower PAH concentrations than shoreline sites (Table 1).  

 To further explore this hypothesis, 6-hour HYSPLIT58 back trajectories were 

calculated every 30 hours during the entire deployment period at Cleveland, Buffalo, 

Rochester, and Oswego using EDAS 40 km archived meteorology.  The number of 

trajectories arriving from over water versus over land is presented in Table S3.  This 

analysis supports the idea that Oswego’s urban plume could be diluted by over-water 

air masses, but suggests that Buffalo was impacted similarly by over-water and over-

land air masses.   

 Another explanation for lower concentrations at Oswego and Buffalo could be 

the amount or type of industry nearby.  EPA TRI40 reported 109, 54, and 37 regulated 

facilities within 20 km of Cleveland Edgewater, Buffalo, and Rochester, respectively, 

but there were only 4 within 20 km of Oswego.  However, this does not explain lower 

PAH concentrations at Buffalo and it is difficult to use TRI data to accurately gauge 

the volume of relevant emissions near each site. 
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PAHs in Water.  Average concentrations of Σ18PAH  ranged from 2.38 ng/L off Long 

Point (Stn 452) to 30.4 ng/L in Sheffield Lake, directly west of Cleveland (Figure 2-

1B, Table S10).  Average dissolved Σ18PAH, shown in Table 1, was somewhat greater 

in Lake Erie than in Lake Ontario when similar sites were compared, but not 

significantly (one-way ANOVA, p > 0.05).  Dissolved Σ18PAH exhibited less spatial 

variation (STDEV = 6.3 ng/L) than gaseous Σ15PAH (STDEV = 19.6 ng/m3).  

 Aqueous PAHs were dominated by phenanthrene (8 – 41%; <DL - 2.4 ng/L), 

fluoranthene (9 – 37%; <DL - 8.7 ng/L), and pyrene (8 – 31%; <DL - 8.5 ng/L) 

(Figure S2-4B).  Methylphenanthrenes accounted for 7 – 11% of Σ18PAH at offshore 

sites and 11 – 35% of Σ18PAH at shoreline sites.  HMW PAHs accounted for <2% of 

Σ18PAH at all sites.  Retene accounted for 0.1 – 2% Σ18PAH and was greatest in 

Oswego (NY).  The diagnostic ratio Phn/ΣMPhn ranged from 0.6 at Fairport Harbor 

and Sheffield Lake to 3.7 at the central and eastern Lake Erie buoy sites.  Ratios of 

Flra/Flra+Pyr were > 0.5 at all sites except Gibraltar Island (Flra/Flra+Pyr = 0.3, 

Phn/ΣMPhn = 1.2) suggesting that dissolved PAHs originated primarily from 

combustion, with possible contributions from petroleum spills at Gibraltar.14,34  

 PCA results for dissolved PAHs showed locations clustered differently than for 

gaseous PAH composition, suggesting that source profiles differed for atmospheric 

and aqueous PAHs.  This may be because in addition to atmospheric deposition, 

runoff and sediment-water exchange contributed to dissolved concentrations.  The 

dissolved PAH profile was most distinct at Sheffield Lake, while Toledo and Buffalo, 

both expected to be impacted by river discharge, were clustered together (Figure S2-

5).   
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 Comparison with Literature Values.  Dissolved PAH concentrations were 

similar to those reported by Ruge for heavily impacted sites on Lake Superior.37  

Previous work in Lake Michigan reported average total dissolved aqueous PAH 

concentrations of 9 ng/L from shipboard measurements, which was similar to the 

mean dissolved Σ18PAH concentration of all sites in this study (9.1 ng/L).2  

Concentrations reported here were generally greater than surface waters of 

Narragansett Bay (RI)14 or the Patapsco River (MD),59 though maximum 

concentrations measured on the Patapsco exceeded maximum concentrations 

measured here.  Concentrations were lower than dissolved PAHs in a freshwater lake 

in China.43  PAH profiles were similar to those reported for Narragansett Bay.14 

 Potential Sources of Dissolved PAHs.  Linear correlation with population was 

not significant (r2 < 0.3, p > 0.05) for dissolved PAHs, with the exception of fluorene 

(r2
15km = 0.36, p < 0.05), perylene (r2

1km =  0.38, p < 0.01), and retene (r2
1km = 0.59, p < 

0.001).  The explanation for correlations observed for these three compounds is 

unknown.  One possible reason for the weak correlation for most aqueous PAHs is that 

the two most populated sites in downtown Cleveland were absent from the aqueous 

dataset.  Aqueous sampling near Cleveland was not done at the same sites as air 

sampling, rather PEs were deployed further from shore.  

 The lack of strong correlations also suggests that sources other than 

atmospheric deposition, such as river discharge and wastewater treatment plant 

(WWTP) effluent, could have been significant in determining dissolved PAH 

concentrations in surface waters.  In addition, longer-term reservoirs that are not 

representative of current emissions, such as PAHs from sediments or from deeper in 
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the water column, could be contributing to surface concentrations so that aqueous 

concentrations reflect longer term deposition while atmospheric concentrations reflect 

recent emissions.  However, summertime stratification is expected to reduce the 

importance of these contributions in surface waters.  

Concentrations at offshore Lake Erie sites were greatest in the western basin 

where the lake is shallowest and inputs from the Detroit and Maumee watersheds, both 

US EPA Areas of Concern (AOCs), were expected to be significant (S2-3A).   Due to 

the central Erie basin’s counterclockwise circulation during the study season,20 it is 

unlikely that elevated dissolved PAHs in Sheffield Lake resulted from aqueous 

transport from Cleveland.  Black River, a historically polluted AOC, discharges 8 km 

west of the Sheffield Lake site and may have contributed to dissolved PAH 

concentrations there.  More measurements over time are needed to determine whether 

elevated dissolved PAHs at Sheffield Lake were episodic or chronic.  Unexpectedly, 

concentrations near Cleveland were lower than at Sheffield Lake.  This may be 

because of sampler placement, as PEs at Cleveland were farther offshore where water 

was deeper and currents carrying more highly impacted water may have been 

entrained closer to shore. 

 Besides Sheffield Lake, the greatest dissolved PAHs were measured in Toledo, 

Buffalo, and Erie.  Average dissolved PAH concentrations in Erie sampled from early 

June to early September were greater (Σ18PAH = 11.4 ng/L) and showed a lower 

percent contribution from LMW PAHs (Figure S2-4) than other rural sites, possibly 

due to contributions from contaminated sediments or WWTP effluent.  The Erie site 

was within the recently delisted Presque Isle Bay AOC, which was dredged for the 
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first time in 20 years during summer of 2011, possibly releasing elevated 

concentrations of PAHs into the water column.15,60,61  The greatest concentrations were 

seen during the second deployment, which took place in early fall (Σ18PAH = 15.6 

ng/L), perhaps due to the weakening of summertime stratification.  The site was also 

within 5 km of a major (~150 million L/day) WWTP (Figure S2-3A).  

Air-Water Exchange.  Mass transfer coefficients and flux gradients are listed in 

Tables S11 and S12 and flux gradients for select PAHs are presented in Figure S2-9.  

Mass transfer velocity ranged from 0.2 cm/day to 73 cm/day and values decreased 

with decreasing volatility.  Uncertainty in flux gradients was <30% for all compounds 

with lower molecular weight than benz(a)anthracene except retene.  Flux gradients for 

HMW PAHs were not different from equilibrium within the 95% confidence level .  

Net flux rates (ng/m2/day) are provided in Table S13.  Patterns in flux direction 

were similar to those reported by Bamford et al. in that LMW PAHs were volatilizing 

and phenanthrene was being absorbed, but less volatilization was seen here than in 

Patapsco River and depositional fluxes of phenanthrene in our study were greater on 

average.59  Fluxes for acenaphthylene, phenanthrene, methylphenanthrenes, and 

pyrene at each site were summarized in Figure 2-5 over three time periods: April – 

June, June – August, and August – November.  

Acenaphthylene volatilized from surface waters during most deployments, 

with volatilization fluxes ranging from 19.3 ng/m2/day in Niagara to 363 ng/m2/day in 

Erie.  Phenanthrene was absorbed at all sites with the exception of Niagara during the 

second deployment, where a volatilization flux of 236 ng/m2/day was measured.  

Phenanthrene deposition fluxes ranged from 237 ng/m2/day at Cape Vincent in early 
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fall to 3271 ng/m2/day at Dunkirk in summer.  This suggests that during the study 

period the lakes were primarily a source of acenaphthylene to the atmosphere, while 

the atmosphere was a source of dissolved phenanthrene to the lakes.  However, 

dissolved phenanthrene concentrations in air and water were not significantly 

correlated, suggesting that diffusive exchange was not the only mechanism influencing 

aqueous phenanthrene concentrations.  Blanchard et al. estimated annual net 

absorption of phenanthrene for Lake Erie and Lake Ontario to be 1020 ng/m2/day and 

310 ng/m2/day, respectively, in 2005.24  

The greatest depositional fluxes were measured at Dunkirk and Grimsby, 

particularly during June – August.  Though average temperatures during deployment 

were warm (17.0–21.4 °C), all PAHs except acenaphthylene were absorbed at these 

sites.  Deposition at Grimsby suggests that the Toronto/Hamilton conurbation acted as 

a source of dissolved PAHs to the open water.  Deposition at Dunkirk was driven by 

the greater gaseous PAH concentrations at this site and clean surface waters. 

At Erie, Niagara, Sheffield, and Buffalo (second deployment only), the 

majority of PAHs were volatilizing.  Erie and Sheffield exhibited the strongest 

volatilization, driven by elevated aqueous concentrations.  The greatest volatilization 

fluxes measured at the two sites were for fluoranthene (927 ng/m2/day at Erie, 879 

ng/m2/day at Sheffield Lake) and pyrene (591 ng/m2/day at Erie, 857 ng/m2/day at 

Sheffield Lake).  Volatilization was comparable at the two sites, though anthracene 

and benz(a)anthracene volatilized more strongly at Sheffield Lake.  Lohmann et al. 

observed volatilization of PAHs in an urbanized portion of Narragansett Bay and 

suggested that river input and runoff were more significant sources of dissolved PAHs 
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than atmospheric deposition.14  Volatilization at Niagara may indicate that river 

discharge was a significant source of PAHs at this site.   

Air-water exchange is strongly influenced by air temperature, wind speed, and 

wind direction and large daily variations in fluxes have been observed.59  During 

deployments where mean temperature was greater than 19 °C, phenanthrene and 

anthracene were the only PAHs being absorbed into surface waters, with the exception 

of measurements from Oswego (3rd deployment) as well as Dunkirk.  In Buffalo, most 

PAH fluxes changed from net deposition during the first deployment (mean 

temperature of 11 °C) to net volatilization during the second deployment (mean 

temperature 19 – 20.5 °C).  During the third deployment, most fluxes were not 

significantly different from equilibrium.  In Oswego, the temperature dependency 

observed in Buffalo was not evident.  

 

IMPLICATIONS 

Strong correlation with population suggests that urban centers played an 

important role in determining spatial distributions of gaseous PAHs.  However, air-

water fluxes and distributions of dissolved PAHs implied that additional sources 

beyond diffusive exchange influenced aqueous distributions, especially in urban areas.  

In some cases surface waters acted as a source of PAHs to the atmosphere.  Enhanced 

spatial coverage near AOCs and major urban areas like Toronto, as well as consistent 

temporal coverage, could help explain how river discharge, sediment-water exchange, 

WWTP effluent, and other sources influence dissolved PAH concentrations in the 

lower Great Lakes.     
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TABLES AND FIGURES 

 

 

Figure 2-1.  Average gaseous Σ15PAH (A) and dissolved Σ18PAH (B) in Lake Erie and 
Lake Ontario.  Orange shading delineates population centers.  
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Figure 2-2.  Average atmospheric concentrations of gaseous PAHs at each site 
correlated well with population within 20 km.  The two sites in downtown Cleveland 
exhibited the greatest Σ15PAH concentrations while concentrations in Buffalo were 
lower than would be predicted by the regression. 
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Figure 2-4.  Relative significance of population within 20 km and 3 km.  The ratio of 
r2

20 km to r2
3 km correlated well with sub-cooled liquid vapor pressure at mean 

deployment temperature, suggesting that distant sources were more significant for 
volatile PAHs.  
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Figure 2-5.  Net air-water flux of four PAHs.  Air-water fluxes (ng/m2/day) for four 
PAHs during three deployment periods with mean air temperature at the bottom.  
Negative values indicate absorption into surface waters and positive values indicate 
volatilization.  Sites where no data was available or air and water concentrations were 
both <DL are marked with *.  
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Table 2-1.  Average gaseous and dissolved PAH concentrations in Lake Erie and 
Lake Ontario.  The number of sites within each category (n) is listed along with mean 
PAH concentrations and standard deviation.  Sites were classified based on population 
within 3 km to facilitate comparison between lakes: 0-100 people: Offshore; 100-
1000: Rural; 1000-10,000: Semi-urban; >10,000: Urban. 
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SUPPORTING INFORMATION: 
 

SIGNIFICANCE OF POPULATION CENTERS AS SOURCES OF GASEOUS 
AND DISSOLVED PAHS IN THE LOWER GREAT LAKES 

 
Carrie A. McDonough, Mohammed Khairy, Derek C. G. Muir, Rainer Lohmann 

 
Total number of pages: 35 
Total number of tables: 13 
Total number of figures: 9 

 

 

Meteorological Information and Site Characteristics.  Meteorological information 

from the National Oceanic and Atmospheric Administration (NOAA) National Data 

Buoy Center (NDBC)1 for the buoy nearest to each site is provided in Tables S1 and 

S2.  Temperature varied little between locations and was colder during April – June 

deployments (mean temperature 14±3.3 °C) than during June – August deployments 

(22±0.9 °C) or August – October deployments (19±0.5°C).  Surface water 

temperatures from the NDBC were used when available, but if only air temperatures 

were provided, they were used for calculations for both air and water samplers.  Wind 

roses built for April to October from 2006-2010 historical NOAA wind data showed 

westerly prevailing winds during the sampling campaign for most of the study region 

(Figure S2-2).2    

 Data from NOAA’s National Climatic Data Center (NCDC) for all locations 

showed that precipitation was lowest during June and July while similar levels were 

reported in late spring and early fall.3  River discharge was generally highest during 

early spring and tapered off during mid-summer and early fall.4  Additional regional 

features that were taken into account, including wastewater treatment plants (WWTPs) 
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and Areas of Concern (AOCs) designated by Environment Canada and the EPA are 

detailed in Figure S2-3 along with mean circulation patterns.  Locations expected to be 

impacted by major rivers are listed in Table S4.  WWTPs and rivers channel larger 

urbanized watersheds into point sources and have previously been identified as a 

significant source of HOCs to Great Lakes surface waters.5,6  

Population Analysis.  Population analyses were carried out using a 30-arc second (1-

km) gridded raster population dataset from the Global Rural-Urban Mapping Project, 

v1 (GRUMPv1) provided for free online by Columbia University’s Center for 

International Earth Science Information Network (CIESIN).7  The most recent North 

American GRUMPv1 dataset, which uses population data from 2000 along with 

satellite imagery of nightlights and other resources to model population, was loaded 

into ArcMap 10.1 along with coordinates for each sampling site.  Data was projected 

using the NAD 1983 Great Lakes Basin Albers projection. Relative population in the 

Great Lakes region was not expected to have changed drastically within 10 years 

based on ground-truthing and observed trends. 

Passive Sampling Procedures.  Volunteers deployed samplers 1 – 3 times from April 

through November, 2011 at each site.  Temporal coverage depended on volunteer 

availability.  When possible, air and water samplers were deployed simultaneously at 

the same location.  

 50 µm-thick low-density polyethylene (LDPE) commercial sheeting (Carlisle 

Plastics, Inc., Minneapolis, MN) was cut into strips of 10x40 cm.  The strips were 

cleaned by incubation for one day each in DCM and hexane.  Batches of about 40 
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strips were spiked with performance reference compounds (PRCs) via a method 

adapted from Booij et al. (2002)8 and wrapped in muffled aluminum foil.  

 Samplers were sent to volunteers throughout the Great Lakes region who had 

been trained in the procedures for handling and setting up PEs.  Water PEs were 

fastened to an anchored rope and suspended in surface water.  Air samplers were hung 

inside inverted stainless steel bowls to guard against sunlight and precipitation.  After 

samplers were recovered from the field, volunteers repackaged the samplers in their 

original foil wrappings and returned them via overnight delivery. 

 Field blank and method blank PEs were used to control for background 

contamination associated with field deployments and laboratory extraction.  Field 

blank PEs were sent along with ordinary samplers.  They were unwrapped and 

handled by the volunteer at the deployment site before being sent back for analysis.  

Method blanks were refrigerated after preparation and extracted along with deployed 

samplers from the same preparation batch.  PRC concentrations in field and method 

blanks from each batch were used to determine initial PRC concentrations in deployed 

samplers from the same batch. 

Quality Assurance & Quality Control.  Detection limits (DL), defined as 3 times the 

standard deviation of all field blanks, are listed in Table S6, along with percent 

detection.  Concentrations <DL were reported as half of the DL, as recommended by 

Antweiler et al.9  Compounds that were measured above the DL in less than 20% of 

samples were omitted from discussion.   Duplicate or triplicate PEs were extracted at 

some sites to analyze method repeatability.  Relative standard deviation (RSD), 
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calculated for all compounds that were > DL in all replicates, was greater between 

aqueous replicates (RSD < 70%) than atmospheric replicates (RSD < 21%).  

 Data from all available samplers during all deployments (April – November) at 

each site were averaged for discussion.  This means that some sites were represented 

by only one sampler deployed during one period, while other sites were represented by 

an average concentration obtained from samplers deployed throughout three 

deployment periods. 

Determination of Sampling Rate and Ambient Concentration.  The percent loss of 

each PRC was plotted as a function of its PE-water partitioning coefficient and fitted 

using a nonlinear least squares fitting function using Excel Solver to obtain a sampling 

rate of best fit, Rs (L/day). Calculated Rs values (Table S1 & S2) were used to 

determine the percent equilibrium achieved for each target compound.  Equation (1) 

(written for air) was used to determine ambient concentration, where CPE is the 

concentration (ng/g) measured in the PE, KPEA is the temperature-corrected PE-air 

partitioning coefficient, CA is the ambient air concentration, and f is the calculated 

percent equilibrium reached by the compound during deployment. 

                                          
                                                          

(1)  

Sampling Rates.  Air sampling rates ranged from 7 m3/day to 75 m3/day with two 

outliers replaced by more plausible values.  Aqueous sampling rates ranged from 34 

L/day to 285 L/day.  Results and comparison to literature are in the Supporting 

Information.  RSDs between sampling rates calculated for replicate atmospheric 

samplers ranged from 1% - 102% with an average of 32%.  Passive sampling rates are 
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known to be affected by meteorological factors like wind speed and temperature10,11 

but no significant relationship was observed between air sampling rates and nearby 

wind speeds, most likely because sampling rates depended on features of the specific 

site and regional wind speed values did not capture this local variability.  RSDs 

between rates calculated for replicate aqueous samplers ranged from 10%-36% with 

an average of 21%.  

 Few studies were available for direct comparison of Rs values.  Allan et al. 

(2013) estimated riverine sampling rates for 300 cm2 low-density polyethylene 

(LDPE) samplers to be 6.4-18.5 L/d.12  Air sampling rates determined by Ruge (2013) 

for PEs in Lake Superior air (0.6 – 70 m3/day) were of similar magnitude and 

variability to those reported here, though aqueous sampling rates were lower in that 

study (2 – 25 L/day).13  

Air-Water Exchange Rates.  The direction of flux was determined from the flux ratio 

as shown in Equation (2), with values > 0 indicating volatilization and values < 0 

indicating absorption into surface waters.  

                                                       (2) 
 

 If a compound was below the detection limit in both air and water, no flux was 

calculated.  The standard deviation of the flux ratio was calculated via error 

propagation based on sampling rates and analytical repeatability (both assumed to 

contribute 10% uncertainty), and temperature-corrected partitioning coefficients 

(assumed 50% and 30% uncertainty for ΔUw and ΔHvap, respectively, as in Morgan et 

al. (2008)).14  The standard deviation of the flux ratio was used to determine whether 
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flux ratios were significantly different from equilibrium.  Ratios that were not 

significantly different from equilibrium are flagged in data tables.   

 Total flux of PAHs (ng/m2/day) was calculated from the air-water flux gradient 

and mass transfer coefficient as in Equation (3), based on a modified two-film 

resistance model.  Total mass transfer coefficients (kol) were calculated as in 

Schwarzenbach et al. (2002) from the mass transfer velocity on either side of the air-

water boundary.15  Mass transfer velocity of each PAH in water (viw) was calculated 

by scaling the mass transfer velocity of CO2 (vCO2,w) at 25°C using the Schmidt 

number (Sc), where Sc was determined from each compound’s diffusivity in water 

(Diw).  Mass transfer velocity in air (via) was determined by scaling the velocity of 

water vapor in air (vwa) using the ratio of the PAHs’s diffusivity in air (Dia) to water’s 

diffusivity in air (Dwa) at 25°C.  vwa was determined from an empirical regression with 

wind speed at 10 m above sea surface (u10) as shown in Schwarzenbach et al. (2002).15  

Dia and Diw at 25°C were calculated from molecular weight using the relation in 

Schwarzenbach et al. (2002).15  Air-water partitioning coefficients (Kaw) were 

corrected for temperature using the internal energy of air-water exchange, ΔUaw (Table 

S7).15  

                                   
(3)  

 
Gaseous PAHs and Temperature.  A positive correlation between gaseous PAH 

concentration and temperature has been observed in previous studies and linked to 

temperature-dependent local processes such as revolatilization from contaminated 

surfaces as well as decreased condensation of PAHs onto particulate matter.16,17  To 

examine the effect of temperature on total gaseous PAHs, locations where data was 
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available for three deployments (Buffalo, Dunkirk, Fairport Harbor, Niagara, Oswego, 

Rochester, and Erie) were plotted with mean temperature during deployment (Figure 

S2-7). During colder deployments (T < 17°C), mean Σ15PAH = 3.6±1.2 ng/m3.  

During warmer deployments at the same sites, mean Σ15PAH = 13.1±13.4 ng/m3.  All 

three Dunkirk deployments took place at mean temperature >20°C and so data for this 

site was not used in calculating averages.  No increase in gaseous PAH concentration 

with temperature was observed at the rural Erie or semi-urban Niagara locations.  Both 

of these locations were within parks and most likely less exposed to surfaces like 

asphalt they may act as significant sources of revolatilizing gaseous PAHs.  Small 

increases in Σ15PAH were observed at urban locations Oswego and Buffalo and at 

semi-urban Fairport Harbor, while concentrations increased greatly at urban 

Rochester. 

Temporal Fluctuations of Dissolved PAHs.  No obvious spatial differences 

were observed in dissolved PAH concentration or composition at sites expected to be 

heavily impacted by river discharge, listed in Table S4.  To further investigate whether 

discharge affected dissolved concentrations, temporal changes in Σ18PAH were 

compared to precipitation and tributary discharge for sites where more than one 

deployment was undertaken.  In Oswego, Buffalo, and Cleveland, dissolved Σ18PAH 

increased from summer to early fall (deployment 1 and 2) along with precipitation and 

river discharge.  However, Σ18PAH also increased from spring to summer at Buffalo 

and Oswego, while river discharge and precipitation decreased.  Cleveland was not 

monitored during this time period.  Data for Buffalo and Oswego are shown in Figure 

S2-8.  
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Table S2-3. Over-Land and Over-Water Trajectories Arriving at Coastal Sites.  
6-hour air mass back trajectories were calculated every 30 hours over the entire 
deployment period for Cleveland, Buffalo, Oswego, and Rochester to determine 
whether lower PAH concentrations in Buffalo and Oswego could be explained by a 
larger contribution from over-lake air masses diluting the urban plume at these 
locations. 
 
 

 
 
 
 
 
 
 
 
Table S2-4.  Major Rivers within 10 km of Aqueous Sampling Sites: Compiled 
from USGS discharge records.4  
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Table S2-5.  Percent Recovery for Internal Standard Spikes in Passive Sampler 
Extracts 
 

 
 
 
Table S2-6. Detection Limits and Percent Detection 
 

 
a) Estimated typical ambient detection limit using deployment time 56 days, sampler mass 2 g, and 
mean air and water sampling rates (40 m3/day and 112 L/day, respectively). 
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Figure S2-4.  Percent Composition of Total Vapor Phase (A) and Aqueous 
Dissolved (B) PAHs: Sites are classified based on population within 3 km, as 
described in Table S8. 
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Figure S2-5. Principal Component Analysis (PCA) of Air (A) and Water (B) PAH 
Profiles  
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Figure S2-6.  Vapor Pressure and Radius of Max Concentration-Population 
Correlation:  

l: 4-5-ring PAHs;   t: 2-3-ring PAHs;   q: anthracene 
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Figure S2-7.  Temperature and Gaseous Ʃ15PAH Concentration. 
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Figure S2-9.  Flux Ratio (CPEw/CPEa – 1) with Propagated Error 
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ABSTRACT  

Polycyclic musks (PCMs) are synthetic fragrance compounds used in personal 

care products and household cleaners.  Previous studies have indicated that PCMs are 

introduced to aquatic environments via wastewater and river discharge.  Polyethylene 

passive samplers (PEs) were deployed in air and water during winter 2011 and 

summer 2012 to investigate the role of population centers as sources of these 

contaminants to the Great Lakes and determine whether the lakes were acting as 

sources of PCMs via volatilization.  Average gaseous Σ5PCM ranged from below 

detection limits (<DL) to 3.2 ng/m3 on the western shoreline of Lake Erie in Toledo.  

Average dissolved Σ5PCM ranged from <DL to 2.6 ng/L on the southern shore of 

Lake Ontario near the mouth of the Oswego River.  Significant correlations were 

observed between population density and Σ5PCM in both air and water, with strongest 

correlations within a 25 and 40 km radius, respectively.  At sites where HHCB was 

detected it was generally volatilizing, while the direction of AHTN air-water exchange 

was variable.  Volatilization fluxes of HHCB ranged from 11±6 to 341±127 

ng/m2/day, while air-water exchange fluxes of AHTN ranged from -3±2 to 28±10 

ng/m2/day.  Extrapolation of average air-water exchange flux values over the surface 

area of the lakes’ coastal boundary zone suggested volatilization may be responsible 

for the loss of 64-213 kg/year of dissolved Σ5PCM from the lakes.  
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INTRODUCTION 

 Polycyclic musks (PCMs) are ubiquitous pollutants widely used as additives in 

personal care products and household cleaners to lend them a long-lasting, pleasing 

odor.1–3  Previous studies have indicated that PCMs are introduced to aquatic 

environments, including the Great Lakes, via effluent from wastewater treatment 

plants (WWTPs) and river discharge.3–6  One of the most widely used PCMs, 

1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB, or 

Galaxolide), was listed as one of Howard and Muir’s top 50 high priority pollutants 

with persistence and bioaccumulation potential in need of increased monitoring.7  The 

effects of PCMs on aquatic organisms are largely unknown, but they have been found 

to bioaccumulate8–10 and recent studies suggest environmentally relevant 

concentrations may cause oxidative stress and genetic damage in some organisms.11  

 Polyethylene passive samplers (PEs) are promising tools for measuring 

hydrophobic organic contaminants (HOCs) at high spatial resolution because they are 

cost-effective, require no electricity, and are simple to deploy.12  PEs sequester the 

dissolved or gaseous fraction of HOCs from the surrounding water or air over time, 

allowing measurement of time-integrated concentrations.13–16  They have been used to 

measure a wide variety of HOCs in air and water and to calculate air-water exchange 

fluxes,17–20 but they have not been applied to the study of air-water exchange for 

PCMs.   

The use of PEs in this study provided a unique opportunity to measure the truly 

gaseous and dissolved fraction of PCMs available for air-water exchange and 

determine whether gaseous PCMs were volatilizing from surface waters in Lake Erie 
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and Lake Ontario.  On the basis of previous work, volatilization may be an important 

loss route for PCMs in the Great Lakes,4,5 but fluxes had not been determined by 

simultaneous air and water sampling.  In this study, PEs were deployed in air and 

water during winter 2011 and summer 2012 to (i) measure baseline gaseous and 

dissolved concentrations of PCMs in and above Lakes Erie and Ontario, (ii) 

investigate the role of population centers as sources of these contaminants, (iii) 

determine whether the lakes were acting as sources of PCMs via volatilization, and 

(iv) explore how PE-derived PCM air-water exchange fluxes respond to non steady-

state conditions.  

 

MATERIALS AND METHODS 

Sampler Preparation and Deployment.  Prior to deployment, PEs were pre-

extracted in solvent and loaded with performance reference compounds (PRCs) 

dibromobiphenyl, tetrabromobiphenyl, pentabromobiphenyl, naphthalene-d8, pyrene-

d10, and benzo(a)pyrene-d12 as described previously.19  The PE deployment schedule 

and meteorological parameters, including the number of days each PE was deployed, 

are summarized in Supporting Information (SI) Table S1.  Average temperature and 

wind speed were determined using data from the nearest available meteorological 

buoy (Table S3-2, Figure S3-1).   

Shoreline PEs were deployed by trained volunteers as previously described.19  

Briefly, volunteers hung air PEs inside protective metal bowls at a height of about 1.5 

m, and tethered water PEs to an anchored line so that they would be secured about 1 m 

beneath the water’s surface.  Offshore and nearshore deployments were carried out by 
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workers at Environment Canada and the Ontario Ministry of the Environment, as 

described previously by Liu et al.17  Air PEs were secured in a protective chamber 2 m 

above the water’s surface on a buoy and water PEs were enclosed within a perforated 

metal cage and secured to the buoy about 4 m below the water’s surface.  After the 

PEs were recovered, they were shipped back to the laboratory overnight on ice and 

frozen until extraction.  

Extraction and Analysis.  PEs from 56 atmospheric deployments (including 9 

overwinter deployments) and 39 aqueous deployments were extracted and analyzed.  

All PEs were spiked with labeled PAHs (acenaphthene-d10, phenanthrene-d10, 

chrysene-d12, and perylene-d12) and extracted for 18-24 h in pentane, concentrated to 

<100 µL, and spiked with injection standard p-terphenyl-d14.  All extracts from 

aqueous PEs were passed through silica gel/sodium sulfate cleanup columns.  

 Extracts were analyzed for five PCMs: 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-

hexamethylcyclopenta-(g)-2-benzopyran (HHCB, or Galaxolide), 7-acetyl-1,1,3,4,4,6-

hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN, or Tonalide), 4-acetyl-1,1-

dimethyl-6-tert-butylindan (ADBI, or Celestolide), 6-acetyl-1,1,2,3,3,5-

hexamethylindan (AHMI, or Phantolide), 5-acetyl-1,1,2,6-tetramethyl-3-

isopropylindane (ATII, or Traesolide) and two nitromusks: 1-tert-butyl-3,5-dimethyl-

2,4,6-trinitrobenzene (musk xylene) and 4-acetyl-1-tert-butyl-3,5-dimethyl-2,6-

dinitrobenzene (musk ketone).  This was done using an Agilent 6890 gas 

chromatograph (GC) with a J&W Scientific DB-5 MS fused silica capillary column 

(30 m x 0.25 mm i.d.) with the injection port set to 275 ºC and helium flow set to 1.9 

mL/min, coupled to an Agilent 5973 mass spectrometric detector (MSD) in electron 
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ionization (EI) mode with ion source at 230 ºC, quadrupole at 150 ºC, and transfer line 

at 250 ºC.  Concentrations were corrected for internal standard recoveries.   

Quality Control.  Every batch of PEs was extracted alongside a laboratory blank and 

two additional blanks extracted in solvent spiked with all target compounds.  Spiked 

samples were used to track losses during extraction, concentration, and cleanup.  

Average recoveries ranged from 79% for musk xylene to 145% for musk ketone 

(Table S3).  The relative percent differences (RPD) between ambient concentrations 

from duplicate samplers are shown in Table S4.  For air PEs, the mean RPD was 18% 

for HHCB and 21% for AHTN (n=18).  For water PEs, the mean RPD was 15% for 

HHCB and 25% for AHTN (n=14).   

 Field blanks were sent to each volunteer along with PEs intended for 

deployment.  Field blanks were transported to the sampling site along with other PEs, 

taken out of their packaging, handled by the volunteer, and then immediately 

repackaged and shipped back to the laboratory for analysis.  Concentrations of target 

compounds in deployed PEs were blank-subtracted using the most relevant field 

blank.  For offshore deployments done from research vessels, all field blanks taken 

during the cruise were averaged and the average field blank value was subtracted from 

all samples collected.  

After blank subtraction, the detection limit (DL) in ng/g PE was defined as 

twice the standard deviation for all 11 laboratory blanks, as these samples were 

representative of the typical variability in background concentrations in the laboratory.  

Concentrations below detection limits were replaced with zero.  Average blank 

concentrations and detection limits per gram of polyethylene are shown in Table S5.  
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For HHCB, which was typically found at greater concentrations than the other PCMs 

in the blanks, average blank concentrations were 13 ng/g PE, 28 ng/g PE, and 4 ng/g 

PE in laboratory blanks, shoreline volunteer field blanks, and shipboard field blanks, 

respectively.   

To better describe the detection limits for PEs, typical DLs in ng/g PE were 

translated to air and water concentrations using the average percent equilibration for 

each site type and assuming an average temperature of 18.85 ºC for summer 

deployments and 4.85 ºC for winter deployments (Table S6).  For air samples, typical 

ambient detection limits were about 0.9 ng/m3 for HHCB and 0.07 ng/m3 for AHTN at 

summer shoreline and offshore sites, and 0.2 ng/m3 for HHCB and 0.01 ng/m3 for 

AHTN at winter shoreline sites.  In water samples, typical detection limits were about 

0.6 ng/L for HHCB and 0.04 ng/L for AHTN, with no significant difference between 

offshore and shoreline samples.  Actual detection limits varied from site to site 

depending on the PE’s sampling rate, and all blank subtraction was done using 

concentrations per weight of polyethylene, before conversion to ambient air and water 

concentrations.    

 Percent detection for target compounds is presented in Table S7.  HHCB and 

AHTN were found in 15% and 68% of all shoreline air PEs deployed in this study and 

in 38% and 54% of offshore/nearshore air PEs.  In water, HHCB and AHTN were 

found in 45% and 60% of shoreline PEs and in 47% and 79% of offshore PEs.  

Physico-Chemical Properties.  Physico-chemical properties of all target analytes and 

PRCs are presented in Table S8.  PE-air partitioning coefficients (KPEA) were 

determined from regression with subcooled liquid vapor pressure as in Khairy and 
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Lohmann.15  PE-water partitioning coefficients (KPEW) were calculated from solubility 

as in Lohmann.21  KPEA, KPEW, and diffusivity in air (Da) and water (Dw) for each 

compound were corrected for each deployment’s mean temperature, as detailed further 

in the SI.  

Sampling Rates and Ambient Concentrations.  To determine ambient concentration 

(Ca), the concentration in the PE (CPE) was adjusted for the percent equilibration (f) 

reached during deployment as in Equation 1.  A detailed summary of these 

calculations is presented in the SI.  Briefly, percent loss of each PRC (1-f) was 

plugged into a generalized exponential model for PE uptake (Equation 2) to derive a 

best-fit value for the thickness of the diffusive boundary layer (δDBL) using a nonlinear 

least-squares fitting method adapted from Booij et al.22  In Equation 2, t is total 

deployment time (listed for each deployment in Table S1), lPE is half the PE thickness, 

KPEM is the PE-matrix partitioning coefficient, and ko is the mass transfer coefficient, 

which represents the reciprocal sum of PE-side resistance (kPE
-1), which is dependent 

on DPE and lPE, and environmental matrix-side resistance (km
-1), which is dependent on 

Da or Dw and δDBL.  Best-fit δDBL values were used to estimate f reached by each PCM 

during each deployment.  

                                     (1) 

                (2) 
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Average f values for each PCM are presented in Table S9 and show that 

HHCB and AHTN generally reached > 95% equilibrium in both air and water.  

Average δDBLs for air boundary layers (δABL) were lower for offshore/nearshore PEs 

(0.2±0.1 mm; average±SD) than for shoreline PEs (1.8±1.4 mm in summer and 

1.4±0.5 mm in winter).  This translated to average HHCB sampling rates of 5.7±0.9 

m3/day for winter PEs, 6.9±2.3 m3/day for shoreline summer PEs, and 13±0.9 m3/day 

for offshore PEs.  Average water boundary layer thickness (δWBL) was 170±63 µm at 

shoreline sites and 82±25 µm at offshore sites, which translated to average sampling 

rates for HHCB of 16±3.8 L/day for shoreline PEs and 9.2±4.1 L/day for offshore 

PEs. 

 Best-fit δDBL and other compound-specific and site-specific parameters were 

plugged into the equation for f to determine typical equilibration times for the PCMs 

measured in this study.  HHCB and AHTN tended to equilibrate within about 25 days 

in water and 19 days in air, so mean concentrations were representative of these time 

lengths, though PEs were often deployed for longer.  Use of thicker polyethylene 

sheeting in future deployments would allow for time-integrated concentrations of 

HHCB and AHTN to be measured over longer time periods.  

Data Analysis and Statistical Methods.  Human population data were extracted from 

the Global Rural-Urban Mapping Project (GRUMP) Population Count Grid data set 

provided by Columbia University23 and maps were constructed in ArcMap for 

Desktop 10.3.1.  To find the radii at which population and Ʃ5PCM correlated most 

strongly, the model with the lowest residual standard error (RSE) was identified using 

the ordinary least-squares linear modeling function (lm) in R.24  Linear models were 
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further refined using the robust linear model (rlm) function in the MASS package in 

R,25 which iteratively fits data to a linear model, weighting outliers depending on their 

distance from the best-fit line.  All presented relationships were found to be 

statistically significant (p < 0.01) using both approaches.  Results were plotted using R 

package ggplot2.26 

Air-Water Exchange Calculations.  Thirty-two pairs of codeployed air and water 

PEs were used to investigate time-integrated air-water exchange fluxes.  The direction 

of exchange was determined by calculating the ratio of fugacity in water to fugacity in 

air (fw/fa) as in Equation 3, where C∞,w and C∞,a represent the concentration of the 

compound in the PE once it has reached equilibrium with surrounding water and air, 

respectively.  

      (3) 

A value of fw/fa  > 1 indicates volatilization, while fw/fa  < 1 indicates 

absorption.  In cases where the concentration in both air and water were <DL, no 

fugacity ratio was calculated.  In cases where the concentration in one medium was 

<DL, but was >DL in the other medium, a fugacity ratio was calculated by replacing 

the <DL value with the DL value, as this resulted in the most conservative estimate for 

the fugacity ratio (see Figure S3-2).  

Values for C∞,w and C∞,a were determined by correcting the concentration in 

the PE (CPE) using the calculated percent equilibrium (f) reached by each compound 

during deployment.  In most cases for AHTN and HHCB, C∞ ~ CPE because they 

equilibrated during deployment.  The uncertainty in the fugacity ratio was calculated 

by propagating the uncertainty in the parameters used to calculate C∞,a and C∞,w, which 
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is detailed further in the SI.  In cases where the fugacity ratio was within one standard 

deviation from equilibrium, it was not considered significantly different from 

equilibrium and no flux was calculated.   

Air-water exchange fluxes (Fa/w) were calculated using an approach based on 

the Whitman two-film model27 as described in Schwarzenbach et al.28 with wind 

speed’s effect on water-side mass transfer determined using a Weibull distribution to 

account for the nonlinearity of the effect of wind speed on mass transfer.29  The mass 

transfer coefficient (va/w) was multiplied by the concentration gradient as in Equation 

4, where KPEW,T2 is the PE-water partitioning coefficient corrected for deployment 

temperature.  Similar approaches have previously been used to estimate air-water 

exchange fluxes from PE pairs for polychlorinated biphenyls (PCBs), polybrominated 

diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in the Great 

Lakes,20,17,30 but PCMs have not been investigated.  Uncertainty in exchange fluxes 

was calculated using the uncertainty of the parameters used to calculate C∞,a, C∞,w, and 

KPEW,T2, and assuming 30% relative uncertainty in va/w.31 Calculations and error 

propagation are detailed further in the SI.   

 

       (4) 

 
 

RESULTS AND DISCUSSION 

Dissolved PCM Concentrations.  Average dissolved Ʃ5PCM ranged from <DL at 

Cape Vincent (CV) in eastern Lake Ontario to 2.6 ng/L near the mouth of the Oswego 
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River (OSW) on the southern shoreline of Lake Ontario. Average dissolved 

concentrations of AHTN and HHCB are shown in Figure 3-1A.    

 Average dissolved PCMs are summarized in Table 3-1.  Along the 

southeastern shore of Lake Erie and the northeastern shore of Lake Ontario, 

concentrations were similar to offshore levels (Ʃ5PCM < 100 pg/L) and HHCB was 

generally <DL, while concentrations were elevated nearer to the urban centers of 

Toronto and Cleveland and along the southern shore of Lake Ontario.  Variation in 

dissolved Ʃ5PCM over multiple deployments is shown in Figure S3-3.  

 Overall, concentrations reported from PEs were similar but lower than 

previous results: Peck and Hornbuckle measured PCMs in Lake Michigan in 1999-

2000 using shipboard active sampling with XAD-2 resin and reported means of 5 ng/L 

for HHCB and 1 ng/L for AHTN.4  Helm et al. estimated concentrations of 0.2 – 10 

ng/L and 0.1 – 10 ng/L for HHCB and AHTN, respectively, east of Toronto in June 

2008 using semipermeable membrane devices (SPMDs).32  In offshore Lake Ontario, 

Andresen et al. measured HHCB and AHTN by liquid-liquid extraction of water 

samples at 2.0 ng/L and 0.2 ng/L, with concentrations increasing to 7.0 ng/L for 

HHCB and 0.8 ng/L for AHTN in Hamilton Harbor.33  Concentrations in this study 

were typically lower than those in urban creeks near Toronto (2-1000 ng/L, with lower 

concentrations (0.04 – 18 ng/L) in the less populated Rouge River watershed).5  This 

was expected, as the sites monitored in this study were not as directly representative of 

upriver source regions.   

At sites where both HHCB and AHTN were detected, the ratio of 

HHCB:AHTN ranged from 7 to 12, with an average of 10±2, which was similar to that 
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reported by Buerge et al. for summertime surface waters in a Swiss lake 

(HHCB:AHTN 6 – 9) and by Andresen et al. in Lake Ontario in 2005 (~ 10).33,34  

HHCB:AHTN ratios were, in most cases, greater than those measured in source region 

studies.  Buerge et al. estimated that the half-life of HHCB with respect to photolysis 

in water was about 25 times longer than for AHTN, so increasing HHCB:AHTN ratio 

in water with distance from source was expected.34 

 Nitromusks were not found above a 3:1 signal/noise level in the majority of 

water samples and were therefore omitted from discussion.  Previous studies generally 

found musk xylene and musk ketone at levels near or below this study’s typical 

detection limits (19 pg/L for musk xylene and 225 pg/L for musk ketone).  Peck and 

Hornbuckle found median concentrations in Lake Michigan of 49 pg/L for musk 

xylene and 81 pg/L for musk ketone, and Andresen et al. measured both nitromusks at 

about 40 pg/L in Hamilton Harbor, Lake Ontario.4,33  

Gaseous PCM Concentrations.  Average summertime Ʃ5PCM ranged from <DL at 

sites in Erie (ERI) and Sheffield Lake (SHF) on the southern Lake Erie shoreline, 

Prince Edward Point (PEP) in northern nearshore Lake Ontario, and eastern offshore 

Lake Erie (EERI), to 3.2 ng/m3 in Toledo (TOL).  Concentrations of all gaseous PCMs 

are summarized in Table 3-2.  Average summertime HHCB and AHTN concentrations 

are displayed in Figure 3-1B.  Summertime concentrations were lowest at offshore 

buoy sites (< 300 pg/m3, with HHCB <DL), with the exception of three buoy sites 

near the Toronto waterfront, where concentrations were comparable to or greater than 

those at shoreline sites.  Concentrations at shoreline sites were generally greater in the 
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summer than in the winter.  Variations in Ʃ5PCM over multiple deployments are 

depicted in Figure S3-4. 

A possible explanation for the low incidence of detection of HHCB in this 

study is its short atmospheric lifetime (about 5.3 h) with respect to photolysis.35  

HHCB:AHTN ratios in air have previously been shown to decrease with distance from 

source regions, suggesting that gaseous HHCB may degrade more rapidly than 

AHTN.36  At sites where both AHTN and HHCB were >DL, the average 

HHCB:AHTN ratio ranged from 3.8 in eastern nearshore Toronto (ETOR) to 6.6 in 

Toledo (TOL), with an average value of 5±1, somewhat similar to ratios measured by 

Xie et al. in rural Germany (median 3.5).36 

  PCMs are relatively volatile (0.02 - 1.2 Pa)4 compared to other semivolatile 

organic contaminants (SVOCs) and a significant fraction of these compounds (> 80%) 

is typically found in the gaseous phase, suggesting that PE-derived concentrations 

should match those from other air sampling techniques.  Indeed, results from previous 

studies were similar: Peck and Hornbuckle measured gas-phase PCMs in 1999-2001 

using XAD-2 resin throughout the Great Lakes and found average urban ∑2PCM 

(AHTN + HHCB) around 1-5 ng/m3 with mean offshore Lake Erie and Lake Ontario 

concentrations <0.5 ng/m3.37  Furthermore, average ∑2PCM concentrations in Toronto 

nearshore air measured in this study (1.6- 3.1 ng/m3) were comparable to those 

measured by Melymuk et al. during 2007-2008 using polyurethane foam (PUF) 

samplers within 10 km of the Toronto central business district (0.89-3.5 ng/m3).38  

As in water, the nitromusks were not found above 3:1 signal/noise levels in the 

majority of air samples and were therefore omitted from discussion.  In previous work 
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by Peck and Hornbuckle in the lower Great Lakes region, nitromusks in air were 

found above method reporting limits only intermittently and at levels under 80 

pg/m3.37 

Correlation of PCM Concentrations with Population Density.  Previous studies 

have identified population centers as sources of gaseous PCMs to ambient air37 and 

have shown correlations between population density and PCMs in air and water.34,39,40  

To investigate the relationship between PCMs and population density in the lower 

Great Lakes, average summertime concentrations were compared to population within 

2 to 50 km of each site.  The strongest correlations found for gaseous and dissolved 

PCMs are displayed in Figure 3-2.  

Gaseous Ʃ5PCM exhibited significant (p < 0.01) correlation with population 

within a 15-50-km radius of each site.  The correlation was strongest when 

considering population within 25 km (p < 0.001; SE = 0.33; n = 22).  The two 

locations with the greatest residuals were Toledo (TOL) and Cleveland Edgewater 

(CLE), both of which exhibited greater gaseous Ʃ5PCM than would be predicted from 

population based on the presented regression.  This suggests elevated concentrations 

in these areas may be caused by nearby point sources not representative of the 

surrounding region.   

Dissolved Ʃ5PCM exhibited significant (p < 0.01) correlation with population 

within a 20-40-km radius of each site, with the strongest correlation observed when 

considering population within 40 km (p < 0.005; SE = 0.26; n = 20).  The strong 

correlation at such a large radius may be because spatial distributions are influenced 

by wastewater outfalls and river mouths, both of which are point sources that represent 
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a much larger area’s population (the watershed).  Concentrations near the mouth of 

Oswego River exhibited the greatest residuals, again suggesting a nearby point source.  

River and Wastewater Discharge.  Dissolved PCMs were elevated at many shoreline 

sites impacted by nearby WWTPs designated as major dischargers by the U.S. 

Environmental Protection Agency (EPA) National Pollutant Discharge Elimination 

System (NPDES),41 many of which discharged directly into the lakes.  More details on 

sites with elevated concentrations and possible sources are included in the SI.     

Air-Water Exchange.  Fugacity Ratios.  Fugacity ratios for all air-water PE pairs are 

displayed in Table S3-10 and depicted in Figure S3-2.  At all sites where HHCB was 

detected in air and/or water, fugacity ratios suggested it was volatilizing out of surface 

waters.  Fugacity ratios for AHTN also suggested volatilization from surface waters 

near Toronto and along the southern shore of Lake Ontario, though AHTN was near 

equilibrium or absorbed into surface waters at some other sites.  

The greatest fugacity ratios for both AHTN (fw/fa = 7) and HHCB (fw/fa = 18) 

were calculated for the PE pair from the late-summer deployment near the mouth of 

the Oswego River (OSW), during which greater dissolved PCMs were measured than 

during any other deployment (Ʃ5PCM = 4.8 ng/L).  Fugacity ratios were generally not 

significantly different from equilibrium at sites on the southeastern shore of Lake Erie 

(ERI, DUN, BUF), the northeastern Lake Ontario shoreline/nearshore (CV, PEP, 

CHB), or at the offshore sites (CERI, EERI).  

PE-Derived Air-Water Exchange Fluxes at Non-Steady-State Conditions.  

Values of va/w calculated for HHCB and AHTN ranged from 4.5-8.8 cm/day, which 

was somewhat slower than rates for PCBs calculated by Liu et al. (15-63 cm/day) and 



 

 
 

98 

within the range for 4-ring PAHs calculated by McDonough et al. (1-16 cm/day).20  

These rates were used along with mass transfer coefficients for PE uptake (ko) of 

HHCB from air (181-6,905 cm/day) and water (14-47 cm/day) to determine how air-

water exchange fluxes derived from codeployed air and water PEs compared to actual 

values in scenarios where concentrations in air and water are not at steady state.   

A model was written in R in which air and water concentrations of HHCB 

were set to vary every 6 h over 100 days.  In Scenario 1, both air and water 

concentrations fluctuated randomly between minimum and maximum values based on 

realistic concentration ranges from this and previous studies (1-6 ng/m3 in air; 0.5-8 

ng/L in water).  In Scenario 2, air concentrations fluctuated randomly around a 

steadily increasing mean from 5 to 12 ng/m3 and water concentrations declined from 6 

to 1 ng/L, also with random fluctuations, resulting in a reversal of the flux direction 

during the deployment.  The air-water exchange flux (Faw) at each time point was 

calculated from the simulated air and water concentrations at that time.   

At each time point, the mass of HHCB accumulated in air and water PEs in 

response to the fluctuating ambient concentrations was computed, and the PE-derived 

air-water exchange flux (Faw,PE) was calculated based on the concentrations of HHCB 

in the codeployed PEs at that time.  Faw was then compared to Faw,PE by calculating the 

RPD between the two values.  An example from Scenario 2, in which Faw decreased 

throughout the simulated deployment, is displayed in Figure 3-3.  Faw,PE is shown to 

steadily decline over the deployment along with Faw, but Faw,PE does not capture rapid 

day-to-day changes in the flux and appears to lag behind Faw by about 20 days.  A 

similar figure is shown for Scenario 1 in Figure S3-5.  
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Each scenario was run 100 times, and each time the RPD between Faw,PE and 

Faw after 100 days of deployment was recorded.  Results are presented in Table 3-3 as 

the mean RPD between Faw,PE and three values: Faw on the last day of the simulated 

deployment (Day 100), the average Faw over the typical equilibration time for HHCB 

(defined as 22 days, the average of air and water PE equilibrium times), and the 

average Faw over the entire 100-day deployment.  Results show that PE-derived 

exchange fluxes provide a good estimate of mean Faw over the last 22 days in both 

scenarios, though they were not always representative of instantaneous fluxes the day 

they were recovered, or of average fluxes over the entire deployment period.  

Table 3-3 also shows RPDs determined by comparison of “actual” fluxes (Faw) 

and fluxes that would be derived from weekly grab samples. Grab samples were 

simulated by taking values of the “actual” concentrations of PCMs in air and water 

once a week, calculating instantaneous exchange fluxes, and averaging these values 

over the 100-day deployment, or over the last 22 days.  Results suggest that Faw,PE is 

more representative of the mean Faw over the last 22 days than taking 3 weekly grab 

samples, while weekly grab samples are more appropriate for capturing mean flux 

over 100 days in cases where the exchange flux changes steadily over time, as in 

Scenario 2.  In summary, PEs resulted in a very good approximation of the actual air-

water exchange flux during the compounds’ equilibration time window, in some cases 

superior to weekly grab sampling. 

PCM Air-Water Exchange Fluxes.  Air-water exchange mass transfer 

coefficients and exchange fluxes for all PE pairs with fugacity ratios significantly 

different from equilibrium are provided in Tables S3-11 and S3-12.  Figure 3-4 shows 
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air-water exchange fluxes calculated for HHCB and AHTN in ng/m2/day during each 

deployment for which data were available.  As demonstrated in the previous section, 

these fluxes were representative of time-averaged air-water exchange fluxes over the 

last 3 weeks prior to sampler recovery.   

Volatilization fluxes of HHCB and AHTN ranged from 11±6 ng/m2/day and -

3±2 ng/m2/day during the first deployment near the shore of Cleveland, OH (CLE) to 

341±127 ng/m2/day and 28±10 ng/m2/day during late summer near the mouth of 

Oswego River (OSW).  Few previous measurements of PCM air-water exchange 

fluxes are available for comparison.  Xie et al. measured median net air-water 

volatilization of 27 ng/m2/day and 14 ng/m2/day for HHCB and AHTN in the North 

Sea, and measured net deposition of both compounds in the Arctic.36   

 

IMPLICATIONS 

Results from this study suggest that WWTPs may be responsible for 

influencing spatial distributions of dissolved PCMs in the lower Great Lakes, and that 

PCMs in the lakes were volatilizing from surface waters at many locations near 

urbanized shorelines.  Previous studies of the Great Lakes region have estimated that 

volatilization is an important loss route for dissolved PCMs.  Melymuk et al. estimated 

that volatilization removes 31% of total inputs of PCMs from the Toronto area, about 

210±120 kg/yr, from Lake Ontario.5  Peck and Hornbuckle estimated that 

volatilization was responsible for the loss of about 290 kg/yr of PCMs from Lake 

Michigan.4  



 

 
 

101 

 Volatilization fluxes in this study were driven by elevated dissolved 

concentrations at shoreline and nearshore sites.  These elevated concentrations were 

expected to be entrained in the nearshore coastal boundary zone, which extends from 

the shoreline to where the depth of the lake exceeds that of the thermocline.42  To 

estimate total losses of dissolved PCMs from the lakes via volatilization, fluxes were 

averaged over the estimated surface area of the urbanized coastal boundary zone.   

The surface area of the Lake Ontario coastal boundary zone was estimated to 

be 6500 km2 by extracting the area with depth shallower than 50 m using GIS data 

from the Great Lakes Commission’s Great Lakes Information Network (GLIN), as 

shown in Figure S3-6.  The coastal boundary zone in Lake Erie was more difficult to 

define, as most of the lake is quite shallow and it does not develop a pronounced 

seasonal thermocline as does Lake Ontario.  From GLIN data, the surface area of Lake 

Erie shallower than 20 m was estimated to be 15200 km2.   

Averaging fluxes at all Lake Ontario sites yielded a mean Ʃ5PCM flux of 58 

ng/m2/day over the coastal boundary zone.  Assuming fluxes of this magnitude 

occurred over 30%–100% the total coastal boundary zone and that fluxes of this 

magnitude occur all year long, we estimated that 41-138 kg/year Ʃ5PCM could be lost 

to volatilization in Lake Ontario.  Lake Erie data yielded an average Ʃ5PCM flux of 13 

ng/m2/day, suggesting that 22-74 kg/year Ʃ5PCM could be lost to volatilization in 

Lake Erie.  This may be an overestimate, as fluxes could be lower in the winter, when 

the surface waters freeze and lower temperatures drive down PCM vapor pressure, but 

the absence of wintertime dissolved concentration data prohibited flux calculations for 

these months.  Although these estimations are based on temporally- and spatially-
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limited data, they are of a similar magnitude to those estimated in previous Great 

Lakes studies, and suggest that volatilization may be a significant loss process for 

dissolved PCMs in this region.  
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FIGURES AND TABLES 

 
Table 3-1. Average Dissolved PCMs (pg/L) Summarized Regionally 

!! N a ADBI AHMI ATII HHCB AHTN 
Toronto Waterfront Nearshore 3 1.1 ± 0.7 2.2 ± 0.7 37 ± 6.6 1625 ± 242 162 ± 32 
Southern L. Ontario Shoreline 3 1.2 ± 0.8 2.4 ± 1.3 28 ± 33 1363 ± 827 134 ± 66 
Greater Cleveland Shoreline/Nearshore 3 1.5 ± 0.9 3.9 ± 2.2 29 ± 13 697 ± 222 72 ± 19 
Southeast L. Erie Shoreline 3 0.1 ± 0.2 0.8 ± 0.3 3.0 ± 5.1 23 ± 39  16 ± 7.9 
Northeast L. Ontario Nearshore 3 < DL 0.4 ± 0.4 2.1 ± 2.0 < DL 14 ± 12 
Offshore L. Erie and L. Ontario 5 0.9 ± 1.2 2.5 ± 3.8 16 ± 21 < DL 28 ± 18 

 1 
 

a N is the number of sites of each type. 

 
 
 
Table 3-2. Average Gaseous PCMs (pg/m3) Grouped By Site Type 

  N a ADBI AHMI ATII HHCB AHTN 
Summer (May - November)   
Offshore/Nearshore Buoys 5 2.1 ± 4.6 2.2 ± 4.9 47 ± 106 < DL 5.4 ± 12 
Toronto Waterfront Nearshore Buoys 3 0.6 ± 1.0 24 ± 17 493 ± 69 1529 ± 591 302 ± 88 
L. Erie and L. Ontario Shoreline  14 2.8 ± 6.3 11 ± 9.5 100 ± 189 357 ± 836 149 ± 159 
Winter (December - April)   
L. Erie and L. Ontario Shoreline 9 0.2 ± 0.6 0.8 ± 1.5 22 ± 44 29 ± 87 17 ± 19 

 1 
 

a N is the number of sites of each type. 
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Figure 3-1.  Average summer HHCB and AHTN (Σ2PCM) concentrations 
throughout the lower Great Lakes.  Average dissolved (top) and gaseous (bottom) 
HHCB and AHTN during summer deployments are shown with HHCB in red and 
AHTN in yellow.  Gaseous Σ2PCM ranged from <DL at sites marked by X’s to 3.2 
ng/m3 in Toledo (TOL).  Dissolved Σ2PCM ranged from <DL at sites marked by X’s 
to 2.5 ng/L near the mouth of Oswego River (OSW).  
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Figure 3-2.  Correlation of dissolved and gaseous Σ5PCM and surrounding 
population density.  Average summer dissolved (left) and gaseous (right) Σ5PCM 
was most strongly correlated with population within 40 km and 25 km of each site, 
respectively.  The 95% confidence intervals for the linear models are shaded in gray. 
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Figure 3-3.  Predicted air-water exchange fluxes based on simulated air and 
water HHCB concentrations. Simulated water and air concentrations of HHCB and 
air-water exchange fluxes calculated from these concentrations are shown on the left 
over a 100-day simulated deployment. The mass of HHCB accumulated in a 2-g PE in 
response to the simulated air and water concentrations is shown on the left, along with 
the air-water exchange flux that would be calculated using this pair of air and water 
PEs.  
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Table 3-3. Comparison of Simulated Air-Water Exchange Fluxes to PE-Derived 
and Grab Sample-Derived Exchange Fluxes.  

Scenario)1:)Randomly)
Fluctuating)Air)and)Water)

Concentrations

Scenario)2:)Steadily)Increasing)
Air)and)Decreasing)Water)

Concentrations
Relative(Percent(Difference((RPD)(between(Faw(and(Faw,PE

Mean(Faw(Over(100(Days( 18.5+/B6.8% 357+/B267%
Mean(Faw(Over(Last(22(days( 15.3+/B8.8% 8.4+/B5.2%
Faw(on(Day(100 351+/B219% 12.3+/B1.2%

Relative(Percent(Difference((RPD)(between(Faw(and(mean(Faw(from(weekly(grab(sample
Mean(Faw(Over(100(Days( 26.9+/B15.0% 21+/B15%
Mean(Faw(Over(Last(22(days( 60.4+/B34.6% 329+/B232
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Figure 3-4.  Summer air-water exchange fluxes of AHTN and HHCB.  Air-water 
exchange fluxes are shown for shoreline Lake Erie and Lake Ontario sites, as well as 
nearshore Toronto buoy sites.  Positive bars represent volatilization while negative 
bars represent absorption.  Cases where both air and water concentrations were <DL 
are marked “<DL”.  Cases where fugacity ratios were not significantly different from 
equilibrium are marked “X”.  Offshore Lake Erie and nearshore northern Lake Ontario 
sites as well as some shoreline sites (SHF, ERI, DUN, BUF, and CV) were omitted 
because no significant exchange fluxes were calculated there.  Error bars represent 
standard deviation calculated via error propagation.   
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Calculating Percent Equilibration Using Best-Fit DBL Thickness. In order to 

determine the ambient concentration (Ca or Cw) of a hydrophobic organic contaminant 

(HOC) from the concentration measured in polyethylene (CPE), percent equilibration 

(f) reached by the compound of interest during deployment must be determined.  

Concentrations of performance reference compounds (PRCs) were measured in all 

deployed samples and in laboratory and field blanks.  Masses in blanks and matrix 

spikes from each batch of PEs were averaged to yield initial PRC concentrations in 

PEs (N0).  The ratio of the final mass of each PRC to its initial mass (N/N0) represents 

the loss during deployment, which is related to f for a target compound with properties 

identical to the PRC.  f for each PRC was calculated as in Equation S1.  

Loss data for benzo(a)pyrene-d12 were not included in determining f for target 

compounds because loss of this compound was generally greater than loss of 

pentabromobiphenyl, suggesting that loss due to processes besides PE-air or PE-water 

diffusive exchange may have occurred.  Six air samples were found to have loss of 

dibromobiphenyl < 90%, which is unrealistic given the deployment times for these 
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samplers and may indicate some inconsistency in deployment practices.  

Concentration estimates for these samples were discarded before further analysis and 

interpretation. 

                                                       (S1) 

 

 For compounds that were not identical to PRCs, PRC loss data was used to 

interpolate or extrapolate an estimated value of f.  This required an understanding of 

how uptake rates change depending on compound properties.  Diffusion of HOCs into 

PE from air or water can be described by a two-layer diffusion model, versions on 

which have previously detailed by Fernandez et al.1, Thompson et al.,2 and Tcaciuc et 

al.3 for aqueous PE uptake.  In the case of long (> 5 day) deployments of relatively 

thin (50 µm) PEs, this uptake model can be simplified by using a generalized 

exponential approximation to calculate the uptake rate based on both air/water-side 

and PE-side resistance, as described by Booij et al.4 

    (S2) 

 In Equation S2, t is the deployment time in seconds, APE is the sampler area in 

m2, KPEM is the dimensionless PE-matrix partitioning coefficient (in this case the 

matrix is either air or water), and VPE is the PE’s volume, calculated from its mass 

(typically around 2 g) and density (0.91 kg/L).  APE was calculated from VPE and the 

PE’s thickness (2lPE), and was typically around 400 cm2.  ko is the mass transfer 
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coefficient, with units of speed, which represents the reciprocal of the sum of the 

matrix-side and PE-side resistance as in Equation S3.  

    (S3) 

  

 

 

Where 

        (S4)                       (S5) 

 1/km is the matrix-side resistance, calculated as the thickness of the diffusive 

boundary layer (δDBL) over the diffusivity of the compound in the given matrix (air or 

water), and 1/kPE is the PE-side resistance, calculated as half the thickness of the PE 

(lPE) over the diffusivity of the compound in PE.  These values are either known (lPE), 

or can be measured/estimated based on other compound properties (KPEM, DM, DPE), 

with the exception of δDBL, which is difficult to observe or measure.  

 To determine δDBL for each deployment, PRC loss data for each sample were 

entered  along with compound properties for each PRC: KPEW and KPEA at 298 K, 

molar volume (Vi), molar mass (Mi), enthalpy of vaporization (ΔHvap) and internal 

energy of aqueous dissolution for the sub-cooled liquid (ΔUw) in kJ/mol and the best-

fit δDBL value was determined using the non-linear least-squares fitting function nls in 

R, as was used by Booij et al.5,4  While theoretically, δDBL could be affected by 

compound properties, previous studies have reported that variation among compounds 
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is small,1 so in this study a single δDBL value was calculated for each set of PRC loss 

data.   

Once values of f were determined for all PRCs, these were used along with 

known and estimated physico-chemical properties for these PRCs (as listed in Table 

S3-8) to calculate the best-fit value of δDBL for each deployment by using nls in R and 

Equation S6, where t is length of the deployment time in seconds, KPEM is the PE-

matrix partitioning coefficient, lPE is the half-thickness of the PE (~ 25 µm), DM is the 

molecular diffusivity of the target compound in air or water (m2/s), and DPE is the 

molecular diffusivity in PE (m2/s).  δDBL for each deployment was then used along 

with the target compound’s known and estimated properties to determine f.  KPEM, DM, 

and DPE were corrected to the average deployment temperature using data from nearby 

meteorological buoys (Table S3-2) using Equations S8 – S12.  

                            (S7) 

                       (S8) 

 Da,T2, the diffusivity in cm2/s of the target compound in air at the mean 

deployment temperature T2, was determined as in Fuller 1966,6 with gas-phase 

pressure (patm) of 1 atm, molar mass of air (MMa) = 28.97 g/mol, and molar volume of 

air (Va) = 20.1 cm3/mol. Mi and Vm are the molar mass and molar volume of the 

compound of interest, which were obtained from SPARC.  

                (S9) 
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 Dw,T2, the diffusivity in cm2/s in water at the mean deployment temperature T2, 

was determined via the Wilke-Chang equation as in Equation S9, where a is 2.6, the 

association parameter for water and MMw is the molar mass (g/mol) of water (18 

g/mol).  T2 is the mean deployment temperature, Vm is the molar volume of the target 

compound in cm3/mol, and νw is the viscosity of water at the nearest whole number 

temperature from Schwarzenbach et al. 2003.7  

                               (S10) 

DPE,T2 was determined from Equation S10, where DPE,T1 is the DPE at 298 K, R 

is the universal gas constant, and Ea is the energy of activation, assumed to be 100,000 

J/mol based on unpublished thin-film experiments by Vansco et al. where DPE was 

measured at a range of different temperatures.  

                         (S11) 

KPEA,T2 was determined from KPEA via Equation S11, where Hvap is the enthalpy of 

vaporization for the target compound and R is the ideal gas constant. 

                           (S12) 

KPEW,T2 was determined from KPEW via Equation S12, where Uw  is the energy of 

solvation in J/mol for the target compound. 

Finally, the concentration measured in pg/kg PE (CPE) was corrected to the 

ambient concentration of the target PCM (Ca) using the density of PE (dPE; 0.91 kg/L), 

KPEM, and f , as in Equation S13.  

                                          (S13) 
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Air-Water Exchange Flux Calculations.  The equilibrium concentration in ng/g PE 

(C∞) was determined from CPE as in Equation S14 using f for the target compound.  

                      (S14) 

The fugacity ratio was then calculated as in Equation S15, where C∞,w and C∞,a 

are the estimated equilibrium PE concentrations in water and air samplers.  

 

                  (S15) 

The air-water exchange flux, Fa/w in pg/m2/day was calculated using Equation 

S16, where va/w is the mass transfer coefficient, C∞,w and C∞,a are the PE equilibrium 

concentrations, and KPEW,T2 is the PE-water partitioning coefficient corrected for the 

mean deployment temperature.  Mass transfer coefficients were calculated for all PE 

pairs that displayed fugacity ratios significantly different from equilibrium after error 

propagation.   

                              (S16) 

va/w was calculated as in Equation S17, where Kaw is the air-water partitioning 

coefficient at the mean deployment temperature, va is the air-side mass transfer 

velocity, and vw is the water-side mass transfer velocity.  

                                (S17) 
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 va was determined from vH2O,a (cm/s), the air-side mass transfer velocity of 

water in air, scaled for the diffusivity of the target compound in air, Dia (cm2/s) at 298 

K versus the diffusivity of water in air at 298 K (0.27 cm2/s), as in Equation S18.  

                                         (S18) 

 vH2O,a was determined as in Equation S19 from the wind speed at 10 meter 

height,  u10, as in Schwarzenbach et al. 2003.7   u10 was determined from mean wind 

speed, u, and height of the wind monitor on the meteorological buoy, h, as in Equation 

S20.  In cases where the height of the monitor was not reported, the height was 

assumed to be 10 meters.   

                 (S19) 

                            (S20) 

 vw,T2 was determined as in Equation S21 from the mass transfer velocity of 

CO2 (cm/s) in water (vCO2,w), scaled to the target compound using the Schmidt number 

at the deployment temperature (ScT2), the Schmidt number for CO2 at 20 °C (ScCO2,w = 

600) and asc, a scaling factor based on wind speed (0.67 for mean wind speeds <4.2 

m/s, and 0.5 for higher wind speeds).  The dimensionless Schmidt number is the ratio 

of the viscosity of the water to the diffusivity of the target compound in water. 

                               (S21) 

 vCO2, the average velocity of CO2 (cm/s) in water over the deployment, was 

determined by integrating the Weibull probability density function using all recorded 
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wind speeds over the deployment from the nearest meteorological buoy, scaled to 10 

m above the interface as in Equation S20.   

 ScT2, the Schmidt number at the mean deployment temperature, was 

determined as in Equation S22, by scaling ScT1, the Schmidt number at 298 K, by the 

kinematic viscosity of water (νw) at T2 versus T1.  

                             (S22) 

Error Propagation in Air-Water Exchange Calculations.  The variance in the 

equilibrium concentration (σC∞
2) was calculated from the variance in measured 

concentration in PE (σCPE
2), as determined from the standard deviation of repeated 

measurements from randomly-chosen extracts, and the variance in f (σf
2) as in 

Equation S23.  

                                         (S23) 

σf
2 (Equation S24) was determined from the variance of the best-fit δDBL estimate, 

taken as the standard deviation in the best-fit value from the non-linear least squares 

model, the variance of DM (assumed to be 50%) and the variance of KPEM,T2, 

determined as in Equation S25.  

      (S24) 

 Variance in KPEM,T2 was determined from Equation S25 using the variance of 

KPEM,T1 (assumed to be 0.2 log units), and the variance of Hvap (assumed to be 30%) or 

UW (assumed to be 50%), as in Morgan et al. 2008.8  

                           (S25)       
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Variance in the fugacity ratio (σfa/w
2) was calculated as in Equation S26.  Only 

fugacity ratios significantly different from equilibrium (fw/fa = 1) within the ±1σ range 

were used in air-water exchange flux calculations. 

      (S26) 

Variance in the air-water exchange flux (σFa/w
2) was calculated as in Equation 

S27, where the standard deviation of va/w was assumed to be 30%.9  

  (S27) 

 

 These calculations were repeated for each air-water PE pair.  The average 

percentage of total variance contributed to C∞,w by analytical uncertainty was 85%, 

and for C∞,a was 96%.  Uncertainty in f, which accounts for uncertainty in partitioning 

coefficients and other physical properties, accounted for 15% of variance in C∞,w and 

4% of the variance in C∞,a.  In situations where the compounds being measured do not 

approach equilibrium, f would be expected to be responsible for a larger portion of 

total uncertainty, as demonstrated by Khairy et al. 2013.10  

Elevated Dissolved PCMs Near WWTPs.  Dissolved PCMs were greatest in 

Oswego (OSW), which was also the site most likely to be influenced by wastewater, 

as two wastewater treatment plants (WWTPs) designated as major dischargers by the 

US Environmental Protection Agency (EPA) National Pollutant Discharge 

Elimination System (NPDES)11 were within 1.5 km of the deployment location.  

Though this site was near the mouth of the Oswego River, it is likely that elevated 

dissolved PCMs were not representative of typical river discharge.  Rather, they were 
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likely influenced by these nearby point sources which discharged directly into Lake 

Ontario.   

 The second-most elevated dissolved Ʃ5PCM was measured at three Toronto 

nearshore sites (ETOR, TOR, and WTOR), possibly due to influences of three WWTP 

discharges within 1–8 km of the sites, combined with runoff from the densely 

populated Toronto conurbation.12,13 Similarly, Cleveland area sites (CLE, FH, and 

SHF) were likely influenced by impacted waterways such as the Cuyahoga River and 

Black River as well as a number of WWTPs that discharged directly into Lake Erie 

along this stretch of shoreline.  

 The water sampling site in Rochester (ROC) was placed slightly upstream of 

the mouth of the Genesee River, making it likely that river discharge was sampled.  

This site was likely representative of a mixture of urban runoff and wastewater 

effluent discharged into the river.  In contrast, the PEs at the Buffalo site (BUF), 

where aqueous PCMs were <15 pg/L, were placed on the mouth of the Buffalo River, 

but there were no major NPDES-licensed treatment facilities on the river, and this 

region was characterized by a number of smaller industrial dischargers, which were 

expected to be much less important as sources of PCMs.  

 The Niagara River site (NIA) also exhibited elevated dissolved PCM 

concentrations during late summer.  Few NPDES-designated point sources were 

nearby.  However, due to the large volume of discharge and large plume extent from 

Niagara River, concentrations were expected to be representative of upriver sources 

channeled into Lake Ontario, including several major WWTPs. 

 
 



 

 
 

124 

Table S3-1: Deployment Summary for 2011-2012 Air and Water PEs  
 

Mean Air 
T (ºC) 

Mean Wind 
Speed 
(m/s)

Sample 
No. 

Date 
Deployed

Date 
Recovered

Days 
Deployed

Sample 
No. 

Date 
Deployed

Date 
Recovered

Days 
Deployed

5.5 4.5 1526 10/2/11 4/24/12 205
17.0 3.5 2718 4/24/12 7/2/12 69
23.4 3.0 3128 7/2/12 8/30/12 59 3130 7/2/12 8/30/12 59
15.4 4.1 3528 8/30/12 10/31/12 62 3530 8/30/12 10/31/12 62
15.4 4.1 3529 8/30/12 10/31/12 62 3531 8/30/12 10/31/12 62

5.5 5.1 1412 10/5/11 4/30/12 208
20.3 4.5 2825 5/26/12 6/30/12 35 2824 5/26/12 6/30/12 35
20.3 4.5 2828 5/26/12 6/30/12 35
21.4 4.1 3113 6/30/12 9/30/12 92 3115 6/30/12 9/30/12 92

20.4 4.5 2830 5/26/12 7/1/12 36
19.7 4.2 3118 7/1/12 10/22/12 113
19.7 4.2 3119 7/1/12 10/22/12 113

20.3 4.5 2835 5/26/12 6/30/12 35
19.7 4.2 3123 7/1/12 10/22/12 113
19.7 4.2 3124 7/1/12 10/22/12 113

5.2 5.5 1521 10/3/11 5/11/12 221
19.4 4.1 2707 5/11/12 7/10/12 60 2711 5/11/12 7/10/12 60
22.6 3.8 3108 7/10/12 9/4/12 56 3110 7/10/12 9/4/12 56
22.6 3.8 3109 7/10/12 9/4/12 56 3111 7/10/12 9/4/12 56
12.8 5.4 3507 9/4/12 11/15/12 72 3511 9/4/12 11/15/12 72

2.5 4.9 1519 11/2/11 5/1/12 181
18.6 3.9 2702 5/1/12 7/19/12 79 2704 5/1/12 7/19/12 79
18.6 3.9 2703 5/1/12 7/19/12 79
22.4 4.3 3102 7/17/12 8/29/12 43 3104 7/17/12 8/29/12 43
14.9 5.0 3502 8/29/12 10/30/12 62 3504 8/29/12 10/30/12 62
14.9 5.0 3503 8/29/12 10/30/12 62 3505 8/29/12 10/30/12 62

21.3 3.9 2908 5/22/12 8/1/12 71 2901 5/22/12 8/1/12 71
21.3 3.9 2909 5/22/12 8/1/12 71
17.7 3.8 3303 8/1/12 10/16/12 76 3317 8/1/12 10/19/12 79

ROC1: Rochester, NY - Coast Guard Auxiliary Base 4-2: 43.25238 ºN, 77.60938 ºW

CV: Cape Vincent, NY: 44.13034 ºN, 76.33173 ºW

Air Water

LAKE ONTARIO
NIA: Niagara Falls, NY - Fort Niagara State Park: 43.26125 ºN, 79.06287 ºW 

Meteorology

ROC2: Rochester, NY - US Coast Guard Station: 43.25694 ºN, 77.60261 ºW

OSW: Oswego, NY: A: 43.46319 ºN, 76.51671 ºW; W:  43.46550 ºN, 76.51666 ºW

ROC 3: Rochester, NY - Beach Avenue: 43.26438 ºN, 77.61692 ºW

Offshore Lake Ontario (Deployed by Ontario Ministry of the Environment)
TOR: Toronto, ON (Stn AW-2): A: 43.66496 ºN, 79.26481 ºW; W: 43.66387 ºN, 79.26488 ºW
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21.3 3.9 2903 5/22/12 7/31/12 70 2928 5/22/12 7/31/12 70
21.3 3.9 2927 5/22/12 7/31/12 70
17.8 3.7 3313 7/31/12 10/16/12 77 3329 7/31/12 10/16/12 77

21.3 3.9 2906 5/22/12 8/1/12 71 2917 5/22/12 8/1/12 71
21.3 3.9 2920 5/22/12 8/1/12 71
17.1 3.8 3304 8/1/12 10/22/12 82 3308 8/1/12 10/22/12 82
17.1 3.8 3311 8/1/12 10/22/12 82

19.7 2.4 2914 5/23/12 8/1/12 70 2910 5/23/12 8/1/12 70
16.4 2.8 3324 8/1/12 10/22/12 82 3322 8/1/12 10/22/12 82
16.4 2.8 3328 8/1/12 10/22/12 82

20.0 4.4 2919 5/23/12 8/2/12 71 2934 5/23/12 8/2/12 71
20.0 4.4 2931 5/23/12 8/2/12 71
17.6 6.0 3302 8/2/12 10/25/12 84 3309 8/2/12 10/25/12 84

18.1 3.5 2306 4/10/12 10/25/12 198

18.9 4.2 2325 5/14/12 10/25/12 164

16.9 4.9 2321 4/3/12 10/20/12 200

4.6 5.3 1528 10/3/11 5/1/12 211
4.6 5.3 1529 10/3/11 5/1/12 211
17.5 3.5 2723 5/1/12 7/2/12 62 2725 5/1/12 7/2/12 62
22.5 3.6 3133 7/2/12 8/30/12 59 3135 7/2/12 8/30/12 59
14.8 4.7 3533 8/30/12 11/1/12 63
14.8 4.7 3534 8/30/12 11/1/12 63

5.7 6.2 1530 10/3/11 4/30/12 210
17.5 4.2 2728 4/30/12 6/28/12 59 2730 4/30/12 6/28/12 59
22.7 3.5 3202 6/28/12 8/29/12 62 3204 6/28/12 8/29/12 62
22.7 3.5 3203 6/28/12 8/29/12 62 3205 6/28/12 8/29/12 62
15.8 4.2 3901 8/29/12 10/22/12 54 3903 8/29/12 10/22/12 54
15.8 4.2 3902 8/29/12 10/22/12 54

DUN: Dunkirk, NY: A: 42.49252 ºN, 79.35336 ºW;  W: 42.49247 ºN, 79.34852 ºW

LAKE ERIE

CHB: Chub Point, ON (Stn 3509):  A: 43.95329 ºN, 78.01405 ºW; W: 43.95339 ºN, 78.01089 ºW

WONT: Western Offshore Ontario (Stn 207) offshore from Niagara: 43.32833 ºN, 79.13472 ºW

PEP: Prince Edward Point, ON (Stn 3087): A: 43.95745 ºN, 76.81011 ºW; W: 43.95832 ºN, 76.81039 ºW

GRI: Western Offshore Ontario (Grimsby Met Buoy): 43.25893 ºN, 79.53865 ºW

CONT: Central Offshore Ontario (Stn 403): 43.58806 ºN, 78.24055 ºW

Offshore Lake Ontario (Deployed by Environment Canada)

Air WaterMeteorology
WTOR: West Toronto, ON (Stn 3508): A: 43.57255 ºN, 79.51809 ºW; W: 43.571847 ºN, 79.51732 ºW

ETOR: East Toronto, ON (Stn 708): A: 43.79478 ºN, 79.08620 ºW; W: 43.79373 ºN, 79.08655 ºW

BUF: Buffalo, NY - US Coast Guard Station: 42.87758 ºN, 78.89047 ºW



 

 
 

126 

7.1 6.6 1533 10/13/11 6/7/12 238
21.6 5.0 2734 6/7/12 7/3/12 26 2736 6/7/12 7/3/12 26
21.6 5.0 2737 6/7/12 7/3/12 26
22.5 4.6 3207 7/3/12 9/7/12 66 3209 7/3/12 9/7/12 66
16.6 5.5 3909 9/7/12 10/4/12 27
16.6 5.5 3910 9/7/12 10/4/12 27

20.9 5.4 2801 5/21/12 7/2/12 42 2803 5/29/12 6/29/12 31
20.9 5.4 2802 5/21/12 7/2/12 42 2804 5/29/12 6/29/12 31
21.7 4.6 3212 7/2/12 9/17/12 77 3214 6/29/12 9/17/12 80
14.0 6.3 3912 9/17/12 10/15/12 28
14.0 6.3 3913 9/17/12 10/15/12 28

21.0 3.2 2806 5/17/12 7/7/12 51 2808 5/5/12 6/28/12 54
21.0 3.2 2807 5/17/12 7/7/12 51 2809 5/5/12 6/28/12 54
23.2 2.9 3218 7/7/12 9/7/12 62 3220 7/7/12 9/7/12 62
23.2 2.9 3221 7/7/12 9/7/12 62
15.6 3.1 3917 9/7/12 10/9/12 32
15.6 3.1 3918 9/7/12 10/9/12 32

5.8 4.8 1402 9/30/11 5/1/12 214
19.2 3.3 2812 5/1/12 7/2/12 62
23.4 2.9 3223 7/2/12 8/31/12 60
15.1 4.1 3922 8/31/12 11/1/12 62
15.1 4.1 3923 8/31/12 11/1/12 62

21.9 3.2 2819 4/27/12 8/20/12 115

5.7 4.8 1404 10/4/11 4/28/12 207
18.7 3.3 2713 4/28/12 7/2/12 65
23.3 2.9 3227 7/5/12 9/7/12 64
13.0 4.5 3927 9/7/12 11/8/12 62
13.0 4.5 3928 9/7/12 11/8/12 62

17.2 6.4 2328 4/25/12 10/17/12 175 2322 4/25/12 10/17/12 175

22.4 4.9 2327 5/2/12 10/16/12 167 2330 5/2/12 10/16/12 167

18.7 5.8 2317 8/8/12 10/9/12 62

CLE: Cleveland, OH - Edgewater Park: A: 41.49212 ºN, 81.73326 ºW;  W: 41.50383 ºN, 81.7655 ºW

FH: Fairport Harbor, OH: A: 41.75835 ºN, 81.27789 ºW;  W: 41.7772 ºN, 81.2439 ºW

ERI: Erie, PA - Presque Isle State Park: A: 42.15585 ºN, 80.11288 ºW;  W: 42.15199 ºN, 80.11191 ºW

CLD: Cleveland, OH - DOH George T. Craig Air Monitoring Station:  41.49208 ºN, 81.67851 ºW

EERI: Eastern Erie (Stn 452): 42.57611 ºN, 79.92417 ºW

CERI: Central Erie (Stn 880): 41.90944 ºN, 81.66917 ºW

TOL: Toledo, OH: 41.69105 ºN, 83.40189 ºW

SHF: Sheffield Lake, OH: 41.49741 ºN, 82.08252 ºW

WERI: Western Erie (Stn 970): 41.82433 ºN, 82.97497 ºW

Offshore Lake Erie (Deployed by Environment Canada)

Air WaterMeteorology
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Table S3-2.  Buoys Used for Temperature and Wind Data  
 

 
 

                                                   

 
Figure S3-1.  Locations of Air Sites Relative to Buoys.  Black lines are used to 
clarify which buoy was used for which site. Green triangles show air sampling sites 
and pink circles show meteorological buoys.  
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Table S3-3.  Average Matrix Spike Recoveries.  
 

Compound

ADBI 91 ± 33
AHMI 104 ± 40
ATII 98 ± 32
HHCB 91 ± 49
AHTN 106 ± 41
Musk Xylene 79 ± 26
Musk Ketone 145 ± 50

Percent 
Recovery             

± 1σ                    
(N = 21)

 
 
 
 

Table S3-4.  Relative Percent Difference (RPD) between Duplicate Samples.  
RPDs calculated for samplers where target compound was found >DL in both 
replicates. 
 

ADBI 41 ± 26 40 ± 22
AHMI 40 ± 31 35 ± 29
ATII 14 ± 22 22 ± 22
HHCB 18 ± 14 15 ± 32
AHTN 21 ± 24 25 ± 40

Mean	  RPD	  for	  Air	  PE	  Dups Mean	  RPD	  for	  Water	  PE	  Dups

 
 

 
Table S3-5.  Mean Blank Concentrations and Detection Limits (ng/g PE). 
 

Detection 
Limit (95% CI 
of Lab Blank) 

ADBI 0.10 ± 0.14 0.27 0.14 ± 0.17 0.04 ± 0.04 0.14 ± 0.10
AHMI 0.17 ± 0.18 0.36 0.38 ± 0.34 0.09 ± 0.11 0.38 ± 0.26
ATII 0.18 ± 0.23 0.47 13.2 ± 38.2 0.16 ± 0.21 0.02 ± 0.05
HHCB 12.8 ± 11.9 23.7 27.8 ± 25.9 3.6 ± 3.7 3.7 ± 1.4
AHTN 1.23 ± 1.00 2.00 2.08 ± 1.47 0.57 ± 0.49 0.75 ± 0.30
Musk Xylene 0.51 ± 1.46 2.92 35.1 ± 104.2 0.25 ± 0.11 0.08 ± 0.11
Musk Ketone 2.07 ± 4.03 8.05 0.96 ± 0.95 0.37 ± 0.18 0.35 ± 0.29

Mean Lab 
Blank ± 1σ                

(N=13)

Mean Shoreline 
Field Blank  ± 1σ 

(N=9)

Mean OME Field 
Blank  ± 1σ      

(N=5)

Mean Env. Can. 
Field Blank  ± 1σ           

(N=7)
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Figure S3-2.  HHCB and AHTN Fugacity Ratios.  
 
HHCB 

 
 
 
AHTN 
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Figure S3-3.  Summary of Dissolved PCMs Over Multiple Deployments.  For 
shoreline/nearshore sites, DEP 1, 2, and 3 are early summer, mid-summer, and late 
summer/early fall, respectively. For nearshore Northern Ontario sites, DEP 1 is early-
to-mid-summer and DEP 2 is mid-summer to early fall.  Concentrations are not 
available for all deployments at all sites, and the absence of a bar means no sample 
was retrieved or all concentrations were <DL. 
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Figure S3-4.  Summary of Gaseous PCMs Over Multiple Deployments.  For 
shoreline sites, DEP 1, 2, and 3 are early summer, mid-summer, and late summer/early 
fall, respectively. For nearshore Northern Ontario sites, DEP 1 is early-to-mid-summer 
and DEP 2 is mid-summer to early fall. Concentrations are not available for all 
deployments at all sites, and the absence of a bar means no sample was retrieved or all 
concentrations were <DL.  
 
 
 

 
 
 

 
 
 
 
 
 
 



 

 
 

135 

Table S3-10.  PCM Fugacity Ratios. Grayed-out values were not significantly 
different from equilibrium after error propagation. Values in red note ratios for pairs 
where either the air or water concentrations was < DL, and the DL values was used to 
calculate the fugacity ratio.  NA marks pairs with concentrations < DL in both air and 
water, for which no ratio was calculated.  
 

CLE Dep'1 80 ± 242 25 ± 33 0.94 ± 0.72 1.3 ± 0.16 0.50 ± 0.15
CLE Dep'2 69 ± 276 5.0 ± 7.4 2.0 ± 2.2 2.7 ± 0.31 1.3 ± 0.21
FH Dep'1 212 ± 741 86 ± 193 2.0 ± 1.6 2.2 ± 0.26 2.4 ± 0.72
FH Dep'2 47 ± 203 36 ± 134 0.61 ± 1.1 0.54 ± 0.34
ERI Dep'1 51 ± 241 3.1 ± 5.2 1.1 ± 0.25 1.3 ± 0.94
ERI Dep'2
DUN Dep'1 11 ± 43 0.76 ± 0.53
DUN Dep'2 26 ± 126 14 ± 45 1.0 ± 0.75
DUN Dep'3 4.6 ± 19 0.85 ± 0.63
BUF Dep'1 28 ± 138
BUF Dep'2 16 ± 51 1.1 ± 0.81
NIA Dep'2 80 ± 341 9.2 ± 29 1.6 ± 1.04
NIA Dep'3 198 ± 754 19 ± 25 5.3 ± 8.5 5.4 ± 0.81 4.8 ± 1.5
ROC Dep'1 28 ± 38 177 ± 682 3.8 ± 0.63 5.6 ± 3.0
OSW Dep'1 44 ± 222 40 ± 159 4.4 ± 5.2 4.2 ± 0.63 3.4 ± 1.5
OSW Dep'2 48 ± 238 49 ± 189 4.0 ± 6.4 3.5 ± 0.52 5.9 ± 3.3
OSW Dep'3 104 ± 408 16 ± 28 8.5 ± 6.7 18 ± 2.6 7.1 ± 1.3
CV Dep'1
CV Dep'2 1.0 ± 0.77
CV Dep'3 3.0 ± 12

EERI Dep'1 16 ± 72 1.5 ± 2.9
CERI Dep'1 16 ± 38 31 ± 120 1.6 ± 1.1
W'TOR Dep'1 183 ± 761 8.0 ± 12 1.7 ± 1.9 3.8 ± 0.42 1.2 ± 0.25
W'TOR Dep'2 262 ± 893 99 ± 396 1.3 ± 0.67 1.4 ± 0.14 0.92 ± 0.15
TOR Dep'1 70 ± 290 1.7 ± 1.3 4.0 ± 0.77 2.8 ± 0.72
TOR Dep'2 136 ± 572 21 ± 48 1.7 ± 0.98 2.1 ± 0.13 1.9 ± 0.26
E'TOR Dep'1 106 ± 527 5.0 ± 14 2.8 ± 3.5 5.7 ± 1.1 3.2 ± 0.93
E'TOR Dep'2 149 ± 629 72 ± 290 2.3 ± 1.2 2.6 ± 0.17 1.9 ± 0.24
CHUB Dep'1 11 ± 43
CHUB Dep'2 26 ± 130 1.1 ± 2.4 2.0 ± 1.2
PEP Dep'1
PEP Dep'2 56 ± 229 1.1 ± 2.3 2.0 ± 1.2

NA

NA NA

Shoreline)Air+Water)Pairs

Offshore/Near+Shore)Air+Water)Pairs

NA NA NA

ADBI AHMI ATII HHCB AHTNLocation Dep3No.

NA NA NA

NA NA NA NA
NA NA
NA NA NA NA NA
NA NA

NA
NA NA

NA

NA
NA
NA NA NA NA NA
NA

NA

NA
NA
NA

NA
NA
NA

NA NA

NA

NA
NA

NA
NA

NA NA
NA NA

NA

NA NA NA NA
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Table S3-11.  PCM Air-Water Exchange Mass Transfer Coefficients (cm/day).  
Air-water exchange mass transfer coefficients (cm/day) were calculated in cases 
where the fugacity ratio was significantly different from equilibrium after error 
propagation.  All others were replaced with “NA”.  
 

Location Dep+No. ADBI AHMI ATII HHCB AHTN

CLE Dep'1 NA NA NA 7.0 7.0
CLE Dep'2 NA NA NA 7.0 7.0
FH Dep'1 NA NA NA 6.9 6.9
FH Dep'2 NA NA NA NA 7.3
ERI Dep'1 NA NA NA NA NA
ERI Dep'2 NA NA NA NA NA
DUN Dep'1 NA NA NA NA NA
DUN Dep'2 NA NA NA NA NA
DUN Dep'3 NA NA NA NA NA
BUF Dep'1 NA NA NA NA NA
BUF Dep'2 NA NA NA NA NA
NIA Dep'2 NA NA NA NA NA
NIA Dep'3 NA NA NA 7.0 7.0
ROC Dep'1 NA NA NA 8.7 8.8
OSW Dep'1 NA NA 5.6 5.3 5.3
OSW Dep'2 NA NA NA 4.5 4.5
OSW Dep'3 NA NA 9.3 8.5 8.5
CV Dep'1 NA NA NA NA NA
CV Dep'2 NA NA NA NA NA
CV Dep'3 NA NA NA NA NA

EERI Dep'1 NA NA NA NA NA
CERI Dep'1 NA NA NA NA NA
W'TOR Dep'1 NA NA NA 5.0 NA
W'TOR Dep'2 NA NA NA 4.9 NA
TOR Dep'1 NA NA NA 5.0 5.0
TOR Dep'2 NA NA NA 4.9 4.9
E'TOR Dep'1 NA NA NA 5.0 5.0
E'TOR Dep'2 NA NA 4.9 4.7 4.7
CHUB Dep'1 NA NA NA NA NA
CHUB Dep'2 NA NA NA NA NA
PEP Dep'1 NA NA NA NA NA
PEP Dep'2 NA NA NA NA NA

Shoreline)Air+Water)Pairs

Offshore/Near+Shore)Air+Water)Pairs
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Table S3-12.  PCM Air-Water Exchange Fluxes (ng/m2/day).  Air-water exchange 
fluxes (ng/m2/day) were calculated in cases where the fugacity ratio was significantly 
different from equilibrium after error propagation.  All others are replaced with “NA”.  

Location Dep+No. ADBI AHMI

CLE Dep'1 NA NA 11 ± 6.0 73.4 ± 1.8
CLE Dep'2 NA NA 54 ± 20 2.0 ± 1.5
FH Dep'1 NA NA 38 ± 15 4.4 ± 2.0
FH Dep'2 NA NA 71.5 ± 1.4
ERI Dep'1 NA NA
ERI Dep'2 NA NA
DUN Dep'1 NA NA
DUN Dep'2 NA NA
DUN Dep'3 NA NA
BUF Dep'1 NA NA
BUF Dep'2 NA NA
NIA Dep'2 NA NA
NIA Dep'3 NA NA 82 ± 30 9.3 ± 3.6
ROC Dep'1 NA NA 79 ± 30 10 ± 4.0
OSW Dep'1 NA NA 2.3 ± 1.4 58 ± 21 4.0 ± 1.8
OSW Dep'2 NA NA 38 ± 14 5.4 ± 2.1
OSW Dep'3 NA NA 8.8 ± 3.5 341 ± 127 28 ± 10
CV Dep'1 NA NA
CV Dep'2 NA NA
CV Dep'3 NA NA

EERI Dep'1 NA NA
CERI Dep'1 NA NA
W'TOR Dep'1 NA NA 64 ± 23
W'TOR Dep'2 NA NA 20 ± 10
TOR Dep'1 NA NA 50 ± 20 5.8 ± 2.6
TOR Dep'2 NA NA 37 ± 14 4.0 ± 1.7
E'TOR Dep'1 NA NA 77 ± 30 5.7 ± 2.5
E'TOR Dep'2 NA NA 1.6 ± 1.0 56 ± 21 4.5 ± 1.8
CHUB Dep'1 NA NA
CHUB Dep'2 NA NA
PEP Dep'1 NA NA
PEP Dep'2 NA NA

NA

NA

NA

Shoreline)Air+Water)Pairs

Offshore/Near+Shore)Air+Water)Pairs

NA
NA
NA
NA

NA
NA
NA
NA

NA
NA
NA

NA
NA
NA

NA
NA

NA
NA
NA
NA

NA

NA

NA

NA
NA
NA
NA
NA

NA
NA

NA

NA NA NA
NA

NA

NA NA
NA NA
NA

NA

NA

NA NA NA

NA
NA
NA

NA NA

NA NA
NA
NA

NA
NA
NA

NA
NA
NA

ATII HHCB AHTN

NA
NA
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Figure S3-5.  PE-Derived Air-Water Exchange Fluxes for Scenario 1.  
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Figure S3-6.  Great Lakes Coastal Boundary Zone from Bathymetry.  Depth 
contours for every 10-meter interval were extracted from the Great Lakes Information 
Network (GLIN) bathymetry dataset23 and used to divide the lakes into shallower 
areas where water is expected to be entrained near the shoreline and more significant 
volatilization may occur, and deeper areas where the dissolved concentrations that 
drive volatilization are expected to be lower.  Areas were used to attain ballpark 
estimates of volatilization fluxes over the lakes.  
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ABSTRACT  

Organic flame retardants (OFRs) such as polybrominated diphenyl ethers 

(PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, 

and bioaccumulative contaminants that have been used in consumer goods to slow 

combustion.  In this study, polyethylene passive samplers (PEs) were deployed 

throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in 

air and water, calculate air-water exchange fluxes, and investigate spatial trends.  

Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas 

gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m3).  

NHFRs were generally below detection limits.  Air-water exchange was dominated by 

absorption of BDEs 47 and 99, ranging from -964 pg/m2/day to -30 pg/m2/day.  

Σ12BDE in air and water was significantly correlated with surrounding population 

density, suggesting that phased-out PBDEs continued to be emitted from population 

centers along the Great Lakes shoreline in 2012.  Correlation with dissolved Ʃ12BDE 

was strongest when considering population within 25 km while correlation with 

gaseous Σ12BDE was strongest when using population within 3 km to the south of 

each site.  Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, 

illustrating the utility of relatively highly spatially resolved measurements in 

identifying potential hot spots for future study.   
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INTRODUCTION  

 Organic flame retardants (OFRs) such as the polybrominated diphenyl ethers 

(PBDEs) and novel halogenated flame retardants (NHFRs) are persistent 

bioaccumulative contaminants that have been liberally added to polymers used in 

consumer goods to slow combustion in the event of a fire.1,2  While PBDEs are no 

longer manufactured or used in North America, they are ubiquitous in the environment 

and continually leach out of in-use products, especially furniture, casings for 

electronics, and automotive upholstery.3  Numerous studies have shown that PBDEs, 

as well as many NHFRs, accumulate in humans4–6 and wildlife,7–11 and that 

concentrations are elevated in North American cities.12–14  Some studies have 

suggested that various NHFRs are increasingly being added to consumer products due 

to the PBDE phase-out, but there is uncertainty regarding which chemicals are being 

used in which applications, and at what production volumes.2,14–16  

 Previous studies have identified densely populated areas, central business 

districts, and indoor environments as sources of OFRs to the atmosphere via 

volatilization from consumer goods.13,14,17,18  Atmospheric wet and dry deposition 

have been identified as important pathways for these contaminants to reach the Great 

Lakes,19,20 though recent work has shown inputs from stormwater, tributaries, and 

wastewater also play a significant role.21,22  Some studies have identified absorption of 

gaseous PBDEs from air as a potentially significant source of some PBDEs to the 

Great Lakes,23,24 though others have demonstrated that volatilization from surface 

water can be a significant loss process for semivolatile organic compounds, especially 

as atmospheric concentrations decline following changes in regulation.25,26  The 
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direction of air-water diffusive exchange for OFRs can be deduced by simultaneous 

measurement of dissolved and gaseous concentrations, which has not been undertaken 

previously in the lower Great Lakes (Lake Erie and Lake Ontario).  

 While some recent studies have measured concentrations of PBDEs and 

NHFRs in air,14,18,27,28 rain,19 and surface water29 of the lower Great Lakes, there are 

no published studies of regional spatial trends, nor are there reported measurements of 

air-water exchange fluxes.  This information is critical to track whether changes in 

regulation and usage of OFRs cause changes in spatial distributions and air-water 

exchange.  Deployment of polyethylene passive samplers (PEs) in air and water is a 

convenient way to deduce fugacity ratios at the air-water interface and a cost-effective 

approach to time-averaged monitoring at numerous sites.  PEs have been used to 

measure PBDEs in a handful of previous studies,24,30–32 but their use to detect NHFRs 

has not been reported.  

 In this study, extracts from PEs deployed in the air and water throughout Lake 

Erie and Lake Ontario were analyzed for 12 PBDEs and 9 NHFRs to (i) determine 

baseline concentrations of PBDEs and NHFRs at shoreline, nearshore, and offshore 

sites, (ii) determine whether the lower Great Lakes were acting as sinks or secondary 

sources of PBDEs via air-water exchange, (iii) investigate spatial trends of PBDEs and 

their relation to population centers, and (iv) build a geostatistical interpolation model 

to provide estimates of dissolved PBDE concentrations across the lakes.  
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MATERIALS AND METHODS 

Sampler Preparation and Deployment.  Air and water PEs were deployed 

throughout the lower Great Lakes region from April to November of 2012.  Air 

concentrations were monitored at 22 locations (14 shoreline, 5 nearshore (<5 km from 

the shoreline), and 3 offshore sites), while water concentrations were monitored at 20 

locations (8 shoreline, 7 nearshore, and 5 offshore sites).  Air samplers were also 

deployed during the 2011/2012 winter (generally from October 2011 to April 2012).  

Deployment times ranged from 4 to 30 weeks.  The sampling schedule and site 

characteristics are summarized in the Supporting Information (SI) along with the 

length of deployment time (Table S4-1).  Nearby meteorological buoys used to 

determine average temperature and wind speed are listed in Table S4-2.   

Details of sampler preparation and deployment have been summarized 

previously in McDonough et al. and Liu et al.33,34  Briefly, 50 µm-thick PEs were 

precleaned with solvent and loaded with performance reference compounds (PRCs), 

which included deuterated polycyclic aromatic hydrocarbons (PAHs; naphthalene-d8, 

pyrene-d12, and benzo(a)pyrene-d12) and bromobiphenyls (PBB 9, PBB 52, and PBB 

103).  Shoreline air PEs were secured within protective chambers constructed from 

two metal bowls and hung from trees or structures, generally at about 1.5 m height.  

Shoreline water PEs were fastened to rope and anchored about 1 m below the water’s 

surface.  Nearshore/offshore air PEs were fastened into protective chambers secured to 

buoys about 2 m above the water’s surface and water PEs were placed in perforated 

stainless steel cages and secured to subsurface floats at a depth of about 4 m.  After 
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PEs were recovered, they were mailed back to the laboratory overnight on ice and 

frozen until extraction.  

Extraction and Analysis.  PEs from 56 air and 39 aqueous deployments were spiked 

with non-native PBDEs (BDE 35, BDE 77, BDE 118, BDE 128, and BDE 190) and 

extracted for about 24 h in pentane, then concentrated to ~50 µL and spiked with 

injection standard (BDE 71).  Water extracts were passed through silica gel/sodium 

sulfate cleanup columns and eluted with 60:40 pentane:DCM.  Concentrations were 

corrected for internal standard recoveries.   

Extracts were analyzed for 12 mono- to octa-brominated PBDEs (BDE 2, 8, 

15, 30, 28, 47, 49, 100, 99, 154, 153, and 183) and 9 NHFRs (tetrabromo-p-xylene 

(pTBX), pentabromobenzene (PBBz), pentabromotoluene (PBT), 

pentabromoethylbenzene (PBEB), hexabromobenzene (HBBz), 

hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO), 1,2-bis(2,4,6-

tribromophenoxy)ethane (BTBPE), and anti- and syn-isomers of Dechlorane Plus 

(ADP and SDP)) on an Agilent 6890N gas chromatograph coupled to a Waters 

Quattro Micro mass spectrometer (GC-MS/MS) in electron ionization mode (EI, 70 

eV) using multiple reaction monitoring (MRM).  Extracts were injected in splitless 

mode with helium carrier gas at 2 mL/min onto an Agilent J&W DB-5MS fused silica 

capillary column (30 m x 0.25 mm I.D.). 

Quality Control.  Every batch of PEs was extracted alongside a method blank and 

two spiked blanks to control for compound losses during extraction, concentration, 

and cleanup.  Average spike recoveries ranged from 67±15% for BDE 2 to 101±19% 

for BDE 100 (Table S4-3).  
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Concentrations were blank-subtracted using the most relevant field blank and 

detection limits were defined as the upper limit of the 95% confidence interval for 11 

laboratory blanks. Detection limits per gram PE are summarized in Table S4-4, and 

are converted to typical ambient air or water concentrations in Table S4-5.  Percent 

detection for each compound is shown in Table S4-6.  Concentrations below detection 

limits were replaced with zero.   

Detection limits per gram polyethylene (PE) are summarized in Table S4-4 and 

are converted to typical ambient air or water concentrations in Table S4-5.  Percent 

detection for each compound is shown in Table S4-6.  For compounds not detected in 

the blanks, instrumental noise was integrated to define detection limits.  Calculated 

ambient detection limits were dependent on the sampling rate and varied from sample 

to sample.  Typical detection limits were greatest in shoreline samples, ranging from 

0.1 pg/m3 for BDE 30 to 7.4 pg/m3 for HCDBCO in air, and from 0.07 pg/L for BDE 

153 and BDE 30 to 6.5 pg/L for PBBz in water.   

 For air PEs, the mean difference between ambient concentrations derived from 

duplicate samplers ranged from 16% (0.008 pg/m3) for BDE 49 to 87% (0.69 pg/m3) 

for BDE 100 (N = 18).  For water PEs, the mean difference between ambient 

concentrations derived from duplicate samplers ranged from 24% (0.96 pg/L) for BDE 

28 to 43% (0.07 pg/L) for BDE 153 (N = 14). 

Sampling Rates and Ambient Concentrations.  PRC loss data was entered into a 

generalized exponential model for PE uptake to derive best-fit values for the thickness 

of the diffusive boundary layer (δDBL).  The best-fit δDBL value for each PE was then 

used to determine the percent equilibration (f) reached by each compound during 
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sampler deployment.  f values were used to convert concentrations in PEs to ambient 

concentrations, which is described in detail in the SI.  Physico-chemical properties of 

target compounds used in these calculations are presented in Table S4-7.  Average f 

values for each compound in air and water are in Table S4-8.  Mono- to dibrominated 

PBDEs were generally equilibrated or nearly equilibrated while tetra- to octa-

brominated PBDEs remained <50% equilibrated in the majority of samples.  

 Best-fit δDBL values and BDE 47 sampling rates are shown in Tables S4-9 and 

S10.  Average δDBLs for air boundary layers (δABL) were lower for offshore/nearshore 

PEs (0.2±0.1 mm; average±stdev) than for shoreline PEs (1.8±1.4 mm in summer and 

1.4±0.5 mm in winter).  Average water boundary layer thickness (δWBL) was 170±63 

µm at shoreline sites and 82±25 µm at offshore sites.  For air PEs, average sampling 

rates for BDE 47 were 9±3 m3/day for winter PEs, 10±6 m3/day for shoreline summer 

PEs, and 83±36 m3/day for offshore PEs.  For water PEs, average BDE 47 sampling 

rates were 27±8 L/day for shoreline PEs and 14±10 L/day for offshore PEs, in-line 

with expectations based on relative flow strengths at these locations.  

Air-water exchange calculations.  32 pairs of codeployed air and water PEs were 

used to investigate PBDE air-water exchange.  Details on calculating fugacity ratios, 

air-water exchange fluxes, and associated error propagation are presented in the SI.  

Fugacity ratios and air-water exchange fluxes were only calculated in instances where 

the congener was detected in both air and water.  In cases where the compound was 

not detected in air and/or water, or where fugacity ratios were not significantly 

different from equilibrium after error propagation, the net air-water exchange flux was 

assumed to be zero.   
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To determine whether PE-derived air-water exchange fluxes were 

representative of average exchange fluxes in nonsteady-state conditions, a model was 

built in R35 to compare simulated air-water exchange fluxes to PE-derived exchange 

fluxes (Figures S4-1, S4-2; Table S4-11).  

Correlation with Population Density.  Average summertime concentrations of 

PBDEs were compared to population within 2 - 60 km of each site using population 

data from the Columbia University Center for International Earth Science Information 

Network (CIESIN) Global Rural-Urban Mapping Project (GRUMP).36  To determine 

which radius yielded the strongest linear correlation, ordinary least squares regression 

was performed for each congener, as well as Σ12BDE, at a series of different radii in 

R35 to identify the model with the minimum residual standard error (RSE) in each 

case.  This procedure was repeated for population data within 180° wedges to the 

north, south, east, and west of each sampling site to determine whether population 

density within one general direction was more significant in driving spatial 

distributions of PBDEs.  

Bayesian Kriging.  Bayesian kriging is a geostatistical interpolation technique that 

automates the parameter estimation needed to build a kriging model, which makes it 

the most appropriate approach for datasets with very limited spatial resolution.4  

Dissolved Ʃ12BDE concentrations were used with population within 25 km as an 

auxiliary variable, or covariate, to predict concentrations across both lakes by 

Bayesian kriging using the krige.bayes function in the geoR package in R.5,6  Cells on 

the grid that were predicted to have negative concentrations were replaced with zero.  

Posterior distributions for the estimated parameters β0, β, σ2, and ϕ are shown in 
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Figure S4-4 and results of leave-one-out cross validation of the model are shown in 

Figure S4-5.   

The vector containing Σ12BDE concentrations for each location Z(u), was 

modeled as a deterministic term, βX(u), and a zero-mean stochastic term, ε(u), as 

shown in Equation S27.  X is the vector of population at each location, β is an 

unknown regression coefficient, and β0 is the unknown intercept for the regression.  

ε(u) has variance σ2
 and a correlation function parameter ϕ, and describes the residuals 

at each location.  

Z(u) = β0 + βX(u) + ε(u) 

 

RESULTS AND DISCUSSION 
 
Dissolved PBDEs in the Great Lakes.  Average concentrations of dissolved PBDEs 

are summarized in Table 4-1 for shoreline, nearshore, and offshore sites.  BDEs 100, 

99, 47, 28, and 49 were detected in >70% of all water PEs.  BDE 154 was detected in 

53%, BDE 153 in 43%, and the remaining congeners in <15%.  Average dissolved 

Σ12BDE ranged from 0.6 pg/L at Dunkirk (DUN) on Lake Erie’s southern shoreline to 

18 pg/L at a nearshore buoy site west of central Toronto (WTOR).  Dissolved PBDE 

concentrations for all deployments are displayed in Table S4-9.   

Average summertime concentration and composition for dissolved PBDEs at 

each site is shown in Figure 4-1.  BDEs 47 and 99 were the dominant congeners at 

most sites, making up 41±15% and 29±14% of Σ12BDE, respectively.  Composition of 

the major congeners (BDE 47, 99, and 100) was quite consistent among sites with 

Ʃ12BDE >3 pg/L, but more variable at sites with lower concentrations, likely due to 



 

 
 

153 

some congeners being <DL at these sites.  See Figure S4-3 for mean percent 

composition at each location. Correlations between individual congeners at different 

sites, as well as correlations with other compounds measured in the same extracts, are 

shown in the SI. 

Along the southern shore of Lake Erie, Σ12BDE ranged from 0.6 pg/L on the 

Dunkirk shoreline (DUN) to 11 pg/L in Presque Isle Bay (ERI).  Concentrations at the 

three sites near Cleveland (CLE, SHF, and FH) were similar, with average 

summertime Σ12BDE of 4.3–5.5 pg/L.  Along the southern shore of Lake Ontario, 

Σ12BDE was greater than what was seen on Lake Erie, ranging from 11–12 pg/L.  The 

Cape Vincent shoreline site (CV) had a lower average Σ12BDE (3.8 pg/L), possibly 

due to dilution, as the site was along the St. Lawrence River, the major outflow from 

Lake Ontario, while the sites in Niagara (NIA), Oswego (OSW), and Rochester (ROC) 

were located near the mouths of tributaries.  

Ʃ12BDE at offshore sites was generally <3 pg/L, significantly lower than 

shoreline/nearshore concentrations (p<0.05 two-tailed t test with unequal variance).  

The greatest offshore concentrations were observed at the westernmost offshore sites 

on each lake, with Σ12BDE of 2.8 pg/L in western Lake Erie and 3.2 pg/L in western 

Lake Ontario.  These sites were the closest offshore sites to the major rivers feeding 

each lake (the Detroit River and Niagara River) and may have been influenced by 

inputs from these rivers.  

Generally, dissolved PBDEs in this study were lower than in previous studies.  

This may be because the PEs used for sampling were selective for the truly dissolved 

phase.  In previous active sampling studies on the Great Lakes, Venier et al. measured 
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average BDE 28, 47, 99, and 100 at a total concentration of 117 pg/L in Lake Ontario 

and 62 pg/L in Lake Erie surface waters in 2011-201229 and Streets et al. measured 

mean total dissolved Ʃ6BDE of 18 pg/L in offshore Lake Michigan in 2004.10  In other 

regions, Zarnadze and Rodenburg reported dissolved PBDE concentrations of 44, 5.5, 

and 35 pg/L for BDE 47, 100, and 99 in Raritan Bay in 2001-200238 and Yang et al. 

measured dissolved Ʃ10BDE from 13-26 pg/L in 9 English freshwater lakes from 2008 

to 2012.39  In contrast, studies using PEs to measure total truly dissolved PBDEs in 

Narragansett Bay in 2009 and Lake Superior in 2011 found concentrations <3 pg/L at 

all sites, similar to offshore/nearshore concentrations in this study.18,24  Booij et al. 

measured BDEs 47, 99, and 153 in the Western Scheldt Estuary in 1999 using 

semipermeable membrane devices (SPMDs) and found that total concentrations 

generally did not exceed 2 pg/L.9   

We investigated whether the discrepancy between concentrations reported by 

Venier et al.29 and our own could be due to the presence of dissolved organic carbon 

(DOC) that was likely cosampled by Venier’s active sampling method.  As detailed 

further in the SI (Table S4-12), the DOC concentrations needed to explain the 

discrepancy were quite high for open-lake Great Lakes sites (>3 mg/L), suggesting 

that the inclusion of the colloidal phase in the active sampling study was not sufficient 

to explain the observed differences.  Seasonal variation in dissolved PBDE 

concentrations may explain some of the additional discrepancy, as Venier et al. 

sampled in April-May, while PEs from this study were representative of average 

summer concentrations.  Another possible contributor to the discrepancy is uncertainty 
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in the affinity of BDEs for DOC (KiDOC).  Similar discrepancies were observed in a 

comparison by Ruge et al. in Lake Superior.24   

Gaseous PBDEs Above the Great Lakes.  BDEs 99, 100, and 47 were detected in 

>75% of air PEs.  BDE 28 was in 54%, BDE 49 in 34%, and the remaining congeners 

were in <15% (Table S4-6).  Mean summer gaseous Σ12BDE ranged from 0.1 pg/m3 

near the northeastern shore of Lake Ontario to 11 pg/m3 on the Cleveland shoreline 

(CLE).  BDEs 47 and 99 were the dominant congeners, making up 39±21% and 

34±18% of Ʃ12BDE, respectively.  As with dissolved PBDEs, composition of the 

major congeners (BDE 47, 99, and 100) was similar at most sites, with the exception 

of one in northern Lake Ontario (CHB), where the difference in composition was most 

likely because concentrations were very low and BDE 99 and 47 were <DL, and two 

other locations with atypical compositions, Sheffield Lake (SHL) and Rochester Site 1 

(ROC1), where the explanation for the absence of BDE 99 was unknown (Figure S4-

4).   Correlations between individual congeners, as well as with other compounds 

measured in the same extracts, are described in the SI.  

Summertime concentrations of total gaseous PBDEs are summarized in Table 

4-2 for shoreline, nearshore, and offshore sites.  Gaseous Σ12BDE was significantly 

greater at the shoreline than offshore and nearshore sites (p<0.005, two-tailed t test 

with unequal variance), and shoreline gaseous Σ12BDE was greater in summer than 

winter (p<0.005, two-tailed paired t test).  Concentrations from all deployments are 

presented in Table S4-10.   

 Average summer gaseous PBDE concentration and composition are shown in 

Figure 4-1.  Gaseous Σ12BDE was lower than concentrations from previous studies in 
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the region, possibly due to declining concentrations over time.  Su et al. reported mean 

gaseous Ʃ12BDE of 17 pg/m3 at a clearing in Ontario during 2001-2002.40  Ma et al. 

measured average gaseous Ʃ34BDE ranging from 5 pg/m3 in Eagle Harbor, a remote 

site on Lake Superior, to 25 pg/m3 in Cleveland and 32 pg/m3 in Chicago via active 

sampling with XAD resin.14  They observed a significant decreasing trend from 2005 

to 2011 for BDE 47 in Cleveland and Chicago, though concentrations increased or 

showed little change at other locations.14 

 During 2007-2008, Melymuk et al. monitored PBDEs throughout the greater 

Toronto area and found mean Ʃ25BDE of 3 pg/m3 at their southernmost site, near the 

northern Lake Ontario shoreline.  This was about two to three times greater than total 

mean Ʃ12BDE measured at the nearshore Toronto sites in this study (1.1-1.4 pg/m3).28  

The site monitored by Melymuk et al. was closer to the city center and polyurethane 

foam passive samplers (PUFs) were used, which capture both gaseous and some 

fraction of particle-sorbed PBDEs.28  During 2012-2013, Peverly et al. measured 

Ʃ27BDE ranging from 11-150 pg/m3 in the Chicago region, also using PUFs, and 

observed a significant contribution from BDE 209, which was not measured here.41  In 

the only previous study to use PEs to measure truly gaseous PBDEs in the Great Lakes 

region, Ruge et al. measured average summer gaseous Ʃ7BDE of 0.02-5.5 pg/m3 in 

Lake Superior in 2011, similar to the range of values in this study.24 

Gaseous and Dissolved NHFRs in the Great Lakes.  Ambient concentrations of 

gaseous NHFRs are presented in Table S4-10.  When detected, estimated gaseous 

bromobenzene concentrations (PBBz, PBT, PBEB, and HBBz) were similar in 

magnitude to those measured by Venier et al. in the Great Lakes atmosphere by high-



 

 
 

157 

volume active sampling, with all concentrations <2 pg/m3.27  However, these 

compounds were only detected intermittently in this study and were near detection 

limits, so estimated concentrations are somewhat uncertain.  

 Venier et al. measured dissolved and colloidal NHFRs in Great Lakes water by 

active sampling and found mean PBEB concentrations in Lake Ontario to be 32±18 

pg/L, while in this study PBEB concentrations were <2 pg/L (Table S4-9).29  No other 

NHFRs were detected in more than two aqueous PEs.  

 Percent detection was low for all NHFRs.  As the NHFRs are low-volatility 

compounds that are expected to be found primarily in the particulate phase, it may be 

that concentrations in the truly gaseous or dissolved phase were too low to be detected 

here using passive samplers.   

Air-water Exchange of PBDEs.  Fugacity ratios (fw/fa), which indicate the direction 

of air-water exchange, are presented in Table S4-13 for all PBDE congeners.  In all 

cases where fugacity ratios were significantly different from equilibrium after error 

propagation, they indicated absorption into surface waters.   

Exchange fluxes for all available air-water PE pairs at each site were averaged 

to yield mean summer air-water exchange fluxes for each location (Figure 4-2).  Mean 

absorptive fluxes ranged from -964 pg/m2/day on the shoreline of Cape Vincent (CV) 

to -30 pg/m2/day at an offshore site in central Lake Erie (CERI).  Absorption of BDEs 

47 and 99 dominated air-water exchange fluxes at the majority of sites, with greatest 

absorption fluxes at shoreline sites and little to no significant exchange flux in either 

direction at most offshore/nearshore sites.  It should be noted that aqueous PEs at 

Cleveland Edgewater (CLE) and Fairport Harbor (FH) were placed on nearshore 
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buoys while air measurements were taken at the shoreline, which may have resulted in 

calculation of stronger absorption fluxes than if dissolved concentrations were 

monitored directly at the shoreline.   

Previous measurements of PBDE air-water exchange fluxes are scarce.  Xie et 

al. and Lohmann et al. both observed net absorption of gaseous PBDEs on transects of 

the Atlantic Ocean, dominated by BDEs 47 and 99.31,42  Lohmann et al. calculated 

median air-water exchange fluxes of about -325 pg/m2/day for BDE 47 and about -260 

pg/m2/day for BDE 99.  Xie et al. calculated fluxes ranging from -28 to -875 

pg/m2/day for BDE 47 and -3 to -170 pg/m2/day for BDE 99.  In contrast to the 

offshore Great Lakes sites, where fluxes were mostly near equilibrium, these studies 

were conducted in remote regions with lower concentrations of dissolved PBDEs 

where atmospheric deposition was expected to be the primary source of PBDEs.  

 Ruge et al. observed absorption of gaseous PBDEs at shoreline sites and 

volatilization offshore on Lake Superior in 2011, with the greatest total absorption flux 

at Sault Ste. Marie (-2700 pg/m2/day).24  The occurrence of offshore volatilization in 

that study, compared to near-equilibrium conditions at offshore sites in this study, may 

have been due to the smaller surface areas and more urbanized shorelines of Lake Erie 

and Lake Ontario in comparison with Lake Superior.   

Liu et al. observed volatilization of polychlorinated biphenyls (PCBs) at the 

majority of the same sites discussed here,34  suggesting that the lakes were acting as 

secondary sources of these legacy pollutants while continuing to absorb PBDEs.  

Correlation between PBDE Congeners and Other Compounds.  Dissolved 

concentrations of the seven PBDEs found in >30% of water samples (BDEs 28, 47, 



 

 
 

159 

49, 99, 100, 154, and 153) were significantly linearly correlated with each other (p < 

0.05, 0.24 ≤ r2 ≤ 0.73), with the exception of BDEs 49 and 153.  Correlations between 

the two hexabrominated congeners, BDEs 154 and 153, and other congeners were 

generally weaker than correlations between lower-brominated congeners.  This may be 

because PBDEs 28, 49, 47, 99, and 100 share a common source: the Penta-BDE 

commercial formulation, while BDEs 154 and 153 are associated with Octa-BDE.16  

BDEs 154 and 153 were strongly correlated with each other in the dissolved phase (p 

< 0.001, r2=0.63).  Gaseous concentrations of the five PBDEs found in >30% of air 

samples (BDEs 28, 47, 49, 99, and 100) were also significantly linearly correlated 

with each other (p < 0.05, 0.30 ≤ r2 ≤ 0.80).  Only samples in which both congeners 

were found >DL were used in the correlation analysis for each pair. 

In addition to comparisons between PBDE congeners, Ʃ12BDE concentrations 

in air and water were compared to total concentrations of polycyclic musks (PCMs), 

polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) 

measured in the same extracts.  PCB data was published previously by Liu et al.,17  

PCM data is currently in review, and mean PAH concentrations are available in Tables 

S4-14 and S4-15.  Dissolved Ʃ12BDE exhibited a significant positive linear correlation 

with total dissolved PCMs (Ʃ5PCM; p < 0.01; r2 = 0.34; SE = 4.2; N = 39), but was 

not correlated with dissolved Ʃ14PAH or Ʃ7PCB, suggesting that dissolved PBDEs 

may share more common sources with PCMs than with PAHs or PCBs in the lower 

Great Lakes region.  Previous work by Melymuk et al. suggested that wastewater may 

be an important source of both PBDEs and PCMs in Lake Ontario, while not as 

significant for PCBs or PAHs.18  
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In contrast, gaseous Ʃ12BDE was weakly but significantly correlated with 

gaseous Ʃ14PAH (p < 0.01; r2=0.13; SE = 3.8; N = 56) and Ʃ7PCB (p < 0.01; r2=0.16; 

SE = 3.8; N = 54), but not correlated with Ʃ5PCM, possibly due to scarcity of data, as 

gaseous PCMs were detected above blank levels less frequently than the other 

compound groups.  Previous studies in the Great Lakes region have also reported 

significant correlation between atmospheric PBDEs and PCBs due to their elevated 

emissions in urban and industrial areas.19   

Results of this correlation analysis suggest that PBDEs and PCMs share 

common sources to the aquatic environment.  They may also share common sources to 

the atmosphere, but results for air were inconclusive.  Differences in correlation 

strength between air and water data could be caused in part by the use of slightly 

different sampling locations for some air versus water PEs), but these differences were 

not expected to greatly affect correlation strength.   

Gaseous PBDEs and Population Density.  Population data within a 180° wedge to 

the south of each site resulted in stronger correlation with gaseous Ʃ12BDE than 

population within a circle around each site or population to the north, east, or west.  

This was also generally true for individual BDE congeners.  Correlations found using 

a circular radius or 180° southern wedge are compared in Figure S4-5.   

In previous studies investigating relationships between atmospheric pollutant 

concentrations and population, sites have often been characterized using a circular 

area with a specific radius (often 20-25 km).46  However, some studies have shown 

that directional terms should be considered when investigating atmospheric pollutants 

in the Great Lakes, especially for compound groups with significant local atmospheric 
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emissions.43  Previous studies have also demonstrated that coastal effects can disrupt 

population trends when offshore air dilutes the urban plume.44  The work described 

here included mostly shoreline sites which had very different nearby population 

densities to the north and south.  Furthermore, the lower Great Lakes region was 

generally subject to prevailing southwesterly winds during the deployment period, as 

is demonstrated by wind direction data (Tables S4-16 and S4-17; Figures S4-6 and S4-

7).   

Average gaseous Ʃ12BDE exhibited significant (p<0.05) linear correlation with 

population within 1-10 km south of each site, with the strongest correlation at 3 km 

(p<0.005; r2=0.36; SE=2.9; N=22).  Significant linear correlation with population was 

also seen for four of the five commonly detected individual congeners (BDE 28, 47, 

99, and 100), with strongest correlations between 3 and 15 km.  This suggests PBDEs 

were significantly influenced by local sources, consistent with their low vapor 

pressures and significant loss via deposition.  Melymuk et al. observed a swift decline 

in PBDE concentrations within 5 km south of the Toronto city center, supporting the 

importance of nearby populated areas in influencing distributions of these 

compounds.28  BDE 49 did not exhibit significant correlation with population at any 

distance, perhaps due to its low frequency of detection (34%) compared to the other 

congeners (>50%).  

The maximum radius where a significant (p<0.05) linear correlation was 

observed between gaseous concentration and population was plotted against log pL at 

298 K for four PBDEs, as well as several PAHs, PCBs, and PCMs, in Figure 4-3.  As 

compound vapor pressure increased, the maximum distance where significant 



 

 
 

162 

correlation was observed expanded, suggesting that spatial distributions of more 

volatile compounds like PCMs and lower molecular weight PAHs were influenced 

more strongly by distant emissions, while local emissions were more important in 

determining spatial distributions of PBDEs.  

Previous data from PEs collected on the lower Great Lakes in 2011 suggested 

that PAHs with subcooled liquid vapor pressure log pL(Pa) <-3 at 298 K most strongly 

correlated with population within a radius of 3 km, while PAHs with greater vapor 

pressures correlated more strongly with population within a radius of 20 km.33  In this 

study, PAHs, PCBs, and PCMs with log pL >-2 remained significantly correlated with 

population within radii >25 km, while less volatile compounds generally did not.  

BDEs 47 and 99 fell farther below the regression line in Figure 4-3 than other 

compounds, with significant correlation occurring only to a radius of 5-6 km.  This 

may be due to their short lifetimes with respect to photolysis and OH radical 

degradation (4.0-8.7 h) compared to BDE 100 and 28 (26-48 h).20 

Dissolved PBDEs and Population Density.  Dissolved Ʃ12BDE exhibited a 

significant positive linear correlation with population within a 25 km radius of each 

site (r2=0.52; p<0.001; SE=0.27; N=20), as shown in Figure 4-4.  The correlation was 

driven primarily by the seven nearshore sites, which exhibited the broadest range in 

surrounding population densities.  In this case, use of population extracted from 

wedges north, south, east, or west of each site did not result in stronger correlations.   

Four shoreline sites (OSW, NIA, ROC, and ERI) exhibited low surrounding 

population and elevated dissolved Ʃ12BDE relative to the regression line, suggesting 

they may be influenced by nearby point sources.  The Niagara River site (NIA) was 
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likely representative of the Niagara River plume and the Oswego site (OSW) may 

have been influenced by two nearby (within 1.5 km) wastewater treatment plants 

discharging directly into Lake Ontario, both identified as major dischargers by the US 

Environmental Protection Agency (US EPA) National Pollutant Discharge 

Elimination System (NPDES).45   

Geostatistical Interpolation of Dissolved PBDE Concentrations.  Using passive 

samplers enabled a much improved spatial coverage over past studies of this region 

(though still limited on the scale of the Great Lakes).  This data set thus provided an 

opportunity to more accurately predict surface water concentrations over the lakes.  

Maps of predicted aqueous Σ12BDE across Lake Erie and Lake Ontario are presented 

in Figure 4-5 and variance for these predictions is presented in Figure S4-8.  Posterior 

distributions for the parameters used in the kriging model are shown in Figure S4-9 

and results of cross validation in Figure S4-10.   

Predictions for Lake Erie identified the area near Detroit at the western end of 

the lake as a possible unmonitored “hot spot”, and highlighted areas around Buffalo, 

Cleveland, and Dunkirk as having the greatest concentrations (around 10±4 pg/L) on 

the lake.  Predictions for Lake Ontario highlighted the significance of the Toronto 

conurbation as a source of PBDEs to the lake, with elevated concentrations of 10-18 

pg/L extending about 15 km away from the shoreline. 

 The use of Bayesian kriging coupled with PE-derived concentrations to predict 

dissolved Σ12BDE over the lakes illustrates the utility of relatively highly spatially 

resolved data in identifying potential hot spots for further study, like the area around 

Detroit.  Concentrations in this area may be greater than predicted, as it is influenced 
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by the Detroit River, which is the major tributary to Lake Erie.  Elevated gaseous and 

dissolved PBDEs near population centers highlight the need to continually monitor 

concentrations of phased-out persistent organic pollutants in urbanized areas.   
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FIGURES AND TABLES 
 

Table 4-1.  Average Dissolved PBDEs (pg/L) ± Standard Deviation. 
 

 Na BDE 28 BDE 49 BDE 47 BDE 100 BDE 99 BDE 154 BDE 153 Σ12BDE 

Toronto Nearshore 3 0.48±0.12 0.22±0.02 5.4±1.3 1.8±0.76 5.0±1.8 0.42±0.22 0.20±0.07 14±4.1 

Lake Erie 
Shoreline/Nearshore 

6 0.23±0.22 0.20±0.17 2.0±1.2 0.93±0.46 1.9±1.4 0.11±0.11 0.03±0.04 5.5±3.4 

Lake Ontario 
Shoreline/Nearshore 

6 0.28±0.16 0.23±0.21 3.0±2.2 0.95±0.68 2.0±1.8 0.13±0.15 0.06±0.05 6.8±5.0 

Lake Erie Offshore 3 0.17±0.15 0.13±0.11 0.55±0.48 0.30±0.27 0.63±0.74 0.07±0.07 0.02±0.04 1.9±0.91 

Lake Ontario Offshore 2 0.08±0.11 0.11±0.06 1.1±0.18 0.40±0.21 0.85±0.36 0.09±0.12 < DL 2.6±0.81 

!
 

aN is the number of sites of each type.  

 

Table 4-2.  Average Gaseous PBDEs (pg/m3) ± Standard Deviation.  
 

 Na BDE 28 BDE 49 BDE 47 BDE 100 BDE 99 Σ12BDE 

Summer Sites (May to November) 

Offshore 3 0.09±0.10 0.03±0.02 0.22±0.09 0.05±0.03 0.25±0.12 0.74±0.15 

Nearshore 5 0.14±0.09 0.03±0.02 0.28±0.24 0.11±0.05 0.22±0.18 0.79±0.56 

Shoreline 14 0.25±0.29 0.06±0.07 2.9±1.3 0.59±0.25 2.6±1.7 6.7±2.1 

Winter Sites (November to May) 

Shoreline 9 0.03±0.07 0.01±0.02 0.55±0.62 0.21±0.15 1.7±0.88 2.7±1.4 

!1!
 

aN is the number of sites of each type. 
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Figure 4-1.  Average Dissolved (top) and Gaseous (bottom) PBDEs during 
Summer Deployments.  Σ12BDE in water ranged from 0.6 pg/L (DUN) to 18 pg/L 
(WTOR).  Σ12BDE in air ranged from 0.1 pg/m3 (CHB) to 11 pg/m3 (CLE).  Regions 
on the map shaded darker brown are more densely populated.  
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Figure 4-2. Average Summer PBDE Air-Water Exchange Fluxes (pg/m2/day).  
Bars on the negative y-axis represent total absorption into surface waters.  Mean 
summertime net fluxes ranged from -964 pg/m2/day on the shoreline of Cape Vincent 
(CV) to -30 pg/m2/day at an offshore buoy in central Lake Erie (CERI). 
 
 

 
Figure 4-3.  Maximum Distance (km) Yielding Significant Correlation between 
Gaseous Concentration and Population.  The maximum radius (rmax) at which there 
was a significant (p<0.05) linear correlation between gaseous concentration and 
population was correlated with sub-cooled liquid vapor pressure (log pL) for four 
PBDEs and several PCBs, PAHs, and PCMs.   
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Figure 4-4.  Dissolved PBDEs and Population Density.  Mean summertime 
dissolved Ʃ12BDE (pg/L) exhibited significant linear correlation with population 
within a 25 km circular radius of each site (p<0.001).  Sites are marked according to 
whether they were offshore (> 5 km from shoreline), nearshore (< 5 km from 
shoreline), or shoreline (deployed directly from shore).  
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SUPPORTING INFORMATION: 
SPATIAL DISTRIBUTION AND AIR-WATER EXCHANGE OF ORGANIC 

FLAME RETARDANTS IN THE LOWER GREAT LAKES 
 

Carrie A. McDonough, Gavino Puggioni, Paul A. Helm, Derek C. G. Muir, Rainer 
Lohmann 

 
Total number of pages: 45 

Total number of figures: 10 
Total number of tables: 17 

 
 

 

Calculating Ambient Air or Water Concentration from PE.  Ambient 

concentrations of target compounds in air or water were calculated from CPE, the 

concentration measured in pg/kg PE, dPE, the density of PE (0.91 kg/L), KPEM, the PE-

matrix partitioning coefficient in L/L, and f, the percent equilibration reached during 

deployment, (Equation S1).  

                                           (S1) 

 f was estimated using data from performance reference compounds (PRCs) that 

were loaded into each PE prior to deployment.  The initial mass of PRC loaded into 

the samplers was determined by measuring PRCs in quality control samples (blanks 

and field blanks), which were prepared alongside those used in field deployments, but 

never deployed in the environment.  f for each PRC was calculated as in Equation S2, 

where N is the mass of PRC in the deployed PE and N0 is the mass in the non-

deployed blank.  

Loss data for benzo(a)pyrene-d12 were not included in determining f for target 

compounds because loss of this compound was generally greater than loss of 

pentabromobiphenyl, suggesting that loss due to processes besides PE-air or PE-water 
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diffusive exchange may have occurred.  Six air samples were found to have loss of 

dibromobiphenyl < 90%, which is unrealistic given the deployment times for these 

samplers and may indicate some inconsistency in deployment practices.  

Concentration estimates for these samples were discarded before further analysis and 

interpretation. 

 

                               (S2) 

 Values of f for all PRCs were used along with known and estimated physico-

chemical properties for the PRCs (Table S4-7) to determine a single best-fit value of 

the thickness of the diffusive boundary layer (δDBL) for each deployment, as in 

Equation S3, using the non-linear least squares fitting function nls in R.  

                                               (S3) 

 In Equation S3, t is length of the deployment time in seconds, KPEM is the 

unitless PE-matrix partitioning coefficient, lPE is half the thickness of the PE in meters, 

DM is the diffusivity of the target compound in air or water (m2/s), DPE is the 

diffusivity of the target compound in PE (m2/s), and δDBL is the estimated best-fit 

thickness of the diffusive boundary layer in meters.  Once δDBL for the deployment 

was determined, it was used along with each target compound’s known and estimated 

physico-chemical properties to determine f for each compound of interest.  

Values of KPEM, DM, and DPE for all compounds and PRCs were corrected to 

the mean temperature during deployment, as estimated based on data from nearby 

meteorological buoys (Table S4-2).  
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                                 (S4) 

 Da,T2, the diffusivity in cm2/s of the target compound in air at the mean 

deployment temperature T2, was determined as in Fuller 1966,1 with gas-phase 

pressure (patm) assumed to be 1 atm, molar mass of air (MMa) assumed to be 28.97 

g/mol, and molar volume of air (Va) assumed to be 20.1 cm3/mol. Mi and Vm are the 

molar mass and molar volume of the compound of interest.  

                          (S5) 

 Dw,T2, the diffusivity of the target compound in water at the mean deployment 

temperature T2, was determined via the Wilke-Chang equation as in Equation S5, 

where a is 2.6, the association parameter for water, and MMw is the molar mass 

(g/mol) of water (18 g/mol).  Vm is the molar volume of the target compound in 

cm3/mol and νw is the viscosity of water determined at the nearest whole number 

temperature from Schwarzenbach et al. 2003.2   

                                (S6) 

 DPE,T2, the diffusivity of the target compound in PE at the mean deployment 

temperature, was determined from Equation S6, where R is the universal gas constant 

(8.3145 J/K/mol) and Ea is the energy of activation, assumed to be 100,000 J/mol 

based on unpublished thin-film experiments by Vansco et al. measuring DPE for 

brominated flame retardants at varying temperatures.  

                         (S7) 
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 The PE-air partitioning coefficient at the mean deployment temperature 

(KPEA,T2) was determined from KPEA at 298.15 K (KPEA,T1) via Equation S7, where Hvap 

is the enthalpy of vaporization in J/mol for the target compound and R is the ideal gas 

constant. 

 

                             (S8) 

 The PE-water partitioning coefficient at the mean deployment temperature 

(KPEW,T2) was determined from KPEW,T1 via Equation S8, where Uw is the energy of 

solvation. 

 To relate best-fit δDBL values to the more often-reported sampling rate (Rs) for 

passive samplers, sampling rates for each congener were calculated as in Equation S9:  

                     (S9) 

 In Equation S9, Rs is the sampling rate in m3/day, calculated from the mass 

transfer coefficient k0 (m/day) and APE, which is the surface area of the PE, 

determined as the volume of the PE (VPE) divided by the thickness of the PE (2 x lPE).  

k0 is determined as in Equation S10, where 1/km is the matrix-side resistance 

and 1/kPEKPEM is the PE-side resistance to mass transfer.    

                     (S10) 

 Matrix-side resistance was determined as in Equation S11, where δDBL is the 

thickness of the DBL (either the air-side boundary layer or water-side boundary layer) 

in meters and DM is the diffusivity of the target compound in air or water in m2/s.  
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                       (S11) 

 PE-side resistance was determined as in Equation S12, where lPE is the half-

thickness of the PE in meters and DPE is the diffusivity of the target compound in m2/s.  

                     (S12) 

Air-Water Exchange Flux Calculations.  The estimated equilibrium concentration in 

ng/g PE (C∞) was determined from the measured concentration in the PE (CPE) as in 

Equation S13, using the estimated value of f for the target compound.  

                      (S13) 

The unitless fugacity ratio was then calculated as in Equation S14, where C∞,w 

and C∞,a are the estimated equilibrium PE concentrations in water and air samplers, 

respectively.  

                  (S14) 

The air-water exchange flux (Fa/w) in pg/m2/day was calculated as in Equation 

S15, where va/w is the mass transfer coefficient in m/s, C∞,w and C∞,a are the estimated 

PE concentrations at equilibrium in pg/m3, and KPEW,T2 is the PE-water partitioning 

coefficient at the mean deployment temperature.  va/w was calculated for all PE pairs 

that displayed fugacity ratios significantly different from equilibrium after error 

propagation.  Mean va/w ranged from 1x10-7 m/s for BDE 183 to 8x10-7 m/s for BDE 2.    

                              (S15) 
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va/w was modeled using a two-film model, much like was done for PE-matrix 

diffusive exchange.  va/w was calculated in cm/s as in Equation S16, where Kaw is the 

unitless air-water partitioning coefficient at the mean deployment temperature, va is 

the air-side mass transfer velocity in cm/s, and vw is the water-side mass transfer 

velocity in cm/s.  

                               (S16) 

 va was determined from vH2O,a (cm/s), the air-side mass transfer velocity of 

water in air, scaled for the diffusivity of the target compound in air, Dia (cm2/s) versus 

the diffusivity of water in air (0.27 cm2/s).  

                                       (S17) 

vH2O,a was determined from the wind speed at 10 meter height,  u10, as in 

Equation S18 from Schwarzenbach et al. 2003.2  u10 was determined from mean wind 

speed, u, and height of the wind monitor on the meteorological buoy, h, as in Equation 

S19. In cases where the height of the monitor was not reported, the height was 

assumed to be 10 meters.  

                                    (S18) 

                 (S19) 

 vw,T2, the water-sid at the mean deployment temperature, was determined from 

the mass transfer velocity of CO2 (cm/s) in water (vCO2,w), scaled to the target 

compound using the Schmidt number at the deployment temperature (ScT2), the 

Schmidt number for CO2 at 20°C (ScCO2,w = 600) and asc, a scaling factor based on 



 

 
 

181 

wind speed (0.67 for mean wind speeds <4.2 m/s, and 0.5 for higher wind speeds).  

The dimensionless Schmidt number is the ratio of the viscosity of the water to the 

diffusivity of the target compound in water. 

                               (S20) 

 vCO2, the average velocity of CO2 (cm/s) in water over the deployment, was 

determined by integrating the Weibull probability density function using all recorded 

wind speeds over the deployment from the nearest meteorological buoy, scaled to 10 

m above the interface as in Equation S19.   

 ScT2, the Schmidt number at the mean deployment temperature, was 

determined as in Equation S21, by scaling ScT1, the Schmidt number at 298.15 K, by 

the kinematic viscosity of water (νw) at T2 versus T1.  

                             (S21) 

Air-Water Exchange Error Propagation.  The variance of the percent equilibration, 

σf
2, was determined as in Equation S22 from the variance of δDBL, taken as the 

standard deviation in the best-fit value from the non-linear least squares model, the 

variance of DM, assumed to be 50%, and the variance of KPEM,T2, determined from 

Equation S23.  

         (S22) 

 The variance in KPEM,T2 was determine from Equation S23 using the variance 

of KPEM,T1, assumed to be 0.2 log units, and the variance of Hvap (assumed to be 30%) 

or, in the case of a water sampler, UW (assumed to be 50%). 
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                  (S23) 

 The variance in estimated equilibrium concentrations, σC∞
2, was calculated 

from the variance in measured concentrations in PEs (CPE), determined by calculating 

the standard deviation of repeated measurements of randomly-chosen extracts, and the 

variance in f from Equation S22.  

                                  (S24)               

Variance in the fugacity ratio was calculated as in Equation S25 and only 

fugacity ratios significant within the ±1σ range were used to calculate air-water fluxes.  

      (S25) 

Variance in the air-water flux, Fa/w, was calculated as in Equation S26.  The 

standard deviation of va/w was assumed to be 30%.3  

    (S26) 
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Table S4-1.  Deployment Summary for 2011-2012 Air and Water PEs. 

Mean Air 
T (ºC) 

Mean Wind 
Speed 
(m/s)

Sample 
No. 

Date 
Deployed

Date 
Recovered

Days 
Deployed

Sample 
No. 

Date 
Deployed

Date 
Recovered

Days 
Deployed

5.5 4.5 1526 10/2/11 4/24/12 205
17.0 3.5 2718 4/24/12 7/2/12 69
23.4 3.0 3128 7/2/12 8/30/12 59 3130 7/2/12 8/30/12 59
15.4 4.1 3528 8/30/12 10/31/12 62 3530 8/30/12 10/31/12 62
15.4 4.1 3529 8/30/12 10/31/12 62 3531 8/30/12 10/31/12 62

5.5 5.1 1412 10/5/11 4/30/12 208
20.3 4.5 2825 5/26/12 6/30/12 35 2824 5/26/12 6/30/12 35
20.3 4.5 2828 5/26/12 6/30/12 35
21.4 4.1 3113 6/30/12 9/30/12 92 3115 6/30/12 9/30/12 92

20.4 4.5 2830 5/26/12 7/1/12 36
19.7 4.2 3118 7/1/12 10/22/12 113
19.7 4.2 3119 7/1/12 10/22/12 113

20.3 4.5 2835 5/26/12 6/30/12 35
19.7 4.2 3123 7/1/12 10/22/12 113
19.7 4.2 3124 7/1/12 10/22/12 113

5.2 5.5 1521 10/3/11 5/11/12 221
19.4 4.1 2707 5/11/12 7/10/12 60 2711 5/11/12 7/10/12 60
22.6 3.8 3108 7/10/12 9/4/12 56 3110 7/10/12 9/4/12 56
22.6 3.8 3109 7/10/12 9/4/12 56 3111 7/10/12 9/4/12 56
12.8 5.4 3507 9/4/12 11/15/12 72 3511 9/4/12 11/15/12 72

2.5 4.9 1519 11/2/11 5/1/12 181
18.6 3.9 2702 5/1/12 7/19/12 79 2704 5/1/12 7/19/12 79
18.6 3.9 2703 5/1/12 7/19/12 79
22.4 4.3 3102 7/17/12 8/29/12 43 3104 7/17/12 8/29/12 43
14.9 5.0 3502 8/29/12 10/30/12 62 3504 8/29/12 10/30/12 62
14.9 5.0 3503 8/29/12 10/30/12 62 3505 8/29/12 10/30/12 62

21.3 3.9 2908 5/22/12 8/1/12 71 2901 5/22/12 8/1/12 71
21.3 3.9 2909 5/22/12 8/1/12 71
17.7 3.8 3303 8/1/12 10/16/12 76 3317 8/1/12 10/19/12 79

ROC1: Rochester, NY - Coast Guard Auxiliary Base 4-2: 43.25238 ºN, 77.60938 ºW

CV: Cape Vincent, NY: 44.13034 ºN, 76.33173 ºW

Air Water

LAKE ONTARIO
NIA: Niagara Falls, NY - Fort Niagara State Park: 43.26125 ºN, 79.06287 ºW 

Meteorology

ROC2: Rochester, NY - US Coast Guard Station: 43.25694 ºN, 77.60261 ºW

OSW: Oswego, NY: A: 43.46319 ºN, 76.51671 ºW; W:  43.46550 ºN, 76.51666 ºW

ROC 3: Rochester, NY - Beach Avenue: 43.26438 ºN, 77.61692 ºW

Offshore Lake Ontario (Deployed by Ontario Ministry of the Environment)
TOR: Toronto, ON (Stn AW-2): A: 43.66496 ºN, 79.26481 ºW; W: 43.66387 ºN, 79.26488 ºW
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21.3 3.9 2903 5/22/12 7/31/12 70 2928 5/22/12 7/31/12 70
21.3 3.9 2927 5/22/12 7/31/12 70
17.8 3.7 3313 7/31/12 10/16/12 77 3329 7/31/12 10/16/12 77

21.3 3.9 2906 5/22/12 8/1/12 71 2917 5/22/12 8/1/12 71
21.3 3.9 2920 5/22/12 8/1/12 71
17.1 3.8 3304 8/1/12 10/22/12 82 3308 8/1/12 10/22/12 82
17.1 3.8 3311 8/1/12 10/22/12 82

19.7 2.4 2914 5/23/12 8/1/12 70 2910 5/23/12 8/1/12 70
16.4 2.8 3324 8/1/12 10/22/12 82 3322 8/1/12 10/22/12 82
16.4 2.8 3328 8/1/12 10/22/12 82

20.0 4.4 2919 5/23/12 8/2/12 71 2934 5/23/12 8/2/12 71
20.0 4.4 2931 5/23/12 8/2/12 71
17.6 6.0 3302 8/2/12 10/25/12 84 3309 8/2/12 10/25/12 84

18.1 3.5 2306 4/10/12 10/25/12 198

18.9 4.2 2325 5/14/12 10/25/12 164

16.9 4.9 2321 4/3/12 10/20/12 200

4.6 5.3 1528 10/3/11 5/1/12 211
4.6 5.3 1529 10/3/11 5/1/12 211
17.5 3.5 2723 5/1/12 7/2/12 62 2725 5/1/12 7/2/12 62
22.5 3.6 3133 7/2/12 8/30/12 59 3135 7/2/12 8/30/12 59
14.8 4.7 3533 8/30/12 11/1/12 63
14.8 4.7 3534 8/30/12 11/1/12 63

5.7 6.2 1530 10/3/11 4/30/12 210
17.5 4.2 2728 4/30/12 6/28/12 59 2730 4/30/12 6/28/12 59
22.7 3.5 3202 6/28/12 8/29/12 62 3204 6/28/12 8/29/12 62
22.7 3.5 3203 6/28/12 8/29/12 62 3205 6/28/12 8/29/12 62
15.8 4.2 3901 8/29/12 10/22/12 54 3903 8/29/12 10/22/12 54
15.8 4.2 3902 8/29/12 10/22/12 54

DUN: Dunkirk, NY: A: 42.49252 ºN, 79.35336 ºW;  W: 42.49247 ºN, 79.34852 ºW

LAKE ERIE

CHB: Chub Point, ON (Stn 3509):  A: 43.95329 ºN, 78.01405 ºW; W: 43.95339 ºN, 78.01089 ºW

WONT: Western Offshore Ontario (Stn 207) offshore from Niagara: 43.32833 ºN, 79.13472 ºW

PEP: Prince Edward Point, ON (Stn 3087): A: 43.95745 ºN, 76.81011 ºW; W: 43.95832 ºN, 76.81039 ºW

GRI: Western Offshore Ontario (Grimsby Met Buoy): 43.25893 ºN, 79.53865 ºW

CONT: Central Offshore Ontario (Stn 403): 43.58806 ºN, 78.24055 ºW

Offshore Lake Ontario (Deployed by Environment Canada)

Air WaterMeteorology
WTOR: West Toronto, ON (Stn 3508): A: 43.57255 ºN, 79.51809 ºW; W: 43.571847 ºN, 79.51732 ºW

ETOR: East Toronto, ON (Stn 708): A: 43.79478 ºN, 79.08620 ºW; W: 43.79373 ºN, 79.08655 ºW

BUF: Buffalo, NY - US Coast Guard Station: 42.87758 ºN, 78.89047 ºW
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7.1 6.6 1533 10/13/11 6/7/12 238
21.6 5.0 2734 6/7/12 7/3/12 26 2736 6/7/12 7/3/12 26
21.6 5.0 2737 6/7/12 7/3/12 26
22.5 4.6 3207 7/3/12 9/7/12 66 3209 7/3/12 9/7/12 66
16.6 5.5 3909 9/7/12 10/4/12 27
16.6 5.5 3910 9/7/12 10/4/12 27

20.9 5.4 2801 5/21/12 7/2/12 42 2803 5/29/12 6/29/12 31
20.9 5.4 2802 5/21/12 7/2/12 42 2804 5/29/12 6/29/12 31
21.7 4.6 3212 7/2/12 9/17/12 77 3214 6/29/12 9/17/12 80
14.0 6.3 3912 9/17/12 10/15/12 28
14.0 6.3 3913 9/17/12 10/15/12 28

21.0 3.2 2806 5/17/12 7/7/12 51 2808 5/5/12 6/28/12 54
21.0 3.2 2807 5/17/12 7/7/12 51 2809 5/5/12 6/28/12 54
23.2 2.9 3218 7/7/12 9/7/12 62 3220 7/7/12 9/7/12 62
23.2 2.9 3221 7/7/12 9/7/12 62
15.6 3.1 3917 9/7/12 10/9/12 32
15.6 3.1 3918 9/7/12 10/9/12 32

5.8 4.8 1402 9/30/11 5/1/12 214
19.2 3.3 2812 5/1/12 7/2/12 62
23.4 2.9 3223 7/2/12 8/31/12 60
15.1 4.1 3922 8/31/12 11/1/12 62
15.1 4.1 3923 8/31/12 11/1/12 62

21.9 3.2 2819 4/27/12 8/20/12 115

5.7 4.8 1404 10/4/11 4/28/12 207
18.7 3.3 2713 4/28/12 7/2/12 65
23.3 2.9 3227 7/5/12 9/7/12 64
13.0 4.5 3927 9/7/12 11/8/12 62
13.0 4.5 3928 9/7/12 11/8/12 62

17.2 6.4 2328 4/25/12 10/17/12 175 2322 4/25/12 10/17/12 175

22.4 4.9 2327 5/2/12 10/16/12 167 2330 5/2/12 10/16/12 167

18.7 5.8 2317 8/8/12 10/9/12 62

CLE: Cleveland, OH - Edgewater Park: A: 41.49212 ºN, 81.73326 ºW;  W: 41.50383 ºN, 81.7655 ºW

FH: Fairport Harbor, OH: A: 41.75835 ºN, 81.27789 ºW;  W: 41.7772 ºN, 81.2439 ºW

ERI: Erie, PA - Presque Isle State Park: A: 42.15585 ºN, 80.11288 ºW;  W: 42.15199 ºN, 80.11191 ºW

CLD: Cleveland, OH - DOH George T. Craig Air Monitoring Station:  41.49208 ºN, 81.67851 ºW

EERI: Eastern Erie (Stn 452): 42.57611 ºN, 79.92417 ºW

CERI: Central Erie (Stn 880): 41.90944 ºN, 81.66917 ºW

TOL: Toledo, OH: 41.69105 ºN, 83.40189 ºW

SHF: Sheffield Lake, OH: 41.49741 ºN, 82.08252 ºW

WERI: Western Erie (Stn 970): 41.82433 ºN, 82.97497 ºW

Offshore Lake Erie (Deployed by Environment Canada)

Air WaterMeteorology
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Table S4-2.  Buoys Used for Temperature and Wind Data.   
 
Site	  Abbreviation Data	  Source Buoy	  Name Location	   Data	  Source	   Buoy	  Name Location	  
BUF NDBC	   BUFN6 42.878	  N,	  78.890	  W NDBC	   BUFN6 42.878	  N,	  78.890	  W
CERI NDBC	   C45164 41.734	  N,	  81.698	  W NDBC	   C45164 41.734	  N,	  81.698	  W
CHB OME	  Logger -‐ Same	  as	  samplers Environment	  Canada COBOURG	  (AUT) 43.95	  N,	  78.17	  W
CLD NDBC	   CNDO1 41.542	  N,	  81.637	  W NDBC	   CNDO1 41.542	  N,	  81.637	  W
CLE NDBC	   CNDO1 41.542	  N,	  81.637	  W NDBC	   CNDO1 41.542	  N,	  81.637	  W
CONT NDBC	   C45012 43.618	  N,	  77.405	  W NDBC	   C45012 43.618	  N,	  77.405	  W
CV Environment	  Canada KINGSTON	  A 44.22	  N,	  76.6	  W Environment	  Canada KINGSTON	  A 44.22	  N,	  76.6	  W
DUN NDBC	   DBLN6 42.494	  N,	  79.354	  W NDBC	   DBLN6 42.494	  N,	  79.354	  W
EERI Environment	  Canada LONG	  POINT	  (AUT) 42.57	  N,	  80.05	  W Environment	  Canada LONG	  POINT(AUT) 42.57	  N,	  80.05	  W
ERI NDBC	   CBLO1 41.981	  N,	  80.556	  W NDBC	   CBLO1 41.981	  N,	  80.556	  W
ETOR OME	  Logger -‐ Same	  as	  samplers Environment	  Canada TORONTO	  CITY	  CENTRE 43.63	  N,	  79.40	  W
FH NDBC	   FAIO1 41.764	  N,	  81.281	  W NDBC	   FAIO1 41.764	  N,	  81.281	  W
GRI Environment	  Canada GRIMSBY 43.252	  N,	  79.535	  W Environment	  Canada GRIMSBY 43.252	  N,	  79.535	  W
NIA NDBC	   YGNN6 43.262	  N,	  76.064	  W NDBC	   YGNN6 43.262	  N,	  76.064	  W
OSW NDBC	   OSGN6 43.464	  N,	  76.511	  W NDBC	   OSGN6 43.464	  N,	  76.511	  W
PEP OME	  Logger -‐ Same	  as	  samplers Environment	  Canada POINT	  PETRE	  (AUT) 43.83	  N,	  77.15	  W
ROC(1-‐3) NDBC	   RPRN6 43.263	  N,	  77.598	  W NDBC	   RPRN6 43.263	  N,	  77.598	  W
SHF NDBC	   CNDO1 41.542	  N,	  81.637	  W NDBC	   CNDO1 41.542	  N,	  81.637	  W
Stn	  207 NDBC	   YGNN6 43.262	  N,	  76.064	  W NDBC	   YGNN6 43.262	  N,	  76.064	  W
TOL NDBC	   THRO1 41.694	  N,	  83.473	  W NDBC	   THRO1 41.694	  N,	  83.473	  W
TOR OME	  Logger -‐ Same	  as	  samplers Environment	  Canada TORONTO	  CITY	  CENTRE 43.63	  N,	  79.40	  W
WERI NDBC	   THLO1 41.826	  N,	  83.194	  W NDBC	   THLO1 41.826	  N,	  83.194	  W
WTOR OME	  Logger -‐ Same	  as	  samplers Environment	  Canada TORONTO	  CITY	  CENTRE 43.63	  N,	  79.40	  W

Temperature	  Data	   Wind	  Speed	  and	  Direction	  Data

  
 
Most buoy data was accessed from online databases provided by Environment 
Canada and the National Data Buoy Center (NDBC).  In some cases, data from 
temperature loggers maintained by the Ontario Ministry of the Environment and 
Climate Change from the deployment buoys were available (OME Logger). 
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Table S4-3.  Average Matrix Spikes.  

BDE 2
BDE 8
BDE 15
BDE 30
BDE 28
BDE 49
BDE 47
BDE 100
BDE 99
BDE 154
BDE 153
BDE 183

pTBX
PBB
PBT
PBEB
HBB
HCDBCO
BTBPE
SDP
ADP

67 ± 15
86 ± 16
95 ± 15
86 ± 17

100 ± 15
77 ± 8
97 ± 25

101 ± 19
98 ± 13
92 ± 10
83 ± 14
91 ± 38

83 ± 26
94 ± 14

100 ± 20
94 ± 18
88 ± 15
72 ± 25
93 ± 51
89 ± 30
74 ± 32

Mean%Percent%
Recovery%(%)%±%1σ%

(N%=%21)%
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Table S4-4.  Mean Blank Concentration and Detection Limits (ng/g PE).  
 

Detection	  
Limit	  (95%	  CI	  
of	  Lab	  Blank)

BDE	  2 0.02 ± 0.02 0.04 0.07 ± 0.07 0.00 ± 0.00 0.02 ± 0.04
BDE	  8 0.01 ± 0.01 0.02 0.02 ± 0.02 0.00 ± 0.01 0.01 ± 0.02
BDE	  15 0.04 ± 0.05 0.09 0.08 ± 0.08 0.02 ± 0.03 0.07 ± 0.09
BDE	  30 0.02 ± 0.02 0.04 0.03 ± 0.04 0.00 ± 0.00 0.00 ± 0.01
BDE	  28 0.02 ± 0.03 0.06 0.04 ± 0.03 0.00 ± 0.00 0.02 ± 0.03
BDE	  49 0.03 ± 0.03 0.06 0.03 ± 0.02 0.03 ± 0.03 0.04 ± 0.03
BDE	  47 0.59 ± 0.23 0.47 0.67 ± 0.33 0.68 ± 0.12 0.30 ± 0.10
BDE	  100 0.04 ± 0.03 0.07 0.05 ± 0.03 0.02 ± 0.02 0.01 ± 0.02
BDE	  99 0.26 ± 0.22 0.44 0.23 ± 0.15 0.11 ± 0.08 0.14 ± 0.14
BDE	  154 0.08 ± 0.06 0.12 0.06 ± 0.03 0.10 ± 0.01 0.03 ± 0.03
BDE	  153 0.02 ± 0.03 0.06 0.02 ± 0.02 0.01 ± 0.01 0.00 ± 0.00
BDE	  183 0.03 ± 0.04 0.07 0.04 ± 0.05 0.01 ± 0.02 0.06 ± 0.07

pTBX 0.08 ± 0.07 0.14 0.15 ± 0.12 0.11 ± 0.08 0.07 ± 0.03
PBB 0.04 ± 0.05 0.09 0.06 ± 0.06 0.02 ± 0.01 0.03 ± 0.03
PBT 0.08 ± 0.06 0.11 0.10 ± 0.12 0.07 ± 0.03 0.10 ± 0.08
PBEB 0.06 ± 0.09 0.18 0.11 ± 0.09 0.02 ± 0.02 0.03 ± 0.02
HBB 0.10 ± 0.11 0.21 0.03 ± 0.02 0.08 ± 0.06 0.05 ± 0.04
HCDBCO 0.05 ± 0.05 0.09 0.13 ± 0.17 0.07 ± 0.06 0.07 ± 0.06
BTBPE 0.58 ± 0.42 0.83 1.12 ± 1.49 0.39 ± 0.41 0.50 ± 0.35
SDP 0.17 ± 0.13 0.26 0.11 ± 0.09 0.07 ± 0.05 0.06 ± 0.04
ADP 0.04 ± 0.02 0.05 0.03 ± 0.02 0.04 ± 0.01 0.05 ± 0.04

Mean	  Lab	  Blank	  
±1σ	  (N	  =	  11)

Mean Shoreline 
Field Blank  ± 1σ 

(N=9)

Mean OME Field 
Blank  ± 1σ      (N=5)

Mean Env. Can. 
Field Blank  ± 1σ 

(N=7)

 
“Mean OME Field Blank” is the average of all blanks from shipboard PE 
deployments done by the Ontario Ministry of the Environment and Climate Change.  
“Mean Env. Can. Field Blank” is the average of all blanks from shipboard PE 
deployments done by Environment Canada.   
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Comparison of Simulated and PE-Derived Air-Water Exchange Fluxes.  The 

method of measuring time-averaged air-water exchange fluxes using co-deployed air 

and water PEs is based on the fact that passive samplers derive time-weighted 

averages for compound concentrations in air and water.20–23  By using two PEs in 

adjacent media, we can directly derive a compound’s activity gradient.  The PE 

responds slowly to changing environmental concentrations of PBDEs, as indicated by 

their mass transfer coefficients (for BDE 47, average ko of 6.0E-6 m/s in water and 

1.1E-2 m/s in air), which means that PEs will lag behind environmental changes, as 

has been noted in previous studies.24  Therefore, the air-water exchange flux derived 

from co-deployed PEs is a time-weighted average of exchange fluxes over the 

deployment assuming the compound remains in linear uptake during deployment, as is 

the case for the dominant BDE congeners BDE 47 and BDE 99.   

In order to demonstrate that PE-derived air-water exchange fluxes were 

representative of average air-water exchange fluxes over relevant deployment periods, 

calculated vaw and ko values for BDE 47 from each PE air-water pair used in the air-

water exchange flux study were fed into a model to calculate the mass accumulated in 

air and water PEs in response to non-steady-state conditions for two “worst case” 

scenarios: Scenario 1, in which BDE 47 concentrations in water and air varied 

randomly every 6 hours (0.1 – 9 pg/m3 in air and 0.4-8 pg/L in water), and Scenario 2, 

in which BDE 47 concentrations in air increase steadily from 0.1 to 9 pg/m3 while 

water concentrations decrease steadily from 8 to 0.4 pg/L, causing the direction of the 

air-water exchange flux to reverse during the deployment. These BDE 47 
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concentrations were chosen because they represented the minimum and maximum 

values observed for concentrations of BDE 47 in all deployments from this study.   

Each scenario was run 100 times in R and the relative percent difference (RPD) 

between the average actual flux over the 100-day deployment and the PE-derived flux 

was calculated.  An example of results is shown below for both scenarios (Figure S4-1 

and S2). Results show that concentrations in the PE, and PE-derived air-water 

exchange fluxes, lag behind the simulated “actual” fluxes that are occurring.  

However, they do a good job of capturing average air-water exchange fluxes over 

time.  Results for other frequently-detected BDE congeners are similar, as they all 

tended to remain in the linear or curvilinear uptake phase during deployment.  

The average relative percent difference (RPD) between the mean simulated air-

water exchange flux over a 100-day deployment (Mean Faw) and the PE-Derived 

exchange flux for a PE air-water pair collected on the 100th day (Faw,PE) is shown in 

the Table S4-11 for each of the two scenarios.  We also simulated an active sampling 

study by calculating the average air-water exchange flux over 100 days by taking one 

instantaneous air-water exchange flux value once a week at regular intervals, and 

averaging them all.  RPDs for the average air-water exchange derived from these 

simulated weekly grab samples are also shown in the table for each scenario.  This 

analysis suggests that PE-derived air-water exchange fluxes are comparable or better 

than collection of numerous grab samples via active sampling for estimating time-

averaged air-water exchange fluxes of PBDEs over time scales relevant to this study. 

 

 
 



 

 
 

204 

Figure S4-1.  BDE 47 Air-Water Exchange Fluxes: Scenario 1 (Random 
Fluctuation).  
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Figure S4-2.  BDE 47 Air-Water Exchange Fluxes: Scenario 2 (Decreasing Flux) 
 

 
 
 
 
 
Table S4-11. RPDs for Simulate and PE- or Grab Sample-Derived Faw 

Scenario 1: Randomly Fluctuating 
Air and Water BDE Concentrations 

Scenario 2: Steadily Increasing Air and 
Decreasing Water Concentrations 

0.92+/-0.42% 18.7±10.8%

27.3+/-7.4% 13.7±4.0%

Relative Percent Difference (RPD) between Mean Faw and Faw,PE

Relative Percent Difference (RPD) between Mean Faw and Faw,grab
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Figure S4-3.  Average Percent Composition of Major Congeners: Dissolved 
PBDEs.  
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Figure S4-4.  Average Percent Composition of Major Congeners: Gaseous 
PBDEs.  
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Comparison of Dissolved BDEs and Active Sampling Data.  Concentrations of 

individual PBDEs measured by Venier et al.25 were compared to concentrations in this 

study measured for a collection of offshore/nearshore sites similar between the studies 

(CERI, EERI, WERI, CONT, and TOR).  All data for Lake Erie were from 2012, 

though Venier et al. collected samples representative of one day each in April-May 

and PEs from this study represented mean summertime concentrations.  Lake Ontario 

data from Venier et al. was collected in 2011.   

The affinity of each congener for DOC (KiDOC) was calculated as 30% of the 

congener’s octanol-water partitioning coefficient (KOW), as in Zarnadze & 

Rodenburg.26  KOW values were obtained from Yue & Li 2013.10  Concentrations from 

Venier et al. were plugged into Equation S28 as CXAD and concentrations from this 

study were plugged in as Ciw.  The fraction dissolved, fiw, that would be needed to 

explain the difference between the two concentrations was calculated for each 

compound and used along with its KiDOC to derive a best-fit value of [DOC] for each 

location using Equation S29.  This was the concentration of DOC that would have 

been needed at the site to explain the discrepancy between active and passive results, 

assuming no other sources of variation.  

Studies of the Great Lakes region have shown that typical concentrations of 

DOC are in the range of 1 – 5 mg/L, with greater concentrations in more productive 

regions along the shoreline.  Best-fit DOC values needed to explain the discrepancy 

between this study and Venier et al. (Table S4-12) were much greater than realistic in 

one instance (CERI), and somewhat greater than expected in most others (EERI, 

CONT, TOR).  Only in western Erie was the DOC concentration somewhat realistic at 
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3 mg/L, as some studies have reported DOC concentrations as high as 2-5 mg/L in this 

region during summer.27–29  Results suggested that the discrepancies between the 

studies could not be entirely explained by sorption to DOC alone, as concentrations of 

DOC much greater than 3 mg/L would be needed in most cases, and the samples being 

compared were from open-lake and nearshore sites, rather than shoreline sites.   

 

             (S28) 

            (S29) 
 

 
Table S4-12.  Best-fit [DOC] from Active-Passive Comparison.  
 

Best-fit [DOC] (mg/L)
Lake Site BDE-28 BDE-49 BDE-47 BDE-100 BDE-99 BDE-154+BB153 BDE-153 BDE-183
Erie CERI 15 13 1.9 1.5 0.8 1.9 26
Erie WERI 18 21 10 5.0 8.8 1.9 3.3
Erie EERI 21 7.7 3.9 6.3
Ontario CONT 18 6.1 6.5 2.4 7.9
Ontario TOR 52 6.6 4.1 2.5 1.6 1.2 7.1

Percent Ciw/CXAD

 
 
Grayed-out cells represent compounds that were <DL in one or both studies and could 
not be used in the comparison.
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Figure S4-5.  Comparison between Southern Population Wedge and Circular 
Radius.  
 
Polycyclic Aromatic Hydrocarbons (PAHs) in Air (pg/m3): Strongest Correlation 
with Population within a Circular Area (left) and with Population in a 180º Wedge 
South (right) 

   
 

             Σ14PAH =940±201*Pop3km/1000+6052±4044             Σ14PAH=92±12*Pop15kmS/1000+2730±2935 
  p = 1.5E-4; SE = 13780; r2 = 0.52                           p = 1.4E-7; SE = 9803; r2 = 0.76 

 
PBDEs in Air (pg/m3): Strongest Correlation with Population within a Circular 
Area (left) and with Population in a 180º Wedge South (right) 

   
           Σ12BDE = 0.42±0.16*Pop2km/1000+3.5±0.88            Σ12BDE = 0.19±0.06*Pop3kmS/1000+3.2±0.81 
                         p = 0.02; SE = 3.2; r2 = 0.25                                          p = 0.003; SE = 2.9; r2 = 0.36 
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Summary of Wind Direction during 2012 Summer Sampling.  Average wind 

direction during the deployment period was estimated by first calculating the speed-

weighted average wind direction at all buoys with data available for the time period 

(Table S4-16), then performing a geostatistical interpolation via ordinary kriging, 

which used the nearby buoy data to predict average wind direction at the atmospheric 

sampling sites. Table S4-16 shows the locations of buoys used, dates when data was 

available, and the average speed-weighted wind direction, calculated from east-west 

and north-south components (uave and vave, respectively).  This data is also summarized 

in Figure S4-5, which is a map with approximate average direction at each buoy site 

marked by an arrow. 

  To calculate average wind direction, direction in degrees was broken 

down into east-west and north-south components and then each component was 

averaged over the deployment period: 

                uave = -(1/n)∑(ui x sin(2π x ϴ/360)                        (S30) 

                 vave = -(1/n)∑(ui x cos(2π x ϴ/360)            (S31) 

  A map and table of predicted values for each component over the study 

region was then created (Figure S4-6; Table S4-17).  Average predicted wind direction 

was calculated based on the values predicted for each component at the sampling sites:  

                                       Θave = arctan(uave/vave) x 180/π + 180            (S32) 

  An angular standard deviation cannot be calculated for speed-weighted 

average direction, but standard deviation calculated based on non-speed-weighted 

direction was generally <60º, which indicates that most of the small-scale variation 
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caused by diurnal fluctuation was averaged out over this timespan, leaving us with a 

wind direction representative of larger scale meteorological patterns.30 

 

 

 

 

 

 

 
Table S4-16.  Average Wind Direction During Deployments at Available 
Meteorological Buoys.   
 
Buoy Name Y X Start Date End Date N obs u_ave v_ave WDIR_ave
45005 41.677 -82.398 5/1/2012 11/1/2012 4420 0.38 0.56 214

45012 43.621 -77.406 5/1/2012 11/1/2012 4438 1.46 0.64 246

BARN6 42.345 -79.595 5/1/2012 7/19/2012 9572 1.09 1.03 227

BUFN6 42.878 -78.89 5/1/2012 11/1/2012 43913 1.35 0.92 236

C45132 42.47 -81.22 5/11/2012 11/1/2012 3909 1.37 0.68 244

C45135 43.79 -76.87 5/1/2012 11/1/2012 4224 1.37 0.80 240

C45139 43.252 -79.535 5/1/2012 11/1/2012 4282 1.28 0.18 262

C45142 42.74 -79.29 5/1/2012 11/1/2012 4237 1.94 0.71 250

C45159 43.77 -78.98 5/1/2012 7/26/2012 2002 0.37 0.14 250

CBLO1 41.981 -80.556 5/1/2012 11/1/2012 28223 0.80 0.67 230

CNDO1 41.542 -81.637 5/1/2012 10/18/2012 40060 0.19 -0.42 336

COBOURG 43.95 -78.17 5/1/2012 10/31/2012 4343 0.51 -0.19 291

DBLN6 42.494 -79.354 5/1/2012 11/1/2012 4437 1.04 0.80 232

FAIO1 41.764 -81.281 5/1/2012 11/1/2012 40720 0.92 0.31 251

GELO1 41.859 -80.975 5/1/2012 11/1/2012 9177 0.75 -0.19 284

HHLO1 41.401 -82.545 5/1/2012 11/1/2012 27376 0.19 0.14 233

KINGSTON 44.22 -76.6 5/1/2012 10/31/2012 2891 0.86 1.43 211

MRHO1 41.544 -82.731 5/1/2012 11/1/2012 44162 0.19 -0.37 333

OLCN6 43.341 -78.719 5/1/2012 11/1/2012 23374 0.73 0.49 236

OSGN6 43.464 -76.511 5/1/2012 11/1/2012 44367 1.06 0.63 239

POINT PETRE 43.83 -77.15 5/1/2012 10/31/2012 4397 1.34 0.82 239

SBIO1 41.629 -82.841 5/1/2012 11/1/2012 4438 0.95 0.65 236

THRO1 41.694 -83.473 5/1/2012 11/1/2012 44187 0.41 0.12 254

TORONTO CENTRE 43.63 -79.4 5/1/2012 10/31/2012 4064 0.29 0.05 261

YGNN6 43.262 -79.064 5/1/2012 11/1/2012 26308 0.88 0.41 245  
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Figure S4-6.  Average Wind Direction During Deployments at Available 
Meteorological Buoys.   
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Table S4-17.  Predicted Average Wind Direction at Sampling Sites.   
 

u_pred u_stdev v_pred v_stdev Direction wind coming 
from (º from 0 N)

TOL 0.12 0.32 0.1 0.38 231
SHL 0.04 0.37 0.15 0.38 194
CLE 0.04 0.34 0.15 0.38 194
CLV 0.04 0.32 0.15 0.38 194
FH 0.09 0.29 0.15 0.36 211
ERI 0.12 0.41 0.18 0.4 214
DUN 0.21 0.28 0.21 0.36 225
BUF 0.19 0.29 0.18 0.36 227
CERI 0.08 0.39 0.15 0.39 207
EERI 0.18 0.41 0.18 0.39 225
NIA 0.1 0.28 0.11 0.36 220
ROC1 0.16 0.44 0.14 0.41 229
ROC2 0.16 0.44 0.14 0.41 229
ROC3 0.16 0.44 0.14 0.41 229
OSW 0.13 0.3 0.19 0.38 215
CV 0.15 0.39 0.19 0.4 218
WTOR 0.11 0.33 0.06 0.38 242
TOR 0.08 0.32 0.05 0.37 239
ETOR 0.07 0.33 0.03 0.37 243
CHB 0.13 0.35 0.01 0.39 265
PEP 0.18 0.34 0.16 0.37 229
GRI 0.18 0.29 0.09 0.37 245  

 
 
 
 
Figure S4-8.  Variance or Dissolved PBDE Predictions from Bayesian Kriging.  
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Figure S4-9.  Distributions of Estimated Parameters for Bayesian Kriging.  

 
 
 
 
 
 
Figure S4-10.  Cross-Validation for Bayesian Kriging of Dissolved PBDEs.  

 
 
One location was removed at a time, and then a kriging model was created and 
concentration was predicted at the removed location.  The plot above compares 
predicted concentrations based on the model to actual concentrations, with a 1:1 line 
for reference. 
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ABSTRACT  

Very few studies have reported on biological effects of hydrophobic organic 

contaminants (HOCs) in the gaseous fraction of ambient air, though health risks posed 

by particle-bound HOCs are well established, especially with regard to the polycyclic 

aromatic hydrocarbons (PAHs).  Polyethylene passive samplers (PEs) were deployed 

in air throughout the greater Cleveland (OH) area along the southern shore of Lake 

Erie.  PE extracts were analyzed for PAHs and organophosphate esters (OPEs), two 

groups of contaminants prominent in ambient urban air, and were also analyzed via an 

in vitro bioassay to measure AhR-mediated potency.  Ambient gaseous concentrations 

of Σ40PAH ranged from 7.1 ng/m3 in Cuyahoga National Park to 36 ng/m3 in 

downtown Cleveland, and were dominated by the 2-3-ring methylphenanthrenes, 

phenanthrene, and fluorene.  Gaseous concentrations of Σ12OPE ranged from 0.02 

ng/m3 in Cuyahoga National Park to 1.2 ng/m3 in Kent.  Dosing solutions used in 

bioassay experiments were enriched in hydrophobic compounds compared to ambient 

air.  Bioassay-derived BaP equivalents (BaPEqbio), a measure of relative potency, 

ranged from 21-283 ng/µL BaP, with greatest values in the downtown Cleveland area 

and lowest values at rural/residential sites further from the city center.  BaPEqbio was 

weakly correlated with concentrations of 2-ring alkyl/substituted PAHs as well as the 

OPEs TDCIPP and EHDPP.  Potencies predicted based on literature-derived induction 

equivalency factors (IEFs) explained only 2-23% of the AhR-mediated potency 

observed in bioassay experiments.  This suggests that biological effects predicted 
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using BaPEqchem may underestimate risks of exposure, perhaps due to synergism, or 

augmentation of potency by unmonitored chemicals in the mixture.   

INTRODUCTION  

Hydrophobic organic contaminants (HOCs) in the particulate phase of ambient 

air pose a health risk to humans, and polycyclic aromatic hydrocarbons (PAHs) are the 

predominant carcinogenic component of this fraction.1,2  However, there are very few 

studies investigating health risks associated with HOC mixtures present in the gaseous 

phase of ambient air.  Humans are exposed to gaseous air pollution directly via 

respiration and dermal uptake.3  This is especially concerning in urban areas with 

greater traffic and population density, and also in indoor environments.  Furthermore, 

gaseous HOCs are freely available to partition into other media including plants,4 so 

dietary uptake from crops could be a significant route of human exposure.5   

The gaseous fraction of ambient air has a distinct composition compared to the 

particle-bound fraction.6  The total amount of PAHs in the gaseous phase is generally 

greater than in the particulate phase, though total PAHs in this phase are dominated by 

lower molecular weight 2-3-ring PAHs while the particulate-bound fraction is 

dominated by more hydrophobic PAHs.2,6–10  Recent studies have also demonstrated 

that organophosphate esters (OPEs), a group of compounds currently used as flame 

retardants and plasticizers in consumer goods, are present at unexpectedly high levels 

in ambient air in the Great Lakes region, and some chlorinated OPEs are expected to 

be predominantly in the gaseous phase.11–13  O’Connell et al. used silicone wristbands 

as personal monitoring devices for exposure to gas-phase HOCs and frequently 

detected several 2-3-ring PAHs, as well as some OPEs.14  Chronic exposure to gas-
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phase OPEs and PAHs in ambient air is of concern because these compounds have 

been associated with carcinogenicity,  endocrine disruption, and other biological 

effects in previous in vitro and in vivo studies.6,15–18  

Activation of the aryl hydrocarbon receptor (AhR) is linked to induction and 

repression of a large number of genes, modulation of cell growth and proliferation, 

tumor promotion, immunological effects, cardiotoxicity, and endocrine disruption, 

with the severity and type of response dependent upon the specific ligand and its 

binding affinity.19  Many previous studies have assessed health risks of ambient air 

pollution using induction equivalency factors (IEFs) to represent the relative AhR-

mediated potency of PAHs relative to benzo(a)pyrene (BaP).8,20  This approach 

assumes an additive, rather than synergistic or antagonistic, relationship between 

multiple ligands.  AhR is activated by binding with variable affinity to several PAHs, 

with 4-5-ring PAHs generally more potent than the 2-3-ring PAHs that dominate gas-

phase air pollution.6   

Highly carcinogenic PAHs such as benzo(a)pyrene (BaP) are typically present 

only at very low concentrations in the gas phase due to low volatility.  The lower 

molecular weight PAHs, especially phenanthrene, fluoranthene, and the methylated 

phenanthrenes/anthracenes, are expected to contribute more significantly to the 

potency of this fraction due to their high gas-phase concentrations.6  Despite this, 

previous studies have shown that the gaseous fraction of ambient air pollutants 

appears to be responsible for a significant portion of the AhR-mediated potency 

associated with ambient air.  The majority of compounds responsible for this potency 

remain unidentified.  In studies of gas-phase air pollution, Ramirez et al. found that, 
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while concentrations of PAHs known to be most potent with respect to cytochrome 

P450 1A1 (CYP1A1) induction were low in the gaseous fraction, this fraction was 

estimated to contribute 34-86% of total carcinogenicity associated with 16 PAHs 

based on potency relative to BaP.8  Previous studies by Klein et al. and Novak et al. 

also observed significant AhR activation from the gaseous, as well as the particulate, 

fraction of ambient air pollutants.10,21  Kennedy et al. found a statistically significant 

relationship between PAH concentrations and AhR activity in samples of gaseous and 

fine particulate contaminants, but determined that the specific PAHs targeted via 

GC/MS accounted for < 3% of the measured AhR activity.20  Similarly, Ersekova et 

al. found that quantified PAHs accounted for 3-33% of measured AhR activity.22  

Many previous studies have noted that gaseous HOCs should not be ignored in 

risk assessments, but they were all carried out using high-volume air samplers or 

passive polyurethane foam (PUF) samplers, which are less selective for gaseous HOCs 

than diffusive uptake by polyethylene.23  This study is the first to investigate AhR 

activation caused by the freely gaseous fraction of HOCs taken up by a single-phase 

sampler consisting only of pre-cleaned polyethylene, and will help contribute to our 

knowledge of the biological relevance of the truly gaseous fraction of ambient air.  

Passive samplers of this type have similar affinity for HOCs as organism lipids, and 

have been used in predicting the extent to which HOCs will bioaccumulate.24  The 

composition of HOCs taken up into the polyethylene matrix is similar to the 

composition that would be found in biological tissue.  

Polyethylene passive samplers (PEs) were deployed throughout the Cleveland 

(OH) area on the southern shore of Lake Erie during June-September, 2013.  Extracts 
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from PEs were analyzed for PAHs and OPEs and were also analyzed via an in vitro 

bioassay to measure AhR induction.  The objectives of this study were to (i) 

investigate the use of PEs as a viable vehicle for isolating gaseous HOCs to use in 

bioassay exposures, (ii) explore whether AhR-mediated potency of the extracts 

correlated significantly with any compound or compound group measured in the 

extracts, and (iii) compare predicted potency based on chemical analysis to observed 

potency from bioassay analysis to determine what portion of AhR-mediated potency 

could be predicted from known chemical composition.   

We expected that AhR-mediated potency and gaseous concentrations of OPEs 

and PAHs in PE extracts would be greatest at densely populated urban sites located 

near the city center, and that some correlation would be seen between gaseous PAH 

concentrations and relative potency.  However, we also expected that BaP-equivalents 

calculated from targeted PAH chemical analysis (BaPEqchem) would likely 

underestimate the potency observed in bioassay experiments and that, unlike what is 

usually found for particulate air pollution, BaP concentration would not correlate 

significantly with the relative AhR-mediated potency of gas-phase extracts.  

 

METHODS 

Passive Air Sampler Deployment.  800-µm low-density polyethylene sheeting 

(United Plastics, Inc.) was cut into approximately 3 in. x 5 in. pieces and cleaned in 

solvent (DCM and hexane) to remove background contamination.  At each of nine 

sampling sites throughout the Cleveland area, four polyethylene sheets (PEs) were 
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fastened inside an inverted stainless steel bowl using zip-ties and the bowl was 

suspended so that the PEs were hanging at approximately 2 m height.   

In order to calculate ambient concentrations from deployed PEs, performance 

reference compounds (PRCs) are often added to the PE for in situ calibration of 

sampling rates.  However, PRCs could not be added to the PEs intended for bioassays 

because these compounds could interfere with bioassay responses.  A set of three 50-

µm-thick PEs, preloaded with PRCs by incubation in an 80:20 methanol:water 

solution, were also co-deployed at each site to allow for sampling rate determination 

in all PEs after deployment.   

A map of the study region is shown in Figure 5-1 and characteristics of the 

deployment sites are summarized in Table 5-1.  Deployments took place during June 

to September of 2013, with each set of PEs deployed for about 60 days.  After 

deployment, PEs were removed from the protective bowl, wrapped in precombusted 

aluminum foil, and shipped on ice overnight to the University of Rhode Island 

Graduate School of Oceanography, where they were frozen until extraction.  

Sample Preparation.  Each PE was extracted twice in pentane, each time for 18-24 

hours, along with a laboratory blank, which was a PE that had been cleaned alongside 

the field samples and then stored frozen in precombusted aluminum foil while the 

other PEs were deployed.  All four 800-µm PEs from the same site were composited 

into one extract and concentrated to 1 mL in a warm water bath under a gentle stream 

of nitrogen.  Extracts from 800-µm PEs appeared to contain a white precipitate, 

possibly from coextracted polyethylene material.  To remove the particulate, extracts 

were serially frozen, causing the precipitate to solidify at the bottom of the vial, and 
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then the overlying liquid was removed.  After this, two aliquots were removed from 

the 1 mL solution: one for chemical analysis and the other for biological analysis.  A 

schematic summarizing sample preparation is shown in Figure S5-1.   

Chemical Analysis by GC/MS.  Aliquots of 50 µL were spiked with internal 

standards acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12 for 

quantification.  These samples were analyzed on an Agilent 6890 GC coupled to an 

Agilent 5973 MSD in electron impact (EI, 70 eV) mode for 22 PAHs, 18 alkylated 

PAHs, and (in a separate GC/MS run) 12 organophosphate esters (OPEs) using an 

Agilent J&W DB-5 fused capillary column (30 m x 0.25 mm I.D.).  Extracts were also 

analyzed in negative chemical ionization (NCI) mode with methane reagent gas for 12 

brominated diphenyl ethers (BDEs), 8 novel halogenated flame retardants (NHFRs), 

and 3 polybrominated biphenyls (PBBs).  A complete list of target compounds and 

abbreviations is available in the SI (Table S5-1).   

To avoid interference with biological assays, samples were not spiked with 

internal standard prior to extraction and so were not corrected for internal standard 

recoveries.  Dosing solution concentrations were not blank-subtracted before use in 

data interpretation.  This was considered appropriate as we were primarily interested 

in determining the actual concentration present in the bioassay exposure solution.  

Ambient Air Concentrations.  The composition of HOCs in PEs differs from the 

ambient composition of gas-phase HOCs in air because the concentration in 

polyethylene is dependent not only on gas-phase concentrations, but also on the 

affinity of each compound for the PE matrix and the rate at which the compound is 

absorbed into the PE.  In order to compare the composition of solutions used in 
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bioassay experiments to the actual composition of gaseous HOCs expected in ambient 

air, air concentrations were calculated based on the results of the chemical analysis of 

PE extracts.  Concentrations of PAHs and OPEs per weight PE were blank-subtracted 

using the co-extracted laboratory PE Blank.  Concentrations below 25% of the PE 

Blank were considered <DL, and all <DL values were replaced with 0.   

To translate concentrations within the PE to concentrations in ambient air, the 

volume of air sampled by each PE during deployment was estimated using data on the 

percent loss of labeled PRCs from co-deployed 50 µm-thick PEs.  From the PRC loss 

data, the best-fit value for the thickness of the diffusive boundary layer (DBL) at the 

air-PE interface was determined. Because all PEs were deployed under the same 

conditions and the thickness of the PE sheet does not affect air-side resistance, the 

DBL thickness determined for thin sheets was then plugged into a two-film model 

describing PE-side and air-side mass transfer rates to calculate the percent 

equilibration reached by each target compound in the 800 µm-thick PEs.  This 

approach for estimation of percent equilibration from PRC loss data has been 

described in detail in previous work.25,26  

Biological Analysis by Reporter Cell Bioassay.  Aliquots for biological analysis 

were transferred to 200 µL of DMSO and blown down under a gentle stream of 

nitrogen to constant volume.  This stock solution was used to create a 10-point dilution 

curve for each sample, including the PE blank.  

The AhR reporter cell line used was H1G1.1c3, a murine hepatoma cell line 

consisting of Hepa-1c1c7 cells stably transfected with AhR-responsive green 

fluorescence protein (GFP) reporter gene developed by Nagy et al.27  100 µL of cells 
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per well were treated with 1 µL of each sample dilution in triplicate in a Costar 96-

well black plate with a clear bottom.  For each test extract, the cells in three wells were 

treated with 1 µL of DMSO as a negative control, and the cells in another set of three 

wells were left untreated to control for any natural cell fluorescence.  On each plate, 

three wells were treated with benzo(a)pyrene (BaP) at a final well concentration of 

1.2x10-7 M dissolved in DMSO as a positive control.  On one plate, a 10-point dilution 

curve was also run for BaP (1.2x10-12 – 1.2x10-3 M), and results were normalized to 

the positive control 1.2x10-7 M BaP (Figure S5-2).   

Cells were incubated at 33 °C and AhR-mediated potency was measured by 

reading the GFP fluorescence emitted by the cells at 515 nm using a Spectra Max M3 

plate reader at 24 and 48 hours post dosing (hpd).  The mean fluorescence value of the 

DMSO-treated negative control triplicate wells was subtracted from each sample’s 

fluorescence readings, and then the response was expressed as a ratio over the mean 

fluorescence value of the triplicate 1.2x10-7 M BaP positive controls wells run on the 

same plate to control for plate-to-plate differences in cell response.  

Determining Relative Potency.  Data from 48-hpd readings were fitted to a four-

parameter log-logistic dose-response model with the lower bound set to 0 using R 

package drc.28  The upper bound was set to the maximum observed response in all 

cases where response reached a plateau or decreased at highest dosages, but was not 

set for the extract from Cleveland Lakefront #1 because response continued increasing 

up to the maximum dose.  The response f occurring as a result of dosage x is modeled 

as in Equation 1, where c is the lower bound value (set to 0), d is the upper bound 
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value, b determines slope steepness, and e is the concentration achieving 50% of 

maximum efficacy (EC50).   

f(x) =
d� c

1 + exp(b(log(e)� log(x))              Eq 1 

In addition to the EC50, ECBaP20 and ECBaP50 were calculated as alternative 

measures of relative potency.  The ECBaP20 and ECBaP50 are the doses achieving 20% 

and 50% of the effect observed for the positive control, 1.2x10-7 M BaP.  The ECBaP50 

was identified as a more useful metric than EC50 because the extracts’ dose-response 

curves were not parallel and maximum efficacy varied among curves.  

 Dosing solutions were prepared so that each sample was representative of the 

same amount of extracted PE to facilitate comparison with the PE blank.  However, 

due to site-to-site variability in sampling rates, the volume of air represented by each 

sample was different (Table 5-1).  For this reason, after determination of ECBaP50 from 

the dose-response curve fit, ECBaP50 values were normalized based on volume of air 

sampled at each site.  Aliquots of PE extracts used in dosing solutions were 

representative of 1900-3100 m3 of air, and were all normalized to 2000 m3.  

 To compare predicted potency based on chemical composition and observed 

potency based on bioassay experiments, BaP equivalents had to be calculated for both 

sets of data.  For concentrations measured via chemical analysis, BaP equivalents in 

each mixture (BaPEqchem) were determined as in Equation 2 by multiplying the 

concentration of each compound in the dosing solution (Cn) by the compound’s 

potency relative to BaP (expressed as induction equivalency factor, IEFn) from 

Machala et al.,16 and summing results for all compounds.  Concentrations in the 
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dosing solution were normalized based on volume of air sampled before BaPEqchem 

calculations were done.  

BaPEqchem = ⌃(IEFn · Cn)(ng/µL)              Eq 2 

 For comparison to bioassay results, the relative potency of each sample extract 

was expressed as the amount of BaP that would be needed to achieve the same 

response.  The bio-derived toxic equivalency (BaPEqbio) was calculated as in Equation 

3 as the ratio of the ECBaP50 for the BaP curve, expressed in ng BaP added to the well 

to achieve 50% of the 1.2x10-7 BaP positive control response, and the ECBaP50 of the 

extract, expressed as µL of dosing solution added to the well.   

BaPEq

bio

=
EC

BaP50[BaP ](ng/well)

EC

BaP50[Extract](µL/well)                Eq 3 

 The degree to which chemical analysis can explain observed potency (%chem) 

was then expressed as the percent of observed potency predicted by BaPEqchem, as in 

Equation 4.  

%
chem

=
BaPEq

chem

BaPEq
bio

· 100
                  Eq 4 

 

 

RESULTS AND DISCUSSION 
 
Chemical Composition of Bioassay Dosing Solutions.  Concentrations of PAHs and 

OPEs in the bioassay dosing solution and estimated ambient air concentrations are 

displayed in Figure 5-2.  Total PAHs and alkylated PAHs (Σ40PAH) in the dosing 

solution ranged from 3.6 ng/µL for the extract from Cuyahoga National Park to 33.7 

ng/µL for University Heights.  Concentrations were dominated by phenanthrene (10-
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57% Σ40PAH; 0.6-16.3 ng/ µL), fluoranthene (1-18%; 0.1-6 ng/µL), 2-

methylphenanthrene (1-6%; 0.1-1 ng/µL), and fluorene (3-9%; 0.3-1 ng/µL).  Total 

OPEs (Σ12OPE) ranged from 0.7 ng/µL for the extract from Cuyahoga National Park 

to 3.4 ng/µL for Kent, with concentrations generally dominated by TDCIPP (10-51%; 

0.1-1 ng/µL) and TEHP (8-40%; 0.1-0.6 ng/µL).  All dosing solution concentrations 

for field samples were normalized to an air volume of 2000 m3.  Concentrations of all 

compounds in dosing solutions are presented in the SI for PAHs (Table S5-2), OPEs 

(Table S5-3), and brominated flame retardants (BFRs; Table S5-4).   

 2-ring, 3-ring, and 4-ring PAHs, as well as their alkylated and substituted 

counterparts, were generally correlated in the different dosing solutions (0.3 < r2 < 

0.9), while 5-6-ring PAHs showed little correlation with the other compounds (Table 

S5-5).  Correlation among PAHs was further confirmed by principal component 

analysis (PCA), which showed that 76% of variation in samples was explained by two 

principal components, the first with loadings primarily from 3-4-ring PAHs, and the 

second with loadings primarily from 2-ring and 4-5-ring PAHs (Figure S5-3).  The 

OPEs generally varied independently of one another, though some degree of 

correlation (r2 > 0.3) was observed between some pairs, including TCEP and TCIPP, 

and TDCIPP and EHDPP (Table S5-6).  There were few correlations found between 

the PAHs and OPEs, though TnBP was found to correlate with 2-4-ring PAHs (Table 

S5-7).        

Ambient Air Concentrations.  Ambient gaseous concentrations of Σ40PAH ranged 

from 7.1 ng/m3 in Cuyahoga National Park to 36.2 ng/m3 at Cleveland Downtown 1, 

and were dominated by the methylnaphthalenes (18-33%; 1.7-8.8 ng/m3), 
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phenanthrene (2-33%; 0.3-9.8 ng/m3), and fluorene (5-14%; 0.5-2.6 ng/m3).  

Concentrations were similar in range to those measured by Peverly in Chicago using 

polyurethane foam passive samplers (PUFs) in 2012-2014 (Σ16PAH = 9-52 ng/m3), 

and by Melymuk et al. in Toronto in 2007-2008 (Σ27PAH = 0.3-51 ng/m3), also using 

PUFs.12,29  Concentrations in this study were similar but lower than previous 

measurements of total gaseous PAHs using PEs in the downtown Cleveland area by 

McDonough et al. in 2012 (Σ15PAH = 23-80 ng/m3).9  In larger-scale regional studies, 

atmospheric concentrations of PAHs have often been found to correlate with 

population density,9,30 but here, no significant (p < 0.05) correlation between gaseous 

with population density within 5-30 km was observed.   

Gaseous concentrations of Σ12OPE ranged from 0.02 ng/m3 in Cuyahoga 

National Park to 1.2 ng/m3 in Kent.  This was similar in range to measurements by 

Peverly et al. in Chicago using PUFs in 2012-2014 (Σ13OPE = 0.5 – 1.5 ng/m3), and 

slightly lower than measurements of particulate Σ12OPE in the Cleveland area by 

Salamova et al. in 2012 (mean Σ12OPE = 2.1±0.4 ng/m3).11,12  TCIPP was the most 

abundant OPE at most sites (9-90%; 0.01-1.0 ng/m3) with the exception of University 

Heights, where TnBP dominated (86%; 0.6 ng/m3).  TCIPP was also found to be most 

abundant in Cleveland particulate Σ12OPE by Salamova et al. (0.85±0.3 ng/m3).11 

Figure 5-2 compares the composition of the dosing solutions used in bioassay 

experiments and of ambient gaseous PAHs and OPEs.  Dosing solutions were enriched 

in more moderately hydrophobic compounds, such as fluoranthene and TDCIPP, 

which make up a lower percentage of total HOCs in the gaseous fraction of ambient 

air but have a greater affinity for the PE matrix.   
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Dose-Response Curves for PE Extracts.  Extracts from all PEs, including the PE 

Blank, induced dose-dependent activation of AhR-dependent GFP.  All dose-response 

data are displayed along with curve fits and 95% confidence intervals in Figure 5-3, 

with response represented as a ratio compared to response elicited by the BaP positive 

control.  For all extracts, an initial increase in GFP induction was seen with increasing 

dosage.  However, there was a precipitous decline in the fluorescence of all extracts 

(except Cleveland Lakefront 1) at the greatest dosing levels, possibly due to 

cytotoxicity or inhibition of the fluorescence response at high concentrations.  These 

points were omitted during dose-response curve fitting, as we were interested in 

determining only the relative induction potency of the extracts.  Most extracts did not 

exhibit a clear plateau in response, making determination of maximum efficacy, as 

well as EC50, somewhat uncertain.  Furthermore, maximum efficacy of the samples 

varied from 94%-230% of 1.2x10-7 M BaP response (Table 5-2).  For this reason, 

ECBaP50, measured relative to the plate-specific positive control, was used to compare 

potency of samples. 

The ECBaP50 and ECBaP20 of each extract, normalized for volume of air sampled 

during each deployment, are displayed in Table 5-2, along with each extract’s 

maximum observed efficacy.  The letters to the right of each ECBaP50 divide the values 

into 5 groups based on whether they are similar to each other within the range of the 

standard error.  Values of ECBaP50 ranged from 0.5±0.1 g PE/mL at Downtown 

Cleveland 1 to 6.6±1.2 g PE/mL at Cuyahoga National Park.   

The three rural/residential sites had the lowest potency (greatest ECBaP50 

values), ranging from 2.6 – 6.6 g PE/mL, followed by the two Cleveland Lakefront 
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sites.  The most potent extracts were from the three Cleveland Downtown sites and 

one semi-urban residential site (University Heights, a densely populated suburb).  This 

contrasts with work by Klein et al., where no change in potency of gaseous extracts 

was observed between urban and rural samples with distinct chemical compositions, 

but is consistent with work by Ersekova et al, where extracts from impacted sites were 

found to be more potent in AhR bioassays than extracts from rural sites.10,22  The 

relative potency of the PE Blank (ECBaP50 = 23±5 g PE/mL) was significantly lower 

than all field samples when compared using the ECBaP50 values, prior to adjusting for 

volume of air sampled.  Blank comparisons were done before normalizing for the 

volume of air sampled so that each sample would be representative of the same mass 

of extracted polyethylene.  

Relative potency and maximum efficacy of the extracts did not appear to be 

correlated.  This is most likely due to a complex interplay between the unique 

composition of ligands in each sample, their affinity for the AhR, the resulting ligand-

receptor complex’s ability to bind other necessary transcription factors, and 

cytotoxicity of specific components.  Response could also be affected by ligands 

interacting with other pathways that could amplify or dampen AhR response.  Klein et 

al. also observed a lack of correlation between relative potency of extracts and 

maximum efficacy with respect to AhR binding of gas-phase extracts from active air 

sampling.10   

Initial bioassay experiments demonstrated that treated cells’ fluorescence 

responses increased over time from 16 to 48 hpd, so all responses reported here were 

measured at 48 hpd.  This is in contrast to other studies of potency with respect to 
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AhR activation for environmental samples, most of which have used a luciferase 

reporter rather than the GFP reporter used here.  For example, Machala et al. measured 

greatest potency at 6 hpd, most likely due to PAH metabolism16 and Kennedy et al. 

observed steadily decreasing potency in extracts from 24 to 72 hpd.20  This difference 

is most likely due to differences in induction kinetics and increased stability of the 

GFP reporters compared to the luciferase reporter.31  It is also possible that some of 

the response observed in this study was due to compounds that were less readily 

metabolized than PAHs and OPEs.  

Bioassay-Derived BaP Equivalents for PE Extracts.  A map displaying results for 

BaPEqbio is displayed alongside maps of total concentrations of PAHs and OPEs in the 

dosing solution (Σ40PAH and Σ12OPE) in Figure 5-4.  BaPEqbio values ranged from 21-

283 ng/µL BaP and were generally greatest in the downtown Cleveland area and 

lowest at the rural/residential sites further from the city center.   

 BaPEqbio values were compared to concentrations of PAHs, OPEs, and 

halogenated flame retardants (PBDEs and NHFRs) measured in the dosing solutions to 

determine whether there was any significant correlation between relative potency of 

extracts and their chemical composition.  Though some correlations were found, few 

seemed likely to be driving potency.  No correlations with PBDE and NHFR content 

were observed. BaPEqbio weakly correlated only with 2-ring alkyl/substituted PAHs (r2 

= 0.42; p < 0.1; SE = 64; N = 9) and also displayed correlation with two OPEs, 

TDCIPP (r2 = 0.58; p < 0.05; SE = 54; N = 9) and EHDPP (r2 = 0.73; p < 0.01; SE = 

44; N = 9). TDCIPP is a known carcinogen and has previously been associated with 

altering expression of mRNA involved in AhR activation along with other 
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pathways,17,18 while less is known about biological effects of EHDPP.  Maximum 

efficacy of PE extracts showed some correlation with concentrations of 3-ring (r2 = 

0.61; p < 0.05; SE = 31; N = 9) and 4-ring non-alkylated PAHs (r2 = 0.48; p < 0.05; 

SE = 36; N = 9) and no relationship to OPE concentrations.   

Predicted BaP Equivalents from Chemical Analysis.  The BaPEqchem of each 

dosing solution was calculated based on PAH concentrations from GC/MS analysis.  

No dataset for the specific cell line used here was available, so IEFs were taken from 

Machala et al.,16 who measured PAH-induced AhR-mediated response in a rat 

hepatoma H4IIE cell line stably transfected with luciferase reporter gene.  IEFs were 

not available for all PAHs, so calculated BaPEqchem values are representative only of 

14 PAHs (Table S5-8).   

BaPEqchem values calculated using potencies from Machala et al. ranged from 

1.6 to 7.9 ng/µL BaP, as shown in Table 5-3.  The percent of BaPEqbio accounted for 

by BaPEqchem is also displayed.  The percent contribution of individual PAHs to the 

total predicted BaPEqchem are displayed in Figure 5-5.  Contributions to BaPEqchem 

appear dominated by high molecular weight PAHs that were present at low 

concentrations in the dosing solution, including dibenz(a,h)anthracene (DBA), 

indeno(1,2,3-c,d)pyrene (IND), benzo(b/k)fluoranthene (BBKFLRA),  and chrysene 

(CHRY).   

Potencies calculated from known chemical composition using IEFs explained 

only 2-23% of the AhR-mediated potency observed in bioassay experiments, and 

BaPEqchem and BaPEqbio were not found to be significantly correlated. This suggests 

that other compound groups, including nitro- and oxy-PAHs, additional substituted 
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PAHs, and persistent halogenated pollutants such as the polychlorinated biphenyls 

(PCBs) and other halogenated species, may also be influencing BaPEqbio of gas-phase 

extracts, along with other unknown pollutants and their transformation products.  A 

major weakness of predicting potency based on compound IEFs is that it considers 

only additive interactions and ignores synergistic and antagonistic effects, which are 

highly probable in complex environmental mixtures.  This, along with the scarcity of 

IEF values for the targeted compounds, most likely contributed to the discrepancy 

between observed and predicted relative potency.    

 

CONCLUSIONS 

This study demonstrated the use of PEs coupled with in vitro bioassays as an 

approach to measure cumulative biological effects of ambient gaseous air pollution.  

While some activity was seen in the PE blank, the relative potency of field samples 

was found to be significantly elevated above blank levels, suggesting that interference 

from the PE matrix or typical laboratory contamination did not prohibit the use of PE 

extracts in bioassays for AhR-mediated potency.   

AhR-mediated potency was found to vary significantly between different sites, 

and was greatest in downtown Cleveland.  Relative potency of the extracts displayed 

some correlation with PAHs common in the gaseous phase, though causative links are 

difficult to establish.  This study agreed with previous studies that have suggested the 

BaPEqchem approach underestimates risks of exposure, as AhR activation caused by 

PAHs in a mixture may be synergistic, or the potency predicted from target 
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compounds could be augmented by other unmonitored chemicals in the mixture and 

their unforeseen interactions.   
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Figure 5-3.  Dose-response curves for triplicate cell exposures to PE extract dilution 
curves, including the PE Blank. Relative potency was greatest for Cleveland 
Downtown 1 and lowest for the PE Blank.  Dose is expressed as the mass of PE 
extracted per mL DMSO in each dosing solution.  Efficacy is expressed as the ratio of 
the response to PE extract as compared to the response of the positive control (1.2 x 
10-7 M BaP).  
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Sample'
ECBaP20 ECBaP50 Max'Efficacy'
(g'PE/mL) (g'PE/mL) (%'+control)

Cuyahoga'National'Park 2.3 ± 0.6 6.6 ± 1.2 a 110 ± 15
Fairport'Harbor'Lakefront 1.4 ± 0.5 4.1 ± 0.9 b 178 ± 22
Kent' 0.9 ± 0.2 2.6 ± 0.4 c 188 ± 18
Cleveland'Lakefront'1 0.4 ± 0.1 2.2 ± 1.2 b,'c,'d,'e 188 ± 39
Cleveland'Lakefront'2 0.8 ± 0.2 1.9 ± 0.2 d 109 ± 4
Cleveland'Downtown'2 0.6 ± 0.1 1.6 ± 0.2 d,'e 94 ± 13
University'Heights' 0.5 ± 0.1 1.6 ± 0.3 d,'e 230 ± 18
Cleveland'Downtown'3 0.4 ± 0.2 1.1 ± 0.3 e 179 ± 55
Cleveland'Downtown'1 0.2 ± 0.1 0.5 ± 0.1 f 138 ± 39

 
Table 5-2.  Relative potency and maximum efficacy of PE extracts, with relative 
potency values normalized based on volume of air sampled and maximum efficacy 
normalized to the response of the positive control (1.2 x 10-7 M BaP).  
 
 
 
 
 
 

Sample BaPEqbio BaPEqchem %BapEqchem/BaPEqbio

Cuyahoga National Park 21 1.6 7%
Fairport Harbor Lakefront 35 2.5 23%
Kent 54 7.9 11%
Cleveland Lakefront 1 64 2.9 4%
Cleveland Lakefront 2 75 3.0 6%
Cleveland Downtown 2 89 6.1 7%
University Heights 89 4.7 3%
Cleveland Downtown 3 129 5.8 2%
Cleveland Downtown 1 283 6.0 2%

 
Table 5-3.  BaP equivalents derived from chemical analysis (BaPEqchem) and 
bioassays (BaPEqbio), and the percent BaPEqbio explained by PAHs for which IEF 
values were available.  
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Figure 5-5.  Relative contribution of PAHs to BaPEQchem, based on IEFs from 
Machala et al. 
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Table S5-1. Target compounds and abbreviations used. Compounds marked with ‘*’ 
were seldom detected and are omitted from figures in the discussion. 
 

Polycyclic	  Aromatic	  Hydrocarbons	  (PAHs) CAS	  Number
2-‐ring	  PAHs
NAP Naphthalene 91-‐20-‐3
BIP Biphenyl 92-‐52-‐4
ACY Acenaphthylene 208-‐96-‐8
ACE Acenaphthene 83-‐32-‐9
FLR Fluorene 86-‐73-‐7
2-‐ring	  alkyl/substituted	  PAHs
2MENAP 2-‐methylnaphthalene 91-‐57-‐6
1MENAP 1-‐methylnaphthalene 90-‐12-‐0
3MEFLR 3-‐methyl	  fluorene 2523-‐39-‐9
2MEFLR 2-‐methyl	  fluorene 1430-‐97-‐3
1MEFLR 1-‐methyl	  fluorene 1730-‐37-‐6
4MEFLR 4-‐methyl	  fluorene 1556-‐99-‐6
DBF Dibenzofuran 132-‐64-‐9
DBT Dibenzothiophene 132-‐65-‐0
3-‐ring	  PAHs
PHN Phenanthrene 85-‐01-‐8
ANT Anthracene 120-‐12-‐7
FLRA Fluoranthene 205-‐99-‐2
4-‐ring	  PAHs
PYR Pyrene 129-‐00-‐0
BAA Benzo(a)anthracene 96-‐55-‐3
CHRY Chrysene 218-‐01-‐9
BBKFLRA Benzo(b,k)fluoranthene 205-‐99-‐2/209-‐08-‐9
3-‐4-‐ring	  alkylPAHs
3MEPHN 3-‐methyl	  phenanthrene 832-‐71-‐3
2MEPHN 2-‐methyl	  phenanthrene 2531-‐84-‐2
2MEANT 2-‐methyl	  anthracene 613-‐12-‐7
9MEPHN 9-‐methyl	  phenanthrene 883-‐20-‐5
1MEPHN 1-‐methylphenanthrene 832-‐69-‐9
9MEANT 9-‐methyl	  anthracene 779-‐02-‐2
2MEFLRA 2-‐methyl	  fluoranthene 33543-‐31-‐6
1MEPYR 1	  methyl	  pyrene 2381-‐21-‐7
RET Retene 483-‐65-‐8
BCPHN Benzo(c)phenanthrene 195-‐19-‐7
6MECHRY 6-‐methyl	  chrysene 1705-‐85-‐7
7MEBAA 7-‐methyl	  benz(a)anthracene 2541-‐69-‐7
DIMEBAA 7,12-‐Dimethylbenz(a)anthracene 57-‐97-‐6
5-‐6-‐ring	  PAHs
BEP Benzo(e)pyrene 192-‐97-‐2
BAP Benzo(a)pyrene 50-‐32-‐8
PER Perylene 198-‐55-‐0
IND Indeno(1,2,3-‐c,d)pyrene 193-‐39-‐5
DIBA Dibenz(a,h)anthracene) 57-‐70-‐3
BGHIP Benzo(g,h,i)pyrene 191-‐24-‐2
COR* Coronene 191-‐07-‐1  
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Table S5-1, Cont’d. Target compounds and abbreviations used. Compounds marked 
with ‘*’ were seldom detected and are omitted from figures in the discussion.  
 

Organophosphate	  Esters	  (OPEs) CAS	  Number
TnBP tri-‐n -‐butyl	  phosphate 126-‐73-‐8
TCEP tris(2-‐chloroethyl)	  phosphate 115-‐96-‐8
TCIPP tris(1-‐chloro-‐2-‐propyl)	  phosphate 13674-‐84-‐5
TDCIPP tris(1,3-‐dichloro-‐2-‐propyl)	  phosphate 13674-‐87-‐8
TPhP triphenyl	  phosphate 115-‐86-‐6
TBEP* tris(butoxyethyl)	  phosphate 78-‐51-‐3
EHDPP ethylhexyl	  diphenyl	  phosphate 1241-‐94-‐7
TEHP tris(2-‐ethylhexyl)	  phosphate 78-‐42-‐2
ToCP* tri-‐o -‐cresyl	  phosphate 78-‐30-‐8
TmCP* tri-‐m -‐cresyl	  phosphate 563-‐04-‐2
TpCP* tri-‐p -‐cresyl	  phosphate 78-‐32-‐0
TDBPP* tris(2,3-‐dibromo-‐2-‐propyl)	  phosphate

Brominated	  Diphenyl	  Ethers	  (BDEs)
BDE	  2 3-‐bromodiphenyl	  ether 6876-‐00-‐2
BDE	  8 2,4'-‐dibromodiphenyl	  ether	   147217-‐7-‐8
BDE	  15 4,4'-‐dibromodiphenyl	  ether 2050-‐47-‐7
BDE	  30 2,4,6-‐tribromodiphenyl	  ether 155999-‐95-‐4
BDE	  28 2,4,4'-‐tribromodiphenyl	  ether 41318-‐75-‐6
BDE	  49 2,2',4,5'-‐tetrabromodiphenyl	  ether 243982-‐82-‐3
BDE	  47 2,2',4,4'-‐tetrabromodiphenyl	  ether 5436-‐43-‐1
BDE	  100 2,2',4,4',6-‐pentabromodiphenyl	  ether 189084-‐64-‐8
BDE	  99 2,2',4,4',5-‐pentabromodiphenyl	  ether 60348-‐60-‐9
BDE	  154 2,2',4,4',5,6'-‐hexabromodiphenyl	  ether 207122-‐15-‐4
BDE	  153 2,2',4,4',5,5'-‐hexabromodiphenyl	  ether 68631-‐49-‐2
BDE	  183 2,2',3,4,4',5',6-‐heptabromodiphenyl	  ether 207122-‐16-‐5

Novel	  Halogenated	  Flame	  Retardants	  (NHFRs)
pTBX tetrabromo-‐p -‐xylene 23488-‐38-‐2
PBBz pentabromobenzene 608-‐90-‐2
PBT pentabromotoluene 87-‐83-‐2
PBEB pentabromoethylbenzene 85-‐22-‐3
HBBz hexabromobenzene 87-‐82-‐1
BTBPE 1,2-‐bis(2,4,6-‐tribromophenoxy)ethane 37853-‐59-‐1
SDP syn -‐Dechlorane	  Plus 13560-‐89-‐9
ADP anti -‐Dechlorane	  Plus 13560-‐89-‐9  
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Figure S5-1.  Schematic of sample treatment. Four 800-µm PEs were composited in 
pentane and concentrated to 1 mL of stock extract.  An aliquot was removed and 
spiked for chemical analysis. Another aliquot was removed for biological analysis, and  
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Figure S5-2.  BaP Dose-Response Curve, normalized to plate-specific response to 
1.2x10-7 M BaP.  Error bars represent standard deviation of triplicate exposures. 
 
 
 
 
 
 
 
 
 

 
 
Figure S5-3.  Principal component analysis (PCA) of PAHs in dosing solutions.   
 
 
 
 
 
 



 

 
 

262 

Table S5-5.  Correlation (r2) between groups of PAHs in dosing solutions.  
 

2-ring PAHs 2-ring alkyl/sub PAHs 3-ring PAHs 4-ring PAHs 3-4-ring alkylPAHs 5-6-ring PAHs
2-ring PAHs 0.73 0.69 0.67 0.76 0.00
2-ring alkyl/sub PAHs 0.73 0.34 0.38 0.79 0.16
3-ring PAHs 0.69 0.34 0.94 0.69 0.03
4-ring PAHs 0.67 0.38 0.94 0.71 0.04
3-4-ring alkylPAHs 0.76 0.79 0.69 0.71 0.10
5-6-ring PAHs 0.00 0.16 0.03 0.04 0.10  
 
 
 
 
 
 
 
 
Table S5-6.  Correlation (r2) between OPEs in dosing solutions.  
 

TnBP TCEP TCIPP TDCIPP TPP EHDPP TEHP TOTP TMTP TPTP TDBPP
TnBP 0.03 0.11 0.19 0.06 0.01 0.03 NA NA NA NA
TCEP 0.03 0.48 0.10 0.34 0.27 0.32 NA NA NA NA
TCIPP 0.11 0.48 0.00 0.04 0.02 0.42 NA NA NA NA
TDCIPP 0.19 0.10 0.00 0.06 0.73 0.01 NA NA NA NA
TPP 0.06 0.34 0.04 0.06 0.26 0.34 NA NA NA NA
EHDPP 0.01 0.27 0.02 0.73 0.26 0.17 NA NA NA NA
TEHP 0.03 0.32 0.42 0.01 0.34 0.17 NA NA NA NA
TOTP NA NA NA NA NA NA NA NA NA NA
TMTP NA NA NA NA NA NA NA NA NA NA
TPTP NA NA NA NA NA NA NA NA NA NA
TDBPP NA NA NA NA NA NA NA NA NA NA

 
 
 
 
 
 
 
 
Table S5-7.  Correlation (r2) between OPEs and PAH groups in dosing solutions.  
 

TnBP TCEP TCIPP TDCIPP TPP EHDPP TEHP TOTP TMTP TPTP TDBPP
2-ring PAHs 0.60 0.08 0.02 0.01 0.05 0.04 0.00 NA NA NA NA
2-ring alkyl/sub PAHs 0.35 0.01 0.00 0.11 0.01 0.34 0.01 NA NA NA NA
3-ring PAHs 0.86 0.02 0.03 0.23 0.11 0.04 0.01 NA NA NA NA
4-ring PAHs 0.76 0.00 0.00 0.22 0.09 0.02 0.00 NA NA NA NA
3-4-ring alkylPAHs 0.67 0.04 0.03 0.00 0.06 0.07 0.00 NA NA NA NA
5-6-ring PAHs 0.00 0.03 0.15 0.58 0.01 0.42 0.05 NA NA NA NA  
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Table S5-8.  Induction equivalency factors (IEFs) relative to BaP from Machala et al., 
collected by exposure of rat hepatoma HGIIE transfected with luciferase reporter and 
analyzed 6 hpd.  

Compound BaP	  IEF
FLR NA
ANT NA
FLRA 0.0105
PYR 0.00757
BAA 0.39
CHRY 3.25
BBFLRA 8.83
BJFLRA 2.25
BKFLRA 67.76
BAP 1
DIBA 11.46
IND 44.2
BGHIP 0.00547
BCPHN 0.00464
BEP 0.00227
DIMEBAA 0.46
1MEPYR 0.00854
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ABSTRACT  

Polyethylene passive samplers (PEs) are increasingly being used as cost 

effective tools to measure time-weighted average concentrations of dissolved 

hydrophobic organic contaminants (HOCs).  PEs could be useful for long-term 

monitoring of emerging wastewater-associated contaminants, including polycyclic 

musks (PCMs) and organophosphate esters (OPEs).  However, the affinity of these 

compounds for the PE matrix, as well as their uptake rates into PEs, have not been 

measured.  In this study, PEs were deployed along with an active water sampler at the 

South Kingstown Regional Wastewater Treatment Facility (SK WWTF) in Rhode 

Island and concentrations of PCMs, OPEs, and polycyclic aromatic hydrocarbons 

(PAHs) accumulated were measured over 21 days to compare dissolved 

concentrations derived from both sampling techniques and determine PE-water 

partitioning coefficients (KPEW).  PE uptake profiles for HHCB, AHTN, ATII, AHMI, 

and ADBI suggested these compounds reached equilibrium during the deployment.  

The equilibrium stage reached by OPEs was more difficult to interpret based on PE 

uptake profiles though profiles of TpCP, TDBPP, and TEHP suggested they remained 

in a linear uptake phase, while TCEP equilibrated.  KPEW values for PAHs, as well as 

the PCMs HHCB and AHTN, were similar to empirical literature values for 

equilibrated PAHs while other PCMs and OPEs had a lower affinity for PE than 

would be predicted from their chemical properties.  This suggests that PCM and OPE 

concentrations derived from PEs deployed in the field using solubility- or KOW-

derived KPEW estimates may underestimate ambient dissolved concentrations.   
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INTRODUCTION  

Polyethylene passive samplers (PEs) are increasingly being used to measure 

concentrations of legacy and emerging dissolved organic contaminants in water.  PEs 

accumulate organic contaminants passively over time via diffusion, selecting for the 

truly dissolved phase.  They are gaining attention for their potential as a cost-effective 

tool to provide time-weighted average concentration measurements for hydrophobic 

contaminants in many applications, including analyzing spatial distributions, 

measuring diffusive air-water fluxes, predicting bioaccumulation in aqueous 

organisms, and monitoring of global waters, including the deep sea.1–6  Uptake of 

hydrophobic organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and 

polychlorinated biphenyls (PCBs) is fairly well characterized, but uptake of more 

soluble, moderately polar emerging contaminants has been investigated by only a few 

recent studies.7–11 

Many emerging contaminants currently used in consumer products, including 

synthetic fragrances such as the polycyclic musks (PCMs) and organophosphate ester 

flame retardants (OPEs) are widespread in the environment, including remote polar 

and open ocean regions.12–15  However, these chemicals’ physical properties are poorly 

constrained and their persistence and long-range transport capabilities are poorly 

understood.  Recent studies have shown that both PCMs and OPEs are introduced to 

aquatic environments via wastewater,16–18 but there is little information about their 

spatial distribution in global waters.  PEs could be useful for long-term, high spatial 

resolution monitoring programs to investigate global distributions and fluxes of these 

compounds.  However, the affinity of these compounds for the passive sampling 
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matrix (PE-water partitioning coefficient, or KPEW), and the uptake rates of these 

compounds, need to be characterized.   

In this study, PEs were deployed in a wastewater settling tank at the South 

Kingstown Regional Wastewater Treatment Facility (SK WWTF) in Rhode Island and 

concentrations of polycyclic musks (PCMs), organophosphate esters (OPEs), and 

polycyclic aromatic hydrocarbons (PAHs) accumulated in PEs were measured over 21 

days.  PAHs were included in the study because their chemical properties have been 

studied previously and are better defined than those of PCMs and OPEs.  Ambient 

dissolved concentrations were determined from a simultaneously deployed active 

sampler and corrected to truly dissolved concentrations using daily dissolved organic 

carbon (DOC) measurements. The objectives of the study were to (i) measure levels of 

emerging wastewater-associated pollutants in WWTF effluent, (ii) compare dissolved 

concentrations derived from passive and DOC-corrected active sampling results, and 

(iii) determine PE-water partitioning coefficients for compounds that reached 

equilibrium in the PE membrane.   

 

METHODS 

Study Site. Sampling occurred from September 7th to September 28th, 2016 at the SK 

WWTF.  This facility treats, on average, 2.4 million gallons of wastewater per day by 

coarse screening, comminution, activated sludge, primary settling, fine bubble 

aeration, secondary settling, chlorination, and dechlorination, and releases treated 

effluent into the Rhode Island Sound.  SK WWTF serves an estimated population of 

29,400 people from the Rhode Island communities of South Kingstown (including the 
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University of Rhode Island) and Narragansett.19  All sampling was done in the 

secondary settling tank, downstream from the aeration basin and upstream of 

chlorination.  

Sampler Preparation and Deployment.  Passive Sampling.  50-µm polyethylene 

sheeting (Carlisle Plastics, Inc.) was cut into approximately 3 in. x 5 in. pieces. The 

sheets were pre-cleaned in solvent (DCM and hexane) and incubated in a solution of 

PRCs to load these compounds into the PEs prior to deployment. Deuterated PAHs 

(fluorene-d10, pyrene-d10, and benzo(a)pyrene-d12) and deuterated OPEs (tri-n-butyl 

phosphate-d27, tris(1-chloro-2-propyl)phosphate-d18, tris(1,3-dichloro-2-propyl) 

phosphate-d15, and triphenyl phosphate-d15) were added as PRCs.  

 All PEs were deployed on the same day in September 2016.  Sheets were 

fastened to a rope with zip-ties and anchored so that they would remain at a depth of 

about 1.5 m. On days 1, 2, 5, 8, 12, 16, and 21, PEs were collected in triplicate.  PEs 

were wrapped in muffled aluminum foil onsite, packed on ice in a cooler, and 

transported to the University of Rhode Island Graduate School of Oceanography (URI 

GSO).  PE field blanks were done weekly by transporting a PE to the site, unwrapping 

and handling the PEs in the same manner as those that were field deployed, and then 

immediately transporting them back to the laboratory.  

Active Sampling.  Polyurethane foam plugs (PUFs, 10 x 8 cm diameter, Tisch 

Environmental) were pre-extracted on a Dionex 350 Accelerated Solvent Extractor 

(ASE, Dionex Corporation) using 2:1 hexane:DCM.  Whatman GF/F glass fiber filters 

(GFFs) with 0.7 µm retention were combusted at 450 °C for at least 4 hours before 

use. Active sampling was done using a hose to take in water adjacent to the passive 
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samplers, with flow rate and total volume continually monitored. PUFs and filter were 

replaced once a day. Water flowed through the GFF and then through the foam sorbent 

phase, which consisted of 1-2 PUFs.  Field blanks were collected by transporting 

cleaned PUFs and GFFs to the site, placing them inside the pumping apparatus, and 

then removing them and transporting them back to the lab for analysis.  

Extraction and Analysis.  All PEs were spiked with deuterated PAHs (acenaphthene-

d10, phenanthrene-d10, chrysene-d12, and perylene-d12) and extracted for 24 h in 

pentane. A laboratory blank and matrix spike sample (PE in pentane spiked with the 

target compounds at known mass) were extracted with each batch of PEs.   Extracts 

were concentrated to ~ 50 µL and spiked with p-terphenyl-d14 injection standard 

before analysis.   

PUFs were spiked with the same internal standard solutions as above and 

extracted on the Dionex 350 ASE with 2:1 hexane:DCM. Extracts were concentrated 

to 2 mL and shaken with sodium sulfate to remove water before being concentrated to 

~ 100 µL under nitrogen and spiked with p-terphenyl-d14.    

 All extracts were analyzed on an Agilent 7890 GC equipped with an Agilent 

J&W DB-5 fused capillary column (30 m x 0.25 mm I.D.), coupled to an Agilent 5977 

MSD in EI mode for PAHs and PCMs in one run, and OPEs in another run.  See Table 

S6-1 for a full list of target compounds.  OPEs were analyzed with a helium flow of 1 

mL/min and injection port set at 240°C, with temperature ramped from 70-315°C 

during the 40-minute run.  PAHs and PCMs were analyzed with a helium flow of 1.8 

mL/min and injection port set at 280°C, with temperature ramped from 90-320°C 

during the 52-minute run. For both methods, The MSD was operated in select ion 
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monitoring (SIM) mode with the temperature of the ion source at 230 °C, quadrupole 

at 150 °C, and transfer line at 250 °C. All concentrations were corrected for internal 

standard recoveries.   

Quality Control.  Passive Samplers.  Concentrations were blank-subtracted using the 

average PE field blank concentration. Blank concentrations are summarized in Table 

S6-2.  Detection limits were defined as 3 times the standard deviation of three PE field 

blanks.  Concentrations < DL were replaced with half the DL.  Significant blank 

interference was seen for TBEP, and this compound is not reported in any samples.  It 

is unknown whether this interference was due to the presence of large amounts of 

TBEP in the PE matrix, or caused by some other coeluting compound.  Average 

matrix spike recoveries (N=2) ranged from 76% for TCEP to 173% for EHDPP (Table 

S6-3).    

 Active Samplers.  Concentrations were blank-subtracted using a single PUF 

field blank.  After blank subtraction, the detection limit was defined as 25% of the 

field blank value and concentrations <DL were replaced with DL/2.  Concentrations of 

target compounds in the field blank are shown in Table S6-4.  No matrix spikes were 

performed during PUF extraction.  

Calculation of Water Concentrations.  Passive Sampling. In order to estimate 

ambient water concentrations from PE concentrations, PRC loss data was used to 

derive a best-fit value for the thickness of the aqueous diffusive boundary layer (δDBL) 

at the PE-water interface, as described in previous work.2,3  Percent loss of PRCs over 

deployment was calculated to determine the PRC’s percent equilibrium (f) as in 

Equation 1, where N0 is the mean concentration of PRC in the field blanks and N is the 
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concentration in the deployed PE.  Loss of the majority of a PRC during deployment 

suggests the compound reached equilibrium, while little loss of a PRC indicates that 

the compound remained in the linear uptake phase.  

Values for f were plugged into Equation 2 along with known and estimated 

sampling parameters and PRC chemical properties to derive a best-fit δDBL value using 

the nls function in R.  Sampling parameters used in Equation 2 were the volume of the 

PE (VPE), the surface area of the PE (APE), the length of time the PE was deployed (t), 

and the half-thickness of the PE sheet (lPE; 25 µm). Chemical properties needed were 

the PE-matrix partitioning coefficient (KPEM, here the PE-water partitioning 

coefficient, or KPEW), the molecular diffusivity of the compound in the surrounding 

matrix (DM, here the diffusivity in water DW), and the diffusivity of the compound in 

polyethylene (DPE). Chemical properties of PRCs were assumed to be the same as for 

their nondeuterated counterparts.  

     Eq 1 

                 Eq 2 

 

The best-fit δDBL was then used, along with estimated or measured chemical 

properties, to estimate f for each target compound during deployment.  Chemical 

properties were corrected for average water temperature during each PE’s deployment 

period before calculations were done. Chemical properties compiled for all 

compounds are listed in Tables S6-5-S6-7.   



 

 
 

272 

Active Sampling. Ambient concentrations were calculated by dividing the total 

ng of target compound accumulated in PUFs during deployment by the total water 

volume that passed through the active sampler.  In some cases, the top and bottom 

PUF within the active sampler were found to have approximately equal concentrations 

of some target compounds, indicating that breakthrough may have occurred.  In 

instances where the bottom PUF contained > 60% of the total mass of accumulated, 

results are still displayed in figures, but were not used to calculate mean ambient 

concentrations of individual compounds used for comparison to PE uptake data.  

To compare active sampling results to data from PEs, concentrations were 

corrected for the DOC-bound fraction sampled by active samplers that is not taken up 

by PEs.  KDOC values used are listed in Tables S6-5-S6-7.  When possible, empirical 

KDOC values were used.  Otherwise, KDOC was assumed to be 10% of the KOW, as in 

Burnhadt et al.20  Even in cases where empirical values are available, KDOC can vary 

depending on the composition of local DOC.  

KPEW Values.  KPEW values were calculated from the ratio of the concentration 

in PEs recovered at 21 days, converted to ng/L using PE density 0.91 kg/L, divided by 

the DOC-corrected concentration in water derived from active sampling.  Values of 

KPEW were corrected to 25 °C from the average water temperature over the 

deployment, measured in the nearby aeration tanks (22.2±0.5 °C).   

For compounds that reached equilibrium during deployment, no corrected for 

percent equilibration was needed, though confirming that equilibrium was reached was 

not straightforward in all cases.  For non-equilibrated compounds, the equilibrium 

concentration in the PE could not be approximated without estimating physical 
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properties, which would mean that calculated KPEW values would depend on other 

estimated properties, rather than on direct measurement.  Any KPEW calculated for a 

non-equilibrated compound would be a “lower-bound” estimate, becoming further and 

further from the true value as distance from equilibrium increases.  Calculated KPEWs 

were compared to empirical KPEWs reported in literature or estimated values from 

literature solubility and octanol-water partitioning coefficient (KOW) values (Tables 

S6-5-S6-7).  

 

RESULTS & DISCUSSION 
 
Summary of Water Concentrations from Active Sampling.  Concentrations of 

PCMs and OPEs calculated from high-volume active water sampling on eight days 

throughout the sampling period are shown in Figure 6-1.  Concentrations of PAHs are 

shown in Figure S6-1.  Mean Σ19PAH was 42±23 ng/L, dominated by fluorene, 

phenanthrene, fluoranthene, and pyrene, with greatest concentrations observed within 

the first 24 h of sampling.   

Average Σ7PCM (including the two nitromusks, musk xylene and musk 

ketone) was 2800±1900 ng/L.  Σ7PCM was greatest on the first sampling day (9/7-9/8; 

Σ7PCM=7195 ng/L) and was lower and less variable on the remainder of the days 

where active sampling data was available (mean Σ7PCM=2172±730  ng/L).  HHCB 

was the most abundant PCM and made up >85% of Σ7PCM in all samples.  

 Average Σ12OPE from active sampling data was 638±324 ng/L, with 

concentrations dominated by the chlorinated OPEs TDCIPP and TCIPP, and the aryl-

OPE TPhP. TnBP, TEHP, and TmCP were also detected >DL in the majority of 
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samples, while the other monitored OPEs (TCEP, EHDPP, TpCP, ToCP, and TDBPP) 

were generally below field blank levels in PUFs.   

PE Uptake Profiles. Uptake profiles showing the concentration of target compound 

(ng/g) in PEs recovered at 7 time points over the deployment are shown in Figures 6-

2, 6-3, and 6-4 for PCMs, OPEs, and PAHs.  For comparison to observed uptake 

trends, predicted uptake profiles showing percent equilibration over time based on 

PRC loss data and solubility-derived KPEWs are shown in Figure S6-2.  Best-fit δDBL 

used to construct predicted uptake profiles are shown in Figure S6-3. δDBL values 

during deployment ranged from 63-101 µm.  PRC loss profiles are shown in Figure 6-

5.  PRC loss data for the deuterated chlorinated OPEs were omitted because 

concentrations were low in blanks and did not decrease appreciably over time, 

suggesting that these compounds may not be appropriate PRCs.  Two extracts, one 

from Day 8 and one from Day 12, had abnormally low PRC concentrations and were 

not used in calculating averages, so these two time points are represented by duplicate 

PEs while the rest are represented by triplicate PEs. 

Uptake profiles for HHCB, AHTN, ATII, AHMI, and ADBI  (Figure 6-2) 

showed increasing concentrations for the initial 5-10 days before leveling off and 

beginning to decrease, suggesting that these compounds reached equilibrium during 

the deployment.  This contradicts predictions made based on estimated chemical 

properties, which suggested that ATII, AHMI, and ADBI would not equilibrate during 

deployment. The decreasing concentrations during the second half of the study may be 

because these compounds equilibrated rapidly during the first few days of the study, 

when average concentrations appeared greater according to active sampling results 
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(Figure 6-1).  Predictions based on estimated properties suggest than MUX would 

have equilibrated during deployment and MUK would remain in linear uptake phase, 

but uptake profiles for these compounds were difficult to interpret.  

Uptake profiles for the PAHs showed clear differences in uptake regime with 

increasing molecular size and affinity for PE.  The 2-3-ring PAHs, such as PHN, 

appeared to rapidly equilibrate. FLRA and PYR both entered a curvilinear phase and 

equilibrated by the end of the deployment period, while the remaining 4-5-ring PAHs 

remained in the linear uptake phase.  This is very similar to what was predicted based 

on modeled uptake in Figure S6-2.   

The equilibrium stage reached by OPEs was more difficult to interpret based 

on PE uptake profiles.  Profiles suggest that TpCP, TDBPP, and TEHP remained in a 

linear uptake phase.  TCEP appears to have entered a curvilinear phase and 

equilibrated by the end of the deployment.  The fluctuating concentrations of TnBP, 

TCIPP, and TDCIPP suggest these compounds may have equilibrated, which is likely, 

as they are known to be fairly soluble compounds and they were predicted to 

equilibrate based on modeled uptake profiles.  TPhP and EHDPP may be in linear or 

equilibrium phases.  The discrepancies between predicted and observed OPE uptake 

could be due to poorly constrained chemical properties used to make predictions.  For 

example, the low diffusivity of OPEs in PE observed in previous studies could cause 

OPEs to be taken up more slowly than predicted here.8 This low diffusivity could 

cause PE membrane-side diffusivity to become the limiting factor in determining OPE 

uptake, in which case uptake may be better predicted by a more sophisticated model 

than Equation 2.9 
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Comparison to Active Sampling Results. To compare active and passive sampling 

results, active sampling results were corrected for the inclusion of the DOC-sorbed 

fraction. DOC concentrations and the fraction predicted to be in the freely dissolved 

phase for the compounds of interest are shown in Table S6-8 for each day during the 

sampling period.  Average blank-corrected DOC was 8±1 mg/L.  For the majority of 

OPEs and all PCMs, the fraction in the truly dissolved phase was predicted to be 

>90%, suggesting that the discrepancy between the fractions collected by passive and 

active sampling would not be significant for these emerging contaminants.   

 Passive sampling results were interpreted as they would be in a field study if 

no active sampling data was available.  PRC loss measured during deployment was 

used to estimate f for each compound and, along with KPEW estimated from solubility, 

was used to correct PE concentrations to water concentrations.  Results from this 

process are compared to active sampling-derived ambient concentrations using the 

ratio of PE-derived concentration to active-derived concentration (CPE/CPUF) for PAHs 

and PCMs in Table S6-9 and for OPEs in Table S6-10.  

 Results for PE-derived PAH concentrations were generally within 40-200% of 

active-derived concentrations, suggesting that uptake of PAHs into PEs is well 

characterized and fairly accurate concentrations can be derived using chemical 

properties from literature and the PRCs selected in this study.  The majority of PE-

derived concentrations were lower than active-derived concentrations.  Active 

sampling data was only representative of about one third of the sampling period.  

Results from the two approaches may have been closer if results for active sampling 

were representative of the entire PE sampling period. PAH concentrations were 
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elevated during the first 24 h of sampling, and if no other spikes of this type occurred 

during the sampling period, the average concentrations estimated from active sampling 

data may be greater than the actual time-weighted average.  

 PCM concentrations predicted from passive sampling were found to be about 

four times lower than active-derived data for HHCB and AHTN. PE-derived 

concentrations for the other PCMs were generally <10% of active-derived 

concentrations. PE-derived concentrations for OPEs, calculated for four sets of KPEW 

estimates, were also much lower than active-derived dissolved concentrations (Table 

S6-10).   The difference between active and passive concentrations may be due, in 

part, to active sampling not capturing the entire passive sampling period, as mentioned 

above.  In addition, for compounds that rapidly equilibrate, PE-derived concentrations 

may no longer representative of the entire deployment period.2  The discrepancy could 

also indicate that KPEW values used to estimate water concentrations were greater than 

the actual values.  An additional source of uncertainty is the KDOC values used.  If the 

affinity of PCMs and OPEs for DOC was greater than estimated in the settling tank, 

this would drive down active sampling-derived dissolved concentrations.  

KPEW Calculation.  KPEW values calculated for all compounds are listed in Table S6-

11.  KPEW values were calculated from DOC-corrected active-derived dissolved 

concentrations and from passives collected on Day 21 of the study, which were 

expected to be representative of time-weighted averaged for the entire deployment 

period.  KPEW values for PAHs are compared to sets of KPEW values from literature in 

Figure 6-6.  Values were very similar to empirical literature values for equilibrated 

PAHs.   
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 KPEW values for PCMs and OPEs are compared to values derived from 

literature KOW and aqueous solubility values in Figures 6-7 and 6-8.  KPEWs calculated 

for both compound groups are generally lower than those from literature, suggesting 

that many PCMs and OPEs have a lower affinity for PE than would be predicted using 

their aqueous solubility or KOW.  However, uptake profiles suggest that some 

compounds (MUK, TEHP, possibly TPhP) may not have equilibrated during 

deployment, in which case these values may be lower-bound estimates.      

 

IMPLICATIONS 

Values for KPEW derived from this field study were similar to previous 

empirical values for PAHs, suggesting that the study setup was adequate and PEs are 

able to measure truly dissolved concentrations that are in good agreement with DOC-

corrected active sampling concentrations.  This work suggests that PCM and OPE 

concentrations derived from PEs deployed in the field using solubility-derived KPEW 

estimates may underestimate ambient dissolved concentrations.  However, the state of 

equilibrium was uncertain for some compounds.  Analysis of additional thicker PEs 

(800 µm) that were deployed alongside 50 µm PEs could assist in confirming which 

OPEs reached equilibrium during the study.  While low affinity of some OPEs for the 

PE matrix suggests that other passive sampling materials, such as the POCIS, may be 

more appropriate for measuring these compounds, improving our ability to measure 

them using PEs allows us to make use of valuable stores of archived PE samples from 

remote regions for retrospective analysis.  More directly measured chemical 

properties, as well as additional PE partitioning experiments, are needed to more 
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accurately calculate dissolved concentrations of OPEs and PCMs from concentrations 

accumulated in PEs. 
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Figure 6-1.  Ambient concentrations of PCMs and OPEs. Concentrations were 
calculated from high-volume active water sampling results, and include the DOC-
bound fraction.  
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Figure 6-2.  PCM and nitromusk concentration in PEs over the 21-day deployment. 
Profiles suggest that HHCB, AHTN, ATII, AHMI, and ADBI reached equilibrium by 
mid-way through the deployment, while results for MUX and MUK are less clear. The 
x-axis represents the number of days the PE was deployed before recovery. Error bars 
show the standard deviation for replicate PEs collected on the same day.  
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Figure 6-5.  Percent equilibrium reached by PRCs during deployment.  
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Figure 6-6.  Comparison of KPEW values for PAHs from this study and from literature. 
Filled-in red dots mark values calculated from equilibrium concentrations, while 
empty red circles mark values for compounds that had not reached equilibrium, 
meaning that these values are lower-bound estimates.  KPEW[1] was estimated from 
solubility as in Lohmann 2012.21 KPEW[2], KPEW[3], and KPEW[4] were from Booij et 
al., Cornelissen et al., and Fernandez et al., respectively.22–24  
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Figure 6-7.  Comparison of KPEW values for OPEs from this study and derived from 
chemical properties from literature. KPEW[1], KPEW[2], and KPEW[3] were calculated 
based on sub-cooled liquid solubility values estimated by Zhang et al.25 and KPEW[4]  
values were calculated from KOW values compiled by Pintado-Herrera et al.8 
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Figure 6-8.  Comparison of KPEW values for PCMs from this study and derived from 
chemical properties from literature. KPEW[1] was estimated from solubility values 
compiled by Peck & Hornbuckle using a regression from Lohmann 2012.21,26 KPEW[2], 
KPEW[3], and KPEW[4] were  calculated from KOW values from Peck & Hornbuckle, 
Rimkus et al., and Posada-Ureta et al., again using a regression from Lohmann 
2012.26–28  
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SUPPLEMENTARY INFORMATION: 
PARTITIONING OF DISSOLVED SYNTHETIC FRAGRANCES AND 

ORGANOPHOSPHATE ESTERS FROM WASTEWATER INTO 
POLYETHYLENE PASSIVE SAMPLERS 

 
 

Carrie A. McDonough and Rainer Lohmann 

Total number of pages: 16 
Total number of figures: 3 
Total number of tables: 11 

 
Table S6-1.  List of Study Target Compounds  

Polycyclic'Aromatic'Hydrocarbons'(PAHs) CAS'Number
2:ring'PAHs
ACY Acenaphthylene 20809608
ACE Acenaphthene 8303209
FLR Fluorene 8607307
2:ring'alkyl/substituted'PAHs
2MENAP 20methylnaphthalene 9105706
1MENAP 10methylnaphthalene 9001200
3:ring'PAHs
PHN Phenanthrene 8500108
ANT Anthracene 12001207
FLRA Fluoranthene 20509902
4:ring'PAHs
PYR Pyrene 12900000
BAA Benzo(a)anthracene 9605503
CHRY Chrysene 21800109
BBJFLRA Benzo(b,j)fluoranthene 20509902
BKFLRA Benzo(k)fluoranthene 20900809
5:6:ring'PAHs
BEP Benzo(e)pyrene 19209702
BAP Benzo(a)pyrene 5003208
PER Perylene 19805500
IND Indeno(1,2,30c,d)pyrene 19303905
DIBA Dibenz(a,h)anthracene) 5707003
BGHIP Benzo(g,h,i)pyrene 19102402

Polycyclic'Musks
ADBI Celestolide 1317100001
AHMI Phantolide 1532303500
ATII Traesolide 6814004807
HHCB Galaxolide 122200505
AHTN Tonalide 150600201
MUX MuskZxylene 8101502
MUK MuskZketone 8101401

Organophosphate'Esters'(OPEs)
TnBP tri0n0butylZphosphate 12607308
TCEP tris(20chloroethyl)Zphosphate 11509608
TCIPP tris(10chloro020propyl)Zphosphate 1367408405
TDCIPP tris(1,30dichloro020propyl)Zphosphate 1367408708
TPhP triphenylZphosphate 11508606
TBEP tris(butoxyethyl)Zphosphate 7805103
EHDPP ethylhexylZdiphenylZphosphate 124109407
TEHP tris(20ethylhexyl)Zphosphate 7804202
ToCP tri0o0cresylZphosphate 7803008
TmCP tri0m0cresylZphosphate 56300402
TpCP tri0p0cresylZphosphate 7803200
TDBPP tris(2,30dibromo020propyl)Zphosphate 12607207  
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Table S6-2.  PE Field Blank results and detection limits (ng/g PE).  
 

FIELD BLANK 1 FIELD BLANK 2 FIELD BLANK 3 DL
PAHs
2MENAP 4.06 2.77 4.29 3.71 ± 0.82 2.5
1MENAP 2.87 1.91 3.18 2.65 ± 0.66 2.0
ACE 0.275 0.141 0.322 0.246 ± 0.094 0.28
ACY 0.717 0.326 0.698 0.580 ± 0.22 0.66
FLR 2.05 1.19 1.98 1.74 ± 0.48 1.4
PHN 9.98 5.71 9.22 8.30 ± 2.3 6.8
ANT 0.0881 0.0504 0.123 0.0873 ± 0.036 0.11
FLRA 1.87 1.59 2.02 1.83 ± 0.22 0.66
PYR 0.600 0.612 0.713 0.641 ± 0.062 0.19
BAA 0.0949 0.120 0.133 0.116 ± 0.019 0.058
CHRY 0.106 0.174 0.220 0.167 ± 0.057 0.17
BBJFLRA 0.0477 0.327 0.248 0.208 ± 0.14 0.43
BKFLRA 0.188 0.161 0.109 0.153 ± 0.040 0.12
BEP 0.0104 0.0231 0.00876 0.0141 ± 0.0078 0.024
BAP 0.0427 0.0652 0.0235 0.0438 ± 0.021 0.063
PER 0.0765 0.107 0.122 0.102 ± 0.023 0.070
IND 0.109 0.111 0.0401 0.0869 ± 0.041 0.12
DBA 0.103 0.133 0.100 0.112 ± 0.018 0.054
BGHIP 0.0126 0.0949 0.0291 0.0455 ± 0.044 0.13
PCMs and Nitromusks
ADBI 0.118 0.0617 0.0895 0.0898 ± 0.028 0.085
AHMI 0.233 0.407 0.508 0.383 ± 0.14 0.42
ATII 0.252 0.0755 0.212 0.180 ± 0.092 0.28
HHCB 6.60 1.30 6.65 4.85 ± 3.1 9.2
AHTN 1.66 0.610 1.77 1.35 ± 0.64 1.9
MUX 0.0958 0.0780 0.0990 0.0910 ± 0.011 0.034
MUK 0.197 0.174 0.331 0.234 ± 0.085 0.25
OPEs
TnBP 0.700 0.449 0.940 0.696 ± 0.25 0.74
TCEP 1.97 1.65 2.67 2.10 ± 0.52 1.6
TCIPP 3.36 3.23 4.52 3.70 ± 0.71 2.1
TDCIPP 5.55 6.55 7.31 6.47 ± 0.88 2.6
TPhP 3.22 1.15 1.39 1.92 ± 1.13 3.4
TBEP 6495 5878 6931 6435 ± 529 1586
EHDPP 0.608 0.710 0.822 0.714 ± 0.11 0.32
TEHP 1.05 0.710 0.361 0.706 ± 0.34 1.0
ToCP 0.530 0.763 0.481 0.591 ± 0.15 0.45
TmCP 0.0149 0.0232 0.0294 0.0225 ± 0.0073 0.022
TpCP 0.00421 0.0121 0.0210 0.0124 ± 0.0084 0.025
TDBPP 10.3 13.3 16.3 13.3 ± 3.0 9.0

MEAN FIELD BLANK
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Table S6-3.  Percent extraction efficiency for target compounds during PE extractions.   

01/17/17 
Matrix Spike

01/20/17 
Matrix Spike

2MENAP 68 87
1MENAP 72 86
ACY 89 84
ACE 86 90
FLR 81 90
PHN 55 99
ANT 100 99
FLRA 102 108
PYR 97 100
BAA 106 111
CHRY 113 111
BbjFLRA 122 123
BkFLRA 111 113
BEP 114 116
BAP 115 112
PER 102 105
IND 109 113
DBA 109 116
BghiP 108 110

TnBP 125 111
TCEP 84 68
TCIPP 113 104
TDCIPP 131 125
TPhP 74 79
TBEP a - -
EHDPP 178 168
TEHP b - -
ToCP 136 130
TmCP b - -
TpCP 148 142
TDBPP 123 149

ADBI 97 100
AHMI 100 101
ATII 109 114
HHCB 119 156
AHTN 97 104
MUX 111 100
MUK 121 117

 
a TBEP was found at high concentrations in blanks and were not found above blank levels in matrix 
spikes.  b TEHP and TmCP were not available for inclusion in the matrix spike solution. 
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Table S6-4.  PUF Field Blank Concentrations (ng/PUF) 

PAHs 
2MENAP 4.71
1MENAP 4.90
ACY 0.921
ACE 2.25
FLR 4.17
PHN 19.4
ANT 4.73
FLRA 2.62
PYR 1.74
BAA 0.430
CHRY 2.28
BbjFLRA 0.239
BkFLRA 0.676
BEP 0.215
BAP 1.26
PER 0.0586
IND 0.621
DBA 0.189
BghiP 0.0351
PCMs and Nitromusks
ADBI 0.798
AHMI 11.2
ATII 0.650
HHCB 7.58
AHTN 7.14
MUX 0.103
MUK 1.68
OPEs
TnBP 2.78
TCEP 103
TCIPP 14.8
TDCIPP 48.1
TPhP 21.4
TBEP 19.8
EHDPP 41.5
TEHP 5.29
ToCP 0.524
TmCP 1.26
TpCP 3.54
TDBPP 2.92

PUF #27:FIELD BLANK
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Figure S6-1.  Water concentrations of most abundant PAHs calculated from high-
volume active water sampling.  
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Figure S6-2.  Predicted PE uptake profiles.  Percent equilibration (f) reached at each 
time point was calculated based on best-fit δDBL values from PRC loss data and 
estimated chemical properties for target compounds. These predictions were made 
using KPEWs calculated from solubility, with values for OPEs calculated using S1, the 
solubility estimated by Zhang et al. from EPI Suite’s WSKOWWIN. 



 

 
 

299 

 

 
Figure S6-3.  Average best-fit value for the thickness of the diffusive boundary layer 
at the PE-water interface for each set of PEs, estimated from PRC loss data and 
literature values for chemical properties. Markers represent the average of 2-3 values. 
Error bars represent stdev derived from model fit. 
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Table S6-9. Comparison of PE-derived (ConcPE) and active sampling-derived 
(ConcPUF) water concentrations for PAHs and PCMs.  ConcPE/ConcPUF was calculated 
by comparing the mean PUF concentration for all available PUF samples and water 
concentrations derived from the PEs recovered on Day 21 of sampling.  
ConcPE/ConcPUF* was calculated in the same manner except that the first 24 h of 
active sampling, when elevated concentrations were seen, was removed. Grayed out 
values are <DL.  

ConcPE (ng/L) ConcPUF(ng/L) ConcPE/ConcPUF ConcPE/ConcPUF *
PAHs 
2MENAP 0.406 0.398 1.0 1.1
1MENAP 0.570 0.861 0.66 0.85
ACY 0.173 0.342 0.51 0.60
ACE 2.53 1.43 1.8 1.9
FLR 1.75 4.97 0.35 0.43
PHN 3.23 8.16 0.40 0.53
ANT 0.247 0.282 0.87 0.95
FLRA 3.44 7.21 0.48 0.60
PYR 3.30 5.46 0.60 0.76
BAA 0.261 0.549 0.48 0.54
CHRY 0.568 1.116 0.51 0.61
BbjFLRA 0.264 0.420 0.63 0.71
BkFLRA 0.0673 0.156 0.43 0.46
BEP 0.0788 0.140 0.56 0.62
BAP 0.0395 0.0780 0.51 0.60
PER 0.0160 0.0381 0.42 0.45
IND 0.0269 0.0322 0.84 0.80
DBA 0.00582 0.00330 1.8 1.6
BghiP 0.0261 0.0489 0.53 0.56
PCMs 
ADBI 0.0670 3.95 0.017 0.021
AHMI 0.0488 2.31 0.021 0.030
ATII 2.04 48.3 0.042 0.055
HHCB 637 2402 0.27 0.34
AHTN 36.4 176 0.21 0.28
MUX 0.00852 0.0600 0.14 0.17
MUK 4.12 108 0.038 0.048
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Table S6-11. Log KPEW values derived from active and passive sampling data, 
corrected to 298 K.  Values for compounds with uptake profiles suggesting 
equilibrium was not reached are listed as lower bounds.  Compounds with unclear 
equilibrium state are marked with an asterisk.     

log$KPEW$(298$K)
PAHs
1MENAP 3.3
ACY 3.2
ACE 3.9
FLR 3.5
PHN 3.8
ANT 4.2
FLRA 4.6
PYR 4.7
BAA >:5.0
CHRY >:5.1
BbjFLRA >:5.2
BkFLRA >:5.1
BEP >:5.2
BAP >:5.2
PER >:5.1
IND >:5.4
DBA >:5.7
BghiP >:5.2
PCMs
MUK 3.0*
MUX 4.2*
HHCB 3.9
AHTN 3.9
ADBI 3.6
AHMI 3.7
ATII 3.9
OPEs
TnBP 1.8
TDCIPP 1.6
TPhP 2.4*
TmCP 4.7*
TEHP >:6.7
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ABSTRACT  

Passive polyethylene samplers (PEs) are an increasingly popular tool to 

analyze spatial trends and identify sources of emerging and legacy gas-phase semi-

volatile organic contaminants (SVOCs) on global, regional, and citywide scales.  In 

order to apply PEs to the measurement of emerging contaminants with poorly 

constrained chemical properties, PE-air partitioning coefficients (KPEA) must be 

determined.  In this study, the uptake of a wide variety of SVOCs was measured over 

a 21-day deployment at a Rhode Island Department of the Environment (RI DEM) 

station in East Providence (RI) during September, 2016.  Concentrations of SVOCs in 

PEs were tracked over time, along with loss of performance reference compounds 

(PRCs), to determine whether compounds reached equilibrium during the deployment.  

Results were compared to concentrations from a codeployed high-volume active air 

sampler to derive KPEA values for equilibrated compounds, and lower-bound estimates 

of KPEA for non-equilibrated compounds.  Active sampler-derived gaseous Σ32PAH 

ranged from 8.2 ng/m3 to 90.5 ng/m3.  The musks HHCB and AHTN had mean 

concentrations of 1.2±1.7 ng/m3 and 0.5±0.6 ng/m3 respectively. Organophosphate 

ester (OPE) concentrations ranged from 2 ng/m3 to 54 ng/m3 and were dominated by 

aryl OPE TPhP.  Gaseous PBDE and novel halogenated flame retardant (NHFR) 

concentrations were an order of magnitude lower than OPEs, PAHs, and PCMs, from 

13 pg/m3 to 96 pg/m3. KPEA values calculated in this study were similar to literature 

for some equilibrated PAHs and BDE 15, but were an order of magnitude lower than 
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literature-derived values for most other compounds.  The reason for this discrepancy is 

unknown.  

 

INTRODUCTION  

 Polyethylene passive samplers (PEs) and other passive samplers, including 

semi-permeable membrane devices (SPMDs) and polyurethane foam disks (PUFs), are 

an increasingly popular option for air pollutant monitoring projects.  Passive samplers 

have been used to analyze spatial trends and identify probable sources of emerging 

and legacy semi-volatile organic contaminants (SVOCs) on global, regional, and 

citywide scales,1–5 and to analyze seasonal and long-term temporal trends in 

concentrations of gaseous SVOCs.6,7  They are also being deployed indoors and worn 

on the body to assess health risks associated with occupational exposures in 

workplaces and homes.8–10  Passive samplers simultaneously deployed in different 

media are becoming an increasingly popular tool for measuring fluxes of SVOCs, 

including air-water diffusive fluxes.11–13  

PEs accumulate SVOCs from air passively, selecting for the non-particle-

bound portion of ambient air contaminants.  PEs and other passive samplers are 

promising tools because they are cost effective and simple to deploy; they accumulate 

SVOCs via diffusion, so they require no power source to operate, enabling long-term 

monitoring at unprecedented high resolution and in remote locations.  They tend to 

have lower detection limits than active samplers, allowing quantification of trace-level 

contaminants in the gaseous phase that would be challenging to detect using a 

traditional sampling apparatus on feasible timescales.  
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 Despite ease of use, there are some drawbacks to choosing passive samplers 

rather than traditional active samplers for a monitoring project. Unlike active 

samplers, the rate at which air is sampled by passive samplers cannot be set at a 

constant value.  One main concern inherent in the use of passive samplers is accurately 

estimating sampling rates so that concentrations in the sampling matrix can be 

dependably converted to ambient air concentrations.  This is especially challenging for 

emerging contaminants with poorly constrained chemical properties.   

PEs are usually contained with protective housing, and so transfer is thought of 

as a three-step process by which (i) air is transferred from the surroundings to within 

the sampler housing, (ii) air is transported to the PE-air interface, and (iii) exchange 

occurs at the PE-air interface.14  At the PE-air interface, turbulent mixing becomes less 

important and the exchange process is dominated by molecular diffusion.  The 

diffusion process is described by Fick’s First Law (Equation 1), which states that 

chemical flux is a function of diffusivity (D; m2/s), surface area through which the flux 

occurs (A; m2), and the perpendicular concentration gradient (dC/dx; ng/m4).14–16 

                                           
F = �DA

dC

dx                                      Eq 1 

The model for uptake of gaseous compounds into the passive sampler matrix is 

based on Whitman Two-Film Theory, originally developed to describe the “driving 

potential” behind absorption of a gaseous solute into the liquid phase, which was 

known to be proportional to the “distance from equilibrium”.17  Whitman described 

the gas-liquid interface through which absorption occurs (here the air-PE interface) as 

a series of two films with definite thicknesses, with the chemical potential of the gas 
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and liquid phase equal at the boundary between the two films.  According to this 

model (Equation 2), the flux (F; ng/s) into the PE is a function of the concentration in 

the sampler (CPE; ng/m3), the air concentration (CA; ng/m3), the sampler area (AS; m2), 

the sampler-air partitioning coefficient, (KPEA) and the overall mass transfer 

coefficient (ko; m/s).14  

F = k
o

·A
S

· (C
A

� C
PE

K
PEA

)
                                                Eq 2 

A number of approaches have been developed to determine the rate of uptake 

(ko), also referred to as the sampling rate (Rs = ASko), for a wide array of 

contaminants.  Many common approaches for PEs rely on monitoring loss of 

performance reference compounds (PRCs) during deployment.  These compounds are 

loaded into PEs prior to deployment and their percent loss over the deployment period 

gives the percent equilibration that would be reached for a target compound with 

identical properties.  For compounds that do not have identical properties to the 

chosen PRCs, models are used to describe how percent equilibration depends on 

compound properties, and these models can be informed by PRC loss data in order to 

predict percent equilibration reached by each compound.18  

In this study, the uptake of a wide variety of SVOCs was measured over a 21-

day deployment at a Rhode Island Department of the Environment (RI DEM) station 

in East Providence (RI) during September, 2016.  Concentrations of SVOCs in PEs 

over time were tracked to determine whether compounds reached equilibrium during 

the deployment.  Results were compared to gaseous concentrations derived from a 

codeployed high-volume active air sampler to derive PE-air partitioning coefficients 
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(KPEA) for equilibrated compounds, and lower-bound estimates of KPEA for non-

equilibrated compounds.     

 

METHODS 

Sampler Preparation and Deployment.  Passive Sampling.  50-µm polyethylene 

sheeting (Carlisle Plastics, Inc.) was cut into approximately 3 in. x 5 in. pieces. The 

sheets were incubated in solvent (DCM and hexane) to remove any background 

contamination. PE sheets were then incubated in a solution of PRCs to load these 

compounds into the polyethylene prior to deployment. The PRCs used were a series of 

deuterated PAHs (fluorene-d10 (Flr-d10), pyrene-d10 (Pyr-d10), and benzo(a)pyrene-d12 

(BaP-d12)), polybrominated biphenyls (2,5-dibromobiphenyl (DiBB), 2,2’,5,5’-

tetrabromobiphenyl (TetraBB), 2,2’,4,5’,6-pentabromobiphenyl (PentaBB)), 

octachloronaphthalene (OCN), and deuterated organophosphate esters (tri-n-butyl 

phosphate-d27 (TnBP-d27) tris(1-chloro-2-propyl)phosphate-d18 (TCIPP-d18), tris(1,3-

dichloro-2-propyl) phosphate-d15 (TDCIPP-d15), and triphenyl phosphate-d15 (TPhP-

d15)).  

 All sheets were deployed on the same day in September 2015 on the roof of the 

Rhode Island Department of Environmental Monitoring (DEM) station in East 

Providence (RI).  Sheets were fastened within inverted stainless steel bowls (3 sheets 

per bowl) using stainless steel wire and zip-ties, and bowls were hung from a railing 

on the roof (Figure S7-1). On days 1, 2, 3, 5, 9, 13, 17, and 21, one bowl containing 

three PEs were collected.  PEs were removed from the protective bowl and wrapped in 

muffled aluminum foil onsite, then packed on ice in a cooler and transported to the 
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laboratory at the University of Rhode Island Graduate School of Oceanography (URI 

GSO).   

Active Sampling.  Polyurethane foam plugs (PUFs, 10 x 8 cm diameter, Tisch 

Environmental) were pre-cleaned by extraction in a Dionex 350 Accelerated Solvent 

Extractor (ASE, Dionex Corporation) using 3:1 hexane:DCM.  20 x 25 cm Whatman 

glass fiber filters (GFFs) were wrapped in aluminum foil and combusted at 450 °C for 

at least 4 hours before use.   

 The high-volume active air sampler (HV-AAS; Tisch Environmental) was set 

up directly below the PE bowls on the ground adjacent to the DEM structure.  Two 

PUFs and one GFF were loaded into the HV-AAS and were changed every 24 h for 

the first three days, and then every 48 h.  Each time the PUF and GFF were changed, 

the flow rate on the active sampler was read before taking out the previous materials, 

and again once the new materials were added.  The rate of uptake was determined by 

averaging the flow rate at the beginning and end of each sampling period.   

Extraction and Analysis.  All PEs were spiked with deuterated PAHs (acenaphthene-

d10, phenanthrene-d10, chrysene-d12, and perylene-d12) and non-native BDEs (BDE 35, 

BDE 77, BDE 128, and BDE 190)) and extracted twice for 24 hours, once in pentane 

and once in ethyl acetate. Extraction solutions were combined and concentrated down 

to 1 mL in a warm water bath under a gentle stream of nitrogen, then transferred to 

hexane and concentrated to ~ 50 µL.  A laboratory blank and two matrix spike samples 

were extracted alongside each batch of PEs.  All extracts were spiked with 40 ng of p-

terphenyl-d14 injection standard before analysis.  
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 PUFs were spiked with internal standard and extracted on the Dionex 350 ASE 

with 3:1 hexane:DCM.  Extracts were passed through a 1000 mg (6 mL) silica gel SPE 

cartridge (Restek) with a thin layer of sodium sulfate (baked at 450 °C for at least 6 

hours) and eluted with 20 mL of 3:2 pentane:DCM followed by 20 mL of 1:1 

acetone:DCM.  They were concentrated down to ~ 0.5 mL in a warm water bath under 

a gentle stream of nitrogen.  Extracts were then transferred to spring-bottom inserts 

and concentrated down to ~ 100 µL under nitrogen and spiked with p-terphenyl-d14 as 

an injection standard.    

 All extracts were analyzed on an Agilent 7890 GC coupled to an Agilent 5977 

MSD in EI mode for polycyclic aromatic hydrocarbons (PAHs), polycyclic musks 

(PCMs), and organophosphate esters (OPEs), and in negative chemical ionization 

(NCI) mode with methane reagent gas for novel halogenated flame retardants 

(NHFRs) and polybrominated diphenyl ethers (PBDEs).  See Table S7-1 for a full list 

of target compounds and their abbreviations.   

Quality Control.  Concentrations in PE extracts were blank-subtracted using the PE 

field blank.  Concentrations under field blank levels were replaced with 25% of the 

field blank value, as multiple blanks were not available for estimation of blank 

variance.  For PUFs, concentrations were blank-subtracted using the average of the 

PUF field blank.  After blank subtraction, the detection limit was defined as 3 times 

the standard deviation of three PUF laboratory blanks.  Concentrations < DL were 

replaced with half the DL.     

Sampling Rates & Ambient Concentrations.  Passive Sampling.  To determine 

percent equilibration reached by SVOCs during the 21-day PE deployment, PRC loss 
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over the deployment was measured by comparing field-deployed PEs to non-deployed 

field blanks.  Percent loss of PRCs, which is equal to percent equilibration (f) reached 

by a target compound with identical properties, was used along with PRC chemical 

properties to determine the best-fit value of the thickness of the diffusive boundary 

layer (δDBL) at the PE-air interface via non-linear least squares fitting using the nls 

function in R for Equation 3, where VPE is the volume of the PE sheet, APE is the area 

of the PE sheet, t is the length of the PE deployment, lPE is half the thickness of the PE 

sheet (~ 25 µm), KPEM is the PE-matrix partitioning coefficient (here the PE-air 

partitioning coefficient KPEA), DM is the molecular diffusivity of the compound in the 

surrounding matrix (air), and DPE is the diffusivity of the compound in PE.  After δDBL 

was determined from using this equation with PRC data, the δDBL was plugged back 

into Eq 2 with chemical properties for target compounds from literature (Table S7-2) 

to estimate f for each target compound during deployment.   

            Eq 3 

 

Active Sampling.  Ambient concentrations were calculated from HV-AAS 

samples by dividing the total weight of target compound accumulated in both PUFs by 

the total volume of air sampled during deployment.  In some cases, the top and bottom 

PUF deployed within the active sampler were found to have approximately equal 

concentrations of some target compounds, indicating that breakthrough may have 

occurred.  In instances where the bottom PUF contained > 40% of the total mass of 

accumulated, ambient air concentration was determined by assuming the PUFs had 

reached equilibrium with the air and using the PUF-air partitioning coefficient (KPUF-
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A), determined from the octanol-air partitioning coefficient (KOA) as in Shoeib and 

Harner 2002, and correcting for average temperature during the sampling period.  

Concentrations in PUFs were converted to ng/m3 using a PUF density of 2.7 x 104 

g/m3.19  KOA values used and their sources are listed in Table S7-2.   

KPEA Values.  KPEA values were directly calculated for compounds that equilibrated 

during deployment by calculating the ratio of the concentration in PEs recovered at 21 

days over the average concentration in air derived from continuous active sampling.  

For compounds identical to PRCs, KPEA was determined by correcting this ratio using 

the percent loss value for the matching PRC.  However, for other non-equilibrated 

compounds, the equilibrium concentration in the PE could not be approximated 

without estimating physical properties, which would mean that calculated KPEA values 

would depend on other estimated properties, rather than on direct measurement.  Any 

KPEA calculated for a non-equilibrated compound were “lower-bound” estimates, 

becoming further and further from the true value as distance from equilibrium 

increased.  

 

RESULTS & DISCUSSION 
 
Summary of HV-AAS Concentrations.  Ambient gaseous concentrations derived 

from HV-AAS samples are shown for PAHs, PCMs, OPEs (Figure 7-1) and for BDEs 

and NHFRs (Figure 7-2), with additional PAH profiles in Figure S7-2.  No active 

sampling data was available for September 10-12 because there was a severe storm 

and power outage and no viable samples were collected during this time.  Table S7-3 

shows all compound concentrations in all PUF samples.   
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Gaseous PAHs.  Gaseous PAHs were dominated by low molecular weight 

(LMW) PAHs, particularly naphthalene, acenaphthene, fluorene, and phenanthrene, 

with mean concentrations over deployment of 4.9±10 ng/m3, 1.9±2.4 ng/m3, 2.9±2.7 

ng/m3, and 7.6±3.7 ng/m3, respectively.  Total Σ32PAH concentrations (including alkyl 

and substituted PAHs) ranged from 8.2 ng/m3 for September 26-28 to 90.5 ng/m3 for 

September 16-18.  Concentration and composition was generally similar from day to 

day, with a slight decrease in concentrations on later sampling days, though there was 

a dramatic spike in concentration observed in HV-AAS samples deployed September 

16-18, due mostly to increased concentrations of naphthalene, acenaphthene, and 

fluorene.  Concentrations of several LMW alkylated and substituted PAHs also 

increased markedly during this period, but the spike was not observed in data for 

HMW PAHs (Figure S7-2).   

Gaseous PCMs.  HHCB and AHTN had mean concentrations of 1.2±1.7 ng/m3 

and 0.5±0.6 ng/m3 respectively.  These were the two most abundant PCMs, making up 

>90% of total gaseous Σ7PCM in all samples, which is consistent with previous 

studies.12,20  The lowest Σ7PCM was observed in the last 6 days of the sampling 

period, and a large spike in concentrations (Σ7PCM = 8.5 ng/m3) was seen for the HV-

AAS sample deployed September 18-20.   

Gaseous OPEs. Five OPEs (TnBP, TPhP, TCEP, TCIPP, and TDCIPP) were 

found above detection limits in most HV-AAS extracts, while the remaining 

compounds were rarely detected >DL and are omitted from discussion.  Σ5OPE ranged 

from 2 ng/m3 for September 20-22 to 54 ng/m3 for September 14-16.  Most extracts 

were dominated by aryl OPE TPhP (mean concentration 11±15 ng/m3), while alkyl 
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OPE TnBP was intermittently detected at high concentrations, and the chlorinated 

OPEs (TCEP, TCIPP, and TDCIPP) were generally present at lower levels (mean 

Σ3Cl-OPE = 2.4±1.3 ng/m3).  Concentrations were highly variable from sample to 

sample.     

Gaseous PBDEs and NHFRs.  Gaseous PBDE and NHFR concentrations 

derived from HV-AAS data were generally an order of magnitude lower than OPEs, 

PAHs, and PCMs.  Σ12BDE ranged from 9.6 pg/m3 for September 20-22 to 69 pg/m3 

for September 12-14.  Σ12BDE was dominated by lower-brominated congeners (BDEs 

2, 8, 15, and 47) and was greatest at the beginning of the deployment period and 

lowest in the middle of the deployment period (September 18-22).  NHFR 

concentrations were dominated by bromobenzenes HBBz, PBEB, PBT, and PBBz.  

Σ8NHFR followed a similar trend to Σ12BDE, ranging from 3.0 pg/m3 for September 

20-22 to 27 pg/m3 for September 12-14.   

PRC Loss in PEs.  PRC loss data is shown in Figure S7-3.  Flr-d10 and TnBP-d27 

reached equilibrium within the first five days of sampling.  DiBB and Pyr-d10 also 

reached equilibrium by the end of the 21-day sampling period.  The remaining PRCs 

appeared to remain in linear uptake phase.  Best-fit δDBL were calculated using all 

PRCs except BaP-d12. Results for BaP-d12
 showed an atypical loss profile, possibly 

due to photodegradation within the PE,21 while the other two PAHs showed typical 

loss profiles. The mean DBL thickness estimate from triplicate 21-day PEs was 

0.11±0.03 mm.    

Uptake Profiles in PEs.  Concentration of OPEs, BDEs, NHFRs, and PCMs in PEs 

collected at different times are plotted in Figure 7-3.  Data for PAHs is shown in 
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Figure S7-4.  All concentration data for PEs are displayed in Table S7-4.  Uptake 

profiles for TnBP, TCEP, and TCIPP suggested that they had reached equilibrium 

during deployment, while the state of TPhP and EHDPP was less clear, and TDCIPP 

appeared to remain in a linear uptake phase.  BDE 15 and pTBX also most likely 

equilibrated, while the other brominated flame retardants shown (BDE 28 and 99, and 

PBBz and PBT) look to have remained in a linear uptake phase.   

All PCMs appear to have equilibrated.  This was fairly clear for HHCB and 

AHTN, as they increased in concentration over the first several days before beginning 

to decrease, possibly in response to the peaking concentrations seen in the middle of 

the study in active-derived data.  A similar peak was seen in PE concentrations for 

many of the equilibrated PAHs, and some of the equilibrated OPEs.  For the other 

PCMs, the equilibrium phase was less clear because little variability in PE 

concentrations was seen over the deployment, and concentrations accumulated were 

fairly low (< 0.4 ng/g).   

Profiles for TPhP and TDCIPP showed a decline in PE concentration during 

the first two days of deployment, suggesting that these compounds were present in the 

PE matrix initially.  The reason for this interference, and for why it would be greater 

than PE blank levels, is unknown.  OPEs detected at fewer than half of the time points 

(TBEP, TEHP, ToCP, TmCP, TpCP, and TDBPP) provided insufficient information 

on PE uptake and were omitted from interpretation and discussion.    

PE-Air Partitioning Coefficients.  Concentrations derived from HV-AAS are shown 

along with concentrations accumulated in 21-day PEs and f estimated based on PRC 

loss data in Table 7-1.  KPEA estimates calculated from passive and active data are also 
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displayed.  Partitioning coefficients were only calculated for compounds that were 

>DL in both passive and active samplers.  Presented KPEA values are lower bounds for 

compounds that did not reach equilibrium or have an identical PRC counterpart.  f 

values were used as a guide to help determine which compounds may not have 

reached equilibrium, but f is dependent on estimated physical properties, and so is not 

certain in all cases where PE uptake profiles did not clearly indicate whether or  not 

equilibrium was reached.    

KPEA values from this study were generally lower than values measured in 

Khairy and Lohmann, or derived using the regression with vapor pressure presented in 

that work,22 though values for some low molecular weight, equilibrated PAHs (NAP 

log KPEA = 4.9, ACE log KPEA = 5.7, PHN log KPEA = 6.8) and BDE 15 (log KPEA=7.5) 

were close to those from Khairy & Lohmann.  The explanation for lower KPEA values 

observed in this study for equilibrated compounds is unknown.  This study was done 

in much warmer weather than the study by Khairy & Lohmann (conducted in 

November-December, 2012), which would have caused the affinity of organic 

contaminants for the PE matrix to be lower in this study than the previous work.  

However, values in both studies were corrected for mean temperature, so this should 

not have caused a difference in final KPEA (298 K) values.  

 
CONCLUSIONS 
 
 HV-AAS data for gaseous SVOCs demonstrated that, for many compounds, 

concentrations in air at the East Providence DEM site varied from day to day, with 

pulses of elevated PAH and PCM concentrations evident from September 16 to 18.  

PE uptake profiles for many equilibrated compounds likely responded to this pulse, as 
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concentrations in PEs increased initially, and then began to decrease later in the study.  

Values of KPEA calculated for the majority of equilibrated compounds based on active- 

and passive-derived data from this study were lower than those derived from vapor 

pressure or previous empirical measurement, though the reason for this discrepancy is 

unknown.   
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FIGURES AND TABLES 
 

 
Figure 7-1.  Gaseous concentrations of low molecular weight PAHs (top), PCMs 
(middle), and OPEs (bottom) in East Providence air from active sampling.   
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Figure 7-2.  Gaseous concentrations of BDEs (top) and NHFRs (bottom) in East 
Providence air from active sampling.   
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Figure 7-3.  Uptake profiles OPEs, BDEs, NHFRs, and PCMs in PEs over 21-day 
deployment.   
 
 
 
 
 

 

 
 
 
 
 



 

 
 

327 

Table 7-1. KPEA (298 K) or lower-bound estimates derived from 21-day PEs and mean 
active-derived gaseous concentration.  

Compound
Final,PE,Conc,

(ng/g)
PUF5Derived,Mean,

Ambient,Conc,(ng/m3)
PRC5based,
f,estimate log,KPEA,298

Literature,
log,KPEA

1

PAHs,
NAP 0.641 4.87 100 4.9 4.9
2MENAP <DL 1.54 100 3 3
1MENAP <DL 0.663 100 3 3
BIP <DL 0.371 100 3 3
ACY 0.138 0.128 100 5.7 5.8
ACE 1.11 1.93 100 5.4 6.0
DBF 1.08 1.56 100 3 3
FLR 3.63 2.88 100 5.8 6.4
1MEFLR 65.6 0.279 100 8.0 7.2
DBT 7.51 0.535 100 6.8 7.4
PHN 116 7.56 100 6.8 7.0
ANT 2.02 0.311 100 6.5 7.2
2MEPHN 25.5 0.701 100 7.2 7.7
4/9MEANT <DL 0.341 100 3 3
1MEPHN <DL 0.136 100 3 3
FLRA 79.6 1.69 99.7 7.3 8.0
PYR 15.6 0.547 99.4 7.0 8.1
1MEPYR 19.6 0.0200 53.3 >?8.6 8.9
RET 2.61 0.133 19.1 >?6.9 9.4
BAA 1.33 0.0246 44.0 >?7.3 9.0
CHRY 4.40 0.0541 20.6 >?7.5 9.4
7MEBAA 2.36 0.0102 6.51 >?7.9 9.9
6MECHRY <DL 0.00394 6.49 3 3
712DIMEBAACHRY <DL 0.00317 1.22 3 3
BbjkF 4.31 0.0710 2.42 >?7.3 10.3
BEP 1.12 0.0185 1.98 >?7.3 10.4
BAP 0.454 0.0122 1.99 >?7.2 10.4
PER <DL 0.00141 1.98 3 3
IND 0.998 0.00501 0.21 >?7.8 11.3
DBA 0.169 <DL 0.11 3 3
BghiP 0.677 0.00410 0.17 >?7.7 11.4
COR 0.0751 0.00123 0.01 >?7.2 12.5
PCMs
ADBI 0.104 0.0144 99.7 6.5 7.6
AHMI 0.232 0.00332 99.8 7.5 7.5
ATII 0.111 0.0176 99.7 6.6 6.1
HHCB 5.64 1.22 99.5 6.3 7.1
AHTN 2.93 0.510 99.5 6.4 7.1
MUX 0.0353 0.00871 6.28 >?6.1 9.9
MUK 2.32 0.0246 7.65 >?7.7 9.8  

1Literature KPEA values provided for comparison are, for BDEs and parent PAHs, empirical values from 
Khairy & Lohmann. KPEA values for other compounds were calculated from pL using the regression 
presented in Khairy & Lohmann.22    
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Table 7-1 Cont’d.  

Compound
Final,PE,Conc,

(ng/g)
PUF5Derived,Mean,

Ambient,Conc,(ng/m3)
PRC5based,
f,estimate log,KPEA,298

pL5derived,
log,KPEA

PCMs
ADBI 0.104 0.0144 99.7 6.5 7.6
AHMI 0.232 0.00332 99.8 7.5 7.5
ATII 0.111 0.0176 99.7 6.6 6.1
HHCB 5.64 1.22 99.5 6.3 7.1
AHTN 2.93 0.510 99.5 6.4 7.1
MUX 0.0353 0.00871 6.28 >86.1 9.9
MUK 2.32 0.0246 7.65 >87.7 9.8
HFRs
BDE82 <DL 3.87 100 = =
BDE88 <DL 5.04 100 = =
BDE815 0.197 4.23 100 7.5 7.5
BDE830 0.0644 0.389 78.0 >88.0 8.6
BDE828 0.477 2.79 89.6 >87.8 8.4
BDE849 <DL 1.35 19.3 = =
BDE847 0.187 10.3 19.0 >86.4 9.4
BDE8100 <DL 0.758 3.77 = =
BDE899 0.181 3.28 1.96 >87.4 10.4
BDE8154 <DL 2.08 0.45 = =
BDE8153 <DL 0.192 0.56 = =
BDE8183 <DL <DL 0.07 = =
pTBX 0.00775 0.299 99.0 6.9 8.0
PBBz 0.0778 2.23 31.9 >87.3 9.2
PBT 0.0806 1.63 58.0 >87.4 8.8
PBEB 0.0419 2.28 23.9 >87.2 9.3
HBBz <DL 4.01 19.8 = =
BTBPE <DL 0.0324 0.02 = =
SDP <DL 0.445 0.00 = =
ADP <DL 0.193 0.00 = =
OPEs
TnBP 0.988 3.59 99.6 4.9 6.9
TCEP 2.30 0.468 100 6.4 7.3
TCIPP 9.83 1.13 100 6.6 7.4
TDCIPP 12.2 0.823 37.4 >86.8 9.0
TPhP 1.66 11.1 30.9 >83.9 9.1
TBEP 6281 <DL 4.66 = =
EHDPP 5.05 <DL 10.6 = =
TEHP <DL <DL 0.21 = =
ToCP <DL <DL 8.42 = =
TmCP <DL <DL 4.18 = =
TpCP <DL <DL 2.59 = =
TDBPP <DL <DL 0.01 = =  
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Figure S7-1.  Sampling set up at the East Providence Rhode Island Department of the 
Environment (RI DEM) station.  
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Table S7-1.  List of target compounds.  
 

Polycyclic	  Aromatic	  Hydrocarbons	  (PAHs) CAS	  Number
2-‐ring	  PAHs
NAP Naphthalene 91-‐20-‐3
BIP Biphenyl 92-‐52-‐4
ACY Acenaphthylene 208-‐96-‐8
ACE Acenaphthene 83-‐32-‐9
FLR Fluorene 86-‐73-‐7
2-‐ring	  alkyl/substituted	  PAHs
2MENAP 2-‐methylnaphthalene 91-‐57-‐6
1MENAP 1-‐methylnaphthalene 90-‐12-‐0
1MEFLR 1-‐methyl	  fluorene 1730-‐37-‐6
DBF Dibenzofuran 132-‐64-‐9
DBT Dibenzothiophene 132-‐65-‐0
3-‐ring	  PAHs
PHN Phenanthrene 85-‐01-‐8
ANT Anthracene 120-‐12-‐7
FLRA Fluoranthene 205-‐99-‐2
4-‐ring	  PAHs
PYR Pyrene 129-‐00-‐0
BAA Benzo(a)anthracene 96-‐55-‐3
CHRY Chrysene 218-‐01-‐9
BBJKFLRA Benzo(b,j,k)fluoranthene 205-‐99-‐2/209-‐08-‐9
3-‐4-‐ring	  alkylPAHs
2MEPHN 2-‐methyl	  phenanthrene 2531-‐84-‐2
1MEPHN 1-‐methylphenanthrene 832-‐69-‐9
9MEANT 9-‐methyl	  anthracene 779-‐02-‐2
1MEPYR 1	  methyl	  pyrene 2381-‐21-‐7
RET Retene 483-‐65-‐8
6MECHRY 6-‐methyl	  chrysene 1705-‐85-‐7
7MEBAA 7-‐methyl	  benz(a)anthracene 2541-‐69-‐7
712DIMEBAA 7,12-‐Dimethylbenz(a)anthracene 57-‐97-‐6
5-‐6-‐ring	  PAHs
BEP Benzo(e)pyrene 192-‐97-‐2
BAP Benzo(a)pyrene 50-‐32-‐8
PER Perylene 198-‐55-‐0
IND Indeno(1,2,3-‐c,d)pyrene 193-‐39-‐5
DBA Dibenz(a,h)anthracene) 57-‐70-‐3
BghiP Benzo(g,h,i)pyrene 191-‐24-‐2
COR Coronene 191-‐07-‐1  
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Table S7-1 Cont’d.  List of target compounds.  
 

Organophosphate	  Esters	  (OPEs) CAS	  Number
TnBP tri-‐n -‐butyl	  phosphate 126-‐73-‐8
TCEP tris(2-‐chloroethyl)	  phosphate 115-‐96-‐8
TCIPP tris(1-‐chloro-‐2-‐propyl)	  phosphate 13674-‐84-‐5
TDCIPP tris(1,3-‐dichloro-‐2-‐propyl)	  phosphate 13674-‐87-‐8
TPhP triphenyl	  phosphate 115-‐86-‐6
TBEP tris(butoxyethyl)	  phosphate 78-‐51-‐3
EHDPP ethylhexyl	  diphenyl	  phosphate 1241-‐94-‐7
TEHP tris(2-‐ethylhexyl)	  phosphate 78-‐42-‐2
ToCP tri-‐o -‐cresyl	  phosphate 78-‐30-‐8
TmCP tri-‐m -‐cresyl	  phosphate 563-‐04-‐2
TpCP tri-‐p -‐cresyl	  phosphate 78-‐32-‐0
TDBPP tris(2,3-‐dibromo-‐2-‐propyl)	  phosphate 126-‐72-‐7

Brominated	  Diphenyl	  Ethers	  (BDEs)
BDE	  2 3-‐bromodiphenyl	  ether 6876-‐00-‐2
BDE	  8 2,4'-‐dibromodiphenyl	  ether	   147217-‐7-‐8
BDE	  15 4,4'-‐dibromodiphenyl	  ether 2050-‐47-‐7
BDE	  30 2,4,6-‐tribromodiphenyl	  ether 155999-‐95-‐4
BDE	  28 2,4,4'-‐tribromodiphenyl	  ether 41318-‐75-‐6
BDE	  49 2,2',4,5'-‐tetrabromodiphenyl	  ether 243982-‐82-‐3
BDE	  47 2,2',4,4'-‐tetrabromodiphenyl	  ether 5436-‐43-‐1
BDE	  100 2,2',4,4',6-‐pentabromodiphenyl	  ether 189084-‐64-‐8
BDE	  99 2,2',4,4',5-‐pentabromodiphenyl	  ether 60348-‐60-‐9
BDE	  154 2,2',4,4',5,6'-‐hexabromodiphenyl	  ether 207122-‐15-‐4
BDE	  153 2,2',4,4',5,5'-‐hexabromodiphenyl	  ether 68631-‐49-‐2
BDE	  183 2,2',3,4,4',5',6-‐heptabromodiphenyl	  ether 207122-‐16-‐5

Novel	  Halogenated	  Flame	  Retardants	  (NHFRs)
pTBX tetrabromo-‐p -‐xylene 23488-‐38-‐2
PBBz pentabromobenzene 608-‐90-‐2
PBT pentabromotoluene 87-‐83-‐2
PBEB pentabromoethylbenzene 85-‐22-‐3
HBBz hexabromobenzene 87-‐82-‐1
BTBPE 1,2-‐bis(2,4,6-‐tribromophenoxy)ethane 37853-‐59-‐1
SDP syn -‐Dechlorane	  Plus 13560-‐89-‐9
ADP anti -‐Dechlorane	  Plus 13560-‐89-‐9

Polycyclic	  Musks
ADBI Celestolide 13171-‐00-‐1
AHMI Phantolide 15323-‐35-‐0
ATII Traesolide 68140-‐48-‐7
HHCB Galaxolide 1222-‐05-‐5
AHTN Tonalide 1506-‐02-‐1
MUX Musk	  xylene 81-‐15-‐2
MUK Musk	  ketone 81-‐14-‐1
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Table S7-2.  Selected and derived physico-chemical properties for target compounds.  
 

Molar	  Mass	  
(g/mol)

Vm	  

(cm3/mol)1
ΔHvap	  

(kJ/mol)2
log	  KPEA	  
(L/L)3

log	  DPE	  

(m2/s)4
DA	  

(m2/s)5
log	  Koa

6	   log	  pL	  
(Pa)7

PAHs
NAP 128.2 124.6 56 4.9 -‐11.9 -‐5.1 5.2 1.60
2MENAP 142.2 140.5 63 5.5 -‐12.1 -‐5.2 5.9 0.84
1MENAP 142.2 140.4 63 5.5 -‐12.1 -‐5.2 5.9 0.84
BIP 154.2 151.0 68 6.0 -‐12.3 -‐5.2 6.5 0.19
ACY 152.2 139.1 67 5.8 -‐12.1 -‐5.2 6.4 0.30
ACE 154.2 142.0 68 6.0 -‐12.2 -‐5.2 6.5 0.19
DBF 168.2 145.5 75 6.6 -‐12.2 -‐5.2 7.2 -‐0.56
FLR 166.2 154.8 74 6.4 -‐12.4 -‐5.2 7.1 -‐0.46
1MEFLR 180.2 169.8 81 7.2 -‐12.6 -‐5.2 7.8 -‐1.21
DBT 184.3 154.6 83 7.4 -‐12.3 -‐5.2 8.0 -‐1.43
PHN 178.2 160.6 80 7.0 -‐12.4 -‐5.2 7.7 -‐1.10
ANT 178.2 159.1 80 7.2 -‐12.4 -‐5.2 7.7 -‐1.10
2MEPHN 192.3 176.5 86 7.7 -‐12.7 -‐5.2 8.4 -‐1.86
4/9MEANT 192.3 174.7 86 7.7 -‐12.6 -‐5.2 8.4 -‐1.86
1MEPHN 192.3 176.3 86 7.7 -‐12.7 -‐5.2 8.4 -‐1.86
FLRA 202.3 196.1 91 8.0 -‐13.0 -‐5.2 8.9 -‐2.40
PYR 202.3 182.3 91 8.1 -‐12.7 -‐5.2 8.9 -‐2.40
1MEPYR 216.3 198.1 98 8.9 -‐13.0 -‐5.2 9.6 -‐3.16
RET 234.3 226.5 106 9.4 -‐13.4 -‐5.3 10.5 -‐4.13
BAA 228.3 195.1 104 9.0 -‐12.9 -‐5.2 10.2 -‐3.81
CHRY 228.3 196.5 104 9.4 -‐13.0 -‐5.2 10.2 -‐3.81
7MEBAA 242.3 210.7 110 9.9 -‐13.2 -‐5.3 10.9 -‐4.56
6MECHRY 242.3 212.3 110 9.9 -‐13.2 -‐5.3 10.9 -‐4.56
712DIMEBAACHRY 256.3 226.4 117 10.6 -‐13.4 -‐5.3 11.6 -‐5.32
BbjkF 252.3 232.0 115 10.3 -‐13.5 -‐5.3 11.4 -‐5.10
BEP 252.3 219.6 115 10.4 -‐13.3 -‐5.3 11.4 -‐5.10
BAP 252.3 218.2 115 10.4 -‐13.3 -‐5.3 11.4 -‐5.10
PER 252.3 219.6 115 10.4 -‐13.3 -‐5.3 11.4 -‐5.10
IND 276.3 253.7 126 11.3 -‐13.8 -‐5.3 12.6 -‐6.40
DBA 278.4 244.2 127 11.6 -‐13.6 -‐5.3 12.7 -‐6.51
BghiP 276.3 241.3 126 11.4 -‐13.6 -‐5.3 12.6 -‐6.40
COR 300.4 263.0 138 12.5 -‐13.9 -‐5.3 13.8 -‐7.70  

[1] Molar volume calculated from SPARC; [2] Enthalpy of vaporization calculated from pL as in Schwarzenbach 
20031; [3] PE-Air partitioning coefficient taken from Khairy & Lohmann 2014 when available, otherwise 
calculated from pL using the regression from Khairy & Lohmann 20142; [4] Empirical DPE for OPEs from Pintado-
Herrera et al.3 or Vansco thin-film experiments (unpublished) when available, otherwise calculated from Vm as in 
Lohmann 20124; [5]DA calculated as in Fuller 19665; [6] Octanol-air partitioning coefficient from molecular weight 
as in Ma et al. 2010 for PAHs;6 Calculated from KAW

7
 and KOW

8 for PCMs;  From Khairy & Lohmann 2014 for 
PBDEs;2 From Zhang et al. 2016 (SPARC estimates) for NHFRs and OPEs.9 [7] Solubility from molecular weight 
as in Ma et al. 2010 for PAHs6; From Peck & Hornbuckle 2004 for PCMs7; From Yue & Li 2013 for BDEs10; OPE 
values from Reemstma et al. 2008 or Brommer et al. 2014 when available,11,12 otherwise from SPARC;  BFR 
values from Bergman et al. 2012 and Dirtu et al. 2013,13,14 otherwise from SPARC. 
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Table S7-2 Cont’d.  Selected and derived physico-chemical properties for target 
compounds.  
 

Molar	  Mass	  
(g/mol)

Vm	  

(cm3/mol)1
ΔHvap	  

(kJ/mol)2
log	  KPEA	  
(L/L)3

log	  DPE	  

(m2/s)4
DA	  

(m2/s)5
log	  Koa

6	   log	  pL	  
(Pa)7

PCMs	  
ADBI 244.4 253.3 85 7.6 -‐13.8 -‐5.3 6.7 -‐1.70
AHMI 244.4 255.8 84 7.5 -‐13.8 -‐5.3 7.3 -‐1.62
ATII 258.4 272.1 69 6.1 -‐14.0 -‐5.3 7.8 0.08
HHCB 258.4 266.1 80 7.1 -‐14.0 -‐5.3 8.2 -‐1.14
AHTN 258.4 270.0 80 7.1 -‐14.0 -‐5.3 8.0 -‐1.17
MUX 297.3 223.5 110 9.9 -‐13.3 -‐5.3 9.5 -‐4.52
MUK 294.3 238.9 109 9.8 -‐13.6 -‐5.3 9.9 -‐4.40
OFRs
PBDEs
BDE	  2 249.1 174.7 76 6.6 -‐12.6 -‐5.2 7.8 -‐0.67
BDE	  8 328.0 189.9 89 7.5 -‐12.9 -‐5.2 8.7 -‐2.15
BDE	  15 328.0 189.9 88 7.5 -‐12.9 -‐5.2 8.6 -‐2.02
BDE	  30 406.9 203.8 91 8.6 -‐13.1 -‐5.3 9.5 -‐2.35
BDE	  28 406.9 203.8 96 8.4 -‐13.1 -‐5.3 9.4 -‐2.93
BDE	  49 485.8 217.6 100 9.4 -‐14.0 -‐5.3 10.3 -‐3.45
BDE	  47 485.8 217.6 102 9.4 -‐14.0 -‐5.3 10.4 -‐3.61
BDE	  100 564.7 232.0 109 10.1 -‐14.7 -‐5.3 11.0 -‐4.47
BDE	  99 564.7 232.1 108 10.4 -‐14.7 -‐5.3 11.3 -‐4.30
BDE	  154 643.6 246.5 116 11.0 -‐15.1 -‐5.3 12.0 -‐5.18
BDE	  153 643.6 246.6 117 10.9 -‐15.1 -‐5.3 11.9 -‐5.29
BDE	  183 722.5 260.5 121 11.8 -‐15.3 -‐5.3 12.8 -‐5.84
NHFRs
pTBX 421.8 179.3 90 8.0 -‐13.6 -‐5.2 8.8 -‐2.24
PBBz 472.6 165.0 102 9.2 -‐13.5 -‐5.2 8.4 -‐3.65
PBT 486.6 179.4 98 8.8 -‐13.9 -‐5.2 9.2 -‐3.22
PBEB 500.7 195.3 104 9.3 -‐13.9 -‐5.2 9.5 -‐3.81
HBBz 551.5 179.4 105 9.4 -‐14.1 -‐5.2 9.6 -‐3.94
BTBPE 687.6 281.6 136 12.3 -‐14.2 -‐5.3 14.5 -‐7.49
SDP 653.7 398.7 159 14.5 -‐15.7 -‐5.4 12.3 -‐10.13
ADP 653.7 398.7 159 14.5 -‐15.8 -‐5.4 12.3 -‐10.13
OPEs
TnBP 266.3 265.5 77 6.9 -‐14.0 -‐5.3 7.0 -‐0.82
TCEP 285.5 196.5 82 7.3 -‐13.0 -‐5.2 7.0 -‐1.32
TCIPP 327.6 247.9 83 7.4 -‐13.7 -‐5.3 7.6 -‐1.46
TDCIPP 430.9 268.4 100 9.0 -‐14.0 -‐5.3 10.3 -‐3.38
TPhP 326.3 272.9 101 9.1 -‐14.1 -‐5.3 10.3 -‐3.57
TBEP 398.5 383.2 108 9.7 -‐15.7 -‐5.4 -‐ -‐4.31
EHDPP 362.4 338.5 106 9.5 -‐15.0 -‐5.4 10.6 -‐4.05
TEHP 434.6 434.6 124 11.2 -‐14.4 -‐5.4 -‐ -‐6.13
ToCP 368.4 314.7 108 9.7 -‐13.6 -‐5.3 -‐ -‐4.29
TmCP 368.4 321.0 111 10.0 -‐13.6 -‐5.3 -‐ -‐4.68
TpCP 368.4 321.0 114 10.2 -‐13.8 -‐5.3 -‐ -‐4.95
TDBPP 697.6 292.6 137.5 12.5 -‐14.3 -‐5.3 -‐ -‐7.67  

[1] Molar volume calculated from SPARC; [2] Enthalpy of vaporization calculated from pL as in Schwarzenbach 
20031; [3] PE-Air partitioning coefficient taken from Khairy & Lohmann 2014 when available, otherwise 
calculated from pL using the regression from Khairy & Lohmann 20142; [4] Empirical DPE for OPEs from Pintado-
Herrera et al.3 or Vansco thin-film experiments (unpublished) when available, otherwise calculated from Vm as in 
Lohmann 20124; [5]DA calculated as in Fuller 19665; [6] Octanol-air partitioning coefficient from molecular weight 
as in Ma et al. 2010 for PAHs;6 Calculated from KAW

7
 and KOW

8 for PCMs;  From Khairy & Lohmann 2014 for 
PBDEs;2 From Zhang et al. 2016 (SPARC estimates) for NHFRs and OPEs.9 [7] Solubility from molecular weight 
as in Ma et al. 2010 for PAHs6; From Peck & Hornbuckle 2004 for PCMs7; From Yue & Li 2013 for BDEs10; OPE 
values from Reemstma et al. 2008 or Brommer et al. 2014 when available,11,12 otherwise from SPARC;  BFR 
values from Bergman et al. 2012 and Dirtu et al. 2013,13,14 otherwise from SPARC. 



 

 
 

334 

 
 
Figure S7-2.  Concentrations of gaseous high molecular weight (HMW) PAHs and 
alkyl/substituted PAHs derived from active air sampling.  No concentrations were 
available for HMW PAHs from 9/12-9/14 due to interference in the PE extract.  
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Table S7-3.  Ambient Concentrations Derived from Active Sampling. Numbers in 
red were calculated assuming equilibrium due to evidence of break-through.    
 

Deployed 9/9/15 9/12/15 9/14/15 9/16/15 9/18/15 9/20/15 9/22/15 9/24/15 9/26/15 9/28/15
Recovered 9/10/15 9/14/15 9/16/15 9/18/15 9/20/15 9/22/15 9/24/15 9/26/15 9/28/15 9/30/15
Volume Air Sampled (m3) 917 2080 1341 1875 2533 1484 1840 2156 2139 1956
Mean Temperature (°C) 25.4 18.6 20.5 22.3 21.9 16.5 16.7 15.9 14.1 21.9
Polycyclic Aromatic Hydrocarbons (PAHs) (ng/m3)
NAP <DL 2.587 2.079 33.293 3.738 6.251 0.097 0.622 <DL <DL 4.870 ± 10.196
2MENAP 0.819 1.421 0.698 7.597 0.993 1.872 1.516 0.344 0.129 0.011 1.540 ± 2.214
1MENAP 0.363 0.467 0.328 3.330 0.437 0.803 0.691 0.145 0.059 0.005 0.663 ± 0.971
BIP 0.230 0.451 0.247 1.527 0.354 0.306 0.436 0.105 0.053 0.007 0.371 ± 0.433
ACY 0.018 0.056 0.407 0.025 0.439 0.049 0.260 0.013 0.007 0.005 0.128 ± 0.173
ACE 0.972 3.447 1.010 8.308 1.356 1.114 2.039 0.556 0.223 0.244 1.927 ± 2.436
DBF 1.299 2.176 1.327 5.390 1.733 0.946 1.755 0.442 0.237 0.323 1.563 ± 1.496
FLR 2.456 3.642 2.818 9.776 3.214 1.701 3.388 0.755 0.483 0.552 2.878 ± 2.703
1MEFLR 0.564 0.147 0.280 0.555 0.131 0.264 0.444 0.172 0.097 0.142 0.279 ± 0.179
DBT 1.211 0.341 0.570 1.024 0.204 0.527 0.587 0.397 0.199 0.294 0.535 ± 0.339
PHN 11.456 5.022 8.643 13.435 12.300 5.629 5.280 3.401 3.626 6.807 7.560 ± 3.682
ANT 0.469 0.315 0.416 0.333 0.766 0.099 0.184 0.105 0.184 0.236 0.311 ± 0.203
2MEPHN 1.024 0.201 0.465 1.152 1.650 0.516 0.553 0.509 0.513 0.431 0.701 ± 0.436
4/9MEANT 0.576 0.047 0.259 0.604 0.634 0.224 0.283 0.274 0.291 0.220 0.341 ± 0.195
1MEPHN <DL <DL <DL <DL 0.229 <DL <DL <DL <DL <DL 0.136 ± 0.051
FLRA 2.865 <DL 5.591 2.592 0.130 1.390 0.886 0.799 0.939 1.672 1.688 ± 1.659
PYR 1.245 <DL 0.346 1.051 0.026 0.696 0.483 0.492 0.480 0.645 0.547 ± 0.393
1MEPYR 0.061 <DL 0.005 0.042 <DL 0.033 <DL 0.016 0.020 0.020 0.020 ± 0.020
RET 0.169 <DL 0.355 0.204 <DL 0.107 <DL 0.124 0.122 0.155 0.133 ± 0.099
BAA 0.024 - 0.054 0.017 0.002 0.026 0.019 0.022 0.044 0.015 0.025 ± 0.016
CHRY 0.055 - 0.141 0.051 0.002 0.043 0.038 0.038 0.083 0.036 0.054 ± 0.039
7MEBAA 0.008 - 0.020 0.012 0.001 0.004 0.008 0.009 0.019 0.011 0.010 ± 0.006
6MECHRY 0.003 - 0.012 0.002 0.001 0.001 <DL 0.003 0.005 0.008 0.004 ± 0.004
712DIMEBAACHRY 0.002 - 0.004 <DL 0.004 0.001 <DL <DL 0.011 0.003 0.003 ± 0.003
BbjkF 0.028 - 0.120 0.030 0.004 0.064 0.038 0.065 0.215 0.074 0.071 ± 0.064
BEP 0.006 - 0.026 0.008 0.001 0.018 0.011 0.019 0.057 0.020 0.019 ± 0.016
BAP 0.009 - 0.014 0.007 0.018 0.013 0.012 0.015 0.016 0.006 0.012 ± 0.004
PER <DL - 0.002 <DL <DL 0.002 0.002 0.002 0.002 <DL 0.001 ± 0.001
IND <DL - 0.007 0.004 0.002 0.006 0.006 0.009 0.007 0.003 0.005 ± 0.002
DBA <DL - <DL <DL <DL <DL <DL <DL <DL <DL 0.001 ± 0.000
BghiP <DL - 0.005 0.003 <DL 0.005 0.005 0.009 0.005 <DL 0.004 ± 0.002
COR <DL - 0.002 0.001 0.001 0.001 0.002 0.002 0.001 <DL 0.001 ± 0.001

MEAN 
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Figure S7-3.  Percent equilibration of performance reference compounds (PRCs) over 
time during PE deployments.  
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Figure S7-4.  Uptake profile examples for PAHs in PEs over the 21-day deployment.   
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ABSTRACT 

Recent studies have detected organophosphate esters (OPEs) in remote 

regions, including the Arctic atmosphere, suggesting that they are capable of long-

range transport. The exact transport mechanisms and ultimate fates of these OPEs 

remain poorly understood and few measurements of open ocean concentrations are 

available.  In this study, polyethylene passive samplers (PEs) deployed at deep 

mooring monitoring stations in Fram Strait from 2014-2015 and surface water sites in 

the Canadian Arctic in 2015 and 2016 were analyzed for OPEs to investigate their 

occurrence in remote environments and learn more about marine transport and fate of 

these emerging contaminants.  Chlorinated OPEs (Σ3Cl-OPE) were generally present 

at much greater concentrations (<DL-7,390 pg/L) than alkyl- and aryl-OPEs 

(Σ7Alkyl/aryl-OPE 0.05-143 pg/L), with the greatest concentrations found at Arctic 

Ocean surface water sites.  Depth profiles from about 200 m to 2,500 m obtained from 

deep moorings in eastern and western Fram Strait showed unexpectedly flat vertical 

profiles, possibly due to a high degree of vertical mixing and/or release of particle-

bound compounds into the dissolved phase at depth.  Dissolved OPEs were found at 

much greater concentrations in North Atlantic and Arctic Ocean waters than other 

emerging flame retardants, highlighting their significance as a widespread 

contaminant of emerging concern with unknown impacts on remote marine 

environments.   
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INTRODUCTION 

 Organophosphate esters (OPEs) have been measured in Arctic air at 

unexpectedly high concentrations,1,2 suggesting that they are capable of long-range 

transport to remote regions, though the transport mechanisms and ultimate fates of 

these OPEs are poorly understood.  Very few measurements of seawater 

concentrations are available for OPEs, and none are available in subsurface seawater.  

More information on water concentrations of OPEs is urgently needed to better 

understand the transport and fate of these emerging contaminants in the marine 

environment.  Here we present the first estimates of marine dissolved OPE 

concentrations from deep moorings in the North Atlantic Fram Strait and surface 

waters in the Canadian Arctic, which were obtained using passive polyethylene 

samplers (PEs).  

 Passive sampling is a low-cost approach to obtain time-weighted average 

measurements of dissolved organic contaminants in water.  Because passive samplers 

do not require electricity and can be left out for a long time to obtain long-term 

measurements at multiple remote locations, they are gaining attention as tools for 

measuring deep water distributions of organic contaminants.  Booij et al.3 used semi-

permeable membrane devices (SPMDs) to measure time-integrated vertical 

distributions of various persistent organic pollutants (POPs) in the North Atlantic and 

Indian Oceans.  Sun et al.4 also deployed PEs on a deep mooring at a similar location 

to this study from 2012 to 2013 to investigate depth profiles of several POPs.   

 In this study, extracts from PEs deployed at two deep mooring monitoring 

stations in the east and west Fram Strait were retrospectively analyzed for OPEs to 
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investigate depth profiles and learn more about marine transport and fate of these 

emerging contaminants.  Several PEs deployed in surface waters of the Arctic Ocean 

and Arctic freshwater lakes were also analyzed for OPEs so that levels and 

composition of dissolved OPEs in these two remote environments could be compared.   

 

METHODS 

Passive Sampler Preparation.   PE sheets of 50-µm thickness were cut into 10 x 30 

cm strips weighing about 2 g and precleaned by incubation in methylene chloride and 

hexane for 24 h each.  Performance reference compounds (PRCs; dibromobiphenyl 

(PBB 9), tetrabromobiphenyl (PBB 52), pentabromobiphenyl (PBB 103), and 

octachloronaphthalene (OCN)) were loaded into the PEs for estimation of in situ 

sampling rates.  PRC loading was done via a 1-month incubation in an 80:20 

methanol:water solution containing the PRCs.  PEs for field deployments were 

shipped out for deployment while additional PEs from the same batch were stored in 

the freezer for use as laboratory blanks.  

Deep Mooring PE Deployments.  Deep mooring PEs were deployed for about one 

year at two locations at moorings maintained by the HAUSGARTEN long-term 

ecological research (LTER) observatory in the Fram Strait, the region between the 

western coast of Svalbard and the eastern coast of Greenland where water is 

exchanged between the North Atlantic and Arctic Ocean basins.  Meridional transport 

in the upper water column brings warm Atlantic Ocean water north to the Arctic 

Ocean along the eastern side of Fram Strait via the West Spitsbergen Current, while 

cold, fresh Polar Water from the Arctic Ocean is brought south along the western side 
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of Fram Strait via the East Greenland Current.5  Fram Strait deep water results from 

mixing of end members including Greenland Sea Deep Water and Eurasian Basin 

Deep Water from the Arctic Ocean, though the degree of mixing changes considerably 

depending on location within the strait, and other water masses may also be involved.6  

Locations of deep moorings used in this study are marked by yellow triangles 

in Figure 8-1.  PEs were deployed at 4 depths (221 m, 446 m, 1151 m, and 2513 m) at 

a site east of the Fram Strait (79.010 N, 4.328 E) from June 23, 2014 to July 27, 2015, 

and at 5 depths (341 m, 504 m, 1184 m, 1690 m, 2439 m) at a site west of the Fram 

Strait (78.528 N, 2.764 W) from June 20, 2014 to July 31, 2015.  PE sheets were 

strung on stainless steel wire and deployed attached to stainless steel cages, with one 

PE deployed at each depth.  Current meters were deployed to track current velocities 

at each depth, as were temperature monitors.  This data was averaged over the entire 

deployment to calculate mean temperature and horizontal current velocity at each 

sampler depth.  Samples are summarized along with meteorological data in Table S8-

1.  

Surface Water PE Deployments.  Surface water PEs were deployed 4-5 m below the 

water’s surface at three lake sites and three ocean sites in the Eastern Arctic Ocean 

during the summer of 2015 and 2016.  Lake sites and ocean sites are marked by green 

circles and orange pentagons, respectively, in Figure 8-1.  At most sites, duplicate PEs 

were deployed and ambient concentrations from both samples were averaged to 

calculate a single final concentration.  Deployment dates and meteorological data are 

summarized in Table S8-1.      
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Sampler Extraction and Analysis.  Each batch of PEs was extracted overnight in 

hexane.  Extracts were concentrated to ~ 50 µL and analyzed on an Agilent 7890 GC 

coupled to an Agilent 5977 MSD for 3 chlorinated OPEs (tris(2-chloroethyl) 

phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-

dichloropropyl) phosphate (TDCIPP)), one brominated OPE (tris (2,3-dibromopropyl) 

phosphate (TDBPP)), and 8 alky/aryl-OPEs (tri n butyl phosphate (TnBP), triphenyl 

phosphate (TPhP), tris(2-butoxyethyl) phosphate (TBEP), ethylhexyldiphenyl 

phosphate (EHDPP), tris(2-ethylhexyl) phosphate (TEHP), tris(o-cresyl) phosphate 

(ToCP), tris(m-cresyl) phosphate (TmCP), and tris(p-cresyl) phosphate (TpCP)).   

OPE analysis of deep mooring and surface water PE extracts from 2015 was 

done retrospectively, so labeled OPEs were not added as internal standards prior to 

extraction and data was not corrected for extraction recoveries.  Deuterated OPEs 

(TnBP-d27, TCIPP-d18, TDCIPP-d15, and TPhP-d15) were spiked into these extracts 

just prior to analysis.  However, Arctic surface water PEs from the 2016 sampling 

campaign were spiked with internal standards prior to extraction.  Quantification was 

done using a 9-point curve and standards were run after every 10 samples as 

continuing calibration verification.  Samples were run on a 30-m Agilent DB-5MS 

column with a 0.5 m guard column and 1 mL/min helium flow, with temperature 

ramped from 70 to 315 °C over about 40 minutes.  Extracts were injected at a volume 

of 2 µL with the injection port set at 240 °C.  The MSD was operated in select ion 

monitoring (SIM) mode with source temperature at 230 °C, quadrupole at 150 °C, and 

transfer line at 250 °C.  
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Concentrations of OPEs in PE blanks are shown in Table S8-2.  All 

concentrations in field samples were blank-subtracted using the co-extracted PE 

laboratory blank or field blank based on availability.  After blank subtraction, values 

below 50% of blank values were considered non-detects and replaced with zero.  In 

cases where OPEs were not found in the PE blank, instrumental noise was integrated 

to define detection limits.  

Two blank PE samples spiked with several OPEs were taken through the 

extraction procedure to evaluate typical compound recoveries.  Recoveries were 109% 

for TnBP, 102-103% for TCEP, 117-118% for TCIPP, 73-88% for TDCIPP, 84-89% 

for TPhP, 127-128% for EHDPP, 103-107% for ToCP, 92-105% for TpCP, and 48-

92% for TDBPP.  There was too much interference present in the PE matrix to 

quantify spiked TBEP, so this compound was omitted from further interpretation.  

Quantification of OPEs by our analytical method was also checked against an external 

standard provided for an inter-laboratory comparison, and results showed that the 

analytical method provided concentrations within 73-133% of actual concentrations 

for all OPEs.  

 Sampling Rate Determination.  The rate of OPE absorptive uptake (ko) into the PE 

was modeled as inversely proportional to the sum of the mass transfer resistance in the 

PE membrane and the water boundary layer, as shown in Eq 1. This required 

estimating the molecular diffusivity of each OPE in polyethylene (DPE) and in water 

(DW), as well as the PE-water partitioning coefficient (KPEW). The thickness of the PE 

boundary layer (δPE) was half the thickness of the PE sheet (25 µm) and the thickness 

of the water boundary layer (δWBL) was estimated by fitting loss data for the four 
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PRCs to Eq 1 using the non-linear least squares regression function nls in R.  This was 

only done for PEs from deep mooring sites, as PRC data was not available for surface 

water PEs.  

1

k
o

=
�
WBL

D
W

+
�
PE

D
PE

·K
PEW      Eq 1 

Percent equilibration reached by each PRC during deployment was determined 

by calculating the percent lost in the field samples, using the amount of PRCs in the 

PE blank to determine the initial mass.  KPEWs of all PRCs were corrected for salinity 

using a Setschenow constant of 0.27 M-1 and assuming a generic salt concentration of 

0.5 M (34.2 psu).7  Physico-chemical properties for PRCs were corrected for site- and 

depth-specific mean temperature.  

Fitting of PRC data yielded δWBLs of 57-199 µm for deep mooring PEs (Figure 

S8-1; Table S8-3).  Based on these results, a δWBL of 60 µm was assumed for all Arctic 

surface water PEs (PRC loss data not available).  The δWBL value was plugged into Eq 

1 along with the relevant physico-chemical properties for each target OPE to 

determine the percent equilibration reached during the deployment.  Percent 

equilibration predicted for each OPE at each site is presented in Tables S8-4 for deep 

mooring deployments and S8-5 for surface water deployments.  The five smallest 

OPEs (Vm < 290 cm3/mol; log KPEW < 5) were generally estimated to reach >90% 

equilibrium during deployment (Table S8-4).  Among the non-equilibrated 

compounds, sampling rates calculated from best-fit r δWBL ranged from about 1-10 

L/day at deep mooring sites.  Mean current velocity for all PEs at all depths ranged 

from 7 – 13 cm/s.  The greatest sampling rates and fastest current velocities were 

observed at the shallowest deep mooring sites.  The lowest sampling rates and slowest 
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current velocities were both found at the two deepest sites in the Eastern Fram Strait.  

Boundary layer thickness is plotted with depth in Figure S8-1.    

Physico-Chemical Properties.  One of the major challenges in understanding the 

transport and fate of OPEs is the paucity of data on their physico-chemical properties.8  

Here, PE-water partitioning coefficients (KPEW) were estimated from subcooled liquid 

aqueous solubility (log Cw,sat(L); mol/m3) as in Lohmann 2012.9  Lohmann reported 

that this regression exhibited a good fit (r2=0.92; SE=0.35; N=100) for a wide variety 

of compounds with diverse properties, including PAHs, PCBs, PBDEs, OCPs, 

nonylphenols, and triclosan.  Recent unpublished work measuring OPE KPEW values 

via passive and active sampling at a wastewater treatment plant suggested that 

solubility-derived KPEW values may be greater than empirical KPEWs, which would 

mean that values presented here are lower than actual dissolved concentrations.  

However, more work needs to be done to confirm empirical OPE KPEW values.  

Physico-chemical properties used to calculate ambient concentrations are 

presented in Table S8-6.  Values of Cw,sat(L) used in KPEW calculations were taken 

from a collection of estimated properties by Zhang et al.10  Values calculated from EPI 

Suite WSKOWWIN were used because this model performed best in predicting 

Cw,sat(L) for a wide range of compounds.10  However, these Cw,sat(L) values were often 

biased low, meaning that ambient concentrations estimated using these values may 

also be underestimated.  To interpret results for PEs deployed in seawater, values of 

Cw,sat(L) were corrected for salinity, as described above for the PRCs.7  All KPEWs 

were also corrected for mean deployment temperature as previously described,9 

assuming an energy of solvation of 25 kJ/mol.  As mentioned previously by Booij et 
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al.,3 the effect of pressure in deep ocean regions on physico-chemical properties of 

organic chemicals is not well characterized, so parameters were not adjusted for 

pressure effects.    

 The molecular diffusivity of each OPE in water was calculated for each 

deployment’s mean temperature using the Wilke-Chang equation with 2.6 as the 

association parameter for water and determining viscosity of water using a table 

provided by Schwarzenbach et al.7  Molecular diffusivity in polyethylene was taken 

from Pintado-Herrera et al.11 when experimental values were available, and was 

otherwise calculated from molar volume as in Lohmann 2012,9 and subsequently 

corrected for mean deployment temperature using the Arrhenius equation, assuming 

an activation energy of 100 kJ/mol.  

    

RESULTS & DISCUSSION 

Dissolved Concentrations of Halogenated OPEs.  Depth profiles and composition of 

dissolved chlorinated and brominated OPEs from the deep mooring deployments are 

shown in Figure 8-2.  Σ3Cl-OPE (the sum of TCEP, TCIPP, and TDCIPP) in deep 

mooring samples ranged from 25 pg/L at 221 m depth at Eastern Fram Strait to 393 

pg/L at 341 m depth at Western Fram Strait.  TCEP was the most abundant Cl-OPE in 

deep mooring samples when detected, but was only found above detection limits at 

Western Fram Strait sites.  Concentrations of TCEP in Eastern Fram Strait were only 

slightly lower than in Western Fram Strait, but were blank-censored.  While TCEP 

usage has been restricted in Europe under REACH, the compound is still used in 

North America and Asia, and was found to be dominant in Canadian Arctic air in a 
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study by Suhring et al.2  TDBPP was only detected at the most shallow site from 

Eastern Fram Strait at 4.7 pg/L.  

Surface water concentrations of Σ3Cl-OPE are shown in Figure 8-3.  In surface 

water samples, Σ3Cl-OPE reached much greater concentrations, with mean Σ3Cl-OPE 

ranging from <DL in Resolute North Lake to 7,390 pg/L at East Lake.  Σ3Cl-OPE was 

elevated at sites in Cape Bounty and Sach’s Harbour, where TCEP, the most abundant 

OPE, was >DL, while at sites near Resolute, TCEP was <DL, TCIPP was most 

abundant at 250-300 pg/L, and levels were more similar to those found in deep 

mooring samples.    

No data on concentrations of dissolved OPEs in polar ocean water was found 

for comparison to this study.  Previous studies measuring OPEs via active sampling 

methods in coastal, estuarine, and lacustrine environments generally reported OPE 

concentrations at least an order or magnitude greater than concentrations measuring at 

deep moorings.12,13  Surface concentrations measured here were comparable, but on 

the lower end, of what has been measured in other regions.  Venier et al. measured 

Σ3Cl-OPEs from 2,100 – 17,500 pg/L in the surface waters of the Great Lakes, with 

TCIPP most abundant.  In German Bight surface waters,  Σ3Cl-OPEs ranged from 

about 1,000 – 10,000 pg/L, again with TCIPP most abundant.13   

Dissolved Concentrations of Alkyl- and Aryl-OPEs.  Depth profiles and 

composition of alkylated and aryl OPEs at deep mooring sites are shown in Figure 8-4.  

Σ7Alkyl/aryl-OPE (sum of TnBP, TPhP, EHDPP, TEHP, ToCP, TmCP, and TpCP) 

ranged from 0.05 pg/L at 221 m depth at Eastern Fram Strait to 56 pg/L at 341 m 

depth in Western Fram Strait.  TnBP was dominant at all deep mooring sites except 
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the two shallowest sites in Eastern Fram Strait, where TnBP was <DL.  It was 

expected that alkyl/aryl-OPEs would be present at lower concentrations than Cl-OPEs, 

as they have been shown to be more readily degradable than Cl-OPEs by numerous 

routes, including biodegradation and hydrolysis.14,15   

Surface water concentrations of dissolved Σ7Alkyl/aryl-OPE are shown in 

Figure 8-5.  In Arctic Ocean surface water samples, Σ7Alkyl/aryl-OPE were 

comparable to concentrations in the Fram Strait deep moorings, ranging from 2.6 pg/L 

in Sach’s Harbour to 143 pg/L in East Lake.  As with deep mooring sites, TnBP was 

most abundant when it was found above detection limits. TnBP is known to be much 

more susceptible to photodegradation than Cl-OPEs, and so the degree of ice cover 

could be a factor determining its persistence in Arctic waters.14  

Again, previous studies of other regions have generally reported much greater 

concentrations of dissolved OPEs than were found in Arctic surface water or Fram 

Strait deep mooring samples.  Venier et al. measured Σ3Alky/aryl-OPEs (TnBP, TPhP, 

and TBEP) from 3,300 – 78,300 pg/L in the surface waters of the Great Lakes, with 

TBEP most abundant.16  In German Bight surface waters,  Σ3Alky/aryl-OPEs were 

only intermittently detected by Andresen et al. above detection limits at sites distant 

from shore, and ranged from <DL – 3,500 pg/L in the plume of the River Elbe.13  

Depth Profiles of OPEs.  Based on what is known about circulation within the Fram 

Strait, samples from Eastern Fram Strait, particularly from the upper water column, 

were expected to be more representative of Atlantic Ocean water masses, while 

samples from the Western Fram Strait site were expected to be more representative of 

colder, fresher water leaving the Arctic Ocean and entering the North Atlantic.  The 



 

 354 

absence of TCEP from the Eastern Fram Strait may be due to its decreased usage in 

Western Europe, resulting in lower concentrations in newer surface waters entering 

the Arctic.  

For the most part, little variation in dissolved OPE concentration was observed 

with depth.  These flat depth profiles could be due to a high degree of vertical mixing, 

or the release of particle-bound contaminants to the dissolved phase with depth.17  

Booij et al.3 observed little concentration change over a depth range of 0.1-3 km in the 

Irminger Sea when measuring vertical profiles of dissolved-phase PCBs, PAHs, and 

OCPs.  However, Sun et al.4 observed declining vertical profiles for PBDEs, as well as 

some PAHs, at the same Eastern Fram Strait site utilized here.  

Physical properties are not well constrained, so dissolved OPE concentrations 

are somewhat uncertain.  As in Castro-Jimenez et al., calculations based on physical 

properties from different estimation tools varied by 1-2 orders of magnitude.8  

However, trends with depth were found to be similar for a wide range of estimated 

chemical properties (Figure S8-2), and regardless of the set of solubility values used, 

dissolved OPE concentrations from deep moorings were generally lower than what has 

been measured in more developed regions.12,13 

 

IMPLICATIONS 

Concentrations of dissolved OPEs, especially Cl-OPEs, were generally much greater 

than concentrations of other dissolved flame retardants in the North Atlantic and 

Arctic Ocean, highlighting the importance of OPEs as an emerging contaminant of 

concern.  At some sites in this study, concentrations of dissolved OPEs were much 
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greater than those of other currently and recently used flame retardants.  Sun et al. 

measured polybrominated diphenyl ethers (PBDEs) at a deep mooring in Eastern Fram 

Strait in 2014, and found all concentrations below 1.5 pg/L.4  Concentrations of OPEs 

were also much greater than surface water concentrations of the novel halogenated 

flame retardant Dechlorane Plus (< 1 pg/L) in the Fram Strait and several novel 

brominated flame retardants (all <2 pg/L) in the European Arctic.18,19  This suggests 

that, though OPEs were originally expected to be incapable of long-range transport, 

they are in fact being delivered to remote Arctic regions, either by local aqueous 

sources or long-range waterborne or atmospheric transport.  
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Figure 8-2.  Depth profiles showing estimated dissolved concentrations of Cl/Br-
OPEs (light blue: TCEP, blue: TCIPP, dark blue: TDCIPP, bright green: TDBPP) in 
pg/L in Western and Eastern Fram Strait.  
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 Figure 8-3.  Surface water concentrations of Cl-OPEs (light blue: TCEP, light green: 
TCIPP, green: TDCIPP) in pg/L.  The size of the circle is representative of total Σ3Cl-
OPE ranging from 300 – 7,390 pg/L.  The North Lake, Resolute site is not shown 
because Σ3Cl-OPE < DL.  
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Figure 8-4.  Depth profiles showing estimated dissolved concentrations of Alkyl/aryl-
OPEs (yellow: TnBP, red: TPhP, light orange: EHDPP, brown: TEHP, maroon: TCP 
(sum of ToCP, TmCP, TpCP)) in pg/L in Western and Eastern Fram Strait.  
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Figure 8-5.  Surface water concentrations of alkyl/aryl-OPEs (yellow: TnBP, red: 
TPhP, light orange: EHDPP, brown: TEHP, maroon: TCP (sum of ToCP, TmCP, 
TpCP)) in pg/L.  The size of the circle is representative of total Σ7Alkyl/aryl-OPE 
ranging from 2.6 – 143 pg/L.  
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Table S8-1. Summary of Samples Taken from Fram Strait Deep Mooring Sites 
and Canadian Arctic Surface Water Sites   
 

Depth&(m) Deployment&
Date

Recovery&
Date

Days&
Deployed&

Water&Temperature&
'(°C)1

Salinity&
(ppt)3

Horizontal&Current&
Velocity&(cm/s)4&

Sach's&Harbour&(SH;&71.933&N,&125.325&W)
SH#1 4#5 8/12/16 9/13/16 32 NA2 31.25 #
SH#2 4#5 8/12/16 9/13/16 32 NA2 31.25 #
East&Lake,&Cape&Bounty&(EL;&74.893&N,&109.552&W)
EL#1 4#5 7/31/15 8/20/15 20 1.8 # #
EL#2 4#5 7/31/15 8/20/15 20 1.8 # #
EL#3 4#5 6/5/16 7/29/16 54 1.8 # #
EL#4 4#5 6/5/16 7/29/16 54 1.8 # #
West&Lake,&Cape&Bounty&(WL;&74.898&N,&109.602&W)
WL#1 4#5 7/30/15 8/20/15 21 1.1 # #
WL#2 4#5 6/6/16 8/7/16 62 1.1 # #
WL#3 4#5 6/6/16 8/7/16 62 1.1 # #
Barrow&Strait&(BS;&74.612&N,&95.026&W)
BS#1 4#5 5/7/15 6/10/15 34 0 29.27 #
BS#2 4#5 5/7/15 6/10/15 34 0 29.27 #
Allen&Bay&(AB;&74.765&N,&95.347&W)
AB#1 4#5 5/4/16 6/13/16 40 #2 29.27 #
AB#2 4#5 5/4/16 6/13/16 40 #2 29.27 #
North&Lake,&Resolute&(NL;&74.774,&95.092&W)
NL#1 4#5 7/27/16 10/5/16 70 2 # #
Eastern&Fram&Strait&Deep&Mooring&(EFS;&79.010&N,&4.328&E)
EFS#1 221 6/23/14 7/27/15 399 3.2±0.5 35.07±0.04 12.9±7.6
EFS#2 446 6/23/14 7/27/15 399 3.1±0.5 35.06±0.02 13.0±7.8
EFS#3 1151 6/23/14 7/27/15 399 #0.5±0.1 # 7.1±4.1
EFS#4 2513 6/23/14 7/27/15 399 #0.8±0.0 34.92±0.00 7.3±4.8
Western&Fram&Strait&Deep&Mooring&(WFS;&78.528&N,&2.764&W)
WFS#1 341 6/20/14 7/31/15 406 2.2±1.0 34.88±0.16 #
WFS#2 504 6/20/14 7/31/15 406 1.1±0.6 # 12.0±6.6
WFS#3 1184 6/20/14 7/31/15 406 #0.4±0.1 # 11.5±6.4
WFS#4 1690 6/20/14 7/31/15 406 #0.4±0.1 # 11.5±6.4
WFS#5 2439 6/20/14 7/31/15 406 #0.8±0.0 34.92±0.00 12.0±6.8

 
1, 3, 4Water temperature, and salinity for surface water sites were obtained by using any available 
measurements taken at the site over the relevant time period.  For deep moorings, water temperature, 
salinity, and current speed data from continuous temperature monitoring at similar depths to the PEs 
were averaged over the deployment period and are presented ± stdev.  2No water temperature 
measurements available; physical parameters adjusted using the temperature for Allen Bay.   
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Type LAB(BLK 800(um(FB 1600(um(FB WEST(LAKE(FB AIR(BOUNTY(FB SACHS(FB ALLEN(FB RESOLUTE(FB FB<WATER FB<AIR
Year 2016 2015 2015 2016 2016 2016 2016 2016 2015 2015
TnBP 0.968 0.003 0.024 1.389 2.039 5.241 1.616 0.717 0.144 0.369
TCEP 0.093 0.003 0.008 1.307 1.331 0.723 1.545 3.068 0.493 0.376
TCIPP 0.131 0.003 0.012 0.239 0.277 0.196 0.203 0.772 0.710 0.657
TDCIPP 0.050 0.070 0.198 6.142 2.801 0.090 2.362 1.014 0.356 0.207
TPhP 0.092 0.016 0.114 0.052 0.019 0.047 0.055 0.143 0.013 0.085
TBEP 0.955 0.254 0.081 0.000 0.000 0.000 0.000 0.000 0.000 2.249
EHDPP 0.005 0.004 0.044 0.075 0.023 0.035 0.055 0.817 0.108 0.155
TEHP 0.390 0.008 0.112 1.434 0.373 0.000 0.980 2.083 0.754 0.193
TOTP 0.173 0.011 0.071 0.236 0.074 0.029 0.173 0.137 0.043 0.075
TMTP 0.007 0.000 0.000 0.005 0.002 0.006 0.008 0.042 0.022 0.018
TPTP 0.011 0.000 0.000 0.001 0.001 0.022 0.051 0.025 0.028 0.031
TDBPP 3.044 0.083 0.306 0.000 0.000 0.000 0.000 0.000 2.190 2.287

Blanks'for'Arctic'Surface'Water'PE'ExtractionsBlank'for'Deep'Mooring'PE'Extractions

 

Table S8-2. Blank concentrations (ng/g PE).  PE blanks used in blank subtraction and censoring.  
Field blanks taken during the field sampling campaign were used for surface water samples.  In 2016, 
location-specific field blanks were available, while in 2015, a single water and a single air field blank 
were available.  No field blanks from the relevant sampling year (2014-2015) were available from the 
deep mooring field deployments, so a laboratory blank was used, as values in the lab blank were greater 
than concentrations in the only available field blanks (from a 2013-2014 sampling campaign).   
 
 
 
 
 
 

FEVI%213 FEVI%468 FEVI%1173 FEVI%2535 TD%241 TD%511 TD%1242 TD%1767 TD%2496
Percent7Loss7(DiBB) 99.9 99.7 99.6 98.7 99.9 99.8 99.8 99.8 99.8
Percent7Loss7(TetraBB) 87.4 74.4 49.3 35.6 86.7 72.1 70.1 74.3 73.8
Percent7Loss7(PentaBB) 47.3 7.4 ,38.1 ,30.1 29.4 9.2 17.7 20.1 23.1
Percent7Loss7(OCN) 5.8 ,57.0 ,57.6 ,37.4 6.9 ,4.1 ,8.4 6.4 12.3
Best%fit7δDBL7(μm) 56.7 147.9 190.3 199.3 62.5 90.3 80.2 65.3 61.7
Stdev7of7δDBL 7(μm) 21.1 172.1 245.2 190.7 22.7 43.1 38.3 21.6 16.1
Residual7Standard7Error 0.19 0.47 0.51 0.38 0.18 0.21 0.21 0.15 0.12

Table S8-3.  PRC loss data from deep mooring PEs, and best-fit values of the diffusive boundary layer 
thickness (δDBL	  (μm))
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EFS$1 EFS$2 EFS$3 EFS$4 WFS$1 WFS$2 WFS$3 WFS$4 WFS$5
TnBP 100.0 100.0 99.7 99.6 100.0 100.0 99.9 99.9 99.8
TCEP 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
TCIPP 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
TDCIPP 99.9 99.0 93.2 92.5 99.8 99.1 98.4 98.8 98.7
TPhP 99.8 97.6 88.7 87.9 99.4 97.9 96.7 97.4 97.3
TBEP 21.2 20.6 12.2 11.7 18.7 15.8 12.7 12.8 12.1
EHDPP 42.3 26.3 16.5 16.0 37.7 29.0 26.7 28.9 28.9
TEHP 0.02 0.01 0.004 0.004 0.02 0.01 0.01 0.01 0.01
ToCP 25.3 10.6 6.52 6.36 22.1 14.7 15.0 18.0 19.3
TmCP 25.0 10.5 6.44 6.29 21.8 14.6 14.8 17.8 19.1
TpCP 24.9 10.5 6.43 6.27 21.7 14.5 14.7 17.7 18.9
TDBPP 5.89 2.31 1.39 1.36 5.06 3.26 3.32 4.05 4.35

 

Table S8-4.  Percent equilibrium predicted to be reached by each OPE during deep 
mooring deployments.  
 

 

 

EL#1%&%EL#2 EL#3%&%EL#4 WL#1 WL#2%&%WL#3 SH#1%and%SH#2 AB#1%and%AB#2 NL#1 BS#1%&%BS#2
TnBP 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
TCEP 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
TCIPP 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
TDCIPP 89.1 99.7 88.7 99.8 87.1 92.0 100.0 90.5
TPhP 74.0 97.4 73.5 98.0 71.2 78.5 99.1 76.1
TBEP 84.0 99.3 84.5 99.6 85.9 91.1 99.8 88.7
EHDPP 6.14 15.7 6.06 16.8 5.68 6.97 20.1 6.51
TEHP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ToCP 1.94 5.15 1.91 5.53 1.79 2.20 6.68 2.06
TmCP 1.92 5.09 1.89 5.47 1.77 2.18 6.60 2.03
TpCP 1.92 5.09 1.89 5.47 1.77 2.18 6.60 2.03
TDBPP 0.77 2.06 0.76 2.22 0.71 0.87 2.68 0.81

 

Table S8-5.  Percent equilibrium predicted to be reached by each OPE during surface 
water deployments. 
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Table S8-6: Selected Physicochemical Properties of Target Compounds at 298 K 

CAS$
Number

log$S1$(mg/L)$3$
WSKOWWIN1

log$S2$(mg/L)$3$
WATERNT1

log$Kpew$(L/L)$
from$S1$

2

log$Kpew$(L/L)$
from$S2

$2

Vm$

(cm3/mol)3
log$Dpe$
(m2/s)4

log$Dw$

(m2/s)5

TnBP 126(73(8 0.9 2 3.9 2.8 265.5 (14.0 (9.2
TCEP 115(96(8 2.9 3.7 1.9 1.1 196.5 (13.0 (9.1
TCIPP 13674(84(5 1.7 2.9 3.2 2.0 247.9 (13.7 (9.2
TDCIPP 13674(87(8 0.2 1.5 4.8 3.5 268.4 (14.0 (9.2
TPhP 115(86(6 0 0.7 4.8 4.1 272.9 (14.1 (9.2
TBEP 78(51(3 0.3 2.8 4.6 2.2 383.2 (15.7 (9.3
EHDPP 1241(94(777 (1.2 (0.7 6.1 5.6 338.5 (15.0 (9.3
TEHP 78(42(2 (4.8 (3.6 9.7 8.5 434.6 (14.4 (9.4
ToCP 78(30(8 (1.7 (0.9 6.6 5.8 314.7 (13.6 (9.3
TmCP 563(04(2 (1.7 (0.9 6.6 5.8 321.0 (13.6 (9.3
TpCP 78(32(0 (1.7 (0.9 6.6 5.8 321.0 (13.8 (9.3
TDBPP 126(72(7 (2.1 0 7.2 5.2 292.6 (14.3 (9.3

 
1Aqueous solubility estimates were taken from Zhang et al.10  Ambient concentrations were calculated 
using two sets of solubility values, one determined from the WSKOWWIN model and the other from 
the WATERNT model.  Results using the WSKOWWIN model were identified as most appropriate and 
used in the ambient concentrations presented in the article.  2PE-water partitioning coefficients (KPEW) 
were calculated from aqueous solubility as in Lohmann 2012.9  3Molar volume was determined using 
SPARC.  4Molecular diffusivity in polyethylene was taken from Pintado-Herrera et al. when available 
(TEHP, ToCP, TmCP, and TpCP), and were otherwise calculated from Vm as in Lohmann.9  5Molecular 
diffusivity in water was calculated from Vm using the Wilke-Change equation.  
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Figure S8-1. Best-fit value for the thickness of the water boundary layer for each PE: 
Error bars represent the standard deviation calculated from the fitting function. 
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Figure S8-2.  Range of OPE concentrations estimated depending on physico-chemical 
properties chosen 
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CHAPTER 9 

 

CONCLUSION 

 

Spatial Distribution of HOCs.  The spatial distribution of gaseous PAHs, PBDEs, 

and PCMs was found to be influenced by nearby population density.  The influence of 

population centers on ambient concentrations of air pollutants is a significant 

consideration to regional and global modeling studies, as well as predictions of human 

health risk.  While previous studies demonstrated correlations between concentrations 

of HOCs in air and population within 25 km,1–3 here the effect of compound vapor 

pressure on spatial distribution was explored by using two additional metrics: the radii 

of site characterization at which maximum correlation was seen, and the maximum 

distance at which a statistically significant correlation with population remains.  

Results implied that more volatile compounds were influenced by more distant 

population, while less volatile compounds were influenced only by local population.   

Questions remain as to how concentrations of gas-phase HOCs change in response to 

differences in the levels and composition of ambient aerosol from site to site, a 

consideration that could only be addressed if particulate samples were collected 

alongside freely gaseous samples.  Gustafson et al. hypothesized that HOCs traveling 

from urban to rural areas may re-condense on background aerosol, causing 

pronounced urban-rural gradients in gas-phase HOCs.4  The spatial distribution of 

particle-bound HOCs with respect to population centers, and its interaction with 

spatial distributions of gas-phase HOCs, is an important missing piece of the puzzle.  
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Additionally, investigating the role of atmospheric lifetime differences among 

different gas-phase HOCs, and the role of aerosols in prolonging these lifetimes by 

retarding degradation,5 would add further nuance to the observations made here.  

Future work should also include exploration of how the relationship between 

population and gas-phase HOC concentrations changes seasonally depending on air 

temperature, which can greatly affect the partitioning of many HOCs between the gas- 

and particle-phase.  Additionally, this study should be repeated in other areas of the 

world and on other scales, as choice of site and resolution of data may factor in to the 

observations made.      

Diffusive Air-Water Exchange of HOCs.  PAH air-water exchange was found to 

vary by compound and deployment period, while PCMs were lost from Great Lakes 

surface waters via volatilization and PBDEs were absorbed.  More work needs to be 

done in the Great Lakes region to quantify other inputs and losses of dissolved HOCs 

in order to understand the role played by diffusive air-water exchange in the lakes, and 

to construct budgets for these toxic pollutants.  Additionally, the importance of DOC 

sorption, gas-phase photodegradation, degradation in surface waters, and settling 

processes in influencing air-water diffusive exchange, and how these processes change 

seasonally, require further investigation to better understand observations in this study.     

Total losses of PCMs were estimated in Chapter 3 by averaging volatilization 

fluxes over the coastal boundary zone, arriving at loss estimates for Ʃ5PCM of 41-138 

kg/yr for Lake Ontario and 22-74 kg-yr for Lake Erie.  Loss and input estimates of 

PCMs can also be calculated by interpolating dissolved PCM concentrations across the 

lakes using human population as an auxiliary variable (Figure 9-1), and then 
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extrapolating fluxes across the lake based on the correlation between volatilization 

fluxes of PCMs and the dissolved concentrations that drive them (Figure 9-2).  This 

approach led to similar loss estimates for Ʃ5PCM, amounting to 150±230 kg/yr from 

Lake Ontario and 120±380 kg/yr from Lake Erie.  A similar approach was taken to 

calculate total inputs of Ʃ12BDE due to absorption using data from Chapter 4.  

Gaseous Ʃ12BDE over the lakes was interpolated (Figure 9-3) and used to estimate 

absorptive fluxes using the regression with gas-phase concentrations shown in Figure 

9-4.  Further exploration of how spatial distributions of dissolved and gaseous HOCs 

influence trends in air-water exchange fluxes could be very useful in predicting the 

role played by diffusive exchange in lake budgets.     

AhR-Mediated Potency of Gaseous HOCs.  Targeted analysis of PAHs, including 

many high molecular weight PAHs that contribute significantly to the AhR-mediated 

potency of the particulate fraction (BaP, DBA, IND), explained little of gaseous 

fraction potency.  This study highlights the need for a better understanding of mixture 

potency.  AhR-mediated potency of gas-phase samples varied between locations on a 

regional scale, unlike some previous studies,6 but did not correlate very strongly with 

measured compounds.  Further work should investigate whether concentrations of 

additional substituted PAH species, such as nitro- or oxy-PAHs, help to explain the 

trends observed here.  Additionally, bioassays using cells with a luciferase reporter, or 

experiments comparing these results to potency of acid-treated extracts, could help 

shed light on the portion of AhR-mediated potency being caused by PAH-like 

compounds that can be metabolized.  
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PE Uptake of HOCs.  Results from PE uptake experiments in water suggest that we 

are capable of adequately calculating dissolved concentrations of PAHs and PCMs, 

while field-derived concentrations of dissolved OPEs may be lower than actual 

concentrations.  Uptake of emerging contaminants, especially OPEs, into PEs needs to 

be further characterized with additional measurements of diffusivity in polyethylene 

(DPE) and modeling of uptake for membrane-limited compounds to see if this helps 

explain uptake profiles seen here.  Modeling of PE concentrations over time, such as 

was used in Chapters 3 and 4 to investigate the use of PEs in air-water diffusive flux 

calculations, could be useful in helping to compare passive and active results, and find 

out how equilibration times and responses to fluctuating concentrations post-

equilibration are affected by compound properties.  Additional studies with other types 

of passives co-deployed, like recent work by Allan et al. and Abdollahi et al.,7,8 could 

be useful to help understand how to use retrospective analysis of PEs to get accurate 

ambient concentrations of OPEs.  Grab water samples could be a useful addition in 

wastewater-impacted environments, as they remove complications associated with 

active sampling (pump failure, uncertain recorded volume, break-through).  Additional 

experiments are needed to understand depuration of deuterated chlorinated OPEs.  

Inclusion of data for PEs of multiple thickness could also help to confirm whether 

equilibrium was reached during deployment, and could be used to investigate whether 

a single diffusive boundary layer thickness estimate, derived from PEs of one 

thickness, can provide accurate ambient concentrations for PEs of another thickness.    

OPEs in Arctic and North Atlantic Waters.  Finally, this work demonstrated an 

important application of PEs: obtaining time-weighted average concentrations of 
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trave-level emerging contaminants in remote regions.  This work provided the first 

estimates of dissolved OPE concentrations in Arctic Ocean waters.  Though 

concentrations are uncertain due to poorly constrained chemical properties, OPEs are 

very likely present at elevated concentrations relative to other flame retardant 

chemicals.  Additional field studies to establish levels of OPEs in ocean waters, as 

well as lab studies to help define their chemical properties and behavior with respect 

to degradation in natural waters, are needed to fully understand how these compounds 

are capable of long-range transport, and what transport pathways (atmospheric or 

waterborne transport) they are primarily being delivered by.  Elevated dissolved OPE 

concentrations measured here also highlight the importance of understanding how 

OPEs may interact with marine ecosystems as a source of organic phosphate, as was 

previously noted by Castro-Jimenez et al.9 More information about the affinity of 

OPEs for the PE matrix, and their diffusivity in PE, would again be helpful in 

constraining concentrations, as would air-water diffusive exchange calculations and 

modeling simulations based on empirical chemical properties.  
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FIGURES AND TABLES 

 
Figure 9-1.  Interpolated dissolved Σ5PCM concentrations (ng/L) across Lake Erie and 
Lake Ontario using Bayesian kriging with population within 25 km as an auxiliary 
variable.  
 
 
 
 
 

 
Figure 9-2.  Linear correlation between dissolved Σ5PCM concentrations (ng/L) and 
PCM volatilization fluxes (ng/m2/day).   
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Figure 9-3.  Interpolated gaseous Σ12BDE concentrations (pg/m3) across Lake Erie 
and Lake Ontario using Bayesian kriging.  
 
 
 
 
 

 
Figure 9-4.  Inverse linear correlation between gaseous Σ12BDE concentrations 
(pg/m3) and absorptive BDE fluxes into surface waters (pg/m2/day). 
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APPENDIX A 
 

 
LIST OF ABBREVIATIONS 

 
 

AhR  Aryl hydrocarbon receptor 
AOC  Areas of concern  
BDE  Brominated diphenyl ether 
BFRs  Brominated flame retardants 
C∞,  Concentration in polyethylene at equilibrium 
Ca  Ambient concentration 
CIESIN Center for International Earth Science Information Network 
CPE  Concentration in polyethylene 
Cw,sat(L) Sub-cooled liquid aqueous solubility  
Da  Molecular diffusivity in air  
DBL  Diffusive boundary layer 
DCM  Dichloromethane 
δDBL  Thickness of the diffusive boundary layer  
DL  Detection limit 
DOC  Dissolved organic carbon 
DPE  Molecular diffusivity in polyethylene 
Dw  Molecular diffusivity in water 
EI  Electron ionization mode 
f  Percent equilibration in PE sampler 
Fa/w  Air-water exchange flux 
GC  Gas chromatograph 
GFF  Glass fiber filter 
GFP  Green fluorescent protein 
GLIN  Great Lakes Information Network 
GRUMP Global Rural-Urban Mapping Project 
HV-AAS High volume active air sampler 
ΔHvap  Enthalpy of vaporization  
HMW PAHs High molecular weight polycyclic aromatic hydrocarbons 
HOCs  Hydrophobic organic contaminants  
Hpd  Hours post dosing 
IADN  Integrated Atmospheric Deposition Network 
IEF  Induction equivalency factor 
KAW  Air-water partitioning coefficient 
ko  Mass transfer coefficient 
KDOC  Dissolved organic carbon partitioning coefficient 
KOW  Octanol-water partitioning coefficient 
KPEA  PE-air partitioning coefficient 
KPEM  PE-matrix partitioning coefficient 
KPEW  PE-water partitioning coefficient  
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LDPE  Low-density polyethylene 
LMW PAHs Low molecular weight polycyclic aromatic hydrocarbons 
MRM  Multiple reaction monitoring 
MSD  Mass spectrometric detector 
MS/MS Tandem mass spectrometry 
NCDC  National Climate Data Center 
NDBC  National Data Buoy Center 
NHFRs Novel halogenated flame retardants 
NOAA  National Oceanic and Atmospheric Administration 
NPDES National Pollutant Discharge Elimination System 
OFRs  Organic flame retardants 
OPEs  Organophosphate esters 
PEs  Passive polyethylene samplers  
PAHs  Polycyclic aromatic hydrocarbons 
PBDEs  Polybrominated diphenyl ethers 
PCA  Principal component analysis  
PCBs  Polychlorinated biphenyls 
PCMs  Polycyclic musks 
pL  Sub-cooled liquid vapor pressure 
POPs  Persistent organic pollutants 
PRCs  Performance reference compounds  
PUF  Polyurethane foam 
RI DEM Rhode Island Department of Environmental Monitoring 
RS  Sampling rate  
RPD  Relative percent difference 
RSD  Relative standard deviation 
RSE  Residual standard error 
SI  Supplementary/Supporting Information 
SIM  Selected ion monitoring mode 
SPMD  Semi-permeable membrane device   
SVOC  Semi-volatile organic contaminant 
TRI  Toxic Release Inventory 
ΔUw  Internal energy of dissolution   
va/w  Mass transfer coefficient  
WWTF Wastewater treatment facility 
WWTP Wastewater treatment plant  
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APPENDIX B 
 

 
ADDITIONAL GREAT LAKES HOC CONCENTRATIONS FROM 2011-2014 

PASSIVE SAMPLER CAMPAIGNS IN AIR AND WATER 
 

Table B-1.  2011 Dissolved BDE Concentrations (pg/L). Mean concentrations for 
each location over Spring-Fall, 2011.  <DL concentrations replaced with 0.  

 
LOC BDE-2 BDE-8 BDE-15 BDE-30 BDE-28 BDE-49 BDE-47 BDE-100 BDE-99 BDE-154 BDE-153 BDE-183 SUM_BDE
BUF 0.00 0.00 0.00 0.00 0.00 0.05 0.53 0.12 0.28 0.02 0.00 0.00 1.002
CLE 0.00 0.00 0.00 0.00 0.00 0.15 1.30 0.21 0.60 0.03 0.02 0.00 2.296
SHF 0.00 0.00 0.00 0.00 0.22 0.10 0.58 0.15 0.37 0.09 0.05 0.09 1.651
DUN 2.44 1.62 1.78 0.42 0.43 0.20 0.43 0.24 0.23 0.14 0.12 0.12 8.173
ERI 0.00 0.00 0.00 0.00 0.00 0.27 0.81 0.12 0.36 0.00 0.00 0.00 1.565
STN357 0.00 0.00 0.00 0.00 0.00 0.51 1.69 0.38 0.93 0.12 0.08 0.00 3.703
STN880 0.00 0.00 0.00 0.00 0.00 0.09 0.80 0.14 0.51 0.00 0.00 0.00 1.544
STN452 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.928
GIB 0.00 0.00 0.00 0.00 0.00 0.23 1.18 0.24 0.71 0.00 0.00 0.00 2.355
NIA 0.00 0.00 0.00 0.00 0.00 0.40 4.72 0.90 3.05 0.08 0.07 0.00 9.223
GRI 0.00 0.00 0.00 0.00 0.00 0.24 2.22 0.40 1.22 0.08 0.07 0.06 4.287
OSW 10.23 6.66 6.95 1.83 2.08 1.54 3.57 1.08 1.80 0.70 0.66 0.71 37.823
CV 0.00 0.00 0.00 0.00 0.00 0.37 1.07 0.23 0.63 0.03 0.05 0.04 2.424
TOL 0.00 0.00 0.00 0.00 0.00 0.32 1.92 0.39 0.81 0.07 0.05 0.00 3.563  

 
 

Table B-2.  2011 Gaseous BDE Concentrations (pg/m3). Mean concentrations for each 
location over Spring-Fall, 2011.  <DL concentrations replaced with 0.  
 
LOC
BUF
CLE-EDG
CLE-GTC
CV
DUN
ERI
SHLH
PTCO
PTST
FH
GIB
GRI
NIA
OSW
ROC
SHF
TOL

BDE-2 BDE-8 BDE-15 BDE-30 BDE-28 BDE-49 BDE-47 BDE-100 BDE-99 BDE-154 BDE-153 BDE-183 SUM_BDE
0.30 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.13 0.00 0.00 0.00 0.56
1.31 0.00 0.00 0.00 0.51 0.17 2.53 0.18 0.85 0.00 0.00 0.00 5.55
0.00 1.88 2.40 0.35 0.57 0.64 4.27 0.69 2.02 0.20 0.41 0.38 13.81
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.39
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 2.03 0.41 1.26 0.00 0.00 0.53 4.23
0.00 0.00 0.00 0.00 0.00 0.00 1.59 0.30 1.00 0.00 0.00 0.00 2.89
0.00 0.00 0.00 0.00 0.00 0.20 0.69 0.00 0.00 0.00 0.00 0.00 0.89
0.25 0.44 0.40 0.24 0.21 0.16 1.26 0.26 0.57 0.26 0.19 0.38 4.63
3.21 0.00 0.00 0.00 0.19 0.23 0.38 0.12 0.22 0.03 0.07 0.12 4.56
2.82 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 2.93
1.25 0.41 0.59 0.23 0.15 0.14 1.46 0.00 0.30 0.00 0.00 0.21 4.74
0.76 0.00 0.00 0.15 0.00 0.12 0.00 0.00 0.00 0.00 0.14 0.00 1.17
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.23 0.36 0.32 0.18 0.16 0.12 0.91 0.19 0.41 0.18 0.14 0.27 3.47  
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Table B-3.  2013 Dissolved BDE Concentrations (pg/L). Mean concentrations for 
each location over Spring-Fall, 2013.  <DL concentrations replaced with 0.  
 
LOC BDE'2 BDE'8 BDE'15 BDE'30 BDE'28 BDE'49 BDE'47 BDE'100 BDE'99 BDE'154 BDE'153 BDE'183 SUM_BDE
BUF 43.48 0.00 0.39 0.21 0.17 0.18 4.24 0.67 4.26 0.56 0.46 0.13 54.74
CERI 0.00 0.00 0.00 0.00 0.00 0.32 7.64 0.00 9.38 1.41 1.51 0.32 20.58
CHB 0.00 0.00 0.79 0.00 0.00 0.00 0.00 5.58 0.00 0.00 0.00 0.00 6.37
CLE 0.00 0.00 0.00 0.00 0.00 0.11 1.26 0.00 0.69 0.03 0.01 0.12 2.23
CLLF 0.00 0.00 0.00 0.00 0.22 0.79 7.06 0.87 5.67 0.68 0.45 0.14 15.88
CONT 0.00 0.00 0.00 0.00 0.00 0.00 1.53 0.00 0.94 0.00 0.08 0.00 2.55
CV 0.00 1.16 0.55 0.00 0.47 0.19 10.10 3.73 13.62 1.60 1.45 0.13 33.01
DUN 0.00 0.00 1.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 1.43
EERI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERI 0.00 0.00 0.00 0.00 0.00 0.25 1.45 1.34 0.66 0.13 0.07 0.00 3.90
ETOR 0.00 0.00 0.83 0.00 0.21 0.00 2.17 3.98 0.69 0.09 0.15 0.00 8.12
FH 0.00 0.80 0.99 0.00 0.00 0.12 1.24 1.02 0.97 0.14 0.10 0.18 5.57
NIA 0.00 1.32 1.10 0.06 0.30 0.73 3.60 0.00 2.85 0.47 0.26 0.21 10.89
OSW 50.48 0.00 0.76 0.00 0.37 0.39 4.13 1.02 2.69 0.86 0.38 0.58 61.68
TOR 0.00 0.00 0.88 0.00 0.25 0.00 2.32 4.70 2.16 0.10 0.09 0.00 10.50
WERI 0.00 1.40 0.00 0.00 0.15 0.30 2.76 0.00 1.66 0.34 0.19 0.23 7.04
WONT 0.00 0.00 0.00 0.00 0.00 0.32 1.86 0.00 1.16 0.30 0.10 0.00 3.75
WTOR 0.00 0.00 8.49 0.00 0.51 0.37 9.96 5.93 12.42 1.56 1.27 0.00 40.52  
 
 
Table B-4.  2013 Dissolved NHFR Concentrations (pg/L). Mean concentrations for 
each location over Spring-Fall, 2013.  <DL concentrations replaced with 0.  
 

LOC
BUF
CERI
CHB
CLE
CLLF
CONT
CV
DUN
EERI
ERI
ETOR
FH
NIA
OSW
TOR
WERI
WONT
WTOR

pTBX PBB PBT PBEB
0.009 0.000 0.000 0.123
0.000 0.000 0.000 0.108
0.000 0.000 0.000 0.037
0.000 1.008 0.000 0.009
0.000 0.710 0.000 0.338
0.000 0.000 0.335 0.000
0.000 0.826 0.000 0.227
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.172
0.000 0.000 0.000 0.000
0.024 0.000 0.000 0.048
0.017 0.837 0.000 0.115
0.000 1.843 0.000 0.394
0.000 2.843 0.000 0.000
0.022 1.147 0.000 0.163
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.120

HBB HCDBCO BTBPE SDP ADP
0.067 0.000 0.133 0.045 0.068
0.417 0.000 0.000 0.000 0.000
0.000 10.220 0.000 0.000 0.000
0.071 0.000 0.000 0.099 0.180
0.721 0.602 0.000 0.000 0.408
0.000 2.020 0.000 0.000 0.000
0.000 0.000 0.000 0.293 0.117
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.167 0.000 0.000 0.000 0.000
0.000 0.931 0.000 0.000 0.000
0.658 0.000 0.000 0.108 0.000
0.000 0.000 0.000 0.112 0.114
0.331 0.000 1.434 0.000 0.000
0.000 0.924 0.000 0.000 0.000
0.000 0.000 0.146 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000  
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Table B-4.  2013 Dissolved PAH Concentrations (ng/L). Mean concentrations for 
each location over Spring-Fall, 2013.  <DL concentrations replaced with 0.  
 
LOC
BUF
CERI
CHB
CLE
CLLF
CONT
CV
DUN
EERI
ERI
ETOR
FH
NIA
OSW
TOR
WERI
WONT
WTOR

NAP 2MENAP 1MENAP BIP ACY ACE DBF FLR MEFLR DBT PHN ANT MEPHN FLRA PYR MEPYR RET BAA CHRY MEBAA DIMEBAA BBF BEP BAP PER IND DBA BGHIP COR SUM_PAH
0.00 0.00 0.00 0.16 0.97 1.41 0.41 1.39 9.33 0.47 7.06 3.90 5.82 5.30 4.83 0.12 1.73 0.28 0.65 0.17 0.23 0.28 0.12 0.05 0.07 0.02 0.00 0.02 0.00 44.79
21.38 20.88 10.21 1.07 0.66 0.99 0.73 0.58 0.00 0.07 1.26 0.06 0.27 0.62 1.01 0.10 0.01 0.01 0.07 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 60.08
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.17 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32
0.00 1.05 0.98 0.26 0.54 0.21 0.73 0.82 3.49 0.15 2.66 0.22 0.84 1.43 0.70 0.28 0.10 0.04 0.15 0.04 0.06 0.08 0.02 0.01 0.01 0.01 0.00 0.00 0.00 14.90
0.00 0.00 0.16 0.00 2.43 1.13 0.37 0.84 1.97 0.26 6.36 2.06 2.99 7.61 10.69 5.05 1.89 0.82 2.06 0.82 1.34 1.21 0.99 0.45 0.11 0.21 0.06 0.26 0.02 52.19
0.00 0.00 0.00 0.00 0.29 0.52 0.00 0.21 0.00 0.05 1.21 0.08 0.39 0.89 0.90 0.22 0.02 0.02 0.12 0.03 0.06 0.08 0.04 0.01 0.01 0.01 0.00 0.01 0.00 5.16
3.11 0.00 0.16 0.05 0.37 0.06 0.17 0.20 1.06 0.01 1.05 0.18 0.56 0.87 0.57 0.30 0.11 0.05 0.11 0.03 0.08 0.07 0.03 0.01 0.01 0.01 0.00 0.01 0.00 9.24
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 1.76 0.03 0.00 0.07 0.68 0.59 0.17 0.10 0.01 0.02 0.10 0.02 0.04 0.04 0.01 0.00 0.00 0.01 0.00 0.00 0.00 3.83
0.00 1.01 0.64 0.32 0.12 0.38 0.45 0.36 0.87 0.02 0.63 0.00 0.16 0.23 0.42 0.03 0.01 0.00 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.67
61.80 0.00 0.00 0.00 1.22 0.30 0.00 0.18 0.00 0.08 1.14 0.41 1.00 3.36 1.79 0.03 0.78 0.06 0.45 0.09 0.15 0.23 0.13 0.03 0.03 0.03 0.01 0.03 0.00 73.33
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.24 0.00 0.05 0.01 0.00 0.06 0.01 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55
0.00 0.00 0.00 0.00 0.53 0.00 0.41 0.61 1.08 0.14 2.31 0.19 1.14 1.13 0.71 0.02 0.37 0.04 0.23 0.07 0.21 0.07 0.05 0.01 0.02 0.01 0.00 0.01 0.00 9.37
0.00 1.07 0.57 0.29 0.33 0.72 0.39 0.74 2.29 0.13 3.51 0.93 1.48 2.26 1.35 0.50 0.14 0.09 0.21 0.07 0.12 0.15 0.06 0.02 0.03 0.02 0.00 0.02 0.00 17.47
4.73 0.84 0.38 0.40 0.41 0.33 0.38 0.80 3.98 0.09 2.05 0.32 1.04 2.25 1.19 0.61 0.03 0.09 0.24 0.05 0.05 0.13 0.04 0.01 0.02 0.02 0.00 0.01 0.00 20.53
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.29 0.00 0.07 0.01 0.00 0.06 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60
0.00 3.56 2.06 0.31 0.63 0.76 0.67 0.71 1.41 0.05 0.64 0.13 0.50 1.13 0.92 0.38 0.03 0.02 0.18 0.06 0.10 0.08 0.05 0.01 0.01 0.01 0.00 0.01 0.00 14.42
9.28 7.89 2.36 0.21 0.77 0.00 0.29 0.29 0.96 0.04 1.01 0.33 0.59 1.39 0.94 0.42 0.03 0.02 0.20 0.07 0.15 0.10 0.07 0.01 0.03 0.01 0.00 0.02 0.00 27.50
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.56 0.28 0.19 0.01 0.03 0.12 0.04 0.05 0.07 0.02 0.01 0.01 0.01 0.00 0.01 0.00 1.62   

 
 
 
 
 
Table B-5.  2013 Gaseous BDE Concentrations (pg/m3). Mean concentrations for each 
location over Spring-Fall, 2013.  <DL concentrations replaced with 0.  
 
LOC BDE'2 BDE'8 BDE'15 BDE'30 BDE'28 BDE'49 BDE'47 BDE'100 BDE'99 BDE'154 BDE'153 BDE'183 SUM_BDE
BUF 0.00 3.69 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.18 4.02
CHB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
CLD 0.00 2.64 4.14 0.00 0.00 0.02 0.47 0.33 0.29 0.05 0.01 0.00 7.95
CLE 0.00 14.23 0.65 0.00 0.27 0.06 0.67 0.00 0.22 0.00 0.00 0.05 16.16
CLHA 0.00 0.52 1.75 0.00 0.42 0.07 0.68 0.00 0.21 0.06 0.03 0.05 3.79
CLLF 0.00 3.32 0.85 0.00 0.13 0.05 0.46 0.11 0.14 0.01 0.01 0.02 5.10
CLTI 0.00 0.00 9.61 0.00 0.23 0.05 0.65 0.60 0.19 0.10 0.02 0.00 11.44
CUYA 0.00 2.72 0.00 0.00 0.06 0.00 0.38 3.15 0.08 0.00 0.00 0.15 6.55
CV 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.64 0.00 0.18 0.70 0.15 2.00
DUN 0.00 5.46 0.00 0.00 2.97 0.00 0.00 3.96 0.00 0.00 0.00 27.38 39.78
EERI 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.02 0.01 0.06 1.12
ERI 0.00 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 1.23
ETOR 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.01 0.03 0.10
FH 0.00 1.99 0.81 0.00 0.00 0.00 0.00 1.02 0.00 0.00 0.00 0.01 3.83
GRI 0.00 0.00 5.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.50
HB 0.00 6.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 7.10
KENT 0.00 11.56 1.13 0.00 0.40 0.06 1.40 0.00 0.41 0.06 0.00 0.11 15.12
LEW 0.00 12.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 13.03
NIA 0.00 12.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.12 12.51
OSW 0.00 1.05 0.00 0.00 0.07 0.00 0.17 2.65 0.00 0.00 0.00 0.55 4.49
PIB 0.00 2.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.45 2.97
ROC 0.00 0.65 0.00 0.00 0.07 0.00 1.27 0.00 0.00 0.00 0.00 0.39 2.38
SAN 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.08 0.71
TOR 0.00 0.00 0.00 0.00 0.27 0.00 0.21 0.00 0.11 0.00 0.02 0.00 0.61
UH 0.00 10.02 3.19 0.00 0.36 0.00 0.49 0.00 0.00 0.00 0.00 0.45 14.50
WERI 0.00 12.65 0.00 0.00 0.00 0.03 0.18 0.00 0.05 0.02 0.00 0.01 12.94
WTOR 0.00 0.00 0.00 0.00 0.08 0.02 0.24 0.00 0.06 0.00 0.01 0.02 0.43  
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Table B-6.  2013 Gaseous NHFR Concentrations (pg/m3). Mean concentrations for 
each location over Spring-Fall, 2013.  <DL concentrations replaced with 0.  

 
LOC
BUF
CHB
CLD
CLE
CLHA
CLLF
CLTI
CUYA
CV
DUN
EERI
ERI
ETOR
FH
GRI
HB
KENT
LEW
NIA
OSW
PIB
ROC
SAN
TOR
UH
WERI
WTOR

pTBX PBB PBT PBEB
0.00 0.01 0.00 0.00
0.00 0.00 0.00 0.00
0.15 0.03 0.00 0.06
0.03 0.03 0.00 0.06
0.04 0.02 0.00 0.04
0.00 0.01 0.00 0.06
0.00 0.03 0.00 0.02
0.05 0.04 0.00 0.00
0.00 0.00 0.00 0.00
27.99 0.00 0.00 20.51
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.01 0.00 0.00
0.00 0.03 0.00 0.00
0.00 0.02 0.00 0.02
0.00 0.00 0.00 0.00
0.06 0.08 0.10 0.06
0.00 0.01 0.00 0.00
0.00 0.07 0.00 0.00
0.05 0.00 0.00 0.01
0.00 0.00 0.00 0.02
0.00 0.00 0.00 0.00
0.00 0.02 0.00 0.04
0.00 0.02 0.00 0.01
0.05 0.02 0.00 0.07
0.00 0.00 0.00 0.00
0.00 0.01 0.00 0.00

HBB HCDBCO BTBPE SDP ADP
0.02 0.00 0.00 0.00 0.68
0.00 0.00 0.00 0.02 0.00
0.00 0.00 0.00 0.00 0.04
0.00 0.00 0.00 0.12 0.00
0.00 0.00 0.00 0.04 0.06
0.01 1.81 0.04 0.03 0.03
0.00 0.00 0.00 0.03 0.11
0.00 0.00 0.00 0.00 0.09
0.00 0.00 0.00 0.00 0.47
0.00 0.00 0.00 0.00 0.16
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.13 0.14
0.00 0.00 0.13 0.00 0.12
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.03 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.24 0.93
0.01 0.00 0.00 0.07 0.07
0.00 0.00 0.00 0.00 0.07
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.05
0.00 0.00 0.00 0.00 0.00
0.07 0.00 0.00 0.03 0.05
0.00 0.00 0.00 0.09 0.00
0.00 0.00 0.00 0.03 0.00
0.01 0.00 0.00 0.04 0.08  

 
 
Table B-7  2013 Gaseous PAH Concentrations (ng/m3). Mean concentrations for each 
location over Spring-Fall, 2013.  <DL concentrations replaced with 0.  
 
LOC
BUF
CHB
CLD
CLE
CLHA
CLLF
CLTI
CUYA
CV
DUN
EERI
ERI
ETOR
FH
GRI
HB
KENT
LEW
NIA
OSW
PIB
ROC
SAN
TOR
UH
WERI
WTOR

NAP 2MENAP 1MENAP BIP ACY ACE DBF FLR MEFLR DBT PHN ANT MEPHN FLRA PYR MEPYR RET BAA CHRY MEBAA DIMEBAA BBF BEP BAP PER IND DBA BGHIP COR SUM_PAH
0.00 3.29 3.03 0.61 6.60 1.22 0.56 1.74 1.56 0.10 3.99 0.12 0.40 1.00 0.39 0.06 0.02 0.00 0.02 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.77
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.06 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35
23.57 12.54 8.62 0.80 1.53 10.32 2.09 7.18 2.77 0.47 18.75 0.69 2.48 5.03 1.79 0.19 0.02 0.02 0.04 0.02 0.04 0.03 0.01 0.00 0.00 0.01 0.00 0.00 0.00 99.02
0.00 0.00 0.55 0.08 0.56 3.76 1.22 4.06 2.60 0.31 11.34 0.21 1.32 4.49 1.93 0.18 0.03 0.01 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.73
0.00 6.60 3.41 0.28 1.11 2.57 0.78 2.95 3.16 0.17 9.88 0.25 1.22 1.85 0.31 0.03 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34.62
14.99 4.23 2.72 0.29 1.00 5.83 1.25 5.37 2.80 0.33 11.62 0.20 1.17 2.21 0.64 0.07 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 54.77
0.00 11.11 5.59 0.93 1.26 14.40 2.44 6.43 3.65 0.21 9.20 0.31 0.96 0.77 0.11 0.02 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.43
26.17 36.81 27.76 0.46 0.92 3.81 1.31 4.06 1.60 0.11 4.18 0.06 0.34 0.67 0.20 0.03 0.02 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 108.55
0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.29 1.68 0.03 0.65 0.02 0.20 0.28 0.12 0.04 0.02 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.44
0.00 0.00 46.46 0.14 0.26 2.45 0.38 1.67 1.44 0.10 5.02 0.07 0.53 2.99 1.01 0.08 0.01 0.01 0.04 0.01 0.01 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 62.71
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 2.29 0.02 0.45 0.00 0.08 0.28 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.43
262.45 0.00 0.00 0.00 0.00 0.25 0.18 0.67 1.01 0.04 1.48 0.01 0.16 0.32 0.11 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 266.73
0.00 0.00 0.00 0.00 0.40 0.41 0.00 0.49 0.57 0.08 1.24 0.03 0.16 0.41 0.14 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.96
0.00 0.00 0.00 0.15 1.05 0.40 0.64 1.60 2.00 0.15 4.78 0.19 0.86 1.88 0.77 0.10 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.64
0.00 0.00 0.00 0.00 0.00 0.50 0.70 1.89 2.78 0.15 5.89 0.33 0.58 1.13 0.50 0.05 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.54
0.00 3.25 3.53 0.30 0.94 1.75 0.82 2.08 2.49 0.13 5.73 0.09 0.88 1.64 0.71 0.21 0.06 0.02 0.07 0.03 0.06 0.07 0.03 0.02 0.00 0.03 0.00 0.02 0.01 24.99
0.00 4.35 4.08 0.11 0.50 3.94 1.19 4.42 2.97 0.32 11.16 0.14 1.12 2.92 0.82 0.10 0.05 0.01 0.03 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.27
0.00 3.45 1.52 0.00 0.00 0.90 0.45 1.03 2.11 0.06 2.52 0.04 0.21 0.37 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.74
52.68 23.93 15.30 0.56 0.79 1.50 0.55 1.69 2.24 0.08 3.15 0.12 0.49 0.70 0.27 0.04 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 104.13
136.78 5.21 4.34 0.22 0.00 3.03 0.89 4.15 2.32 0.34 12.34 0.57 0.97 2.89 1.21 0.15 0.06 0.01 0.04 0.01 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 175.57
110.62 1.15 0.86 0.16 0.13 0.20 0.30 0.76 0.89 0.06 1.95 0.01 0.31 0.66 0.22 0.05 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 118.40
68.32 10.86 6.79 0.76 0.60 4.69 1.13 4.20 2.16 0.40 14.41 0.57 1.31 5.59 2.73 0.48 0.09 0.04 0.12 0.02 0.03 0.04 0.02 0.01 0.00 0.01 0.00 0.01 0.00 125.39
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.09 3.87 0.00 0.61 2.00 0.75 0.07 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 8.20
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.65 0.08 0.89 0.02 0.12 0.39 0.14 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.80
0.00 2.13 1.74 0.13 0.88 1.94 0.85 3.62 3.38 0.45 17.61 0.05 1.60 4.73 1.63 0.18 0.03 0.02 0.05 0.01 0.02 0.02 0.01 0.01 0.00 0.01 0.00 0.01 0.00 41.09
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.13 0.05 1.16 0.00 0.12 0.58 0.16 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.24
0.00 0.00 0.00 0.00 0.78 0.85 0.00 0.93 0.77 0.10 0.85 0.03 0.14 0.56 0.21 0.03 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.27  
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