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ABSTRACT

Thousands of hydrophobic organic contaminants (HOCs) are present in air and
water worldwide, yet we know little about how these chemicals’ concentrations vary
spatially and temporally, or what biological effects they have in concert. The first four
studies described in this dissertation present data from a sampling campaign in which
passive polyethylene samplers (PEs) deployed throughout the lower Great Lakes
region (Lake Erie and Lake Ontario) from 2011 to 2014. Results were used to deduce
air-water fluxes and analyze spatial trends of the truly gaseous and dissolved fraction
of three distinct groups of HOCs: polycyclic aromatic hydrocarbons (PAHs),
polycyclic musks (PCMs), and organic flame retardants (OFRs), with the goal of
better understanding how sources and physico-chemical properties determine the
environmental transport and spatial distribution of these HOCs. The specific
objectives of these studies were to determine whether gaseous and dissolved HOCs
exhibited positive correlation with regional population density within 25 km of each
site in the lower Great Lakes region, investigate whether diffusive air-water exchange
of HOCs was primarily leading to volatilization from, or absorption into, the lakes’
surface waters, and investigate health risks of ambient urban air by measuring
aromatic hydrocarbon receptor (AhR)-mediated potency of the truly gaseous mixture
of HOCs accumulated in PEs deployed in air on the Lake Erie shoreline near
Cleveland (OH). Results showed that the radius at which strongest correlation
between gaseous HOC concentration and human population was observed depended
on vapor pressure, and a relationship between the maximum distance where significant

correlation occurred and compound vapor pressure is presented for amassed PAH,



PBDE, and PCM data. Air-water exchange calculations based on simultaneously
deployed air and water PEs indicated that diffusive exchange of PAHs was variable
based on compound and season. PCMs were found to be volatilizing from the lakes’
surface waters, suggesting that Lake Erie and Lake Ontario were acting as secondary
sources of PCMs, while PBDEs were absorbed into surface waters. Bioassay
experiments performed on PE extracts showed that <30% of AhR-mediated potency
for gaseous air extracts was explained by target compounds measured via chemical
analysis, suggesting that targeted analysis may underestimate health risks posed by
gas-phase ambient air.

The fifth and sixth studies described in this dissertation focused on measuring
uptake of emerging and legacy HOCs into PEs to inform future calculation of ambient
air and water concentrations from PE measurements. PE uptake profiles over 21-day
deployments were used to determine whether target compounds reached equilibrium
during deployment, and PE-water and PE-air partitioning coefficients (Kpew and Kpga)
were calculated. Kpgw values for PAHs agreed fairly well with empirical values from
literature in most cases, while values for PCMs and OPEs were generally lower than
predicted based on chemical properties, suggesting that PE-derived concentrations for
these compounds may be underestimated when using this approach.

The seventh and final study included in this dissertation presents
concentrations of dissolved organophosphate esters (OPEs), a group of emerging
OFRs with atypical physico-chemical properties, derived from PEs deployed in the
North Atlantic deep ocean from 2014-2015 and in Canadian Arctic surface waters

during the summers of 2015 and 2016 to investigate long-range transport of OPEs to



remote aquatic environments. For the first time, estimated concentrations of OPEs in
polar ocean surface water and remote ocean deep water are reported. The greatest
concentrations of OPEs were measured in Canadian Arctic surface waters, with the
chlorinated OPE species most abundant. OPEs exhibited unexpectedly flat vertical
profiles in the North Atlantic Fram Strait, possibly due to a high degree of mixing
and/or release of dissolved-phase OPEs from sinking particles. This study
demonstrated that OPEs are widespread, even in remote environments, and that
concentrations are much greater than those of other OFRs in the Arctic, suggesting

that OPEs should be a priority for further study.



ACKNOWLEDGMENTS

Funding for this dissertation research was provided primarily by a U.S. EPA
Great Lakes Restoration Initiative grant to Rainer Lohmann (GLAS #00E00597-0),
along with a University of Rhode Island Graduate Fellowship (2016-2017) to Carrie
McDonough and a Hudson River Foundation Mark B. Bain Graduate Fellowship
(2016-2017) to Carrie McDonough.

Firstly, I want to thank my family for their support and love through the ups
and downs of the past five years, especially my wonderfully strong and intelligent
mother, and my sisters Rose and Elise for always being there when I need a pick-me-
up, and Uncle John and Aunt Kate for offering me a home away from home.

I would like to thank my advisor Rainer Lohmann for everything he has done
and continues to do to support me on my path to an academic career. Rainer has done
an excellent job as an advisor, encouraging me to become an independent and
confident researcher. I am very lucky that Rainer provided not only funding for my
research, but also guidance on research directions and many valuable networking
opportunities and recommendation letters, without which I am sure I would not have
such an exciting postdoctoral position lined up.

I would also like to thank my core committee members Gavino Puggioni and
Brian Heikes, who are both excellent teachers and always willing to take time to
answer questions, as well as Brice Loose for his input and time, and Angela Slitt for
helping me to pursue my interest in environmental toxicology. I thank Mark Hahn and
Diana Franks at Woods Hole Oceanographic Institution for their collaboration and

input during my foray into bioassay experiments, Peter August for GIS support and



guidance, Caroline Gottschalk Druschke and Judith Swift for helping me to pursue
public engagement projects, and David Smith for his advice and encouragement. 1
also thank Soni Pradhanang for serving on my defense committee.

Thank you to Paul Helm, Derek Muir, Thomas Soltwedel, Eduard Bauerfiend,
and all of the workers at Environment Canada, Ontario Ministry of the Environment,
Alfred Wegener Institute, South Kingstown Regional Wastewater Treatment Facility,
and Rhode Island Department of Environmental Monitoring, as well as all of the
citizen scientist volunteers throughout the Great Lakes region who made the extensive
field work involved in this project possible.

I am grateful to the former and current members of the Lohmann Lab group,
including Zoe Ruge, Kari St. Laurent, Mohammed Khairy, Dave Adelman, Erin
Markham, Michael Vansco, and Erik Dixon Anderson for their knowledge and help. I
also thank my current officemates Rachel Miller and Anna Robuck, for being
excellent, fun people.

Last, but certainly not least, I thank Dylan Eberle for his support and love, and
for being a source of calmness and pragmatism when things get crazy. Thanks also to
my awesome BFF Harold Cooper for helping me function, reminding me that things
other than science exist, and for insights on the size and location of Alaska and
Hawaii, and to all of my extraordinary friends from coast to coast (Bill, Anjuli,
Marissa, Tony, Matt G., Dalis, Zach, Okie, Justen, Julia, Mali, Cha, Ryan, Matt H.,
Catherine, Rosalie, Chris B., Christopher B., and on and on...) — thank you all for
making life interesting and musical. I also thank Turtle for being slow and steady, and

Tiny Grimes for ten years of furry companionship.

vi



DEDICATION
This dissertation is dedicated to my wonderful father, Dennis P. McDonough,
who always believed my sisters and I were capable of amazing things. He taught us to
dream big, but never take ourselves too seriously, and he was always so proud of

everything we accomplished.

vil



PREFACE

This dissertation is written and organized in the manuscript format according
to URI Graduate School guidelines for dissertation preparation. It is a compilation of
7 manuscripts, 3 of which have been published. The first manuscript (Chapter 2) was
published in Environmental Science & Technology in June 2014 with authors C.
McDonough, M. Khairy, D. Muir, and R. Lohmann. The second manuscript (Chapter
3) was published in Environmental Science & Technology in August 2016 with
authors C. McDonough, G. Puggioni, P. Helm, D. Muir, and R. Lohmann. The third
manuscript (Chapter 4) was published in Environmental Science & Technology in
September 2016 with authors C. McDonough, P. Helm, D. Muir, G. Puggioni, and R.
Lohmann. The fourth manuscript is formatted for submission to Environmental
Health Perspectives, the fifth manuscript is formatted for submission to
Environmental Science & Technology Letters, the sixth manuscript is formatted for
submission to Chemosphere, and the seventh manuscript is formatted for submission
to Environmental Science & Technology. Appendix A contains a list of acronyms
used throughout the dissertation. Appendix B is a compilation of Great Lakes passive
sampling campaign data for additional sampling years not presented in the

manuscripts.

viil



TABLE OF CONTENTS

ABSTRACT ...uiiiiitiicninniinniinnesssisssnesssisssessssesssessssssssssssssssssssssssssssssssssssssssssssssss ii
ACKNOWLEDGMENTS ....uuuiiiiiiiiinnnicsniinnisssinssisssesssisssessssssssssssssssssssssssssssssassss \
DEDICATION .uuiiitiiiiiiniinniisissnisssnssssessssssssessssssssssssssssssssssssssssssasssssssssssssssssasssss vii
PREFACE ...ooiiciiiintinnneecnnnecsnnecssnnecssssecsssssssssssssssssssssssssssssssssasssssssssssssssssssssses viii
TABLE OF CONTENTS ....uuuiiiiitiiiinninnnnissicsncsssissssssssssssssssssssssssssssssssssesssssssssess ix
LIST OF TABLES ....ciitiitintinneinntsnnississsnssssisssssssssssssssssssssssssssssssssssssssssssssess xi
LIST OF FIGURES. .......uuiitiiiiitiitnntinsticsntisssnsssessssissssssssssssesssssssssssssssssesssss Xvi
CHAPTER L...uuouiiiiiiiiniinennninsnnissessssssssissssssssssssessssssssssssssssssssssssssasssssssssssssssssssssss 1
INTRODUCTION .uuccouiiiruiiseinnecsensssncsessssesssnssssssssasssssssssssssssssssssassssssssssssssssssssssasssss 1
CHAPTER 2...uuueitiiiiininneinnnnnsnisssesssessssssssesssesssssssssssssssssssssssssssssssssssssssssssssssssass 15
SIGNIFICANCE OF POPULATION CENTERS AS SOURCES OF GASEOUS

AND DISSOLVED PAHS IN THE LOWER GREAT LAKES.........eneeennen. 15
CHAPTER 3...uutiiiiitiitinnnnsnisnesssissssisssessssssssesssssssssssssssssssssssssssssssssssssssssssssss 82

POLYCYCLIC MUSKS IN THE AIR AND WATER OF THE LOWER GREAT
LAKES: SPATIAL DISTRIBUTION AND VOLATILIZATION FROM

SURFACE WATERS ..uuutininrtintenntnnannssissnessissssssssssssssssssssssssssssssssssssssasssssssss 82
CHAPTER 4.....rrenrrnnrnneensnennnissannssesssssssssssasssssssssssssssssasssssssssssssssssssssssssssasssns 143
SPATIAL DISTRIBUTION AND AIR-WATER EXCHANGE OF ORGANIC

FLAME RETARDANTS IN THE LOWER GREAT LAKES ........ccceeuveevuerennnee 143
CHAPTER S..ouuereerrnninnennnnesnissansssssssnssssssssnssssssssssssssssasssssssssssssssssasssssssssssssns 223

INVESTIGATING ARYL HYDROCARBON-MEDIATED POTENCY OF
GAS-PHASE AMBIENT AIR USING IN VITRO BIOASSAYS AND PASSIVE
SAMPLING cuccoueetinteninsnensnisiessenssessssssnsssessasssesssessasssesssessassssssasssassssssssssasssassassssssss 223

CHAPTER 6.auueeeenneenrinninnnnnsnnnnnissanssssssssnsssssssanssssssssssssssssasssssssssssssssssasssssssssssssns 264

PARTITIONING OF DISSOLVED ORGANIC FLAME RETARDANTS AND
SYNTHETIC FRAGRANCES FROM WASTEWATER INTO
POLYETHYLENE PASSIVE SAMPLERS ......iiiiiiininnneennsnnecssneecssneecsnnns 264

CHAPTER 7 .uaoerentrentinnnnnnnnssnnnsnnssanssssssssssssssssanssssssssssssssssssssssssssssssssssasssssssssssssns 306

DIFFUSIVE UPTAKE OF GASEOUS HYDROPHOBIC ORGANIC
CONTAMINANTS FROM AMBIENT AIR INTO POLYETHYLENE PASSIVE
SAMPLERS . ...cotrretentinntenannnnentissnsssssssssssssnsssssssssssssssssssssssssssssasssssssssssssssssssss 306

CHAPTER 8...eeereeiennnnnnenteesnnssansssssssnsssssssanssssssssssssssssassssssssssssssssssssssssssssssans 342

iX



DISSOLVED ORGANOPHOSPHATE ESTERS IN THE NORTH ATLANTIC

OCEAN AND ARCTIC OCEAN . ....uutirrtensnnnsannssnessanssssssssnssssssssssssssssssssssssssssssns 342
CHAPTER 9..ouereienninntenteensnssansssssssssssssssasssssssssnsssssssasssssssssssssssssssssssssssssssns 368
CONCLUSION couuciniieininsannssnesssnsssssssasssssssssssssssssasssssssssssssssssasssssssssssssssssasssssssssssssss 368
APPENDIX A ...conurieeirnninnnnnnnnnsnessnnssssssssnssssssssssssssssassssssssssssssssssssssassssssssssssassssassss 376
LIST OF ABBREVIATIONS ...couuiiniinntinsnensnnnsnnssnnssnssssssssnssssssssssssssssssssssssssssssns 376
APPENDIX B ..uooeeierirnninnennnnnsnenssnssnssssnssssssssnsssssssanssssssssssssssssssssssssssssssssssassssassss 378
ADDITIONAL GREAT LAKES HOC CONCENTRATIONS FROM 2011-2014

PASSIVE SAMPLER CAMPAIGNS IN AIR AND WATER.......eeenseecnnnee 378



LIST OF TABLES

Table 2-1. Average gaseous and dissolved PAH concentrations in Lake Erie and Lake
L0 231721 o 10 TSRO P RO RRTR 46

Table S2-1. Lake Erie Monitoring Summary for Air and Water Passive Samplers,

0 PSSR URR 56

Table S2-3. Over-Land and Over-Water Trajectories Arriving at Coastal Sites......... 59
Table S2-4. Major Rivers within 10 km of Aqueous Sampling Sites.................... 59
Table S2-5. Percent Recovery for Internal Standard Spikes..........cccceevvieveieennnennee. 62
Table S2-6. Detection Limits and Percent Detection.............cooceeviiiiiiniiiniiniceneene 62
Table S2-7. Physico-chemical Parameters Used in This Study...........ccoceeviiniinnenn 63

Table S2-8. Characterization of Sampling Sites Using Population Data Extracted

FTOM GRUMPY L.ttt e 64
Table S2-9. AtmoSpheric PAHS (DZ/M>) ... 65
Table S2-10. AquUeous PAHS (PE/L) .vvveeiiiiiieeeeeeeee et 68
Table S2-11. Mass Transfer Coefficient..........coceoviiiiiiiiiiiieee 74
Table S2-12. FIUX RatIO...cc.coiuiiiieiieiieieeieee e 75
Table S2-13. Net FIUX.....cciiiiiiiieeee e e 77
Table 3-1. Average Dissolved PCMs (pg/L) Summarized Regionally...................... 108
Table 3-2. Average Gaseous PCMs (pg/m’) Grouped By Site Type.........ocovevvenen... 108

Table 3-3. Comparison of Simulated Air-Water Exchange Fluxes to PE-Derived and

Grab Sample-Derived Exchange FIUXEs........ccccoooiiiiiiiiiiieciccec e 112

xi



Table S3-1: Deployment Summary for 2011-2012 Air and Water PEs..................... 124

Table S3-2. Buoys Used for Temperature and Wind Data..............ccccveevciveenieennnnnn. 127
Table S3-3. Average Matrix Spike RECOVETIES......cccvieriiiieriieeiieeiee e 128
Table S3-4. Relative Percent Difference (RPD) between Duplicate Samples.........128
Table S3-5. Mean Blank Concentrations and Detection Limits..........cccccoeceenienne. 128
Table S3-6. Typical Detection Limits per Volume Air or Water........................ 129
Table S3-7. Percent Detection of PCMs in Air and Water...........ccoccceveenieineennenne. 129
Table S3-8. Selected and Derived Physico-Chemical Properties............cccceeveeenneen. 130
Table S3-9. Average Estimated Percent Equilibration............ccccccoeeveieniiiinieenninnns 131
Tabls S3-10. PCM Fugacity Ratios. ......cccccvveeiiiieiiiecieeeie e 135
Table S3-11. PCM Air-Water Exchange Mass Transfer Coefficients...................... 136
Table S3-12. PCM Air-Water Exchange FIUXes.........cccccvevviiiiniiiiiniieciiecieecee 137
Table 4-1. Average Dissolved PBDEs (pg/L) + Standard Deviation........................ 170
Table 4-2. Average Gaseous PBDEs (pg/m’) + Standard Deviation. ...................... 170
Table S4-1. Deployment SUMMATY.........cccceciieeriieeiiieeieeeiee e eereeesreeeeaeeeeeee e 183
Table S4-2. Buoys Used for Temperature and Wind Data..........c..cccceevevveenreennnenn. 186
Table S4-3. Average MatriX SPIKES.......cccviieriiieriieeiiie et e 187
Table S4-4. Mean Blank Concentration and Detection Limits...........cccoceenieeiennnee. 188
Table S4-5. Typical Detection Limits per Volume Air or Water........cccceecueeneennne 189
Table S4-6. Percent Detection in Air and Water PEs.........ccccoooiiiiiiiiiniin. 190
Table S4-7. Selected and Derived Physico-Chemical Properties............cccceeveeenneenn. 191
Table S4-8. Mean Percent EQuilibrium...........cccooooiieiiiiiniiieieeeeeee e, 192
Table S4-9. Dissolved Organic Flame Retardant Concentrations...........cccccceveenueeene 193

xii



Table S4-10. Gaseous Organic Flame Retardant Concentrations.............cccceeeeuveennn. 197

Table S4-11. RPDs for Simulate and PE- or Grab Sample-Derived F,y................... 205
Table S4-12. Best-fit [DOC] from Active-Passive Comparison.............ccceeervveennnee. 208
Table S4-13. BDE Fugacity Ratios.........cccceovviiiiiiiiiiieeiieciceeeeeee e 209
Table S4-14. Mean Summer PAH Concentrations in Ail..........cccceeeveeeeveeenveesenneenns 210
Table S4-15. Mean Summer PAH Concentrations in Water............cccceeveerieennenne. 211
Table S4-16. Average Wind Direction During Deployments............ccccceeeevveerneennns 215
Table S4-17. Predicted Average Wind Direction at Sampling Sites...........c.ccuue... 218
Table 5-1. Sampling Site CharacteriStiCs.......cccuvervireerieeeiieeeiieeeiieeeiee e e 247
Table 5-2. Relative Potency and Maximum Efficacy of PE Extracts...................... 251

Table 5-3. BaP Equivalents Derived from Chemical Analysis and Bioassays......... 251

Table S5-1. Target compounds and abbreviations used...........cccceevveeevveenciieencreeennee. 255
Table S5-2. Summary of all PAH concentrations in dosing solutions............c.......... 258
Table S5-3: Summary of all OPE concentrations in dosing solutions....................... 259
Table S5-4: Summary of all BFR concentrations in dosing solutions....................... 260
Table S5-5. Correlation (r*) between groups of PAHs in dosing solutions.............. 262
Table S5-6. Correlation (1) between OPEs in dosing solutions.................c.eee..... 262
Table S5-7. Correlation (r*) between OPEs and PAH groups...........c.coocovvvveveeveeen. 262
Table S5-8. Induction equivalency factors (IEFS) .......ccccoveeiiieeiiiiiiieieeeeee 263
Table S6-1. List of Study Target Compounds .............ooviiiiiiiiiiiiiiiininen. 290
Table S6-2. PE Field Blank results and detection limits......................ooii 291
Table S6-3. Percent extraction efficiency for target compounds....................... 292
Table S6-4. PUF Field Blank Concentrations..............c..cooeeiiiiiiiiiiiiiineen.. 293

xiil



Table S6-5. Selected and derived physico-chemical properties from literature for
target PAHS. oo e 294
Table S6-6. Seclected and derived physico-chemical properties from literature for
target PCMs and nitromusks. ..o 295
Table S6-7. Selected and derived physico-chemical properties from literature for
BArZEt OPES. ...t e 296

Table S6-8. DOC concentrations and percent in the truly dissolved phase............ 300
Table S6-9. Comparison of PE-derived and active sampling-derived water
concentrations for PAHs and PCMS....... ... 301

Table S6-10. Comparison of PE-derived and active sampling-derived water
concentrations for OPES. ... ... i 302
Table S6-11. Log Kprw values derived from active and passive sampling data...... 303

Table 7-1. Kpga (298 K) or lower-bound estimates from 21-day PEs and mean active-

derived gaseous CONCENIIATIONS. .. ...uutett ettt et ettt et ateeeteenneeaneeennenreenns 327
Table S7-1. List of target compounds...........covviiiiiiiiiiiiiiii i 330
Table S7-2. Physico-chemical properties for target compounds......................... 332
Table S7-3. Ambient Concentrations Derived from Active Sampling................ 335
Table S7-4. Concentrations Accumulated in Polyethylene Over Time............... 338
Table S8-1. Summary of Samples............ooiiiiiiiii e 362
Table S8-2. Blank concentrations. .............c.ooiiiiiiiiiiiiiiii e 363
Table S8-3. PRC loss data from deep mooring PEs.................ccoooiiiiiint. 363

Xiv



Table S8-4. Percent equilibrium predicted to be reached by each OPE during deep

MOOTING AePlOYMENTS. . ...\ttt e e 364

Table S8-5. Percent equilibrium predicted to be reached by each OPE during surface
WateT dePlOYMENTS. ...\ttt e e e e 364

Table S8-6: Selected Physicochemical Properties of Target Compounds............. 365

XV



LIST OF FIGURES

Figure 2-1. Average gaseous X;sPAH (A) and dissolved X;sPAH (B) in Lake Erie and
Lake ONario. .. ..o.oououinii i 41

Figure 2-2. Average atmospheric concentrations of gaseous PAHs at each site

correlated well with population within 20 km..................ooiiii 42
Figure 2-3. Correlation strength varied with population radius considered............ 43
Figure 2-4. Relative significance of population within 20 km and 3 km............... 44
Figure 2-5. Net air-water flux of four PAHs.............oo 45
Figure S2-1. 2011 Air and Water Deployment Locations and Abbreviations.........54
Figure S2-2. Prevailing Wind Direction...............coooiiiiiiiiiiiiiiii e 58
Figure S2-3. Lake Erie and Lake Ontario Watershed........................oot. 60
Figure S2-4. Percent Composition of PAHS.............co, 70
Figure S2-5. Principal Component Analysis of Air and Water PAH Profiles...........71

Figure S2-6. Vapor Pressure and Radius of Max Concentration-Population

COTTEIATION. . ..ttt e 72
Figure S2-7. Temperature and Gaseous X;sPAH Concentration. ....................... 72
Figure S2-8. Temporal Trends in Precipitation and River Discharge.................... 73
Figure S2-9. Flux Ratio (Cpgw/Cpga — 1) with Propagated Error........................ 78

Figure 3-1. Average summer HHCB and AHTN (£,PCM) concentrations throughout
the lower Great Lakes....... ..o 109
Figure 3-2. Correlation of dissolved and gaseous XsPCM and surrounding population

4153 113 12 110

XVi



Figure 3-3. Predicted air-water exchange fluxes based on simulated air and water

HHCB CONCENLIatioNS. . ....ueitiinit ettt e 111
Figure 3-4. Summer air-water exchange fluxes of AHTN and HHCB................ 113
Figure S3-1. Locations of Air Sites Relative to Buoys..............c..cooiiiiil. 127
Figure S3-2. HHCB and AHTN Fugacity Ratios..............ccoooiiiiiiiiiiiinn, 132
Figure S3-3. Summary of Dissolved PCMs Over Multiple Deployments............ 133
Figure S3-4. Summary of Gaseous PCMs Over Multiple Deployments.............. 134
Figure S3-5. PE-Derived Air-Water Exchange Fluxes for Scenario 1................ 138
Figure S3-6. Great Lakes Coastal Boundary Zone from Bathymetry.................. 139

Figure 4-1. Average Dissolved (top) and Gaseous (bottom) PBDEs during Summer
D 5] 01 (03174 10 1<) 11 £ P 171
Figure 4-2. Average Summer PBDE Air-Water Exchange Fluxes (pg/m?/day)......172
Figure 4-3. Maximum Distance (km) Yielding Significant Correlation between
Gaseous Concentration and Population.................coooiiiiiiiii i 172
Figure 4-4. Dissolved PBDEs and Population Density................cccovviieeeinnn..n. 173

Figure 4-5. Predicted Dissolved ) 2BDE (pg/L) Across Lake Erie and Lake

L0117 T T P 174
Figure S4-1. BDE 47 Air-Water Exchange Fluxes: Scenario 1........................ 204
Figure S4-2. BDE 47 Air-Water Exchange Fluxes: Scenario 2........................ 205

Figure S4-3. Average Percent Composition of Major Congeners: Dissolved

Figure S4-4. Average Percent Composition of Major Congeners: Gaseous



Figure S4-5. Comparison between Southern Population Wedge and Circular
RadiUS. ..o 213
Figure S4-6. Average Wind Direction During Deployments at Available
Meteorological BUOYS. ......iiiiiii e 216
Figure S4-7. Predicted Average Wind Direction from Ordinary Kriging............ 217

Figure S4-8. Variance or Dissolved PBDE Predictions from Bayesian Kriging.....218

Figure S4-9. Distributions of Estimated Parameters for Bayesian Kriging........... 219
Figure S4-10. Cross-Validation for Bayesian Kriging of Dissolved PBDEs......... 219
Figure 5-1. Map of PE deployment sites in the Greater Cleveland Area.............. 257

Figure 5-2. Concentration and composition of PAHs and OPEs in dosing solutions
and ambIENT AIT. .. ..ottt e 249

Figure 5-3. Dose-response curves for triplicate cell exposures to PE extract dilution

Figure 5-4. Map of BaPEqpi, and dosing solution X4PAH and X;,0OPE concentrations

from €acCh SITE......oee i 252
Figure 5-5. Relative contribution of PAHs to BaPEqchem. - «vevevvevvieiiiiiniiin.n. 253
Figure S5-1. Schematic of sample treatment.................c.ooiiiiiiiiii.. 250
Figure S5-2. BaP Dose-Response Curve..........ocoviiiiiiiiiiiiiiiiiiiiiiii e 261

Figure S5-3. Principal component analysis (PCA) of PAHs in dosing
SOIULIONS. ..ottt e 261
Figure 6-1. Ambient concentrations of PCMs and OPEs........................... 283
Figure 6-2. PCM and nitromusk concentration in PEs over the 21-day

4157 0] 1) 88155 4L 284

xviil



Figure 6-3. Concentrations of PAHs in PEs over the 21-day deployment............. 285
Figure 6-4. Concentrations of OPEs in PEs over the 21-day deployment ............ 286
Figure 6-5. Percent equilibrium reached by PRCs during deployment................. 287
Figure 6-6. Comparison of Kpgw values for PAHs from this study and from
JIEETALUTE. . ..o e 287
Figure 6-7. Comparison of Kpgw values for OPEs from this study and derived from
chemical properties from literature................cooiiiiiiiiiiiiit s 288
Figure 6-8. Comparison of Kpgw values for PCMs from this study and derived from
chemical properties from literature...............cooiiiiiiiiiiiiiis s 289

Figure S6-1. Water concentrations of PAHs from high-volume active water

SF 11010 B0 8.0 P 297
Figure S6-2. Predicted PE uptake profiles..............coovviiiiiiiiiiiiiiii . 298
Figure S6-3. Best-fit value for thickness of the diffusive boundary layer............ 299

Figure 7-1. Gaseous concentrations of PAHs, PCMs, and OPEs in East Providence air
from active SAMPIING. .. ..ooi e 324
Figure 7-2. Concentrations of BDEs and NHFRs in East Providence air from active
SF 0101 0 B 087 P 325
Figure 7-3. Uptake profiles of OPEs, BDEs, NHFRs, and PCMs in PEs over 2-day
4157 0] 1) 88155 4170 326
Figure S7-1. Sampling set up at the East Providence......................c.oooiei. 321

Figure S7-2. Concentrations of gaseous HMW PAHs and alkyl/sub-PAHs derived
from active air SAMPlINgG.......oooiiiiii e 334

Figure S7-3. Percent equilibration of performance reference compounds............ 336

XiX



Figure S7-4. Uptake profile examples for PAHs in PEs...................ol. 337
Figure 8-1. Locations of surface water deployments in lakes and seawater, air
monitoring sites, and deep MOOTINGS ........c.vviiriiiriiie it eeieene e ae 359

Figure 8-2. Depth profiles showing estimated dissolved concentrations of Cl/Br-

Figure 8-3. Surface water concentrations of CI-OPEs.................c..ooo 360

Figure 8-4. Depth profiles showing estimated dissolved concentrations of alkyl/aryl-

O P ES ettt 361
Figure 8-5. Surface water concentrations of alkyl/aryl-OPEs............................ 361
Figure S8-1. Best-fit value for the thickness of the water boundary layer............. 366

Figure S8-2. Range of OPE concentrations estimated depending on physico-chemical
ProPerties ChOSEN. ... . et e 367
Figure 9-1. Interpolated dissolved ZsPCM concentrations...............c...cceueeen... 374
Figure 9-2. Linear correlation between dissolved PCM concentrations and PCM
volatilization fIUXES .......oueinii i 374
Figure 9-3. Interpolated gaseous X,BDE concentrations............................... 375
Figure 9-4. Inverse linear correlation between gaseous BDE concentrations and

absorptive BDE fIUXES. .. ..ot 375

XX



CHAPTER 1

INTRODUCTION

Thousands of hydrophobic organic contaminants (HOCs) are present in air and
water worldwide, yet we know little about how these chemicals’ concentrations vary
spatially and temporally or what biological effects they have as a complex mixture."
HOC:s are of particular concern because they are often persistent, capable of long-
range transport, and bioaccumulative. In this dissertation, three types of HOCs
representing distinct use patterns and sources were investigated: polycyclic aromatic
hydrocarbons (PAHs), polycyclic musks (PCMs), and organic flame retardants
(OFRs).

Compounds Included in This Study. PAHs are ubiquitous HOCs that originate as
byproducts of incomplete combustion of carbonaceous material. PAHs, along with
their substituted analogs, are the principle carcinogenic component of ambient
atmospheric aerosol.>® Major sources of atmospheric PAHs include emissions from
vehicles, coal burning power plants, and biomass burning.* Concentrations of PAHs
in urban areas near the Great Lakes are typically in the 40-100 ng/m’ range, with
lower concentrations in residential and rural areas.””’ One of the few studies to
measure aqueous PAHs in Great Lakes surface waters observed that concentrations
were greatest in Lakes Erie and Ontario, where they reached about 5 ng/L.*

PCMs are synthetic fragrance compounds widely used as additives in personal
care products and household cleaners.” They are ubiquitous in aquatic environments,

with concentrations generally in the 1-1000 ng/L range in rivers and lakes.'"> AHTN



and HHCB, two of the most widely used PCMs, have been measured previously in
Lake Erie and Lake Ontario sediment cores'* and in water and air of Lakes Michigan,
Erie, and Ontario.'"">'® PCMs have also been detected recently in remote open ocean
and polar environments.'”'® PCMs in both air and water are found at greater

15,19

concentrations in more populated areas, and wastewater treatment plants outfalls

have been identified as importance point sources of these compounds to the aquatic
environment.”*?!

PCMs accumulate in biota, including marine mammals, fish, birds, shrimp, and
mussels.”>> A significant fraction of PCMs is present in the gaseous fraction of
ambient air, and they are capable of being absorbed through human skin.”*** While
PCMs are not acutely toxic at typical environmental concentrations, sub-lethal effects
such as impaired estrogenic function and weakened xenobiotic defense responses have
been observed.?**’

OFRs are added to consumer goods such as furniture upholstery, textiles, and
electronics to slow combustion and meet flammability standards. Three groups of
OFRs, polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and
novel halogenated flame retardants (NHFRs), were investigated in this study.

Previous studies have shown that PBDEs are toxic, persistent, and bioaccumulative,
and so they have been phased out of usage and manufacture in the United States and
Canada, with the last formulation no longer used as of 2013. Despite regulation,

PBDEs continue to be found in Great Lakes air and water, and in-use products are

expected to act as continuous sources of PBDEs past 2020.%*



NHFRs and OPEs are increasingly being used as replacements for the PBDEs,
and OPEs, in particular, have often been presented as safer alternatives.” NHFRs
have been measured in the Great Lakes air in the low pg/m’ range, and in water
intermittently at low concentrations.****! While PBDEs and many NHFRs display
properties typical of other legacy HOCs of concern, some OPEs, particularly the
chlorinated OPEs, are distinct in that they are more polar and more soluble, and are
sometimes designated as persistent, mobile organic chemicals (PMOCs) because of
their propensity for waterborne transport.®> For this reason, many traditional modeling
tools predict that OPEs should be incapable of long-range transport.”> However, OPEs
have been measured in air at much greater concentrations than PBDEs and NHFRs in

the Great Lakes region,’*

and have recently been detected at concentrations an
order of magnitude greater than other OFRs in the atmosphere of remote polar and
open ocean regions.’*>* The transport mechanisms by which OPEs are reaching these
remote locations are largely unknown. In Chapter 8 of this dissertation, retrospective
analysis of passive samplers deployed at North Atlantic deep mooring and Canadian
Arctic surface water sites was done to measure dissolved OPEs in these remote
environments and learn more about their long-range transport.

Polyethylene Passive Samplers. Polyethylene passive samplers (PEs) are sheets of
low-density polyethylene that accumulate HOCs passively over time via diffusion.
Passive samplers have been used to analyze spatial trends and identify sources of

19,39-42
and

emerging and legacy contaminants on global, regional, and citywide scales,
are also being developed as personal exposure monitors.”>* While total and particle-

bound concentrations of many HOCs have been measured in many previous studies,



much less is known about the concentration, composition, and health effects of truly
gaseous and dissolved HOCs, which is the fraction PEs select for. Due to this
selectivity, PEs simultaneously deployed in different media are becoming an
increasingly popular approach for measuring diffusive fluxes of HOCs, including air-
water exchange fluxes.***® Furthermore, PEs are promising tools for achieving high
spatial resolution and monitoring remote areas because they are cost-effective, require
no electricity, and can be deployed with little training.

Despite the many advantages of using PEs, interpreting results can be
challenging because the rate at which air or water is sampled cannot be set at a
constant value, as with active sampling techniques. To allow for in situ calibration,
PEs are often loaded with performance reference compounds (PRCs), which are non-
native compounds with similar properties to the compounds of interest, prior to
deployment.* Numerous models have been developed to use PRC loss data to
approximate the percent equilibration (f) reached by target compounds during PE
deployment, which allows for calculation of ambient concentrations in the surrounding
media.”®™> The rate of uptake into PEs depends on a compound’s affinity for the
membrane, represented by its PE-air or PE-water partitioning coefficient (Kpga or
Kpew, respectively), and its molecular diffusivity in air, water, and PE. This presents a
challenge in interpreting passive sampling data for emerging contaminants with poorly
constrained physico-chemical properties. In Chapters 6 and 7 of this dissertation,
uptake of PAHs, PCMs, and OFRs into PEs from water and air are investigated. In
these studies, results are compared to measurements from co-deployed active air and

water sampling and Kpga and Kppw values are estimated.



Pollutants and Population. Numerous studies have described relationships between
air pollutant concentrations and population density, proximity to urban centers,
building density, or percent urban land cover.>'**'****> Concentrations of many of the
target compounds in this study have been shown to decrease with distance from urban
centers, identifying urban/industrialized regions as sources to the surrounding
environment. Hafner et al. showed that concentrations of atmospheric PAHs were
significantly linearly correlated with population density within 25 km of sampling
sites around the world.”® This same 25 km radius has since been used in other studies
to characterize sites in the Great Lakes region, and significant correlations between
atmospheric HOCs and human population have been observed.” However, most of
these studies have focused on one population center, or measured concentrations at
only a handful of sampling sites. Furthermore, very few studies have analyzed the
relationship between population and aqueous concentrations of HOCs.

Understanding how HOCs correlate with easily attainable geographical
parameters like population density allows for more accurate spatial predictions of air
and water HOC concentrations in areas where it is not feasible to measure directly,
and helps to identify areas in need of future monitoring. In Chapters 2 to 4 of this
dissertation, the relationship between human population density and concentrations of
PAHs, PCMs, and PBDEs were investigated.

Air-Water Exchange of HOCs. Many previous studies have identified atmospheric
deposition as an important source of HOCs in aqueous environments.””>® Air-water
diffusive exchange fluxes, however, have not been measured in Lakes Erie and

Ontario. Melymuk et al. postulated that gaseous absorption may be a significant



source of PAHs to Lake Ontario, and volatilization from surface waters may account
for significant losses of volatile PAHs from near-shore surface waters. '

Volatilization was also estimated to be a significant loss mechanism for PCMs in Lake
Michigan and Lake Ontario, suggesting that the Great Lakes may be a secondary
source of PCMs to the atmosphere.'""'® In Chapters 2 to 4 of this dissertation,
simultaneously deployed air and water PE pairs were used to calculate air-water
exchange fluxes of PAHs, PCMs, and PBDEs in the lower Great Lakes.
AhR-Mediated Potency of Gaseous Environmental Mixtures. Extensive research
has established that particle-phase HOCs, particularly PAHs, pose a serious health risk
to humans.”’ However, few studies have investigated health risks associated with the
gaseous fraction of ambient air, which humans are exposed to via respiration and
dermal uptake.”® The gaseous fraction of ambient air has a distinct composition
compared to the particle-bound fraction, and so health risks associated with this
fraction are not readily predictable from studies of particulate matter.’

Previous studies have shown that the gaseous fraction of ambient air pollutants
appears to be responsible for a significant portion of the aryl hydrocarbon receptor
(AhR)-mediated potency associated with ambient air, though measured compounds in
these studies could account for less than 30% of the potency measured from

: 1-64
bioassays.®'°

AhR activation is linked to a wide variety of biological effects
including cell growth and proliferation, tumor promotion, immunological effects, and
endocrine disruption.®

While previous studies have noted that gaseous HOCs should not be ignored

in risk assessments, they were all carried out using high-volume air samplers or



passive polyurethane foam (PUF) samplers, which are less selective for gaseous HOCs
than PEs.®® In Chapter 5 of this dissertation, in vitro bioassays were used to measure
AhR-mediated potency of extracts from PEs deployed in air along the Lake Erie
shoreline to investigate the biological relevance of the truly gaseous fraction of
ambient air and identify compounds that correlate with, and may possibly contribute

to, observed AhR-mediated potency.

Overall, this dissertation contributes to scientific knowledge of how HOCs
with diverse properties, sources, and uses enter both heavily industrialized and remote
aquatic environments, and how these compounds affect human health as
environmentally relevant mixtures. The work also demonstrates a wide range of
applications for PEs, from obtaining ambient air and water concentrations of a variety
of gaseous and dissolved HOC:s, to calculate air-water diffusive fluxes and measuring

biological potency of gas-phase mixtures isolated from urban ambient air.
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ABSTRACT

Polyethylene passive samplers (PEs) were used to measure concentrations of
gaseous and dissolved polycyclic aromatic hydrocarbons (PAHs) in the air and water
throughout the lower Great Lakes during summer and fall of 2011. Atmospheric
¥,sPAH concentrations ranged from 2.1 ng/m’ in Cape Vincent (NY) to 76.4 ng/m’ in
downtown Cleveland (OH). Aqueous X;sPAH concentrations ranged from 2.4 ng/L at
an offshore Lake Erie site to 30.4 ng/L in Sheffield Lake (OH). Gaseous PAH
concentrations correlated strongly with population within 3-40 km of the sampling site
depending on the compound considered, suggesting that urban centers are a primary
source of gaseous PAHs (except retene) in the lower Great Lakes region. The
significance of distant population (within 20 km) versus local population (within 3
km) increased with sub-cooled liquid vapor pressure. Most dissolved aqueous PAHs
did not correlate significantly with population, nor were they consistently related to
river discharge, wastewater effluents, or precipitation. Air-water exchange
calculations implied that diffusive exchange was a source of phenanthrene to surface
waters, while acenaphthylene volatilized out of the lakes. Comparison of air-water
fluxes with temperature suggested that the significance of urban centers as sources of

dissolved PAHs via diffusive exchange may decrease in warmer months.

INTRODUCTION
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that
originate from oil spills as well as anthropogenic and natural combustion processes.

Major sources include fossil fuel combustion, metal production, waste incineration,
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residential and commercial biomass burning, and vehicular emissions.'” PAHs are
often associated with densely populated areas, especially in industrialized
countries.”*®’ PAHs and their transformation products are a primary carcinogenic
component of urban air pollution and health effects resulting from chronic exposure
are a serious concern.*”

Polyethylene passive samplers (PEs) are cost-effective, simple tools with lower
detection limits than traditional active sampling techniques. Instead of pumping air or
water through a filter, PEs accumulate hydrophobic organic contaminants (HOCs)
over time via diffusion, accumulating only truly dissolved or gas-phase molecules.'®
Concentrations of truly dissolved HOCs are of interest because this fraction is
available for direct diffusive exchange between water and other reservoirs such as air,
biota, or sediment.

The use of PEs facilitates simultaneous spatially resolved measurements and
calculations of air-water diffusive exchange rates. For most HOCs, concentrations
measured by PEs reflect a time-integrated concentration representative of the entire
deployment period. For compounds that equilibrate during deployment,
concentrations reflect the most recent concentration the sampler was exposed to. PEs

11-1 .
3 and to calculate air-

have previously been used to measure HOCs in water and air
water gradients of HOCs, but this method has not been applied to the lower Great
Lakes.'*'¢

Lake Erie and Lake Ontario are the smallest of the Great Lakes by volume and

have estimated residence times of 2.7 and 7.5 years, respectively.'” About 80% of

Lake Erie’s water is supplied by the Detroit River, which is fed by Lake Huron via
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Lake St. Claire. Among the Great Lakes, Lake Erie is the shallowest (average depth
19 m), warmest, and most biologically productive.'™!” Lake Ontario is much deeper
(average depth 86 m) and primarily receives water from Lake Erie via the Niagara
River." Currents in the Great Lakes are weak (a few cm/s) with complex temporal
variability that depends on recent atmospheric conditions. In the summertime,
circulation is generally counterclockwise (Figure S2-3).2° The lakes are stratified
from May through October and well-mixed for the remainder of the year.*

Heavy urbanization and valuable ecosystems often coincide along the shores of
the lower Great Lakes. Atmospheric deposition from urban sources has been
identified as a major source of gaseous and particle-bound HOCs to the region’s

2,7,21,22

aquatic environment. Concentrations of total atmospheric PAHs have been

shown to correlate strongly with population in this region and urban centers have been

23,24
32% Tn some

linked to significantly increased loadings of contaminants to the lakes.
cases, however, the lakes have been found to act as a source of HOCs via
revolatilization.”>*® Much of the previous work describing sources of atmospheric
pollution to the Great Lakes is based on a limited number of air monitoring sites as
part of the Integrated Atmospheric Deposition Network (IADN). While this data is
indispensible in determining baseline concentrations and temporal trends of persistent
organic pollutants (POPs) in the Great Lakes, more detailed knowledge of spatial
trends is crucial to identify major sources and transport pathways.

The objectives of this study were to (i) provide baseline concentrations of

gaseous and dissolved PAHs in Great Lakes air and water, (i1) evaluate the importance

of urban regions as sources of dissolved PAHs by investigating the relationship
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between population and PAH concentration, and (iii) determine whether the lower

Great Lakes are sources or sinks for dissolved PAHs.

MATERIALS AND METHODS
Passive Sampling Procedures. A map of all monitoring sites and a table outlining
temporal coverage and meteorology are provided in the Supporting Information
(Figure S2-1, Table S2-1 & S2-2) along with information on sampler preparation and
deployment. PEs were spiked with performance reference compounds (PRCs) via a
method adapted from Booij et al.*” and sent to trained volunteers throughout the Great
Lakes region with the aim of completing three 8-week deployments at each site. After
deployment, volunteers returned samplers via overnight delivery.

Four sites formed an east-west transect along Lake Ontario’s southern shore.
The westernmost site, Grimsby (ON), was an offshore buoy monitored by
Environment Canada. On Lake Erie, samplers were deployed at nine US shoreline
sites and six offshore sites monitored by Environment Canada. Samplers were
deployed at the offshore sites once, during late summer. Samplers at Gibraltar Island
(OH) and Toledo (OH) were deployed once during late spring/early summer.
Meteorological Information & Site Characteristics. Monthly wind speed averages
during the sampling campaign ranged from 3.8 m/s in July to 6.1 m/s in November,
with the greatest average wind speeds offshore of Toledo. Average air temperatures
ranged from 7.7 °C in April to 24.3 °C in July and the mean deployment temperature
for all sampling periods was 18.6£1.8 °C. Surface water temperatures were generally

very similar to air temperatures and ranged from 3.7° C (Lake Ontario in May) to
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25.1° C (Lake Erie in July).® There were westerly prevailing winds during the
sampling campaign for most of the study region (Figure S2-2, Table S$2-3).%°
Precipitation and river discharge were lowest during June and July while flows in late
spring and early fall were similar.>’ Locations near major rivers are listed in Table S4.
Sample Analysis. All PEs were spiked with deuterated PAHs and extracted twice,
each time for 18 hours. Air PEs were extracted with ethyl acetate followed by hexane.
Aqueous PEs were extracted with dichloromethane followed by hexane. Extracts
were concentrated to approximately 100 pL and p-terphenyl-d;s was added as an
injection standard. Extracts were analyzed using an Agilent 6890 GC coupled to an
Agilent 5973 MSD in electron ionization (EI) selected ion monitoring (SIM) mode.
PAH analysis and quality control procedures are further outlined by Khairy et al."
PAH concentrations were corrected for internal standard recoveries (Table S5)
and blank-subtracted using the field blank relevant to the sampling site. If no field
blank for the site was available, the average concentration from all available field
blanks was used. More information on quality assurance and quality control is in the
Supporting Information.
Determination of Sampling Rate and Ambient Concentration. The uptake of
HOCs by PEs is described in detail by Lohmann®® and PE-air partitioning is detailed
by Khairy et al."' To determine ambient PAH concentrations from concentrations in
polyethylene, site-specific sampling rates were estimated via a method adapted from
Booij et al.** The average air sampling rate was 28417 m’/day and the average
aqueous sampling rate was 112+57 L/day. For more details, see the Supporting

Information and Tables S1 and S2.
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Physico-chemical Parameters. Sampler-matrix partition coefficients used to
calculate ambient concentrations for each PAH are listed in Table S7, along with other
physico-chemical properties. Temperature-adjusted partition coefficients were
obtained using mean temperature during the deployment period for the nearest
meteorological buoy or weather station and the modified van’t Hoff equation, as in
Khairy et al.'" The enthalpy of vaporization (AH,q4p) was used to account for Kpga-
temperature sensitivity and internal energy of dissolution (AUy) for Kpgw-temperature
sensitivity.

Population Analysis. Population data for each sampling site are presented in Table
S8. Total population within a circular area with a 1-cell (about 1 km) radius was
calculated using the Focal Statistics tool in ArcMap. The process was repeated for
larger radii to create a dataset of the total population within 1, 2, 3, 5, 10, 15, 20, 25,
30, 40, and 50 km of each of the sampling locations. More information about the
population dataset is in the Supporting Information.

Air-Water Exchange Rates. The difference between equilibrium concentrations of
an HOC in two PEs deployed in different matrices is proportional to the difference in
the compound’s chemical activity between those two matrices.'*'> Air-water
exchange gradients can therefore be determined from the ratio of PAH concentrations
in PEs deployed simultaneously in air and water, corrected to equilibrium
concentrations using PRC loss data. Details of air-water exchange calculations are

shown in the Supporting Information.
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RESULTS AND DISCUSSION

PAHs in Air. Average atmospheric £;sPAH ranged from 2.1 ng/m3 in Cape Vincent
(NY) to 76.4 ng/m’ at George T. Craig air sampling station in downtown Cleveland
(OH). The spatial distribution of £;sPAH is shown in Figure 2-1A. Concentrations of
all PAHs during each deployment are detailed in Table S9. Gaseous PAHs were
dominated by phenanthrene (28—-60%) and fluorene (6—48%) (Figure S2-4). Typical
concentrations ranged from below the detection limit to 40.3 ng/m’ and 14.6 ng/m’ for
phenanthrene and fluorene, respectively. Methylphenanthrenes accounted for 3-5% of
>1sPAH at the offshore sites and 6-10% of £;sPAH at shoreline sites. 4-5-ring PAHs
made up no more than 10% of total PAHs, with PAHs of greater molecular weight
than chrysene (high molecular weight (HMW) PAHs) accounting for <1% of X;sPAH.
Ratios of gaseous Flra/Flra+Pyr were >0.6 and Phn/XMPhns>1 at all sites, suggesting
that gaseous PAHs were primarily combustion-derived.*

The two sites in Cleveland consistently displayed the greatest concentrations of
gaseous PAHs except retene throughout the deployment season. Retene is often
considered to be indicative of wood smoke or pulp/paper mill effluent, as opposed to
fossil fuel combustion.”° Retene was greatest west of Cleveland in Sheffield Lake,
but even here accounted for less than 0.7% of total gaseous PAHs. In contrast, Ruge
found retene to be a significant component of gaseous PAH profiles at many sites on
Lake Superior.”’

Principal component analysis (PCA) using the FactoMineR package® in the
statistical programming language R*° was employed to visualize similarities and

differences between PAH profiles (Figure S2-5). Profiles were similar at all sites with
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the exception of Sheffield Lake, Rochester, and the Cleveland sites, which were
clustered separately. The clustering of most sites in the same region of the plot
suggests that sources of PAHs were similar across the study region. Profiles in
Cleveland may have been distinct due to nearby point sources. In addition to impacts
from vehicular emissions associated with heavy traffic in downtown areas, these sites
were within 5 km of a greater number of industrial point sources (primarily chemical
manufacturing, petroleum industry, and metalworking facilities) compared to the other
sites using the EPA Toxic Release Inventory (TRI).*

Comparison with Literature Values. Sun et al. reported mean gaseous
concentrations from the 1990s to 2003 of 16 PAHs, 13 of which were measured
here.”® They reported 7.2 ng/m’ at Sturgeon Point, a semi-urban site south of Buffalo,
1.2 ng/m’ at Point Petre, a northern Lake Ontario site representative of background,
and 73.4 ng/m’ in Chicago (IL).*> Concentrations of individual PAHs in Cleveland
reported here were comparable to those reported by IADN for Chicago. Gaseous PAH
profiles showed dominance of phenanthrene and fluorene, as reported here.

PAH concentrations in this study were comparable to those measured by Ruge
at urban locations along the shore of Lake Superior.”” Melymuk et al. measured a total
gaseous PAH concentration of 51 ng/m’ in downtown Toronto (ON), comparable to
Cleveland and Rochester concentrations in this study.® Concentrations in this study
were lower than those reported for Alexandria, Madrid, or Lake Chaohu, China and
greater than concentrations on the Taiwan coast.'""*'™ Total (aerosol and dissolved)
2-3-ring PAHs near Lake Victoria, East Africa were lower than 2-3-ring gaseous

PAHs in Cleveland, but greater than the remainder of the deployment sites.**
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Gaseous PAHs and Population. Sampling sites were classified as urban,
semi-urban, rural, or remote based on population within 3 km (Table S8). Mean
21sPAH for each type of site are summarized in Table 1. For both lakes, the greatest
concentrations of gaseous PAHs were observed at urban sites. However, £;sPAH was
not significantly different based on site classification using a one-way analysis of
variance (ANOVA; p > 0.05). There were no obvious changes in PAH profile
composition based on whether the site was urban, semi-urban, rural, or remote (Figure
S2-4A).

To explore relationships with population in more detail, population within
discrete radii of 1 to 40 km from each site were compared to average atmospheric
PAH concentrations to determine the importance of local versus distant contributions
in determining PAH concentrations. Total gaseous PAHs correlated most strongly
with population within a 20 km radius around each site (120 m = 0.73, p < 0.001, n =
17, SE=11.3) (Figure 2-2). Significant correlations (0.58 <1* < 0.77, p < 0.001) were
observed for all measured PAHs at some radius, with retene exhibiting the weakest
correlation (%1 m = 0.30 at a radius of 1 km, p = 0.02, SE=0.02). This is most likely
due to retene’s association with wood smoke, as opposed to fossil fuel combustion.*>
3% Strong correlations suggest that urban centers are a primary source of gaseous
PAHs (except retene) in the lower Great Lakes region.

For each PAH, the strength of the correlation between population and
concentration varied as we changed the radius used to characterize population at the
site (Figure 2-3). All compounds except retene displayed a bimodal relationship, with

two radii of maximum correlation. This relationship was less pronounced for the low
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molecular weight (LMW) PAHs than HMW PAHs. Strong similarities between
correlation profiles (e.g., the 5-6-ring PAHs) suggest similar sources and affinities for
transport.

Hafner and Hites suggested that the significance of local sources in
determining Great Lakes HOC concentrations varies based on a compound’s
atmospheric lifetime.” The atmospheric lifetimes of gaseous PAHs are determined
primarily by susceptibility to hydroxyl degradation and gas-particle partitioning.’
Anthracene exhibited a distinctly shaped correlation curve with two maxima at radii
25 km (%25 km = 0.77) and 5 km (s m = 0.77) (Figure 2-3). Anthracene has a short
lifetime (1.5 hrs) with respect to hydroxyl radical degradation relative to other PAHs,
which may explain why stronger correlation is observed at short distances than for
other 3-ring PAHs,*”**° but this does not explain the comparable correlation at 25 km.
Acenaphthylene is expected to have a similar lifetime to anthracene (1.6 hrs)* and
exhibited stronger correlations with more local population than fluorene.

Fluorene is often observed to be more stable with respect to photochemical
oxidation than similarly-sized PAHs (average lifetime 22 - 26 hrs)**’ but more distant
sources did not become more significant for this compound due to its longer lifetime.
Fluorene correlated less strongly with population than acenaphthylene at all radii, but
the divergence was largest at shorter distances.

Gaseous HMW PAHs are expected to have short atmospheric residence times
due to reaction with hydroxyl radicals, which may contribute to the increased

relevance of local versus long-range sources that was observed for these compounds.’
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These results suggest that reaction with hydroxyl radicals limited the importance of
sources distant from sampling sites.

The degree to which a given PAH partitions from gaseous to particulate phase
and thus is not detected by PEs depends on the composition and concentration of
ambient aerosol as well as temperature and vapor pressure.”* > Sub-cooled liquid
vapor pressures (pr/Pa) for all PAHs (except methylphenanthrenes and retene, for
which data was not available) were determined for average deployment temperature
(18.6 °C) using empirical regressions from Paasivirta et al.”! Log (p./Pa) was plotted
against the radius where maximum population-concentration correlation was seen for
each compound in Figure S2-6. Excluding anthracene, PAHs with p > 10™ Pa were
most highly correlated with population within a 20 km radius, while PAHs with pp. <
10" Pa were most highly correlated with population within 3 km. Other studies have
observed similar values for log(pr) at which PAHs transition from being primarily
gaseous to particle-bound.?***>?

While S2-6 highlights maximum correlation, many PAHs exhibited significant
correlation with population at both 20 km and 3 km. As shown in Figure 2-4, the
relative significance of correlation at 20 km versus 3 km (20 km/I°3 km) Was
significantly correlated with log(pr) (r* = 0.62, p < 0.005, n = 13, STE = 0.1),
suggesting the existence of two sources of varying importance depending on PAH
volatility. The relatively greater importance of local sources in determining
concentrations of gaseous HMW PAHs could be due to the partitioning of these
compounds to relatively cleaner background aerosols at remote sites as described by

Gustafson et al.>* Due to their lower vapor pressure, gaseous HMW PAHs are more
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likely than 2-3-ring PAHs to partition into the particulate phase where they will not be
measured by PEs and may be deposited more readily via wet or dry deposition.**=>~¢

Previous studies have reported that coastal areas receiving cleaner air from
over water bodies exhibit lower atmospheric PAH concentrations than would be
predicted based on surrounding population.”” Concentrations of total atmospheric
PAHs were lower in Buffalo and Oswego than Cleveland or Rochester, though these
sites were classified similarly in terms of population. One explanation is that
prevailing westerly winds brought over-lake air towards Buffalo and Oswego, diluting
the urban plume. Offshore measurements confirmed that air masses over Lake Erie
had relatively lower PAH concentrations than shoreline sites (Table 1).

To further explore this hypothesis, 6-hour HYSPLIT”® back trajectories were
calculated every 30 hours during the entire deployment period at Cleveland, Buffalo,
Rochester, and Oswego using EDAS 40 km archived meteorology. The number of
trajectories arriving from over water versus over land is presented in Table S3. This
analysis supports the idea that Oswego’s urban plume could be diluted by over-water
air masses, but suggests that Buffalo was impacted similarly by over-water and over-
land air masses.

Another explanation for lower concentrations at Oswego and Buffalo could be
the amount or type of industry nearby. EPA TRI* reported 109, 54, and 37 regulated
facilities within 20 km of Cleveland Edgewater, Buftfalo, and Rochester, respectively,
but there were only 4 within 20 km of Oswego. However, this does not explain lower

PAH concentrations at Buffalo and it is difficult to use TRI data to accurately gauge

the volume of relevant emissions near each site.
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PAHs in Water. Average concentrations of X;sPAH ranged from 2.38 ng/L off Long
Point (Stn 452) to 30.4 ng/L in Sheffield Lake, directly west of Cleveland (Figure 2-
1B, Table S10). Average dissolved X;sPAH, shown in Table 1, was somewhat greater
in Lake Erie than in Lake Ontario when similar sites were compared, but not
significantly (one-way ANOVA, p > 0.05). Dissolved Z;3PAH exhibited less spatial
variation (STDEV = 6.3 ng/L) than gaseous X;span (STDEV = 19.6 ng/m”).

Aqueous PAHs were dominated by phenanthrene (8 —41%; <DL - 2.4 ng/L),
fluoranthene (9 — 37%; <DL - 8.7 ng/L), and pyrene (8 — 31%; <DL - 8.5 ng/L)
(Figure S2-4B). Methylphenanthrenes accounted for 7 — 11% of X;sPAH at offshore
sites and 11 — 35% of X;sPAH at shoreline sites. HMW PAHSs accounted for <2% of
> sPAH at all sites. Retene accounted for 0.1 — 2% X;sPAH and was greatest in
Oswego (NY). The diagnostic ratio Phn/EMPhn ranged from 0.6 at Fairport Harbor
and Sheffield Lake to 3.7 at the central and eastern Lake Erie buoy sites. Ratios of
Flra/Flra+Pyr were > 0.5 at all sites except Gibraltar Island (Flra/Flra+Pyr = 0.3,
Phn/EMPhn = 1.2) suggesting that dissolved PAHs originated primarily from
combustion, with possible contributions from petroleum spills at Gibraltar.'***

PCA results for dissolved PAHs showed locations clustered differently than for
gaseous PAH composition, suggesting that source profiles differed for atmospheric
and aqueous PAHs. This may be because in addition to atmospheric deposition,
runoff and sediment-water exchange contributed to dissolved concentrations. The
dissolved PAH profile was most distinct at Sheffield Lake, while Toledo and Buffalo,

both expected to be impacted by river discharge, were clustered together (Figure S2-

5).
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Comparison with Literature Values. Dissolved PAH concentrations were
similar to those reported by Ruge for heavily impacted sites on Lake Superior.”’
Previous work in Lake Michigan reported average total dissolved aqueous PAH
concentrations of 9 ng/L from shipboard measurements, which was similar to the
mean dissolved Z;sPAH concentration of all sites in this study (9.1 ng/L).>
Concentrations reported here were generally greater than surface waters of
Narragansett Bay (RI)'* or the Patapsco River (MD),” though maximum
concentrations measured on the Patapsco exceeded maximum concentrations
measured here. Concentrations were lower than dissolved PAHs in a freshwater lake
in China.”® PAH profiles were similar to those reported for Narragansett Bay.'*

Potential Sources of Dissolved PAHs. Linear correlation with population was
not significant (r* < 0.3, p > 0.05) for dissolved PAHs, with the exception of fluorene
(%15t = 0.36, p < 0.05), perylene (r*1m = 0.38, p < 0.01), and retene (r*jm = 0.59, p <
0.001). The explanation for correlations observed for these three compounds is
unknown. One possible reason for the weak correlation for most aqueous PAHs is that
the two most populated sites in downtown Cleveland were absent from the aqueous
dataset. Aqueous sampling near Cleveland was not done at the same sites as air
sampling, rather PEs were deployed further from shore.

The lack of strong correlations also suggests that sources other than
atmospheric deposition, such as river discharge and wastewater treatment plant
(WWTP) effluent, could have been significant in determining dissolved PAH
concentrations in surface waters. In addition, longer-term reservoirs that are not

representative of current emissions, such as PAHs from sediments or from deeper in
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the water column, could be contributing to surface concentrations so that aqueous
concentrations reflect longer term deposition while atmospheric concentrations reflect
recent emissions. However, summertime stratification is expected to reduce the
importance of these contributions in surface waters.

Concentrations at offshore Lake Erie sites were greatest in the western basin
where the lake is shallowest and inputs from the Detroit and Maumee watersheds, both
US EPA Areas of Concern (AOCs), were expected to be significant (S2-3A). Due to
the central Erie basin’s counterclockwise circulation during the study season,” it is
unlikely that elevated dissolved PAHs in Sheffield Lake resulted from aqueous
transport from Cleveland. Black River, a historically polluted AOC, discharges 8 km
west of the Sheffield Lake site and may have contributed to dissolved PAH
concentrations there. More measurements over time are needed to determine whether
elevated dissolved PAHs at Sheffield Lake were episodic or chronic. Unexpectedly,
concentrations near Cleveland were lower than at Sheffield Lake. This may be
because of sampler placement, as PEs at Cleveland were farther offshore where water
was deeper and currents carrying more highly impacted water may have been
entrained closer to shore.

Besides Sheffield Lake, the greatest dissolved PAHs were measured in Toledo,
Buffalo, and Erie. Average dissolved PAH concentrations in Erie sampled from early
June to early September were greater (X;sPAH=11.4 ng/L) and showed a lower
percent contribution from LMW PAHs (Figure S2-4) than other rural sites, possibly
due to contributions from contaminated sediments or WWTP effluent. The Erie site

was within the recently delisted Presque Isle Bay AOC, which was dredged for the
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first time in 20 years during summer of 2011, possibly releasing elevated

concentrations of PAHs into the water column.'>%%

The greatest concentrations were
seen during the second deployment, which took place in early fall (X,sPAH=15.6
ng/L), perhaps due to the weakening of summertime stratification. The site was also
within 5 km of a major (~150 million L/day) WWTP (Figure S2-3A).

Air-Water Exchange. Mass transfer coefficients and flux gradients are listed in
Tables S11 and S12 and flux gradients for select PAHs are presented in Figure S2-9.
Mass transfer velocity ranged from 0.2 cm/day to 73 cm/day and values decreased
with decreasing volatility. Uncertainty in flux gradients was <30% for all compounds
with lower molecular weight than benz(a)anthracene except retene. Flux gradients for
HMW PAHs were not different from equilibrium within the 95% confidence level.

Net flux rates (ng/m?/day) are provided in Table S13. Patterns in flux direction
were similar to those reported by Bamford et al. in that LMW PAHs were volatilizing
and phenanthrene was being absorbed, but less volatilization was seen here than in
Patapsco River and depositional fluxes of phenanthrene in our study were greater on
average.” Fluxes for acenaphthylene, phenanthrene, methylphenanthrenes, and
pyrene at each site were summarized in Figure 2-5 over three time periods: April —
June, June — August, and August — November.

Acenaphthylene volatilized from surface waters during most deployments,
with volatilization fluxes ranging from 19.3 ng/m?/day in Niagara to 363 ng/m*/day in
Erie. Phenanthrene was absorbed at all sites with the exception of Niagara during the
second deployment, where a volatilization flux of 236 ng/m?/day was measured.

Phenanthrene deposition fluxes ranged from 237 ng/m*/day at Cape Vincent in early
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fall to 3271 ng/m?/day at Dunkirk in summer. This suggests that during the study
period the lakes were primarily a source of acenaphthylene to the atmosphere, while
the atmosphere was a source of dissolved phenanthrene to the lakes. However,
dissolved phenanthrene concentrations in air and water were not significantly
correlated, suggesting that diffusive exchange was not the only mechanism influencing
aqueous phenanthrene concentrations. Blanchard et al. estimated annual net
absorption of phenanthrene for Lake Erie and Lake Ontario to be 1020 ng/m?/day and
310 ng/m”/day, respectively, in 2005.%*

The greatest depositional fluxes were measured at Dunkirk and Grimsby,
particularly during June — August. Though average temperatures during deployment
were warm (17.0-21.4 °C), all PAHs except acenaphthylene were absorbed at these
sites. Deposition at Grimsby suggests that the Toronto/Hamilton conurbation acted as
a source of dissolved PAHs to the open water. Deposition at Dunkirk was driven by
the greater gaseous PAH concentrations at this site and clean surface waters.

At Erie, Niagara, Sheffield, and Buffalo (second deployment only), the
majority of PAHs were volatilizing. Erie and Sheffield exhibited the strongest
volatilization, driven by elevated aqueous concentrations. The greatest volatilization
fluxes measured at the two sites were for fluoranthene (927 ng/m?/day at Erie, 879
ng/m”/day at Sheffield Lake) and pyrene (591 ng/m*/day at Erie, 857 ng/m*/day at
Sheffield Lake). Volatilization was comparable at the two sites, though anthracene
and benz(a)anthracene volatilized more strongly at Sheffield Lake. Lohmann et al.
observed volatilization of PAHs in an urbanized portion of Narragansett Bay and

suggested that river input and runoff were more significant sources of dissolved PAHs
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than atmospheric deposition.'* Volatilization at Niagara may indicate that river
discharge was a significant source of PAHs at this site.

Air-water exchange is strongly influenced by air temperature, wind speed, and
wind direction and large daily variations in fluxes have been observed.” During
deployments where mean temperature was greater than 19 °C, phenanthrene and
anthracene were the only PAHs being absorbed into surface waters, with the exception
of measurements from Oswego (3rd deployment) as well as Dunkirk. In Buffalo, most
PAH fluxes changed from net deposition during the first deployment (mean
temperature of 11 °C) to net volatilization during the second deployment (mean
temperature 19 — 20.5 °C). During the third deployment, most fluxes were not
significantly different from equilibrium. In Oswego, the temperature dependency

observed in Buffalo was not evident.

IMPLICATIONS

Strong correlation with population suggests that urban centers played an
important role in determining spatial distributions of gaseous PAHs. However, air-
water fluxes and distributions of dissolved PAHs implied that additional sources
beyond diffusive exchange influenced aqueous distributions, especially in urban areas.
In some cases surface waters acted as a source of PAHs to the atmosphere. Enhanced
spatial coverage near AOCs and major urban areas like Toronto, as well as consistent
temporal coverage, could help explain how river discharge, sediment-water exchange,
WWTP effluent, and other sources influence dissolved PAH concentrations in the

lower Great Lakes.
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Figure 2-1. Average gaseous Z,;PAH (A) and dissolved Z,;PAH (B) in Lake Erie and
Lake Ontario. Orange shading delineates population centers.
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Figure 2-2. Average atmospheric concentrations of gaseous PAHs at each site
correlated well with population within 20 km. The two sites in downtown Cleveland
exhibited the greatest Z,;PAH concentrations while concentrations in Buffalo were
lower than would be predicted by the regression.
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Figure 2-4. Relative significance of population within 20 km and 3 km. The ratio of
1720 km 10 173 km correlated well with sub-cooled liquid vapor pressure at mean

deployment temperature, suggesting that distant sources were more significant for
volatile PAHs.
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Figure 2-5. Net air-water flux of four PAHs. Air-water fluxes (ng/m*/day) for four
PAHs during three deployment periods with mean air temperature at the bottom.
Negative values indicate absorption into surface waters and positive values indicate
volatilization. Sites where no data was available or air and water concentrations were
both <DL are marked with *.
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ATMOSPHERIC PAHs (ng/m’) AQUEOUS PAHS (ng/L)
Lake Erie Lake Ontario Lake Erie Lake Ontario
n | PAH |STDEV (n | PAH | STDEV [ n | PAH | STDEV | n | PAH | STDEV
Offshore 3| 47 1.7 1| 6.0 NA 3| 42 2.3 1| 3.1 NA
Rural 2| 39 0.7 1| 2.0 NA 2| 6.7 4.4 1| 2.7 NA
Semi-Urban 41122 5.0 1| 2.8 NA 41127 10.4 1| 5.9 NA
Urban 3| 454 32.6 2| 158 138 | 2| 9.1 42 1] 7.9 NA

Table 2-1. Average gaseous and dissolved PAH concentrations in Lake Erie and
Lake Ontario. The number of sites within each category (n) is listed along with mean
PAH concentrations and standard deviation. Sites were classified based on population
within 3 km to facilitate comparison between lakes: 0-100 people: Offshore; 100-
1000: Rural; 1000-10,000: Semi-urban; >10,000: Urban.
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SUPPORTING INFORMATION:

SIGNIFICANCE OF POPULATION CENTERS AS SOURCES OF GASEOUS
AND DISSOLVED PAHS IN THE LOWER GREAT LAKES

Carrie A. McDonough, Mohammed Khairy, Derek C. G. Muir, Rainer Lohmann
Total number of pages: 35

Total number of tables: 13
Total number of figures: 9

Meteorological Information and Site Characteristics. Meteorological information
from the National Oceanic and Atmospheric Administration (NOAA) National Data
Buoy Center (NDBC)' for the buoy nearest to each site is provided in Tables S1 and
S2. Temperature varied little between locations and was colder during April — June
deployments (mean temperature 14+3.3 °C) than during June — August deployments
(22+0.9 °C) or August — October deployments (194+0.5°C). Surface water
temperatures from the NDBC were used when available, but if only air temperatures
were provided, they were used for calculations for both air and water samplers. Wind
roses built for April to October from 2006-2010 historical NOAA wind data showed
westerly prevailing winds during the sampling campaign for most of the study region
(Figure S2-2).

Data from NOAA’s National Climatic Data Center (NCDC) for all locations
showed that precipitation was lowest during June and July while similar levels were
reported in late spring and early fall.®> River discharge was generally highest during
early spring and tapered off during mid-summer and early fall.* Additional regional

features that were taken into account, including wastewater treatment plants (WWTPs)
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and Areas of Concern (AOCs) designated by Environment Canada and the EPA are
detailed in Figure S2-3 along with mean circulation patterns. Locations expected to be
impacted by major rivers are listed in Table S4. WWTPs and rivers channel larger
urbanized watersheds into point sources and have previously been identified as a
significant source of HOCs to Great Lakes surface waters.>*
Population Analysis. Population analyses were carried out using a 30-arc second (1-
km) gridded raster population dataset from the Global Rural-Urban Mapping Project,
vl (GRUMPv1) provided for free online by Columbia University’s Center for
International Earth Science Information Network (CIESIN).” The most recent North
American GRUMPv1 dataset, which uses population data from 2000 along with
satellite imagery of nightlights and other resources to model population, was loaded
into ArcMap 10.1 along with coordinates for each sampling site. Data was projected
using the NAD 1983 Great Lakes Basin Albers projection. Relative population in the
Great Lakes region was not expected to have changed drastically within 10 years
based on ground-truthing and observed trends.
Passive Sampling Procedures. Volunteers deployed samplers 1 — 3 times from April
through November, 2011 at each site. Temporal coverage depended on volunteer
availability. When possible, air and water samplers were deployed simultaneously at
the same location.

50 pm-thick low-density polyethylene (LDPE) commercial sheeting (Carlisle
Plastics, Inc., Minneapolis, MN) was cut into strips of 10x40 cm. The strips were

cleaned by incubation for one day each in DCM and hexane. Batches of about 40

48



strips were spiked with performance reference compounds (PRCs) via a method
adapted from Booij et al. (2002)* and wrapped in muffled aluminum foil.

Samplers were sent to volunteers throughout the Great Lakes region who had
been trained in the procedures for handling and setting up PEs. Water PEs were
fastened to an anchored rope and suspended in surface water. Air samplers were hung
inside inverted stainless steel bowls to guard against sunlight and precipitation. After
samplers were recovered from the field, volunteers repackaged the samplers in their
original foil wrappings and returned them via overnight delivery.

Field blank and method blank PEs were used to control for background
contamination associated with field deployments and laboratory extraction. Field
blank PEs were sent along with ordinary samplers. They were unwrapped and
handled by the volunteer at the deployment site before being sent back for analysis.
Method blanks were refrigerated after preparation and extracted along with deployed
samplers from the same preparation batch. PRC concentrations in field and method
blanks from each batch were used to determine initial PRC concentrations in deployed
samplers from the same batch.

Quality Assurance & Quality Control. Detection limits (DL), defined as 3 times the
standard deviation of all field blanks, are listed in Table S6, along with percent
detection. Concentrations <DL were reported as half of the DL, as recommended by
Antweiler et al.” Compounds that were measured above the DL in less than 20% of
samples were omitted from discussion. Duplicate or triplicate PEs were extracted at

some sites to analyze method repeatability. Relative standard deviation (RSD),
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calculated for all compounds that were > DL in all replicates, was greater between
aqueous replicates (RSD < 70%) than atmospheric replicates (RSD < 21%)).

Data from all available samplers during all deployments (April — November) at
each site were averaged for discussion. This means that some sites were represented
by only one sampler deployed during one period, while other sites were represented by
an average concentration obtained from samplers deployed throughout three
deployment periods.

Determination of Sampling Rate and Ambient Concentration. The percent loss of
each PRC was plotted as a function of its PE-water partitioning coefficient and fitted
using a nonlinear least squares fitting function using Excel Solver to obtain a sampling
rate of best fit, Ry (L/day). Calculated R values (Table S1 & S2) were used to
determine the percent equilibrium achieved for each target compound. Equation (1)
(written for air) was used to determine ambient concentration, where Cpg, 1s the
concentration (ng/g) measured in the PE, Kpg4 is the temperature-corrected PE-air
partitioning coefficient, C, is the ambient air concentration, and f'is the calculated
percent equilibrium reached by the compound during deployment.
C = i

" S Kpr (1)
Sampling Rates. Air sampling rates ranged from 7 m*/day to 75 m’/day with two
outliers replaced by more plausible values. Aqueous sampling rates ranged from 34
L/day to 285 L/day. Results and comparison to literature are in the Supporting
Information. RSDs between sampling rates calculated for replicate atmospheric

samplers ranged from 1% - 102% with an average of 32%. Passive sampling rates are
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known to be affected by meteorological factors like wind speed and temperature'*"’

but no significant relationship was observed between air sampling rates and nearby
wind speeds, most likely because sampling rates depended on features of the specific
site and regional wind speed values did not capture this local variability. RSDs
between rates calculated for replicate aqueous samplers ranged from 10%-36% with
an average of 21%.

Few studies were available for direct comparison of R values. Allan et al.
(2013) estimated riverine sampling rates for 300 cm? low-density polyethylene
(LDPE) samplers to be 6.4-18.5 L/d."* Air sampling rates determined by Ruge (2013)
for PEs in Lake Superior air (0.6 — 70 m>/day) were of similar magnitude and
variability to those reported here, though aqueous sampling rates were lower in that
study (2 — 25 L/day)."
Air-Water Exchange Rates. The direction of flux was determined from the flux ratio
as shown in Equation (2), with values > 0 indicating volatilization and values < 0
indicating absorption into surface waters.

. . CPEw e
Air — Water Flux Ratio=———4—1
CPEa,eq (2)

If a compound was below the detection limit in both air and water, no flux was
calculated. The standard deviation of the flux ratio was calculated via error
propagation based on sampling rates and analytical repeatability (both assumed to
contribute 10% uncertainty), and temperature-corrected partitioning coefficients
(assumed 50% and 30% uncertainty for AUy, and AH,.p, respectively, as in Morgan et

al. (2008))."" The standard deviation of the flux ratio was used to determine whether
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flux ratios were significantly different from equilibrium. Ratios that were not
significantly different from equilibrium are flagged in data tables.

Total flux of PAHs (ng/m?/day) was calculated from the air-water flux gradient
and mass transfer coefficient as in Equation (3), based on a modified two-film
resistance model. Total mass transfer coefficients (ko) were calculated as in
Schwarzenbach et al. (2002) from the mass transfer velocity on either side of the air-
water boundary.'® Mass transfer velocity of each PAH in water (viy) was calculated
by scaling the mass transfer velocity of CO; (vcoz,w) at 25°C using the Schmidt
number (Sc), where Sc was determined from each compound’s diffusivity in water
(Diw). Mass transfer velocity in air (viy) was determined by scaling the velocity of
water vapor in air (vy,) using the ratio of the PAHs’s diffusivity in air (Dj,) to water’s
diffusivity in air (Dy,) at 25°C. vy, was determined from an empirical regression with
wind speed at 10 m above sea surface (u;o) as shown in Schwarzenbach et al. (2002)."
D;, and Djy, at 25°C were calculated from molecular weight using the relation in
Schwarzenbach et al. (2002)." Air-water partitioning coefficients (Kqy) were
corrected for temperature using the internal energy of air-water exchange, AU,,, (Table

S7).

F

CPEw, eq_CPEa,eq) (3)

e

alw

Gaseous PAHs and Temperature. A positive correlation between gaseous PAH
concentration and temperature has been observed in previous studies and linked to
temperature-dependent local processes such as revolatilization from contaminated
surfaces as well as decreased condensation of PAHs onto particulate matter.'®'” To

examine the effect of temperature on total gaseous PAHs, locations where data was
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available for three deployments (Buffalo, Dunkirk, Fairport Harbor, Niagara, Oswego,
Rochester, and Erie) were plotted with mean temperature during deployment (Figure
S$2-7). During colder deployments (T < 17°C), mean 2;sPAH = 3.6+1.2 ng/m’.

During warmer deployments at the same sites, mean ¥;sPAH = 13.1+13.4 ng/m>. All
three Dunkirk deployments took place at mean temperature >20°C and so data for this
site was not used in calculating averages. No increase in gaseous PAH concentration
with temperature was observed at the rural Erie or semi-urban Niagara locations. Both
of these locations were within parks and most likely less exposed to surfaces like
asphalt they may act as significant sources of revolatilizing gaseous PAHs. Small
increases in X;sPAH were observed at urban locations Oswego and Buffalo and at
semi-urban Fairport Harbor, while concentrations increased greatly at urban
Rochester.

Temporal Fluctuations of Dissolved PAHs. No obvious spatial differences
were observed in dissolved PAH concentration or composition at sites expected to be
heavily impacted by river discharge, listed in Table S4. To further investigate whether
discharge affected dissolved concentrations, temporal changes in X;sPAH were
compared to precipitation and tributary discharge for sites where more than one
deployment was undertaken. In Oswego, Buffalo, and Cleveland, dissolved X;sPAH
increased from summer to early fall (deployment 1 and 2) along with precipitation and
river discharge. However, £;3sPAH also increased from spring to summer at Buffalo
and Oswego, while river discharge and precipitation decreased. Cleveland was not
monitored during this time period. Data for Buffalo and Oswego are shown in Figure

S2-8.

53



"7~ Pue [-IS SI[qR], UI SUONBIADIQQE IIM SUO[e PaIsI|
oJe SoWRU 9IS [N :SUOHBIAAIQQY Put suonedo| yudwsojdo( 19jep\ pue a1y 1107 “1-TS 2In31

T
i I 3 Il |
1

siawoy 001 0S 0

101

088 NLS
ou3 ae’)

18ld o

by 4ng
K -

54



(Kep/ew 1) yuawikojdop pug wody Y yum paoejdor juswikordop ] oy woyg oy Srex)
‘1, 981090 :sonjeA 9[qisne|d a1ow yim paoedar arom Aep/ W (07 < st Surjduwes 1re (p 031 DEDN 1s918au 3y woly ejep uonendroard (0 '110¢
10} SOAIYDIE [BOLIOISIY JJUS)) Aong BIe(] [BUOHEN VVON (4 z'81Ep PUIM YVON 010Z-9007 WOIJ PIJONISUOD SISO PUIsm AI0ISIH Puip woi] (B

65 SI'T 0€ TT0T/ET/01 | TIOT/EL/6 | 9TTI 8¢ TS 091 N
151 ¥6'1 T 110T/€1/6 | 110T/2/8 06 6 2 w 110T/€1/6 | 1102/T/8 206 43 9¢ [§44 N
611 ¥S'1 22 110T/E1/6 | 110228 £06 €S 68'1 w T10T/E1/6 | 110T/T/8 106 TS 9 [§%4 N
¥8 81 19 1102z | 110279 | ove 91 S8l 9 1102/2/8 | 1102/1/9 SET 91 vy '€ N
(D) vd 2ud
VINVATASNNAd
S91 SSl LS 1102/82/6 | 110T/2/8 806 SE 68'1 65 1102/0€/6 | 1102/2/8 | LOET 6€ ¥'S 90z VN
81 S9'1 09 110228 | 110T/€9 | 906 ST 6 LT VN
SS 10T (32 110T/E/9 | 110T/1T/% | 2o€ 9¢ 9 9€l VN
(Ha) HO ‘10qaey 1odarey
S8 98’1 o¥ 110Z/5/01 | 1102928 | Lev T'E 0 9'81 MN
€01 w61 [ 1102/92/8 | 110T/S1/9 | 11€ 54 43 87T MN
(IVT-A1D) S PUBPAI]D dI0YSJO
1 €6'1 09 110T/0€/6 | 110T/1/8 | €I€l 06'€ VN ST MN
1T y0'T 19 1ow/g | 1oz | Ty ST VN 9€T MN
(DLO-ATI) HO ‘PUBPAI]) ‘UonE}§ Suliojiuoly a1y S1e1) "I 931009
9¢ LLT 09 110Z/81/01 | 1102/61/8 | 80€ LE 6€ L3I MN
€S YT €9 1102/61/8 | 110TLIS | 9¢v e [ 0€T MN
(DQI-A'TD) HO ‘PUBPAID B 19)eMadpy
6vi | 860 [ Ly | 1102401 | 1102/81/8 [ SIEl 91 v6'1 Ly 1102/#/01 | 110Z/81/8 | 9I€l 6¢ 6¢€ V6l VN
samwp uawlo)dap papi03a. ON :pauiuQ 8 S8l L 1102/81/8 | 1102/5/9 | 216 3 €€ 97T VN
(AHS) HO “9¥e’] PPYINS
€6 | ooz | Ty [ riowel/9 | 110z/8/s | 91€ 1z 107 [ T [ w69 [ 1iouss | ogle v | Ly [ 9 ] WN
(419) HO ‘PUEISI TeI[EIqID
st [ srz | Ts [ uiowew9 | rroueey [ ves (3 e | Ts [ rowen9 [ rroweey |18 cy [ se | L91 [ VN
('TOL) HO ‘opaloL
OIHO
,. al(§, (Do
Q%W\M.H.c (8)ad pakorda@ | parsaoday | pakordaq *ON A»MW\WEV (8) aq | pakordeq | pareaoday | pahordaq "ON > (fur) vﬂommv nmvu.wk EM_HMM_Q
Sundweg JUEICITY skeq aeqg aeq ardureg Sundureg WSrom skeq aeq aeq spdweg | ~dwoarg o%_”oﬂ( ‘_MWM..M\MQ Sumreacig
smpdweg 1218 A, sndweg a1y B)E(J [B2130[0109)JA
ARIT MVT

1107 ‘sIo[dureg dAISSEJ J19)BAA PUR IV 10} ATewiiing SULIO}IUOA LT BT °I-TS dqeL

55



‘sojer urjdures Ire 9)e[-Uu0 I9Y)0 0M] JO 9FeIdAR )M paoe[dar
ST AoTue)S 1104 J0J y :sonjea o[qisnerd orowr yum paose[dar ore Aep/ . 00 < 9 IV (P 1S DADN Isereau oy woij eyep uonepdioaid (3 ' 1102
10J SOAIYIE [BOLIOISIY 19Jua)) Aong vle( [eUonBN VVON (q i B1ep pulm YVYON 010Z-9007 WO} PIIONNSUOD SISO Puim AI0JSIH Pulpy Wwoi] (e

99 [ Twer | T8 [ TI0TILOT [ TTOTITL | 609 | | - ] 6s | o1 | VN
LSE WS
os | o61 [ v8 | r1rozeion [ 110T0TL [ 809 ] | - [ g5 | sww | VWN
088 WS
s [ vor [ 98 [ 1I0TELOL [ TI0T6I/L [ L09 ] | - [ zs | st [ ©WN
7sp WS
[ sz [ o081 [ ¥8 [urozzior [rrozozi [ vo9 | - ] Ts [ g0z [ WN
Loueg 110g
[ ez [ ss1 | w8 Jurowewor Jutomoz | €09 | - [ s | riz ] N
asnoyiysry [eoys IS
[ ot [ oor | 16 Juromewor 1oz | 100 | - ] gs [ ctoz | ¥N
uIoqo)) 1Iog
SNOILVDOT IIVI-NO
901 99'1 89 110T/€/01 | TT0TLTL | vOET €l 6’1 89 110T/E/01 | TT0T/LT/L | TOET 8y 'y 102
6 LO'T 89 110T/€/0T | TT0TLTL | €OET vl 16'1 89 T10T/E/0T | TTIOT/LTL | TOET gy 'y 102
6LT S6'1 €9 T10T/LTL | 110TSTS | €€8 81 68'1 £9 TI0T/LTL | 110T/ST/S | 168 €€ 0¥ $0T
€9 00T 2 110T/STYS | 110TT1/S | €€T 9L €S [
81 €6'1 S€ 110T/STS | 110z/02y | 0€T 9's 00z
(NQ@ AN “Hpung
01 161 €9 110T/E/01 | 110T/1/8 | veTl 91 0T £9 110z/€/01 | 110T/1/8 | TETI o e V6l aN
621 S6'1 19 1oz/i/8 | 110T/19 | 8es 8 8’1 19 10z/1/8 | 1102/1/9 | Le8 I'E L€ $0T aN
Sy 181 £p 110T/1/9 | 110T61/% | 82T oy 8’1 32 110T/1/9 | 110061/ | €22 69 6'€ Tl aN
(An9) AN ‘orepng
NYOX MAN
(Kep/1) . (Kepjcw) P . . (/) <(O) +UOTI0AI(]
ey (3) ad uu,ﬁwaoa pai2a00ay | pakordaQ "ON ey (3) ad | pafordaq | paeaoday | padordaQg "ON -(ur) paadsg dwagy pUIAM
Surdures W3 skeq aeqg aeq aidureg Surdureg Wi skeq auq aeq oidweg | -doaig o%m.mmM/{ uwuwﬂwﬂwﬂ% Funeasig
saapdwesg 1218 A snpdweg ary BIE(] [B2130[010912A

dI¥E I3VT

110T ‘sIo[dueg JAISSBJ 19)BAA PUR ATV J0J ATewIing SULIO)UOJA LI M8 *PIU0)) [-TS dqeL

56



‘S 19410 JO 1YS1om 9FRIDAR UO PIskq § 7 JO AJBWISS PAsn ‘papIoddl JYSIom OU :y <"931S DN IS91eau 3y wody eiep uoneydroald (3 ' 1102
10J SOAIYIE [BOLIOISIY 19Jua)) Aong vie( [eUOnBN VVON (q B1ep pulm VVON 010Z-9007 WO PIIONNSUOD SISO Pulm AI0JSIH PUIAy Wol] (8

S6 6L'1 s¢ 110T/ST/0T | TTOT/TE/8 019 €€ 08’1 S 110Z/ST/0T | TTOT/TE/B 909 - oS OLI/TT9T VN
LL 90T 98 110T/T€/8 1102/9/9 029 197 *C 98 110T/TE/8 1102/9/9 619 - 6'€ Loz ie VN
(149) ereyuQ d3e7] ‘Aqsurri)
§311S YVT-UO
69 081 6L T10T/T/TT | 110T/S1/8 SOTI €T S6'1 6L 110T/T/TT | T10T/ST/8 0Tt s 0T ¥'81/9°S1 VN
Z01 S6'1 6L T10T/T/TT | 110T/S1/8 YOTI 1T L6'1 6L 110T/T/TT | T10Z/ST/8 101 s 0T ¥'81/9°S1 VN
9LIT 70T I8 110T/S1/8 | 1102/9T/S LTy 1€ yi'e 8 110T/S1/8 | 110Z/9T/S (4% L'E 81 061/L61 VN
I€1 L8 6€ 1102/9T/S | TT0T/LTY 90T Ve €T 09 VN
811 *C 6€ 1102/9T/S | TT0T/LTY S0t e €T 09 VN
19 6L°1 6€ 1102/9T/S | T10T/LT/Y 0T e €T 09 VN
(AD) AN ‘Judurp ade)
18 00T €9 110T/€/01 1102/1/8 60T 91 76'1 €9 110T/€/01 110Z/1/8 80TI 1Y 194 61 RICLISLTIN
651 yr'e 19 110Z/1/8 1102/1/9 §9% €T 66'1 19 110T/1/8 1102/1/9 6T VT 'y 90T seg
L8 181 124 110Z/1/9 110Z/81/% 11T LS 4 €71 seq
121 16'1 124 110Z/1/9 110Z/81/% 01z LT 08’1 124 110T/1/9 110Z/81/% 80T LS 4 €71 seg
LOT 181 124 110Z/1/9 110Z/81/% 60T 9¢€ 181 124 110Z/1/9 110Z/81/% L0T LS 4 €71 seg
(MSO0) AN ‘03amsQ
1T 0T <9 110T/S/01 1102/1/8 €1TI Ly £y L6l aN
L LY L9 110T/1/8 1102/9T/S 108 91 6'€ 01T aN
99 66'1 8€ 110T/9T/S | T10Z/81/% [4v4 1Y vy or1 aN
(D0 AN ‘12359120
61 LS'T €9 110T/2/01 | TTOT/TE/L 91TI 8T €€ 0T aN
L 9L'1 6% T10T/TE/L 1102/2/9 <08 61 091 6S TT0T/TE/L 1102/2/9 €08 S TE 81T aN
143 981 ¥4 1102/2/9 110Z/21/8 0Tt SL S6'1 14 1102/2/9 110Z/21/8 81¢C e 8T VET aN
(VIN) AN ‘usojsdunox ‘jieq 2)ej§ earedeiN 110,
oS, (Do
QMMN W:c (3)aq BMMMMUD pai2a022y | pakordag "ON QMMMWEV (3)agd BMMMMUO pai2a00dy | padordeg "ON S(ur) Mowmm nmo,w EouwwMMD
Supdues W3om i Aeq aeq ordweg Supdues oo 0L Aeq aeq sidwes | "drarg PUTAA IR AN/ wE:?Em
aferoay aferoAy

sId[dwes J)e

sndueg Jay

BJE(] [BI130[0I031IA!

ORIVINO 3XV1

1102 ‘saojdureg aAIssed J19)BA\ pPUe ATV J10) Alewiuing SULIOJIUOJA OLIBIUQ) T "T-7S dIqEL

57



‘[oABI} SPUIM D) UOTIAIIP A3 Ut Jutod smoire (o)euIdiio spurm Surfreadrd yorym woij uonodlrp au ur jurod sreq ,AI0ISIH puipm Aq
papraoid ‘010Z-900C 120q0300-[1dy so3eT 18910 10MO] oY) JNOYSNOIY} UOIoIIp pulm Sul[readld UBSJA (U0 PUIA SUI[IeAdld *7-TS 2InSL

r

o

- &7‘\..
ot
o

58



Table S2-3. Over-Land and Over-Water Trajectories Arriving at Coastal Sites.
6-hour air mass back trajectories were calculated every 30 hours over the entire
deployment period for Cleveland, Buffalo, Oswego, and Rochester to determine
whether lower PAH concentrations in Buffalo and Oswego could be explained by a

larger contribution from over-lake air masses diluting the urban plume at these
locations.

%Over- %Over-
land lake
ROC 61 39
OSW 38 62
BUF 56 44
CLE-EDG 60 40

Table S2-4. Major Rivers within 10 km of Aqueous Sampling Sites: Compiled
from USGS discharge records.”

Mean 2011 .
. . Water Sampling
River Name Discharge . oy s
Sites within 10 km
(m3/s)

Niagara River 6134 NIA
Oswego River 256 OSW
Maumee River 251 TOL
Grand River 160 FH
Buffalo River 50 BUF
Cuyahoga River 43 CLE-LAK
Black River 42 SHF
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Table S2-5. Percent Recovery for Internal Standard Spikes in Passive Sampler

Extracts

Atmospheric Extracts

Compound MIN | MAX | MEAN | STDEV
Acenaphthene-d10 34% | 152% 78% 0.21
Phenanthrene-d10 40% | 155% 87% 0.21
Chrysene-d12 50% | 163% 90% 0.16
Perylene-d12 19% | 112% 67% 0.20
Aqueous Extracts

Acenaphthene-d10 22% | 100% 69% 0.26
Phenanthrene-d10 35% | 104% 79% 0.21
Chrysene-d12 60% | 114% 92% 0.14
Perylene-d12 49% | 109% 86% 0.15

Table S2-6. Detection Limits and Percent Detection

. . % Detection
Ave;i;: ield Detection | Detection | Detection :A D?f;;?:’;; >DL in
Compound . STDEV Limit Limit Limit Water
Concentration (ng/g PE) (/L) (pg/m?) Samplers Samples
(ng/g PE) (n=40)
(n=34)

Nap 2.3 1.7 5.0 1556 9023 0 9
Biph 2.9 1.6 4.8 465 478 15 0
Acy 0.41 0.2 0.7 289 112 50 82
Ace 1.7 2.1 6.3 361 720 15 3
Flr 1.6 0.9 2.7 70 107 75 26
Phn 8.8 11 33 689 300 88 21
Ant 0.73 0.9 2.8 204 15 55 56
1-MPhn 1.2 0.9 2.8 421 4.2 98 100
MPhns 10 7.8 23 1126 35 88 85
Flra 18 24 71 1234 66 68 79
Pyr 14 19 56 374 40 60 76
Ret 3.5 4.0 12 69 5.3 55 59
BaA 2.3 2.3 7.0 13 3.0 35 79
Chry 6.2 7.5 22 119 9.4 53 97
BbF 2.3 2.6 7.8 6.3 3.2 23 97
BkF 2.5 2.4 7.3 5.5 3.0 28 97
BeP 3.7 3.9 12 5.8 4.8 13 88
BaP 1.0 1.2 3.6 4.7 1.5 18 85
Per 1.1 1.7 5.1 1.2 2.1 8 76
BjF 0.5 1.1 3.2 2.6 1.3 15 18
InP 0.6 0.7 2.0 1.4 0.8 35 94
DibA 0.1 0.1 0.4 0.4 0.2 40 88
BghiP 0.7 0.8 2.4 0.9 1.0 28 88

a) Estimated typical ambient detection limit using deployment time 56 days, sampler mass 2 g, and

mean air and water sampling rates (40 m*/day and 112 L/day, respectively).
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Figure S2-4. Percent Composition of Total Vapor Phase (A) and Aqueous
Dissolved (B) PAHs: Sites are classified based on population within 3 km, as
described in Table S8.
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Figure S2-5. Principal Component Analysis (PCA) of Air (A) and Water (B) PAH
Profiles
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Figure S2-6

Correlation:
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Figure S2-9. Flux Ratio (Cpgw/Cpra — 1) with Propagated Error
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ABSTRACT

Polycyclic musks (PCMs) are synthetic fragrance compounds used in personal
care products and household cleaners. Previous studies have indicated that PCMs are
introduced to aquatic environments via wastewater and river discharge. Polyethylene
passive samplers (PEs) were deployed in air and water during winter 2011 and
summer 2012 to investigate the role of population centers as sources of these
contaminants to the Great Lakes and determine whether the lakes were acting as
sources of PCMs via volatilization. Average gaseous X,PCM ranged from below
detection limits (<DL) to 3.2 ng/m’ on the western shoreline of Lake Erie in Toledo.
Average dissolved 2,;PCM ranged from <DL to 2.6 ng/L on the southern shore of
Lake Ontario near the mouth of the Oswego River. Significant correlations were
observed between population density and 2;PCM in both air and water, with strongest
correlations within a 25 and 40 km radius, respectively. At sites where HHCB was
detected it was generally volatilizing, while the direction of AHTN air-water exchange
was variable. Volatilization fluxes of HHCB ranged from 11+6 to 341+127
ng/m?/day, while air-water exchange fluxes of AHTN ranged from -3+2 to 28+10
ng/m?/day. Extrapolation of average air-water exchange flux values over the surface
area of the lakes’ coastal boundary zone suggested volatilization may be responsible

for the loss of 64-213 kg/year of dissolved 2;PCM from the lakes.
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INTRODUCTION

Polycyclic musks (PCMs) are ubiquitous pollutants widely used as additives in
personal care products and household cleaners to lend them a long-lasting, pleasing
odor."” Previous studies have indicated that PCMs are introduced to aquatic
environments, including the Great Lakes, via effluent from wastewater treatment
plants (WWTPs) and river discharge.*® One of the most widely used PCMs,
1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB, or
Galaxolide), was listed as one of Howard and Muir’s top 50 high priority pollutants
with persistence and bioaccumulation potential in need of increased monitoring.” The
effects of PCMs on aquatic organisms are largely unknown, but they have been found
to bioaccumulate® '* and recent studies suggest environmentally relevant
concentrations may cause oxidative stress and genetic damage in some organisms."’

Polyethylene passive samplers (PEs) are promising tools for measuring
hydrophobic organic contaminants (HOCs) at high spatial resolution because they are
cost-effective, require no electricity, and are simple to deploy.'?> PEs sequester the
dissolved or gaseous fraction of HOCs from the surrounding water or air over time,
allowing measurement of time-integrated concentrations.”>'® They have been used to
measure a wide variety of HOCs in air and water and to calculate air-water exchange
fluxes,'”° but they have not been applied to the study of air-water exchange for
PCMs.

The use of PEs in this study provided a unique opportunity to measure the truly
gaseous and dissolved fraction of PCMs available for air-water exchange and

determine whether gaseous PCMs were volatilizing from surface waters in Lake Erie
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and Lake Ontario. On the basis of previous work, volatilization may be an important
loss route for PCMs in the Great Lakes," but fluxes had not been determined by
simultaneous air and water sampling. In this study, PEs were deployed in air and
water during winter 2011 and summer 2012 to (i) measure baseline gaseous and
dissolved concentrations of PCMs in and above Lakes Erie and Ontario, (i1)
investigate the role of population centers as sources of these contaminants, (ii1)
determine whether the lakes were acting as sources of PCMs via volatilization, and
(iv) explore how PE-derived PCM air-water exchange fluxes respond to non steady-

state conditions.

MATERIALS AND METHODS
Sampler Preparation and Deployment. Prior to deployment, PEs were pre-
extracted in solvent and loaded with performance reference compounds (PRCs)
dibromobiphenyl, tetrabromobiphenyl, pentabromobiphenyl, naphthalene-ds, pyrene-
dio, and benzo(a)pyrene-d;, as described previously."” The PE deployment schedule
and meteorological parameters, including the number of days each PE was deployed,
are summarized in Supporting Information (SI) Table S1. Average temperature and
wind speed were determined using data from the nearest available meteorological
buoy (Table S3-2, Figure S3-1).

Shoreline PEs were deployed by trained volunteers as previously described.'”
Briefly, volunteers hung air PEs inside protective metal bowls at a height of about 1.5
m, and tethered water PEs to an anchored line so that they would be secured about 1 m

beneath the water’s surface. Offshore and nearshore deployments were carried out by
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workers at Environment Canada and the Ontario Ministry of the Environment, as
described previously by Liu et al.'” Air PEs were secured in a protective chamber 2 m
above the water’s surface on a buoy and water PEs were enclosed within a perforated
metal cage and secured to the buoy about 4 m below the water’s surface. After the
PEs were recovered, they were shipped back to the laboratory overnight on ice and
frozen until extraction.
Extraction and Analysis. PEs from 56 atmospheric deployments (including 9
overwinter deployments) and 39 aqueous deployments were extracted and analyzed.
All PEs were spiked with labeled PAHs (acenaphthene-d,o, phenanthrene-d;,
chrysene-d», and perylene-d;») and extracted for 18-24 h in pentane, concentrated to
<100 pL, and spiked with injection standard p-terphenyl-d;4. All extracts from
aqueous PEs were passed through silica gel/sodium sulfate cleanup columns.
Extracts were analyzed for five PCMs: 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-
hexamethylcyclopenta-(g)-2-benzopyran (HHCB, or Galaxolide), 7-acetyl-1,1,3,4,4,6-
hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN, or Tonalide), 4-acetyl-1,1-
dimethyl-6-tert-butylindan (ADBI, or Celestolide), 6-acetyl-1,1,2,3,3,5-
hexamethylindan (AHMI, or Phantolide), 5-acetyl-1,1,2,6-tetramethyl-3-
1sopropylindane (ATII, or Traesolide) and two nitromusks: 1-tert-butyl-3,5-dimethyl-
2,4,6-trinitrobenzene (musk xylene) and 4-acetyl-1-tert-butyl-3,5-dimethyl-2,6-
dinitrobenzene (musk ketone). This was done using an Agilent 6890 gas
chromatograph (GC) with a J&W Scientific DB-5 MS fused silica capillary column
(30 m x 0.25 mm 1.d.) with the injection port set to 275 °C and helium flow set to 1.9

mL/min, coupled to an Agilent 5973 mass spectrometric detector (MSD) in electron
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ionization (EI) mode with ion source at 230 °C, quadrupole at 150 °C, and transfer line
at 250 °C. Concentrations were corrected for internal standard recoveries.

Quality Control. Every batch of PEs was extracted alongside a laboratory blank and
two additional blanks extracted in solvent spiked with all target compounds. Spiked
samples were used to track losses during extraction, concentration, and cleanup.
Average recoveries ranged from 79% for musk xylene to 145% for musk ketone
(Table S3). The relative percent differences (RPD) between ambient concentrations
from duplicate samplers are shown in Table S4. For air PEs, the mean RPD was 18%
for HHCB and 21% for AHTN (n=18). For water PEs, the mean RPD was 15% for
HHCB and 25% for AHTN (n=14).

Field blanks were sent to each volunteer along with PEs intended for
deployment. Field blanks were transported to the sampling site along with other PEs,
taken out of their packaging, handled by the volunteer, and then immediately
repackaged and shipped back to the laboratory for analysis. Concentrations of target
compounds in deployed PEs were blank-subtracted using the most relevant field
blank. For offshore deployments done from research vessels, all field blanks taken
during the cruise were averaged and the average field blank value was subtracted from
all samples collected.

After blank subtraction, the detection limit (DL) in ng/g PE was defined as
twice the standard deviation for all 11 laboratory blanks, as these samples were
representative of the typical variability in background concentrations in the laboratory.
Concentrations below detection limits were replaced with zero. Average blank

concentrations and detection limits per gram of polyethylene are shown in Table S5.
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For HHCB, which was typically found at greater concentrations than the other PCMs
in the blanks, average blank concentrations were 13 ng/g PE, 28 ng/g PE, and 4 ng/g
PE in laboratory blanks, shoreline volunteer field blanks, and shipboard field blanks,
respectively.

To better describe the detection limits for PEs, typical DLs in ng/g PE were
translated to air and water concentrations using the average percent equilibration for
each site type and assuming an average temperature of 18.85 °C for summer
deployments and 4.85 °C for winter deployments (Table S6). For air samples, typical
ambient detection limits were about 0.9 ng/m’® for HHCB and 0.07 ng/m’ for AHTN at
summer shoreline and offshore sites, and 0.2 ng/m’ for HHCB and 0.01 ng/m’ for
AHTN at winter shoreline sites. In water samples, typical detection limits were about
0.6 ng/L for HHCB and 0.04 ng/L for AHTN, with no significant difference between
offshore and shoreline samples. Actual detection limits varied from site to site
depending on the PE’s sampling rate, and all blank subtraction was done using
concentrations per weight of polyethylene, before conversion to ambient air and water
concentrations.

Percent detection for target compounds is presented in Table S7. HHCB and
AHTN were found in 15% and 68% of all shoreline air PEs deployed in this study and
in 38% and 54% of offshore/nearshore air PEs. In water, HHCB and AHTN were
found in 45% and 60% of shoreline PEs and in 47% and 79% of offshore PEs.
Physico-Chemical Properties. Physico-chemical properties of all target analytes and
PRCs are presented in Table S8. PE-air partitioning coefficients (Kpga) were

determined from regression with subcooled liquid vapor pressure as in Khairy and
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Lohmann."> PE-water partitioning coefficients (Kpgw) were calculated from solubility
as in Lohmann.”' Kpga, Kpgw, and diffusivity in air (D,) and water (D,,) for each
compound were corrected for each deployment’s mean temperature, as detailed further
in the SI.

Sampling Rates and Ambient Concentrations. To determine ambient concentration
(C,), the concentration in the PE (Cpg) was adjusted for the percent equilibration (f)
reached during deployment as in Equation 1. A detailed summary of these
calculations is presented in the SI. Briefly, percent loss of each PRC (1-f) was
plugged into a generalized exponential model for PE uptake (Equation 2) to derive a
best-fit value for the thickness of the diffusive boundary layer (dpgL) using a nonlinear
least-squares fitting method adapted from Booij et al.** In Equation 2, ¢ is total
deployment time (listed for each deployment in Table S1), /pg is half the PE thickness,
Kbpewm 1s the PE-matrix partitioning coefficient, and k, is the mass transfer coefficient,
which represents the reciprocal sum of PE-side resistance (kpg™'), which is dependent
on Dpg and /pg, and environmental matrix-side resistance (ky, '), which is dependent on
D, or Dy and oppr. Best-fit dppr. values were used to estimate freached by each PCM

during each deployment.

CPE

C =—2F
KPEA'f

(1)

_"kO"AlPE

f — 1 _ eKPE\I'VPE
)
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Average f values for each PCM are presented in Table S9 and show that
HHCB and AHTN generally reached > 95% equilibrium in both air and water.
Average OppLs for air boundary layers (0ap1) were lower for offshore/nearshore PEs
(0.2+0.1 mm; average+SD) than for shoreline PEs (1.8+1.4 mm in summer and
1.4£0.5 mm in winter). This translated to average HHCB sampling rates of 5.7+0.9
m’/day for winter PEs, 6.9£2.3 m*/day for shoreline summer PEs, and 13+0.9 m’/day
for offshore PEs. Average water boundary layer thickness (dwgr) was 170+£63 pm at
shoreline sites and 82+25 um at offshore sites, which translated to average sampling
rates for HHCB of 16+3.8 L/day for shoreline PEs and 9.2+4.1 L/day for offshore
PEs.

Best-fit dppr. and other compound-specific and site-specific parameters were
plugged into the equation for fto determine typical equilibration times for the PCMs
measured in this study. HHCB and AHTN tended to equilibrate within about 25 days
in water and 19 days in air, so mean concentrations were representative of these time
lengths, though PEs were often deployed for longer. Use of thicker polyethylene
sheeting in future deployments would allow for time-integrated concentrations of
HHCB and AHTN to be measured over longer time periods.

Data Analysis and Statistical Methods. Human population data were extracted from
the Global Rural-Urban Mapping Project (GRUMP) Population Count Grid data set
provided by Columbia University> and maps were constructed in ArcMap for
Desktop 10.3.1. To find the radii at which population and XsPCM correlated most
strongly, the model with the lowest residual standard error (RSE) was identified using

the ordinary least-squares linear modeling function (/m) in R.** Linear models were
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further refined using the robust linear model (#/m) function in the MASS package in
R,” which iteratively fits data to a linear model, weighting outliers depending on their
distance from the best-fit line. All presented relationships were found to be
statistically significant (p < 0.01) using both approaches. Results were plotted using R
package ggplot2.*°

Air-Water Exchange Calculations. Thirty-two pairs of codeployed air and water
PEs were used to investigate time-integrated air-water exchange fluxes. The direction
of exchange was determined by calculating the ratio of fugacity in water to fugacity in
air (fw/f2) as in Equation 3, where C.,, and C., represent the concentration of the
compound in the PE once it has reached equilibrium with surrounding water and air,

respectively.

fo  Coomw
fa C100,@ (3)

A value of fi/fa > 1 indicates volatilization, while f,/f, < 1 indicates
absorption. In cases where the concentration in both air and water were <DL, no
fugacity ratio was calculated. In cases where the concentration in one medium was
<DL, but was >DL in the other medium, a fugacity ratio was calculated by replacing
the <DL value with the DL value, as this resulted in the most conservative estimate for
the fugacity ratio (see Figure S3-2).

Values for C. and C, were determined by correcting the concentration in
the PE (Cpg) using the calculated percent equilibrium (f) reached by each compound
during deployment. In most cases for AHTN and HHCB, C,, ~ Cpg because they
equilibrated during deployment. The uncertainty in the fugacity ratio was calculated

by propagating the uncertainty in the parameters used to calculate C., , and Cx , which
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is detailed further in the SI. In cases where the fugacity ratio was within one standard
deviation from equilibrium, it was not considered significantly different from
equilibrium and no flux was calculated.

Air-water exchange fluxes (F,4,) were calculated using an approach based on
the Whitman two-film model®’ as described in Schwarzenbach et al.?® with wind
speed’s effect on water-side mass transfer determined using a Weibull distribution to
account for the nonlinearity of the effect of wind speed on mass transfer.”” The mass
transfer coefficient (v,4) was multiplied by the concentration gradient as in Equation
4, where Kpgw, 12 1s the PE-water partitioning coefficient corrected for deployment
temperature. Similar approaches have previously been used to estimate air-water
exchange fluxes from PE pairs for polychlorinated biphenyls (PCBs), polybrominated
diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in the Great
Lakes,”*'”" but PCMs have not been investigated. Uncertainty in exchange fluxes
was calculated using the uncertainty of the parameters used to calculate Cy 5, Csw, and
Kpew, 2, and assuming 30% relative uncertainty in va/w.3] Calculations and error

propagation are detailed further in the SI.

(Coo,w - Coo,a)
Kpew,T2 )

Fa/w — Vg /w -

RESULTS AND DISCUSSION
Dissolved PCM Concentrations. Average dissolved XsPCM ranged from <DL at

Cape Vincent (CV) in eastern Lake Ontario to 2.6 ng/L near the mouth of the Oswego
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River (OSW) on the southern shoreline of Lake Ontario. Average dissolved
concentrations of AHTN and HHCB are shown in Figure 3-1A.

Average dissolved PCMs are summarized in Table 3-1. Along the
southeastern shore of Lake Erie and the northeastern shore of Lake Ontario,
concentrations were similar to offshore levels (XsPCM < 100 pg/L) and HHCB was
generally <DL, while concentrations were elevated nearer to the urban centers of
Toronto and Cleveland and along the southern shore of Lake Ontario. Variation in
dissolved £sPCM over multiple deployments is shown in Figure S3-3.

Overall, concentrations reported from PEs were similar but lower than
previous results: Peck and Hornbuckle measured PCMs in Lake Michigan in 1999-
2000 using shipboard active sampling with XAD-2 resin and reported means of 5 ng/L
for HHCB and 1 ng/L for AHTN.* Helm et al. estimated concentrations of 0.2 — 10
ng/L and 0.1 — 10 ng/L for HHCB and AHTN, respectively, east of Toronto in June
2008 using semipermeable membrane devices (SPMDs).* In offshore Lake Ontario,
Andresen et al. measured HHCB and AHTN by liquid-liquid extraction of water
samples at 2.0 ng/L and 0.2 ng/L, with concentrations increasing to 7.0 ng/L for
HHCB and 0.8 ng/L for AHTN in Hamilton Harbor.”> Concentrations in this study
were typically lower than those in urban creeks near Toronto (2-1000 ng/L, with lower
concentrations (0.04 — 18 ng/L) in the less populated Rouge River watershed).” This
was expected, as the sites monitored in this study were not as directly representative of
upriver source regions.

At sites where both HHCB and AHTN were detected, the ratio of

HHCB:AHTN ranged from 7 to 12, with an average of 10£2, which was similar to that
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reported by Buerge et al. for summertime surface waters in a Swiss lake
(HHCB:AHTN 6 — 9) and by Andresen et al. in Lake Ontario in 2005 (~ 10).**
HHCB:AHTN ratios were, in most cases, greater than those measured in source region
studies. Buerge et al. estimated that the half-life of HHCB with respect to photolysis
in water was about 25 times longer than for AHTN, so increasing HHCB:AHTN ratio
in water with distance from source was expected.*

Nitromusks were not found above a 3:1 signal/noise level in the majority of
water samples and were therefore omitted from discussion. Previous studies generally
found musk xylene and musk ketone at levels near or below this study’s typical
detection limits (19 pg/L for musk xylene and 225 pg/L for musk ketone). Peck and
Hornbuckle found median concentrations in Lake Michigan of 49 pg/L for musk
xylene and 81 pg/L for musk ketone, and Andresen et al. measured both nitromusks at
about 40 pg/L in Hamilton Harbor, Lake Ontario.***

Gaseous PCM Concentrations. Average summertime XsPCM ranged from <DL at
sites in Erie (ERI) and Sheffield Lake (SHF) on the southern Lake Erie shoreline,
Prince Edward Point (PEP) in northern nearshore Lake Ontario, and eastern offshore
Lake Erie (EERI), to 3.2 ng/m’ in Toledo (TOL). Concentrations of all gaseous PCMs
are summarized in Table 3-2. Average summertime HHCB and AHTN concentrations
are displayed in Figure 3-1B. Summertime concentrations were lowest at offshore
buoy sites (< 300 pg/m’, with HHCB <DL), with the exception of three buoy sites
near the Toronto waterfront, where concentrations were comparable to or greater than

those at shoreline sites. Concentrations at shoreline sites were generally greater in the
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summer than in the winter. Variations in £sPCM over multiple deployments are
depicted in Figure S3-4.

A possible explanation for the low incidence of detection of HHCB in this
study is its short atmospheric lifetime (about 5.3 h) with respect to photolysis.*
HHCB:AHTN ratios in air have previously been shown to decrease with distance from
source regions, suggesting that gaseous HHCB may degrade more rapidly than
AHTN.* At sites where both AHTN and HHCB were >DL, the average
HHCB:AHTN ratio ranged from 3.8 in eastern nearshore Toronto (ETOR) to 6.6 in
Toledo (TOL), with an average value of 5+1, somewhat similar to ratios measured by
Xie et al. in rural Germany (median 3.5).*°

PCMs are relatively volatile (0.02 - 1.2 Pa)* compared to other semivolatile
organic contaminants (SVOCs) and a significant fraction of these compounds (> 80%)
is typically found in the gaseous phase, suggesting that PE-derived concentrations
should match those from other air sampling techniques. Indeed, results from previous
studies were similar: Peck and Hornbuckle measured gas-phase PCMs in 1999-2001
using XAD-2 resin throughout the Great Lakes and found average urban ) ,PCM
(AHTN + HHCB) around 1-5 ng/m’ with mean offshore Lake Erie and Lake Ontario
concentrations <0.5 ng/m’.*” Furthermore, average Y»PCM concentrations in Toronto
nearshore air measured in this study (1.6- 3.1 ng/m’) were comparable to those
measured by Melymuk et al. during 2007-2008 using polyurethane foam (PUF)
samplers within 10 km of the Toronto central business district (0.89-3.5 ng/m’).*®

As in water, the nitromusks were not found above 3:1 signal/noise levels in the

majority of air samples and were therefore omitted from discussion. In previous work
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by Peck and Hornbuckle in the lower Great Lakes region, nitromusks in air were

found above method reporting limits only intermittently and at levels under 80

pg/ms.37

Correlation of PCM Concentrations with Population Density. Previous studies
have identified population centers as sources of gaseous PCMs to ambient air’’ and
have shown correlations between population density and PCMs in air and water.*****°
To investigate the relationship between PCMs and population density in the lower
Great Lakes, average summertime concentrations were compared to population within
2 to 50 km of each site. The strongest correlations found for gaseous and dissolved
PCMs are displayed in Figure 3-2.

Gaseous ZsPCM exhibited significant (p < 0.01) correlation with population
within a 15-50-km radius of each site. The correlation was strongest when
considering population within 25 km (p <0.001; SE =0.33; n = 22). The two
locations with the greatest residuals were Toledo (TOL) and Cleveland Edgewater
(CLE), both of which exhibited greater gaseous XsPCM than would be predicted from
population based on the presented regression. This suggests elevated concentrations
in these areas may be caused by nearby point sources not representative of the
surrounding region.

Dissolved XsPCM exhibited significant (p < 0.01) correlation with population
within a 20-40-km radius of each site, with the strongest correlation observed when
considering population within 40 km (p < 0.005; SE = 0.26; n = 20). The strong
correlation at such a large radius may be because spatial distributions are influenced

by wastewater outfalls and river mouths, both of which are point sources that represent
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a much larger area’s population (the watershed). Concentrations near the mouth of
Oswego River exhibited the greatest residuals, again suggesting a nearby point source.
River and Wastewater Discharge. Dissolved PCMs were elevated at many shoreline
sites impacted by nearby WWTPs designated as major dischargers by the U.S.
Environmental Protection Agency (EPA) National Pollutant Discharge Elimination
System (NPDES),*' many of which discharged directly into the lakes. More details on
sites with elevated concentrations and possible sources are included in the SI.
Air-Water Exchange. Fugacity Ratios. Fugacity ratios for all air-water PE pairs are
displayed in Table S3-10 and depicted in Figure S3-2. At all sites where HHCB was
detected in air and/or water, fugacity ratios suggested it was volatilizing out of surface
waters. Fugacity ratios for AHTN also suggested volatilization from surface waters
near Toronto and along the southern shore of Lake Ontario, though AHTN was near
equilibrium or absorbed into surface waters at some other sites.

The greatest fugacity ratios for both AHTN (f,./f, = 7) and HHCB (f,./f, = 18)
were calculated for the PE pair from the late-summer deployment near the mouth of
the Oswego River (OSW), during which greater dissolved PCMs were measured than
during any other deployment (£sPCM = 4.8 ng/L). Fugacity ratios were generally not
significantly different from equilibrium at sites on the southeastern shore of Lake Erie
(ERI, DUN, BUF), the northeastern Lake Ontario shoreline/nearshore (CV, PEP,
CHB), or at the offshore sites (CERI, EERI).

PE-Derived Air-Water Exchange Fluxes at Non-Steady-State Conditions.
Values of v,,, calculated for HHCB and AHTN ranged from 4.5-8.8 cm/day, which

was somewhat slower than rates for PCBs calculated by Liu et al. (15-63 cm/day) and
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within the range for 4-ring PAHs calculated by McDonough et al. (1-16 cm/day).”’
These rates were used along with mass transfer coefficients for PE uptake (k,) of
HHCB from air (181-6,905 cm/day) and water (14-47 cm/day) to determine how air-
water exchange fluxes derived from codeployed air and water PEs compared to actual
values in scenarios where concentrations in air and water are not at steady state.

A model was written in R in which air and water concentrations of HHCB
were set to vary every 6 h over 100 days. In Scenario 1, both air and water
concentrations fluctuated randomly between minimum and maximum values based on
realistic concentration ranges from this and previous studies (1-6 ng/m’ in air; 0.5-8
ng/L in water). In Scenario 2, air concentrations fluctuated randomly around a
steadily increasing mean from 5 to 12 ng/m’ and water concentrations declined from 6
to 1 ng/L, also with random fluctuations, resulting in a reversal of the flux direction
during the deployment. The air-water exchange flux (F,y) at each time point was
calculated from the simulated air and water concentrations at that time.

At each time point, the mass of HHCB accumulated in air and water PEs in
response to the fluctuating ambient concentrations was computed, and the PE-derived
air-water exchange flux (F,w pg) was calculated based on the concentrations of HHCB
in the codeployed PEs at that time. F,, was then compared to F, pg by calculating the
RPD between the two values. An example from Scenario 2, in which F,,, decreased
throughout the simulated deployment, is displayed in Figure 3-3. F,y pg 1s shown to
steadily decline over the deployment along with F,y, but F, pg does not capture rapid
day-to-day changes in the flux and appears to lag behind F,,, by about 20 days. A

similar figure is shown for Scenario 1 in Figure S3-5.
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Each scenario was run 100 times, and each time the RPD between F,y, pr and
F.w after 100 days of deployment was recorded. Results are presented in Table 3-3 as
the mean RPD between F,, pr and three values: F,, on the last day of the simulated
deployment (Day 100), the average F,, over the typical equilibration time for HHCB
(defined as 22 days, the average of air and water PE equilibrium times), and the
average F,, over the entire 100-day deployment. Results show that PE-derived
exchange fluxes provide a good estimate of mean F,,, over the last 22 days in both
scenarios, though they were not always representative of instantaneous fluxes the day
they were recovered, or of average fluxes over the entire deployment period.

Table 3-3 also shows RPDs determined by comparison of “actual” fluxes (Faw)
and fluxes that would be derived from weekly grab samples. Grab samples were
simulated by taking values of the “actual” concentrations of PCMs in air and water
once a week, calculating instantaneous exchange fluxes, and averaging these values
over the 100-day deployment, or over the last 22 days. Results suggest that Fy, pg 1s
more representative of the mean F,,, over the last 22 days than taking 3 weekly grab
samples, while weekly grab samples are more appropriate for capturing mean flux
over 100 days in cases where the exchange flux changes steadily over time, as in
Scenario 2. In summary, PEs resulted in a very good approximation of the actual air-
water exchange flux during the compounds’ equilibration time window, in some cases
superior to weekly grab sampling.

PCM Air-Water Exchange Fluxes. Air-water exchange mass transfer
coefficients and exchange fluxes for all PE pairs with fugacity ratios significantly

different from equilibrium are provided in Tables S3-11 and S3-12. Figure 3-4 shows
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air-water exchange fluxes calculated for HHCB and AHTN in ng/m*/day during each
deployment for which data were available. As demonstrated in the previous section,
these fluxes were representative of time-averaged air-water exchange fluxes over the
last 3 weeks prior to sampler recovery.

Volatilization fluxes of HHCB and AHTN ranged from 1146 ng/m*/day and -
342 ng/m?*/day during the first deployment near the shore of Cleveland, OH (CLE) to
341+127 ng/m?/day and 28+10 ng/m?/day during late summer near the mouth of
Oswego River (OSW). Few previous measurements of PCM air-water exchange
fluxes are available for comparison. Xie et al. measured median net air-water
volatilization of 27 ng/m*/day and 14 ng/m*/day for HHCB and AHTN in the North

Sea, and measured net deposition of both compounds in the Arctic.*®

IMPLICATIONS

Results from this study suggest that WWTPs may be responsible for
influencing spatial distributions of dissolved PCMs in the lower Great Lakes, and that
PCMs in the lakes were volatilizing from surface waters at many locations near
urbanized shorelines. Previous studies of the Great Lakes region have estimated that
volatilization is an important loss route for dissolved PCMs. Melymuk et al. estimated
that volatilization removes 31% of total inputs of PCMs from the Toronto area, about
210+120 kg/yr, from Lake Ontario.” Peck and Hornbuckle estimated that
volatilization was responsible for the loss of about 290 kg/yr of PCMs from Lake

Michigan.*
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Volatilization fluxes in this study were driven by elevated dissolved
concentrations at shoreline and nearshore sites. These elevated concentrations were
expected to be entrained in the nearshore coastal boundary zone, which extends from
the shoreline to where the depth of the lake exceeds that of the thermocline.*> To
estimate total losses of dissolved PCMs from the lakes via volatilization, fluxes were
averaged over the estimated surface area of the urbanized coastal boundary zone.

The surface area of the Lake Ontario coastal boundary zone was estimated to
be 6500 km? by extracting the area with depth shallower than 50 m using GIS data
from the Great Lakes Commission’s Great Lakes Information Network (GLIN), as
shown in Figure S3-6. The coastal boundary zone in Lake Erie was more difficult to
define, as most of the lake is quite shallow and it does not develop a pronounced
seasonal thermocline as does Lake Ontario. From GLIN data, the surface area of Lake
Erie shallower than 20 m was estimated to be 15200 km”.

Averaging fluxes at all Lake Ontario sites yielded a mean £sPCM flux of 58
ng/m”/day over the coastal boundary zone. Assuming fluxes of this magnitude
occurred over 30%—100% the total coastal boundary zone and that fluxes of this
magnitude occur all year long, we estimated that 41-138 kg/year £sPCM could be lost
to volatilization in Lake Ontario. Lake Erie data yielded an average XsPCM flux of 13
ng/m”/day, suggesting that 22-74 kg/year ZsPCM could be lost to volatilization in
Lake Erie. This may be an overestimate, as fluxes could be lower in the winter, when
the surface waters freeze and lower temperatures drive down PCM vapor pressure, but
the absence of wintertime dissolved concentration data prohibited flux calculations for

these months. Although these estimations are based on temporally- and spatially-
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limited data, they are of a similar magnitude to those estimated in previous Great
Lakes studies, and suggest that volatilization may be a significant loss process for

dissolved PCMs in this region.
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FIGURES AND TABLES

Table 3-1. Average Dissolved PCMs (pg/L) Summarized Regionally

N* ADBI AHMI ATII HHCB AHTN
Toronto Waterfront Nearshore 3 1.1+0.7 22+0.7 37+6.6 1625 +£242 162 +32
Southern L. Ontario Shoreline 3 1.2+0.8 24+13 28 +33 1363 + 827 134 + 66
Greater Cleveland Shoreline/Nearshore 3 1.5+0.9 39+22 29+13 697 +£222 72+19
Southeast L. Erie Shoreline 3 0.1+£0.2 0.8+0.3 3.0+5.1 23+39 16+7.9
Northeast L. Ontario Nearshore 3 <DL 04+04 2120 <DL 14+12
Offshore L. Erie and L. Ontario 5 09+12 25+3.8 16 +21 <DL 28 +18
“N is the number of sites of each type.
Table 3-2. Average Gaseous PCMs (pg/m’) Grouped By Site Type
N? ADBI AHMI ATII HHCB AHTN
Summer (May - November)
Offshore/Nearshore Buoys 5 21+46 22+49 47+ 106 <DL 54+12
Toronto Waterfront Nearshore Buoys 3 0.6+1.0 24 +17 493 + 69 1529 + 591 302 + 88
L. Erie and L. Ontario Shoreline 14 2.8+6.3 11+9.5 100 + 189 357+ 836 149 £ 159
Winter (December - April)
L. Erie and L. Ontario Shoreline 9 02+06 08+1.5 22 +£44 29 +£87 1719

“N is the number of sites of each type.
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Figure 3-1. Average summer HHCB and AHTN (X,PCM) concentrations
throughout the lower Great Lakes. Average dissolved (top) and gaseous (bottom)
HHCB and AHTN during summer deployments are shown with HHCB in red and
AHTN in yellow. Gaseous Z,PCM ranged from <DL at sites marked by X’s to 3.2
ng/m’ in Toledo (TOL). Dissolved Z,PCM ranged from <DL at sites marked by X’s
to 2.5 ng/L near the mouth of Oswego River (OSW).
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$sPCM = 5.0E-4£1E-4 * Pop,,/1000 + 0.07£0.09 s~ CM = 1.1E-3+1E-4 * Pop,;/1000- 0.12£0.12
p < 0.005; SE = 0.26; N = 20 p<0.001; SE =0.33; N = 22
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Figure 3-2. Correlation of dissolved and gaseous £sPCM and surrounding
population density. Average summer dissolved (left) and gaseous (right) £sPCM
was most strongly correlated with population within 40 km and 25 km of each site,
respectively. The 95% confidence intervals for the linear models are shaded in gray.
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Figure 3-3. Predicted air-water exchange fluxes based on simulated air and

water HHCB concentrations. Simulated water and air concentrations of HHCB and

air-water exchange fluxes calculated from these concentrations are shown on the left
over a 100-day simulated deployment. The mass of HHCB accumulated in a 2-g PE in
response to the simulated air and water concentrations is shown on the left, along with

the air-water exchange flux that would be calculated using this pair of air and water

PEs.
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Table 3-3. Comparison of Simulated Air-Water Exchange Fluxes to PE-Derived

and Grab Sample-Derived Exchange Fluxes.

Scenario 1: Randomly
Fluctuating Air and Water
Concentrations

Scenario 2: Steadily Increasing
Air and Decreasing Water
Concentrations

Relative Percent Difference (RPD) between F,,and F,, »

Mean F,, Over 100 Days

18.5+/-6.8%

357+/-267%

Mean F,, Over Last 22 days

15.3+/-8.8%

8.4+/-5.2%

F.. on Day 100

351+/-219%

12.3+/-1.2%

Relative Percent Differenc

e (RPD) between F,,, and mean F,, from weekly grab sample

Mean F,, Over 100 Days

26.9+/-15.0%

21+/-15%

Mean F,, Over Last 22 days

60.4+/-34.6%

329+/-232
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Figure 3-4. Summer air-water exchange fluxes of AHTN and HHCB. Air-water
exchange fluxes are shown for shoreline Lake Erie and Lake Ontario sites, as well as
nearshore Toronto buoy sites. Positive bars represent volatilization while negative
bars represent absorption. Cases where both air and water concentrations were <DL
are marked “<DL”. Cases where fugacity ratios were not significantly different from
equilibrium are marked “X”. Offshore Lake Erie and nearshore northern Lake Ontario
sites as well as some shoreline sites (SHF, ERI, DUN, BUF, and CV) were omitted
because no significant exchange fluxes were calculated there. Error bars represent
standard deviation calculated via error propagation.
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SUPPORTING INFORMATION:
POLYCYCLIC MUSKS IN THE AIR AND WATER OF THE LOWER GREAT
LAKES: SPATIAL DISTRIBUTION AND VOLATILIZATION FROM
SURFACE WATERS

Carrie A. McDonough, Paul A. Helm, Derek C. G. Muir, Gavino Puggioni, Rainer
Lohmann

Total number of pages: 26

Total number of tables: 12
Total number of figures: 6

Calculating Percent Equilibration Using Best-Fit DBL Thickness. In order to
determine the ambient concentration (C, or Cy) of a hydrophobic organic contaminant
(HOC) from the concentration measured in polyethylene (Cpg), percent equilibration
(f) reached by the compound of interest during deployment must be determined.
Concentrations of performance reference compounds (PRCs) were measured in all
deployed samples and in laboratory and field blanks. Masses in blanks and matrix
spikes from each batch of PEs were averaged to yield initial PRC concentrations in
PEs (Ny). The ratio of the final mass of each PRC to its initial mass (N/Ny) represents
the loss during deployment, which is related to f for a target compound with properties
identical to the PRC. ffor each PRC was calculated as in Equation S1.

Loss data for benzo(a)pyrene-d12 were not included in determining f for target
compounds because loss of this compound was generally greater than loss of
pentabromobiphenyl, suggesting that loss due to processes besides PE-air or PE-water
diffusive exchange may have occurred. Six air samples were found to have loss of

dibromobiphenyl < 90%, which is unrealistic given the deployment times for these
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samplers and may indicate some inconsistency in deployment practices.
Concentration estimates for these samples were discarded before further analysis and

interpretation.

No (S1)

For compounds that were not identical to PRCs, PRC loss data was used to
interpolate or extrapolate an estimated value of f. This required an understanding of
how uptake rates change depending on compound properties. Diffusion of HOCs into
PE from air or water can be described by a two-layer diffusion model, versions on
which have previously detailed by Fernandez et al.', Thompson et al.,” and Tcaciuc et
al.’? for aqueous PE uptake. In the case of long (> 5 day) deployments of relatively
thin (50 um) PEs, this uptake model can be simplified by using a generalized
exponential approximation to calculate the uptake rate based on both air/water-side

and PE-side resistance, as described by Booij et al.*

—1kyApg

— 1 _ eKPEV'VPE
/ (82)

In Equation S2, ¢ is the deployment time in seconds, Apg is the sampler area in
m?, Kpgy is the dimensionless PE-matrix partitioning coefficient (in this case the
matrix is either air or water), and Vpg is the PE’s volume, calculated from its mass
(typically around 2 g) and density (0.91 kg/L). Apg was calculated from Vpg and the

PE’s thickness (2/pg), and was typically around 400 cm®. k, is the mass transfer
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coefficient, with units of speed, which represents the reciprocal of the sum of the

matrix-side and PE-side resistance as in Equation S3.

1_1, 1
k, k. K
0 m PE PEM (83)
Where
L — 6DBL L _ [pg
N D PE DPE
” '" (S4) (S5)

1/k 1s the matrix-side resistance, calculated as the thickness of the diffusive
boundary layer (dppr) over the diffusivity of the compound in the given matrix (air or
water), and 1/kpg 1s the PE-side resistance, calculated as half the thickness of the PE
(/pe) over the diffusivity of the compound in PE. These values are either known (/pg),
or can be measured/estimated based on other compound properties (Kpgm, Dm, Dpg),
with the exception of dppr, which is difficult to observe or measure.

To determine opp. for each deployment, PRC loss data for each sample were
entered along with compound properties for each PRC: Kpgw and Kpga at 298 K,
molar volume (V;), molar mass (M;), enthalpy of vaporization (AHy,p) and internal
energy of aqueous dissolution for the sub-cooled liquid (AUy,) in kJ/mol and the best-
fit OppL value was determined using the non-linear least-squares fitting function n/s in
R, as was used by Booij et al.™* While theoretically, 8pg. could be affected by

compound properties, previous studies have reported that variation among compounds
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is small,' so in this study a single 8pp; value was calculated for each set of PRC loss
data.

Once values of f were determined for all PRCs, these were used along with
known and estimated physico-chemical properties for these PRCs (as listed in Table
S3-8) to calculate the best-fit value of oppL for each deployment by using n/s in R and
Equation S6, where ¢ is length of the deployment time in seconds, Kpgy 1s the PE-
matrix partitioning coefficient, /pg is the half-thickness of the PE (~ 25 pm), Dy is the
molecular diffusivity of the target compound in air or water (m?/s), and Dpg is the
molecular diffusivity in PE (m?/s). 8pgL for each deployment was then used along
with the target compound’s known and estimated properties to determine f. Kpgwm, Dy,
and Dpg were corrected to the average deployment temperature using data from nearby

meteorological buoys (Table S3-2) using Equations S8 — S12.

—tApEp
o K l
. Vpg-( DBL PEM_I_ PE)
f=1-e¢ om Pre (87)
— 1.75
5 1072 -1 3me +
a, T2 = 2
Patm -+ (Va'/> + Vi 1%) (S8)

D, 12, the diffusivity in cm?’/s of the target compound in air at the mean
deployment temperature T,, was determined as in Fuller 1966,° with gas-phase
pressure (pam) of 1 atm, molar mass of air (MM,) = 28.97 g/mol, and molar volume of
air (V,)=20.1 cm’/mol. M; and V,,, are the molar mass and molar volume of the

compound of interest, which were obtained from SPARC.

7.4-10712.Ty - \/a - MM,

Dy - Vm0'6 (89)

Dy 1o =

117



Dy 12, the diffusivity in cm?’/s in water at the mean deployment temperature T,
was determined via the Wilke-Chang equation as in Equation S9, where a is 2.6, the
association parameter for water and MM, is the molar mass (g/mol) of water (18
g/mol). T, is the mean deployment temperature, Vy, is the molar volume of the target
compound in cm3/mol, and vy, 1s the viscosity of water at the nearest whole number
temperature from Schwarzenbach et al. 2003.”

Eq 1 1
Dpgrs = Dppri-e® (T1772) (S10)

Dpg, 12 was determined from Equation S10, where Dpg 11 1s the Dpg at 298 K, R

is the universal gas constant, and E, is the energy of activation, assumed to be 100,000

J/mol based on unpublished thin-film experiments by Vansco et al. where Dpg was

measured at a range of different temperatures.

Kppar2 = Kpgari-e F (S11)

Kpea, 2 was determined from Kpga via Equation S11, where Hy,, 1s the enthalpy of
vaporization for the target compound and R is the ideal gas constant.

K K B (5 —77)

PEW, T2 = KPEW,T1 " € 2 (S12)
Kpew,m2 was determined from Kpgw via Equation S12, where Uy, is the energy of
solvation in J/mol for the target compound.
Finally, the concentration measured in pg/kg PE (Cpg) was corrected to the

ambient concentration of the target PCM (C,) using the density of PE (dpg; 0.91 kg/L),
Kpem, and f, as in Equation S13.

O - Cpe -dpE
*  f-Kppu (S13)
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Air-Water Exchange Flux Calculations. The equilibrium concentration in ng/g PE
(Cx) was determined from Cpg as in Equation S14 using f for the target compound.

_Cprr

Coo
f (S14)

The fugacity ratio was then calculated as in Equation S15, where C.,y and C 5

are the estimated equilibrium PE concentrations in water and air samplers.

Ju _ Coopw
fo Cwa (S15)

The air-water exchange flux, F,y in pg/m*/day was calculated using Equation
S16, where vqy 1s the mass transfer coefficient, C, and C., are the PE equilibrium
concentrations, and Kpgw 12 1s the PE-water partitioning coefficient corrected for the
mean deployment temperature. Mass transfer coefficients were calculated for all PE
pairs that displayed fugacity ratios significantly different from equilibrium after error

propagation.

(Coo,w — Coo,a)
Kpew,T2 (S16)

Fa/w = Vg /w *

vamw Was calculated as in Equation S17, where K,y is the air-water partitioning
coefficient at the mean deployment temperature, v, is the air-side mass transfer

velocity, and v,, is the water-side mass transfer velocity.

1 1 1
_I_

Va/w Vw Vg Kow T2 (S17)
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v, was determined from vino . (cm/s), the air-side mass transfer velocity of
water in air, scaled for the diffusivity of the target compound in air, Di, (cm?/s) at 298

K versus the diffusivity of water in air at 298 K (0.27 cm?/s), as in Equation S18.

Da )0.67
DH,0,a (S18)

Ug = VH30,a * (
Vo2 Was determined as in Equation S19 from the wind speed at 10 meter
height, uo, as in Schwarzenbach et al. 2003." u;o was determined from mean wind
speed, u, and height of the wind monitor on the meteorological buoy, 4, as in Equation

S20. In cases where the height of the monitor was not reported, the height was

assumed to be 10 meters.

VH,0,0 = 0.2 -u19 + 0.3 (S19)
" 10.4
_= . U
10 (In(h) 4+ 8.1) (S20)

Vw12 Was determined as in Equation S21 from the mass transfer velocity of
CO; (cm/s) in water (vcoa.w), scaled to the target compound using the Schmidt number
at the deployment temperature (Sct), the Schmidt number for CO; at 20 °C (Sccorw =
600) and ag, a scaling factor based on wind speed (0.67 for mean wind speeds <4.2
m/s, and 0.5 for higher wind speeds). The dimensionless Schmidt number is the ratio
of the viscosity of the water to the diffusivity of the target compound in water.

SCT2 —ase

Vw, 72 = VCO,w "\
b . (SCCOQ,w (S21)

vcoa, the average velocity of CO, (cm/s) in water over the deployment, was

determined by integrating the Weibull probability density function using all recorded
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wind speeds over the deployment from the nearest meteorological buoy, scaled to 10
m above the interface as in Equation S20.

Sct, the Schmidt number at the mean deployment temperature, was
determined as in Equation S22, by scaling Scr;, the Schmidt number at 298 K, by the
kinematic viscosity of water (vy) at T2 versus T1.

1% T
Sers = Sepy - (4222 2L
vriw” 13 (S22)

Error Propagation in Air-Water Exchange Calculations. The variance in the
equilibrium concentration (o¢c.”) was calculated from the variance in measured
concentration in PE (ccpe’), as determined from the standard deviation of repeated
measurements from randomly-chosen extracts, and the variance in f (o1 as in

Equation S23.

0C+
0Cy —0Cpr - (m

)2 4 0_2 X (_)2

It of (S23)
of (Equation S24) was determined from the variance of the best-fit 8pp;. estimate,
taken as the standard deviation in the best-fit value from the non-linear least squares

model, the variance of Dy (assumed to be 50%) and the variance of Kpgm, 12,

determined as in Equation S25.

of
0Dy

of
0Dpg

af )2
OKprum,T2 (S24)

2 2 ( 6f

_ . 2., 2 )
0f = O%ppL 95pBL ) +UKPEM.T2 (

>+ 0D, - ( )+ 0D, - (

Variance in Kpgym 12 Was determined from Equation S25 using the variance of
Kpem,11 (assumed to be 0.2 log units), and the variance of Hy,, (assumed to be 30%) or

Uw (assumed to be 50%), as in Morgan et al. 2008.*

9 9 (8KPEM,T2 2 2 (8KPEM,T2 9

0K =0k : Hyap
PEM, T2 PEM,T1 8KPEM,T1 vap aH’U(zp (825)
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Variance in the fugacity ratio (oya/wz) was calculated as in Equation S26. Only
fugacity ratios significantly different from equilibrium (f,/f, = 1) within the +1c range

were used in air-water exchange flux calculations.

2 2 (8fa/w )2+ 2 (8fa/w )2_1_02 | Ofajw  \o

o =0 : g )
Jorw = 0000 90" O 00 VT 0K ppwirs” (326)

. . . 2 . .
Variance in the air-water exchange flux (6r,44,") was calculated as in Equation

S27, where the standard deviation of v,s, was assumed to be 30%.’

aFa/w 2 2 6Fa/w 2 2 aFa/w 2 2 aFa/w 2
aUa/w) K pwra (aKPEW,T2) Tl (acoo,w) Tl (C{)Cooﬁa (S27)

JFa/w — Yva/w

2 2 . (

These calculations were repeated for each air-water PE pair. The average
percentage of total variance contributed to C., by analytical uncertainty was 85%,
and for C,, was 96%. Uncertainty in f, which accounts for uncertainty in partitioning
coefficients and other physical properties, accounted for 15% of variance in C,, and
4% of the variance in Cy,. In situations where the compounds being measured do not
approach equilibrium, fwould be expected to be responsible for a larger portion of
total uncertainty, as demonstrated by Khairy et al. 2013."°
Elevated Dissolved PCMs Near WWTPs. Dissolved PCMs were greatest in
Oswego (OSW), which was also the site most likely to be influenced by wastewater,
as two wastewater treatment plants (WWTPs) designated as major dischargers by the
US Environmental Protection Agency (EPA) National Pollutant Discharge
Elimination System (NPDES)'' were within 1.5 km of the deployment location.
Though this site was near the mouth of the Oswego River, it is likely that elevated

dissolved PCMs were not representative of typical river discharge. Rather, they were
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likely influenced by these nearby point sources which discharged directly into Lake
Ontario.

The second-most elevated dissolved XsPCM was measured at three Toronto
nearshore sites (ETOR, TOR, and WTOR), possibly due to influences of three WWTP
discharges within 1-8 km of the sites, combined with runoff from the densely
populated Toronto conurbation.'>"® Similarly, Cleveland area sites (CLE, FH, and
SHF) were likely influenced by impacted waterways such as the Cuyahoga River and
Black River as well as a number of WWTPs that discharged directly into Lake Erie
along this stretch of shoreline.

The water sampling site in Rochester (ROC) was placed slightly upstream of
the mouth of the Genesee River, making it likely that river discharge was sampled.
This site was likely representative of a mixture of urban runoff and wastewater
effluent discharged into the river. In contrast, the PEs at the Buffalo site (BUF),
where aqueous PCMs were <15 pg/L, were placed on the mouth of the Buffalo River,
but there were no major NPDES-licensed treatment facilities on the river, and this
region was characterized by a number of smaller industrial dischargers, which were
expected to be much less important as sources of PCMs.

The Niagara River site (NIA) also exhibited elevated dissolved PCM
concentrations during late summer. Few NPDES-designated point sources were
nearby. However, due to the large volume of discharge and large plume extent from
Niagara River, concentrations were expected to be representative of upriver sources

channeled into Lake Ontario, including several major WWTPs.
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Table S3-1: Deployment Summary for 2011-2012 Air and Water PEs

Meteorology Air Water
Mean Air Mesa ne\(/a\gnd Sample| Date Date Days [|Sample| Date Date Days
T (°C) (2] /s) No. |Deployed|Recovered| Deployed] No. |Deployed|Recovered|Deployed
LAKE ONTARIO
NIA: Niagara Falls, NY - Fort Niagara State Park: 43.26125 °N, 79.06287 °W
5.5 4.5 1526 | 10/2/11 | 4/24/12 205
17.0 3.5 2718 | 4/24/12 7/2/12 69
23.4 3.0 3128 | 7/2/12 8/30/12 59 3130 | 7/2/12 | 8/30/12 59
15.4 4.1 3528 [ 8/30/12 | 10/31/12 62 3530 [ 8/30/12 | 10/31/12 62
15.4 4.1 3529 | 8/30/12 | 10/31/12 62 3531 | 8/30/12 | 10/31/12 62
ROC1: Rochester, NY - Coast Guard Auxiliary Base 4-2: 43.25238 °N, 77.60938 °W
5.5 5.1 1412 | 10/5/11 | 4/30/12 208
20.3 4.5 2825 | 5/26/12 | 6/30/12 35 2824 | 5/26/12 | 6/30/12 35
20.3 4.5 2828 | 5/26/12 | 6/30/12 35
21.4 4.1 3113 | 6/30/12 | 9/30/12 | 92 3115 | 6/30/12 | 9/30/12 92
ROC2: Rochester, NY - US Coast Guard Station: 43.25694 °N, 77.60261 °W
20.4 4.5 2830 | 5/26/12 7/1/12 36
19.7 4.2 3118 | 7/1/12 | 10/22/12 113
19.7 4.2 3119 | 7/1/12 | 10/22/12 113
ROC 3: Rochester, NY - Beach Avenue: 43.26438 °N, 77.61692 °W
20.3 4.5 2835 | 5/26/12 | 6/30/12 35
19.7 4.2 3123 | 7/1/12 | 10/22/12 113
19.7 4.2 3124 | 7/1/12 | 10/22/12 113
OSW: Oswego, NY: A: 43.46319 °N, 76.51671 °W; W: 43.46550 °N, 76.51666 °W
52 5.5 1521 | 10/3/11 | 5/11/12 221
19.4 4.1 2707 | 5/11/12 | 7/10/12 60 2711 | 5111112 | 7/10/12 60
22.6 3.8 3108 [ 7/10/12 9/4/12 56 3110 [ 7/10112 | 9/4/12 56
22.6 3.8 3109 [ 7/10/12 9/4/12 56 3111 [ 710112 | 9/4/12 56
12.8 5.4 3507 | 9/4/12 | 11/15/12 72 3511 9/4/12 | 11/15/12 72
CV: Cape Vincent, NY: 44.13034 °N, 76.33173 °W
25 4.9 1519 [ 11/2/11 5/1/12 181
18.6 3.9 2702 | 5/1/12 | 7/19/12 79 2704 | 5112 | 7119112 | 79
18.6 3.9 2703 | 5/1/12 7/19/12 79
22.4 4.3 3102 | 7/17/12 | 8/29/12 43 3104 | 7/17/12 | 8/29/12 43
14.9 5.0 3502 | 8/29/12 | 10/30/12 62 3504 | 8/29/12 | 10/30/12 62
14.9 5.0 3503 | 8/29/12 | 10/30/12 62 3505 | 8/29/12 | 10/30/12 62
Offshore Lake Ontario (Deployed by Ontario Ministry of the Environment)
TOR: Toronto, ON (Stn AW-2): A: 43.66496 °N, 79.26481 °W; W: 43.66387 °N, 79.26488 °W
21.3 3.9 2008 | 5/22/12 | 8/1/12 | 71 2901 | 5/22/12 | 8/1/12 71
21.3 3.9 2909 | 5/22/12 | 8/1/12 71
17.7 3.8 3303 | 8/1/12 | 10/16/12 | 76 3317 | 8/1/12 | 10/19/12 79
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Meteorology | Air | Water

WTOR: West Toronto, ON (Stn 3508): A: 43.57255 °N, 79.51809 °W; W: 43.571847 °N, 79.51732 °W

21.3 3.9 2903 | 5/22/12 | 7/31/12 70 2928 | 5/22/12 ] 7/31/12 | 70
21.3 3.9 2927 | 5/22/12 | 7/31/12 70
17.8 3.7 3313 [ 7/31/12 | 10/16/12 77 3329 [ 7/3112 [ 10116112 | 77
ETOR: East Toronto, ON (Stn 708): A: 43.79478 °N, 79.08620 °W; W: 43.79373 °N, 79.08655 °W
21.3 3.9 2906 | 5/22/12 | 8/1/12 | 71 2917 | 5/22/12 | 8/1/12 71
21.3 3.9 2920 [ 57221121 8/1/12 71
17.1 3.8 3304 | 8/1/12 | 10/22/12 82 3308 | 8/1/12 | 10/22/12 82
17.1 3.8 3311 | 8/1/12 | 10/22/12 82
CHB: Chub Point, ON (Stn 3509): A: 43.95329 °N, 78.01405 °W; W: 43.95339 °N, 78.01089 °W
19.7 2.4 2914 | 5/23/12 | 8/1/12 70 2910 [ 5/23/12 ] 8/1/12 70
16.4 2.8 3324 | 8/1/12 | 10/22/12 82 3322 | 8/1/12 | 10/22/12 82
16.4 2.8 3328 | 8/1/12 | 10/22/12 82
PEP: Prince Edward Point, ON (Stn 3087): A: 43.95745 °N, 76.81011 °W; W: 43.95832 °N, 76.81039 °W
20.0 4.4 2019 | 5/23/12 | 8/2/12 71 2034 | 5/23/12 | 8/2112 | 71
20.0 4.4 2931 | 5/23/12 | 8/2/12 71
17.6 6.0 3302 | 8/2/12 | 10/25/12 84 3309 [ 8/2/12 | 10/25/12 | 84

Offshore Lake Ontario (Deployed by Environment Canada)

WONT: Western Offshore Ontario (Stn 207) offshore from Niagara: 43.32833 °N, 79.13472 °W

181 | 35 | | 2306 | 4/10/12 | 10/25/12 | 198
GRI: Western Offshore Ontario (Grimsby Met Buoy): 43.25893 °N, 79.53865 °W
18.9 | 42 | 2325 | 5M14/12 [ 10/25/12 [ 164 |
CONT: Central Offshore Ontario (Stn 403): 43.58806 °N, 78.24055 °W
6.9 | 49 | | 2321 | 4/3/12 | 10/20/12 | 200
LAKE ERIE
BUF: Buffalo, NY - US Coast Guard Station: 42.87758 °N, 78.89047 °W
4.6 5.3 1528 | 10/3/11 | 5/1/12 211
4.6 5.3 1529 [ 10/3/11 | 5/1/12 211
17.5 3.5 2723 | 5/1/12 7/2/12 62 2725 | 51112 | 7/2/12 62
22.5 3.6 3133 | 7/2112 | 8/30/12 59 3135 | 7/2/12 | 8/30/12 59
14.8 4.7 3533 | 8/30/12 | 11/1/12 63
14.8 4.7 3534 | 8/30/12 | 11/1/12 63
DUN: Dunkirk, NY: A: 42.49252 °N, 79.35336 °W; W: 42.49247 °N, 79.34852 °W
5.7 6.2 1530 | 10/3/11 | 4/30/12 210
17.5 4.2 2728 | 4/30/12 | 6/28/12 59 2730 | 4/30/12 | 6/28/12 59
22.7 3.5 3202 [ 6/28/12 | 8/29/12 62 3204 | 6/28/12 | 8/29/12 62
22.7 3.5 3203 [ 6/28/12 | 8/29/12 62 3205 | 6/28/12 | 8/29/12 62
15.8 4.2 3901 | 8/29/12 | 10/22/12 54 3903 | 8/29/12 | 10/22/12 54
15.8 4.2 3902 | 8/29/12 | 10/22/12 54
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Meteorology | Air

Water

ERI: Erie, PA - Presque Isle State Park: A: 42.15585 °N, 80.11288 °W; W: 42.15199 °N, 80.11191 °W

7.1 6.6 1533 | 10/13/11| 6/7/12 238
21.6 5.0 2734 | 6/7/112 7/3/12 26 2736 | 6/7/12 | 7/3/112 26
21.6 5.0 2737 | 6712 | 7/3/12 26
22.5 4.6 3207 | 7312 | 9712 | 66 3209 | 7/3/12 | 9/7/12 66
16.6 5.5 3909 | 9/7/12 | 10/4/12 27
16.6 55 3910 | 9/7/12 | 10/4/12 27
FH: Fairport Harbor, OH: A: 41.75835 °N, 81.27789 °W; W: 41.7772 °N, 81.2439 °W
20.9 5.4 2801 | 5/21/12 | 7/2/12 42 2803 | 5/29/12 | 6/29/12 31
20.9 5.4 2802 | 5/21/12 | 7/2/12 42 2804 | 5/29/12 | 6/29/12 31
21.7 4.6 3212 | 772112 | 9712 77 3214 | 6/29/12 | 9/17/12 80
14.0 6.3 3912 | 9/17/12 | 10/15/12 28
14.0 6.3 3913 [ 9/17/12 | 10/15/12 28
CLE: Cleveland, OH - Edgewater Park: A: 41.49212 °N, 81.73326 °W; W: 41.50383 °N, 81.7655 °W
21.0 3.2 2806 | 5/17/12 | 7/7/12 51 2808 | 5/5/12 | 6/28/12 54
21.0 3.2 2807 | 517112 | 717112 51 2809 | 5/5/12 | 6/28/12 54
23.2 2.9 3218 | 7/7/12 9/7/12 62 3220 | 7/7i12 | 92 62
23.2 2.9 3221 | 7/712 | 9/7/12 62
15.6 3.1 3917 | 97112 | 10/9/12 32
15.6 3.1 3918 | 9/7/12 | 10/9/12 32
CLD: Cleveland, OH - DOH George T. Craig Air Monitoring Station: 41.49208 °N, 81.67851 °W
5.8 4.8 1402 | 9/3011 [ 5/1/12 214
19.2 3.3 2812 | 5/1/12 7/2/12 62
23.4 2.9 3223 | 7/2112 | 8/31/12 60
15.1 4.1 3922 | 8/31/12 | 11/1/12 62
15.1 4.1 3923 | 8/31/12 | 11/1/12 62
TOL: Toledo, OH: 41.69105 °N, 83.40189 °W
219 | 32 [ 2819 42712 ] 820112 | 115 ]
SHF: Sheffield Lake, OH: 41.49741 °N, 82.08252 °W
5.7 4.8 1404 | 10/4/11 | 4/28/12 207
18.7 3.3 2713 | 4/28/12 | 7/2/12 65
23.3 2.9 3227 | 7/5112 | 91712 64
13.0 4.5 3927 | 9/7/12 | 11/8/12 62
13.0 4.5 3928 | 9/7/12 | 11/8/12 62
Offshore Lake Erie (Deployed by Environment Canada)
EERI: Eastern Erie (Stn 452): 42.57611 °N, 79.92417 °W
172 | 6.4 | 2328 | 4/25/12 | 1011712 | 175 | 2322 | 4/25/12 | 10/17/12 | 175
CERI: Central Erie (Stn 880): 41.90944 °N, 81.66917 °W
224 | 49 | 2327 | 5212 | 101612 | 167 | 2330 | 5/2/12 | 10/16/12 | 167
WERI: Western Erie (Stn 970): 41.82433 °N, 82.97497 °W
187 | 58 ] [ 2317 | 8/8/12 | 10/9/12 | 62
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Table S3-2. Buoys Used for Temperature and Wind Data

Temperature Data

Wind Speed and Direction Data

Site Abbreviation Data Source Buoy Name Location Data Source Buoy Name Location

BUF NDBC BUFN6 42.878 N, 78.890 W NDBC BUFN6 42.878 N, 78.890 W
CERI NDBC C45164 41.734 N, 81.698 W NDBC C45164 41.734 N, 81.698 W
CHB OME Logger - Same as samplers | Environment Canada COBOURG (AUT) 43.95N, 78.17 W
CLD NDBC CNDO1 41.542 N, 81.637 W NDBC CNDO1 41.542 N, 81.637 W
CLE NDBC CNDO1 41.542 N, 81.637 W NDBC CNDO1 41.542 N, 81.637 W
CONT NDBC C45012 43.618 N, 77.405 W NDBC C45012 43.618 N, 77.405 W
Ccv Environment Canada KINGSTON A 44.22 N, 76.6 W Environment Canada KINGSTON A 44.22 N, 76.6 W
DUN NDBC DBLN6 42.494 N, 79.354 W NDBC DBLNG6 42.494 N, 79.354 W
EERI NDBC THLO1 41.826 N, 83.194 W NDBC THLO1 41.826 N, 83.194 W
ERI NDBC CBLO1 41.981 N, 80.556 W NDBC CBLO1 41.981 N, 80.556 W
ETOR OME Logger - Same as samplers | Environment Canada | TORONTO CITY CENTRE |43.63 N, 79.40 W
FH NDBC FAIO1 41.764 N, 81.281 W NDBC FAIO1 41.764 N, 81.281 W
GRI Environment Canada GRIMSBY 43.252 N, 79.535 W | Environment Canada GRIMSBY 43.252 N, 79.535 W
NIA NDBC YGNN6 43.262 N, 76.064 W NDBC YGNN6 43.262 N, 76.064 W
osw NDBC OSGN6 43.464 N, 76.511 W NDBC OSGN6 43.464 N, 76.511 W
PEP OME Logger - Same as samplers | Environment Canada| POINT PETRE (AUT) |43.83 N, 77.15W
ROC(1-3) NDBC RPRN6 43.263 N, 77.598 W NDBC RPRN6 43.263 N, 77.598 W
SHF NDBC CNDO1 41.542 N, 81.637 W NDBC CNDO1 41.542 N, 81.637 W
Stn 207 NDBC YGNN6 43.262 N, 76.064 W NDBC YGNN6 43.262 N, 76.064 W
TOL NDBC THRO1 41.694 N, 83.473 W NDBC THRO1 41.694 N, 83.473 W
TOR OME Logger - Same as samplers | Environment Canada [ TORONTO CITY CENTRE [43.63 N, 79.40 W
WERI Environment Canada | LONG POINT (AUT)|42.57 N, 80.05 W Environment Canada LONG POINT(AUT)  [42.57 N, 80.05 W
WTOR OME Logger - Same as samplers | Environment Canada | TORONTO CITY CENTRE |43.63 N, 79.40 W

e

Figure S3-1. Locations of Air Sites Re

Sosam £
P

Swcre

e 85 Ut

lative to Buoys. Black lines are used to

clarify which buoy was used for which site. Green triangles show air sampling sites
and pink circles show meteorological buoys.
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Table S3-3. Average Matrix Spike Recoveries.

Percent
Compound Re;o;;ery

(N=21)
ADBI 91 + 33
AHMI 104 = 40
ATII 98 + 32
HHCB 91 = 49
AHTN 106 = 41
Musk Xylene 79 + 26
Musk Ketone 145 £ 50

Table S3-4. Relative Percent Difference (RPD) between Duplicate Samples.
RPDs calculated for samplers where target compound was found >DL in both
replicates.

Mean RPD for Air PE Dups  Mean RPD for Water PE Dups

ADBI 41 £ 26 40 £ 22
AHMI 40 = 31 35 29
ATII 14 £ 22 22+ 22
HHCB 18 £ 14 15+ 32
AHTN 21 £ 24 25 % 40

Table S3-5. Mean Blank Concentrations and Detection Limits (ng/g PE).

Mean Lab Detection Mean Shoreline Mean OME Field Mean Env. Can.
Blank £ 10 Limit (95% Cl Field Blank *1c Blank 10 Field Blank %10
(N=13) of Lab Blank) (N=9) (N=5) (N=7)

ADBI 0.10 £ 0.14 0.27 0.14 £ 0.17 0.04 + 0.04 0.14 £ 0.10
AHMI 0.17 + 0.18 0.36 0.38 + 0.34 0.09 + 0.11 0.38 + 0.26
ATII 0.18 £ 0.23 0.47 13.2 + 38.2 0.16 £ 0.21 0.02 £ 0.05
HHCB 12.8 £ 11.9 23.7 27.8 + 25.9 3.6+ 37 3.7+ 14
AHTN 1.23 £ 1.00 2.00 2.08 + 1.47 0.57 + 0.49 0.75 + 0.30
Musk Xylene 0.51 + 1.46 2.92 35.1 £ 104.2 0.25+ 0.11 0.08 £ 0.11
Musk Ketone 2.07 £ 4.03 8.05 0.96 £ 0.95 0.37 £ 0.18 0.35 £ 0.29
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Figure S3-2. HHCB and AHTN Fugacity Ratios.

HHCB

4 <DL Values Set to DL

© <DL Values Set to 0

25

20

15

—

10
5

Py

1430
14933

¢-d3d
1-d3d
Z-8NHD
T-8NHD

€AD
TAD
T-AD
£€-MSO
-MSO
T-MsO
1-204
£€VIN
TYIN

¢-dng
1-4n8
€-NNa
¢-NNa
T-NNQ
143
T-1¥3
T-H4
T-H4
31D
-3

Y013
1-¥013
[az:[e]}
T-401
Z-H40LM
T-401 M

AHTN

© <DL Values Set to 0

A <DL Values Set to DL

1430
1433

¢-did
T-d3d
¢-dNHD
T-dNHD

€D
N\D
T-AD
€-MSO
-MSO
T-MSO
-0y
€-VIN
CVIN

¢-4ng
T-4n9
€-NNa
¢-NNa
T-NNa
143
T-143
C-H4
T-H4
-3
T-310

¢-dolL3
T-d0L13
-dolL
T-40L
40l M
T-40L M

132



Figure S3-3. Summary of Dissolved PCMs Over Multiple Deployments. For
shoreline/nearshore sites, DEP 1, 2, and 3 are early summer, mid-summer, and late
summer/early fall, respectively. For nearshore Northern Ontario sites, DEP 1 is early-
to-mid-summer and DEP 2 is mid-summer to early fall. Concentrations are not
available for all deployments at all sites, and the absence of a bar means no sample
was retrieved or all concentrations were <DL.
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Figure S3-4. Summary of Gaseous PCMs Over Multiple Deployments. For
shoreline sites, DEP 1, 2, and 3 are early summer, mid-summer, and late summer/early
fall, respectively. For nearshore Northern Ontario sites, DEP 1 is early-to-mid-summer
and DEP 2 is mid-summer to early fall. Concentrations are not available for all
deployments at all sites, and the absence of a bar means no sample was retrieved or all
concentrations were <DL.
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Table S3-10. PCM Fugacity Ratios. Grayed-out values were not significantly
different from equilibrium after error propagation. Values in red note ratios for pairs
where either the air or water concentrations was < DL, and the DL values was used to
calculate the fugacity ratio. NA marks pairs with concentrations < DL in both air and
water, for which no ratio was calculated.

Location Dep No. ADBI AHMI ATII HHCB AHTN
Shoreline Air-Water Pairs

CLE Dep 1 80 = 242 25 + 33 094 + 0.72 1.3 £ 0.16 0.50 + 0.15
CLE Dep 2 69 t 276 50t 7.4 20 £ 2.2 2.7 £ 0.31 13 + 0.21
FH Dep 1 212 + 741 86 + 193 2.0 % 1.6 2.2 + 0.26 24 + 0.72
FH Dep 2 47 + 203 36 + 134 0.61 + 1.1 NA 0.54 + 0.34
ERI Dep 1 NA 51 + 241 31 + 5.2 1.1 + 0.25 1.3 + 0.94
ERI Dep 2 NA NA NA NA NA
DUN Dep 1 NA 11 £ 43 NA NA 0.76 + 0.53
DUN Dep 2 26 £ 126 14 + 45 NA NA 1.0 £ 0.75
DUN Dep 3 NA 46 * 19 NA NA 0.85 + 0.63
BUF Dep 1 NA 28 + 138 NA NA NA

BUF Dep 2 NA 16 + 51 NA NA 1.1 + 0.81
NIA Dep 2 80 + 341 9.2 + 29 NA NA 1.6 + 1.04
NIA Dep 3 198 + 754 19 + 25 53 + 85 54 + 0.81 48 + 1.5
ROC Dep 1 28 + 38 177 + 682 NA 3.8 £+ 0.63 56 + 3.0
OSW Dep 1 44 + 222 40 £ 159 44 £ 5.2 4.2 + 0.63 34 £ 15
osw Dep 2 48 + 238 49 + 189 4.0 * 64 3.5 + 0.52 59 + 33
OSW Dep 3 104 + 408 16 + 28 85 + 6.7 18 + 2.6 71 + 13
cv Dep 1 NA NA NA NA NA

cv Dep 2 NA NA NA NA 1.0 + 0.77
cv Dep 3 NA 3.0 £ 12 NA NA NA
Offshore/Near-Shore Air-Water Pairs

EERI Dep 1 NA 16 + 72 15 + 29 NA NA

CERI Dep 1 16 £ 38 31 £ 120 NA NA 16 + 1.1
W TOR Dep 1 183 + 761 8.0 t 12 1.7 £ 1.9 3.8 £ 0.42 1.2 + 0.25
W TOR Dep 2 262 + 893 99 £ 396 1.3 % 0.67 14 + 0.14 0.92 + 0.15
TOR Dep 1 NA 70 £ 290 1.7 + 1.3 4.0 £ 0.77 2.8 £ 0.72
TOR Dep 2 136 + 572 21 + 48 1.7 + 0.98 2.1 £ 0.13 1.9 + 0.26
ETOR Dep 1 106 + 527 50 + 14 28 + 35 57 + 1.1 3.2 £ 0.93
ETOR Dep 2 149 + 629 72 £ 290 23 + 1.2 2.6 £ 0.17 19 + 0.24
CHUB Dep 1 NA 11 + 43 NA NA NA
CHUB Dep 2 NA 26 £+ 130 1.1 + 24 NA 20 £ 1.2
PEP Dep 1 NA NA NA NA NA

PEP Dep 2 NA 56 + 229 1.1 + 23 NA 20 £ 1.2
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Table S3-11. PCM Air-Water Exchange Mass Transfer Coefficients (cm/day).
Air-water exchange mass transfer coefficients (cm/day) were calculated in cases
where the fugacity ratio was significantly different from equilibrium after error
propagation. All others were replaced with “NA”.

Location Dep No. | ADBI AHMI ATII HHCB AHTN
Shoreline Air-Water Pairs

CLE Dep 1 NA NA NA 7.0 7.0
CLE Dep 2 NA NA NA 7.0 7.0
FH Dep 1 NA NA NA 6.9 6.9
FH Dep 2 NA NA NA NA 7.3
ERI Dep1 NA NA NA NA NA
ERI Dep 2 NA NA NA NA NA
DUN Dep 1 NA NA NA NA NA
DUN Dep 2 NA NA NA NA NA
DUN Dep 3 NA NA NA NA NA
BUF Dep1 NA NA NA NA NA
BUF Dep 2 NA NA NA NA NA
NIA Dep 2 NA NA NA NA NA
NIA Dep 3 NA NA NA 7.0 7.0
ROC Dep 1 NA NA NA 8.7 8.8
osw Dep1 NA NA 5.6 5.3 5.3
osw Dep 2 NA NA NA 4.5 4.5
osw Dep 3 NA NA 9.3 8.5 8.5
cv Dep 1 NA NA NA NA NA
cv Dep 2 NA NA NA NA NA
cv Dep 3 NA NA NA NA NA
Offshore/Near-Shore Air-Water Pairs

EERI Dep 1 NA NA NA NA NA
CERI Dep 1 NA NA NA NA NA
W TOR Dep 1 NA NA NA 5.0 NA
W TOR Dep 2 NA NA NA 4.9 NA
TOR Dep 1 NA NA NA 5.0 5.0
TOR Dep 2 NA NA NA 4.9 4.9
E TOR Dep 1 NA NA NA 5.0 5.0
E TOR Dep 2 NA NA 4.9 4.7 4.7
CHUB Dep 1 NA NA NA NA NA
CHUB Dep 2 NA NA NA NA NA
PEP Dep1 NA NA NA NA NA
PEP Dep 2 NA NA NA NA NA
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Table S3-12. PCM Air-Water Exchange Fluxes (ng/m”/day). Air-water exchange
fluxes (ng/m*/day) were calculated in cases where the fugacity ratio was significantly
different from equilibrium after error propagation. All others are replaced with “NA”.

Location Dep No. JADBI AHMI ATII HHCB AHTN
Shoreline Air-Water Pairs

CLE Dep1 NA NA NA 11 + 6.0 -34 + 1.8
CLE Dep 2 NA NA NA 54 + 20 20 £ 15
FH Dep 1 NA NA NA 38 + 15 4.4 + 2.0
FH Dep 2 NA NA NA NA -15 + 14
ERI Dep1 NA NA NA NA NA
ERI Dep 2 NA NA NA NA NA
DUN Dep1l NA NA NA NA NA
DUN Dep 2 NA NA NA NA NA
DUN Dep 3 NA NA NA NA NA
BUF Dep 1 NA NA NA NA NA
BUF Dep 2 NA NA NA NA NA
NIA Dep 2 NA NA NA NA NA
NIA Dep 3 NA NA NA 82 + 30 93 + 3.6
ROC Dep 1 NA NA NA 79 + 30 10 £ 4.0
osw Dep 1 NA NA 23 + 14 58 + 21 40 + 1.8
osw Dep 2 NA NA NA 38 + 14 54 + 2.1
osw Dep 3 NA NA 8.8 % 35 341 * 127 28 + 10
cv Dep 1 NA NA NA NA NA
cv Dep 2 NA NA NA NA NA

cv Dep 3 NA NA NA NA NA
Offshore/Near-Shore Air-Water Pairs

EERI Dep 1 NA NA NA NA NA
CERI Dep1 NA NA NA NA NA

W TOR Dep 1 NA NA NA 64 + 23 NA

W TOR Dep 2 NA NA NA 20 + 10 NA
TOR Dep1 NA NA NA 50 + 20 58 + 2.6
TOR Dep 2 NA NA NA 37 £ 14 40 + 1.7
ETOR Dep 1 NA NA NA 77 = 30 5.7 £ 25
ETOR Dep 2 NA NA 1.6 % 1.0 56 + 21 45 + 1.8
CHUB Dep1 NA NA NA NA NA
CHUB Dep 2 NA NA NA NA NA
PEP Dep 1 NA NA NA NA NA
PEP Dep 2 NA NA NA NA NA
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Figure S3-5. PE-Derived Air-Water Exchange Fluxes for Scenario 1.
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Figure S3-6. Great Lakes Coastal Boundary Zone from Bathymetry. Depth
contours for every 10-meter interval were extracted from the Great Lakes Information
Network (GLIN) bathymetry dataset™ and used to divide the lakes into shallower
areas where water is expected to be entrained near the shoreline and more significant
volatilization may occur, and deeper areas where the dissolved concentrations that
drive volatilization are expected to be lower. Areas were used to attain ballpark
estimates of volatilization fluxes over the lakes.
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ABSTRACT

Organic flame retardants (OFRs) such as polybrominated diphenyl ethers
(PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent,
and bioaccumulative contaminants that have been used in consumer goods to slow
combustion. In this study, polyethylene passive samplers (PEs) were deployed
throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in
air and water, calculate air-water exchange fluxes, and investigate spatial trends.
Dissolved X,BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas
gaseous X,BDE was greatest on the southern shoreline of Lake Erie (11 pg/m’).
NHFRs were generally below detection limits. Air-water exchange was dominated by
absorption of BDEs 47 and 99, ranging from -964 pg/m®/day to -30 pg/m?/day.

X 12BDE in air and water was significantly correlated with surrounding population
density, suggesting that phased-out PBDEs continued to be emitted from population
centers along the Great Lakes shoreline in 2012. Correlation with dissolved £;,BDE
was strongest when considering population within 25 km while correlation with
gaseous X1,BDE was strongest when using population within 3 km to the south of
each site. Bayesian kriging was used to predict dissolved X,,BDE over the lakes,
illustrating the utility of relatively highly spatially resolved measurements in

identifying potential hot spots for future study.
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INTRODUCTION

Organic flame retardants (OFRs) such as the polybrominated diphenyl ethers
(PBDESs) and novel halogenated flame retardants (NHFRs) are persistent
bioaccumulative contaminants that have been liberally added to polymers used in
consumer goods to slow combustion in the event of a fire.'” While PBDEs are no
longer manufactured or used in North America, they are ubiquitous in the environment
and continually leach out of in-use products, especially furniture, casings for
electronics, and automotive upholstery.” Numerous studies have shown that PBDEs,
as well as many NHFRs, accumulate in humans*® and wildlife,”"" and that

12-14 .
Some studies have

concentrations are elevated in North American cities.
suggested that various NHFRs are increasingly being added to consumer products due
to the PBDE phase-out, but there is uncertainty regarding which chemicals are being
used in which applications, and at what production volumes.”'*™'¢

Previous studies have identified densely populated areas, central business
districts, and indoor environments as sources of OFRs to the atmosphere via
volatilization from consumer goods.'*'*'”'® Atmospheric wet and dry deposition
have been identified as important pathways for these contaminants to reach the Great
Lakes,'** though recent work has shown inputs from stormwater, tributaries, and

21,22

wastewater also play a significant role. Some studies have identified absorption of

gaseous PBDEs from air as a potentially significant source of some PBDEs to the

23,24
Great Lakes, 3

though others have demonstrated that volatilization from surface
water can be a significant loss process for semivolatile organic compounds, especially

as atmospheric concentrations decline following changes in regulation.”** The
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direction of air-water diffusive exchange for OFRs can be deduced by simultaneous
measurement of dissolved and gaseous concentrations, which has not been undertaken
previously in the lower Great Lakes (Lake Erie and Lake Ontario).

While some recent studies have measured concentrations of PBDEs and
NHFRs in air,m’]&m’28 rain,19 and surface water” of the lower Great Lakes, there are
no published studies of regional spatial trends, nor are there reported measurements of
air-water exchange fluxes. This information is critical to track whether changes in
regulation and usage of OFRs cause changes in spatial distributions and air-water
exchange. Deployment of polyethylene passive samplers (PEs) in air and water is a
convenient way to deduce fugacity ratios at the air-water interface and a cost-effective
approach to time-averaged monitoring at numerous sites. PEs have been used to
measure PBDEs in a handful of previous studies,***>* but their use to detect NHFRs
has not been reported.

In this study, extracts from PEs deployed in the air and water throughout Lake
Erie and Lake Ontario were analyzed for 12 PBDEs and 9 NHFRs to (i) determine
baseline concentrations of PBDEs and NHFRs at shoreline, nearshore, and offshore
sites, (i1) determine whether the lower Great Lakes were acting as sinks or secondary
sources of PBDEs via air-water exchange, (ii1) investigate spatial trends of PBDEs and
their relation to population centers, and (iv) build a geostatistical interpolation model

to provide estimates of dissolved PBDE concentrations across the lakes.
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MATERIALS AND METHODS

Sampler Preparation and Deployment. Air and water PEs were deployed
throughout the lower Great Lakes region from April to November of 2012. Air
concentrations were monitored at 22 locations (14 shoreline, 5 nearshore (<5 km from
the shoreline), and 3 offshore sites), while water concentrations were monitored at 20
locations (8 shoreline, 7 nearshore, and 5 offshore sites). Air samplers were also
deployed during the 2011/2012 winter (generally from October 2011 to April 2012).
Deployment times ranged from 4 to 30 weeks. The sampling schedule and site
characteristics are summarized in the Supporting Information (SI) along with the
length of deployment time (Table S4-1). Nearby meteorological buoys used to
determine average temperature and wind speed are listed in Table S4-2.

Details of sampler preparation and deployment have been summarized
previously in McDonough et al. and Liu et al.**** Briefly, 50 pm-thick PEs were
precleaned with solvent and loaded with performance reference compounds (PRCs),
which included deuterated polycyclic aromatic hydrocarbons (PAHs; naphthalene-d§,
pyrene-di2, and benzo(a)pyrene-d/2) and bromobiphenyls (PBB 9, PBB 52, and PBB
103). Shoreline air PEs were secured within protective chambers constructed from
two metal bowls and hung from trees or structures, generally at about 1.5 m height.
Shoreline water PEs were fastened to rope and anchored about 1 m below the water’s
surface. Nearshore/offshore air PEs were fastened into protective chambers secured to
buoys about 2 m above the water’s surface and water PEs were placed in perforated

stainless steel cages and secured to subsurface floats at a depth of about 4 m. After
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PEs were recovered, they were mailed back to the laboratory overnight on ice and
frozen until extraction.
Extraction and Analysis. PEs from 56 air and 39 aqueous deployments were spiked
with non-native PBDEs (BDE 35, BDE 77, BDE 118, BDE 128, and BDE 190) and
extracted for about 24 h in pentane, then concentrated to ~50 puL and spiked with
injection standard (BDE 71). Water extracts were passed through silica gel/sodium
sulfate cleanup columns and eluted with 60:40 pentane:DCM. Concentrations were
corrected for internal standard recoveries.

Extracts were analyzed for 12 mono- to octa-brominated PBDEs (BDE 2, 8,
15, 30, 28, 47, 49, 100, 99, 154, 153, and 183) and 9 NHFRs (tetrabromo-p-xylene
(pTBX), pentabromobenzene (PBBz), pentabromotoluene (PBT),
pentabromoethylbenzene (PBEB), hexabromobenzene (HBBz),
hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO), 1,2-bis(2,4,6-
tribromophenoxy)ethane (BTBPE), and anti- and syn-isomers of Dechlorane Plus
(ADP and SDP)) on an Agilent 6890N gas chromatograph coupled to a Waters
Quattro Micro mass spectrometer (GC-MS/MS) in electron ionization mode (EI, 70
eV) using multiple reaction monitoring (MRM). Extracts were injected in splitless
mode with helium carrier gas at 2 mL/min onto an Agilent J&W DB-5MS fused silica
capillary column (30 m x 0.25 mm 1.D.).
Quality Control. Every batch of PEs was extracted alongside a method blank and
two spiked blanks to control for compound losses during extraction, concentration,
and cleanup. Average spike recoveries ranged from 67+15% for BDE 2 to 101+19%

for BDE 100 (Table S4-3).
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Concentrations were blank-subtracted using the most relevant field blank and
detection limits were defined as the upper limit of the 95% confidence interval for 11
laboratory blanks. Detection limits per gram PE are summarized in Table S4-4, and
are converted to typical ambient air or water concentrations in Table S4-5. Percent
detection for each compound is shown in Table S4-6. Concentrations below detection
limits were replaced with zero.

Detection limits per gram polyethylene (PE) are summarized in Table S4-4 and
are converted to typical ambient air or water concentrations in Table S4-5. Percent
detection for each compound is shown in Table S4-6. For compounds not detected in
the blanks, instrumental noise was integrated to define detection limits. Calculated
ambient detection limits were dependent on the sampling rate and varied from sample
to sample. Typical detection limits were greatest in shoreline samples, ranging from
0.1 pg/m’ for BDE 30 to 7.4 pg/m® for HCDBCO in air, and from 0.07 pg/L for BDE
153 and BDE 30 to 6.5 pg/L for PBBz in water.

For air PEs, the mean difference between ambient concentrations derived from
duplicate samplers ranged from 16% (0.008 pg/m’) for BDE 49 to 87% (0.69 pg/m’)
for BDE 100 (N = 18). For water PEs, the mean difference between ambient
concentrations derived from duplicate samplers ranged from 24% (0.96 pg/L) for BDE
28 t0 43% (0.07 pg/L) for BDE 153 (N = 14).

Sampling Rates and Ambient Concentrations. PRC loss data was entered into a
generalized exponential model for PE uptake to derive best-fit values for the thickness
of the diffusive boundary layer (dppr). The best-fit dppr, value for each PE was then

used to determine the percent equilibration (f) reached by each compound during
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sampler deployment. fvalues were used to convert concentrations in PEs to ambient
concentrations, which is described in detail in the SI. Physico-chemical properties of
target compounds used in these calculations are presented in Table S4-7. Average f
values for each compound in air and water are in Table S4-8. Mono- to dibrominated
PBDEs were generally equilibrated or nearly equilibrated while tetra- to octa-
brominated PBDEs remained <50% equilibrated in the majority of samples.

Best-fit dppr. values and BDE 47 sampling rates are shown in Tables S4-9 and
S10. Average dpprs for air boundary layers (0ap1) were lower for offshore/nearshore
PEs (0.2+0.1 mm; average+stdev) than for shoreline PEs (1.8+1.4 mm in summer and
1.4£0.5 mm in winter). Average water boundary layer thickness (0wgr) was 170+63
pum at shoreline sites and 82+25 um at offshore sites. For air PEs, average sampling
rates for BDE 47 were 9+3 m’/day for winter PEs, 10£6 m®/day for shoreline summer
PEs, and 83+36 m®/day for offshore PEs. For water PEs, average BDE 47 sampling
rates were 27+8 L/day for shoreline PEs and 14+10 L/day for offshore PEs, in-line
with expectations based on relative flow strengths at these locations.
Air-water exchange calculations. 32 pairs of codeployed air and water PEs were
used to investigate PBDE air-water exchange. Details on calculating fugacity ratios,
air-water exchange fluxes, and associated error propagation are presented in the SI.
Fugacity ratios and air-water exchange fluxes were only calculated in instances where
the congener was detected in both air and water. In cases where the compound was
not detected in air and/or water, or where fugacity ratios were not significantly
different from equilibrium after error propagation, the net air-water exchange flux was

assumed to be zero.
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To determine whether PE-derived air-water exchange fluxes were
representative of average exchange fluxes in nonsteady-state conditions, a model was
built in R* to compare simulated air-water exchange fluxes to PE-derived exchange
fluxes (Figures S4-1, S4-2; Table S4-11).

Correlation with Population Density. Average summertime concentrations of
PBDEs were compared to population within 2 - 60 km of each site using population
data from the Columbia University Center for International Earth Science Information
Network (CIESIN) Global Rural-Urban Mapping Project (GRUMP).*® To determine
which radius yielded the strongest linear correlation, ordinary least squares regression
was performed for each congener, as well as X,BDE, at a series of different radii in
R* to identify the model with the minimum residual standard error (RSE) in each
case. This procedure was repeated for population data within 180° wedges to the
north, south, east, and west of each sampling site to determine whether population
density within one general direction was more significant in driving spatial
distributions of PBDEs.

Bayesian Kriging. Bayesian kriging is a geostatistical interpolation technique that
automates the parameter estimation needed to build a kriging model, which makes it
the most appropriate approach for datasets with very limited spatial resolution.*
Dissolved X;,BDE concentrations were used with population within 25 km as an
auxiliary variable, or covariate, to predict concentrations across both lakes by
Bayesian kriging using the krige.bayes function in the geoR package in R.> Cells on
the grid that were predicted to have negative concentrations were replaced with zero.

Posterior distributions for the estimated parameters S, §, o°, and ¢ are shown in
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Figure S4-4 and results of leave-one-out cross validation of the model are shown in
Figure S4-5.

The vector containing X;,BDE concentrations for each location Z(u), was
modeled as a deterministic term, fX(u), and a zero-mean stochastic term, &(u), as
shown in Equation S27. X is the vector of population at each location, f is an
unknown regression coefficient, and £ is the unknown intercept for the regression.
&(u) has variance o° and a correlation function parameter ¢, and describes the residuals

at each location.

Z(u) = fo + pX(u) + &(u)

RESULTS AND DISCUSSION

Dissolved PBDEs in the Great Lakes. Average concentrations of dissolved PBDEs
are summarized in Table 4-1 for shoreline, nearshore, and offshore sites. BDEs 100,
99, 47, 28, and 49 were detected in >70% of all water PEs. BDE 154 was detected in
53%, BDE 153 in 43%, and the remaining congeners in <15%. Average dissolved
212BDE ranged from 0.6 pg/L at Dunkirk (DUN) on Lake Erie’s southern shoreline to
18 pg/L at a nearshore buoy site west of central Toronto (WTOR). Dissolved PBDE
concentrations for all deployments are displayed in Table S4-9.

Average summertime concentration and composition for dissolved PBDEs at
each site is shown in Figure 4-1. BDEs 47 and 99 were the dominant congeners at
most sites, making up 41+15% and 29+14% of £;,BDE, respectively. Composition of
the major congeners (BDE 47, 99, and 100) was quite consistent among sites with

212BDE >3 pg/L, but more variable at sites with lower concentrations, likely due to
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some congeners being <DL at these sites. See Figure S4-3 for mean percent
composition at each location. Correlations between individual congeners at different
sites, as well as correlations with other compounds measured in the same extracts, are
shown in the SI.

Along the southern shore of Lake Erie, £;,BDE ranged from 0.6 pg/L on the
Dunkirk shoreline (DUN) to 11 pg/L in Presque Isle Bay (ERI). Concentrations at the
three sites near Cleveland (CLE, SHF, and FH) were similar, with average
summertime X,BDE of 4.3-5.5 pg/L. Along the southern shore of Lake Ontario,
> 1,BDE was greater than what was seen on Lake Erie, ranging from 11-12 pg/L. The
Cape Vincent shoreline site (CV) had a lower average X1,BDE (3.8 pg/L), possibly
due to dilution, as the site was along the St. Lawrence River, the major outflow from
Lake Ontario, while the sites in Niagara (NIA), Oswego (OSW), and Rochester (ROC)
were located near the mouths of tributaries.

> 12BDE at offshore sites was generally <3 pg/L, significantly lower than
shoreline/nearshore concentrations (p<0.05 two-tailed t test with unequal variance).
The greatest offshore concentrations were observed at the westernmost offshore sites
on each lake, with £;,BDE of 2.8 pg/L in western Lake Erie and 3.2 pg/L in western
Lake Ontario. These sites were the closest offshore sites to the major rivers feeding
each lake (the Detroit River and Niagara River) and may have been influenced by
inputs from these rivers.

Generally, dissolved PBDE:s in this study were lower than in previous studies.
This may be because the PEs used for sampling were selective for the truly dissolved

phase. In previous active sampling studies on the Great Lakes, Venier et al. measured
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average BDE 28, 47, 99, and 100 at a total concentration of 117 pg/L in Lake Ontario
and 62 pg/L in Lake Erie surface waters in 2011-2012* and Streets et al. measured
mean total dissolved ZsBDE of 18 pg/L in offshore Lake Michigan in 2004."° In other
regions, Zarnadze and Rodenburg reported dissolved PBDE concentrations of 44, 5.5,
and 35 pg/L for BDE 47, 100, and 99 in Raritan Bay in 2001-2002** and Yang et al.
measured dissolved X;0BDE from 13-26 pg/L in 9 English freshwater lakes from 2008
t0 2012.*° In contrast, studies using PEs to measure total truly dissolved PBDEs in
Narragansett Bay in 2009 and Lake Superior in 2011 found concentrations <3 pg/L at

all sites, similar to offshore/nearshore concentrations in this study.'***

Booij et al.
measured BDEs 47, 99, and 153 in the Western Scheldt Estuary in 1999 using
semipermeable membrane devices (SPMDs) and found that total concentrations
generally did not exceed 2 pg/L.’

We investigated whether the discrepancy between concentrations reported by
Venier et al.” and our own could be due to the presence of dissolved organic carbon
(DOC) that was likely cosampled by Venier’s active sampling method. As detailed
further in the SI (Table S4-12), the DOC concentrations needed to explain the
discrepancy were quite high for open-lake Great Lakes sites (>3 mg/L), suggesting
that the inclusion of the colloidal phase in the active sampling study was not sufficient
to explain the observed differences. Seasonal variation in dissolved PBDE
concentrations may explain some of the additional discrepancy, as Venier et al.

sampled in April-May, while PEs from this study were representative of average

summer concentrations. Another possible contributor to the discrepancy is uncertainty
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in the affinity of BDEs for DOC (Kipoc). Similar discrepancies were observed in a
comparison by Ruge et al. in Lake Superior.”
Gaseous PBDEs Above the Great Lakes. BDEs 99, 100, and 47 were detected in
>75% of air PEs. BDE 28 was in 54%, BDE 49 in 34%, and the remaining congeners
were in <15% (Table S4-6). Mean summer gaseous X,BDE ranged from 0.1 pg/m’
near the northeastern shore of Lake Ontario to 11 pg/m’ on the Cleveland shoreline
(CLE). BDEs 47 and 99 were the dominant congeners, making up 39+21% and
34+18% of £,BDE, respectively. As with dissolved PBDEs, composition of the
major congeners (BDE 47, 99, and 100) was similar at most sites, with the exception
of one in northern Lake Ontario (CHB), where the difference in composition was most
likely because concentrations were very low and BDE 99 and 47 were <DL, and two
other locations with atypical compositions, Sheffield Lake (SHL) and Rochester Site 1
(ROC1), where the explanation for the absence of BDE 99 was unknown (Figure S4-
4). Correlations between individual congeners, as well as with other compounds
measured in the same extracts, are described in the SI.

Summertime concentrations of total gaseous PBDEs are summarized in Table
4-2 for shoreline, nearshore, and offshore sites. Gaseous X1,BDE was significantly
greater at the shoreline than offshore and nearshore sites (p<0.005, two-tailed t test
with unequal variance), and shoreline gaseous X;,BDE was greater in summer than
winter (p<0.005, two-tailed paired t test). Concentrations from all deployments are
presented in Table S4-10.

Average summer gaseous PBDE concentration and composition are shown in

Figure 4-1. Gaseous X;,BDE was lower than concentrations from previous studies in
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the region, possibly due to declining concentrations over time. Su et al. reported mean
gaseous X,BDE of 17 pg/m’ at a clearing in Ontario during 2001-2002.*° Ma et al.
measured average gaseous 234BDE ranging from 5 pg/m’ in Eagle Harbor, a remote
site on Lake Superior, to 25 pg/m’ in Cleveland and 32 pg/m® in Chicago via active
sampling with XAD resin.'* They observed a significant decreasing trend from 2005
to 2011 for BDE 47 in Cleveland and Chicago, though concentrations increased or
showed little change at other locations."*

During 2007-2008, Melymuk et al. monitored PBDEs throughout the greater
Toronto area and found mean X,sBDE of 3 pg/m’ at their southernmost site, near the
northern Lake Ontario shoreline. This was about two to three times greater than total
mean 3;,BDE measured at the nearshore Toronto sites in this study (1.1-1.4 pg/m’).”®
The site monitored by Melymuk et al. was closer to the city center and polyurethane
foam passive samplers (PUFs) were used, which capture both gaseous and some
fraction of particle-sorbed PBDEs.”® During 2012-2013, Peverly et al. measured
¥,,BDE ranging from 11-150 pg/m’ in the Chicago region, also using PUFs, and
observed a significant contribution from BDE 209, which was not measured here.*' In
the only previous study to use PEs to measure truly gaseous PBDEs in the Great Lakes
region, Ruge et al. measured average summer gaseous %;BDE of 0.02-5.5 pg/m’ in
Lake Superior in 2011, similar to the range of values in this study.**

Gaseous and Dissolved NHFRs in the Great Lakes. Ambient concentrations of
gaseous NHFRs are presented in Table S4-10. When detected, estimated gaseous
bromobenzene concentrations (PBBz, PBT, PBEB, and HBBz) were similar in

magnitude to those measured by Venier et al. in the Great Lakes atmosphere by high-
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volume active sampling, with all concentrations <2 pg/m>.>” However, these
compounds were only detected intermittently in this study and were near detection
limits, so estimated concentrations are somewhat uncertain.

Venier et al. measured dissolved and colloidal NHFRs in Great Lakes water by
active sampling and found mean PBEB concentrations in Lake Ontario to be 32+18
pg/L, while in this study PBEB concentrations were <2 pg/L (Table S4-9).’ No other
NHFRs were detected in more than two aqueous PEs.

Percent detection was low for all NHFRs. As the NHFRs are low-volatility
compounds that are expected to be found primarily in the particulate phase, it may be
that concentrations in the truly gaseous or dissolved phase were too low to be detected
here using passive samplers.

Air-water Exchange of PBDEs. Fugacity ratios (f,/f,), which indicate the direction
of air-water exchange, are presented in Table S4-13 for all PBDE congeners. In all
cases where fugacity ratios were significantly different from equilibrium after error
propagation, they indicated absorption into surface waters.

Exchange fluxes for all available air-water PE pairs at each site were averaged
to yield mean summer air-water exchange fluxes for each location (Figure 4-2). Mean
absorptive fluxes ranged from -964 pg/m?/day on the shoreline of Cape Vincent (CV)
to -30 pg/m*/day at an offshore site in central Lake Erie (CERI). Absorption of BDEs
47 and 99 dominated air-water exchange fluxes at the majority of sites, with greatest
absorption fluxes at shoreline sites and little to no significant exchange flux in either
direction at most offshore/nearshore sites. It should be noted that aqueous PEs at

Cleveland Edgewater (CLE) and Fairport Harbor (FH) were placed on nearshore
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buoys while air measurements were taken at the shoreline, which may have resulted in
calculation of stronger absorption fluxes than if dissolved concentrations were
monitored directly at the shoreline.

Previous measurements of PBDE air-water exchange fluxes are scarce. Xie et
al. and Lohmann et al. both observed net absorption of gaseous PBDEs on transects of
the Atlantic Ocean, dominated by BDEs 47 and 99.*"* Lohmann et al. calculated
median air-water exchange fluxes of about -325 pg/m*/day for BDE 47 and about -260
pg/m*/day for BDE 99. Xie et al. calculated fluxes ranging from -28 to -875
pg/m*/day for BDE 47 and -3 to -170 pg/m?/day for BDE 99. In contrast to the
offshore Great Lakes sites, where fluxes were mostly near equilibrium, these studies
were conducted in remote regions with lower concentrations of dissolved PBDEs
where atmospheric deposition was expected to be the primary source of PBDEs.

Ruge et al. observed absorption of gaseous PBDEs at shoreline sites and
volatilization offshore on Lake Superior in 2011, with the greatest total absorption flux
at Sault Ste. Marie (-2700 pg/m*/day).”* The occurrence of offshore volatilization in
that study, compared to near-equilibrium conditions at offshore sites in this study, may
have been due to the smaller surface areas and more urbanized shorelines of Lake Erie
and Lake Ontario in comparison with Lake Superior.

Liu et al. observed volatilization of polychlorinated biphenyls (PCBs) at the
majority of the same sites discussed here,** suggesting that the lakes were acting as
secondary sources of these legacy pollutants while continuing to absorb PBDEs.
Correlation between PBDE Congeners and Other Compounds. Dissolved

concentrations of the seven PBDEs found in >30% of water samples (BDEs 28, 47,
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49, 99, 100, 154, and 153) were significantly linearly correlated with each other (p <
0.05, 0.24 <1*< 0.73), with the exception of BDEs 49 and 153. Correlations between
the two hexabrominated congeners, BDEs 154 and 153, and other congeners were
generally weaker than correlations between lower-brominated congeners. This may be
because PBDEs 28, 49, 47, 99, and 100 share a common source: the Penta-BDE
commercial formulation, while BDEs 154 and 153 are associated with Octa-BDE.'¢
BDEs 154 and 153 were strongly correlated with each other in the dissolved phase (p
<0.001, ’=0.63). Gaseous concentrations of the five PBDEs found in >30% of air
samples (BDEs 28, 47, 49, 99, and 100) were also significantly linearly correlated
with each other (p < 0.05, 0.30 < r*< 0.80). Only samples in which both congeners
were found >DL were used in the correlation analysis for each pair.

In addition to comparisons between PBDE congeners, £;,BDE concentrations
in air and water were compared to total concentrations of polycyclic musks (PCMs),
polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs)
measured in the same extracts. PCB data was published previously by Liu et al.,"”
PCM data is currently in review, and mean PAH concentrations are available in Tables
S4-14 and S4-15. Dissolved X1,BDE exhibited a significant positive linear correlation
with total dissolved PCMs (ZsPCM; p < 0.01; > = 0.34; SE = 4.2; N = 39), but was
not correlated with dissolved X4PAH or X,PCB, suggesting that dissolved PBDEs
may share more common sources with PCMs than with PAHs or PCBs in the lower
Great Lakes region. Previous work by Melymuk et al. suggested that wastewater may
be an important source of both PBDEs and PCMs in Lake Ontario, while not as

significant for PCBs or PAHs.'®
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In contrast, gaseous £;,BDE was weakly but significantly correlated with
gaseous X14PAH (p < 0.01; r’=0.13; SE = 3.8; N = 56) and Z;PCB (p < 0.01; r’=0.16;
SE = 3.8; N = 54), but not correlated with £sPCM, possibly due to scarcity of data, as
gaseous PCMs were detected above blank levels less frequently than the other
compound groups. Previous studies in the Great Lakes region have also reported
significant correlation between atmospheric PBDEs and PCBs due to their elevated
emissions in urban and industrial areas."

Results of this correlation analysis suggest that PBDEs and PCMs share
common sources to the aquatic environment. They may also share common sources to
the atmosphere, but results for air were inconclusive. Differences in correlation
strength between air and water data could be caused in part by the use of slightly
different sampling locations for some air versus water PEs), but these differences were
not expected to greatly affect correlation strength.

Gaseous PBDEs and Population Density. Population data within a 180° wedge to
the south of each site resulted in stronger correlation with gaseous £1,BDE than
population within a circle around each site or population to the north, east, or west.
This was also generally true for individual BDE congeners. Correlations found using
a circular radius or 180° southern wedge are compared in Figure S4-5.

In previous studies investigating relationships between atmospheric pollutant
concentrations and population, sites have often been characterized using a circular
area with a specific radius (often 20-25 km).** However, some studies have shown
that directional terms should be considered when investigating atmospheric pollutants

in the Great Lakes, especially for compound groups with significant local atmospheric

160



emissions.” Previous studies have also demonstrated that coastal effects can disrupt
population trends when offshore air dilutes the urban plume.** The work described
here included mostly shoreline sites which had very different nearby population
densities to the north and south. Furthermore, the lower Great Lakes region was
generally subject to prevailing southwesterly winds during the deployment period, as
1s demonstrated by wind direction data (Tables S4-16 and S4-17; Figures S4-6 and S4-
7).

Average gaseous X,BDE exhibited significant (p<0.05) linear correlation with
population within 1-10 km south of each site, with the strongest correlation at 3 km
(p<0.005; 1’=0.36; SE=2.9; N=22). Significant linear correlation with population was
also seen for four of the five commonly detected individual congeners (BDE 28, 47,
99, and 100), with strongest correlations between 3 and 15 km. This suggests PBDEs
were significantly influenced by local sources, consistent with their low vapor
pressures and significant loss via deposition. Melymuk et al. observed a swift decline
in PBDE concentrations within 5 km south of the Toronto city center, supporting the
importance of nearby populated areas in influencing distributions of these
compounds.”® BDE 49 did not exhibit significant correlation with population at any
distance, perhaps due to its low frequency of detection (34%) compared to the other
congeners (>50%).

The maximum radius where a significant (p<0.05) linear correlation was
observed between gaseous concentration and population was plotted against log py. at
298 K for four PBDEs, as well as several PAHs, PCBs, and PCMs, in Figure 4-3. As

compound vapor pressure increased, the maximum distance where significant
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correlation was observed expanded, suggesting that spatial distributions of more
volatile compounds like PCMs and lower molecular weight PAHs were influenced
more strongly by distant emissions, while local emissions were more important in
determining spatial distributions of PBDEs.

Previous data from PEs collected on the lower Great Lakes in 2011 suggested
that PAHs with subcooled liquid vapor pressure log pr(Pa) <-3 at 298 K most strongly
correlated with population within a radius of 3 km, while PAHs with greater vapor
pressures correlated more strongly with population within a radius of 20 km.* 1In this
study, PAHs, PCBs, and PCMs with log pp >-2 remained significantly correlated with
population within radii >25 km, while less volatile compounds generally did not.
BDEs 47 and 99 fell farther below the regression line in Figure 4-3 than other
compounds, with significant correlation occurring only to a radius of 5-6 km. This
may be due to their short lifetimes with respect to photolysis and OH radical
degradation (4.0-8.7 h) compared to BDE 100 and 28 (26-48 h).?

Dissolved PBDEs and Population Density. Dissolved X,,BDE exhibited a
significant positive linear correlation with population within a 25 km radius of each
site (1"=0.52; p<0.001; SE=0.27; N=20), as shown in Figure 4-4. The correlation was
driven primarily by the seven nearshore sites, which exhibited the broadest range in
surrounding population densities. In this case, use of population extracted from
wedges north, south, east, or west of each site did not result in stronger correlations.

Four shoreline sites (OSW, NIA, ROC, and ERI) exhibited low surrounding
population and elevated dissolved X;,BDE relative to the regression line, suggesting

they may be influenced by nearby point sources. The Niagara River site (NIA) was

162



likely representative of the Niagara River plume and the Oswego site (OSW) may
have been influenced by two nearby (within 1.5 km) wastewater treatment plants
discharging directly into Lake Ontario, both identified as major dischargers by the US
Environmental Protection Agency (US EPA) National Pollutant Discharge
Elimination System (NPDES).*

Geostatistical Interpolation of Dissolved PBDE Concentrations. Using passive
samplers enabled a much improved spatial coverage over past studies of this region
(though still limited on the scale of the Great Lakes). This data set thus provided an
opportunity to more accurately predict surface water concentrations over the lakes.
Maps of predicted aqueous X,BDE across Lake Erie and Lake Ontario are presented
in Figure 4-5 and variance for these predictions is presented in Figure S4-8. Posterior
distributions for the parameters used in the kriging model are shown in Figure S4-9
and results of cross validation in Figure S4-10.

Predictions for Lake Erie identified the area near Detroit at the western end of
the lake as a possible unmonitored “hot spot”, and highlighted areas around Buffalo,
Cleveland, and Dunkirk as having the greatest concentrations (around 10+4 pg/L) on
the lake. Predictions for Lake Ontario highlighted the significance of the Toronto
conurbation as a source of PBDEs to the lake, with elevated concentrations of 10-18
pg/L extending about 15 km away from the shoreline.

The use of Bayesian kriging coupled with PE-derived concentrations to predict
dissolved Z,,BDE over the lakes illustrates the utility of relatively highly spatially
resolved data in identifying potential hot spots for further study, like the area around

Detroit. Concentrations in this area may be greater than predicted, as it is influenced
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by the Detroit River, which is the major tributary to Lake Erie. Elevated gaseous and
dissolved PBDEs near population centers highlight the need to continually monitor

concentrations of phased-out persistent organic pollutants in urbanized areas.
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FIGURES AND TABLES

Table 4-1. Average Dissolved PBDEs (pg/L) + Standard Deviation.

N* BDE28 BDE49 BDE47

BDE 100 BDE 99

BDE 154 BDE 153 Z,BDE

Toronto Nearshore 3 048+0.12  0.22+0.02 5413 1.8+0.76

Lake Erie

0.23+0.22  0.20+0.17 2.0+1.2 0.93+0.46

Shoreline/Nearshore

Lake Ontario
Shoreline/Nearshore

0.28+0.16  0.23+0.21 3.0£22 0.95+0.68

Lake Erie Offshore 3 0.170.15  0.13+0.11  0.55+0.48 0.30+0.27

Lake Ontario Offshore 2 0.08+0.11  0.11+0.06 1.1+0.18 0.40+0.21

5.0+1.8

19+14

20£1.8

0.63+0.74

0.85+0.36

0.42+0.22

0.11£0.11

0.13+0.15

0.07+£0.07

0.09+0.12

0.20+0.07 14+4.1

0.03+0.04 55+34

0.06+0.05 6.8+5.0

0.02+0.04 1.9+0.91

<DL 2.6+0.81

N is the number of sites of each type.

Table 4-2. Average Gaseous PBDEs (pg/m3) + Standard Deviation.

N* BDE28 BDE 49

BDE 47 BDE 100

BDE 99

> ,BDE

Summer Sites (May to November)

Offshore 3 0.09+0.10 0.03+£0.02

Nearshore 5  0.14+0.09 0.03+0.02

0.22+0.09  0.05+0.03

0.2840.24  0.11+£0.05

0.25+0.12  0.74+0.15

0.22+0.18  0.79+0.56

Shoreline 14 0.25+0.29 0.06£0.07 2.9+1.3 0.59+0.25 2.6x1.7 6.7+2.1
Winter Sites (November to May)
Shoreline 9 0.03+0.07 0.01+0.02 0.55+0.62 0.21+0.15 1.7+0.88 2714

N is the number of sites of each type.
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Figure 4-1. Average Dissolved (top) and Gaseous (bottom) PBDEs during
Summer Deployments. X;;BDE in water ranged from 0.6 pg/L (DUN) to 18 pg/L
(WTOR). X,BDE in air ranged from 0.1 pg/m’ (CHB) to 11 pg/m’ (CLE). Regions
on the map shaded darker brown are more densely populated.
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Figure 4-2. Average Summer PBDE Air-Water Exchange Fluxes (pg/mZ/day).
Bars on the negative y-axis represent total absorption into surface waters. Mean
summertime net fluxes ranged from -964 pg/m?*/day on the shoreline of Cape Vincent
(CV) to -30 pg/m*/day at an offshore buoy in central Lake Erie (CERI).
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Figure 4-3. Maximum Distance (km) Yielding Significant Correlation between
Gaseous Concentration and Population. The maximum radius (rmax) at which there
was a significant (p<0.05) linear correlation between gaseous concentration and
population was correlated with sub-cooled liquid vapor pressure (log pr) for four
PBDEs and several PCBs, PAHs, and PCMs.
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Figure 4-4. Dissolved PBDEs and Population Density. Mean summertime
dissolved Z1,BDE (pg/L) exhibited significant linear correlation with population
within a 25 km circular radius of each site (p<0.001). Sites are marked according to
whether they were offshore (> 5 km from shoreline), nearshore (< 5 km from
shoreline), or shoreline (deployed directly from shore).
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SUPPORTING INFORMATION:
SPATIAL DISTRIBUTION AND AIR-WATER EXCHANGE OF ORGANIC
FLAME RETARDANTS IN THE LOWER GREAT LAKES

Carrie A. McDonough, Gavino Puggioni, Paul A. Helm, Derek C. G. Muir, Rainer
Lohmann

Total number of pages: 45

Total number of figures: 10
Total number of tables: 17

Calculating Ambient Air or Water Concentration from PE. Ambient
concentrations of target compounds in air or water were calculated from Cpg, the
concentration measured in pg/kg PE, dpg, the density of PE (0.91 kg/L), Kpgm, the PE-
matrix partitioning coefficient in L/L, and f; the percent equilibration reached during
deployment, (Equation S1).

o CpE - dpE
" f-Kpem (S1)

fwas estimated using data from performance reference compounds (PRCs) that
were loaded into each PE prior to deployment. The initial mass of PRC loaded into
the samplers was determined by measuring PRCs in quality control samples (blanks
and field blanks), which were prepared alongside those used in field deployments, but
never deployed in the environment. ffor each PRC was calculated as in Equation S2,
where N is the mass of PRC in the deployed PE and N is the mass in the non-
deployed blank.

Loss data for benzo(a)pyrene-d;, were not included in determining f for target
compounds because loss of this compound was generally greater than loss of

pentabromobiphenyl, suggesting that loss due to processes besides PE-air or PE-water
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diffusive exchange may have occurred. Six air samples were found to have loss of
dibromobiphenyl < 90%, which is unrealistic given the deployment times for these
samplers and may indicate some inconsistency in deployment practices.
Concentration estimates for these samples were discarded before further analysis and

interpretation.

N
f=1-+
No (S2)
Values of ffor all PRCs were used along with known and estimated physico-
chemical properties for the PRCs (Table S4-7) to determine a single best-fit value of

the thickness of the diffusive boundary layer (opgr) for each deployment, as in

Equation S3, using the non-linear least squares fitting function nls in R.

3 K 7
Vpp (SPBLKPEM | IPE )
f=1-—e¢ M PE (S3)

In Equation S3, ¢ is length of the deployment time in seconds, Kpgy 1s the
unitless PE-matrix partitioning coefficient, /pg is half the thickness of the PE in meters,
Dy is the diffusivity of the target compound in air or water (m?/s), Dy is the
diffusivity of the target compound in PE (m?/s), and 8pgy is the estimated best-fit
thickness of the diffusive boundary layer in meters. Once Opgr for the deployment
was determined, it was used along with each target compound’s known and estimated
physico-chemical properties to determine f for each compound of interest.

Values of Kpgm, DM, and Dpg for all compounds and PRCs were corrected to
the mean temperature during deployment, as estimated based on data from nearby

meteorological buoys (Table S4-2).
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-3, 1.75 1 1
1072 - T3 AL T I

Dqyr2 = 3 /3,2
Patm - (Va + Vm ) (84)

D, 12, the diffusivity in cm?’/s of the target compound in air at the mean
deployment temperature T, was determined as in Fuller 1966,' with gas-phase
pressure (pamm) assumed to be 1 atm, molar mass of air (MM,) assumed to be 28.97
g/mol, and molar volume of air (V,) assumed to be 20.1 cm*/mol. M; and V,, are the
molar mass and molar volume of the compound of interest.

7.4-10712.Ty - \/a- MM,

Va - Vm0'6 (S5)

Dw,T2 -

Dy 12, the diffusivity of the target compound in water at the mean deployment
temperature T,, was determined via the Wilke-Chang equation as in Equation S5,
where a is 2.6, the association parameter for water, and MM, is the molar mass
(g/mol) of water (18 g/mol). V,, is the molar volume of the target compound in
cm’/mol and vy, is the viscosity of water determined at the nearest whole number

temperature from Schwarzenbach et al. 2003.

Dpg.r2 = Dppr1-e® T17 T2 (S6)
Dpg 12, the diffusivity of the target compound in PE at the mean deployment
temperature, was determined from Equation S6, where R is the universal gas constant
(8.3145 J/K/mol) and E, is the energy of activation, assumed to be 100,000 J/mol
based on unpublished thin-film experiments by Vansco et al. measuring Dpg for

brominated flame retardants at varying temperatures.

Hvap (1 1
Kpgar2 = Kpgari-e & (S7)
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The PE-air partitioning coefficient at the mean deployment temperature
(Kpea,2) was determined from Kpga at 298.15 K (Kpga 1) via Equation S7, where Hy,p
is the enthalpy of vaporization in J/mol for the target compound and R is the ideal gas

constant.

Kprwr2 = Kpew,r1 - € (S8)
The PE-water partitioning coefficient at the mean deployment temperature
(Kpew 12) was determined from Kpgw, 11 via Equation S8, where Uy, is the energy of
solvation.
To relate best-fit dppr values to the more often-reported sampling rate (R;) for
passive samplers, sampling rates for each congener were calculated as in Equation S9:
Rs =ko-Apk (S9)
In Equation S9, R, is the sampling rate in m’/day, calculated from the mass
transfer coefficient ko (m/day) and Apg, which is the surface area of the PE,
determined as the volume of the PE (Vpg) divided by the thickness of the PE (2 x /pg).
ko 1s determined as in Equation S10, where 1/ky, 1s the matrix-side resistance
and 1/kpeKpewm 1s the PE-side resistance to mass transfer.
1 1 1
ko km Tk K PEM
pe (S10)

Matrix-side resistance was determined as in Equation S11, where dpgy is the
thickness of the DBL (either the air-side boundary layer or water-side boundary layer)

in meters and Dy, is the diffusivity of the target compound in air or water in m?/s.
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1 opBL

km Dy (S11)
PE-side resistance was determined as in Equation S12, where /pz is the half-
thickness of the PE in meters and Dpg is the diffusivity of the target compound in m?/s.

1 lpE

kpe DpE (S12)
Air-Water Exchange Flux Calculations. The estimated equilibrium concentration in
ng/g PE (Cy) was determined from the measured concentration in the PE (Cpg) as in
Equation S13, using the estimated value of f for the target compound.

Oy = Crp
f (S13)

The unitless fugacity ratio was then calculated as in Equation S14, where Coy,
and C,, are the estimated equilibrium PE concentrations in water and air samplers,

respectively.

fu  Cosw
fa Coo,a (S14)

The air-water exchange flux (Fa) in pg/m?/day was calculated as in Equation
S15, where vay 1s the mass transfer coefficient in m/s, Cs, and C. 5 are the estimated
PE concentrations at equilibrium in pg/m’, and Kpew, 12 1s the PE-water partitioning
coefficient at the mean deployment temperature. v,y was calculated for all PE pairs
that displayed fugacity ratios significantly different from equilibrium after error

propagation. Mean vy, ranged from 1x10” m/s for BDE 183 to 8x10” m/s for BDE 2.

(Coo,w - Coo,a)
KPEW,Tz (S15)

Fa/w = Vg/w -
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varw Was modeled using a two-film model, much like was done for PE-matrix
diffusive exchange. v,4, was calculated in cm/s as in Equation S16, where K,y is the
unitless air-water partitioning coefficient at the mean deployment temperature, v, is
the air-side mass transfer velocity in cm/s, and v,, is the water-side mass transfer

velocity in cm/s.

1 1 1
_|_
Va /w U Vg - Kaw,T2 (S16)
v, was determined from vino . (cm/s), the air-side mass transfer velocity of
water in air, scaled for the diffusivity of the target compound in air, Dj, (cm*/s) versus

the diffusivity of water in air (0.27 cm?/s).

_ . (L 0.67
H20,a (S17)

vio.a Was determined from the wind speed at 10 meter height, u, as in
Equation S18 from Schwarzenbach et al. 2003.2 u19 was determined from mean wind
speed, u, and height of the wind monitor on the meteorological buoy, 4, as in Equation
S19. In cases where the height of the monitor was not reported, the height was

assumed to be 10 meters.

UHQO,G =0.2- U10 + 0.3 (Slg)
10.4
Ui — U

vw 12, the water-sid at the mean deployment temperature, was determined from
the mass transfer velocity of CO; (cm/s) in water (vcoz.w), scaled to the target
compound using the Schmidt number at the deployment temperature (Scr,), the

Schmidt number for CO; at 20°C (Sccoz.w = 600) and ag, a scaling factor based on
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wind speed (0.67 for mean wind speeds <4.2 m/s, and 0.5 for higher wind speeds).
The dimensionless Schmidt number is the ratio of the viscosity of the water to the
diffusivity of the target compound in water.

_ SCT2 —asSc
Vw, T2 = VCOs,w * (

5¢c0,,w (S20)

vcoz, the average velocity of CO, (cm/s) in water over the deployment, was
determined by integrating the Weibull probability density function using all recorded
wind speeds over the deployment from the nearest meteorological buoy, scaled to 10
m above the interface as in Equation S19.

Sct, the Schmidt number at the mean deployment temperature, was
determined as in Equation S21, by scaling Sct;, the Schmidt number at 298.15 K, by
the kinematic viscosity of water (vy) at T2 versus T1.

% T
Scry = Sepy - (ﬂ 2, L
vriw T2 (S21)

Air-Water Exchange Error Propagation. The variance of the percent equilibration,
of, was determined as in Equation S22 from the variance of 8pgr, taken as the
standard deviation in the best-fit value from the non-linear least squares model, the
variance of Dy, assumed to be 50%, and the variance of Kpgym,12, determined from

Equation S23.
of

O0pBL

of
0Dpg

af )2
OKpEwm,T2 (S22)

2 _ 2
0f = O¢ppL (

)? +0b,, - (

2 2 2 2
aD]u) + ODpp * ( ) + UKPEJ\4,T2 ’ (

The variance in Kpgpm 12 was determine from Equation S23 using the variance
of Kpgm, 11, assumed to be 0.2 log units, and the variance of Hy,, (assumed to be 30%)

or, in the case of a water sampler, Uy (assumed to be 50%).
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2 _ 2

'(aKPEM,T2 2, 2 (3KPEM,T2 9
O-KPEMA,T2 - UKPEM,Tl 8KPEM 1

O‘ .
Hoer 2 OHyqp (S23)

The variance in estimated equilibrium concentrations, cc..~, was calculated
from the variance in measured concentrations in PEs (Cpg), determined by calculating

the standard deviation of repeated measurements of randomly-chosen extracts, and the

variance in f from Equation S22.

0C 0C
) 2 2 ( )2

2 2 90
(aCPE 7 of

0C. = 09Cpr

(S24)

Variance in the fugacity ratio was calculated as in Equation S25 and only

fugacity ratios significant within the +1c range were used to calculate air-water fluxes.

of of, af,
02 =02 (MUY y g2 (o2 2 ()2
fajw Coosa (acoo,a ) Coorw (()Coo,w ) KpewTs (3KPEW,T2 (S25)

Variance in the air-water flux, F,., was calculated as in Equation S26. The

standard deviation of v, was assumed to be 30%.°

aFa/m 6P’a/m
ot (ga) o, ( ?
' 0C o6 0 2004 (S26)

aFa/w
OKprw,T2

aE},/w )2 2 (

2 _ 2 .
OF, =0 (87)11/111 Kpew,T2

a/w Va /w
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Table S4-1. Deployment Summary for 2011-2012 Air and Water PEs.

Meteorology Air Water
Mean Air Mesane\é\gnd Sample| Date Date Days |Sample| Date Date Days
T (°C) (E]/s) No. | Deployed|Recovered| Deployed] No. |Deployed|Recovered|Deployed
LAKE ONTARIO
NIA: Niagara Falls, NY - Fort Niagara State Park: 43.26125 °N, 79.06287 °W
5.5 4.5 1526 | 10/2/11 | 4/24/12 205
17.0 3.5 2718 | 4/24/12 | 7/2/112 69
23.4 3.0 3128 | 7/2/12 | 8/30/12 59 3130 | 7/2/12 | 8/30/12 59
15.4 4.1 3528 | 8/30/12 | 10/31/12 62 3530 | 8/30/12 | 10/31/12 62
15.4 4.1 3529 | 8/30/112 | 10/31/12 62 3531 | 8/30/12 | 10/31/12 62
ROC1: Rochester, NY - Coast Guard Auxiliary Base 4-2: 43.25238 °N, 77.60938 °W
5.5 5.1 1412 | 10/5/11 | 4/30/12 208
20.3 4.5 2825 | 5/26/12 | 6/30/12 35 2824 | 5/26/12 | 6/30/12 35
20.3 45 2828 | 5/26/12 | 6/30/12 35
21.4 4.1 3113 | 6/30/12 | 9/30/12 | 92 3115 | 6/30/12 | 9/30/12 92
ROC2: Rochester, NY - US Coast Guard Station: 43.25694 °N, 77.60261 °W
20.4 4.5 2830 | 5/26/12 | 7/1/12 36
19.7 4.2 3118 | 7/1/12 [ 10/22/12 113
19.7 4.2 3119 | 7/1/12 | 10/22/12 113
ROC 3: Rochester, NY - Beach Avenue: 43.26438 °N, 77.61692 °W
20.3 4.5 2835 | 5/26/12 | 6/30/12 35
19.7 4.2 3123 | 7/1/12 | 10/22/12 113
19.7 4.2 3124 | 7/1/12 | 10/22/12 113
OSW: Oswego, NY: A: 43.46319 °N, 76.51671 °W; W: 43.46550 °N, 76.51666 °W
5.2 5.5 1521 | 10/3/11 [ 5/11/12 221
19.4 4.1 2707 | 5/11/12 | 7/10/12 60 2711 | 51112 | 7/10/12 60
22.6 3.8 3108 | 7/10M12 | 9/4/12 56 3110 [ 771012 [ 9/4/12 56
22.6 3.8 3109 | 7/10M12 | 9/4/12 56 3111 | 7/10/12 | 9/4/12 56
12.8 5.4 3507 | 9/4/12 | 11/15/12 72 3511 | 9/4/12 | 11/15/12 72
CV: Cape Vincent, NY: 44.13034 °N, 76.33173 °W
2.5 4.9 1519 | 11/2/11 | 5/1/12 181
18.6 3.9 2702 | 5/1/12 | 7/19/12 79 2704 | 5112 | 719112 | 79
18.6 3.9 2703 | 51/12 | 7/19/12 79
22.4 43 3102 | 7/17112 | 8/29/12 43 3104 | 7/17/12 | 8/29/12 43
14.9 5.0 3502 | 8/29/12 | 10/30/12 62 3504 | 8/29/12 | 10/30/12 62
14.9 5.0 3503 | 8/29/12 | 10/30/12 62 3505 | 8/29/12 | 10/30/12 62
[Offshore Lake Ontario (-Deployed by Ontario Ministry of the Environment)
TOR: Toronto, ON (Stn AW-2): A: 43.66496 °N, 79.26481 °W; W: 43.66387 °N, 79.26488 °W
21.3 3.9 2908 | 5/22/12 | 8112 | 71 2901 | 5/22/12 | 8/1/12 71
21.3 3.9 2909 | 5/22/12 | 8/1/12 71
17.7 3.8 3303 | 8/1/12 | 10/16/12 | 76 3317 | 8/1/12 | 10/19/12 79
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Meteorology | Air | Water

WTOR: West Toronto, ON (Stn 3508): A: 43.57255 °N, 79.51809 °W; W: 43.571847 °N, 79.51732 °W

21.3 3.9 2903 [ 5/22/112 | 7/31/12 70 2928 | 5/22/12 ] 7/31/12 [ 70
21.3 3.9 2927 | 522112 | 7/31/12 70
17.8 3.7 3313 [ 7/31/12 | 10/16/12 77 3329 [ 7/31112 ] 10116/12 [ 77
ETOR: East Toronto, ON (Stn 708): A: 43.79478 °N, 79.08620 °W; W: 43.79373 °N, 79.08655 °W
21.3 3.9 2906 | 52212 [ 8112 | 71 2917 [ 5/22/12 ] 8/1/12 71
21.3 3.9 2920 | 522112 | 8/1/12 71
17.1 3.8 3304 [ 8/1/12 | 10/22/12 82 3308 | 8/1/12 | 10/22/12 82
17.1 3.8 3311 | 8/1/12 | 10/22/12 82
CHB: Chub Point, ON (Stn 3509): A: 43.95329 °N, 78.01405 °W; W: 43.95339 °N, 78.01089 °W
19.7 2.4 2914 | 5/23/12 ] 8/1/12 70 2910 [ 5/23/12 | 8/1/12 70
16.4 2.8 3324 | 8/1/12 | 10/22/12 82 3322 | 8/1/12 | 10/22/12 82
16.4 2.8 3328 | 8/1/12 | 10/22/12 82
PEP: Prince Edward Point, ON (Stn 3087): A: 43.95745 °N, 76.81011 °W; W: 43.95832 °N, 76.81039 °W
20.0 4.4 2919 | 5/23/12 | 8/2/12 71 2934 | 5/23/12 ] 82112 | 71
20.0 4.4 2931 | 5/23/12 | 8/2/12 71
17.6 6.0 3302 | 8/2/12 | 10/25/12 84 3309 | 8/2/12 | 10/25/12 ] 84

Offshore Lake Ontario (Deployed by Environment Canada)

WONT: Western Offshore Ontario (Stn 207) offshore from Niagara: 43.32833 °N, 79.13472 °W

181 | 35 | | 2306 | 4/10/12 | 10/25/12 | 198
GRI: Western Offshore Ontario (Grimsby Met Buoy): 43.25893 °N, 79.53865 °W
189 | 42 ] 2325 | 5/14/12 | 10/25112 ] 164 |
CONT: Central Offshore Ontario (Stn 403): 43.58806 °N, 78.24055 °W
169 | 49 ] | 2321 | 4/3/12 | 10/20/12 | 200
LAKE ERIE
BUF: Buffalo, NY - US Coast Guard Station: 42.87758 °N, 78.89047 °W
4.6 5.3 1528 | 10/3/11 | 5/1/12 211
4.6 5.3 1529 | 10/3/11 | 5/1/12 211
17.5 35 2723 | 5/1/12 7/2/12 62 2725 | 5/1/12 7/2/12 62
22.5 3.6 3133 | 7/2/12 | 8/30/12 59 3135 | 7/2/12 | 8/30/12 59
14.8 4.7 3533 | 8/30/12 | 11/1/12 63
14.8 4.7 3534 | 8/30/12 | 11/1/12 63
DUN: Dunkirk, NY: A: 42.49252 °N, 79.35336 °W; W: 42.49247 °N, 79.34852 °W
5.7 6.2 1530 | 10/3/11 | 4/30/12 210
17.5 4.2 2728 | 4/30/12 | 6/28/12 59 2730 | 4/30/12 | 6/28/12 59
22.7 35 3202 | 6/28/12 | 8/29/12 62 3204 | 6/28/12 | 8/29/12 62
22.7 3.5 3203 | 6/28/12 | 8/29/12 62 3205 | 6/28/12 | 8/29/12 62
15.8 4.2 3901 | 8/29/12 | 10/22/12 54 3903 | 8/29/12 | 10/22/12 54
15.8 4.2 3902 | 8/29/12 | 10/22/12 54
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Meteorology | Air Water

ERI: Erie, PA - Presque Isle State Park: A: 42.15585 °N, 80.11288 °W; W:42.15199 °N, 80.11191 °W

7.1 6.6 1533 | 10/13/11] 6/7/12 238
21.6 5.0 2734 | 6/7/12 7/3/12 26 2736 | 6/7/12 7/3/12 26
21.6 5.0 2737 | 6/7/12 7/3/12 26
22.5 4.6 3207 | 7312 | 9/712 | 66 3209 | 7/3/12 | 9/7/12 66
16.6 5.5 3909 | 9/7/12 10/4/12 27
16.6 5.5 3910 | 9/7/12 10/4/12 27
FH: Fairport Harbor, OH: A: 41.75835 °N, 81.27789 °W; W: 41.7772 °N, 81.2439 °W
20.9 5.4 2801 | 5/21/12 7/2/12 42 2803 | 5/29/12 | 6/29/12 31
20.9 5.4 2802 | 5/21/12 7/2/12 42 2804 | 5/29/12 | 6/29/12 31
21.7 4.6 3212 | 7/2/12 9/17/12 77 3214 | 6/29/12 | 9/17/12 80
14.0 6.3 3912 | 9/17/12 | 10/15/12 28
14.0 6.3 3913 | 9/17/12 | 10/15/12 28
CLE: Cleveland, OH - Edgewater Park: A: 41.49212 °N, 81.73326 °W; W: 41.50383 °N, 81.7655 °W
21.0 3.2 2806 | 5/17/12 7/7/12 51 2808 [ 5/5/12 6/28/12 54
21.0 3.2 2807 | 5/17/12 7/7/12 51 2809 [ 5/5/12 6/28/12 54
23.2 2.9 3218 | 7/7/12 9/7/12 62 3220 | 7/7/12 9/7/12 62
23.2 2.9 3221 7/7/12 9/7/12 62
15.6 3.1 3917 | 9/7/12 10/9/12 32
15.6 3.1 3918 | 9/7/12 10/9/12 32
CLD: Cleveland, OH - DOH George T. Craig Air Monitoring Station: 41.49208 °N, 81.67851 °W
5.8 4.8 1402 | 9/30/11 5/1/12 214
19.2 3.3 2812 | 5/1/12 7/2/12 62
23.4 2.9 3223 | 7/2/12 8/31/12 60
15.1 4.1 3922 | 8/31/12 | 11/1/12 62
15.1 4.1 3923 | 8/31/12 | 11/1/12 62
TOL: Toledo, OH: 41.69105 °N, 83.40189 °W
21.9 | 3.2 | 2819 | 4/27/12 | 820112 | 115 |
SHF: Sheffield Lake, OH: 41.49741 °N, 82.08252 °W
5.7 4.8 1404 | 10/4/11 | 4/28/12 207
18.7 3.3 2713 | 4/28/12 7/2/12 65
23.3 2.9 3227 | 7/5/12 9/7/12 64
13.0 4.5 3927 | 9/7/12 11/8/12 62
13.0 4.5 3928 | 9/7/12 11/8/12 62

Offshore Lake Erie (Deployed by Environment Canada)

EERI: Eastern Erie (Stn 452): 42.57611 °N, 79.92417 °W

172 | 6.4 | 2328 | 4/25112 | 101712 | 175 | 2322 | 4/25/12 | 10117112 | 175
CERI: Central Erie (Stn 880): 41.90944 °N, 81.66917 °W

224 | 49 | 2327 | 52112 | 10116/12 | 167 | 2330 | 5/2/112 | 10/16/12 | 167
WERI: Western Erie (Stn 970): 41.82433 °N, 82.97497 °W

187 | 58 ] [ 2317 T 8/8/12 ] 10/9/12 | 62
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Table S4-2. Buoys Used for Temperature and Wind Data.

Temperature Data

Wind Speed and Direction Data

Site Abbreviation Data Source Buoy Name Location Data Source Buoy Name Location

BUF NDBC BUFN6 42.878 N, 78.890 W NDBC BUFN6 42.878 N, 78.890 W
CERI NDBC C45164 41.734 N, 81.698 W NDBC C45164 41.734 N, 81.698 W
CHB OME Logger - Same as samplers | Environment Canada COBOURG (AUT) 43.95N, 78.17 W
CLD NDBC CNDO1 41.542 N, 81.637 W NDBC CNDO1 41.542 N, 81.637 W
CLE NDBC CNDO1 41.542 N, 81.637 W NDBC CNDO1 41.542 N, 81.637 W
CONT NDBC C45012 43.618 N, 77.405 W NDBC C45012 43.618 N, 77.405 W
CV Environment Canada KINGSTON A 44.22 N, 76.6 W Environment Canada KINGSTON A 44.22 N, 76.6 W
DUN NDBC DBLN6 42.494 N, 79.354 W NDBC DBLN6 42.494 N, 79.354 W
EERI Environment Canada | LONG POINT (AUT)[42.57 N, 80.05 W Environment Canada LONG POINT(AUT) [42.57 N, 80.05 W
ERI NDBC CBLO1 41.981 N, 80.556 W NDBC CBLO1 41.981 N, 80.556 W
ETOR OME Logger - Same as samplers | Environment Canada | TORONTO CITY CENTRE |43.63 N, 79.40 W
FH NDBC FAIO1 41.764 N, 81.281 W NDBC FAIO1 41.764 N, 81.281 W
GRI Environment Canada GRIMSBY 43.252 N, 79.535 W | Environment Canada GRIMSBY 43.252 N, 79.535 W
NIA NDBC YGNN6 43.262 N, 76.064 W NDBC YGNN6 43.262 N, 76.064 W
osw NDBC OSGN6 43.464 N, 76.511 W NDBC OSGN6 43.464 N, 76.511 W
PEP OME Logger - Same as samplers | Environment Canada| POINT PETRE (AUT) |43.83 N, 77.15 W
ROC(1-3) NDBC RPRN6 43.263 N, 77.598 W NDBC RPRN6 43.263 N, 77.598 W
SHF NDBC CNDO1 41.542 N, 81.637 W NDBC CNDO1 41.542 N, 81.637 W
Stn 207 NDBC YGNN6 43.262 N, 76.064 W NDBC YGNN6 43.262 N, 76.064 W
TOL NDBC THRO1 41.694 N, 83.473 W NDBC THRO1 41.694 N, 83.473 W
TOR OME Logger - Same as samplers | Environment Canada | TORONTO CITY CENTRE |43.63 N, 79.40 W
WERI NDBC THLO1 41.826 N, 83.194 W NDBC THLO1 41.826 N, 83.194 W
WTOR OME Logger - Same as samplers | Environment Canada | TORONTO CITY CENTRE |43.63 N, 79.40 W

Most buoy data was accessed from online databases provided by Environment
Canada and the National Data Buoy Center (NDBC). In some cases, data from
temperature loggers maintained by the Ontario Ministry of the Environment and
Climate Change from the deployment buoys were available (OME Logger).
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Table S4-3. Average Matrix Spikes.

Mean Percent
Recovery (%) £ 10

(N=21)
BDE 2 67 + 15
BDE 8 86 + 16
BDE 15 95 + 15
BDE 30 86 + 17
BDE 28 100 + 15
BDE 49 77 + 8
BDE 47 97 + 25
BDE 100 101 + 19
BDE 99 98 + 13
BDE 154 92 + 10
BDE 153 83 + 14
BDE 183 91 + 38
pTBX 83 + 26
PBB 94 + 14
PBT 100 + 20
PBEB 94 + 18
HBB 88 + 15
HCDBCO 72 + 25
BTBPE 93 + 51
SDP 89 + 30
ADP 74 + 32
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Table S4-4. Mean Blank Concentration and Detection Limits (ng/g PE).

Mean abBlark | PSUS | Moan S0 g o i Mo Ev. .
+1c (N=11) _ Blank 10 (N=5) _
of Lab Blank) (N=9) (N=7)
BDE 2 0.02 £ 0.02 0.04 0.07 £ 0.07 0.00 £+ 0.00 0.02 + 0.04
BDE 8 0.01 + 0.01 0.02 0.02 £ 0.02 0.00 £+ 0.01 0.01 £ 0.02
BDE 15 0.04 + 0.05 0.09 0.08 + 0.08 0.02 £+ 0.03 0.07 £ 0.09
BDE 30 0.02 + 0.02 0.04 0.03 + 0.04 0.00 £+ 0.00 0.00 + 0.01
BDE 28 0.02 + 0.03 0.06 0.04 + 0.03 0.00 £+ 0.00 0.02 + 0.03
BDE 49 0.03 £ 0.03 0.06 0.03 £ 0.02 0.03 £+ 0.03 0.04 £ 0.03
BDE 47 0.59 + 0.23 0.47 0.67 £ 0.33 0.68 £+ 0.12 0.30 £ 0.10
BDE 100 0.04 + 0.03 0.07 0.05 + 0.03 0.02 £+ 0.02 0.01 £ 0.02
BDE 99 0.26 + 0.22 0.44 0.23 + 0.15 0.11 + 0.08 0.14 + 0.14
BDE 154 0.08 £ 0.06 0.12 0.06 + 0.03 0.10 £+ 0.01 0.03 + 0.03
BDE 153 0.02 £ 0.03 0.06 0.02 £ 0.02 0.01 £+ 0.01 0.00 £ 0.00
BDE 183 0.03 + 0.04 0.07 0.04 + 0.05 0.01 £+ 0.02 0.06 + 0.07
pTBX 0.08 £ 0.07 0.14 0.15 + 0.12 0.11 + 0.08 0.07 + 0.03
PBB 0.04 £ 0.05 0.09 0.06 £ 0.06 0.02 £+ 0.01 0.03 £ 0.03
PBT 0.08 + 0.06 0.11 0.10 £ 0.12 0.07 £+ 0.03 0.10 £ 0.08
PBEB 0.06 + 0.09 0.18 0.11 + 0.09 0.02 £+ 0.02 0.03 £ 0.02
HBB 0.10 £ 0.11 0.21 0.03 + 0.02 0.08 + 0.06 0.05 + 0.04
HCDBCO 0.05 + 0.05 0.09 0.13 + 0.17 0.07 £+ 0.06 0.07 + 0.06
BTBPE 0.58 + 0.42 0.83 1.12 + 1.49 039+ 041 0.50 £ 0.35
SDP 0.17 + 0.13 0.26 0.11 + 0.09 0.07 £ 0.05 0.06 + 0.04
ADP 0.04 + 0.02 0.05 0.03 + 0.02 0.04 + 0.01 0.05 + 0.04

“Mean OME Field Blank” is the average of all blanks from shipboard PE
deployments done by the Ontario Ministry of the Environment and Climate Change.
“Mean Env. Can. Field Blank” is the average of all blanks from shipboard PE
deployments done by Environment Canada.
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Table S4-8. Mean Percent Equilibrium (f)

Water Samples
15) Shoreline (N

Air Samples

Offshore/Nearshore(N

All (N=39)

=24)

Offshore/Nearshore (N

All (N=56)

13) Shoreline (N=34)

= 9)

Winter (N

PBDEs
BDE 2

+ 0.005
+ 15
+ 3.7
+ 18
+ 17
+ 9.0
+ 13
+ 3.8
+ 3.8
+ 1.0
+ 1.0
+ 0.3

100

+ 0.004

+13
+ 3.2
+ 15
+ 15
+ 6.4
+ 98
+ 25
+ 25
+ 0.7
+ 0.7
+ 0.2

100

+ 0.006
+18
+ 42
+ 22
+ 20
+ 12
+ 17
+ 53
+ 53
+14
+ 14
+ 04

100

+ 6.E-07

+75
+ 57
+ 34
+ 33
+ 19
+ 18
+ 52
+28
+ 0.6
+ 0.8
+ 0.1

100

+ 8.E-07

+75
+ 58
+ 20
+ 23
+ 45
+ 42
+ 1.0
+ 05
+ 0.1
+ 0.1

100

+ 0.E+00
+ 8.E-12
+ 1.E-13

+ 25
+ 1.0
+ 13
+ 13
+ 47
+ 26
+ 0.6
+ 0.8
+ 0.1

100
100
100

+ 2.E-08
+ 8.0

100

99
97

99

99
96
55
65

94
96
45
51

94

88

BDE 8

98

95
33

+ 6.2

92

BDE 15
BDE 30
BDE 28
BDE 49
BDE 47

60

63

98
99
46

+ 72
+ 8.3
+ 1.0
+ 0.9
+ 0.2
+ 01

17
21

70
17
28
6.4

73
17
29
6.5
6.5
1.6
1.6
0.4

40

16
27
6.3
6.3

14
14

3.5

5.7
53
1.2

0.6

2.0

44

1.8
0.3
0.2
0.03
0.04
0.004

12

6.3
1.4

BDE 100
BDE 99

6.4
1.6
1.6

0.4

1.9
0.4

0.5

1.6
1.6
0.4

0.1

+ 0.02

BDE 154

0.2
0.02

1.8
0.2

+ 0.02

BDE 153

0.1

+ 0.02

+ 0.002

BDE 183
NHFRs
pTBX
PBBz
PBT

192

+ 18

67
100

+ 15

70
100

+ 21

62
100

+ 24
+ 26
+ 32
+ 22
+ 18

73
21

+ 22
+ 75
+ 14
+ 57
+ 43

68
9.6

+ 0.007
+ 14
+ 8.3
+ 14
+ 13

100

+l

50
34

8.2
24

+ 1.E-04

+ 18
+ 10
+ 18
+ 14
+ 0.3

+ 2.E-04
+ 14
+74
+ 15
+ 0.9
+ 0.2

+ 2.E-07
+ 22
+ 14
+ 21
+ 20
+ 04

65
88
54
43
0.1
0.05

3.E-04

1.6
3.6

1.1

+l

51

53

47

34

20

+l

20

20

19

57

22
0.4
1.E-04
1.E-04

17
14
0.03
0.02

9.E-05

7.1

-+l

PBEB
HBBz

61
22

0.4
1.E-04
1.E-04

63
23

5.3
0.01
0.

3.E-05

0.8
0.003

4E-04

+l

1.7
0.01
8E-04

+ 0.01 + 0.05

+ 0.05

+
+
+
+

HCDBCO
BTBPE
ADP

SDP

0.4
1.E-04
1.E-04

+ 0.02

+ 0.005
+ 3.E-05
+ 3.E-05

01

+ 0.02

+ 9E-05
+ 9E-05

+ 6.E-05
+ 6.E-05

+ 1E-04
+ 1E-04

+ 1.E-04
* 1.E-04

+ 1.E-04
+ 1.E-04

2E-06
2E-06

3E-06

9.E-05

3.E-05

3.E-04

3E-06
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Comparison of Simulated and PE-Derived Air-Water Exchange Fluxes. The
method of measuring time-averaged air-water exchange fluxes using co-deployed air
and water PEs is based on the fact that passive samplers derive time-weighted
averages for compound concentrations in air and water.”>** By using two PEs in
adjacent media, we can directly derive a compound’s activity gradient. The PE
responds slowly to changing environmental concentrations of PBDEs, as indicated by
their mass transfer coefficients (for BDE 47, average k, of 6.0E-6 m/s in water and
1.1E-2 m/s in air), which means that PEs will lag behind environmental changes, as
has been noted in previous studies.”* Therefore, the air-water exchange flux derived
from co-deployed PEs is a time-weighted average of exchange fluxes over the
deployment assuming the compound remains in linear uptake during deployment, as is
the case for the dominant BDE congeners BDE 47 and BDE 99.

In order to demonstrate that PE-derived air-water exchange fluxes were
representative of average air-water exchange fluxes over relevant deployment periods,
calculated v,y and k, values for BDE 47 from each PE air-water pair used in the air-
water exchange flux study were fed into a model to calculate the mass accumulated in
air and water PEs in response to non-steady-state conditions for two “worst case”
scenarios: Scenario 1, in which BDE 47 concentrations in water and air varied
randomly every 6 hours (0.1 — 9 pg/m’ in air and 0.4-8 pg/L in water), and Scenario 2,
in which BDE 47 concentrations in air increase steadily from 0.1 to 9 pg/m’ while
water concentrations decrease steadily from 8 to 0.4 pg/L, causing the direction of the

air-water exchange flux to reverse during the deployment. These BDE 47
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concentrations were chosen because they represented the minimum and maximum
values observed for concentrations of BDE 47 in all deployments from this study.
Each scenario was run 100 times in R and the relative percent difference (RPD)
between the average actual flux over the 100-day deployment and the PE-derived flux
was calculated. An example of results is shown below for both scenarios (Figure S4-1
and S2). Results show that concentrations in the PE, and PE-derived air-water
exchange fluxes, lag behind the simulated “actual” fluxes that are occurring.
However, they do a good job of capturing average air-water exchange fluxes over
time. Results for other frequently-detected BDE congeners are similar, as they all
tended to remain in the linear or curvilinear uptake phase during deployment.

The average relative percent difference (RPD) between the mean simulated air-
water exchange flux over a 100-day deployment (Mean F,y) and the PE-Derived
exchange flux for a PE air-water pair collected on the 100™ day (Faw.pE) 1s shown in
the Table S4-11 for each of the two scenarios. We also simulated an active sampling
study by calculating the average air-water exchange flux over 100 days by taking one
instantaneous air-water exchange flux value once a week at regular intervals, and
averaging them all. RPDs for the average air-water exchange derived from these
simulated weekly grab samples are also shown in the table for each scenario. This
analysis suggests that PE-derived air-water exchange fluxes are comparable or better
than collection of numerous grab samples via active sampling for estimating time-

averaged air-water exchange fluxes of PBDEs over time scales relevant to this study.
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Figure S4-1. BDE 47 Air-Water Exchange Fluxes: Scenario 1 (Random
Fluctuation).
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Figure S4-2. BDE 47 Air-Water Exchange Fluxes: Scenario 2 (Decreasing Flux)
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Table S4-11. RPDs for Simulate and PE- or Grab Sample-Derived F,

Scenario 1: Randomly Fluctuating
Air and Water BDE Concentrations

Scenario 2: Steadily Increasing Air and
Decreasing Water Concentrations

Relative Percent Difference (RPD) between Mean F,, and Fy, pe

0.92+/-0.42%

| 18.7+10.8%

Relative Percent Difference (RPD) between Mean F ., and Fay, grab

27.3+/-7.4%

| 13.74.0%
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Figure S4-3. Average Percent Composition of Major Congeners: Dissolved
PBDEs.
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Figure S4-4. Average Percent Composition of Major Congeners: Gaseous
PBDEs.
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Comparison of Dissolved BDEs and Active Sampling Data. Concentrations of
individual PBDEs measured by Venier et al.”> were compared to concentrations in this
study measured for a collection of offshore/nearshore sites similar between the studies
(CERI, EERI, WERI, CONT, and TOR). All data for Lake Erie were from 2012,
though Venier et al. collected samples representative of one day each in April-May
and PEs from this study represented mean summertime concentrations. Lake Ontario
data from Venier et al. was collected in 2011.

The affinity of each congener for DOC (Kipoc) was calculated as 30% of the
congener’s octanol-water partitioning coefficient (Kow), as in Zarnadze &
Rodenburg.*® Kow values were obtained from Yue & Li 2013."° Concentrations from
Venier et al. were plugged into Equation S28 as Cxap and concentrations from this
study were plugged in as Cjy. The fraction dissolved, fiy, that would be needed to
explain the difference between the two concentrations was calculated for each
compound and used along with its Kipoc to derive a best-fit value of [DOC] for each
location using Equation S29. This was the concentration of DOC that would have
been needed at the site to explain the discrepancy between active and passive results,
assuming no other sources of variation.

Studies of the Great Lakes region have shown that typical concentrations of
DOC are in the range of 1 — 5 mg/L, with greater concentrations in more productive
regions along the shoreline. Best-fit DOC values needed to explain the discrepancy
between this study and Venier et al. (Table S4-12) were much greater than realistic in
one instance (CERI), and somewhat greater than expected in most others (EERI,

CONT, TOR). Only in western Erie was the DOC concentration somewhat realistic at
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3 mg/L, as some studies have reported DOC concentrations as high as 2-5 mg/L in this
region during summer.”” > Results suggested that the discrepancies between the

studies could not be entirely explained by sorption to DOC alone, as concentrations of
DOC much greater than 3 mg/L. would be needed in most cases, and the samples being

compared were from open-lake and nearshore sites, rather than shoreline sites.

Ch =S Cxip
(S28)
Fo= 1
w
1+ [DOC(kg/L)]-KI.DOC

(S29)

Table S4-12. Best-fit [DOC] from Active-Passive Comparison.

Percent Ciw/CXAD Best-fit [DOC] (mg/L)

Lake Site BDE-28 BDE-49 BDE-47 BDE-100 BDE-99 BDE-154+BB153 BDE-153 BDE-183

Erie CERI 15 13 1.9 1.5 0.8 1.9 26

Erie WERI 18 21 10 5.0 8.8 1.9 3.3

Erie EERI 21 7.7 3.9 6.3

Ontario CONT 18 6.1 6.5 24 7.9

Ontario TOR 52 6.6 41 25 1.6 1.2 71

Grayed-out cells represent compounds that were <DL in one or both studies and could
not be used in the comparison.
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Figure S4-5. Comparison between Southern Population Wedge and Circular
Radius.

Polycyclic Aromatic Hydrocarbons (PAHs) in Air (pg/m3): Strongest Correlation
with Population within a Circular Area (left) and with Population in a 180° Wedge

South (right)
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Summary of Wind Direction during 2012 Summer Sampling. Average wind
direction during the deployment period was estimated by first calculating the speed-
weighted average wind direction at all buoys with data available for the time period
(Table S4-16), then performing a geostatistical interpolation via ordinary kriging,
which used the nearby buoy data to predict average wind direction at the atmospheric
sampling sites. Table S4-16 shows the locations of buoys used, dates when data was
available, and the average speed-weighted wind direction, calculated from east-west
and north-south components (u,,. and vy, respectively). This data is also summarized
in Figure S4-5, which is a map with approximate average direction at each buoy site
marked by an arrow.

To calculate average wind direction, direction in degrees was broken
down into east-west and north-south components and then each component was
averaged over the deployment period:

Ugve = -(1/0)D (u; x sin(2m x 6/360) (S30)
Vave = -(1/n)Y (u; X cos(2m x ©/360) (S31)

A map and table of predicted values for each component over the study
region was then created (Figure S4-6; Table S4-17). Average predicted wind direction
was calculated based on the values predicted for each component at the sampling sites:

Oave = arctan(Ugye/Vave) X 180/ + 180 (S32)

An angular standard deviation cannot be calculated for speed-weighted

average direction, but standard deviation calculated based on non-speed-weighted

direction was generally <60°, which indicates that most of the small-scale variation
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caused by diurnal fluctuation was averaged out over this timespan, leaving us with a

wind direction representative of larger scale meteorological patterns.*

Table S4-16. Average Wind Direction During Deployments at Available
Meteorological Buoys.

Buoy Name Y X Start Date | End Date |N obs| u_ave| v_ave | WDIR_ave
45005 41.677(-82.398| 5/1/2012 | 11/1/2012 | 4420] 0.38 ] 0.56 214
45012 43.621[-77.406] 5/1/2012 | 11/1/2012 | 4438 ] 1.46 | 0.64 246
BARN6 42.345[-79.595| 5/1/2012 | 7/19/2012 ] 9572 1.09] 1.03 227
BUFN6 42.878| -78.89 | 5/1/2012 [ 11/1/2012 {43913 1.35] 0.92 236
C45132 42.47 | -81.22 | 5/11/2012 | 11/1/2012 ] 3909 ] 1.37 ] 0.68 244
C45135 43.79 | -76.87 | 5/1/2012 | 11/1/2012 | 4224 ] 1.37 | 0.80 240
C45139 43.252[-79.535] 5/1/2012 | 11/1/2012 | 4282 ] 1.28 ]| 0.18 262
C45142 42.74 | -79.29 | 5/1/2012 | 11/1/2012 | 42371 1.94] 0.71 250
C45159 43.77 | -78.98 | 5/1/2012 | 7/26/2012 | 2002 ] 0.37] 0.14 250
CBLO1 41.981]-80.556| 5/1/2012 [ 11/1/2012 {28223 0.80 | 0.67 230
CNDO1 41.542]-81.637| 5/1/2012 [10/18/2012{40060{ 0.19 | -0.42 336
COBOURG 43.95 | -78.17 | 5/1/2012 |10/31/2012] 4343 0.51|-0.19 291
DBLNG6 42.494 [ -79.354| 5/1/2012 | 11/1/2012 | 4437 ] 1.04] 0.80 232
FAIO1 41.764 [ -81.281| 5/1/2012 | 11/1/2012 140720 0.92 ] 0.31 251
GELO1 41.859-80.975| 5/1/2012 | 11/1/2012 1 91771 0.75]1-0.19 284
HHLO1 41.401]-82.545| 5/1/2012 [ 11/1/2012 {27376{ 0.19] 0.14 233
KINGSTON 44.22 | -76.6 | 5/1/2012 |10/31/2012] 2891 ] 0.86 | 1.43 211
MRHO1 41.544]-82.731| 5/1/2012 | 11/1/2012 |44162| 0.19 ] -0.37 333
OLCN6 43.341[-78.719] 5/1/2012 | 11/1/2012 |23374] 0.73 ] 0.49 236
OSGN6 43.464 | -76.511] 5/1/2012 | 11/1/2012 |44367] 1.06 ] 0.63 239
POINT PETRE 43.83 | -77.15 | 5/1/2012 ]10/31/2012] 4397 ] 1.34 ] 0.82 239
SBIO1 41.629]-82.841| 5/1/2012 | 11/1/2012 | 4438 | 0.95 ] 0.65 236
THRO1 41.694|-83.473| 5/1/2012 | 11/1/2012 [44187| 0.41 ] 0.12 254
TORONTO CENTRE | 43.63 | -79.4 | 5/1/2012 |10/31/2012] 4064 ] 0.29 | 0.05 261
YGNN6 43.262[-79.064| 5/1/2012 | 11/1/2012 1 26308] 0.88 | 0.41 245
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Figure S4-6. Average Wind Direction During Deployments at Available
Meteorological Buoys.
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Table S4-17. Predicted Average Wind Direction at Sampling Sites.

u_pred | u_stdev | v_pred | v_stdev Dlrtfer(:ot::rzo\n#::]%o:;lng
TOL 0.12 0.32 0.1 0.38 231
SHL 0.04 0.37 0.15 0.38 194
CLE 0.04 0.34 0.15 0.38 194
CLV 0.04 0.32 0.15 0.38 194
FH 0.09 0.29 0.15 0.36 211
ERI 0.12 0.41 0.18 0.4 214
DUN 0.21 0.28 0.21 0.36 225
BUF 0.19 0.29 0.18 0.36 227
CERI 0.08 0.39 0.15 0.39 207
EERI 0.18 0.41 0.18 0.39 225
NIA 0.1 0.28 0.11 0.36 220
ROC1 0.16 0.44 0.14 0.41 229
ROC2 0.16 0.44 0.14 0.41 229
ROC3 0.16 0.44 0.14 0.41 229
OoswW 0.13 0.3 0.19 0.38 215
CcVv 0.15 0.39 0.19 0.4 218
WTOR 0.11 0.33 0.06 0.38 242
TOR 0.08 0.32 0.05 0.37 239
ETOR 0.07 0.33 0.03 0.37 243
CHB 0.13 0.35 0.01 0.39 265
PEP 0.18 0.34 0.16 0.37 229
GRI 0.18 0.29 0.09 0.37 245

Figure S4-8. Variance or Dissolved PBDE Predictions from Bayesian Kriging.
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Figure S4-9. Distributions of Estimated Parameters for Bayesian Kriging.
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Figure S4-10. Cross-Validation for Bayesian Kriging of Dissolved PBDEs.
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ABSTRACT

Very few studies have reported on biological effects of hydrophobic organic
contaminants (HOCs) in the gaseous fraction of ambient air, though health risks posed
by particle-bound HOCs are well established, especially with regard to the polycyclic
aromatic hydrocarbons (PAHs). Polyethylene passive samplers (PEs) were deployed
in air throughout the greater Cleveland (OH) area along the southern shore of Lake
Erie. PE extracts were analyzed for PAHs and organophosphate esters (OPEs), two
groups of contaminants prominent in ambient urban air, and were also analyzed via an
in vitro bioassay to measure AhR-mediated potency. Ambient gaseous concentrations
of £40PAH ranged from 7.1 ng/m’ in Cuyahoga National Park to 36 ng/m’ in
downtown Cleveland, and were dominated by the 2-3-ring methylphenanthrenes,
phenanthrene, and fluorene. Gaseous concentrations of X;,OPE ranged from 0.02
ng/m’ in Cuyahoga National Park to 1.2 ng/m’ in Kent. Dosing solutions used in
bioassay experiments were enriched in hydrophobic compounds compared to ambient
air. Bioassay-derived BaP equivalents (BaPEqy;,), a measure of relative potency,
ranged from 21-283 ng/uL BaP, with greatest values in the downtown Cleveland area
and lowest values at rural/residential sites further from the city center. BaPEqy;, was
weakly correlated with concentrations of 2-ring alkyl/substituted PAHs as well as the
OPEs TDCIPP and EHDPP. Potencies predicted based on literature-derived induction
equivalency factors (IEFs) explained only 2-23% of the AhR-mediated potency

observed in bioassay experiments. This suggests that biological effects predicted
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using BaPEqchem may underestimate risks of exposure, perhaps due to synergism, or
augmentation of potency by unmonitored chemicals in the mixture.
INTRODUCTION

Hydrophobic organic contaminants (HOCs) in the particulate phase of ambient
air pose a health risk to humans, and polycyclic aromatic hydrocarbons (PAHs) are the
predominant carcinogenic component of this fraction.'”> However, there are very few
studies investigating health risks associated with HOC mixtures present in the gaseous
phase of ambient air. Humans are exposed to gaseous air pollution directly via
respiration and dermal uptake.’ This is especially concerning in urban areas with
greater traffic and population density, and also in indoor environments. Furthermore,
gaseous HOCs are freely available to partition into other media including plants,” so
dietary uptake from crops could be a significant route of human exposure.’

The gaseous fraction of ambient air has a distinct composition compared to the
particle-bound fraction.® The total amount of PAHs in the gaseous phase is generally
greater than in the particulate phase, though total PAHs in this phase are dominated by
lower molecular weight 2-3-ring PAHs while the particulate-bound fraction is
dominated by more hydrophobic PAHs.>*'* Recent studies have also demonstrated
that organophosphate esters (OPEs), a group of compounds currently used as flame
retardants and plasticizers in consumer goods, are present at unexpectedly high levels
in ambient air in the Great Lakes region, and some chlorinated OPEs are expected to
be predominantly in the gaseous phase.''"* O’Connell et al. used silicone wristbands
as personal monitoring devices for exposure to gas-phase HOCs and frequently

detected several 2-3-ring PAHs, as well as some OPEs.'* Chronic exposure to gas-

225



phase OPEs and PAHs in ambient air is of concern because these compounds have
been associated with carcinogenicity, endocrine disruption, and other biological
effects in previous in vitro and in vivo studies.®">'®

Activation of the aryl hydrocarbon receptor (AhR) is linked to induction and
repression of a large number of genes, modulation of cell growth and proliferation,
tumor promotion, immunological effects, cardiotoxicity, and endocrine disruption,
with the severity and type of response dependent upon the specific ligand and its
binding affinity.'® Many previous studies have assessed health risks of ambient air
pollution using induction equivalency factors (IEFs) to represent the relative AhR-
mediated potency of PAHs relative to benzo(a)pyrene (BaP).*** This approach
assumes an additive, rather than synergistic or antagonistic, relationship between
multiple ligands. AhR is activated by binding with variable affinity to several PAHs,
with 4-5-ring PAHs generally more potent than the 2-3-ring PAHs that dominate gas-
phase air pollution.’®

Highly carcinogenic PAHs such as benzo(a)pyrene (BaP) are typically present
only at very low concentrations in the gas phase due to low volatility. The lower
molecular weight PAHs, especially phenanthrene, fluoranthene, and the methylated
phenanthrenes/anthracenes, are expected to contribute more significantly to the
potency of this fraction due to their high gas-phase concentrations.® Despite this,
previous studies have shown that the gaseous fraction of ambient air pollutants
appears to be responsible for a significant portion of the AhR-mediated potency
associated with ambient air. The majority of compounds responsible for this potency

remain unidentified. In studies of gas-phase air pollution, Ramirez et al. found that,
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while concentrations of PAHs known to be most potent with respect to cytochrome
P450 1A1 (CYPIA1) induction were low in the gaseous fraction, this fraction was
estimated to contribute 34-86% of total carcinogenicity associated with 16 PAHs
based on potency relative to BaP.® Previous studies by Klein et al. and Novak et al.
also observed significant AhR activation from the gaseous, as well as the particulate,

fraction of ambient air pollutants.'*?!

Kennedy et al. found a statistically significant
relationship between PAH concentrations and AhR activity in samples of gaseous and
fine particulate contaminants, but determined that the specific PAHs targeted via
GC/MS accounted for < 3% of the measured AhR activity.”® Similarly, Ersekova et
al. found that quantified PAHs accounted for 3-33% of measured AhR activity.”

Many previous studies have noted that gaseous HOCs should not be ignored in
risk assessments, but they were all carried out using high-volume air samplers or
passive polyurethane foam (PUF) samplers, which are less selective for gaseous HOCs
than diffusive uptake by polyethylene.” This study is the first to investigate AhR
activation caused by the freely gaseous fraction of HOCs taken up by a single-phase
sampler consisting only of pre-cleaned polyethylene, and will help contribute to our
knowledge of the biological relevance of the truly gaseous fraction of ambient air.
Passive samplers of this type have similar affinity for HOCs as organism lipids, and
have been used in predicting the extent to which HOCs will bioaccumulate.”* The
composition of HOCs taken up into the polyethylene matrix is similar to the
composition that would be found in biological tissue.

Polyethylene passive samplers (PEs) were deployed throughout the Cleveland

(OH) area on the southern shore of Lake Erie during June-September, 2013. Extracts
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from PEs were analyzed for PAHs and OPEs and were also analyzed via an in vitro
bioassay to measure AhR induction. The objectives of this study were to (i)
investigate the use of PEs as a viable vehicle for isolating gaseous HOC:s to use in
bioassay exposures, (i1) explore whether AhR-mediated potency of the extracts
correlated significantly with any compound or compound group measured in the
extracts, and (ii1) compare predicted potency based on chemical analysis to observed
potency from bioassay analysis to determine what portion of AhR-mediated potency
could be predicted from known chemical composition.

We expected that AhR-mediated potency and gaseous concentrations of OPEs
and PAHs in PE extracts would be greatest at densely populated urban sites located
near the city center, and that some correlation would be seen between gaseous PAH
concentrations and relative potency. However, we also expected that BaP-equivalents
calculated from targeted PAH chemical analysis (BaPEqcnem) would likely
underestimate the potency observed in bioassay experiments and that, unlike what is
usually found for particulate air pollution, BaP concentration would not correlate

significantly with the relative AhR-mediated potency of gas-phase extracts.

METHODS

Passive Air Sampler Deployment. 800-pum low-density polyethylene sheeting
(United Plastics, Inc.) was cut into approximately 3 in. x 5 in. pieces and cleaned in
solvent (DCM and hexane) to remove background contamination. At each of nine

sampling sites throughout the Cleveland area, four polyethylene sheets (PEs) were
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fastened inside an inverted stainless steel bowl using zip-ties and the bowl was
suspended so that the PEs were hanging at approximately 2 m height.

In order to calculate ambient concentrations from deployed PEs, performance
reference compounds (PRCs) are often added to the PE for in situ calibration of
sampling rates. However, PRCs could not be added to the PEs intended for bioassays
because these compounds could interfere with bioassay responses. A set of three 50-
um-thick PEs, preloaded with PRCs by incubation in an 80:20 methanol:water
solution, were also co-deployed at each site to allow for sampling rate determination
in all PEs after deployment.

A map of the study region is shown in Figure 5-1 and characteristics of the
deployment sites are summarized in Table 5-1. Deployments took place during June
to September of 2013, with each set of PEs deployed for about 60 days. After
deployment, PEs were removed from the protective bowl, wrapped in precombusted
aluminum foil, and shipped on ice overnight to the University of Rhode Island
Graduate School of Oceanography, where they were frozen until extraction.

Sample Preparation. Each PE was extracted twice in pentane, each time for 18-24
hours, along with a laboratory blank, which was a PE that had been cleaned alongside
the field samples and then stored frozen in precombusted aluminum foil while the
other PEs were deployed. All four 800-um PEs from the same site were composited
into one extract and concentrated to 1 mL in a warm water bath under a gentle stream
of nitrogen. Extracts from 800-um PEs appeared to contain a white precipitate,
possibly from coextracted polyethylene material. To remove the particulate, extracts

were serially frozen, causing the precipitate to solidify at the bottom of the vial, and
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then the overlying liquid was removed. After this, two aliquots were removed from
the 1 mL solution: one for chemical analysis and the other for biological analysis. A
schematic summarizing sample preparation is shown in Figure S5-1.

Chemical Analysis by GC/MS. Aliquots of 50 uLL were spiked with internal
standards acenaphthene-d,o, phenanthrene-d;o, chrysene-d;,, and perylene-d,, for
quantification. These samples were analyzed on an Agilent 6890 GC coupled to an
Agilent 5973 MSD in electron impact (EI, 70 eV) mode for 22 PAHs, 18 alkylated
PAHSs, and (in a separate GC/MS run) 12 organophosphate esters (OPEs) using an
Agilent J&W DB-5 fused capillary column (30 m x 0.25 mm [.D.). Extracts were also
analyzed in negative chemical ionization (NCI) mode with methane reagent gas for 12
brominated diphenyl ethers (BDEs), 8 novel halogenated flame retardants (NHFRs),
and 3 polybrominated biphenyls (PBBs). A complete list of target compounds and
abbreviations is available in the SI (Table S5-1).

To avoid interference with biological assays, samples were not spiked with
internal standard prior to extraction and so were not corrected for internal standard
recoveries. Dosing solution concentrations were not blank-subtracted before use in
data interpretation. This was considered appropriate as we were primarily interested
in determining the actual concentration present in the bioassay exposure solution.
Ambient Air Concentrations. The composition of HOCs in PEs differs from the
ambient composition of gas-phase HOCs in air because the concentration in
polyethylene is dependent not only on gas-phase concentrations, but also on the
affinity of each compound for the PE matrix and the rate at which the compound is

absorbed into the PE. In order to compare the composition of solutions used in
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bioassay experiments to the actual composition of gaseous HOCs expected in ambient
air, air concentrations were calculated based on the results of the chemical analysis of
PE extracts. Concentrations of PAHs and OPEs per weight PE were blank-subtracted
using the co-extracted laboratory PE Blank. Concentrations below 25% of the PE
Blank were considered <DL, and all <DL values were replaced with 0.

To translate concentrations within the PE to concentrations in ambient air, the
volume of air sampled by each PE during deployment was estimated using data on the
percent loss of labeled PRCs from co-deployed 50 pm-thick PEs. From the PRC loss
data, the best-fit value for the thickness of the diffusive boundary layer (DBL) at the
air-PE interface was determined. Because all PEs were deployed under the same
conditions and the thickness of the PE sheet does not affect air-side resistance, the
DBL thickness determined for thin sheets was then plugged into a two-film model
describing PE-side and air-side mass transfer rates to calculate the percent
equilibration reached by each target compound in the 800 um-thick PEs. This
approach for estimation of percent equilibration from PRC loss data has been
described in detail in previous work.”2°
Biological Analysis by Reporter Cell Bioassay. Aliquots for biological analysis
were transferred to 200 uL of DMSO and blown down under a gentle stream of
nitrogen to constant volume. This stock solution was used to create a 10-point dilution
curve for each sample, including the PE blank.

The AhR reporter cell line used was H1G1.1c3, a murine hepatoma cell line
consisting of Hepa-1clc7 cells stably transfected with AhR-responsive green

fluorescence protein (GFP) reporter gene developed by Nagy et al.”” 100 uL of cells
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per well were treated with 1 uLL of each sample dilution in triplicate in a Costar 96-
well black plate with a clear bottom. For each test extract, the cells in three wells were
treated with 1 uL of DMSO as a negative control, and the cells in another set of three
wells were left untreated to control for any natural cell fluorescence. On each plate,
three wells were treated with benzo(a)pyrene (BaP) at a final well concentration of
1.2x107 M dissolved in DMSO as a positive control. On one plate, a 10-point dilution
curve was also run for BaP (1.2x10™ — 1.2x10™ M), and results were normalized to
the positive control 1.2x10” M BaP (Figure S5-2).

Cells were incubated at 33 °C and AhR-mediated potency was measured by
reading the GFP fluorescence emitted by the cells at 515 nm using a Spectra Max M3
plate reader at 24 and 48 hours post dosing (hpd). The mean fluorescence value of the
DMSO-treated negative control triplicate wells was subtracted from each sample’s
fluorescence readings, and then the response was expressed as a ratio over the mean
fluorescence value of the triplicate 1.2x10” M BaP positive controls wells run on the
same plate to control for plate-to-plate differences in cell response.

Determining Relative Potency. Data from 48-hpd readings were fitted to a four-
parameter log-logistic dose-response model with the lower bound set to 0 using R
package drc.”® The upper bound was set to the maximum observed response in all
cases where response reached a plateau or decreased at highest dosages, but was not
set for the extract from Cleveland Lakefront #1 because response continued increasing
up to the maximum dose. The response foccurring as a result of dosage x is modeled

as in Equation 1, where c is the lower bound value (set to 0), d is the upper bound
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value, b determines slope steepness, and e is the concentration achieving 50% of

maximum efficacy (ECs).
d—c

flx) = 1+ exp(b(log(e) — log(x)) Eql

In addition to the ECs¢, ECg.p2o and ECgapso were calculated as alternative
measures of relative potency. The ECgapz0 and ECgapso are the doses achieving 20%
and 50% of the effect observed for the positive control, 1.2x107 M BaP. The ECgapso
was identified as a more useful metric than ECsy because the extracts’ dose-response
curves were not parallel and maximum efficacy varied among curves.

Dosing solutions were prepared so that each sample was representative of the
same amount of extracted PE to facilitate comparison with the PE blank. However,
due to site-to-site variability in sampling rates, the volume of air represented by each
sample was different (Table 5-1). For this reason, after determination of ECg,pso from
the dose-response curve fit, ECg,pso values were normalized based on volume of air
sampled at each site. Aliquots of PE extracts used in dosing solutions were
representative of 1900-3100 m® of air, and were all normalized to 2000 m’.

To compare predicted potency based on chemical composition and observed
potency based on bioassay experiments, BaP equivalents had to be calculated for both
sets of data. For concentrations measured via chemical analysis, BaP equivalents in
each mixture (BaPEqcnem) Were determined as in Equation 2 by multiplying the
concentration of each compound in the dosing solution (C,) by the compound’s
potency relative to BaP (expressed as induction equivalency factor, IEF,) from

Machala et al.,'® and summing results for all compounds. Concentrations in the
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dosing solution were normalized based on volume of air sampled before BaPEqchem

calculations were done.

Ba/PEQChem - Z(IEFH ) C’n)(ng/,uL) Eq2

For comparison to bioassay results, the relative potency of each sample extract
was expressed as the amount of BaP that would be needed to achieve the same
response. The bio-derived toxic equivalency (BaPEqyi,) was calculated as in Equation
3 as the ratio of the ECg,pso for the BaP curve, expressed in ng BaP added to the well
to achieve 50% of the 1.2x10” BaP positive control response, and the ECg,pso of the

extract, expressed as puL of dosing solution added to the well.

ECpapso[BaP](ng/well)

BaPEqg;, =
i ECpapso[Extract|(uL /well) Eq3

The degree to which chemical analysis can explain observed potency (%chem)
was then expressed as the percent of observed potency predicted by BaPEqchem, as in
Equation 4.

@7 Zdchem 0y
BCLPEqbZ'O Eq4

%chem —

RESULTS AND DISCUSSION

Chemical Composition of Bioassay Dosing Solutions. Concentrations of PAHs and
OPE:s in the bioassay dosing solution and estimated ambient air concentrations are
displayed in Figure 5-2. Total PAHs and alkylated PAHs (Z40PAH) in the dosing
solution ranged from 3.6 ng/uL for the extract from Cuyahoga National Park to 33.7
ng/uL for University Heights. Concentrations were dominated by phenanthrene (10-
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57% Z40PAH; 0.6-16.3 ng/ uL), fluoranthene (1-18%; 0.1-6 ng/uL), 2-
methylphenanthrene (1-6%; 0.1-1 ng/uL), and fluorene (3-9%; 0.3-1 ng/uL). Total
OPEs (£,,0PE) ranged from 0.7 ng/uL for the extract from Cuyahoga National Park
to 3.4 ng/uL for Kent, with concentrations generally dominated by TDCIPP (10-51%;
0.1-1 ng/uL) and TEHP (8-40%; 0.1-0.6 ng/uL). All dosing solution concentrations
for field samples were normalized to an air volume of 2000 m®. Concentrations of all
compounds in dosing solutions are presented in the SI for PAHs (Table S5-2), OPEs
(Table S5-3), and brominated flame retardants (BFRs; Table S5-4).

2-ring, 3-ring, and 4-ring PAHs, as well as their alkylated and substituted
counterparts, were generally correlated in the different dosing solutions (0.3 <1* <
0.9), while 5-6-ring PAHs showed little correlation with the other compounds (Table
S5-5). Correlation among PAHs was further confirmed by principal component
analysis (PCA), which showed that 76% of variation in samples was explained by two
principal components, the first with loadings primarily from 3-4-ring PAHs, and the
second with loadings primarily from 2-ring and 4-5-ring PAHs (Figure S5-3). The
OPEs generally varied independently of one another, though some degree of
correlation (r* > 0.3) was observed between some pairs, including TCEP and TCIPP,
and TDCIPP and EHDPP (Table S5-6). There were few correlations found between
the PAHs and OPEs, though TnBP was found to correlate with 2-4-ring PAHs (Table
S5-7).
Ambient Air Concentrations. Ambient gaseous concentrations of X4PAH ranged
from 7.1 ng/m’ in Cuyahoga National Park to 36.2 ng/m’ at Cleveland Downtown 1,

and were dominated by the methylnaphthalenes (18-33%; 1.7-8.8 ng/m’),
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phenanthrene (2-33%; 0.3-9.8 ng/m’), and fluorene (5-14%; 0.5-2.6 ng/m>).
Concentrations were similar in range to those measured by Peverly in Chicago using
polyurethane foam passive samplers (PUFs) in 2012-2014 (£;,PAH = 9-52 ng/m’),
and by Melymuk et al. in Toronto in 2007-2008 (2,;PAH = 0.3-51 ng/m”), also using
PUFs.'* Concentrations in this study were similar but lower than previous
measurements of total gaseous PAHs using PEs in the downtown Cleveland area by
McDonough et al. in 2012 (£;sPAH = 23-80 ng/m’).” In larger-scale regional studies,
atmospheric concentrations of PAHs have often been found to correlate with
population density,”° but here, no significant (p < 0.05) correlation between gaseous
with population density within 5-30 km was observed.

Gaseous concentrations of £,,0OPE ranged from 0.02 ng/m’ in Cuyahoga
National Park to 1.2 ng/m’ in Kent. This was similar in range to measurements by
Peverly et al. in Chicago using PUFs in 2012-2014 (£,30PE = 0.5 — 1.5 ng/m”), and
slightly lower than measurements of particulate X;,OPE in the Cleveland area by
Salamova et al. in 2012 (mean X,0PE = 2.1+0.4 ng/m’).'""'* TCIPP was the most
abundant OPE at most sites (9-90%; 0.01-1.0 ng/m’) with the exception of University
Heights, where TnBP dominated (86%; 0.6 ng/m’). TCIPP was also found to be most
abundant in Cleveland particulate £,,OPE by Salamova et al. (0.85+0.3 ng/m’).""

Figure 5-2 compares the composition of the dosing solutions used in bioassay
experiments and of ambient gaseous PAHs and OPEs. Dosing solutions were enriched
in more moderately hydrophobic compounds, such as fluoranthene and TDCIPP,
which make up a lower percentage of total HOCs in the gaseous fraction of ambient

air but have a greater affinity for the PE matrix.
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Dose-Response Curves for PE Extracts. Extracts from all PEs, including the PE
Blank, induced dose-dependent activation of AhR-dependent GFP. All dose-response
data are displayed along with curve fits and 95% confidence intervals in Figure 5-3,
with response represented as a ratio compared to response elicited by the BaP positive
control. For all extracts, an initial increase in GFP induction was seen with increasing
dosage. However, there was a precipitous decline in the fluorescence of all extracts
(except Cleveland Lakefront 1) at the greatest dosing levels, possibly due to
cytotoxicity or inhibition of the fluorescence response at high concentrations. These
points were omitted during dose-response curve fitting, as we were interested in
determining only the relative induction potency of the extracts. Most extracts did not
exhibit a clear plateau in response, making determination of maximum efficacy, as
well as ECsp, somewhat uncertain. Furthermore, maximum efficacy of the samples
varied from 94%-230% of 1.2x10”" M BaP response (Table 5-2). For this reason,
ECgapso, measured relative to the plate-specific positive control, was used to compare
potency of samples.

The ECgapso and ECpapo of each extract, normalized for volume of air sampled
during each deployment, are displayed in Table 5-2, along with each extract’s
maximum observed efficacy. The letters to the right of each ECgapso divide the values
into 5 groups based on whether they are similar to each other within the range of the
standard error. Values of ECpapso ranged from 0.5+0.1 g PE/mL at Downtown
Cleveland 1 to 6.6+1.2 g PE/mL at Cuyahoga National Park.

The three rural/residential sites had the lowest potency (greatest ECpapso

values), ranging from 2.6 — 6.6 g PE/mL, followed by the two Cleveland Lakefront
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sites. The most potent extracts were from the three Cleveland Downtown sites and
one semi-urban residential site (University Heights, a densely populated suburb). This
contrasts with work by Klein et al., where no change in potency of gaseous extracts
was observed between urban and rural samples with distinct chemical compositions,
but is consistent with work by Ersekova et al, where extracts from impacted sites were
found to be more potent in AhR bioassays than extracts from rural sites.'®** The
relative potency of the PE Blank (ECg,pso = 2345 g PE/mL) was significantly lower
than all field samples when compared using the ECg,pso values, prior to adjusting for
volume of air sampled. Blank comparisons were done before normalizing for the
volume of air sampled so that each sample would be representative of the same mass
of extracted polyethylene.

Relative potency and maximum efficacy of the extracts did not appear to be
correlated. This is most likely due to a complex interplay between the unique
composition of ligands in each sample, their affinity for the AhR, the resulting ligand-
receptor complex’s ability to bind other necessary transcription factors, and
cytotoxicity of specific components. Response could also be affected by ligands
interacting with other pathways that could amplify or dampen AhR response. Klein et
al. also observed a lack of correlation between relative potency of extracts and
maximum efficacy with respect to AhR binding of gas-phase extracts from active air
sampling.10

Initial bioassay experiments demonstrated that treated cells’ fluorescence
responses increased over time from 16 to 48 hpd, so all responses reported here were

measured at 48 hpd. This is in contrast to other studies of potency with respect to

238



AhR activation for environmental samples, most of which have used a luciferase
reporter rather than the GFP reporter used here. For example, Machala et al. measured
greatest potency at 6 hpd, most likely due to PAH metabolism'® and Kennedy et al.
observed steadily decreasing potency in extracts from 24 to 72 hpd.” This difference
is most likely due to differences in induction kinetics and increased stability of the
GFP reporters compared to the luciferase reporter.®’ It is also possible that some of
the response observed in this study was due to compounds that were less readily
metabolized than PAHs and OPEs.

Bioassay-Derived BaP Equivalents for PE Extracts. A map displaying results for
BaPEqyi, 1s displayed alongside maps of total concentrations of PAHs and OPEs in the
dosing solution (£4PAH and X,,0OPE) in Figure 5-4. BaPEqp;, values ranged from 21-
283 ng/uL BaP and were generally greatest in the downtown Cleveland area and
lowest at the rural/residential sites further from the city center.

BaPEqui, values were compared to concentrations of PAHs, OPEs, and
halogenated flame retardants (PBDEs and NHFRs) measured in the dosing solutions to
determine whether there was any significant correlation between relative potency of
extracts and their chemical composition. Though some correlations were found, few
seemed likely to be driving potency. No correlations with PBDE and NHFR content
were observed. BaPEqyi, weakly correlated only with 2-ring alkyl/substituted PAHs (1*
=0.42; p<0.1; SE = 64; N =9) and also displayed correlation with two OPEs,
TDCIPP (r* = 0.58; p < 0.05; SE = 54; N = 9) and EHDPP (r*=0.73; p < 0.01; SE =
44; N =9). TDCIPP is a known carcinogen and has previously been associated with

altering expression of mRNA involved in AhR activation along with other
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pathways,'"'®

while less is known about biological effects of EHDPP. Maximum
efficacy of PE extracts showed some correlation with concentrations of 3-ring (r* =
0.61; p <0.05; SE = 31; N = 9) and 4-ring non-alkylated PAHs (r* = 0.48; p < 0.05;
SE =36; N =9) and no relationship to OPE concentrations.
Predicted BaP Equivalents from Chemical Analysis. The BaPEqchem 0f each
dosing solution was calculated based on PAH concentrations from GC/MS analysis.
No dataset for the specific cell line used here was available, so IEFs were taken from
Machala et al.,'® who measured PAH-induced AhR-mediated response in a rat
hepatoma H4IIE cell line stably transfected with luciferase reporter gene. IEFs were
not available for all PAHs, so calculated BaPEqchem Values are representative only of
14 PAHs (Table S5-8).

BaPEqcnem values calculated using potencies from Machala et al. ranged from
1.6 to 7.9 ng/uL BaP, as shown in Table 5-3. The percent of BaPEq;, accounted for
by BaPEqchem 15 also displayed. The percent contribution of individual PAHs to the
total predicted BaPEqcnem are displayed in Figure 5-5. Contributions to BaPEqchem
appear dominated by high molecular weight PAHs that were present at low
concentrations in the dosing solution, including dibenz(a,h)anthracene (DBA),
indeno(1,2,3-c,d)pyrene (IND), benzo(b/k)fluoranthene (BBKFLRA), and chrysene
(CHRY).

Potencies calculated from known chemical composition using IEFs explained
only 2-23% of the AhR-mediated potency observed in bioassay experiments, and
BaPEqcnem and BaPEqpi, were not found to be significantly correlated. This suggests

that other compound groups, including nitro- and oxy-PAHs, additional substituted

240



PAHs, and persistent halogenated pollutants such as the polychlorinated biphenyls
(PCBs) and other halogenated species, may also be influencing BaPEqy;, of gas-phase
extracts, along with other unknown pollutants and their transformation products. A
major weakness of predicting potency based on compound IEFs is that it considers
only additive interactions and ignores synergistic and antagonistic effects, which are
highly probable in complex environmental mixtures. This, along with the scarcity of
IEF values for the targeted compounds, most likely contributed to the discrepancy

between observed and predicted relative potency.

CONCLUSIONS

This study demonstrated the use of PEs coupled with in vitro bioassays as an
approach to measure cumulative biological effects of ambient gaseous air pollution.
While some activity was seen in the PE blank, the relative potency of field samples
was found to be significantly elevated above blank levels, suggesting that interference
from the PE matrix or typical laboratory contamination did not prohibit the use of PE
extracts in bioassays for AhR-mediated potency.

AhR-mediated potency was found to vary significantly between different sites,
and was greatest in downtown Cleveland. Relative potency of the extracts displayed
some correlation with PAHs common in the gaseous phase, though causative links are
difficult to establish. This study agreed with previous studies that have suggested the
BaPEqchem approach underestimates risks of exposure, as AhR activation caused by

PAHs in a mixture may be synergistic, or the potency predicted from target
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compounds could be augmented by other unmonitored chemicals in the mixture and

their unforeseen interactions.
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Figure 5-3. Dose-response curves for triplicate cell exposures to PE extract dilution
curves, including the PE Blank. Relative potency was greatest for Cleveland
Downtown 1 and lowest for the PE Blank. Dose is expressed as the mass of PE
extracted per mL DMSO in each dosing solution. Efficacy is expressed as the ratio of
the response to PE extract as compared to the response of the positive control (1.2 x
107 M BaP).
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ECBaPZO ECBaPSO Max Efficacy

Sample (g PE/mL) (g PE/mL) (% +control)
Cuyahoga National Park 23 + 0.6 6.6 + 1.2 a 110 + 15
Fairport Harbor Lakefront 14 + 05 41 £ 09 b 178 + 22
Kent 09 £+ 0.2 26 £ 04 188 + 18
Cleveland Lakefront 1 04 + 0.1 22 + 1.2 b,cde 188 % 39
Cleveland Lakefront 2 0.8 + 0.2 19 + 0.2 d 109 + 4

Cleveland Downtown 2 0.6 + 0.1 1.6 + 0.2 d,e 94 + 13
University Heights 05 + 01 16 £ 0.3 d,e 230 + 18
Cleveland Downtown 3 0.4 = 0.2 1.1 £+ 03 e 179 £ 55
Cleveland Downtown 1 0.2 £+ 0.1 05 + 01 f 138 + 39

Table 5-2. Relative potency and maximum efficacy of PE extracts, with relative
potency values normalized based on volume of air sampled and maximum efficacy
normalized to the response of the positive control (1.2 x 10”7 M BaP).

Sample BaPEqpi, BaPEqchem %BapEqchem/BaPEqpio
Cuyahoga National Park 21 1.6 7%
Fairport Harbor Lakefront 35 2.5 23%
Kent 54 7.9 11%
Cleveland Lakefront 1 64 2.9 4%
Cleveland Lakefront 2 75 3.0 6%
Cleveland Downtown 2 89 6.1 7%
University Heights 89 4.7 3%
Cleveland Downtown 3 129 5.8 2%
Cleveland Downtown 1 283 6.0 2%

Table 5-3. BaP equivalents derived from chemical analysis (BaPEqchem) and
bioassays (BaPEqpi,), and the percent BaPEqy;, explained by PAHs for which IEF
values were available.
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Figure 5-5. Relative contribution of PAHs to BaPEQchem, based on IEFs from

Machala et al.
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SUPPLEMENTARY INFORMATION:
INVESTIGATING ARYL HYDROCARBON-MEDIATED POTENCY OF
GAS-PHASE AMBIENT AIR USING IN VITRO BIOASSAYS AND PASSIVE
SAMPLING

Carrie A. McDonough, Diana G. Franks, Mark E. Hahn, Rainer Lohmann
Total number of pages: 9

Total number of figures: 3
Total number of tables: 8
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Table S5-1. Target compounds and abbreviations used. Compounds marked with “*’
were seldom detected and are omitted from figures in the discussion.

Polycyclic Aromatic Hydrocarbons (PAHs)

2-ring PAHs
NAP
BIP
ACY
ACE
FLR

Naphthalene
Biphenyl
Acenaphthylene
Acenaphthene
Fluorene

2-ring alkyl/substituted PAHs

2MENAP
1MENAP
3MEFLR
2MEFLR
1MEFLR
4MEFLR
DBF

DBT

3-ring PAHs
PHN

ANT

FLRA

4-ring PAHs
PYR

BAA

CHRY
BBKFLRA

2-methylnaphthalene
1-methylnaphthalene
3-methyl fluorene
2-methyl fluorene
1-methyl fluorene
4-methyl fluorene
Dibenzofuran
Dibenzothiophene

Phenanthrene
Anthracene
Fluoranthene

Pyrene
Benzo(a)anthracene
Chrysene
Benzo(b,k)fluoranthene

3-4-ring alkylPAHs

3MEPHN
2MEPHN
2MEANT
9MEPHN
1MEPHN
9MEANT
2MEFLRA
1MEPYR
RET
BCPHN
6MECHRY
7MEBAA
DIMEBAA
5-6-ring PAHs
BEP

BAP

PER

IND

DIBA
BGHIP
COR*

3-methyl phenanthrene
2-methyl phenanthrene
2-methyl anthracene
9-methyl phenanthrene
1-methylphenanthrene
9-methyl anthracene
2-methyl fluoranthene

1 methyl pyrene

Retene
Benzo(c)phenanthrene
6-methyl chrysene

7-methyl benz(a)anthracene
7,12-Dimethylbenz(a)anthracene

Benzo(e)pyrene
Benzo(a)pyrene
Perylene
Indeno(1,2,3-c,d)pyrene
Dibenz(a,h)anthracene)
Benzo(g,h,i)pyrene
Coronene
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CAS Number

91-20-3
92-52-4
208-96-8
83-32-9
86-73-7

91-57-6
90-12-0
2523-39-9
1430-97-3
1730-37-6
1556-99-6
132-64-9
132-65-0

85-01-8
120-12-7
205-99-2

129-00-0

96-55-3

218-01-9
205-99-2/209-08-9

832-71-3
2531-84-2
613-12-7
883-20-5
832-69-9
779-02-2
33543-31-6
2381-21-7
483-65-8
195-19-7
1705-85-7
2541-69-7
57-97-6

192-97-2
50-32-8

198-55-0
193-39-5
57-70-3

191-24-2
191-07-1



Table S5-1, Cont’d. Target compounds and abbreviations used. Compounds marked
with “*” were seldom detected and are omitted from figures in the discussion.

Organophosphate Esters (OPEs)

TnBP
TCEP
TCIPP
TDCIPP
TPhP
TBEP*
EHDPP
TEHP
ToCP*
TmCP*
TpCP*
TDBPP*

tri-n -butyl phosphate
tris(2-chloroethyl) phosphate
tris(1-chloro-2-propyl) phosphate
tris(1,3-dichloro-2-propyl) phosphate
triphenyl phosphate
tris(butoxyethyl) phosphate
ethylhexyl diphenyl phosphate
tris(2-ethylhexyl) phosphate

tri-o -cresyl phosphate

tri-m -cresyl phosphate

tri-p -cresyl phosphate
tris(2,3-dibromo-2-propyl) phosphate

Brominated Diphenyl Ethers (BDEs)

BDE 2
BDE 8
BDE 15
BDE 30
BDE 28
BDE 49
BDE 47
BDE 100
BDE 99
BDE 154
BDE 153
BDE 183

3-bromodiphenyl ether
2,4'-dibromodiphenyl ether
4,4'-dibromodiphenyl ether
2,4,6-tribromodiphenyl ether
2,4,4'-tribromodiphenyl ether
2,2',4,5'-tetrabromodiphenyl ether
2,2',4,4'-tetrabromodiphenyl ether
2,2',4,4' 6-pentabromodiphenyl ether
2,2',4,4' 5-pentabromodiphenyl ether
2,2',4,4' 5,6'-hexabromodiphenyl ether
2,2',4,4' 5,5'-hexabromodiphenyl ether
2,2',3,4,4',5',6-heptabromodiphenyl ether

Novel Halogenated Flame Retardants (NHFRs)

pTBX
PBBz
PBT
PBEB
HBBz
BTBPE
SDP
ADP

tetrabromo-p -xylene
pentabromobenzene
pentabromotoluene
pentabromoethylbenzene
hexabromobenzene
1,2-bis(2,4,6-tribromophenoxy)ethane
syn -Dechlorane Plus

anti -Dechlorane Plus
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CAS Number
126-73-8
115-96-8
13674-84-5
13674-87-8
115-86-6
78-51-3
1241-94-7
78-42-2
78-30-8
563-04-2
78-32-0

6876-00-2
147217-7-8
2050-47-7
155999-95-4
41318-75-6
243982-82-3
5436-43-1
189084-64-8
60348-60-9
207122-15-4
68631-49-2
207122-16-5

23488-38-2
608-90-2
87-83-2
85-22-3
87-82-1
37853-59-1
13560-89-9
13560-89-9



l

4 PEs extracted in pentane and
composited into one extract

\\

VY g

Removed particulate, concentrate