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Abstract 

This thesis proposes new, efficient techniques for implementing some members of the 

Hyperbolic class of time-frequency distributions (TFD). A new, efficient algorithm is 

proposed for the Altes-Marinovic Q-distribution. The algorithm is a generalization 

of the Fast Mellin transform implementation of the Bertrand P0 distribution. Other 

TFDs of the Hyperbolic class, which are the smoothed versions of the Altes-Marinovic 

distribution, are implemented using the Fast Mellin transform to compute the Altes 

distribution of the· signal, which is then appropriately weighted and smoothed using 

numerical integration and first order linear interpolation techniques. 

Also, an extensive analysis of the warping technique proposed by Canfield and 

Jones is done in this thesis. Canfield and Jones have implemented the data adaptive, 

radially Gaussian kernel hyperbolic class time-frequency representation. We have 

used their warping technique but with different kernels to implement various mem­

bers of the Hyperbolic class like the Pseudo Altes-Marinovic distribution, Smoothed 

Pseudo Altes-Marinovic distribution, etc. Our implementation has the following ap­

proach. The Woodward Ambiguity function of the logarithmically frequency warped 

signal is calculated to compute the Hyperbolic ambiguity function. The Hyperbolic 

ambiguity function (HAF) is examined to determine the mapping of the various sig­

nal auto and cross components. Many complicated signals map to simple regions in 

the HAF plane. A suitable kernel is chosen so as to remove the cross terms without 

distorting the auto terms and is multiplied with the Hyperbolic Ambiguity function. 

Since HC class kernels can be formulated to be equivalent to (up to a proportion­

ality factor) Cohen's class kernels, all of the useful kernel design strategies thus far 

developed for Cohen's class TFDs can now be applied straight forwardly to HAF 

plane kernel design. Then, a two dimensional Fourier transform of the product is 
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taken. The time frequency localization of the result is corrected to compute the 

corresponding hyperbolic class time frequency distribution. 

This approach is intuitive and often makes kernel design easier for cross term re­

moval. The logarithmic signal spectrum warping and the time frequency localization 

are implemented using the warpings techniques proposed by Canfield and Jones. 

Also, a new Hyperbolic class member is proposed which uses the Multiform 

tiltable exponential kernel of Costa in the Hyperbolic Ambiguity function domain. 

This kernel does as well as or better than other Hyperbolic class TFDs in time­

frequency scenarios that were considered in this thesis. Various nonstationary signals 

like Hyperbolic impulses, linear FM chirps, etc. were analyzed. In the case of Hy­

perbolic impulses, the Hyperbolic class TFR.s do remarkably well over the Cohen's 

class TFR.s in terms of time frequency localization and cross term removal. 

Finally, the proposed implementation technique for the TFDs of the Hyperbolic 

class using the Fast Mellin transform and numerical integration is compared with 

the Canfield/ Jones warping technique regarding memory requirements and compu­

tational time. The new Altes Q-distribution algorithm, implemented using a Fast 

Mellin transform, is faster and requires less memory than using the Canfield/ Jones 

algorithm to warp the Wigner distribution. The new smoothed Altes distribution 

algorithms, which require the Altes algorithm followed by numerical integration, 

require less memory, but takes more time to compute than the corresponding Can­

field/ Jones algorithm. 
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Chapter 1 

Introduction and Overview 

Time-frequency representations combine the concepts of time domain and frequency 

domain by displaying signals over a joint time-frequency plane. For a fixed time, 

a time-frequency representation shows which frequencies are present whereas for a 

fixed frequency, it shows the approximate times of occurrence. This contrasts with 

classical signal theory which treats the time domain and the frequency domain as 

two distinct worlds. The time domain does not yield immediate information about 

frequency, whereas the frequency domain (spectrum) does not easily reveal the times 

at which a given frequency occurs [l]. 

Time-frequency representations are classified into various classes depending upon 

their properties. The most prominent among them is Cohen's fixed kernel class, 

TJcc)(t, !), whose members are invariant to time-shifts and frequency-shifts [5]. 

T~~l(t, !) = TJcc)(t - r, !) and T~~(t, !) = TJcc)(t, f - v) (1.1) 

Here, the time-shift operator Sr and the frequency-shift operator Mv are defined 

by (SrX)(f) = e-i2rrrf X(f) and (MvX)(f) = X(f - v), respectively, where X(f) 

is the Fourier transform (FT) of the signal x(t). Another class of time-frequency 

distributions is the Affine class, TlA) ( t, !) ' whose members are invariant to time­

shifts and time and frequency scalings [5], i.e., 

(A) ( ) (A) ( ) (A) ( ) (A) ( f T8 x t,f =Tx t-r,f and Tex t,f =Tx at,-), 
T Q a (1.2) 

with the time-shift operator Sr defined as before and the time-frequency scaling 

operator Ca defined as (CaX)(t, !) = /f X(~), a> 0. 
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Another class of time-frequency distributions, which this thesis seeks to imple­

ment , is the Hyperbolic class, T1H)(t, !), whose members are invariant to Hyperbolic 

time-shifts and time and frequency scalings [3], i.e., 

(H) ( ) _ (H) ( f) (H) ( ) _ (H) ( C ) Tc x t, f - Tx at, - and Tv x t,f -Tx t - -
1
,J, 

a a c 
(1.3) 

with the time-frequency scaling operator Ca defined as before and the hyperbolic 

time-shift operator De defined as (DcX)(f) = e-i21rrcln f; X(f). 

Each member in the Hyperbolic class has a corresponding member in Cohen's 

class. The implementation of the distributions of the Hyperbolic class is a challenging 

problem since it involves warped forms of the signal, which are difficult to compute 

using conventional methods. In the next chapter, an introduction to time-frequency 

analysis is discussed, with an emphasis on Cohen's class and the Hyperbolic class of 

time-frequency distributions. The Bertrand unitary P0 distribution, which is a joint 

member of the Affine class and the Hyperbolic class, has been implemented recently 

[6]. This implementation involves the use of the Mellin transform, which reduces 

the task of implementation to just a few FFTs (Fast Fourier transform) [6]. This 

implementation, along with the Discrete Mellin transform for signal analysis, will be 

discussed in the third chapter. 

Recently, a way of implementing the members of the Hyperbolic class by using 

Cohen's class distributions has been suggested by Canfield and Jones [7]. In this 

technique, the signal is subjected to a logarithmic frequency warping and then a Co­

hen's class time-frequency distribution of the warped signal is computed and finally, 

the time-frequency localization of the computed distribution is corrected to imple­

ment a particular Hyperbolic class time frequency distribution. This implementation 

will also be discussed in the third chapter. 

This thesis proposes to implement the distributions of the Hyperbolic class using 

the Discrete Mellin transform. For implementing the Discrete Mellin transform, we 

subject the signal to geometric sampling which makes the problem of interpolation 

and numerical integration, needed in the implementation of some time-frequency rep­

resentations of the Hyperbolic class, very complex and challenging. We have imple­

mented the Altes-Marinovic distribution, which is the most well known distribution 

of the Hyperbolic class, using the Discrete Mellin transform extending the way the 
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Bertrand unitary Po distribution has been implemented by Ovarlez, Bertrand and 

Bertrand [6]. Also, we have implemented smoothed versions of the Altes-Marinovic 

distribution which are members of the Hyperbolic class by the following procedure. 

Initially, the Altes-Marinovic distribution of the signal is calculated. Then, an ap­

propriate window is selected and a slice of the Altes-Marinovic distribution of the 

window at a particular time is calculated. Let us call the slice of the Altes-Marinovic 

distribution of the window as the smoothing function. Then, time and frequency 

remapping of the smoothing function and the Altes-Marinovic distribution of the 

signal are done, and finally the product of the remapped smoothing function and the 

Altes-Marinovic distribution of the signal is integrated using numerical integration 

techniques. The time frequency remapping and the numerical integration techniques 

require interpolation of the Altes-Marinovic distribution of the signal and the smooth­

ing function at various time and frequency locations. These problems of numerical 

integration, interpolation and time frequency remapping are quite challenging and 

complex and the way we have dealt with these problems is discussed in the fourth 

chapter. Also, in this chapter, various nonstationary signals will be analyzed using 

various distributions of the Hyperbolic class. 

In the field of time-frequency analysis, cross terms or interference terms between 

components in different time-frequency regions are a recurring problem and these 

cross terms potentially lead to confusion and misinterpretation. The Woodward or 

narrowband Ambiguity function [10] of a signal has been extensively studied and 

utilized in removing these cross terms for distributions in Cohen's class. In the fifth 

chapter of this thesis, we have used the Canfield and Jones warping technique [7, 8] 

to implement the Hyperbolic Ambiguity function of a signal. We used the following 

approach. The Hyperbolic Ambiguity function of the signal is calculated by logarith­

mic frequency warping of the signal and then calculating the Woodward Ambiguity 

function of the warped signal. Then, the appropriate time frequency distribution ker­

nel is multiplied with Hyperbolic Ambiguity function to remove cross terms. Then, 

a 2D Fast Fourier transform of the resultant distribution is taken and finally, the 

time-frequency localization of the computed distribution is corrected to implement a 

particular Hyperbolic class time frequency distribution. In the case of a Hyperbolic 
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impulse, the approach of using the Hyperbolic Ambiguity function is advantageous 

over that of using the Woodward Ambiguity function because a Hyperbolic impulse 

maps to a straight line in a Hyperbolic Ambiguity function plane which makes the 

kernel design for cross term removal easy whereas in the Ambiguity function plane, 

a Hyperbolic impulse maps to a non-linear region which makes the kernel design 

very challenging and in certain cases impossible. Canfield and Jones have imple­

mented the data adaptive, radially Gaussian kernel in the Hyperbolic Ambiguity 

function plane. We have used different kernels to implement various members of 

the Hyperbolic class like the Pseudo Altes-Marinovic distribution, Smoothed Pseudo 

Altes-Marinovic distribution, etc. Signals like linear FM chirps, Gaussian signals, 

etc. map to tilted regions at the origin of the Hyperbolic ambiguity function plane 

making tiltability a desirable feature for a weighting kernel to remove cross terms 

in the case of a multi-component signal. So, we have proposed a new member of 

the Hyperbolic class known as the MTEK (Multiform Tiltable Exponential Kernel) 

Smoothed Altes-Marinovic distribution in the fifth chapter. The MTEK smoothed 

Altes-Marinovic distribution works does as well as or better than other Hyperbolic 

class TFDs in cross term removal and auto term preservation in the examples that 

were considered in this thesis. 

In the sixth chapter, the proposed implementation of the Hyperbolic class of 

TFRs using the Fast Mellin transform (discussed in the fourth chapter) is compared 

and contrasted in terms of memory requirements, computational time, etc. with the 

Canfield and Jones warping method. Also, the conclusions and future work will be 

provided. 
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Chapter 2 

Introduction to Time-Frequency Analysis 

2.1 Motivation for Time-Frequency analysis 

The fundamental idea of time-frequency distributions is to understand and describe 

situations where the frequency content of a signal is changing in time [9]. The Fourier 

transform spectrum allows us to determine the frequencies that existed for the whole 

duration of a signal but a combined time-frequency analysis allows us to determine 

which frequencies are present at a particular time. That is the basic aim - to display 

the frequencies that exist at each instant of time. This kind of analysis is needed 

in various nonstationary signals like speech signals, sonar signals, bio-acoustical and 

biological transients. 

Let us consider an example which demonstrates the need for a time-frequency 

distribution. Consider a digital signal x[n], given in Figure 2.1. The signal x[n] 

consists of three windowed complex sinusoids of normalized frequencies 0.25, 0.05 

and 0.15, respectively. The extent of the time support of x[n] (i.e., the region of 

time support n E [n0 , n 1] such that x[n] = 0 for n ft [n0 , n 1]) is the interval of time 

indices n E [1, 176]. The extent of the time supports for the first, second and third 

windowed sinusoids are the intervals [1,48], [65, 112] and [129 176], respectively. The 

Fourier transform X(f), of the signal, x(t), is given by 

X(f) = j_: x(t) e-i27rftdt. (2.1) 

The Discrete Fourier transform (DFT), X[k] of the length N, causal, finite duration 
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Figure 2.1: Real part of the time domain signal x[n]. 

signal x [ n] is given by 
N-1 

X[k] = L x[n) e-j2?rkn/N, (2.2) 
n=O 

where k E [O, N-1]. If x[n] = x( nf:..T), and if X (!) is sufficiently bandlimited, i.e, 

IX(f)I = 0 for Ill > 2~T' then X[k] = X(N~T). In this thesis, the sampling period 

t:..T = 1, unless otherwise indicated. The DFT magnitude IX[k]I, obtained by 

computing the Fast Fourier transform (FFT) [10] of the discrete-time signal, x[n], 

is shown in Figure 2.2. As one can see, the Discrete Fourier transform shows peaks 

at 0.05, 0.15 and 0.25 in normalized frequency. But, the Discrete Fourier transform 

magnitude doesn't tell us when those frequencies occurred. The time domain analysis 

or the frequency domain analysis do not fully describe what is happening. This 

constitutes the need for time-frequency analysis since a time-frequency plot clearly 

shows which frequencies exist at a particular time. 

An ideal time-frequency representation (TFR) for a signal should be similar to 

a musical score for a particular musical work. A musical score indicates what notes 

should be played, how long they should be held, how loudly they should be played 

and when they should be played. A time-frequency representation should indicate 
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Figure 2.2: IX[k]I, the Discrete Fourier transform of x[n]. 

what frequency components exist, their amplitude and the time intervals over which 

they exist. These criteria require that a time-frequency representation be plotted 

over a time-frequency plane. An ideal TFR for the signal x[n] is shown in Fig 2.3. 

The ideal TFR shows no uncertainty in the time or the frequency locations of 

the components of x[n]. However, Gabor points out in [11] that, for any signal, the 

time and frequency resolutions cannot be made arbitrarily precise simultaneously. 

Let tlt be the r.m.s. time duration for a signal component and let tlf be the r.m.s. 

frequency duration for the same component. Gabor states in [11] that time duration 

and frequency duration are related as follows: 

1 
tlttlf > -- 47r (2.3) 

which is also known as the uncertainty principle or the Heisenburg inequality [9]. 

This equation implies that there is a trade-off between time resolution and frequency 

resolution in a realizable TFR [11]. Formula (2.3) has been used to argue that a TFR 

does not have resolution to pinpoint simultaneously the exact time and frequency of 

a given signal component [11]. Because an ideal TFR shows no uncertainty in time 

or frequency, this TFR cannot be realised except for the cases in which it can be 
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Figure 2.3: Ideal Time Frequency representation of the signal x[n] in Figure 2.1. 

generated by inspection. 

2.2 Short-time Fourier transform 

The short-time Fourier transform (STFT), whose squared magnitude is known as 

the spectrogram, is a linear time-frequency representation that was first used in 

1946 with the invention of the sound spectrogram [12]. Since then, it has been used 

by many authors to analyze non-stationary signals [13-18]. The basic idea of the 

STFT is that if you want to know what frequencies exist at a particular time, then 

take a small segment of the signal around that time and Fourier analyze the small 

segment. Since the time interval is short compared to the whole signal, this process is 

called the taking the short-time Fourier transform. The length of the time interval is 

decided by the choice of the window function -y( t) - the phrase "window" indicating 

that we look at only certain part of the signal 1 . 

STFT~)(t, J) = j x(t')'Y*(t' - t)e-i27rft' dt'. (2.4) 

1 Unless otherwise indicated, the limits of integration are assumed to extend from -oo to oo 
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The STFT assumes that the signal is stationary over the duration of the window. 

The more compact we make the window in the time domain, the more time resolution 

is achieved. Similarly, if we choose a compact window in the frequency domain, high 

frequency resolution is achieved. But one cannot make both time resolution and 

frequency resolution arbitrarily good. Because of the uncertainty principle, there 

is an inherent tradeo:ff between time and frequency resolutions in the STFT for a 

particular window. This is the drawback of the STFT method, as it results in an 

unavoidable trade-off in time resolution versus frequency resolution. Some of the 

bilinear time-frequency representations do not face this problem. 

2.3 Quadratic Time-Frequency Representations 

Although linearity of a TFR is a desirable property, the quadratic structure of an 

TFR is an intuitively reasonable assumption when we want to interpret a TFR as a 

time-frequency energy distribution, since energy is a quadratic signal representation. 

An "energetic" TFR, Tx(t, f), seeks to combine the concepts of the instantaneous 

power, Px(t) = lx(t)l 2
, and the spectral energy density, Px(J) = IX(J)l 2 . Ideally, 

this energetic representation is expressed by the marginal properties, 

i Tx(t, f)df = Px(t) = lx(t)l 2
, 

1 Tx(t, f)dt = Px(f) = IX(f)l 2
, (2.5) 

which state that the one-dimensional energy densities Px(t) and Px(f) are 

"marginal densities" of the TFR, Tx(t, !). As a consequence, the signal energy 

Ex = J lx(t)l 2 dt = J IX(f)l 2df can be derived by integrating Tx(t, !) over the 

entire time-frequency plane. 

Many quadratic TFRs may be loosely interpreted in terms of signal energy even 

though they do not satisfy the marginal properties. Here, two prominent examples 

are the Spectrogram and the Scalogram defined as the squared magnitudes of the 

linear TFRs, the Short time Fourier transform and Wavelet transform, respectively. 

The Spectrogram is defined as 

sPEc~)(t, n = 1sTFT~)(t, n1
2 
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where STFT~)(t, !) is defined in (2.4). The spectrogram has been extensively used to 

analyze speech signals [13, 19, 20) and other "nonstationary" signals. The Scalogram 

is defined as 

scAL~>(t, n = 1wT~>(t, n1
2

, 

where WT~) (t, !) is defined as 

(2.7) 

(2.8) 

Here, "Y( t) (the "mother wavelet") is a real or a complex bandpass function centered 

around t = 0 in the time domain [21, 22]. Similar time-varying spectral representa­

tions are the sonagram, rayspan and spectran [16). The scalogram [23, 22] can be 

considered as a "constant-Q version" of the spectrogram. 

The Spectrogram of the sum of two signals, x1 (t) + x2 (t), is not simply the sum 

of the individual spectrograms, SPEc~;(t, !) + SPEC~~(t, !); hence, the linearity 

structure of the STFT is violated in the quadratic spectrogram. In fact , any quadratic 

TFR, T x, satisfies the "quadratic superposition principle" 

x(t) = C1X1 (t) + C2X2(t) ===> 

Tx(t, !) = lc112 Tx1 (t, !) + lc212 Tx2 (t, !) +c1c2 Tx 1x 2 (t, !) + c2ci Tx2 x 1 (t, !) 

where Tx(t, f) is the "auto-TFR" of the signal x(t) and Tx 1x 2 is the "cross-TFR" of 

the two-signals x 1 (t) and x2 (t) with Txx(t, f) = Tx(t, !). Note that the cross-TFR 

Tx1x 2 (t, !) is bilinear in the signals x 1 (t) and x2 (t) [9). 

The interference terms of the spectrogram and the scalogram are oscillatory 

structures which are restricted to those regions of the time-frequency plane where 

the corresponding auto representations (signal terms) overlap. Hence, if two signal 

components are sufficiently far apart in the time-frequency plane, then their cross 

representation (interference term) will be essentially zero [24-27] . This property is 

generally deemed desirable. On the other hand, a disadvantage of the spectrogram 

and the scalogram is their poor time-frequency concentration (or resolution) in some 

regions of the time-frequency plane. The Wigner distribution, to be discussed next, 

has excellent time-frequency concentration, but substantial interference terms. 
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2.4 Wigner distribution and Ambiguity Function 

The Wigner distribution (WD) was introduced by E.P. Wigner [28] in 1932 in the 

context of quantum mechanics and later resurrected by J. Ville [29] in 1948 in the 

context of communications. The Wigner distribution of the signal x(t) is defined as 

Wx(t,f) = jx(t+~)x*(t-~)e-i21ffrdT. 
2 2 

The Wigner distribution can also be equivalently represented by 

Wx(t,f) = j X(f + ~) X*(f- ~) ei27rtv dv, 

where X(f) represents the Fourier transform of x(t) given by (2.1). 

(2.9) 

(2.10) 

The WD satisfies a large number of desirable TFR properties and features opti-

mal time-frequency concentration [30] . For example, Wx(t, !) is always real-valued 

and preserves time shifts and frequency shifts of the signal x(t) . The real valued­

ness property is necessary for the interpretation Wx(t, !) as an energy distribution. 

Unfortunately, however, the WD is not necessarily a positive function. 

The Fourier dual counterpart of the WD in the time lag/frequency lag or "cor­

relative" domain is the Woodward or narrowband ambiguity function (AF) which is 

defined as [1] 

x(t + - ) x*(t - - ) e-J 7rvt dt I T T -2 

2 2 

I X(f + ~) X*(f - ~) ei2nf df. 
2 2 

The WD and the AF form a two-dimensional FT pair, 

Wx(t, !) = j j Ax(T, 11) ej27r(tv-fr ) dT dv. 

(2.11) 

(2.12) 

(2.13) 

A major drawback in the practical application of the WD is the problem of cross­

terms or interference terms, especially if the WD of a multi-component signal is to 

be visually analyzed by a human signal analyst. Because the WD is a quadratic 

representation, cross-terms occur between every pair of auto-components of a multi­

component signal [1]. 

The interference geometries of the WD and AF are illustrated in Figure 2.4 for the 

case of a signal composed of two time-frequency shifted Gaussian components having 
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equal amplitude and variance. When analyzing multicomponent signals, these ge­

ometries need to be taken into account. Figure 2.4 shows that two signal components 

occurring around the time-frequency points (t1, Ji) and (t2, h) produce two signal 

auto-term components and one cross-term component in the WD plane (see Figure 

2.4(a)); there are two cross-terms components in the AF (see Figure 2.4 (b)) plane. 

Note that the cross-term component in the WD is located around the center point 

(t12, !i2) with t12 = (t1 + t2)/2 and fi2 = (!1 + h)/2. The cross-term component 

is partly negative and oscillates. The overall direction of oscillation is perpendicular 

to the line connecting the two signal components and the frequency of this oscilla­

tion is directly proportional to the distance between the signal components in the 

time-frequency plane [l]. See Figure (2.4(a)) . 

In the ambiguity function plane, the signal terms are located around the origin 

of the T - v plane. The cross-term components consists of two terms located around 

the "lag points" (-r12, V12) and (--r12, -v12), where T12 = t2 - t1 and v12 = h - Ji. 
See Figure (2.4(b)). 

Figure 2.5(a) shows the WD of a Hyperbolic impulse signal defined as 

He(!) = )y e-2j1Tcln <f;) , f 2: 0. (2.14) 

Here, fr > 0 is a fixed reference frequency and its value is chosen to be equal to 

1 in this thesis unless otherwise mentioned. The parameter c E IR determines the 

shape of the hyperbola and will be called hyperbolic parameter [3]. In the hyperbolic 

examples in this thesis, the infinite bandwidth signal in (2.14) was pretapered or 

filtered with a Hanning window [10] in the frequency domain and an inverse FFT 

is taken to obtain the corresponding signal in the time domain for computational 

purposes. This example illustrates the fact that the WD of a monocomponent signal 

can also exhibit cross-terms which are called "inner" cross-terms [l]. The AF of such 

a signal is shown in Figure 2.5 (b) . 

The bilinear time-frequency distributions are grouped into various classes depend­

ing upon the properties they exhibit. The most extensively studied and researched 

class of time frequency distributions is the Cohen's fixed kernel class or simply re­

ferred to as Cohen's class of time frequency distributions [l]. These Cohen's class 

members are invariant to time shifts and frequency shifts, as shown in equation (1.1). 
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2.5 Cohen's Class of Time-Frequency representa­

tions 

The Wigner distribution is one member of a large class of time-frequency represen­

tations, known as Cohen's class [5]. All the members of this class of distributions 

have the general forms 

with the "signal products" 

j j <Pf)(t - t', r) ux(t', r) e-j
27rf-r dt'dr 

j j ~f)(f - J', v) Ux(f', v) ej
27rtv dj'dv 

ff 1/Jtc)(t - t', f - J') Wx(t', J') dt'df' 

j j wf)(r, v) Ax(r, v) eJ27r(tv-f-r) drdv 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The "kernels" <t>f)(t, r), ~f)(f, v), 1/Jtc)(t, !) and wf)(r, v) are interrelated by 

Fourier transforms in exactly the same way as are the corresponding quadratic signal 

representations ux(t, r), Ux(f, v), Wx(t, !) and Ax(r, v) as shown in Figure (2.7) 

[31]. Any of the four kernels uniquely characterizes the QTFR (Quadratic Time 

Frequency representations) Tic) ( t, !) . 

The TFR, T1c)(t, !), corresponding to a "sufficiently smooth", real-valued kernel 

function, 1/Jtc) ( t, !) , or, equivalently, a lowpass kernel wf) ( r, v), is called a smoothed 

WD [l]. The properties of T1c)(t, !) can now be discussed very easily in terms 

of the shape of the kernel, wf)(r, v), in the AF plane. The required constraints 

on the kernel w~C) ( T, v) in order for T1C) ( t, !) to satisfy the desirable TFR prop­

erties listed in Table 2.1 are given in Table 2.2 [l]. In the Tables and through­

out this thesis, (x, y) = f x(t)y*(t)dt denotes the inner product between x(t) 

and y(t). Also, the inner product between T1C)(t, !) and T~c)(t, !) is defined by 

(Tf)(t, !), T~c)(t, !)) = ff T1c)(t, f)Tf)*(t, f)dtdf. 

For example, the time marginal and the time moments properties are easily met 

provided that w~c)(O, v) = 1, i.e., the kernel has a value of one along the v-axis. 
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Figure 2.7: (a) The quadratic signal representations ux(t, T), Ux(f, v), Ax(T, v) and 
Wx(t, !) are all interrelated by Fourier transforms; (b) identical Fourier-transform 
relations connect the four kernel functions cp'f) ( t, T), q,'f) (!, v), w'f) ( T, v) and 
1/J~C) ( t, !) . Here, T --. f indicates a Fourier transform from time lag T to frequency 
f. (Figure was taken from [1]). 
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I PROPERTY I RELATION 

Pie) :Real-valuedness T1e)(t, !) = T1e)•(t,f) 

PJe):Time shift x(t) - x(t - t0 ) :::} Tle)(t, !) = Tf)(t - to,!) -

Pie) :Frequency shift x(t) - x( t)ei27r Jot :::} Tle) ( t, !) = T1e)(t, J - Jo) -

pje):Time marginal fTie)(t,f)dJ = ix(t)i2 

PJe) :Frequency marginal JT1e)(t,J)dt = IX(f)l2 

PJe):Time moments J JtnTf)(t,f)dtdJ = Jtnjx(t)l 2dt 

Pie) :Frequency moments ff JnT1e)(t, f)dtdJ = f JnlX(f)j 2dJ 

Pf) :Time-frequency scaling x(t) = /lalx(at) :::} 

Tle)(t, !) = T1e)(at, ~),Va# 0 

PJ e) :Instantaneous frequency Jx(t) = 2~ ftarg[x(t)] = 
J 1rf>(t,f)df 

J rlc) (t,f)df 

Pif) :Group delay tx(f) = - 2~ ~arg[X(f)] -
L tTlC)(t,f)dt 

J r1cl ( t,f)dt 

Pif) :Finite time support x( t) = 0, Vt rt [t1, t2] :::} 

T1e) ( t, !) = 0, Vt rt [t1, t2] 

Pif):Finite frequency support X(f) = 0, VJ rt [Ji, h] :::} 

T1e)(t, J) = 0, VJ rt [Ji, h] 

Table 2.1: Some "desirable" mathematical properties for time-frequency representa­
tions [1] (Table was taken from [2]). (Continued on next page) 
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I PROPERTY I RELATION 

Pff>:Moyal's formula (rlc>(t, !), T~c>(t, !) ) - l(x,y)l2 

P1<f> :Convolution in time x(t) = h(t) * x(t) ::::} 

Tlc)(t,J) = fTkc)(t- {3,J)Tlc)({3,J)df3 

Pff> :Convolution in frequency X(f) = H(f) * X(f) => 

Tlc)(t,J) = fTkc)(t,f-{3)Tlc)(t,{3)df3 

Pf f> :Fourier transform x(t) = lclx(ct) => 

Tlc)(t, !) = Tlc)(=f-, ct), Ve i= 0 

Pf~>:Chirp convolution x(t) = x(t) * lei exp(j27r~t2 ) => 

Tlc)(t, !) = Tlc)(t - f, !) 

Pff> :Chirp multiplication x(t) = x(t) exp(j27r~t2) => 

rf>(t, !) = TlC)(t, f - ct) 

Pff> :Positivity TlC)(t,f) ~ 0 

PJf> :Invertibility x(t)x*(O) = 
ff f W~-l)(t, v)Tlc)(u, J)ei27ru(f+ 11>e-i'rr11tdudfdv 

PJf> :Causality Tlc>(t0 , !) depends on x(t) only fort ~ t0 

PJf> :Energy Ex = J JTlc)(t,J)dtdf = (x,x) = flx(t)l 2dt 

Table 2.1 (Continued). 

19 



The frequency marginal and frequency moments properties are satisfied by any kernel 

that is equal to one along the r-axis (see Table 2.2). 

In order to attenuate interference terms in Figures 2.4 and 2.6, the kernel 

wf>(r, v) must be close to zero around the "lag points" (r12, v12) and (-r12 , -v12 ) 

and close to one around the origin of the T - v plane. This follows from the fact 

that cross-terms are located away from the origin whereas signal terms are centered 

around the origin of the r - v plane. See Figure 2.4(b). The idea is to let as much 

of the signal terms "pass" unchanged while "blocking" as much as possible of the 

cross-terms (see Figure 2.6). Quite generally, however, the filtering operation repre­

sented by (2.18) tends to produce the following effects: (1) a (desired) partial or full 

attenuation of cross-terms; (2) an (undesired) broadening of signal terms, i.e., a loss 

of time-frequency concentration; and (3) an (undesired) loss of some of the properties 

of the Wigner distribution. Thus, in general, the design of a "good" kernel function, 

wf>(r, v), is an attempt to achieve effect (1) while avoiding, as much as possible, 

effect (2) and, sometimes, also effect (3) [2]. 

2.5.1 Conventional TFRs 

The Spectrogram of a signal x(t), defined in (2.6) can also be written as, 

SPEC~)(t, !) = j j Ar(-r, -v) Ax(r, v) ei27r(vt-rf) dv dr, (2.19) 

which has a lowpass kernel, w~~kc(r, 11) = Ar(-r, -v), that is essentially the ambi­

guity function of the analysis window, 'Y(t). It suffers from a trade-off between time 

resolution versus frequency resolution since good time (frequency) resolution of the 

spectrogram requires a short (long) analysis window, 'Y(t). Consequently, for lowpass 

windows 'Y(t) and, hence, lowpass AF kernels, w~~kc(r, 11), the spectrogram provides 

substantial interference attenuation but lacks good time-frequency concentration be­

cause the effective time and frequency supports of its smoothing kernel function 

cannot be independently controlled [l]. The spectrogram kernel corresponding to a 

short analysis window, 'Y(t), is depicted in Figure (2.8)(a) whereas that correspond­

ing to a longer window is shown in Figure (2.8)(b). The lack of control of the amount 

of smoothing along both the time and frequency axes becomes evident when Figures 
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I PROPERTY KERNEL CONSTRAINT 

P{c) :Real-valuedness Wf)(T, v) = Wf)*(-T, -v) 

PJC):Time shift None 

PJC) :Frequency shift None 

PJC):Time marginal wf)(o, v) - 1 

pJC):Frequency marginal Wf)(T, 0) - 1 -

pJC):Time moments wf)(o, v) - 1 -

pJC):Frequency moments Wf)(T, 0) - 1 -

PJ C) :Time-frequency scaling w(C)(aT ~) - w(C)(T v) Va =I= 0 T 'a - T ' ' 

PJ C) :Instantaneous frequency ( c) ( ) a ( c) ( ) I WT 0, ll = 1 and 8r WT T, ll r=O = 0 

P{~) :Group Delay (C)( ) a (C)( )I WT T, 0 = 1 and 811 WT T, v v=O = 0 

P{f) :Finite time support cpf)(t, T) = 0, 1;1 > ~ 

P{f) :Finite frequency support <Pf)(!, v) = o, 1t1 > ~ 

P{f):Moyal's formula lwf)(T, v)I ::: 1 

P{f) :Convolution in time (C) ( ) (C) ( (C) ( WT Ti+ T2, ll - WT Ti, v)WT T2, v) -

P{f) :Convolution in frequency (C) ( ) (C) ( ) (C) ( ) WT T, ll1 + Z12 - WT T, ll1 WT T, Z12 -

P{f) :Fourier transform w(C)(-~ cr) = w(C)(T v) Ve =I= 0 T c' T ' ' 

P{f) :Chirp convolution ( C) ( 11 ) ( C) ( ) WT T-c,v =WT T,v ,Vc=f=O 

P{f) :Chirp multiplication w(C)(T v-cr) - w(C)(T v) Vc=/=O T ' - T ' ' 

P{f) :Positivity Wf)(T, v) = Ek::,1 ckAH" (T, v), Ek::,1 ck - 1 -

PJ~) :Invertibility Wf)(T, ll) =/= 0 

PJf) :Causality cpf)(t,T) = cpf)(t,T)u(-t - 9) 
PJf) :Energy wf)(o, o) = 1 

Table 2.2: TFR properties and corresponding kernel constraints for Cohen's class 
(Table was taken from [2]). Here, u(t) = 1, Vt ~ 0 and u(t) = 0, Vt< 0 is a unit 
step function and {hk(t)}k::1 form an orthonormal set of square-summable functions. 
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(2.8)(a) and (2.8)(b) are compared. 

The pseudo Wigner distribution (PWD) has the kernel function 

(2.20) 

where 'TJ(r) is a lowpass window function. As illustrated in Figure (2.8)(c), the PWD 

kernel exhibits a lack of attenuation along the frequency lag direction. Figure (2.8)( d) 

depicts a typical kernel for the smoothed pseudo Wigner distribution (SPWD). In 

contrast to the spectrogram, the SPWD has a separable kernel, 

(2.21) 

which allows independent amounts of time and frequency smoothing. Moreover, with 

proper choices for the temporal window, 'TJ(r), and the spectral window, G(v), the 

SPWD is capable of performing better than the spectrogram [1 J. 
An extensive list of TFRs can be found in [1]. The WD, with w~b(r, v) = 1, 

is considered by many to be the first TFR. Other classic or conventional Cohen's 

class TFRs include the Born-Jordan distribution, the Levin distribution, the Page 

distribution, the Rihaczek distribution, the spectrogram, the pseudo Wigner distri­

bution and the smoothed pseudo Wigner distribution. Table 2.3 includes the kernels 

for all these representations as well as for the modern TFRs like the Choi-Williams 

distribution, the generalized exponential distribution, the Butterworth distribution, 

the cone-kernel distribution and the tilted Gaussian distribution [1, 32-34]. 

In certain cases, like in the case of a signal consisting of two or more Hyperbolic 

impulses (defined in (2.14)), the filtering operation represented by (2.18) becomes 

very challenging. Figure (2.9) shows the Ambiguity function of the sum of two 

Hyperbolic impulses in (2.14) with Hyperbolic parameters c1 = 2.5 and c2 = 5. 

The design of the kernel in the ambiguity function plane to filter out cross-terms is a 

very challenging problem in this example. For such kinds of signals, the Hyperbolic 

class of time frequency distributions [3], which will be discussed in later sections of 

the chapter, works well. 

Also, the time-frequency (TF) shift invariance property underlying Cohen's class 

implies a type of TF analysis where the QTFRs analysis or desired resolution char­

acteristics do not change with time t or frequency f [3]. In particular, all TF points 
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Figure 2.8: Ambiguity function domain contour plot of the kernels, wf>(T, 11), for 
the Spectrogram, the pseudo Wigner distribution (PWD) and the smoothed pseudo 
Wigner distribution (SPWD). (a) Spectrogram for a short, 10-point Hamming win­
dow; (b) Spectrogram kernel for a long, 110-point Hamming window; ( c) PWD kernel 
for a 10-point Hamming window; (d) SPWD kernel with a 40 point Hanning window 
for frequency smoothing and 10 point Hamming window for time smoothing. 
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I TIME-FREQUENCY REPRESENTATION I 

Born-Jordan distribution sin(7rr11) 
1TTll 

Butterworth distribution [ l + [ ~ J2M [ ~ J2N]-1 

Choi-Williams distribution [ ~] exp - u 

Cone-kernel distri bu ti on g( T) 1-rl sinJ;:11} 

Generalized exponential distribution exp {- [~J2M [~J2N} 

Levin distribution ei1Tlrl11 

Page distribution e-j11"jrj11 

Pseudo Wigner distribution 7JG)77*(-~) 

Rihaczek distribution ej1TTll 

Smoothed pseudo Wigner distribution 7JG)77*(-flG(v) 

Spectrogram Ar(--r, -v) 

Tilted Gaussian distribution exp {-7r [[,:J2 + L~J2 + 2r[r:~0 J]} 

Wigner distribution 1 

Table 2.3: Definition of the Ambiguity function domain kernel w~) ( T, ll) for various 
Cohen's class time-frequency distributions. (Table was taken from [2]) . 
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Figure 2.9: Figure showing the difficulty of Cohen's class QTFRs when dealing with 
Hyperbolic impulses. (a) Wigner distribution of the sum of two Hyperbolic impulses 
with Hyperbolic parameters c1 = 2.5 and c2 = 5. (b) magnitude of the Ambiguity 
function of the sum of two Hyperbolic impulses. 

25 



(t, !) are analyzed with the same time resolution and frequency resolution. This is 

similar to the constant band-width analysis achieved by short-time Fourier transform, 

where the analysis bandwidth does not depend on the analysis time or analysis fre­

quency. In fact, the squared magnitude of the short-time Fourier transform (known 

as the spectrogram) is a member of Cohen's class [1, 35]. 

2.6 The Affine class and Constant-Q Time­

Frequency Analysis 

An alternative to the constant-bandwidth analysis achieved by the short-time 

Fourier transform and QTFRs of Cohen's class is provided by the wavelet transform 

and QTFRs of the affine class. For the wavelet transform defined in (2.8), the analysis 

bandwidth is proportional to the analysis frequency f, i.e., the quality factor ( Q = 
center frequency..;- bandwidth) is independent of the analysis frequency ( "constant-Q 

analysis"). 

The squared magnitude of the wavelet transform (known as the scalogram) [36] 

can be written in terms of the WD as 

SCALx(t, f) IWTx(t, !)12 

j j Wr(~ (t' - t), fr~) Wx(t', f') dt'df' (2.22) 

where r(f) is the Fourier transform of the wavelet --y(t) used in (2.8)[36]. Hence, 

the scalogram is a smoothed WD, for which the amounts of frequency and time 

smoothing are proportional and inversely proportional, respectively, to the analysis 

frequency f . This type of "affine smoothing" results in a constant-Q TF analysis. 

The affine class of QTFRs is obtained by generalizing (2.22) as 

(2.23) 

where 7/J~A) (er., {3) is a two-dimensional kernel function [36-39] . If this kernel is a 

sufficiently smooth function concentrated about {3 = 1, then (2.23) results in an 

affine smoothing of the WD, just as in the case of the scalogram in (2.22). The affine 
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QTFR class can alternatively be defined as the class of all QTFRs that are covariant 

to time-shifts and TF scalings as defined in the first chapter. 

An alternative approach to constant-Q analysis has been proposed by Altes in 

[40]. A specific TF warping is used to convert the WD into a "wideband WD" 

called the Q-distribution. This approach, which is also closely connected with the 

TF scaling operator Ca as discussed in the first chapter, will be further considered in 

Section 2. 7. 

2. 7 The Hyperbolic Geometry 

The scaling operator Ca discussed in chapter 1 is intimately related to a "hyper­

bolic TF geometry" [37]-[41], [40]-[42]. First of all, consider the hyperbolic impulse 

[43] defined in the frequency domain in (2.14). The hyperbolic impulse mentioned 

in (2.14) is an analytic signal with spectral energy density IHc(f)l 2 = y u(f) and its 

group delay corresponds to a hyperbola t = c/ f u(f) in the TF plane where u(f) is 

the unit step function (see Figure 2.10). The hyperbolic impulse naturally arises in 

the context of TF scalings since it is an eigenfunction of the TF scaling operator Ca 

[44], i.e., 

In other words, the scaling operator does not affect the hyperbolic impulse He(!) 

except for a constant phase factor. This shows that the hyperbolic impulse is a 

"Doppler-invariant" signal similar to the signals used by bats and dolphins for echo 

location [45]. 

2.7.1 CONSTANT-Q WARPING AND THE HYPER­

BOLIC CLASS 

2.7.2 Constant-Q Warping 

Given a Cohen's class QTFR Tf)(t, !), a new QTFR is derived, T}H)(t, !), 

with constant-Q characteristic, conceptually similar to the wavelet transform or its 
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Figure 2.10: The hyperbolic time-frequency geometry. The hyperbolic impulse He(!) 
and the hyperbolic time-shift operator 'He both correspond to a hyperbola t = c/ f 
in the TF plane. The family of hyperbolas t = c/ f covers the entire TF plane as the 
hyperbolic parameter c varies from -oo to oo (Figure was taken from [3]). 
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squared magnitude, the scalogram [3]. To this end, a "constant-Q warping" proce­

dure [46] proposed consists of three steps which are visualized in Figure 2.11 [3]. In 

the following, let x(t) be analytic, i.e., a signal whose Fourier transform X(J) is zero 

for f < 0. 

Step 1. The signal X(J) is subjected to a logarithmic frequency warping W 

defined as 

X(J) = (WX)(J) /:, VefTi: x(!r elf fr) ' -oo < f < 00' (2.24) 

where fr > 0 is a fixed reference (or normalization) frequency which is needed to 

obtain the correct physical dimensions. The warping defined in [40] is modified to 

include the factor VefTi: which makes the linear frequency warping transform W 

unitary [3, 4]. Note that the frequency-warped signal X(J) is no longer analytic. 

If the signal X(J) is well localized around time tx and frequency fx with effective 

duration rx and effective bandwidth vx, then it can be shown that the frequency­

warped signal X(J) is localized around time tg = 1r;- tx and frequency f x =fr lnf.-, 

with duration rg ~ f.- rx and bandwidth vg ~ t- vx [3]. Thus, the mapping 

W produces a logarithmic frequency warping by which bandwidths are compressed 

proportional to the original frequency, fx, and a time expansion which is proportional 

to fx. This is illustrated in Figure 2.11. 

Step 2. The TF-warped signal, X(J), is analyzed using a given QTFR r<c) from 

Cohen's class. T(c) produces a constant-bandwidth TF analysis. However, the signal 

X(J) has been subjected to the logarithmic frequency warping by which bandwidths 

are compressed proportional to frequency. Hence, the result of Step 2, Tlc)(t, !), 

is actually a TF analysis where the effective analysis bandwidth is proportional to 

frequency f, i.e., a constant-Q analysis. On the other hand, due to the time expansion 

t x = 1r;- t x and the frequency compression f x = fr ln 1r;- inherent in X (!), the QTFR 

Tf) ( t, !) will display the signal around ( t x, f x) instead of the correct TF location 

(tx,fx) [3]. Thus, Tlc)(t,f) shows incorrect "absolute TF localization" as shown in 

Figure 2.11. 

Step 3. This incorrect TF localization is finally corrected by substituting t --+ f;t 
and f--+ fr lnf; in T1C)(t, !). 
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Figure 2.11: The geometry of constant-Q warping, depicted for (a) fr = 2 and (b) 

1t = 1/2. STEP 1 produces a TF displacement and a compression/dilation of du­
ration and bandwidth. STEP 2 is a "constant-bandwidth" TF analysis with given 
TF concentration, resulting in a broadening that is independent of the TF location. 
STEP 3 produces a TF displacement and a dilation/compression of duration and 
bandwidth, both of which are inverse to Step 1. The final result is a TF repre­
sentation that displays "high-frequency" signals with good time resolution but poor 
frequency resolution (see (a)) and "low-frequency" signals with poor time resolution 
but good frequency resolution (see (b)), i.e., a TF representation with constant-Q 
characteristic (Figure was taken from [3]) . 
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The three steps detailed above result in a new QTFR 

(H)( ) 6 (C) (tf f) Tx t,f - Twx fr'frlnfr , f > 0, (2.25) 

defined for analytic signals X (!). The QTFR T1H) ( t, !) will produce a constant-Q 

TF analysis (with correct TF localization) provided that the original Cohen's class 

QTFR T1c)(t, !) can be interpreted as a constant-bandwidth TF analysis (i.e., if 

r1C)(t, !) is a smoothed WD [25]). Note that r1H)(t, !) is only defined for positive 

frequencies, which corresponds to the frequency support of the analytic signal X(f). 

The collection of all QTFRs T1H)(t, !) that are derived from Cohen's class QT­

FRs, T1c)(t, !), by the constant-Q warping (2.25) forms a new class of QTFRs with 

constant-Q characteristic. 

2.7.3 The Normal Forms 

Inserting the four "normal forms" (2.15)-(2.18) of Cohen's class into (2.25), the 

following four expressions are obtained (which are called the Normal Forms I, II, III 

and IV, respectively) for an arbitrary QTFR T(H) of the HC [3]: 

T1H)(t,f) = 1-:1-: </J~H)(tf-c, () vx(c,() e-j
27r(tnf;)< dcd( (2.26) 

f
00 

f
00 q,~H)(1n L-b, {3) Vx (b, {3) ej27rtf/3 db d{3 (2.27) 

1-oo 1-oo fr 

- 1-: fo 00 1/;~H)(tf-t' J', ln ;, ) Qx(t', J') dt' dj' (2.28) 

1-:1-: 'I!~H)((,{3) Bx((,{3) ej
27r(t//3-(tnf;)<) d(d{3, (2.29) 

with the "hyperbolic signal products" 

(2.30) 
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defined using ux and U x given in section 2.5, the TF version of the Q-distribution2 

(subsequently called Altes-Marinovic distribution (AD)) [40, 42] 

Qx(t, !) = Wwx(i, fr ln ~) (2.32) 

r:.o vx(tf, () e-j2rr(lnf;)< d( = roo Vx(1nL, {3) ei2rrtf/3 df3 
1-oo 1-oo f,. 

f 1_: x(f e/J/2) X*(f e-/312) ei2rrtf/3 df3, 

and the "hyperbolic ambiguity function "[42] 

Bx((, f3) = Awx(f, frf3) 

1_: vx(c, () e-i2rrf3c de= 1_: Vx(b, {3) ei2rr(b db 

fooo x(f e/312) x·(!e-/312) ej2rr(lnf; df. 

(2.33) 

The Hyperbolic Ambiguity function, Bx((, {3), is analogous to the Ambiguity func-

tion, Ax ( r, v), in the Cohen's class. Weighting different regions of the Hyperbolic 

Ambiguity function can be used to remove cross-terms similar to the way in which 

the Ambiguity function is used to remove cross-terms Figure 2.6. The way the Hyper­

bolic Ambiguity function and the normal form IV can be used to remove cross-terms 

will be discussed in the fifth chapter of this thesis. 

One of the advantages of formulating the HC QTFRs in the specific forms given 

by (2.26)-(2.29), is that the kernels <f>¥!\c, (), if!~H)(b, {3), 1/J~H)(c, b), and W~H)((, {3) 

are simply scaled versions of the respective kernels of the original Cohen's class QTFR 

T'Jcc)(t, !): 

,1..(H) ( () = _2:_ ,1..(C)(-=- i) 
'f'T c, fr 'f'T fr ' fr 1 

(H)( ) (C)( C ) 1/JT c, b = 1/JT fr, frb , 

if!~H) (b, f3) = fr if!~) Urb, frf3) , 

W~H)((, {3) = W~)(;r, frf3) · 

(2.34) 

(2.35) 

2The original Q-distribution, Qx(c, !)= f~00 X(Jef312 ) x•(Je-f31 2 ) ei2 trcf3 d/3, introduced in [40], 
depends on the {dimensionless) hyperbolic parameter c and the frequency f. The TF version 
considered here is obtained as Qx(t, f) = f Qx(c, f)lc=t/· A "time-domain" version of the Q­
distribution, which is formulated using the time-domain signal x(t) instead of the signal's Fourier 
transform X(f), was proposed by Marinovic in (42]. 
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Figure 2.12: Fourier transform relations connecting the kernels of the hyperbolic 
class. An arrow "a - b" indicates a Fourier transform from a to b. (Figure was 
taken from [3]). 
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According to the normal forms (2.26)-(2.29), any member of the HC can be 

derived from the hyperbolic signal products vx(c, () and Vx(b, ,B), the AD Qx(t, !) 

or the hyperbolic AF Bx ( (, ,B) by some characteristic, two-dimensional transform. 

Also, any hyperbolic QTFR is characterized mathematically by any of the four two­

dimensional kernels <f>~H)(c, (), <P~H)(b, ,B), 'lj;~H)(c, b) and 'iJ!~H)((, ,B) [3]. 

Two prominent members of the HC are the AD Qx(t, !) defined in (2.32) and 

the Bertrand unitary P0 -distribution [43, 36, 38, 39] that is also a member of the 

affine class. Both distributions will be considered in more detail in Section 2.9. 

2.8 Definition of Hyperbolic class 

Cohen's fixed kernel class can be defined by the two "axioms" of time-shift 

covariance and frequency-shift covariance. The HC can be derived from Cohen's class 

via the constant-Q warping. The way the axioms of Cohen's class are transformed 

under this warping is as follows. Using the inverse of (2.25), one can show that 

(2.36) 

Here, w-1 , the inverse of the logarithmic-frequency-warping operator W in (2.24), 

is given by [3] 

f > 0. 

It is easily shown that the time-shift and frequency-shift covariance properties of 

Cohen's class transform into the following properties of the corresponding hyperbolic 

class QTFR [3]: 

r,(C) _ (C)( frT ) w-1srwx(t, f) - Tx t-f, f , T.(C) ( J) _ T(C)( v/ fr _L) w- 1M.,WX t, - X e t, ev/fr . 

The composite operators w-157 W and w-1 MvW, which can be considered the 

images of the time-shift operator S 7 and the frequency-shift operator Mv under 

the logarithmic frequency mapping W, can be shown to be equal to the hyperbolic 

time-shift operator and the TF scaling operator, respectively, [3] 
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Setting c = frT and a = ev/ f., we finally obtain the result that the HC properties 

corresponding to the time-shift and frequency-shift covariances of Cohen's class are 

the hyperbolic time-shift covariance (previously considered in [47]) and the TF scale 

covariance, respectively, as stated by the following theorem [3]. 

Theorem: The HC is the class of all QTFR.s which are covariant to 

hyperbolic time-shifts 1-le and TF scalings Ca according to [3] 

TJ~i(t, J) = Tx( at, f) . (2.37) 

This means that the HC can be defined axiomatically by the above two covariance 

properties with respect to the operators 1-le and Ca, just as Cohen's fixed kernel 

class can be defined axiomatically by the time-shift and frequency-shift covariance 

properties, and just as the affine class can be defined by the time-shift and TF scale 

covariance properties. Note that the scale covariance property Tcax(t, J) = Tx(at, ~) 

is an axiom of both the affine class and the HC. In fact, the HC differs from the 

affine class merely by the fact that the conventional time-shift (Sr) is replaced by 

the hyperbolic time-shift (1-le) [3]. 

Since the family of hyperbolic impulses He(!) with -oo < c < oo covers the 

entire TF plane according to Figure 2.10, any finite-energy, analytic signal X(f) can 

be written as a superposition of hyperbolic impulses, 

X(f) = 1_: Px(c) He(!) de= 1_: Px(c) ~ e-j
27rcinf; de. 

The hyperbolic coefficient function Px(c) is the inner product [3] 

Px(c) = (X, He) = fo 00 

X(f) H;(f) dj = fo 00 

X(f) ~ d 27rcinf; dj. (2.38) 

It is also related to the Mellin transform of X(f) [3]. 

The QTFR mapping (2.25) or, equivalently, the kernel mappings (2.34)­

(2.35), establish a one-to-one correspondence between Cohen's class and the new HC, 

by which any QTFR, y(c), of Cohen's class is mapped into a QTFR, y(H), of the HC. 

Furthermore, any QTFR property, p(C), of Cohen's class maps into a corresponding 
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QTFR property, P, in the HC and vice versa, in the sense that a Cohen's class QTFR 

satisfies property p(C) if and only if the corresponding hyperbolic QTFR satisfies the 

corresponding property P. Table 2.4 lists corresponding QTFR properties and the 

associated kernel constraints for the HC kernels [3] 3 . These kernel constraints are 

identical to the well-known kernel constraints for Cohen's class [l] since, according 

to (2.34)-(2.35), the kernels of the two classes are themselves identical up to scaling 

by the reference frequency fr· 

The study of corresponding QTFR properties provides a means for understand­

ing the structure of the HC, in particular, the HC's relation to the hyperbolic TF 

geometry. Therefore, the correspondences are summarized in Table 2.4. 

2.9 Some Members of the Hyperbolic Class 

Due to the one-to-one mapping between Cohen's class and the HC, any QTFR, 

y(c), of Cohen's class is mapped into a QTFR, y(H), of the HC. As a result, well­

known Cohen's class QTFRs such as the (generalized) WD, the spectrogram, the 

smoothed pseudo-WD, the (generalized) Choi-Williams distribution, the Butter­

worth distribution etc. [l], can be converted into corresponding hyperbolic QTFRs 

that satisfy the hyperbolic time-shift covariance property and the scale covariance as 

well as other desirable properties. Conversely, using the inverse mapping in (2.36), 

we can also construct Cohen's class QTFRs corresponding to interesting hyperbolic 

QTFRs [48, 46], such as the Bertrand unitary P0-distribution. 

This section considers some specific QTFRs of the HC. We start with a discussion 

of the two most prominent hyperbolic QTFRs, the Altes-Marinovic distribution and 

the Bertrand unitary P0-distribution. All hyperbolic QTFRs discussed are listed in 

Table 2.5 together with the corresponding QTFRs of Cohen's class. Table 2.6 shows 

the QTFR kernels and the QTFR properties satisfied. 

3Note that the signals used in the context of QTFR.s or QTFR properties of Cohen's class are 
not assumed analytic while they are in the HC . 
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w 
-..:i 

COHEN'S CLASS HYPERBOLIC CLASS HYPERBOLIC CLASS 

PROPERTY PROPERTY KERNEL CONSTRAINT 

P~ C): time-shift covariance P 1: hyperbolic time-shift covariance 

(SrX)(f) = e-i27rrf X(f) * (HcX)(!) = e-j27rclnf.:x(!) * always satisfied 

ri;l(t, !) = rlc)(t-T, !) r,(H) (t !) = T(H)(t- f. !) 
'H.cX l X J' 

p~C): frequency-shift covariance P 2: scale covariance 

(M,,X)(f) = X(f-11) * (CaX)(f) = raX(~) * always satisfied 

rJJlx(t, !) = Tlc)(t, f-11) r,(H) (t !) = T(H)(at L) 
CaX ' X 'a 

P~c): real-valuedness P3 : real-valuedness W~H)•(-(, -/3) = Wr)((, /3) 

rlc)(t, !) = rlc)•(t, !) T1H)(t, !) = Tx(t, !) 

P~~): energy distribution P 4 : energy distribution wr)(O, 0) = 1 

j j rlc)(t, !) dtdf = J IX(f)l2 df I JTf)(t,J) dtdf = JIX(!)l 2 df 
-00-00 -oo -oo 0 0 

p~C): frequency marginal P5 : frequency marginal W~H)((, 0) = 1 

f~oo T1C)(t, !) dt = IX(f)l2 f~oo T1H)(t, /) dt = IX(/)12 

P~~): Moyal's formula/unitarity P6 : Moyal's formula/unitarity 1wrl(c /3)1=1 
( ( C) ( C) ) I ( ) 12 Tx1 ' Tx2 = X1, X2 ( (H) (H)) I( )12 Tx1 ' Tx2 = X1, X2 

Table 2.4: Corresponding properties of Cohen's class pi(C) defined in Table 2.1 and the Pi of hyperbolic class. Here, 

Px(c) is defined in (2.38). (Table was taken from [3] and [4]) (Continued on next four pages) 



t.iJ 
00 

COHEN'S CLASS 

PROPERTY 

Pl~): group delay 
f"° t T(C)(t,/) dt 
-oo x - _ _!_ .!larg X(f) 

J_::°
00 

T1c)(t,f) dt - 2?r df 

Pl~): finite frequency support 

X(f) = 0 for J ¢ [J1, h] => 
T1c)(t, !) = 0 for J f/. [ft, h] 

p(C): Dirac frequency localization 

X(f) = 8(!- Jo) => 
T1c)(t, !) = 8(/- Jo) 

prl: time marginal 

f~oo T1C)(t, f) dJ = lx(t)l2 

p(C): Dirac time localization 

X (!) = e - j2?rtof => 

T1C)(t, !) = 8(t-to) 

HYPERBOLIC CLASS HYPERBOLIC CLASS 

PROPERTY KERNEL CONSTRAINT 

P7 : group delay W~H)((, 0) = 1 and 
f"° t T(H)(t f) dt 

_Q_W(H)(( ,B)j = 0 -oo x ' - _ _!_ .!lar X(f) 
j_::°

00 
T18 )(t,/) dt - 2?r df g 8{3 T ' /J=O 

P8 : finite frequency support cp¥1) (b, fl) = 0 

X(f) = O for J ¢ [ft, h] => for 1~1 > ~ 
T1H)(t, !) = 0 for J f/. [ft, h] 

P 9 : Dirac frequency localization 

X(f) = 8(!- Jo), Jo > 0 => w¥1l((, o) = 1 

T1H)(t, !) = 8(!- Jo) 

P 10 : hyperbolic marginal W~H) (0, fl) = 1 

fo00 T1H)(5j, !) J = 1Px(c)l2 

P 11 : hyperbolic localization 

He(!) = Jt e-j2?rc1nf; u(f) => W~H) (0, fl) = 1 

T1~)(t,f) = y 8(t-5j), J > 0 

Table 2.4 (continued). 



c:..J 
tD 

COHEN'S CLASS 

PROPERTY 

P~~): finite time support 

x(t) = 0 for t ¢ [t1, t2] =? 

T1C)(t, !) = 0 for t ¢ [t1, t2] 

Pf): time moments 

f~00 f~00 tnTf)(t, !) dt df = 
J~00 tnlx(t)l2 dt 

p~C): scale covariance 

(CaX)(f) = 7aX(~) =? 

T.(C) (t !) = T(C)(at l) 
CQX ' X 'a 

p(C): exponential time-shift covariance 

(£rX)(f) = e-i27rTfre!!lr X(f) =? 

rJ;l(t, !) = Tl°)(t-Tef/fr' !) 
p(C): axis reversal 

x(t) =x(-t), X(f) =X(- !) =? 

r1°)(t, !) = r1°)(-t, -!) 

HYPERBOLIC CLASS HYPERBOLIC CLASS 

PROPERTY KERNEL CONSTRAINT 

P 12: finite hyperbolic support <f>tH) ( e, () = Q 

Px(e) = 0 for e ¢ [e1, e2] =} for 1~1 > ~ 
T1H)(5j, !) = 0 for e ¢ [e1, e2] 

P13: hyperbolic moments 

Joo Jioo enT(H) ( .£ !) de !M_ = -oo o x ! ' ! WtH) (0, {3) = 1 

f~oo en1Px(e)l2 de 

P 14 : power-warp covariance WtH)((, {3) = Sr(({J) 

(PaX)(f)= ~(f. )!-1 X(jr(f. )!) =? with Sr(O arbitrary 

T(H) ( !) T(H)( at ( L )1) 
'PBX t, = X (L)£-1' fr fr G 

Ir 
P 15 : time-shift covariance WtH) ( (, {3) = Br(f3)e-j21f(lnG(fJ) 

(SrX)(f) = e-i21frf X(f) =} with G({J) = sin~{;/2) 
ri~l(t, !) = r1H\t-T, !) and Br(f3) arbitrary 

P 16 : hyperbolic axis reversal 

p_x(e)=px(-e), X(f)=1j-X(lf) =? WtH)(-(, -{3) = WtH)((, {3) 

T}:H)(t,J) = T1H)(- ~t, If) 

Table 2.4 (continued). 



.i::.. 
0 

COHEN'S CLASS 

PROPERTY 

P~c): frequency moments 

f~oo f~oo Jn T1C)(t, f) dt df = 
f~oo JnlXU)l2 df 

pr): instantaneous frequency 
f"' I T(C)(t,f) df 
-"" x - .l -4.arg x(t) 
J~"" rl0 >(t,f) df - 271" dt 

P~~): convolution in time 

x(t) = (g * x)(t)' 

XU)= GU) XU) =} r1c)(t, !) 

= j Tbc)(t-t', f) T1c)(t', f) dt' 
-oo 

P~~): convolution in frequency 

x(t) = g(t) x(t)' 

XU)= (G * X)U) =} r1c)(t, !) 

= j Tbc)(t, f- !') r1c)(t, f') df' 
-oo 

HYPERBOLIC CLASS HYPERBOLIC CLASS 

PROPERTY KERNEL CONSTRAINT 

P 17 : hyperbolic frequency moments 

f~oo fo00 Ur ln * tT1H) ( t, !) dt df = W~H)((, 0) = 1 

fo00 Ur lnf tlXU)l 2 df 

P 18 : hyperbolic instantan. frequency W~H)(O, /3) = 1 and 
f."" ( L) (H)( c ) st 

~W(H)(( /J)I = Q o In Ir Tx 7,/ I _ 1 d ( ) 
J.""rCH)( £!)st - 271" dcarg Px c 8( T ' (=O o x I' I 

P 19 : hyperbolic convolution 

pg(c) = (Pa* Px )(c), W~H) ( (' /3) = e(CT(/J) 

XU)= ../lGU)XU) =} with Cr(/3) arbitrary 

T1H)(t, !) = j TbH)(t-7, f)T1H)(y, f'fl,c 
-oo 

P20 : hyperbolic multiplication 

pg(c) = Pa(c) Px(c), iJ!~H) ( (' /3) = e/JCT(() 

XU)= Vh J~ GUrf, )XU') df' =} with Cr(/3) arbitrary 

T~H)( t !) = j T.(H) (!£ f 1-)T(H)(J- JJ gr_ 
X ' 0 G fr ' r f' X ' ' f 

Table 2.4 (continued). 



.i:.. 
~ 

COHEN'S CLASS 

PROPERTY 

p(c): weighted convolution 

X(f) = v'e-1/frG(f)X(f) =} rfl(t, !) 

= e-f/fr j TbC)(t-t', !) rlC)(t', !) dt' 
-oo 

p(C): chirp localization 

X(f) = e-j'rra/2 =} 

TlC)(t, !) = 8(t-af) 

HYPERBOLIC CLASS HYPERBOLIC CLASS 

PROPERTY KERNEL CONSTRAINT 

P21: convolution c})~H)(b1, {J) c})~H)(b2, {J) = 
X(f) = G(f) X(f) =} ebi c})~H)(b1, {3) 8(b1 -b2) 

rlH)(t, !) = j TbH)(t-t', !) rf)(t', !) dt' 
-()() 

P22 : hyperbolic chirp localization iJ!~H) ( (, {3) = 1 

X(f) = }I e-jtrb( Inf; )2 u(f) =} (i.e., y(H) is the AD) 

TlH)(t,J) = y 8(t-y lnf;), f > 0 

Table 2.4 . 



2.9.1 The Altes-Marinovic Distribution 

The Altes-Marinovic distribution (AD) [40, 42, 46] 

Qx(t, !) = 1
00 

vx(tj, () e-i2
7r( inf,: )c; d( = 100 

Vx(1nL, {3) ei21rtf/3 d{J 
-oo -oo fr 

j 1_: X(J e/312) X*(!e-/312) ei27rtf/3 d{J 

is the hyperbolic counterpart of the WD [49, 25, 1] in Cohen's class with vx and Vx 

defined in (2.30) and (2.31) . The AD's kernels are particularly simple, 

cp~H) (b, {3) = 8(b) , 1/J~H)(c, b) = 8(c) 8(b), 

According to Table 2.6, the AD satisfies all QTFR properties listed in Table 

2.4 except for the conventional time-shift covariance property, P 15 . Since P 15 is 

not satisfied, the AD is not a member of the affine QTFR class. The AD is the 

only member of the HC that satisfies the hyperbolic chirp localization property P 22 . 

Several sets of other QTFR properties can, alternatively, be used to uniquely define 

the AD inside the HC, in the sense that the AD is the only member of the HC that 

satisfies these properties. One such property set consists of the marginal properties 

P 5 and P 10 , the finite-support properties P8 and P 12 , unitarity P 6 and real-valuedness 

P3 [50]. An alternative property set consists of the hyperbolic convolution property 

P 19 and the hyperbolic multiplication property P20 , unitarity P 6 and real-valuedness 

P 3 [3, 51]. 

The AD is perfectly adapted to the hyperbolic TF geometry and indeed it can be 

considered as the "central" QTFR in the HC. Specifically, the hyperbolic properties 

P10-P13 can be generalized to modified versions of the hyperbolic impulse defined 

as He(!) = r He(!) , with some power parameter a [38]. The AD satisfies the 

corresponding generalized hyperbolic properties for any power a. A second indication 

of the AD's desirability is the result for the cross-AD of two hyperbolic impulses, 

which is 

where c12 

J 8 ( t - c? ) e - j27rfo In f,: 

C1 + C2 
and ( 12 = c1 -c2 , 

2 

42 

(2.39) 



,j:>. 
w 

[_ c2J!~N'~_(j~~s~9TFR ri~~~t~f)__ _ _ [_ !fYPERBOLIC CLASS QTFR riH)(t, !) I 
Wigner distribution Al tes-Marinovic distri bu ti on 

00 

Qx(t, !) = j vx(tf, () e-j27r( Inf.)( d( Wx(t, !) = J ux(t, T) e-i27rfr dT 
-oo -00 

00 00 

= J U x (!, v) ei27rtv dv = _£, Vx( lnf;, /3) ei27rtff3 d{J 
-00 

00 00 

= J x (! + ~) x· (! - ~) ei27rtll dv = ! J X(f e/312) X*(f e-/312) ei21ftff3 d/3 
-oo -oo 

Generalized Wigner distribution Generalized Altes-Marinovic distribution 

Wi0 )(t, !) = j ux(t+cu, T) e-j21ffr dT Q';l(t, !) = j vx(tf +a(,() e-j27r( Inf. )c; d( 
-oo -oo 

00 00 

= J U x (!-av, v) ei27rtv dv = J Vx (ln f;- a{J, /3) ei27rtf f3 d{J 
-oo -oo 

Cohen-Bertrand P0 distribution Bertrand unitary P0 distribution 

Pic)(t, !) = j Ux(f +fr lnG(j.), v) ei27rt"dv 
-oo 

Px(t,J) = j Vx(ln(f;G(/3)), !3) ei21ftf/3 d/3 
-oo 

with G(/J) =sin~~ with G(/3) = sinYh21 

Table 2.5: Corresponding QTFRs of Cohen's class and the hyperbolic class. Note that ux(t, T) = x(t+T /2) x*(t­

T /2), Ux(f,v) = X(f+v/2)X*(f-v/2), and, vx(c,(), Vx(b,/3) and Px(c) are given by (2.30), (2 .31), and (2.38), 

respectively. (Table was taken from [3] and [4]). (Continued on next page) 



~ 
~ 

I COHEN'S CLASSQTFR Tf)(t, f) -- i--- HYPE-RBOLIC-CLASS QTFR TlH)(t, !) I 
Spectrogram 

Sx(t, !) = I J X(f') f*(f' - !) ei21rtf' df' 1
2 

-oo 
00 00 

= J f Wr(t'-t, !'- !) Wx(t', !') dt'df' 
-oo -oo 

Pseudo Wigner distribution 

PWDx(t,J) = 
00 

= f ur(O, T) ux(t, T) e-i27rfr dT 
-00 

00 

= f Wr(O, f- f') Wx(t, f') df' 
-oo 

Smoothed Pseudo Wigner distribution 

SPWDx(t, !) = 
00 

= J s(t-t') PWDx(t', !) dt' 
-oo 

00 00 

= J J s(t-t')ur(0,T)ux(t',T)e- i27rfrdt'dT 
-00-00 

00 00 

= J J s(t-t') Wr(O, f-f') Wx(t', f') dt'df' 
-00-00 

Hyperbologram 

Yx(t, !) = 1-1 J X(f') f• ( 1- f') ej
27rtflnf df' 1

2 

0 

= J f Qf(jrf,(t'f'-tf), fr1j-)Qx(t',J')dt'df' 
- oo 0 

with f (f) = If r(fr ln t) 
Pseudo Altes-Marinovic distribution 

PADx(t, !) = 
=fr f vr(O, () vx(tf, () e-j

27r( Inf;)< d( 
-oo 
00 

=fr f Qt(O, frf,) Qx(!p' f') f, 
0 

with f (f) = Ii r(f r ln t) 
Smoothed Pseudo Altes-Marinovic distribution 

SPADx(t, !) = 
00 

= J s(tf-c) PADx(y, !) de 
-oo 

=fr I I s(tf-c) vr(O, () vx(c, () e - j
27r(lnf;)(dcd( 

-00-00 
00 00 

=fr f f s(tf-c)Qt(O,frf,)Qx(f,,f')dcf, 
-oo 0 

with s(t) =ts(-[.), f(f) =Ii r(fr ln t) 
Table 2.5 (continued). 



~ 
<:J1 

r HYPERBOL~c_g_~_F_~1 - ------ K~RNELS I PROPERTIES SATISFIED I 
Al tes-Marinovic <PC:)(c, () = 8(c) P1- P14, P15-P22 

distribution Q <I>C:)(b, /3) = 8(b) 

1P;{)(c, b) = 8(c)8(b) 

wC:l((,/3) = 1 

Generalized <P~~l>(c, () = 8(c+o:() P1, P2, PcP5, Pg-Pu, 

Altes-Marinovic <I>~l) (b, /3) = 8(b-o:f3) P13, P14, P15, P11, P19, P20; 

distribution Q(o) 1/J(H) ( b) _ _!_ j2tr~ 
Q(<>) c, - lol e "' Ps and P12 if lo:I < ~ 

w_;;;l> ( (' /3) = ej2tro({J 

Bertrand <P~)(c, () = f~oo ej2tr{c{J-(lnG({J)) d/3 Pi-Pu, P12??*, P13, Pis, 

distri bu ti on P <I>~l(b, /3) = 8(b+lnG(/3)) P11, P19 

1PW)(c, b) = f~00 8(b+lnG(/3)) eJ2trc{J d/3 
w}!1l ( (, fJ) = e-j2tr( lnG({J) 

with G(/3) = sin~iJm 

Table 2.6: Kernels and properties of some QTFRs of the hyperbolic class. The distributions are defined in Table 

2.5 and the properties are defined in Table 2.4. (Table was taken from [3]). Px(c), vx(c, ()and Vx(b, /3) are defined 

in (2.38), (2.30) and (2.31) respectively. Also, s(c) and S(/3) are Fourier transform pairs. 

whether property P 12 is satisfied by the BD.) (Continued on next page) 

( *It is still unknown 
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O'l 

[HYPERBOLIC QTFR I KERNELS • u[ PROPERTIES SATISFIED I 
Hyperbologram Y 

Pseudo 

Altes-Marinovic 

distribution PAD 

Smoothed pseudo 

Altes-Marinovic 

distribution SPAD 

¢>~ 1 (c, () = vr(-c, -() 

<t>r)(b, fJ) = vr(-b, -fJ) 

1/J~H) ( c, b) = Qr( fr~c_&, fre-b) 

wrl((, (3) =Br(-(, -(3) 

ef>~~h(c, () =fr 8(c) vr(O, () 

<I>~~h(b, /3) = fr Qr(O, freb) 

1/J~~b(c, b) =fr 8(c) Qr(O, freb) 

W~~h((, /3) =fr vr(O, () 

ef>~~lo(c, ()=fr s(c) vr(O, () 

<I>~~lo(b, fJ) =fr S({J) Qr(O, freb) 

1/J~~lo(c, b) =fr s(c) Qr(O, freb) 
(H) A 

WsPAo((, fJ) =fr S({J) vr(O, () 

Table 2.6 (Continued). 

P1-P3; 

P4 if f0
00 lr(f)l 2 df=l 

p16 if f'(- !) = ±f'(f) 

P1-P3, P12; 

P4, P10, P 11 , and P13 if 

1Pr(O)l
2 

= Jr' 
P15 if vr(O, -() = vr(O, (), 

Pis if Im{!Pr(c)lc=O Pf,(O)} = 0 

P 1, P 2; P 3 if s ( c) E R, 

p 4 if S(O) IPr(Q) 12 = Jr l 

P 16 if S(-J) = S(f) and 

vr(O, -() = vr(O, () 



where the cross-AD of two signals X(f) and Y(f) is defined as 

Qx,y(t, J) = f j X(Jef3l2 ) Y*(f e-f3l2 ) eJ27rt/fJ d{3. (2.40) 

The result for the cross-AD QHcl'Hc
2 
(t, J) is a "cross-version" of the hyperbolic lo­

calization property P 11 and the result states that the cross or interference term of 

two different hyperbolic impulses with hyperbolic parameters c1 and c2 is perfectly 

concentrated along the "mean hyperbola" t = c12 / f, along which it is oscillatory [3]. 

A similar result is, 

8 (! - J 12) ej27rv12t (2.41) 

where f 12 ~ and v12 = ~ ln~: , 

which states that the cross-AD of two spectral lines, L1i (!) = 8(!-fi) and L12(!) = 
8(!-h), is an oscillatory Dirac ridge at the geometric-mean frequency fi2 = ,,,!Tih 
[3]. 

Since the WD is known to feature perfect concentration in the case of linear 

FM signals (chirp signals) X(f) = e-j1raf
2

, an analogous result must hold for the 

AD [9]. The frequency-warped version (w- 1 X)(f) of the linear-FM chirp signal 

can be shown to be (up to a constant factor) the "hyperbolic chirp signal" Rb(!) = 
)I e-j?rb(lnf,:)2 u(f) (where b = af'/ is a "hyperbolic chirp rate" and u(f) is the unit 

step) , whose group delay is T(f) = } Inf;. The AD of the hyperbolic chirp signal 

defined above is, indeed, a Dirac ridge along the group delay curve t = T(j), 

f > 0. 

This property suffices to uniquely define the AD inside the HC. 

2.9.2 The Generalized Altes-Marinovic Distribution 

Many of the properties of the AD can be extended to the family of hyperbolic 

QTFRs depending on a real-valued parameter a [46] 
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1
00 

vx(1nL - a{3, (3) ei27rtff3 df3 
-co fr 

f 1_: e-a(J x (! e( t-a)(J) x· (! e-( t+a)(J) ,J27rt/(J df3 

which we call generalized Altes-Marinovic distribution (GAD). The GAD is the hy­

perbolic counterpart of the generalized Wigner distribution [31, 25, 50, 52] of Cohen's 

class. Note that the AD is a special case for a = 0 and is the only GAD which is 

real-valued. The interference term concentration properties of the AD, shown in 

Eqs. (2.39) and (2.41), can be extended to the GAD, but with an a-dependent 

displacement of the interference term location [3]. 

2.9.3 The Bertrand Distribution 

Another prominent member of the HC is the Bertrand unitary P0 -distribution 

[38, 43, 36, 39, 46, 53], briefly called Bertrand distribution (BD) in the following. 

Px(t, !) = /_: Ux(f F(y), v) G(y) e1
2
7rtv dv 

/_: x(1 F(y)+~) x·(1 F(y)-~) a(y) e1
2

1rt
11

dv 

J_:vx(ln(~ G(fl)), (3) ,J21rtff3 df3 

f 1_: X(JG(f3) e~) x•(!G(f3) e-~)G(f3) e121rtff3 d{3 

where4 

f3 f3 f3 ef3/2 + e-f3/2 
F(f3) = 2 coth 2 = 2 e/3/2 - e-/3/2 , 

G(f3) = (3 /2 (3 
sinh(f3 /2) ef3/2 - e-fJ/2 · 

Two of the kernels of the BD are simple functions, 

The BD satisfies many of the desirable properties listed in Table 2.4. The main 

feature of the BD (from a HC viewpoint) is that the BD satisfies the conventional 

4 Note that F(/3) = ~(>.o(/3) + .Ao(-/3)) and G(/3) = µo(/3) = >.o(/3) e-1312 , where >.o(/3) and µo(/3) 
are the functions used in (38] . 
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time-shift covariance property P 15 . Thus, it is also a member of the affine QTFR 

class; indeed, it may be considered as the central QTFR inside the hyperbolic subclass 

that forms the intersection between the HC and the affine class [48, 54]. Inside the 

HC, the BD is uniquely defined by the time-shift covariance property, P 15 , the real­

valuedness property P 3 and the hyperbolic marginal property P 10 (or, equivalently, 

the hyperbolic localization property Pu) [3]. 

From the viewpoint of the affine QTFR class, the BD is unique because of the 

hyperbolic properties it satisfies. Indeed, inside the affine class, the BD is uniquely 

defined by the real-valuedness property P3 , the hyperbolic time-shift covariance prop­

erty P 1 and the hyperbolic marginal property P 10 (or, equivalently, the hyperbolic 

localization property Pu) [3]. Other property sets defining the BD are discussed in 

[38, 36]. 

Since the BD is a prominent member of the HC, it is interesting to see to which 

member of Cohen's class the BD corresponds. Using the relation (2.36), the Cohen's 

class counterpart of the BD (abbreviated CBD in the following) is obtained as [46] 

CBD~)(t,J) = l: Ux(f+frlnG(~), v) ei27rtvdv 

l: x(f +fr lnG(~) +~) X*(f +fr lnG(~)- ~) ei2
7rtv dv. 

where G({J) = s/!r/;12 as defined before. The main feature of the CBD is the ex­

ponential time-shift covariance property which is the Cohen's class counterpart of 

the time-shift covariance property in the HC. Indeed, inside Cohen's class, the CBD 

is uniquely defined by the real-valuedness property P~c), the exponential time-shift 

covariance property and the time-domain marginal property, pr) (or, equivalently, 

the time localization property) [3] .. 

2.9.4 The Hyperbologram 

As a basis for a further hyperbolic QTFR; we first define the hyperbolic wavelet 

transform as the inner product of the signal X(f) and a TF-scaled and hyperbolically 
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time-shifted analysis wavelet f(f), 

HWTx(c,a) ~ (X, 'HcCaf') =Ju fo 00 

X(f') r·(:) ej
2
rrctnf dj'. 

where r(f) is defined as 

f(f) = (W- 1r)(f) = ~r(frln f) , f > 0, 

and f(f) is a smooth, lowpass function [3]. The analysis wavelet, f(f), is assumed to 

be an analytic bandpass signal concentrated around the positive reference frequency 

fr· Note that HWTx(c, a) is a linear signal representation which is analogous to the 

wavelet transform in (2.8), the difference being that the time-shift used in the wavelet 

transform is replaced by a hyperbolic time-shift. A TF version of the hyperbolic 

wavelet transform can easily be obtained through the substitution c = tf and a = 

f /fr· 

The hyperbologram, Yx(t, !), is now defined as the squared magnitude of the TF 

version of the hyperbolic wavelet transform [46], 

Yx(t,J) "' I HWTx (tf, J,) I' 
l(x, H,1 c,11.t)I' = 71 f x(J') r·(7 r) e'2"

11·f dJ' I' 
The hyperbologram is a (nonnegative) member of the HC. It can be shown that the 

hyperbologram can be written in terms of any unitary [55, 56] hyperbolic QTFR 

rJtl ( t, !) (e.g., the AD or BD) as 

Yx(t,f) = i:fo00

riH)·(;rJ,(t'J'-tf), fr~) r1H)(t',J')dt'df', 

where TiH)(t, !) is the HC QTFR of the analysis wavelet. 

2.9.5 The Pseudo Altes-Marinovic Distribution 

The hyperbolic counterpart of the pseudo Wigner distribution in Cohen's class 

[49] is the pseudo Altes-Marinovic distribution (PAD) defined as 

PADx(t, !) 
6 f, j_: [Px(tf + n prm l [Px(tf - ~)Pr(-~)] '.-;2

.( 
1
•/; )(d( 
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where f'(f) is an analysis wavelet and vx and Px were defined in (2.30) and 

(2.38), respectively. The PAD can be formally derived from the AD, Qx(t, !) = 

f~00Px(tf +fl Px(tf - fl e-j
27r( inf.)< d(, by replacing Px(e) with the locally win­

dowed version Px(e) Pr(e-tf) (i.e., Px(e) is multiplied by the "window" Pr(e) shifted 

to the respective analysis parameter e = tf that is induced by the analysis TF point 

(t, !)). It is easily shown that the PAD is a smoothed version of the AD, where the 

smoothing occurs along hyperbolas t' = e/ f' with e = tf [3], 

(

00 

( f) (tf ') df' PADx(t, !) =fr Jo Qf 0, fr f' Qx f' 'f f' · 

2.9.6 The Smoothed Pseudo Altes-Marinovic Distribution 

In order to incorporate an additional smoothing component in the vertical di­

rection to the hyperbolas, the PAD is extended by defining the smoothed pseudo 

Altes-Marinovie distribution (SPAD) as [3, 4] 

SPADx(t, !) 
6 1_: s(tf-e) PADx(7, f) de 

fr 1_: 1_: s(tf-e) Vf(O, () vx(e, () e-j
27r(lnf. )< ded( 

fr l:fo00 

s(tf-e)Qt(O,fr ;,) Qx(;,,J') de j,', 
where s(e) is a smoothing (i.e., lowpass) function, vx is defined in (2.30) , and Q is 

the Altes distribution. Note that the SPAD reduces to the PAD when s(e) = o(e). 

The SPAD is the hyperbolic counterpart of the smoothed pseudo Wigner distri­

bution in Cohen's class [57, 25, l] . Analogous to the spectrogram/hyperbologram 

correspondence, the analysis wavelet, f'(f), of the corresponding smoothed pseudo 

Altes-Marinovic distribution is the frequency-warped version of the window f(f). 

Note that the kernels of the SPAD are separable functions (cf. Table 2.6) . This 

entails a type of AD smoothing which allows both an efficient computation and a 

flexible and simple choice of the smoothing characteristics. If the computation of 
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HC representations is based on the hyperbolic coefficient function Px(c) (which per­

mits the application of the fast Mellin transform [6]), then the (smoothed) pseudo 

AD will have similar computational advantages as the (smoothed) pseudo WD in 

Cohen's class. 

2.10 Conclusions 

An overview of three classes of time-frequency distributions was presented. In one 

example, it has been shown that cross-term removal using the Cohen's class of time­

frequency techniques is very challenging (see Figure (2.9)) . In the case of Hyperbolic 

impulses, the Hyperbolic class of time-frequency representations works well; this will 

be discussed in the next chapter. Also in the next chapter, previous work done on 

the implementation of the Hyperbolic class will be discussed. 
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Chapter 3 

Previous Work on the Implementation of 

the Hyperbolic class 

3.1 Introduction 

In this chapter, the Discrete Mellin Transform which connects the geometrically 

spaced samples of a signal to arithmetically, i.e. uniformly, spaced samples of its 

Mellin Transform, is described [44]. Next, the computation or implementation of the 

Affine class of Time-Frequency distributions using the Discrete Mellin Transform is 

discussed. This implementation is of interest because it can be used to implement 

the Bertrand unitary P0 distribution which is also a member of the Hyperbolic class 

[6]. 
The warping technique for implementing the Hyperbolic class of Time-Frequency 

distributions is the one proposed by Canfield and Jones [7]. This technique will be 

discussed in the section (3.4) of this chapter. 

3.2 Discrete Mellin Transform for Signal Analysis 

In this section, properties and time-frequency interpretation of the Mellin transform 

relevant to the computation of the Affine class of time-frequency distributions are 

discussed [44]. Later, the discretization of the Mellin Transform into a form which 

can be computed using any Fast Fourier Transform (FFT) algorithm is discussed. 
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This technique is used for computing broad-band radar ambiguity functions and the 

Affine class of time-frequency representations [6]. 

3.2.1 Time-Frequency interpretation of MT 

The introduction of the Mellin Transform in signal analysis corresponds generally to 

the search for a transformation with scale invariant properties [58, 59] . In this chap­

ter, we consider the Mellin Transform as an interesting technique for the computation 

of functionals containing dilations. 

The Mellin Transform is defined on the analytical signal X(f), i.e., X(f) = 0 

for f < 0, by the relation: 

Mx(fl) = fo00 

X(f) f 2
j1r(J-I/

2 df (3.1) 

and by its inverse form: 

X(f) = 1-: Mx(fl) 1-2j7rfJ-1/2 dfl (3.2) 

Hence, we will talk about the relationships between the signal's "f-space" referring 

to the frequency domain representation of the signal, and the Mellin transform's 

"fl-space" referring to the signal's forward Mellin transform. 

The transformation is unitary, i.e., it preserves inner products. 

(3.3) 

Our main interest of the transformation in (3.1)-(3.2) appears when considering the 

operation: 

X(f) ---+ x' (!) = a1l 2 X(af) (3.4) 

which corresponds to a dilation of the signal by the coefficient a > 0. In the Mellin 

Transform fl-space, the transformation in (3.4) is simply expressed by: 

M x' (fl) = a-2
i1rfJ M x (fl) (3.5) 

Basically, this latter relation comes from the fact that (3.2) represents a decomposi­

tion of the signal onto the following basis of signals: 

Z(f, fl) = 1 -2j7rfJ-1/2. (3.6) 

which are eigen functions of the transformation operation in (3.4). 
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3.2.2 Some properties of the transform 

In the signal's frequency-space, a product can be introduced by: 

(3.7) 

The Mellin Transform of this product is given by: 

Mcx1 o x2 )(f3) = Mx, ({3) * Mx2 ({3) = j_: Mx, (a) Mx2 ({3 - a) da (3.8) 

where the * operation is the linear convolution of functions. 

A multiplicative or scale convolution of functions is defined as 

(3.9) 

For a given X 1(!) (or X2(!)) , this is an important linear operation, since the Mellin 

Transform of (3.9) yields the relation: 

(3.10) 

where the r .h.s. operation is the product of Mellin transforms in the {3-space. Thus, 

scale convolution in frequency in (3.9) results in multiplication in the Mellin trans­

form {3-space in (3.10). 

For discretization of the Mellin Transform, it is useful to define the geometric 

sampling function: 
00 

~Q(J) = L Qn/2 o(f - Qn), f , Q E R (3.11) 
n=-oo 

whose Mellin Transform is the distribution: 
1 00 

Mt:.Q({3) = lnQpJ;oo 6({3-p/lnQ) (3.12) 

Here, o(J) is a Dirac function . Expressions (3.11) and (3.12) are the counterparts of 

the "Dirac comb" function wA(t) = I::=-oo 8(t - mA) and its Fourier transform 

(FT) , WA(!) = i I:~-oo 6 (! - ~) used to represent the effects of uniform sampling 

on a signal and its Fourier transform. As defined in equation (3.11) , the geometric 

sampling function is the sum of Dirac functions which repeat geometrically, i.e., 

like in a geometric progression, contrary to other sampling functions like the one in 

(3.12) , wA(t) or WA(!), wherein the Dirac functions repeat arithmetically, i.e., like 

in an arithmetic progression. 
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3.2.3 Discrete Mellin Transform 

We focus now on signals located in a bounded domain of the time-frequency half­

plane (! > 0). The signal X(f) is assumed to be limited to the frequency band 

f E (Ji, h) as shown in figure (3.l(a) ). The support of the Mellin transform of the 

signal X(f) is assumed to be f3 E ((31 , (32 ) as shown in figure (3.l(b)) . The objective is 

to discretize the Mellin transform so that digital computers can be used to compute 

it. The discretization used in this thesis was proposed in [44]. It is derived from 

samples in both the frequency domain and in the {3-domain in a manner that ensures 

that aliasing errors do not occur in the Mellin transform domain. The Discrete 

Mellin Transform relates N geometrically spaced samples of the signal's spectrum to 

N uniformly spaced samples of its Mellin transform. 

Initially, the beta domain is discretized by the following equation 

Mx(f3) Mc:..q(f3)Mx(f3) 
1 p p 

lnQ ~Mx(lnQ) o((J- lnQ) (3.13) 

where Mc:..q((J) , given by (3.12), effectively uniformly samples the continuous Mellin 

transform of the signal in the beta domain. The effect of the above equation is 

shown in figure (3.l(d)). Since multiplication in the beta domain corresponds to 

scale/multiplicative convolution in frequency-space , the effect of the above operation 

on the signal X (!) is shown below, 

(3.14) 

where ** is defined in (3.9). The signal X(f) , called the dilatocycled form of X(f), 

can be written as 
00 

X(f) L Qn/2 X ( Qn !) , Q E R . (3.15) 
n=-oo 

The effect of dilatocycling on the signal X(f) is shown in figure (3.l(c)). 

Next, M x(f3), is made periodic by the operation: 

Mc:,.
9
((3) * Mx(f3 ) 

1 l 
-LM-(f3--) 
ln q 

1 
x ln q 

(3.16) 
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Convolution with MtJ.
9

({3), which in (3.12) is a sum of periodically repeated Dirac 

delta functions spaced every ( 11~q) units, results in periodic repetition of the Mellin 

transform of the signal X(f). The repetition due to the convolution in (3.16) is 

shown in figure (3.l(f)). In order to avoid aliasing, the sampling period, 1;q, of the 

function, Mfl.
9 

({3) should satisfy the following condition: 

(3.17) 

where {31 and {32 are defined to be the boundary points of the support Mx(f3), i.e., 

Mx(f3) = 0, for {3 < {31 and {3 > f32. 

Convolution in the beta domain results in scaled multiplication in frequency do­

main. So, the inverse Mellin transform of (3.16) is obtained by using equations (3.2) 

and (3.8). The result is 

X(f) (~q(f) o X(f)) 

L qn X(qn) 8(! - qn) (3.18) 
n 

If the real numbers Q and q appearing, respectively, in (3.13) and (3.16) are connected 

by the relation: 

(3.19) 

where N is a positive integer, then X(f) is a sampled, periodic function . In the same 

way, condition (3.19) ensures that the geometric sampling in (3.16) does not destroy 

the dilatocycled structure of the function X(f) defined in (3.14). The Discrete Mellin 

transform is then readily obtained by writing (3.13) and (3.16) explicitly. The result 

is : 
P+N-1 

M x(P/ ln Q) = ln Q (N)-1 L qk/2 e2j1rkp/N X(qk) (3.20) 
k=P 

In (3.20), the integer P is obtained by looking at the support of X(f), i.e., qP "'Ji 
and qP+N-l "' h where X(f) = 0, f f. (!1, f2). P is usually proportional to the 

logarithm of the minimum frequency at which X(f) is non-zero, i.e., P"' lnfi/lnq. 

The sequence of operations leading to (3.20) are listed in Table 3.1. 

A pictorial synopsis of the operations leading to (3.20) is given in figure (3.1). 

Figure (3.1) consists of six subplots where the right column of the subplots shows 

the Mellin transform of the left column of the subplots. Initially, in figure (3.l(a)), 
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C.11 
00 

I ----- - ---- Signal __________ _J___ __ --M~llin Transform I 

X(f) = J~00 x(t) e-i21fft dt Mx(f3) = fo00 X(f)/i27ff3-l/2 df 

X (!) = E~=-oo Qn/2 X ( Qn J) Mx(f3) = Mllq(f3) Mx(f3) 

= Inll E~-oo Mx(ln~) 8((3 - i!Q) 

X(f) = E~=-oo qm X(qm) 8(! - qm) M-x(f3) = 1;q E~=-oo Mx(f3- ~) 

Mx(~) = 2nqEf~;-1 qk/2 X(qk) ei2~l 

Table 3.1: Discretization of the Mellin transform, assuming Q = qN. 



X(f) 

X(f) 

X(f) 

Signal 

(a) 

Dilatocycling in f-space 

a 

--
0 

(c) 

Geometric sampling inf-space 

a 

(e) 

Mx(f3) Mellin Transform 

(b) 

M x(f3) Arithmetic sampling in (3-space 

II II I 
11111 
I I I II 

1111111 
1111111 

fl1 
1111111 

---1 f3 --
lnO 

(d) 

M K((3) Periodizing in ()-space 

111111 
1111111 111111 
I I I I I I I II I I I I 

111111 1111111 111111 

-1-fl1 

lnq 

Figure 3.1: Graphical development of the Discrete Mellin Transform. 
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a signal with finite frequency support is shown. The signal's continuous Mellin 

transform is shown in figure (3.l(b)). Now, due to the arithmetic sampling in beta­

space, as shown in figure (3.l(d)), dilatocycling occurs in the frequency space. The 

dilatocycling of the signal is shown in figure ( 3.1 ( c)). The dilatocycling can be 

explained as follows. During signal analysis using Fourier transforms, sampling in 

the frequency domain results in periodic repetition of the signal in the time domain. 

Similarly, when the Mellin transform is uniformly sampled in the beta domain, there 

is repetition in the frequency domain together with compression or dilation of the 

signal depending on the location of the repetition in the frequency space. In the 

frequency domain, the repeated waveform of the signal gets dilated as the frequency 

increases and gets compressed as the frequency decreases, as seen from the figure 

(3.l(c)). Figures (3.l(c)) and (3.l(d)) are the results of the equations (3.14) and 

(3.13), respectively. 

Now the frequency space is being discretized as shown in figure (3.l(e)) which 

results in periodic repetition in the beta space. The discretization in the beta 

space is shown in figure (3.l(f)). Figures (3.l(e)) and (3.l(f)) are the result of 

the equations (3.18) and (3.16), respectively. The practical implementation of the 

discretized formula in (3.20) can be carried out with any Fast Fourier Transform 

(FFT) algorithm. 

3.3 Computation of Bertrand unitary Po distribu­

tion using the Discrete Mellin Transform 

In this section, the computation of the Bertrand unitary Po distribution using the 

Discrete Mellin Transform is discussed since the Bertrand distribution is of interest 

as it is also a member of the Hyperbolic class of time-frequency distributions. Also, 

it was shown that this computational technique can be generalized to compute any 

time-frequency distribution of the Affine class [6]. 
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The unitary form of the Bertrand Po distribution is given by [37]1 

Px(t, !) J loo e2jrrt/u X (1-u_e_u_f2_) 
-oo 2 sinh( u/2) X* (1-2 s-~n-e~-~~-~2-J 

(2sin~u/2)) du. 
(3.21) 

From a computational point of view, this formula may look formidable. However, 

the use of an appropriate Mellin transform reduces the task of its implementation to 

just a few Fast Fourier Transforms (FFT) . Initially, the sampling conditions of the 

Discrete Mellin transform will be discussed. In the next section, the main principle 

for the computation of the Bertrand unitary P0 distribution is discussed. In later 

sections, an algorithm for the computation of the P0 distribution is discussed, and 

then, some examples of applications to synthetic signals are presented and discussed. 

The Discrete Mellin transform (DMT) can be used on signals with limited support 

in both the frequency, f, and Mellin transform, {J, variables. In a general manner, 

the DMT relates N geometrically spaced samples of the signal in frequency to N 

arithmetically spaced samples of its Mellin transform. If a signal X (!) is limited to 

the band f E (Ji, h), i.e., X(f) = 0, f ft (11 , h), and if the support of its Mellin 

transform is {J E (!31, !32), i.e., Mx(fJ) = 0, {J ft (!31, !32), 

then the DMT is given by 2 : 

(3.22) 

Since ln Q = N ln q, this transformation can be thought of as the output of a 

linear system characterized by a ratio factor q and an integer, N, which must satisfy 

the two conditions: 

and (3.23) 

1 We note that in the paper [37], the Bertrand unitary Po distribution was defined with two 
parameters r E R and q E R. We used the standard choices of r = -1 /2 and q = 0 through out this 
thesis (37]. Note that the q in (37] is not equal to the parameter q used in this thesis in (3.18)-(3.41). 

2We note that DMT given in (3.22), which was taken from [6], has to be multiplied by qP12 e 
2
;N"p 

to be consistent with Equation (3.20). 
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in order to avoid aliasing. As a consequence, the number, N, of complex samples of 

the DMT to deal with must be no less than: 

N = IP2 - /hi ln (~:) (3.24) 

As seen in formula (3.22), the efficient computation of a DMT can be performed by 

using any FFT algorithm on the function [qk/2 X(fiqk) ln q]. 

There is, in general, no a priori knowledge of the support of the Mellin transform 

of a signal. However, as noted in [44], it can be asserted that the Mellin transform 

of any approximately bandlimited signal of finite duration has a bounded support 

which can be determined directly. For example, if the signal has the approximate 

temporal support (-T /2, +T /2) and approximate spectral support (fi, h), then 

its Po distribution will be located in the time-frequency half-plane approximately 

between the two hyperbolas: 

Po T 
t = ±f, Po = 2 h (3.25) 

Such a simple geometrical analysis is sufficient to assert that, in this case, the approx­

imate support of the Mellin transform of the signal will be the interval P E (-P0 , P0). 

3.3.1 Principle of the computation of the Bertrand Po dis­

tribution 

Equation (3.21) does not involve crossterms between positive and negative frequency 

parts of the signal. This property, combined with the fact that the P0 distribution 

associated with real signals x(t) is an even function of the f variable, permits to 

consider the implementation of (3.21) for analytic signals only [6]. In the computation 

of the Bertrand P0 distribution, one first reparameterizes the half-plane (f > 0) by 

setting 'Y = ft and using the notation Px: 

Px('Y, !) = Px(t, f) ,, tf (3.26) 

The Po distribution in (3.21) is rewritten as : 
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f>x('Y, !) 

with 

1112 J_: [..\o(u) ..\o(-u)]1;2 1112 

X(J..\o(u)) X*(J,\ 0 (-u)) e2
i7r"fu du 

..\o(u) = 
2 sinh( u/2) 

(3.27) 

(3.28) 

After multiplying both l.h.s and r.h.s of the equation (3.27) by 1-1
/

2
, a Mellin trans­

form with respect to l is performed. Since the variable of integration in (3.27) is u , 

multiplication of the l.h.s and the r.h.s of the equation (3.27) with 1-1/ 2 is not going 

to alter the equation. Thanks to the relations (3.4)-(3.5) and (3.7)-(3.8) the result 

becomes: 

j_: e2
i1f"fu [i: D-g({J', u) D*x(fJ' - {J, -u) d{J'] du (3.29) 

where 

(3.30) 

The expression inside the brackets in (3.29) is a cross-correlation which can be com­

puted using the Fourier transform. The Fourier transform of the function D-g({J, ±u) 

along the {J-axis is defined as 

(3.31) 

The result leads to a new form of (3.29) which can be written as: 

Finally, inverting the Mellin transform using (3.2) and using 'Y = tl to switch back 

to the ti:rne variable, yields the formula to be discretized: 

Px(t, !) = 2'R [fo00 

F+(ln l, u) F.:(ln l, u) e2
j1ftfu du] (3.33) 

where 'R denotes the real part operation. 
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3.3.2 Algorithm 

There are three main steps in the discretization of (3.33), namely the computation 

of the Mellin transform of the signal, the computation of F±(O, u) and the inverse 

Fourier transform with respect to u. The limit u0 is chosen such that in the domain 

u E (0, u0 ), both ..\o(u) and ..\o(-u) stay within the interval ..\o(±u) E (Ji/ h, hi fi). 
Once u0 is determined, the number of samples M in the u space is chosen such that: 

a 
M ~ BT a_ 

1 
uo, a = hi Ji, B = h - Ji. (3.34) 

where X(J) ~ 0 for f '/. (!1,h) and x(t) rv 0, t ~ (-Tl2,Tl2) and Tis the time 

duration of the signal. The constraint on N comes from the Mellin transformation 

and is identical with (3.24) which reads here: 

N > BTa Ina 
- a-1 

(3.35) 

which comes from the relation (3.24) with B = h - Ji and a = hi Ji. 
The three main steps in the algorithm are described as follows . We will use 

square brackets to indicate the sampled version of a function, evaluated along the 

set of integers. 

1. Suppose we start with a signal X (!) geometrically sampled on the interval 

(fi,h) with the ratio q = (hlfi) 11N , where N is the number of frequency 

samples. 

X[p] 

0, 

O~p~N-1 

N ~ p ~ 2N-1 (3.36) 

Since (3.29) involves the correlation of IJx({J, u) and IJx({J, -u), the number 

of samples in {J-space must be doubled to avoid aliasing since the correlation 

is being implemented indirectly using an FFT. This is achieved in (3.36) by 

padding the signal with N zeros in the frequency-space. The Discrete Mellin 

transform of the geometrically sampled signal X (p] is calculated as follows 

where it is assumed that X(J) rv X(J), for Ji < f < h · 
2N-1 

L qP/2 ln q X[p] e2j7f~' 0 ~ k ~ 2N -1 
p=O 
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where f3k = 
2Nlnq 

k 
(3.37) 

2. D±[k, n], which is the discrete version of the function IJ-x(/3, ±u), is calculated 

as follows. 

(3.38) 

where 0 < k < 2N - 1, 0 < n < M 1 and 

{ 
IJ-x(/3k, ±un), f3k = 2);q + 2N~nq' Un = nuo/M 

D±[k,n] = 
0, otherwise 

where M is the length of the signal in time domain. The functions F±[p, n], 

which are discrete forms of F±(O, u) are then obtained by performing a FFT 

on D±[k, n] as shown below. 

2N-1 
'""" 2 . .!!2-F+ [p, n] = ~ D+[k, n] e- J1r2N, 0 ~ p ~ 2N -1, O ~ n ~ M -1 (3.39) 
k=O 

F_[p,n] 0 ~P ~ 2N-1, 0 ~ n ~ M-1 (3.40) 

nuo/M 

Here, we note that only N samples of D±[k, n] will be non-zero. 

3. Perform an equivalent Discrete inverse u-Fourier transform of the continuous 

inverse u-Fourier transform in (3.33) which is expressed by the discrete formula: 

where 0 

P[k,p] 

1 M-1 
P[k,p] = M L F+[p, n] F~[p, n]e2j7rkn/(M•expJactorp) 

n=O 

~ k ~ M - 1, 0 

{ 
Px(tk, fp), for tk = ktiT, fp 

0, otherwise 

< p 

= fiqP 
< N - 1 

(3.41) 

and 

The term exp_factorP in (3.41) is the ratio of the highest frequency to the frequency 

component being calculated, i.e, 12/ fp· 
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The approximate complexity of this algorithm can be expressed in terms of the 

number of FFTs being performed. If the time-frequency representation Px(t , !) is 

characterized by (M,N) points in time and frequency, respectively, then we have to 

deal with (2M+l) FFT of 2N points and (N) FFT of (M ft) points. 

In the limit of narrow-band signals, formulas (3.34) and (3.35) are reduced to 

M ~ 2BT and N ~ BT, respectively. The above procedure has been applied to 

several signals described by closed form functions of frequency [6] . In this case, the 

geometric sampling of the signal spectrum in (3.36) is easy to obtain and the Mellin 

transform implementation of the Bertrand unitary Po distribution can be applied 

directly. 

For example, one such closed form function of frequency is the Hyperbolic im­

pulse, defined as: 

(3.42) 

The Bertrand unitary P0 representation for a rectangularly windowed form of the 

Hyperbolic impulse is shown in figure (3.2). 

The Bertrand unitary P0 representation of this signal is mathematically localized 

in the time-frequency half-plane about the hyperbola t = 7, where c is the hyper­

bolic parameter. The Bertrand unitary P0 representation of a narrow-band signal is 

very close to its Wigner-Ville representation. This property is demonstrated in figure 

(3.3) which gives the P0 representation of a chirp (linear group delay modulation) 

which is defined as: 

(3.43) 

3.4 Implementation of any Hyperbolic class Time­

frequency representation by warping tech-
. n1que 

An infinite number of new signal analysis and processing tools are obtained by simply 

prewarping the signal via a unitary transformation, performing standard processing 
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Figure 3.2: Bertrand unitary P0 representation of the rectangularly windowed hy­
perbolic impulse with c=5.0 and h/ Ji = 9. 
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Figure 3.3: P0 representation of a linear FM chirp with Gaussian amplitude modu­
lation with fo=0.1, hf Ji = 10, ry= 0.00028 and a=0.00039. 
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techniques on the warped signal, and then (in some cases) unwarping the resultant 

output [60, 61]. The unitary transformation is obtained by applying a unitary oper­

ator U. Unitary operators and their applications have been discussed in the second 

chapter of this thesis. 

Let us briefly discuss unitary operators before we discuss the implementation 

of the Hyperbolic class. The concepts of time, frequency, and scale can be asso­

ciated with operators on the Hilbert space of square-integrable functions L2 . This 

space has an inner product < g, h > = J g(r) h*(r)dr for g, h E L2 and norm 

llhll2 = < h, h >. An operator A on L2 is simply a mapping A : L2 -+ L2
. 

For signals in L2 , the time, frequency and scale operators are defined as the time 

shift, (S,.X)(f) = e-2i7rTf X(f), the frequency shift, (M,,X)(f) = X(f - v), 

and the dilation, (CaX)(f) = [f X(£), respectively. The unitary operator W, 

known as Logarithmic frequency warping operator on a signal X (!) [3], is defined as 

(WX)(f) = ../el/fr X(fr el/fr) and has been used to obtain the Hyperbolic class 

from Cohen's class. 

Canfield and Jones have proposed an algorithm in [7] which efficiently imple­

ments any warped class Time-frequency representation (TFR) warped by any unitary 

transformation. Only the warping function W(f) = fr el/fr which results in the 

Hyperbolic class from Cohen's class, is discussed in this thesis. The implementation 

for this warping function is also discussed below. 

A hyperbolic-class TFR T1H)(t, !) of any arbitrary signal x(t) may be generated 

by doing the following [46, 3, 4]: 

1. Let X(f) = X(fref;) /;J, where X(f) is the Fourier Transform (FT) of 

the signal x( t). 

2. Compute a Cohen's-class TFR, Tlc)(t, !), of X(f). 

3. Let T1H)(t, !) = Tlc)(f;t, fr ln(f; )) 

The implementation is discussed in the next section. 
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3.4.1 A Hyperbolic-Class implementation 

In the case of the hyperbolic-class TFR, warping X (!) into X (!) can be accomplished 

by executing the following steps: 

1. Scale X(f): XA(f) = X(frf). 

2. High-pass filter the result: X 8 (!) = VJ XA(f). 

3. Logarithmically warp the result : Xe(!) = X 8 (ef). 

4. Unscale Xe(!): X(f) = Xe(-/;) = Vef!TrX(freflfr) 

Steps #1, #2, and #4 are straightforward to implement. Step #3 requires more 

consideration before implementing. The signal xe(t) should not be aliased when 

samples of Xe(!) are computed. Also, Xe(!) should be sufficiently bandlimited to 

one fourth the sampling rate to prevent aliasing when a Cohen's-class TFR of X(f) 

is calculated [7]. 

Before samples of X(f) are calculated from X(f), X(f) is upsampled by a factor 

of g to allow closely spaced samples of X (!) to be calculated. Samples of X (!) 

are expressed as X8(n~f), where o/ is the sample spacing. Samples of X(f) are 

expressed as X 8 (emLlv) = Xe(m~v), where ~v is the sample spacing. A given 

sample, m, of Xe(!) can be mapped to the nth sample of X 8 (!) using the following 

equation: 

n = (3.44) 

Aliasing in xe(t) (and, thus, in x(t)), is reduced by the following scheme. If X 8 (!) 

contains N frequency samples, and Xe(!) contains R frequency samples, then the 

following equations can be applied to ensure that no aliasing occurs [7]: 

Solving for ~v and ~/ gives: 

N ~f = eR.6.v 
2g 

N 
2 - g ~f eR-l~v 

g 
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(3.45) 

(3.46) 



.6.v = ln ( N !f ) 
2-g 

(3.47) 

(3.48) 

To avoid aliasing in calculating a Cohen's class TFR of X(f), X(f) should be 

bandlimited to one fourth the sampling rate, which can be accomplished by interpo­

lation if the signal has not been aliased already. 

In the case of the hyperbolic class, unwarping Tlc)(t, !) into TiH)(t, !) can be 

accomplished by executing the following·steps: 

1. Scale the frequency axis Tf)(t,J): Tx ... (t,J) = Tlc)(t,frf). 

2. Unwarp the frequency axis: Tx8 (t,f) = Tx ... (t,ln(f)). 

3. Unwarp the time axis: Txc(t,J) = Tx8 (ft,J). 

4. Unscale the axes of Txc(t, !) : TiH)(t, !) = Txc(t, f) = Tf) (ff, fr ln(f)) . 

Steps #1 and #4 are straightforward to implement, but the other steps require more 

consideration. 

The operation in step #2 is performed to unwarp the frequency axis of Tlc) ( t, !) . 

This unwarping undoes the mapping that warps X(f) into X(f). Solving (3.44) for 

m yields: 
ln(nLl/) 

m = g 
.6.v 

(3.49) 

The indices m and n reference frequency samples in TxA (t, !) and Tx8 (t, !), 

respectively. In step # 3, the time axis of Tx8 (t, !) is unwarped as follows. Con­

sider the situation in which time-frequency distribution Tx8 (t, !) is calculated as 

a matrix with rows indicating the frequency locations and columns indicating the 

time locations. Then Tx8 (t, !) is expanded by the mapping explained below. Each 

time location in the row corresponding to a particular frequency is multiplied by an 

amount proportional to the frequency and is mapped to a different time location. 

Experimental results show that the discrete-time techniques used to find X(f) and 
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T1H)(t, !) result in components in Tx8 (t, !) at frequency 1f'- (where fh is the highest 

frequency in T x 8 ( t, !) ) having to be multiplied by a factor of l to be at the correct 

time location in T1H) ( t, !) . 

The steps taken in the above technique can be graphically explained as follows . 

Consider a Hyperbolic impulse signal defined in the equation (2.14). A Hamming 

windowed version of the Hyperbolic impulse in frequency domain, He(!) , is shown 

in fig. 3.4. 

The signal is computed with normalized frequency going from 0 to 0.5 with the 

step size being equal to /:::,.f = 0.5/N when (2N) is the size of the signal required. 

In this example, N = 128. Later, the resultant signal is then zero padded with N 

zeroes and then the Inverse Fast Fourier Transform is taken to calculate the signal 

in time domain. 

1.5 ..----r------.--......-----.---..-----,..-----.----..-----...----. 
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-1.5 .__ _ _._ _ __. __ _._..1. __ _.__ __ _L...__ _ _._ _ ___...1. __ ......_ _ __._ _ __, 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Normalized frequency 

Figure 3.4: The real part of a windowed Hyperbolic impulse (c=5) computed in the 
the frequency domain. 
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The spectral energy density of He(!) is IHc(f)l2 = 7, f ~ 0. A TFR of the 

hyperbolic impulse should re-enforce the fact that its group delay corresponds to 

a hyperbola (t = y) in the time-frequency plane. The time-frequency plot of the 

warped signal in Figure (3.5) shows a vertical ridge whose horizontal position depends 

on c when "warped" time is plotted on the horizontal axis and "warped" frequency 

is plotted in the vertical axis. The Wigner distribution of the warped signal is shown 

in Figure 3.5. 
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Figure 3.5: The Wigner distribution of the warped, windowed Hyperbolic impulse 
(c=5). 

Unwarping this time-frequency plot (according to step #3 in section 3.5) maps 

the vertical line of support in Fig. 3.5 into the hyperbolic region of support in Fig. 

3.6. Furthermore, the time-frequency representation in Fig. 3.6 corresponds to the 

well known Altes-Marinovic distribution, since the calculations started with the WD 

in Cohen's class, which maps to the Altes-Marinovic distribution in the Hyperbolic 

class. 
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Figure 3.6: The Altes-Marinovic distribution of a windowed Hyperbolic impulse 
(c=5) . 

74 



-

3.5 Conclusions 

In the previous sections of this chapter, the previous work done on implementation 

of the Hyperbolic class of time-frequency distributions has been discussed. The 

implementation of the Hyperbolic class proposed by Canfield and Jones [7] is a 

"brute-force" technique. The warping technique used zero padding of the signal by 

g = 8 times the length of the signal for warping the signal. The warped signal is four 

times the length of the signal; Cohen's class TFR of the warped signal is taken. Thus, 

for calculating the Hyperbolic class of discrete time-frequency distributions of the size 

(M,M), the program requires calculation of Cohen's class TFR of size (4M,4M). This 

makes the memory requirements very demanding. Also, the computation is done 

using first order interpolation which introduces error in the computed values. This 

constitutes the need for an efficient technique for implementing the Hyperbolic class 

of time-frequency distributions. 

As discussed in the section 3.3, an efficient computation of the P0 distribution is 

done using the Mellin transform of the signal. Since the P0 distribution is a member 

of the Hyperbolic class, this opens up the possibility of using the Mellin transform 

for the computation of the Hyperbolic class TFRs. In this thesis, implementation of 

the Hyperbolic class TFRs using the Mellin transform is proposed and this proposed 

implementation will be discussed in the next chapter. 
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Chapter 4 

Implementation of the members of the 

Hyperbolic class using a Fast Mellin 

transform 

4.1 Introduction 

In the previous chapter, the implementation of the Bertrand unitary P0 distribution 

using a Fast Mellin transform was discussed. We extend this technique to imple­

ment the Altes-Marinovic distribution using a Fast Mellin transform. Later, a new 

technique to implement other members of the Hyperbolic class of time-frequency 

distributions is proposed and discussed. 

4.2 Computation of Altes-Marinovic distribution 

For convenience, the Bertrand unitary Po distribution of an analytical signal X(f) 

is repeated below. 

Px(t, !) f loo e2j7rt/u X (1-u_e_u_f2_) 
-oo 2 sinh( u/2) 

( 2 sin:( u/2)) du 
(4.1) 
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The Bertrand unitary Po distribution can also be written as 

Px(t, !) - 1112 1_: [.Xo(u) -Xo(-u)]1/2 1112 X(f -Xo(u)) X*(f -Xo(-u)) e2j7rt/u du 

(4.2) 

with 
ueu/2 

-Xo( u) = 2 sinh( u/2)" 

The Altes-Marinovic distribution is given by [40, 42] 1 

( 4.3) 

which also can be written as 

Qx(t, !) = 11121_: (j(u) j(-u)r/2 1112 X(jj(u)) X*(jj(-u)) e327rt/u du, (4.4) 

where 

One can observe that equation (4.4) for the Altes-Marinovic distribution is very 

similar in structure to equation ( 4.2) which defines the Bertrand unitary P0 dis­

tribution except for the function j(u). We propose in this thesis that the Altes 

distribution can also be computed using the Fast Mellin transform similar to the 

way in which the Bertrand P0 distribution is computed using the Fast Mellin trans­

form. By substituting j(u) instead of .X0(u) in equation (3.30) , we propose that the 

Altes-Marinovic distribution can be computed by using the same algorithm used for 

the Bertrand unitary P0 distribution (see section 3.3) . 

Let us consider the computation of the Altes-Marinovic distribution of a linear 

FM chirp with Gaussian amplitude modulation which is defined in (3.43). The steps 

taken for the computation of the Altes-Marinovic distribution of the linear FM chirp 

is shown in a series of figures given below. Figure 4.1 is the frequency domain repre­

sentation of the linear FM chirp with Gaussian amplitude modulation. The program 

which computes the Altes-Marinovic distribution asks the signal analyst to choose 

the following frequencies: minimum frequency Ji, and maximum frequency h. The 

chosen minimum and maximum frequencies are superimposed on the signal spectrum 

1 Note that the dummy variable of integration used in ( 4.3)-( 4.4) is u instead of /3 used in (2.32) . 
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with dotted lines as shown in Figure 4.2. The program then computes geometrically 

spaced samples of the signal spectrum using the Discrete Fourier transform of the 

signal. The geometrically spaced samples of the signal spectrum are shown in Figure 

4.3. The Discrete Mellin transform of the signal is then computed and is plotted in 

Figure 4.4. Finally, the Altes-Marinovic distribution is computed using the Discrete 

Mellin transform and is shown in Figure 4.5. 
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Figure 4.1: Signal Spectrum. 

Let us consider a windowed version of the Hyperbolic impulse signal defined in 

(2.14). Figure 4.6 shows the Discrete Mellin transform of a windowed hyperbolic 

impulse with c = 10. One can observe that the Discrete Mellin transform of this 

windowed hyperbolic impulse is approximately an impulse in the f3 domain whose 

location on the beta axis depends on c (hyperbolic chirp parameter). Figure 4. 7 

shows the Altes-Marinovic distribution of the signal. 

The Altes-Marinovic distribution of a multicomponent signal exhibits cross terms 

or interference terms which were discussed in the second chapter. The cross term 

or interference term of two different hyperbolic impulses with hyperbolic parameters 

c1 and c2 is concentrated along the "mean hyperbola", t = c 12 / f , along which 
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Figure 4.2: hand Ji superimposed with dotted lines on the Signal spectrum, h/ j 1 = 
4.375. 
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Figure 4-4: Mellin transform of the signal spectrum with !:i{J = 0.3263. 
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Figure 4.5: Altes-Marinovic distribution of the signal. 
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Figure 4.6: Mellin Transform of the windowed Hyperbolic impulse (c=5) with tlf3 = 
0.2276. 
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Figure 4.7: Altes-Marinovic distribution of the windowed Hyperbolic impulse (c=5) . 
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it is oscillatory, where c12 = ci ~c2 • Figure 4.8 is the ideal case; it shows the sum 

of individual Altes-Marinovic distributions of two windowed Hyperbolic impulses 

(c1 = 5 and c2 = 15). The actual Altes-Marinovic distribution of the sum of two 

windowed Hyperbolic impulses (c1=5 and c2=15) is shown in Figure 4.9. The cross 

terms or interference terms cause serious interpretation problems as discussed in the 

second chapter and constitute the need for smoothing. The Pseudo Altes-Marinovic 

distribution, which is a smoothed version of the Altes-Marinovic distribution, is 

discussed in the next section. 
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Figure 4.8: Sum of individual Altes-Marinovic distributions of two windowed Hyper­
bolic impulses (c1 = 5 and c2 = 15). 

4.3 Implementation of the Pseudo Altes-

Marinovic distribution 

The Pseudo Altes-Marinovic distribution, a member of the Hyperbolic class, is a 

smoothed version of the Altes-Marinovic distribution. It is defined in section 2.9.5 
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Figure 4.9: Altes-Marinovic distribution of sum of two windowed Hyperbolic impulses 
(c1 = 5 and c2 = 15). 

and, for convenience, the expression which we are implementing is repeated here. 

rXJ f tf / df' 
PADx(t, f) = fr Jo Qt(O, fr f') Qx( f' ,f) f' (4.5) 

Here r(f) is an analysis window which is exponentially frequency warped as 

f'(f) = ff f(fr lnf;), f > 0. The smoothing function Qt(O,frf,) in (4.5) 

is related to the Wigner distribution as follows . A Cohen's class TFR, Tf>, is 

obtained from the corresponding Hyperbolic class TFR, T1H), as 

T~H)(t f) = r,(C)(tf f 1 j_) 
r ' r fr ' r n fr . (4.6) 

From the above equation, Qr(O, frf,) in equation ( 4.5) is equal to Wr(O, fr ln f, ). 

Equation ( 4.5) can be rewritten as 

(4.7) 

In this section, we use equation (4.7) to implement the Pseudo Altes-Marinovic 
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distribution, since the computation of Qr(O, frf,) is difficult because of the exponen­

tial frequency warping of the window. The computation of Wr(O, fr ln f,) instead of 

Qf(O, frf,) is simpler since no warping of the window is involved. 

The steps used for computing the Pseudo Altes-Marinovic distribution are as 

follows. 

1. Initially, as discussed in section 4.2, the Altes-Marinovic distribution of the sig­

nal is calculated using the Fast Mellin transform. Let us denote the calculated, 

sampled Altes-Marinovic distribution as Q[k, p] where for 0 :'.S k :'.S M - 1 and 

0 :'.Sp :'.S N-1, 

[ l { 
Qx(tk , fp), for tk = k!:l.T, fp = fiqP , 

Qk p = 
' 0, otherwise. 

Here, !:l.T is the sampling period in time, and q is the geometric sampling 

period in frequency (See step 1 in section 3.3.2) , / 1 is the minimum frequency 

of the support region of X(f) , Mis the length of the signal, and N is given by 

(3.35). 

2. The Wigner distribution of a window, r(f) , of suitable length is taken. A slice 

of the sampled Wigner distribution at time t = 0 is taken. Let us denote this 

slice by W[l] where 

W[l] = { Wr(O, !1), for !1 . l!:l.f , for 0 :'.S l :'.S (L - 1)/2, 

0, otherwise. 

Here, !:l.f is the sample spacing in frequency, and L is the length of the window 

in frequency 2 . The Wigner distribution of the window is usually computed for 

positive and negative frequencies. The negative frequencies are truncated since 

we are interested in smoothing an analytic signal, and hence only values of the 

Wigner distribution of the window at time t = 0 and f ~ 0 are considered. 

3. In equation (4.7), the integration is done with respect to a dummy variable f' 

which corresponds to frequency. A vector of values f'[m] is evaluated by uni­

formly distributing them between the minimum frequency, Ji , and the max­

imum frequency, f2. Hence, f'[m] = m!:l.f' where !:l.f' = fr;/1 . Here, K 

21 is assumed to be odd for simplicity. 
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determines the length of the vector f'[m] and partly the accuracy of the result 

of the numerical integration in ( 4. 7). 

4. For an output point in the time frequency plane corresponding to time tk and 

frequency f P' the integration in ( 4. 7) is calculated as follows. Using the vector 

off', the vectors lr[m] = ln tfr;n1 and tfr[m] = J~[~J are calculated. Only the 

values of f'[m] are chosen which satisfy the constraints Ji ~ lr[m] ~ h and 

Tmin ~ tfr[m] ~ Tmax where Tmin and Tmax are the minimum and maximum 

times during which the signal is essentially non-zero. 

5. The values of f'[m] which do not satisfy the above specified constraints are elim­

inated from the vector f'[m]. Also, the elements in the vectors lr[m] and tfr[m] 

which correspond to the eliminated elements in vector f'[m] are also eliminated 

(see definitions of lr[m] and tf r[m] in step 4). Since the elements of these vec­

tors are the result of operations like natural logarithm and division of integers, 

they may not be integers. So, evaluation of the Wigner distribution and the 

Altes-Marinovic distribution at these time and frequency instances is done us­

ing first order linear interpolation [62] [63]. Using the values of W[l] and first 

order linear interpolation, the new vector W[m] is evaluated whose elements 

are the values of the Wigner distribution of the smoothing window at time 

t = 0 and frequencies lr[m]. Here, W[m] '"'"' Wr(O, lr[m]) = Wr(O, ln tfr;n
1 
). 

Also, using the values of Qx[k,p] and first order interpolation, the new vector 

Qx[m] is evaluated whose elements are the values of the Altes-Marinovic dis­

tribution at times tfr[m] and frequency f'[m]. Here, 

Qx[m] '"'"'Qx(tfr[m], f'[m]) = Qx(J~[~]' f'[m]). 

6. Once the vectors W[m] and Qx[m] are evaluated, they are multiplied together 

and are divided by f'[m]. The resulting vector is used as input to perform 

Simpson's method of numerical integration [62] [63], which results in an ap­

proximation to PADx(tk, fp)· 

7. For each required output time and frequency point in the time frequency plane, 

steps 3 - 6 are repeated to calculate the Pseudo Altes-Marinovic distribution. 
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The Pseudo Altes-Marinovic distribution of a signal (See Figure 4.8) which is the 

sum of two windowed Hyperbolic impulses (c1 = 5 and c2 = 15) is shown in Figure 

4.11. A Hanning window of length 7 is used for smoothing. The slice of the Wigner 

distribution of the window at time t = 0 is shown in Figure 4.10. 
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Figure 4.10: Slice at time t = 0 of the Wigner distribution of a Hanning window of 
length 7. 

When compared with figure 4.9, figure 4.11 demonstrates the capability of the 

Pseudo Altes-Marinovic distribution to remove the cross term occurring between the 

Hyperbolic impulses. But, the Pseudo Altes distribution computed using the Fast 

Mellin transform does not remove the cross term entirely when the two hyperbolic 

impulses come closer together. Let us consider a signal which is the sum of two 

windowed hyperbolic impulses with c1 = 5 and c2 = 10. Figure 4.12 shows the 

ideal case, which is the sum of the Altes distribution of the individual hyperbolic 

impulses. Figure 4.13 shows the actual case, which is the Altes distribution of the 

sum of two hyperbolic impulses (c1 = 5 and c2 = 10). Figure 4.14 shows the Pseudo 

Altes-Marinovic distribution of the signal; a Hanning window of length 7 was used 
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Figure 4.11: Pseudo Altes-Marinovic distribution of the signal which is the sum of 
two windowed Hyperbolic impulses (c1 = 5 and c2 = 15) . 
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Figure 4.12: Sum of individual Altes-Marinovic distributions of two windowed Hy­
perbolic impulses (c1 = 5 and c2 = 10). 
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Figure 4.13: Altes-Marinovic distribution of sum of two windowed Hyperbolic im­
pulses (c1 = 5 and c2 = 10). 
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Figure 4.14: Pseudo Altes-Marinovic distribution of the signal which is the sum of 
two windowed Hyperbolic impulses (c1 = 5 and c2 = 10) computed using a Hanning 
window of length 7. 
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Figure 4.15: Pseudo Altes-Marinovic distribution of the signal which is the sum of 
two windowed Hyperbolic impulses (c1 = 5 and c2 = 10) computed using a Blackman 
window of length 31. 

for smoothing. One can observe that smoothing takes place with the Pseudo Altes­

Marinovic distribution but it does not entirely smooth out or remove the cross term 

as in the previous case of two hyperbolic impulses with c1 =5 and c2=15 (see Figure 

4.11). 

The way the Pseudo Altes-Marinovic distribution is implemented in this chapter, 

using linear interpolation and numerical integration, can also be used to implement 

other members of the Hyperbolic class. 

4.4 Conclusions 

In this chapter, we have shown a way to implement the Altes-Marinovic distribution 

and the Pseudo Altes-Marinovic distribution. The Altes-Marinovic distribution was 

implemented using the Fast Mellin transform by extending the technique used to 

implement the Bertrand P0 distribution. The Pseudo Altes-Marinovic distribution 
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Figure 4.16: Pseudo Altes-Marinovic distribution of the signal which is the sum of 
two windowed Hyperbolic impulses (c1 = 5 and c2 = 10) computed using a Hanning 
window of length 15. 

is implemented by smoothing the Altes-Marinovic distribution using linear interpo­

lation and numerical integration. Other members of the Hyperbolic class, which 

are smoothed versions of the Altes-Marinovic distribution, can be implemented in a 

similar manner. 

The memory requirements for this technique depend upon the time-bandwidth 

product (BT) of the signal where B = h- / 1 and T is the time duration of the signal. 

If the length of the signal in time is M points, then the sampled Altes-Marinovic 

distribution is characterized by M points in time and N points in frequency where 

N is given by equation (3.35). The memory requirements for computation of the 

Altes-Marinovic distribution using the Fast Mellin transform are less compared to 

that of the warping technique, in general, requiring only (1/32) to (1/8) the memory 

required for the warping technique for the length 128 examples in this thesis. But, for 

the computation of Pseudo Altes-Marinovic distribution and other Smoothed Altes­

Marinovic distributions, the proposed technique takes more time. (In general, the 

new technique takes around three hours compared to the warping technique which 

90 



0.4 

0.35 

g 0.3 
Cl) 

"' ~ 
i0.25 
.!::! 

~ 
0 0.2 
z 

0.15 

0.1 

20 40 60 80 100 120 
Time index 

Figure 4.17: Pseudo Altes-Marinovic distribution of the signal which is the sum of 
two windowed Hyperbolic impulses (c1 = 5 and c2 = 10) computed using a Hanning 
window of length 5. 

takes 3 minutes). Also, since the computation involves first order interpolation and 

numerical integration, there is an error between the actual value and the calculated 

value. 

For smoothing the cross-terms of the Altes-Marinovic distribution, the way of 

determining the type and the length of the window is a trial and error procedure 

which is quite frustrating for a signal analyst. To illustrate that point, consider 

Figures 4.15, 4.16, 4.17 and 4.18. Figure 4.15 shows the Pseudo Altes-Marinovic 

distribution of the sum of two windowed Hyperbolic impulses (c1 = 5 and c2 = 10) 

computed using a Blackman window of length 31. Figure 4.16 shows the Pseudo 

Altes-Marinovic distribution of the same signal computed using a Hanning window 

of length 15. Figure 4.17 shows the Pseudo Altes-Marinovic distribution of the sum of 

two windowed Hyperbolic impulses (c1 = 5 and c2 = 10) computed using a Hanning 

window of length 5. Figure 4.18 shows the Pseudo Altes-Marinovic distribution of 

the sum of two windowed Hyperbolic impulses (c1 = 5 and c2 = 10) computed 
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Figure 4.18: Pseudo Altes-Marinovic distribution of the signal which is the sum of 
two windowed Hyperbolic impulses (c1 = 5 and c2 = 10) computed using a Hanning 
window of length 3. 

using a Hanning window of length 3. These can be compared to the Pseudo Altes­

Marinovic distribution of the same signal, in Figures 4.13-4.14 which were computed 

using no window and a length 7 Hanning window, respectively. One can see that 

as the window length decreases the degree of smoothing increases; cross terms get 

smoothed and decrease in their amplitude (compare Figure 4.17 which shows Pseudo 

Altes-Marinovic distribution computed using a Hanning window of length 5 with 

Figure 4.16 which shows the Pseudo Altes-Marinovic distribution computed using 

a Hanning window of length 15). Figure 4.18 uses a Hanning window of length 3 

and it has the best performance of smoothing the cross terms without distorting the 

auto terms among the examples which show Pseudo Altes-Marinovic distribution of 

the sum of two windowed Hyperbolic impulses (c1 = 5 and c2 = 10) computed using 

various window lengths. 

One can observe from the figures, that as the window length decreases, the 

smoothing improves but this in no way gives the analyst the value of the window 

length which does the best smoothing possible. In the example where the Hyperbolic 
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impulses are far apart (c1 = 5 and c2=15), a Hanning window of length 7 was used 

for entirely smoothing the cross term (see Figure 4.11) but the trial and error proce­

dure was used to arrive at the value of the window length. But, when the hyperbolic 

impulses come closer together, (see Figure 4.14) the Pseudo Altes-Marinovic distri­

bution computed using a Hanning window of length 7 does not entirely remove the 

cross terms. The best available smoothing through this technique among the exam­

ples that were considered was obtained with Hanning window of length 3 (see Figure 

4.18) but it does not entirely remove the cross term. All this provides motivation 

for a better smoothing implementation technique which will be discussed in the next 

chapter. 

In the next chapter, we show that the implementation of the various members 

of the Hyperbolic class via the Hyperbolic Ambiguity function will give the signal 

analyst an opportunity to decide the length of the window and also more intuition 

as to how cross terms and auto terms map in the Hyperbolic class. 
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Chapter 5 

Implementation of Hyperbolic ambiguity 

function and use of it for removal of cross 

terms 

5 .1 Introduction 

In this chapter, an extensive analysis of the warping technique proposed by Canfield 

and Jones [7] is done. Canfield and Jones [8] have used a warping technique to 

implement a Data Adaptive Radially-Gaussian Hyperbolic-class representation; but 

it does not work well for the removal of cross terms in the case of a signal which is the 

sum of two or more linear FM chirps closer to each other in the time-frequency plane. 

We have used the warping technique to implement several members of the hyperbolic 

class, like the Pseudo Altes distribution and Smoothed Pseudo Altes distribution. 

In our approach of the warping technique, the Hyperbolic ambiguity function is 

calculated. Later, in section 5.2, we use weighting of the HAF to smooth cross terms 

and to implement any arbitrary member of the Hyperbolic class. 

There is a need for new members of the Hyperbolic class of TFRs. As discussed in 

the third chapter of this thesis, Canfield and Jones [8] have used a warping technique 

to implement a Data Adaptive Radially-Gaussian Hyperbolic-class representation; 

but it does not work well for the removal of cross terms in the case of a signal 

which is the sum of two or more linear FM chirps. Also, the Pseudo Altes-Marinovic 

distribution and the Smoothed Pseudo Altes-Marinovic distribution don't work very 
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well either for multi-component linear FM signals. 

In this chapter, we propose a new member of the Hyperbolic class which is called 

the MTEK (Multiform, Tiltable Exponential Kernel) smoothed Altes-Marinovic dis­

tribution which works well both for Hyperbolic impulses and linear FM chirps. The 

MTEK smoothed Altes-Marinovic distribution uses the MTED kernel [2, 64] to . 

weight the Hyperbolic ambiguity function of the signal in order to remove cross 

terms. The MTED kernel is discussed in detail in the third section of this chapter. 

Also, cross term removal in various time frequency scenarios involving Hyperbolic 

impulses and other signals like Gaussian signals or linear FM chirps is shown in this 

chapter. 

5.2 Definition and Implementation of the Hyper­

bolic ambiguity function 

As defined in the second chapter of this thesis, the Hyperbolic Ambiguity function 

[42, 3, 4] is 

Bx((, jj) Awx(Jr, fr/J) (5.1) 

fooo x(f efll2) x·(1e-fll2) ej27r(,lnf. df . 

As can be seen from the above equation, the Hyperbolic ambiguity function is 

the narrowband Ambiguity function Ax(r, v), defined in (2.12), of a logarithmically 

warped signal (WX)(f) = Jel/frX(!ref/fr) , -oo < f < oo. Any Hyperbolic 

class TFR can be expressed in terms of the Hyperbolic ambiguity function Bx ( (, Jj) 

as (Normal form IV in equation (2.29)) 

TiH) (t, !) = 1_: 1_: 'iJ!~H) ((, m Bx((, m ej27r(tf{J-(ln f;K) d( djj . (5.2) 

All of the members of the Hyperbolic class can be understood by investigating their 

kernel, 'iJ!~H) ( (, Jj), which is a scaled version of the corresponding Cohen's class kernel, 

'iJ!~) ( (' m' as shown below. 

'iJ!~H)((,/j) = 'iJ!f)(;r,fr/J) (5.3) 
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Assuming fr = 1, we can use the same kernels for HC TFRs that were used in 

Cohen's class. Thus, each member of Cohen's class has an equivalent Hyperbolic 

class member. The equivalent Hyperbolic class QTFR of the Wigner distribution, 

which has the kernel w~b((, {3) = 1, is the Altes-Marinovic distribution, with kernel 

w~) ( (, {3) = 1. The equivalent QTFRs in the Hyperbolic class of the Pseudo Wigner 

distribution, the Smoothed Pseudo Wigner distribution, and the Spectrogram in the 

are the Pseudo Altes-Marinovic distribution, the Smoothed Pseudo Altes-Marinovic 

distribution, and the Hyperbologram, respectively [3 , 4] . We propose in this the­

sis a new distribution, called the "Multiform Tiltable Exponential kernel smoothed 

Altes-Marinovic distribution" whose kernel w~~EK-AD((, {3), is the MTED (Multi­

form Tiltable Exponential distribution) kernel proposed in [2]. We will discuss this 

kernel in more detail in section 5.3. 

5.2.1 Implementation of the Hyperbolic class via the Hy­

perbolic Ambiguity function 

The normal form IV formulation in (5.2) completely defines any arbitrary, quadratic 

Hyperbolic class Time-frequency representation. One implementation of the normal 

form IV can be explained in the following five steps. 

Step 1. The input signal X(f), is subjected to a logarithmic frequency warping 

W [3, 4]. The signal warping is defined in the second chapter of this thesis. The 

warping is implemented using Canfield's technique as discussed in section 3.4 of this 

thesis [7]. 

Step 2. The narrowband or Woodward Ambiguity function of the warped signal 

is calculated. Equation (5.1) states that this is equivalent to calculating the Hyper­

bolic ambiguity function Bx((, {3) of the signal whenever fr = 1. The Hyperbolic 

ambiguity function (HAF) of a signal maps the auto terms to the origin and the cross 

terms away from the origin of the ( ( ,{3) plane. This property enables one to some­

times distinguish between cross terms and auto terms. Note that if we let Tx('Y, v) 

be the 2D FT of w¥1)((, {3) Bx((, {3), i.e. , 

i'x('Y, ry) 
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then Tx('Y, 'rJ) is equal to an axis-warped version of the desired HC TFR, TiH)(t, !). 

Step 3. After identifying auto terms and cross terms in the Hyperbolic ambiguity 

function domain, i.e. the ( ( ,/3) plane, the proper kernel is chosen to "pass" much 

of the auto terms unchanged and to "block" as much as possible of the cross-terms. 

In this step, the proper kernel, 'I!~H)((,/3), in (5.2) is calculated so as to achieve the 

objectives of "cross term filtering" described in section 2.5. 

Step 4. After multiplying the Hyperbolic ambiguity function with a suitable 

kernel, a two dimensional FFT is taken (one is a Fast Fourier transform and other 

an inverse Fast Fourier transform) to get the signal into the t - f domain from the 

( - f3 domain. 

Step 5. After Step 4, the time-frequency localization is corrected by changing 

t -+ f.t and f -+ fr ln f.. This time frequency localization correction is done using 

Canfield's technique discussed in the section 3.4.1. 

This way of implementing the Hyperbolic class of time frequency distributions 

gives one the opportunity to look at the Hyperbolic Ambiguity function of the sig­

nal and the opportunity to design a proper kernel. Also, the Hyperbolic Ambiguity 

function of a signal gives one the opportunity to learn the mapping of various signal 

terms due to the warping used in (2.24). Without knowledge of the mapping, design­

ing a proper kernel for smoothing becomes a very difficult task. The implementation 

of a few members of the Hyperbolic class of TFRs via the Hyperbolic Ambiguity 

function is shown below. 

The Hyperbolic Ambiguity function of a windowed version of the Hyperbolic 

impulse defined in (2.14) with c=2.5 is shown in Figure 5.1 (a) 1 . The kernel for 

the Altes-Marinovic distribution is wgn((, /3) = 1. The resulting Altes-Marinovic 

distri bu ti on is shown in Figure 5 .1 (b) . In Figure 5. 2, the signal being considered 

is the sum of two windowed Hyperbolic impulses (c1=2.5 and c2=5.0) . In Figure 

5.2 (a), the ideal case consisting of the sum of the Altes-Marinovic distributions of 

the individual Hyperbolic impulses is shown. In Figure 5.2 (b), the Altes-Marinovic 

1 In this thesis, in all the examples considered the sampling period ~( = 0.5073 unless otherwise 
mentioned 
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Figure 5.1: Contour plots for the simulation involving one windowed Hyperbolic 
impulse (c=2.5) with ~( = 0.5073. (a) Hyperbolic Ambiguity function magnitude, 
(b) Altes-Marinovic distribution. 
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distribution of the sum of the two windowed Hyperbolic impulses is shown. 

Figure 5.3 (a) shows the magnitude of the Hyperbolic Ambiguity function of 

the individual windowed Hyperbolic impulses superimposed upon one another. One 

can observe that the Hyperbolic impulses map to linear regions in the HAF plane. 

Hyperbolic impulses with different hyperbolic parameter c map to the origin, but 

with different tilt. The magnitude of the Hyperbolic Ambiguity function of the 

sum of the two windowed chirps, shown in Figure 5.3 (b), shows the auto terms at 

the origin and the cross terms slightly away from the origin. Since the auto terms 

add together with different phase, they appear to oscillate around the origin of the 

Hyperbolic Ambiguity function. 

Figure 5.4 (a) shows the Pseudo Altes-Marinovic distribution kernel defined as 

w~~b((, .B) = 77(~)77*(-~) superimposed on the magnitude of the Hyperbolic Ambi­

guity function of the sum of two windowed Hyperbolic impulses. The Pseudo Altes­

Marinovic distribution, shown in Figure 5.4 (b), gets rid of the cross terms very well 

without significantly distorting the auto terms. The Pseudo Altes-Marinovic distri­

bution kernel is similar to the Pseudo Wigner distribution kernel shown in Figure 

2.8 (c). All the kernels, W~)(r, v) , which are used in the Cohen's class can be used 

for cross term removal in the Hyperbolic class by making a simple variable change 

of r---+ f;, v---+ .Bfr· 

Let us consider another example where the Pseudo Altes-Marinovic distribution 

works well. The simulation involves a signal which is the sum of four windowed 

Hyperbolic impulses (c1=2, c2=5, c3=8 and c4=11). Figure 5.5 (a) shows the sum 

of the individual Altes-Marinovic distributions. Figure 5.5 (b) shows the Altes­

Marinovic distribution of the sum of the windowed Hyperbolic impulses. Since the 

cross terms map on top of auto terms in this example, there is distortion of the auto 

terms, too. Figure 5.6 (a) shows the Pseudo Altes-Marinovic distribution kernel 

superimposed on the magnitude of the Hyperbolic ambiguity function of the sum 

of the Hyperbolic impulses and Figure 5.6 (b) shows the resulting Pseudo Altes­

Marinovic distribution which gets rid of the cross terms very well without significantly 

distorting the auto terms. 

However, the Pseudo Altes-Marinovic kernel lacks the ability to attenuate along 
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Figure 5.2: Contour plots for the simulation involving two windowed Hyperbolic 
impulses (c1 = 2 and c2 = 5.0) . (a) individual Altes-Marinovic distributions of the 
Hyperbolic impulses superimposed on each other, (b) Altes-Marinovic distribution 
of the sum of the two impulses. 
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Figure 5.3: Contour plots for the simulation involving two Hyperbolic impulses ( c1 =2 
and c2=5.0). (a) Absolute value of individual Hyperbolic Ambiguity functions su­
perimposed upon each other, (b) Hyperbolic Ambiguity function magnitude of the 
sum of the two impulses. 
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Figure 5.4: Contour plots for the simulation involving a signal equal to the sum of 
two windowed Hyperbolic impulses (c1=2.5 and c2=5.0). (a) Pseudo Altes-Marinovic 
distribution kernel (computed using a rectangular window of length 12) superimposed 
on the Hyperbolic Ambiguity function magnitude of the sum of the two Hyperbolic 
impulses; (b) resulting Pseudo Altes-Marinovic distribution of the signal. 
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Figure 5.5: Contour plots for the simulation involving the signal equal to the sum 
of four windowed Hyperbolic impulses (c1=2, c2=5, c3=8 and c4 =11). (a) individ­
ual Altes-Marinovic distributions of the signal components; (b) the resulting Altes­
Marinovic distribution of the sum of the components. 
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Figure 5.6: Contour plots for the simulation involving the signal equal to the sum 
of four windowed Hyperbolic impulses (c1=2, c2=5, c3=8 and c4=11). (a) Pseudo 
Altes-Marinovic distribution (computed using a rectangular window of size 12) kernel 
is superimposed on the Hyperbolic Ambiguity function magnitude of the signal; (b) 
the resulting Pseudo Altes-Marinovic distribution. 
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Figure 5.7: Contour plots for the simulation involving the signal which is the sum 
of two Gaussian components which are centered at different times and different fre­
quencies, but both are centered along the hyperbolic curve, t = 1 indicated by a 
dotted curve. (a) individual Altes-Marinovic distributions of the signal components 
superimposed upon each other, (b) Altes-Marinovic distribution of the signal. 
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the f3 axis2 ; this is similar to the Pseudo Wigner distribution kernel (see Figure 2.8 

( c)) which lacks the ability to attenuate along the v axis. 

For example, the next simulation involves a signal which is the sum of two Gaus­

sian signals which are centered at different frequencies but have approximately zero 

hyperbolic time lag. The way two signals can have approximately zero hyperbolic 

time lag is if their instantaneous group delay lies along the same hyperbola corre­

sponding to one particular value of c (hyperbolic chirp parameter). Figure 5.7 (a) 

involves this signal, which is sum of two Gaussian components centered at different 

times and different frequencies but who have zero Hyperbolic time lag. Figure 5.7 (a) 

shows the individual Altes-Marinovic distribution of the two Gaussian components 

superimposed upon each other. In Figure 5.7 (a) , the two Gaussian components have 

zero Hyperbolic time lag and this is demonstrated by the dotted line which corre­

sponds to the group delay of an hyperbolic impulse with a particular c ( c = 10) on 

which both signals are centered. Figure 5.7 (b) shows the Altes-Marinovic distribu­

tion of the sum of these two Gaussian signals. Figure 5.8 (a) shows the superposition 

of the magnitudes of the individual Hyperbolic ambiguity functions of the Gaussian 

signals and Figure 5.8 (b) shows the Hyperbolic ambiguity function of the sum of two 

Gaussian signals. Note that the support region of one of the HAF of the Gaussian 

signal is centered along the horizontal ( axis, while the other one is tilted. 

Figure 5.9 (a) shows the Hyperbolic ambiguity function of the sum of two Gaus­

sian signals with the contour plot of the Pseudo Altes-Marinovic distribution kernel 

superimposed on it . One can observe that the cross terms lie in the kernel passband 

region and that the pseudo Altes-Marinovic distribution kernel passes most of the 

cross terms. Figure 5.9 (b) shows the Pseudo Altes-Marinovic distribution of the 

signal. 

The cross terms in these examples can be removed using the Smoothed Pseudo 

Altes-Marinovic distribution, defined in [3]. Figure 5.10 (a) shows the Hyperbolic 

Ambiguity function magnitude of the same signal as in Figure 5.7, but with the 

Smoothed Pseudo Altes-Marinovic distribution kernel (computed using Hanning win­

dow of length 100 for smoothing in the ( direction and a Hamming window of length 

2Note that in the Hyperbolic Ambiguity function plots, the horizontal axis corresponds to the ( 
axis and the vertical axis corresponds to the f3 axis for Bx ( (, {3) in ( 5 .1) 
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the two components. 
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Figure 5.9: Contour plots for the simulation involving a signal described in Figure 
5.7. (a) Pseudo Altes-Marinovic distribution kernel (computed using a rectangular 
window of size 40) superimposed on the magnitude of the Hyperbolic ambiguity 
function of the signal, (b) resulting Pseudo Altes-Marinovic distribution of the signal. 
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Figure 5.10: Contour plots for the simulation involving a signal described in Figure 
5.7. (a) Smoothed Pseudo Altes-Marinovic distribution kernel (computed using a 
Hanning window of length 100 for smoothing in ( direction and a Hamming window 
of length 20 for smoothing in {3 direction) superimposed on the magnitude of the 
Hyperbolic ambiguity function of the signal, (b) resulting Smoothed Pseudo Altes­
Marinovic distribution of the signal. 
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20 for smoothing in the f3 direction) superimposed on it. Figure 5.10 (b) shows 

the Smoothed Pseudo Altes-Marinovic distribution of the signal. One can see that 

the Smoothed Pseudo Altes-Marinovic distribution kernel does a better job than 

the Pseudo Altes-Marinovic distribution kernel of suppressing the cross terms while 

passing most of the auto terms. However, comparing Figures 5.7 (a) and 5.10 (b), 

we see that the Smoothed Pseudo Altes-Marinovic distribution has slightly distorted 

the first auto-term making it tilt in the time-frequency plane. 

The Pseudo Altes-Marinovic distribution doesn't work well in the case of two 

Gaussian signals which are centered at the same frequency but at different times 

as shown in the following plots. The simulation involves a signal which is the sum 

of two Gaussian signals centered at different times but at the same frequencies. In 

Figure 5.11 (a), the sum of individual Altes-Marinovic distributions is shown. In 

Figure 5.11 (b), the Altes-Marinovic distribution of the sum of the Gaussian signals 

is shown. One can observe the cross terms in Figure 5.11 (b) . 

Figure 5.12 (a) shows the individual magnitudes of the Hyperbolic Ambiguity 

functions of the two Gaussian signals superimposed upon one another. Figure 5.12 

(b) shows the magnitude of the Hyperbolic Ambiguity function of the sum of the two 

Gaussian signals. Figure 5.13 (a) shows the magnitude of the Hyperbolic Ambiguity 

function of the sum of the two Gaussian signals; also shown is the kernel of the 

Pseudo Altes-Marinovic distribution (computed using a rectangular window of size 

35) superimposed on it. One can see that the Hyperbolic Ambiguity function maps 

the auto terms of the Gaussian signals to tilted regions around the origin in the 

( (, /3) plane. Also, the cross terms are mapped to tilted curves slightly away from 

the origin. The Pseudo Altes-Marinovic distribution fails to perform well since its 

kernel does not have the ability to tilt in the ( (, /3) plane. 

Figure 5.14 (a) shows the magnitude of the Hyperbolic Ambiguity function of the 

sum of the two Gaussian signals; also shown is the kernel of the Smoothed Pseudo 

Altes-Marinovic distribution (computed using a Hamming window of length 40 for 

smoothing along ( direction and a Blackman window of length 40 for smoothing along 

/3 direction) superimposed on it . The Smoothed Pseudo Altes-Marinovic distribution 

smooths out the cross terms but ends up distorting the auto terms such that they 

110 



--

0.45 

0.4 

g0.35 
CD 

5- 0.3 
CD .... 
;0.25 
CD 
.t::! 

0.2 (ij 
E .... 
~0.15 

0.1 

0.05 

0 

0.45 

0.4 

g0.35 
CD 

5- 0.3 
~ 
"O 0.25 
CD 
N 

~ 0.2 
E 
~ 0.15 

0.1 

0.05 

(a) 

~ ~ 

20 40 60 80 100 120 
Time index 

(b) 

o~~~~~~~~....._~~~~~~~~~~~~~~~~~~ 

~ ~ M ~ 100 1~ 
Time index 

Figure 5.11: Contour plots for the simulation involving a signal which is the sum of 
two Gaussian components centered at different times but at the same frequency (a) 
individual Altes-Marinovic distributions of the components superimposed upon each 
other, (b) Altes-Marinovic distribution of the sum of components. 
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the two impulses. 
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Figure 5.13: Contour plots for the simulation involving a signal described in Figure 
5.11. (a) Pseudo Altes-Marinovic distribution kernel (computed using a rectangular 
window of size 35) superimposed on the magnitude of the Hyperbolic ambiguity 
function of the signal, (b) Pseudo Altes-Marinovic distribution of the signal. 
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Figure 5.14: Contour plots for the simulation involving a signal described in Figure 
5.11. (a) Smoothed Pseudo Altes-Marinovic distribution kernel (computed using a 
Hamming window of length 40 for smoothing in ( direction and a Blackman win­
dow of size 40 for smoothing in f3 direction) superimposed on the magnitude of the 
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Marinovic distribution of the signal. 
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tilt in the time-frequency plane. 

This provides the motivation for a kernel which has tilt capability, but at the same 

time, has the ability to perform as well as the Pseudo Altes-Marinovic distribution 

or the Smoothed Pseudo Altes-Marinovic distribution which are very useful in the 

case of Hyperbolic impulses. The Multiform Tiltable Exponential distribution kernel, 

which will be discussed in the next section, has the above required properties. 

5.3 Multiform Tiltable Exponential distribution 

kernel 

The multiform, tiltable exponential distribution (MTED) kernel function is defined 

as [2, 64] 

(C) _ { [ 2 ( 'T ll . ) ] .>.} WMTED(r,v) - exp -7r µ ro' vo'a,r,/3,'Y ' (5.4) 

where µ(r,ii;a,r,/3,'Y) = 72 (ii2
)

0 +(72
)

0 ii2 +2r [(rii).Br. The "design" parameters 

of the MTED kernel are a non-negative power a, a positive power .A, a positive time­

lag scaling constant r 0 , a positive frequency-lag scaling constant 110 , a tilt parameter 

r usually in the range r E [-1, 1], and f3 and 'Y which are powers coupled in such 

a way that either (/3, ry) = (1, 1), for causing no change, or (/3, ry) = (2, 1/2), 

for producing the magnitude of the product term rii. Altogether, there are seven 

parameters in the MTED kernel function. 

By properly choosing combinations of these parameters, it is possible to get ker­

nel iso-contours (and, hence, passband/stopband shapes) in the ambiguity plane that 

look like parallel lines at arbitrary angles, crosses of parallel lines, rectangles, dia­

monds, hyperbolas, ellipses, and .many other shapes. Some of the possible kernel 

shapes are plotted in Figure 5.15. 

We like to point out that many more shapes can be obtained from the MTED 

kernel and we have listed only some of them which were useful to us. The interested 

reader can refer to these publications [2, 64] for more detail. Figure 5.15 (a) shows 

the effect of varying a while keeping the remaining parameters in (5.4) fixed. Notice 

that the HAF plane basic iso-contour shapes in Fig. 5.15 (a) (ellipse, diamond, 
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Figure 5.15: W~fEn(T, v) = 1/2 iso-contours for several combinations of the param­
eters of the MTED kernel function. In Figs. 5.l(a)-5.l(c) only one parameter is 
allowed to change, while in Figs. 5.l(d)-5.l(f) two parameters are allowed to change. 
(a) To= 200, v0 = 0.2, r = 0 and,.\= 1/2; (b) To= 200, v0 = 0.2, a= 0, {3 = / = 1 
and ,.\ = 8; (c) To= 200, v0 = 0.2, r = 0, a= 0.2; (d) r = -0.75, a= 0, {3 = / = 1 
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rectangle, and hyperbola) are easily obtained by properly constraining a. The effect 

of varying r while the other parameters are kept constant, is depicted in Fig. 5.15 (b) . 

When r = -1 (not shown), the MTED kernel would, instead, produce parallel strips 

oriented in the NW-SE direction of the ambiguity plane. Either case is useful for 

scenarios where parallel, linear FM chirps are present. In Fig. 5.15 (c), .Xis allowed to 

vary while the other parameters are kept constant. In practice, increasing .X produces 

narrower transition regions between the passband and stopband iso-contours. The 

effective scaling capability of varying r0 and v0 while keeping their ratio ~ = 1000 

fixed is depicted in Fig. 5.15 (d). Notice that the tilt angle of the different-sized 

ellipses in Fig. 5.15 (d) is kept constant by maintaining the ratio ~ fixed. When 

this ratio is not kept constant, the tilt angle changes as shown in Fig. 5.15 ( e). 

5.4 MTEK Smoothed Altes-Marinovic distribu­

tion and Examples 

Let us consider the example of two Gaussian components at different time-frequency 

scenarios (see Figures 5.9 and 5.10 or Figures 5.13 and 5.14) where the Pseudo Altes­

Marinovic distribution and Smoothed Pseudo Altes-Marinovic distribution either fail 

to remove the cross terms or end up distorting the auto terms. In Figure 5.16 (a), the 

MTED kernel is superimposed on the Hyperbolic ambiguity function of the signal. 

Figure 5.16 (b) shows that the MTEK smoothed Altes-Marinovic distribution does 

a good job of suppressing the cross terms while preserving the auto terms. 

The MTEK smoothed Altes-Marinovic distribution does as well as the Pseudo 

Altes-Marinovic distribution in the case of two windowed Hyperbolic impulses (see 

Figure 5.4), as demonstrated by Figure 5.17. Figure 5.17 (a) shows the MTED 

kernel superimposed on the magnitude of the Hyperbolic ambiguity function of the 

signal and Figure 5.17 (b) shows the corresponding MTEK smoothed Altes-Marinovic 

distribution. 

Figure 5.18 shows a simulation involving a signal which is the sum of two Gaus­

sian components centered at the same time but at different frequencies. Figure 
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Figure 5.16: Contour plots for the simulation involving a signal which is described 
in Figure (5.11). (a) MTED kernel with To = 27.2844, v0 = 0.0455, r = -1, /3 = 1, 
'Y = 1, a = 0 and .X = 2 superimposed on the magnitude of the Hyperbolic Ambiguity 
function of the signal, (b) resulting MTEK smoothed Altes-Marinovic distribution. 
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Figure 5.17: Contour plots for the simulation involving two Hyperbolic impulses 
(c1=2 and c2=5.0). (a) MTED kernel with To= 10.7668, v0 = 0.2774, r = 0, ,\ = 
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5.18 (a) shows the individual Altes-Marinovic distributions of the Gaussian compo­

nents and Figure 5.18 (b) shows the Altes-Marinovic distribution of the sum of two 

Gaussian components. Figure 5.19 (a) shows the MTED kernel superimposed on 

the Hyperbolic Ambiguity function and Figure 5.19 (b) shows the MTEK smoothed 

Altes-Marinovic distribution which removes cross terms while preserving the auto 

terms. 

Figure 5.20 (a) shows the MTED kernel superimposed on the Hyperbolic Am­

biguity function of the signal composed of two Gaussian components in Figure 5.7 

centered along the hyperbolic curve t = ~ while Figure 5.20 (b) shows the MTEK 

smoothed Altes-Marinovic distribution preserving the auto terms while removing 

the cross terms. Comparing Figure 5.20 with Figure 5.9, which shows Pseudo Altes 

distribution, and with Figure 5.10, which shows the smoothed Pseudo Altes distribu­

tion, one can conclude that the MTED kernel does well compared to either the PAD 

kernel or SPAD kernel. In Figure 5.9 (b), one can see that Pseudo Altes distribution 

fails to attenuate the cross terms whereas in Figure 5.10 (b), the SPAD kernel gets 

rid of the cross terms but ends up distorting the auto terms. Also, one can see that 

in Figure 5.10 (b) the auto terms are slightly tilted which is due to the smoothing 

along the hyperbolic t' = f' direction. 

Let us consider the signal which is the sum of two windowed Linear FM chirps. 

Fig. 5.21 (a) shows the sum of the Altes-Marinovic distributions of the individual 

signals and Fig. 5.21 (b) shows the Altes-Marinovic distribution of the sum of two 

linear FM chirps. Fig. 5.22 (a) shows the MTED kernel superimposed on the mag­

nitude of the Hyperbolic Ambiguity function of the signal and Fig. 5.22 (b) shows 

the corresponding MTEK smoothed Altes-Marinovic distribution. 

Fig. 5.23 (a) shows the sum of the Altes-Marinovic distributions of two different 

individual linear FM chirps and Fig. 5.23 (b) shows the Altes-Marinovic distribution 

of the sum of the two linear FM chirps. These two linear FM chirps are much closer 

to each other compared to the previous example. Fig. 5.24 (a) shows the MTED 

kernel superimposed on the Hyperbolic Ambiguity function of the sum. One can 

observe that the cross terms and auto terms slightly overlap with each other in this 

example and that the MTED kernel does a good job of removing cross terms (see 
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Figure 5.18: Contour plots for the simulation involving a signal which is the sum of 
two Gaussian components centered at the same time but at different frequencies. (a) 
individual Altes-Marinovic distributions of the signal components superimposed on 
each other, (b) Altes-Marinovic distribution of the sum of the components. 
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Figure 5.19: Contour plots for the simulation involving the signal mentioned in Figure 
(5.18). (a) MTED kernel with To = 40, v0 = 0.05, r = 0, a = 0, /3 = 1, 'Y = 1 and 
.). = 2 superimposed on the magnitude of the Hyperbolic ambiguity function of the 
signal, (b) resulting MTEK smoothed Altes-Marinovic distribution. 
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Figure 5.20: Contour plots for the simulation involving the signal mentioned in Figure 
(5.7). (a) MTED kernel with To = 60, v0 = 0.1, r = -0.95, a= 0, f3 = 1, 'Y = 1 and 
.X = 2 superimposed on the magnitude of the Hyperbolic ambiguity function of the 
signal, (b) MTEK smoothed Altes-Marinovic distribution. 
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Fig. 5.24 (b)) but ends up smoothing one of the auto terms. This demonstrates 

the capability of MTEK smoothed Altes distribution to remove cross terms when 

the signal is the sum of linear FM signals. However, as the signal components come 

closer together, the task of filtering becomes more difficult. 

Fig. 5.25 involves a signal which is the sum of a Gaussian signal and a Hyperbolic 

impulse. Fig. 5.25 (a) shows the sum of the individual Altes-Marinovic distribution 

of each of the components and Fig. 5.25 (b) shows the Altes-Marinovic distribution 

of the sum. Figure 5.26 (a) shows the individual magnitudes of the HAFs of the 

windowed Hyperbolic impulse and the Gaussian signal superimposed upon one an­

other. Figure 5.26 (b) shows the magnitude of the HAF of the sum of the windowed 

Hyperbolic impulse and the Gaussian signal. 

Fig. 5.27 (a) shows the PAD kernel (computed using rectangular window of 

length 25) superimposed on the magnitude of the Hyperbolic Ambiguity function of 

the signal and Fig. 5.27 (b) shows the Pseudo Altes distribution of the signal. The 

PAD kernel fails to attenuate the cross terms in order to pass the auto terms. Fig. 

5.28 (a) shows the PAD kernel (computed using rectangular window of length 10) 

superimposed on the magnitude of the HAF of the signal and Fig. 5.28 (b) shows 

the Pseudo Altes distribution of the signal. In this example, all the cross terms were 

removed at the expense of the auto terms and one can see that in Fig. 5.28 (b) the 

Gaussian signal gets attenuated badly and due to the smoothing in the hyperbolic 

t' = f' direction, it tends to look like a time-frequency representation of a Hyperbolic 

impulse. 

Fig. 5.29 (a) shows the SPAD kernel superimposed on the Hyperbolic Ambiguity 

function of the signal and Fig. 5.29 (b) shows the Smoothed Pseudo Altes distribution 

of the signal. One can see that the SPAD kernel fails to smooth the cross terms 

and also ends up slightly tilting the Gaussian component of the signal. This kind 

of problem requires the tilt capability of the MTED kernel, demonstrated in Fig. 

5.30. Fig. 5.30 (a) shows the MTED kernel superimposed on the magnitude of 

the Hyperbolic Ambiguity function of the sum and Fig. 5.30 (b) shows the MTEK 

smoothed Altes-Marinovic distribution. The MTEK smoothed Altes-Marinovic does 

much better than either the PAD or the SPAD kernel in cross term removal without 
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Figure 5.21: Contour plots for the simulation involving a signal which is the sum 
of two linear FM chirps individually tapered by a Hanning window. (a) individual 
Altes-Marinovic distributions of the components superimposed upon each other, (b) 
Altes-Marinovic distribution of the sum of the components. 
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Figure 5.22: Contour plots for the simulation involving a signal which is mentioned 
in Figure (5.21). (a) MTED kernel with To= 80, v0 = 0.085, r = -0.2, a= 0, (J = 1, 
'Y = 1 and A = 2 superimposed on the magnitude of the Hyperbolic ambiguity 
function of the signal, (b) resulting MTEK smoothed Altes-Marinovic distribution. 
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Figure 5.23: Contour plots for the simulation involving a signal which is the sum 
of two linear FM chirps individually tapered by a Hanning window. (a) individual 
Altes-Marinovic distributions of the signal components superimposed on each other, 
(b) Altes-Marinovic distribution of the sum of the components. 
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Figure 5.24: Contour plots for the simulation involving a signal which is mentioned 
in Figure (5.23). (a) MTED kernel with To= 90, v0 = 0.05, r = -0.85, a= 0, {J = 1, 
'Y = 1 and .X = 1 superimposed on the magnitude of the Hyperbolic ambiguity 
function of the signal, (b) resulting MTEK smoothed Altes-Marinovic distribution. 
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significantly distorting the auto terms. 

5.5 Conclusions 

In this chapter, extensive analysis of the warping technique proposed by Canfield 

and Jones was done. The warping approach is used to implement members of the 

Hyperbolic class like the Pseudo Altes distribution and the Smoothed Pseudo Altes 

distribution. This technique initially implements the Hyperbolic Ambiguity function 

of the signal by calculating the Woodward Ambiguity function of the warped signal. 

Later, a suitable kernel is chosen and multiplied with the Hyperbolic Ambiguity 

function so that the cross terms are removed without distorting the auto terms. Then, 

a two dimensional FFT of the product is taken and the time-frequency localization 

is corrected (see section 5.2) to calculate a particular time-frequency distribution of 

the Hyperbolic class. This technique gives a better understanding of what warping 

does to each signal component and gives more flexibility and insight when designing 

kernels to remove cross terms. 

A new member of the Hyperbolic class, the MTEK smoothed Altes-Marinovic 

distribution, was proposed. It uses the multiform tiltable kernel developed by [64, 

2]. The MTEK smoothed Altes-Marinovic distribution works as well as or better 

than other hyperbolic class TFDs in most of the time-frequency scenarios that were 

investigated in this thesis. 
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Figure 5.25: Contour plots for the simulation involving a signal which is the sum of a 
windowed Hyperbolic impulse and a Gaussian signal. (a) individual Altes-Marinovic 
distributions of the components superimposed upon one another, (b) Altes-Marinovic 
distribution of the sum of the two components. 
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Figure 5.26: Contour plots for the simulation involving a signal which is the sum of a 
windowed Hyperbolic impulse and a Gaussian signal. (a) magnitude of the individual 
Hyperbolic ambiguity functions superimposed upon each other, (b) magnitude of the 
Hyperbolic ambiguity function of the sum of the two components. 

131 



~---------------................. _......._ 

0.5 

........... 
<:!:l.. ..__, 
b.O 
~ .......... 
Q) .......... 
~ 
(.) 

0 en 
"Cl 

Q) 
N ...... 

c;j 
s 
""' 0 z 

-0.5 
-100 

0.45 

0.4 

g0.35 
a> 
5- 0.3 
~ 
:; 0.25 
IS 
~ 0.2 e 
~0.15 

0.1 

0.05 

-80 

(a) 

-60 -40 -20 0 20 40 60 80 100 
Hyperbolic time lag index ( () 

(b) 

o~~~~~~~~~~~~~~~~~~~~~~~~~ 

20 40 60 80 100 120 
Time index 

Figure 5.27: Contour plots for the simulation involving a signal which is mentioned 
in Figure (5.25). (a) PAD kernel with rectangular window of length 25 for smoothing 
in the ( direction. (b) Pseudo Altes distribution. 
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Figure 5.28: Contour plots for the simulation involving a signal which is mentioned in 
Figure (5.25). (a) PAD kernel with rectangular window of length 10 for smoothing 
in the ( direction superimposed on the magnitude of the HAF of the signal, (b) 
resulting Pseudo Altes-Marinovic distribution. 
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Figure 5.29: Contour plots for the simulation involving a signal which is mentioned in 
Figure (5.25) . (a) SPAD kernel with a Hamming window of length 50 for smoothing 
in the ( direction and a Blackman window of length 15 for smoothing in the f3 
direction superimposed on the magnitude of the HAF of the signal, (b) resulting 
Smoothed Pseudo Altes distribution. 
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Figure 5.30: Contour plots for the simulation involving a signal which is mentioned 
in Figure (5.25). (a) MTED kernel with To = 16, v0 = 0.16, r = -1, f3 = 1, a= 0, 
"f = 1 and >. = 10 superimposed on the magnitude of the Hyperbolic Ambiguity 
function of the signal, (b) resulting MTEK smoothed Altes-Marinovic distribution. 

135 



Chapter 6 

Conclusions and Future work 

6.1 Conclusions 

In the first chapter, the introduction and motivation for this thesis were discussed. 

In the second and third chapters, introduction to time-frequency analysis and a 

review of existing work on the implementation of Hyperbolic class were discussed. 

In the fourth chapter of this thesis, we proposed a new way of implementing the 

Altes-Marinovic distribution using the Fast Mellin transform. This implementation 

is quicker and is more efficient in terms of memory requirements compared to the 

warping technique proposed by Canfield and Jones [7] . Also, a new technique was 

proposed which implements the Pseudo Altes-Marinovic distribution using first order 

linear interpolation and Simpson's method of numerical integration. Other smoothed 

versions of the Altes-Marinovic distribution could be implemented in a similar way 

as the Pseudo Altes-Marinovic distribution. 

In the case of a signal which is the sum of two windowed hyperbolic impulses, 

the Altes-Marinovic distribution exhibits a cross term or interference term. If the 

hyperbolic impulses are far apart from each other in the time-frequency plane, then 

the Pseudo Altes-Marinovic distribution implemented using the Fast Mellin trans­

form and numerical integration removes the cross term; however, the Pseudo Altes­

Marinovic distribution does not smooth the cross term out entirely if the hyperbolic 

impulses are too close to each other. 
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In the fifth chapter, we did an extensive analysis of the Warping technique pro­

posed by Canfield and Jones [7]. Canfield and Jones have proposed and implemented 

a Hyperbolic class TFR which optimally selects a radially-Gaussian kernel to weight 

the Hyperbolic ambiguity function of the signal. The algorithm uses volume con­

straints on the kernel and optimization theory to automatically estimate the approx­

imate regions of support of the cross terms and the auto terms in the Hyperbolic 

ambiguity function domain. We also use the Hyperbolic Ambiguity function of a 

signal, since it provides intuition as to what happens to signal components due to 

warping and gives the user the information needed to design a kernel to remove the 

cross-terms without significantly distorting the auto-terms. 

But, we use a variety of different kernels. In the case of a signal which is the 

sum of two windowed hyperbolic impulses, this method removes the cross term or 

interference term even when the hyperbolic impulses are close to each other; however, 

designing a Cohen's class kernel for smoothing the Wigner distribution in this case 

is challenging. Hyperbolic class kernel design for is straightforward for many signal 

types. The Hyperbolic Ambiguity function maps a hyperbolic impulse to a straight 

line and the Hyperbolic class kernel design for smoothing interference terms becomes 

easy. In contrast, the Woodward Ambiguity function maps a hyperbolic impulse to 

a non-linear region which makes the design of a Cohen's class kernel challenging. 

Also, we have proposed a new member of the Hyperbolic class, the Multiform, 

tiltable exponential kernel (MTEK) smoothed Altes-Marinovic distribution, which 

does a good job of smoothing the cross terms or interference terms in the various time­

frequency scenarios that were considered in the fifth chapter. The MTEK smoothed 

Altes-Marinovic distribution does as good a job as the Pseudo Altes-Marinovic dis­

tribution when smoothing cross terms caused by hyperbolic impulses. Also, in the 

case of a signal which is the involving sum of two Gaussian components, the MTEK 

smoothed Altes-Marinovic distribution does a great job of smoothing the interference 

term whereas the Pseudo Altes-Marinovic distribution and the Smoothed Pseudo 

Altes-Marinovic distribution fail to either completely remove the cross term or end 

up distorting the auto terms. 
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Two issues, i.e. , memory requirement and speed, were considered when compar­

ing the two implementation techniques used to implement the Hyperbolic class of 

time-frequency distributions. The first technique used the Fast Mellin transform to 

compute the Altes distribution or the Bertrand Po distribution. The second tech­

nique for Smoothed Altes distributions was implemented using numerical integration 

and interpolation. The third technique was the warping method proposed by Can­

field and Jones [7], but using different kernels. All the implementation techniques 

mentioned in this thesis use MATLAB4.2a programming language for computation 

of time-frequency distributions. The following comparison was done on a SPARC5 

work station running the SOLARIS2.3 operating system. 

Let us consider the memory requirement issue. For a sampled signal, with M 

sample points in the time domain, the warping method proposed by Canfield and 

Jones requires the memory size of (8*4M*4M) bytes during the course of the im­

plementation. For the smoothed Altes distribution implementation proposed in this 

thesis, which uses the Fast Mellin transform and Numerical integration, the required 

memory size is (8*M*N) bytes where N is given by 

N > BTalna (6.1) 
- a-1 

where B = h - f 1 and a = h/ Ji. Here, h and Ji are maximum and minimum 

frequencies, respectively, of the approximate frequency support region of the signal 

spectrum X(f). Although N varies depending on the time-bandwidth product of the 

signal and on the ratio of h and Ji , in the examples in this thesis, it varied from 

M/2 to 2M. Hence, the memory requirements for this technique ranged from (1/32) 

to (1/8) of the memory requirements required for the Canfield and Jones [7] warping 

technique. 

Let us consider the issue of the computational speed of each technique. Usually 

in signal processing algorithms, FFTs are the most time consuming operations which 

take up a large chunk of the computation time and they are usually used as a stan­

dard for comparisons. Since techniques which we are comparing involve other time 

consuming operations like numerical integration and linear interpolation, it is unfair 

to compare the speed of the program in terms of how many FFTs are being taken. 

We compare the speed of computation of each technique by taking a typical example 
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signal. For a signal of length M = 128 samples in time, the computation of the Altes­

Marinovic distribution using the warping technique took approximately 157 seconds. 

The computation of the Altes-Marinovic distribution using the Fast Mellin trans­

form took around 63 seconds. The computation of various smoothed Altes-Marinovic 

distributions, like the Pseudo Altes-Marinovic distribution, smoothed Pseudo Altes­

Marinovic distribution, and MTEK smoothed Altes-Marinovic distribution using the 

warping technique also took around 157 - 450 seconds depending on the computa­

tional complexity of the kernel. However, the computation of various smoothed 

Altes-Marinovic distribution using the Fast Mellin transform followed by numerical 

integration depends upon the distribution being computed. The time taken for the 

computation of the pseudo Altes-Marinovic distribution using the Fast Mellin trans­

form plus with numerical integration algorithm partly depended on the number of 

points used for computing the numerical integral. The larger the number of points 

used, the more the accuracy; but, the time taken for the computation is also more. 

The time taken for computing the Pseudo Altes-Marinovic distribution with 150 

points between the maximum and minimum frequencies used in Simpson's method 

of numerical integration was around 4 hours. 

6.2 Future work 

The following are ideas for future work. 

1. Implement other members of the Hyperbolic class which can be formulated 

as smoothed Altes distributions, e.g., the smoothed Pseudo Altes-Marinovic 

distribution, Hyperbologram, or Generalized Altes-Marinovic distribution, etc. , 

using the Fast Mellin transform technique followed by numerical integration 

algorithm described in the Fourth chapter. 

2. Investigate the program which computes the Bertrand unitary Po distribution 

and the Altes-Marinovic distribution using the Fast Mellin transform. It is 

experiencing some degree of time-localization problems and fixing this problem 

will be an interesting future work. 
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3. Any arbitrary time-frequency distribution of the Hyperbolic class can be imple­

mented by implementing Equation (2.29) using the Fast Mellin transform. The 

implementation can be done as follows. Initially, the discrete Mellin transform 

of the signal spectrum should be calculated. The Woodward ambiguity func­

tion of the Mellin transform of the signal spectrum is equal to the Hyperbolic 

Ambiguity function of the signal. Hence, the Hyperbolic Ambiguity function , 

Bx((, /3), of the signal can be calculated by taking the Ambiguity function of 

the Mellin transform of the signal spectrum. Later, the kernel, \IJ~H)((,/3), of 

interest should be chosen and multiplied with the Hyperbolic Ambiguity func­

tion. Then, the inverse Mellin transform of the product should be calculated. 

The algorithm for Fast inverse Mellin transform is proposed and discussed in 

[38]. The inverse Fourier transform of that product should be calculated and 

unwarped (see equation 3.41) to finally calculate the time-frequency distribu­

tion. This approach might be advantageous since it does not run into mem­

ory problems because of the zero padding that the warping technique used 

(see Section 3.4 and 3.5). The above mentioned approach might be quicker 

when computing smoothed Altes-Marinovic distributions than the technique 

proposed in this thesis since it does not require interpolation and numerical 

integration needed for computation of smoothed Altes-Marinovic distributions 

(see Section 4.3). 

4. Recently, some new classes of time-frequency distributions called the Power 

classes were proposed [65] [66] . These classes were obtained by warping the 

Affine class. The Power classes of time-frequency distributions can be im­

plemented as follows. Initially, the signal should be warped depending on 

the corresponding warping function for a particular distribution. The Affine 

time-frequency distribution of the warped signal should calculated. The re­

sult should then be unwarped to implement any time-frequency distribution 

of the Power classes. The warping and unwarping can be implemented using 

the Canfield and Jones [7] technique and the Affine class of TFRs could be 

implemented using Fast Mellin transform [6]. 
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