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ABSTRACT

This dissertation focuses on statistical signal processing theory and its appli-

cations to radar, complex-valued signal processing and model selection.

The transmit signal critically affects a radar system’s performance. Its design

is an important task and is an active research area. We provide an optimal design

for detecting extended targets in colored noise based on the locally most powerful

detector. We also establish a fundamental relationship between the Kullback-

Leibler divergence, signal-to-noise ratio, and mutual information, all of which have

been used as waveform design metrics the literature. The relationship explains the

role of each metric.

In space-time adaptive processing (STAP), the nonstationarity of the data

samples causes a mismatch between the estimated covariance matrix and the true

one, and consequently leads to the degradation of STAP performance. We propose

an asymptotically optimal detector for testing the non-stationarity via the gener-

alized likelihood ratio test and an alternative Rao test with lower computational

cost

The Rao test is a very useful method in signal processing. A complex parame-

ter Rao test is proposed and serves as a new method for complex-valued parameter

testing. Different from the traditional way, it reformulates the calculations with

respect to the complex-valued quantities directly and often leads to more intu-

itive, and more computationally efficient test statistics. Applying the complex

parameter Rao test to the bandedness of the Cholesky factor of the inverse of a



complex-valued covariance matrix is an example of its application.

Model order selection is another fundamental but important task that arises

in many areas. We propose a new Bayesian model order selection method by em-

ploying the exponentially embedded family (EEF) technique. In addition to the

established important properties of EEF, the new Bayesian model selection method

can use vague proper priors and improper non-informative priors without the crit-

icisms of Lindley’s paradox and the Information paradox. The penalty term of the

Bayesian EEF is shown to have a very intuitive meaning as the sum of the model

parameter dimension and the estimated mutual information between the parameter

and observed data. The EEF is also used to estimated the degree of noncircularity

of a complex random vector and is shown to have good performance.
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• Manuscript 4:

Z. Zhu and S. Kay, “The Rao test for testing bandedness of complex-valued
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is estimated mutual information,” in the proceedings of 42nd IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing. pp. 4149–

4152, New Orleans, LA, Mar. 2017.

• Manuscript 7:
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Abstract

In this paper we address the problem of designing the optimal radar waveform

for the detection of an extended target in a colored noise environment. Specifically,

the impulse response of the target is assumed to be linear and time invariant, which

is modeled by a wide sense stationary Gaussian random process. The noise is

also assumed to be a wide sense stationary Gaussian random process with known

power spectral density. We derive the locally most powerful detector and the

corresponding optimal waveform based on maximizing the detector’s performance

under a small signal assumption. The performance is evaluated analytically, and

numerically compared to that of the existing information-theoretic method, i.e.,

maximizing the mutual information between the received data and target response.

The locally most powerful detection metric is shown to be the Kullback-Leibler

divergence. Thus, use of the latter measure for waveform optimization shows

that a substantial performance improvement is achieved by adopting the proposed

waveform design approach instead of mutual information. Moreover, an interesting

relationship among the three waveform design metrics, namely, the output signal-

to-noise ratio, the Kullback-Leibler divergence, and the mutual information, is

derived. This provides an important relationship that explains the tradeoffs of the

various metrics currently used for radar waveform design.

1.1 Introduction

Transmit signal waveform design is one of critical factors affecting radar de-

tection performance [3]. This problem has attracted much attention in the last few

2



decades (see [5]–[8] and references therein). We focus on the problem of optimal

signal waveform design for detecting an extended target in a wide-sense stationary

(WSS) noise environment. The target is modeled as a linear time invariant (LTI)

system, whose impulse response is assumed to be a WSS random process.

The first question for signal waveform design is the choice of an optimiza-

tion metric. Many metrics have been proposed such as maximizing the mutual

information (MI), minimizing the mean square error (MMSE) and maximizing the

output-signal-to-noise ratio (SNR) [5], [8], [15], [10]. Clearly, the choice of a metric

should be done to maximize detection performance. In particular, the information-

theoretic waveform design method of maximizing the MI [6], is a widely used one

[5], [8]. It maximizes the MI between the target impulse response and the received

data. However, the waveform design based on the MI criteria does not guarantee

detection optimality, as Bell has remarked in [7]: “ It is not clear under what

circumstances these approaches lead to optimal or near-optimal results”.

In this paper we hope to answer this question. To do so we derive an optimal

radar signal waveform for the detection of an extended target in colored noise.

Although the performance of the Neyman-Pearson (NP) detector is a natural choice

to start with [2][17], determining its performance analytically is nontrivial due to

the difficulty of obtaining the probabilities of detection and false alarm analytically

[2]. On the other hand, the analytical performance of the locally most powerful

(LMP) detector, which is equivalent to the NP detector under the small signal

assumption, is easily derived. Furthermore, the performance of the LMP detector is

3



a function of the Kullback-Leibler divergence (KLD), denoted by D(p1(x)||p0(x)),

where p1(x) is the PDF of the received data x under the alternative (i.e. the signal

present) hypothesis H1 and p0(x) is the PDF under the null hypothesis H0. For

simplicity we will at times use D(p1||p0) to denote the KLD. Hence, it would seem

that the KLD measure in the small signal case would be more appropriate for

radar waveform design. Our results demonstrate by computer simulation that this

is indeed true.

The main contributions of this paper are:

1) The LMP detector and its performance are derived.

2) A waveform design solution based on maximizing KLD-LMP is introduced.

3) The detection performances resulting from using the KLD-based and MI-based

waveform are studied and compared.

4) An interesting relationship among KLD, MI and SNR is derived, which provides

some insights into the role of each criterion.

The content of the paper is as follows. We first discuss the problem of choosing

an optimality criteria regarding detection versus estimation in Section 1.2. Next,

the radar waveform design problem is formulated in Section 1.3. We then derive the

LMP detector and its performance in Section 1.4. The optimal waveform design

based on the LMP detector follows in Section 1.5, while that based on mutual

information is given in Section 1.6. An important relationship between KLD, MI

and SNR is derived in Section 1.7. In Section 1.8, the performance of the derived

waveform design method is evaluated and compared with that of the existing MI-

4



based design via computer simulation. Finally, some discussion and conclusions

are given in Section 1.9.

Notation: Throughout the paper, I(x; s) denotes the MI between the random

variable x and s, Ix(f) denotes the periodogram of the data x, I(θ) denotes the

Fisher information of the parameter θ, Px(f) denotes the power spectral density of

a random signal x[n], |S(f)|2 denotes the energy spectral density of a deterministic

signal s[n], E[·] denotes taking expectation, and p(x|t) denotes the PDF of x

conditioned on t.

1.2 Detection versus Estimation - Optimality Criteria

The link between the problems of detection and parameter estimation is not

always a strong one. Hence, one should be wary of applying the solution for one of

problem to the other. To illustrate a breakdown of the sometimes accepted linkage

and to set the stage for the waveform design problem, which is the topic of this

paper, consider the following detection problem. Although somewhat contrived, it

conveys our assertion with clarity. Assume we wish to decide among the binary

hypotheses

H0 : x ∼ N (0, 2 + 2ρ0)

H1 : x ∼ N (0, 2 + 2ρ1)

where N (µ, σ2) denotes a Gaussian probability density function (PDF) with mean

µ and variance σ2, and ρi is a parameter taking on values |ρi| < 1. Note that

as ρ1 becomes closer to ρ0, it will be exceedingly difficult to decide between the

5



nearly identical hypotheses. In this case, we can expect PD ≈ PFA, where PFA is

the probability of false alarm and PD is the probability of detection, and hence,

an exceedingly poor detector. Now, under H1 assume that x = s + w, where s

represents a zero-mean random signal and w is a noise, and instead consider the

estimation problem. That is to say we wish to estimate s based on the observation

x, assuming that the joint PDF under H1 is s

w

 ∼ N

 0

0

 ,

[
1 ρ1

ρ1 1

] .

Note that under this joint PDF assumption x = s + w has the given PDF under

H1. Choosing the Bayesian mean square error (BMSE) to minimize, it is well

known [1] that the MMSE estimator is ŝ = E[s|x] = (cov(x, s)/var(x))x. This is

evaluated as

ŝ =
E[(s+ w)s]

E[(s+ w)2]
x

=
1 + ρ1
2 + 2ρ1

x

=
1

2
x. (1.1)

The minimum BMSE is well known to be

BMSEmin = var(s)(1− ρ2x,s)

6



where ρx,s is the correlation coefficient between x and s. But

ρ2x,s =
cov2(x, s)

var(x)var(s)

=
E2[xs]

E[x2]E[s2]

=
(1 + ρ1)

2

(2 + 2ρ1)1

=
1 + ρ1

2
. (1.2)

Hence, as ρ1 → 1, the BMSE goes to zero, and the estimation of s using (1.1) is

without error. Hence, the two goals of detection and estimation are not coupled

in that good performance in one problem does not guarantee good performance in

another.

To illustrate this further we note that the KLD, which measures detectability

(at least in an asymptotic sense), is zero for the detection problem since

D(p1||p0) =

∫
p1(x) ln

p1(x)

p0(x)
dx

=
1

2

(
2 + 2ρ1
2 + 2ρ0

)
− 1

2
ln

(
2 + 2ρ1
2 + 2ρ0

)
− 1

2

as ρ1 → ρ0. However, the MI between the random variables x and s under H1 is

known to be

I(x; s) =

∫ ∫
p1(x, s) ln

p1(x, s)

p1(x)p(s)
dsdx

=
1

2
ln

1

1− ρ2x,s
.

As ρ1 → 1, we have from (1.2) that ρ2x,s → 1 and hence, I(x; s) → ∞, indicating

perfect knowledge of s given the observation x. Thus, the detectability is zero even

though the MI can be made arbitrarily large. In summary, this simple example

7



illustrates the possible pitfalls in using mutual information as a design metric for

a detection problem. We continue this discussion in Section 1.7 where an explicit

relationship between KLD and MI is established.

1.3 Problem Formulation

We now consider the detection of an extended target in colored wide sense

stationary Gaussian noise. This is the problem originally posed by Bell [6] that

has led to the use of MI as a waveform design criterion. To simplify the discus-

sion we assume sampled real data. For complex data we will state the obvious

extensions without proof. To begin assume we have the detection problem shown

in Figure 1.1, where s = [s[0] s[1] . . . s[N − 1]]T is the transmitted determinis-

tic signal, h = [h[0]h[1] . . . h[N − 1]]T is the impulse response of the target, and

w = [w[0]w[1] . . . w[N − 1]]T is the observation noise. We model the impulse re-

+
s

x
h

w



b

Figure 1.1. Model for the received data for an extended target in noise.

sponse as a Gaussian WSS random process with zero mean and power spectral

density (PSD) Ph(f). Likewise, the observation noise is modeled as a Gaussian

WSS random process with zero mean and PSD Pw(f). The received data is as-

sumed to be x[n] = w[n] under H0 and x[n] =
√
θs[n] ⋆ h[n] + w[n] under H1,

8



where b =
√
θ denotes a small positive number and ⋆ indicates convolution. The

parameter θ accounts for channel attenuation and is assumed known. Finally, we

will assume that N is large so that the detection problem may equivalently be

posed in the frequency domain [2] as a hypothesis test on the PSD Px(f) of x[n]

as follows

H0 : Px(f) = Pw(f)

H1 : Px(f) = θPh(f)|S(f)|2 + Pw(f)

where the transmit signal energy is constrained to be
∫ 1

2

− 1
2

|S(f)|2df ≤ E , and

|S(f)|2 is the energy spectral density (ESD). We wish to choose |S(f)|2 to maximize

PD subject to a constraint on PFA as per the NP approach to detection. To do so

we first need to determine PD and PFA. The problem posed is that of detection of

a Gaussian signal in Gaussian noise. Much is known about this problem with the

definitive analysis contained in [3]. With a large data record assumption (i.e. as

N → ∞) the NP detector test statistic can be shown to be given by [2]

TNP (x) =

∫ 1
2

− 1
2

Ix(f)

Pw(f)

θPh(f)|S(f)|2

θPh(f)|S(f)|2 + Pw(f)
df

where Ix(f) is the periodogram of the received data. The NP test statistic can be

further approximated for large N in discrete-time as

TNP (x) =
1

N

N−1∑
k=0

Ix(fk)

Pw(fk)

θPh(fk)|S(fk)|2

θPh(fk)|S(fk)|2 + Pw(fk)
(1.3)

for fk = k/N , where we have changed the frequency interval to the equivalent one of

[0, 1]. As the Ix(fk)’s are mutually independent and their PDFs are asymptotically
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(for large N , which is denoted by the “a”) [2]

Ix(fk)

Pw(fk)/2

a∼ χ2
2 under H0

Ix(fk)

[θPh(fk)|S(fk)|2 + Pw(fk)]/2

a∼ χ2
2 under H1

the test statistic TNP (x) can be viewed as a sum of weighted independent and iden-

tically distributed (IID) random variables, which are chi-squared distributed. The

exact closed-form PDF of TNP (x) is not trivial to derive. A number of attempts to

determine the exact PDF of the weighted sum of IID chi-squared random variables

is summarized in [11]. Unfortunately, the determination of these probabilities is

exceedingly difficult, even with the large sample-frequency domain approach we

have taken. The optimization of the detector with respect to the transmit signal

is even more formidable. Probably this may have motivated the MI approach to

signal design. We propose to solve this problem by using an approximation to

the NP detector, known as the LMP approach. By simulation it will later be

shown to have performance nearly identical to the NP detector under small signal

assumption. By using the LMP formulation, an analytical result is obtained for

the performance, and this then leads to a simple criterion for signal design. The

optimal signal obtained is shown, again via computer simulation, to be superior to

the use of the MI waveform design criterion.
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1.4 The LMP Detector and its Performance

As shown in Appendix A the LMP detector decides a signal is present if

TLMP(x) =

N
2

∫ 1
2

− 1
2

Ph(f)|S(f)|2
Pw(f)

(
Ix(f)−Pw(f)

Pw(f)

)
df√

N
2

∫ 1
2

− 1
2

(
Ph(f)|S(f)|2

Pw(f)

)2
df

> γ. (1.4)

This may be interpreted as a correlation in frequency between the true normalized

signal PSD i.e., Ph(f)|S(f)|2/Pw(f), and the data normalized signal PSD, i.e.,

(Ix(f) − Pw(f))/Pw(f), in the numerator, which is normalized to yield unit vari-

ance. The detection performance of the LMP detector is approximated for large

data records as [2]

TLMP
a∼

{
N (0, 1) under H0

N (
√

I(0)θ, 1) under H1.
(1.5)

This is the standard Gauss-Gauss detection problem for which PD is monotonically

increasing with the deflection coefficient defined as

d2LMP = θ2I(0).

As a result, to maximize the detection performance with respect to the transmitted

signal, we need only maximize d2LMP, which is given as (see Appendix A)

d2LMP =
N

2
θ2
∫ 1

2

− 1
2

(
Ph(f)|S(f)|2

Pw(f)

)2

df. (1.6)

It is important to note that the deflection coefficient for this case of a small signal

is identical to the twice the KLD [14]. Thus, optimal waveform design in the

small signal case, which is usually of primary importance, should be approached by

maximizing the KLD. In doing so, we will maximize the detection performance.
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1.5 Optimal Waveform Design

The deflection coefficient of (1.6) may be expressed for large data records

using ∆f = 1/N and fk = k/N as the Riemann sum over the equivalent frequency

interval of [0, 1] as

d2LMP =
N

2
θ2

N−1∑
k=0

(
Ph(fk)|S(fk)|2

Pw(fk)

)2

∆f

=
1

2
θ2

N−1∑
k=0

(
Ph(fk)|S(fk)|2

Pw(fk)

)2

and letting Sk = |S(fk)|2, wk = Ph(fk)/Pw(fk) , we have

d2LMP =
1

2
θ2

N−1∑
k=0

(wkSk)
2 . (1.7)

To maximize this with respect to Sk we note that with the usual energy constraint

of
∑N−1

k=0 |S(fk)|2∆f ≤ E , we have that
∑N−1

k=0 Sk ≤ E/∆f . Thus, we wish to

maximize (1.7) over Sk for k = 0, 1, . . . , N−1, where Sk ≥ 0 and
∑N−1

k=0 Sk ≤ E/∆f .

This domain for Sk is a simplex and hence a convex set. The function to be

maximized is a convex function since it is a quadratic function. Hence, the problem

reduces to maximizing a convex function over a convex set, the solution of which is

well known to be among the extreme points [4]. The extreme points of the simplex

are those for which Sk = E/∆f for a given k = k0 and Sk = 0 otherwise. Thus, the

solution is to let Sk = (E/∆f)δk,k0 , where δij is the Kronecker delta. Substituting

this into (1.7) produces

d2LMP =
1

2
θ2 (wk0Sk0)

2

=
1

2
θ2w2

k0

(
E
∆f

)2
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which is maximized for the value of k = k0 that maximizes wk. Hence, the optimal

signal places all its energy at the frequency where wk = Ph(fk)/Pw(fk) is maxi-

mum. Equivalently, we place all the energy at which Pw(fk)/Ph(fk) is minimized.

Interestingly, this is the same result as for detection of a deterministic signal in

colored noise [2]. Hence, we have finally that

d2LMP =
(NθE)2

2

[
max

k=0,1,...,N−1

(
Ph(fk)

Pw(fk)

)]2
. (1.8)

Since we have assumed real data and hence a symmetric PSD, the energy is split

between the positive and negative frequency bins. For the case of complex data

the same result is valid if the symmetry condition on the PSD is not imposed.

Hence, one needs only concentrate all the signal energy in the bin that achieves

the maximum value of wk = Ph(fk)/Pw(fk).

1.6 Waveform Design Based on Maximizing Mutual Information

In this section, we consider a signal waveform design solution based on max-

imizing the MI between the received data and the target ensemble [6], which has

been widely used as a metric in the literature. It has also been proved that minimiz-

ing the mean square error of estimating the target yields the same signal waveform

design solution as the MI-based method in white Gaussian noise [8]. The MI be-

tween the received data and target ensemble under H1 can be shown to be (see

Appendix D)

I(x; t) =
1

2

N−1∑
k=0

ln

(
1 +

θPh(fk)|S(fk)|2

Pw(fk)

)
(1.9)
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where t =
√
θs ⋆ h. It is well known that the MI-based waveform design is the

“water-filling” solution [6], [12], [8] given as

θ|S(fk)|2 = max

[
0, λ− Pw(fk)

Ph(fk)

]
(1.10)

where λ, termed the water level, is a constant determined by the energy constraint

and which is usually found numerically from the solution of

N−1∑
k=0

max

[
0, λ− Pw(fk)

Ph(fk)

]
= NθE .

1.7 A Relationship Between KLD, MI and SNR

Not only have the KLD and the MI served as metrics of radar waveform design,

but output SNR has as well [10], [15]. It is felt that a relationship among all the

three terms/metrics and its discussion will be beneficial in shedding further light

on the waveform design problem.

Recall that t =
√
θs ⋆ h, where s is the transmitted signal sequence and h is

the target impulse response sequence. Then the detection problem can be written

as follows.

H0 : x = w

H1 : x = t+w

A general relationship between the KLD, the output SNR, and MI is derived in

Appendix C. A related result has been used to compute MI in order to obtain

the channel capacity per unit cost [13]. For our problem the relationship is best
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expressed as

D(p1(x)||p0(x)) = Et [D(p1(x|t)||p0(x))]− I(x; t) (1.11)

where p1(x|t) is the PDF of x conditioned on the target response t under H1 and

the first term on the right-hand-side of the above equation is defined as

Et [D(p1(x|t)||p0(x))] =
∫
t

p(t)D
(
p1(x|t)||p0(x)

)
dt (1.12)

and can be interpreted as an SNR, as shown next.

Also, p1(x) can be written as an averaged conditional PDF by averaging

p1(x|t) over t, as

p1(x) =

∫
t

p1(x, t)dt =

∫
t

p1(x|t)p(t)dt (1.13)

Thus the term D(p1(x)||p0(x)) is the KLD of the averaged conditional PDF p1(x)

from the PDF p0(x).

Moreover, the MI I
(
x; t
)

is also an averaged KLD obtained by averag-

ing KLD of the conditional PDF p1(x|t) from the unconditional PDF p1(x),

D(p1(x|t)||p1(x)), over all possible target signals t as suggested by

I(x; t) =

∫
t

∫
x

p1(x, t) ln
p1(x, t)

p1(x)p(t)
dxdt

=

∫
t

∫
x

p(t)p1(x|t) ln
p1(x|t)
p1(x)

dxdt

=

∫
t

p(t)D(p1(x|t)||p1(x))dt. (1.14)

Therefore, all the three terms of the decomposition (1.11) can be interpreted

respectively as distance measurements in the KLD sense. Alternatively, we can
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write the relationship as

D(p1(x)||p0(x))︸ ︷︷ ︸
KLD

= Et[D(p1(x|t)||p0(x))]︸ ︷︷ ︸
SNR

− I(x; t)︸ ︷︷ ︸
MI

. (1.15)

Specifically, for the problem at hand the terms may be easily evaluated (see

Appendix D) to yield

Et [D(p1(x|t)||p0(x))] =
1

2

N−1∑
k=0

θ|S(fk)|2Ph(fk)

Pw(fk)

I(x; t) =
1

2

N−1∑
k=0

ln

(
1 +

θPh(fk)|S(fk)|2

Pw(fk)

)

so that the KLD is given from (6.5) as

D(p1(x)||p0(x)) =
1

2

N−1∑
k=0

θ|S(fk)|2Ph(fk)

Pw(fk)
− 1

2

N−1∑
k=0

ln

(
1 +

θPh(fk)|S(fk)|2

Pw(fk)

)
.

(1.16)

The negative of the second term is the MI and is seen to be concave, leading to

the usual maximization of the MI, subject to the energy constraint. Of course,

the appropriate criterion for maximization must also take into account the term,

which is the SNR. Finally, the result in (1.16) agrees with the usual asymptotic

KLD between two multivariate Gaussian PDFs with PSDs given as [9]

D(p1(x)||p0(x)) =
N

2

∫ 1
2

− 1
2

(
P1(f)

P0(f)
− ln

P1(f)

P0(f)
− 1

)
df

with P1(f) = θPh(f)|S(f)|2 + Pw(f) and P0(f) = Pw(f). Also, note that for this

case of a small signal, i.e., asymptotically, it is shown in Appendix B that the KLD

is symmetric in that D(p1(x)||p0(x)) = D(p0(x)||p1(x)).

This reveals an interesting relationship among the three terms KLD, MI and
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SNR, all of which have been used as design metrics. It is

KLD = SNR−MI.

As shown, the important metric for detection performance is KLD. The SNR

term is the “distance” between the PDFs when the signal t is known as in a

matched filter detector when averaged over the possible signals. The MI term

is a degradation factor which accounts for the fact that the signal, i.e., target

response, is actually unknown. Since the target response is unknown, it has been

modeled as the outcome of a random process, for which the optimal detector is

an estimator-correlator. The loss in performance is the MI, which measures how

much the unknown target response is reflected in the PDF of the received data.

In summary, the MI can be viewed as the loss in detection performance between

a matched filter and an estimator-correlator. Note that for the known signal case,

in which the target t is known and not random, we have that MI = 0. Hence, it

follows that KLD = SNR, which is 1/2 the deflection coefficient.

1.8 Computer Simulations and Analysis

In this section the performance of the proposed LMP-based signal design

solution is evaluated through computer simulations and compared with that of the

MI-based signal design solution. We consider a signal s =
[
s[0] s[1] · · · s[N −1]

]T
with length N = 64 for a case when the signal energy θE = 5.12 and the ratio of

the noise PSD Pw(f) and target PSD Ph(f), termed the noise-target power ratio

at each frequency bin, Pw(fk)
Ph(fk)

for k = 0, 1, · · · , N − 1, is shown in Figure 1.2a. As
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both PSDs are symmetric, the noise-target power ratio is also symmetric. Recall

that the signal and data were assumed real.

The MI-based waveform design is found by the water-filling technique accord-

ing to (1.10) and is depicted in Figure 1.2b. However, the LMP-based waveform

design is to split all the signal energy into two symmetric frequency bins f13 and

f51 (centered about f = 1/2), where the ratio Pw(fk)
Ph(fk)

is the minimum among all

frequency bins, as shown in Figure 1.2c.

We next use the two waveforms in the NP detector in (1.3) as well as the

LMP detector in (1.4). The resulting receiver operating characteristic (ROC) are

given in Figure 1.3. The LMP-based waveform design outperforms the MI-based

design substantially, and the LMP detector has a performance close to that of the

NP detector for both waveform designs.

To further explore the performance of the LMP-based waveform under differ-

ent signal energy constraints, the signal energy θE is varied from small values to

larger ones. The rest of the simulation parameters remains unaltered. The LMP

detector detection performance is nearly identical to that of the NP detector un-

der small signal cases, so we only compare the performances of the two waveform

designs using the NP detector. In Figure 1.4 we compare the NP detector PD’s

by using the two waveform design methods for different signal energy constraints,

with the PFA being fixed. It is seen that once again the LMP-based waveform

produces better detection performance than the MI-based waveform. This is seen

to be true even when the small signal assumption is no longer valid.
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Figure 2c: LMP-based waveform design
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Figure 1.2. Simulation setting up and the two waveform design solutions. Top:
the samples of noise-target ratio Pw(fk)

Ph(fk)
. Middle: the MI-based waveform design

solution and the water filling level λ. Bottom: the LMP-based waveform design
solution

.
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Figure 1.3. The ROCs of the LMP and NP detectors using LMP-based and MI-
based waveform designs with θE = 5.12
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Figure 1.4. The detection performance versus signal energy.

The improvement of the LMP-designed waveform over the MI-designed wave-

form depends critically on the dependence of the noise-target frequency depen-

dence. To illustrate this dependence we use the same signal as before, having a

length N = 64 and an energy θE = 5.12. However, the noise-target power ratio is

now given in Figure 1.5a. Note that the noise-target ratio changes more drastically

from one frequency bin to another as compared to the previous example. The cor-

responding MI-based waveform and LMP-based waveform are given in Figure 1.5b
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and Figure 1.5c respectively. Compared with Figure 1.2b, the MI-based waveform

for this example becomes more “concentrated” since it allocates zero energy for

many of the frequency bins. The LMP-based waveform still splits the total energy

into two symmetric frequency bins where the noise-target power ratio is minimum.

The resulting ROCs for the NP detector using the two waveforms are shown in

Figure 1.6. It is seen that the performance differential of the two waveforms is now

decreased, although the LMP-based waveform still outperforms MI-based wave-

form in the low PFA region. As an extreme case, the two waveform designs may

lead to the same solution, splitting signal energy into the two symmetric bins where

the noise-target power ratio is minimum. This occurs when the noise-target power

ratios of all other bins reach/exceed the water-level of MI-based solutions.

1.9 Conclusions

We have shown that the link between the problems of detection and parameter

estimation is not always a strong one, and illustrates possible pitfalls in using MI

as a design metric for a detection problem. The LMP detector and its asymptotic

performance for the case of an extended target in WSS colored noise are derived.

The asymptotic results are fundamental in nature against which performance for

signal sets with finite number of samples can be compared. To maximize detection

performance it has been shown that the KLD is the appropriate measure to be

maximized. The very simple result that the signal should place all its energy at the

minimum of the noise PSD (normalized by Ph(f)) is both satisfying and intuitively

appealing. Similar results are well known for signal design in the case of an assumed
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Figure 1.5. A second noise-target power ratio and the corresponding waveform
designs.
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known signal at the receiver. Even in the case of an NP detector implementation

signal design based on KLD yields superior performance to signal design based on

MI, as shown via computer simulation. Furthermore, the important relationship

KLD = SNR−MI connects the three design metrics, namely KLD, SNR, and MI,

in extended target waveform design and suggests that MI can be viewed as a

performance loss between a matched filter and an estimator-correlator.
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Appendix A - Derivation of LMP Detector

The PDF of x = [x[0]x[1] . . . x[N−1]]T , where x[n] is a Gaussian WSS random

process is given for large N by [1]

ln p(x) = −N

2
ln 2π − N

2

∫ 1
2

− 1
2

(
lnPx(f) +

Ix(f)

Px(f)

)
df

where Px(f) is the PSD of the received data x. Now under H1 we have upon

replacing Px(f) by θPh(f)|S(f)|2 + Pw(f)

ln p(x; θ) = −N

2
ln 2π

−N

2

∫ 1
2

− 1
2

(
ln
[
θPh(f)|S(f)|2 + Pw(f)

]
+

Ix(f)

θPh(f)|S(f)|2 + Pw(f)

)
df.

The LMP detector decides H1 if [2]

∂ ln p(x;θ)
∂θ

∣∣∣
θ=θ0√

I(θ0)
> γ

where I(θ0) is the Fisher information evaluated at θ0. For our problem we have

θ0 = 0. Now we have

∂ ln p(x; θ)

∂θ
= −N

2

∫ 1
2

− 1
2

(
Ph(f)|S(f)|2

θPh(f)|S(f)|2 + Pw(f)

− Ph(f)|S(f)|2Ix(f)
(θPh(f)|S(f)|2 + Pw(f))2

)
df

and evaluating this at θ = 0 produces

∂ ln p(x; θ)

∂θ

∣∣∣∣
θ=0

= −N

2

∫ 1
2

− 1
2

(
Ph(f)|S(f)|2

Pw(f)
− Ph(f)|S(f)|2Ix(f)

P 2
w(f)

)
df.

The Fisher information is found as

∂2 ln p(x; θ)

∂θ2
= −N

2

∫ 1
2

− 1
2

(
− P 2

h (f)|S(f)|4

(θPh(f)|S(f)|2 + Pw(f))2

+2
P 2
h (f)|S(f)|4Ix(f)

(θPh(f)|S(f)|2 + Pw(f))3

)
df
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and taking the expected value and noting that E[Ix(f)] ≈ Px(f) = θPh(f)|S(f)|2+

Pw(f) for large data records, we have

E

[
∂2 ln p(x; θ)

∂θ2

]
= −N

2

∫ 1
2

− 1
2

(
− P 2

h (f)|S(f)|4

(θPh(f)|S(f)|2 + Pw(f))2

+2
P 2
h (f)|S(f)|4

(θPh(f)|S(f)|2 + Pw(f))2

)
df

= −N

2

∫ 1
2

− 1
2

P 2
h (f)|S(f)|4

(θPh(f)|S(f)|2 + Pw(f))2
df.

Finally, we have for the Fisher information

I(θ) = −E

[
∂2 ln p(x; θ)

∂θ2

]
=

N

2

∫ 1
2

− 1
2

P 2
h (f)|S(f)|4

(θPh(f)|S(f)|2 + Pw(f))2
df

which when evaluated at θ = 0 is

I(0) =
N

2

∫ 1
2

− 1
2

(
Ph(f)|S(f)|2

Pw(f)

)2

df.

As a result the LMP test statistic is

TLMP(x) =

N
2

∫ 1
2

− 1
2

(
Ph(f)|S(f)|2Ix(f)

P 2
w(f)

− Ph(f)|S(f)|2
Pw(f)

)
df√

N
2

∫ 1
2

− 1
2

(
Ph(f)|S(f)|2

Pw(f)

)2
df

where we have used (1.4).

Appendix B - Symmetry of KL Measure for Small Signals

From Appendix A, we have for a large data record and using a discrete ap-

proximation to the integrals involved

ln p0(x) = −N

2
ln 2π − 1

2

N−1∑
k=0

(
lnPw(fk) +

Ix(fk)

Pw(fk)

)
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and

ln p1(x) = −N

2
ln 2π − 1

2

N−1∑
k=0

(
ln
(
θPh(fk)|S(fk)|2 + Pw(fk)

)
+

Ix(fk)

θPh(fk)|S(fk)|2 + Pw(fk)

bigg).

Then,

ln p0(x)− ln p1(x) =
1

2

N−1∑
k=0

[
ln

θPh(fk)|S(fk)|2 + Pw(fk)

Pw(fk)

+Ix(fk)

(
1

θPh(fk)|S(fk)|2 + Pw(fk)
− 1

Pw(fk)

)]
The KLD D(p0||p1) can be evaluated to be

D(p0||p1) = E0(ln p0 − ln p1)

=
1

2

N−1∑
k=0

[
ln

θPh(fk)|S(fk)|2 + Pw(fk)

Pw(fk)

+
Pw(fk)

θPh(fk)|S(fk)|2 + Pw(fk)
− Pw(fk)

Pw(fk)

]
, (1.17)

where E0(·) denotes taking expectation under p0(x). Furthermore, using the fol-

lowing Taylor expansions

N−1∑
k=0

Pw(fk)

θPh(fk)|S(fk)|2 + Pw(fk)
≈ N −

N−1∑
k=0

θPh(fk)|S(fk)|2

Pw(fk)

+
N−1∑
k=0

(
θPh(fk)|S(fk)|2

Pw(fk)

)2

(1.18)

and

N−1∑
k=0

ln
θPh(fk)|S(fk)|2 + Pw(fk)

Pw(fk)
≈

N−1∑
k=0

θPh(fk)|S(fk)|2

Pw(fk)

−1

2

N−1∑
k=0

(
θPh(fk)|S(fk)|2

Pw(fk)

)2

, (1.19)

29



we have in the small signal case,

D(p0||p1) ≈
1

4

N−1∑
k=0

(
θPh(fk)|S(fk)|2

Pw(fk)

)2

. (1.20)

Moreover, the KLD D(p1||p0) can also be approximated in the small signal case as

D(p1||p0) = E1(ln
p1
p0
)

= −E1(ln p0 − ln p1)

= −1

2

N−1∑
k=0

[
ln

θPh(fk)|S(fk)|2 + Pw(fk)

Pw(fk)

+
θPh(fk)|S(fk)|2 + Pw(fk)

θPh(fk)|S(fk)|2 + Pw(fk)
− θPh(fk)|S(fk)|2 + Pw(fk)

Pw(fk)

]
≈ 1

4

N−1∑
k=0

(
θPh(fk)|S(fk)|2

Pw(fk)

)2

, (1.21)

where E1(·) denotes taking expectation under p1(x). This proves the asymptotic

symmetry of D(p1||p0) and D(p0||p1) in the small signal case. Both KLD mea-

sures are locally equal to 1
2
θ2I(0), which is 1

2
d2LMP in the small signal case. This

result may also be obtained more generally by noting that the KL measure is a

Riemannian metric when we consider the Riemannian space of PDFs [16].

Appendix C - Derivation of Relationship Between KLD, SNR, and MI

In this appendix we prove that for x and t jointly distributed random variables

that

D(p1(x)||p0(x)) = Et[D(p1(x|t)||p0(x))]− I(x; t) (1.22)

where π(t) is the PDF of t. The derivation is straightforward.

ln
p1(x)

p0(x)
= ln

p1(x|t)
p0(x)

− ln
p1(x|t)
p1(x)

= ln
p1(x|t)
p0(x)

− ln
p1(x, t)

p1(x)π(t)
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and taking the expected value with respect to p1(x, t) produces

Ex,t

[
ln

p1(x)

p0(x)

]
= EtEx|t

[
ln

p1(x|t)
p0(x)

]
− Ex,t

[
ln

p1(x, t)

p1(x)π(t)

]
to yield (1.11).

Appendix D - Evaluation of KLD, SNR, and MI Terms

The output SNR is now shown to be

Et

[
D(p1(x|t)||p0(x))

]
=

1

2

N−1∑
k=0

θPh(fk)|S(fk)|2

Pw(fk)

Firstly, we have for the asymptotic conditional PDF for a given t, using a

discrete approximation to the integral

ln p1(x|t) = −N

2
ln 2π − 1

2

N−1∑
k=0

lnPw(fk)−
1

2

N−1∑
k=0

Ix|t(fk)

Pw(fk)

where

Ix|t(fk) =
1

N

∣∣∣∣N−1∑
n=0

(x[n]− t[n]) exp(−j2πfkn)

∣∣∣∣2
is the periodogram of the received data x under the assumption of a fixed and

known target t, and the asymptotic PDF of the received data x under H0

ln p0(x) = −N

2
ln 2π − 1

2

N−1∑
k=0

lnPw(fk)−
1

2

N−1∑
k=0

Ix(fk)

Pw(fk)
. (1.23)

Then,

ln p1(x|t)− ln p0(x) =
1

2

N−1∑
k=0

Ix(fk)− Ix|t(fk)

Pw(fk)
(1.24)

Therefore,

Et [D(p1(x|t)||p0(x))] =

∫
t

∫
x

p(t)p1(x|t)(ln p1(x|t)(x)− ln p0(x))dxdt

=
1

2

∫
x

p1(x)
N−1∑
k=0

Ix(fk)− Pw(fk)

Pw(fk)
dx
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where we have used Et[Ix|t(fk)] = Pw(fk). Continuing we have

Et [D(p1(x|t)||p0(x))] =
1

2

N−1∑
k=0

Pt(fk)

Pw(fk)

=
1

2

N−1∑
k=0

θ|S(fk)|2Ph(fk)

Pw(fk)
(1.25)

where we use the assumption that the target t is independent of the noise w under

H1 and Px(fk) = Pt(fk) + Pw(fk) = θPh(fk)|S(fk)|2 + Pw(fk).

To evaluate I(x; t) we proceed as follows.

I(x; t) =

∫
x

∫
t

p1(x, t) ln
p1(x, t)

p1(x)p(t)
dxdt

= Ex,t[ln p1(x|t)− p1(x)]

= Ex,t

[
− (N/2) ln 2π − 1

2

N−1∑
k=0

lnPw(fk)−
1

2

N−1∑
k=0

Ix|t(fk)

Pw(fk)

+(N/2) ln 2π +
1

2

N−1∑
k=0

ln[θPh(fk)|S(fk)|2 + Pw(fk)]

+
1

2

N−1∑
k=0

Ix(fk)

θPh(fk)|S(fk)|2 + Pw(fk)

]

=
1

2

N−1∑
k=0

ln
θPh(fk)|S(fk)|2 + Pw(fk)

Pw(fk)
− 1

2

N−1∑
k=0

Pw(fk)

Pw(fk)

+
1

2

N−1∑
k=0

θPh(fk)|S(fk)|2 + Pw(fk)

θPh(fk)|S(fk)|2 + Pw(fk)

=
1

2

N−1∑
k=0

ln

(
1 +

θPh(fk)|S(fk)|2

Pw(fk)

)
.
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Abstract

Space-time adaptive processing (STAP) has become a leading technique in

airborne radar signal processing. One of its key steps is using the interference-plus-

noise covariance matrix to form an adaptive filter. The optimality of the STAP

assumes the stationarity of the covariance matrices. In practice, however, the

covariance matrices may be nonstationary. If such nonstationarity is not detected

and not well treated, the STAP system’s performance decreases substantially. In

this paper, we present two detectors for detecting the covariance matrix nonsta-

tionarity. We form the first detector based on the generalized lkelihood ratio test,

which inherits the property of asymptotically optimal detection performance. A

second detector employs the Rao test and requires significantly less computation

than the first detector, which can be the favorable choice when computational

load is of concern to the signal processing system. Numerical simulations are run

to test the performances of the detectors. The proposed detectors may be used as

a pre-processing step in STAP to choose applicable training data, and therefore

to improve STAP system’s performance.

2.1 Introduction

To indicate ground/airborne moving targets, the signal processing of a modern

airborne radar system commonly applies space-time adaptive processing (STAP)

[1]. The STAP technique was first introduced by Brennan and Reed in the 1970s

[2]. STAP techniques provide significant improvement in radar system output
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signal-to-interference-plus-noise-ratio (SINR) and better detection performance in

moving target indicator (MTI) system through its two-dimensional, space-time

or angle-Doppler, adaptive filtering [3]. Usually, the array of antenna elements

carried on an airborne platform provides the spatial frequencies, while a Fourier

transform of the slow-time voltage collected from pulsed-transmissions at certain

clutter range translates into a Doppler-frequency [4].

The statistical features of the interference and noise environment, in terms

of interference-plus-noise covariance matrices, play an essential role in adaptive

filtering. The covariance matrices are used to form the optimal weights for adaptive

filters. The well-known formula of the optimal weight w maximizing the SINR is

[5]

w = pC−1s,

where p is an arbitrary constant, C is the interference-plus-noise covariance matrix,

and s is the data vector under test. However, the covariance matrix C is usually

unknown in practice. Therefore, target-free training data, or so-called secondary

data, are collected from reference ranges close to the cell under test (CUT) to

estimate the covariance matrix in STAP [5]. A commonly used estimator of the

matrix is [6]

Ĉ =
1

K

K−1∑
k=0

xkx
H
k ,

where H denotes the Hermitian operator, K is the number of training data vectors

used in estimation, and xk for k = 0, 1, · · · , K − 1 are the training data vectors

assuming no target present from adjacent ranges of the CUT. Such an estimator
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assumes the training data vectors are independently identically distributed (IID)

or homogeneous in order to be accurate. In other words, the interference-plus-

noise covariance matrices for all training data are assumed to be stationary and

representative for that of the testing data. Nevertheless, such an assumption may

not hold in real scenarios. The reasons for such nonstationarity being present

include: variation in clutter amplitude or spectral spread due to a mixture of

clutter types, abrupt edge characteristics of clutter interfaces and so on [6].

Such nonstationarity causes a mismatch between the estimated and actual

covariance matrices of the data under test, and furthermore, leads to substantial

loss in SINR and detection performance of the STAP. The performance loss due to

the nonstationary covariance matrices has been studied in [7], [8], and [9]. Melvin

[9] reported that in nonstationary scenarios, STAP could lose SINR by an amount

ranging from a few tenths of a decibel to greater than 16 dB for specific cases.

Armstrong, et al. reported even great loss as in their analysis [8]. In fact, the op-

eration of STAP in the non-stationary, heterogeneous interference environment is

one of the current challenges and open problems [10], [11]. Many efforts have been

made to improve STAP algorithms for detection in heterogeneous environments:

[12] used reduced dimension/rank algorithms; [13] proposes estimation strategies

via structured interferences. Another way to deal with the nonstationarity is the

careful selection of the secondary data by discarding heterogeneous samples ac-

cording to certain criterion, e.g., power considerations or more complex metrics

such as nonhomogeneity statistics.
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It is therefore critical to detect the nonstationarity so that mismatching co-

variance matrices are not used to produce adaptive filtering weights. In this paper,

two well-behaved detectors to detect the nonstationarity of the covariance matrices

are proposed. First, we consider a detector based on generalized lkelihood ratio

test (GLRT), which has an asymptotic optimality property [14]. In STAP, the

computational load is often a necessary consideration [11]. To ease the computa-

tional load of the system, we also derive another nonstationarity detector based

on the Rao test. The Rao test has asymptotically equivalent performance to the

GLRT when the degree of the nonstationarity is small, yet it requires noticeably

lower computation cost as it only needs the maximum lkelihood estimate under

null hypothesis [14]. Several computer simulations are carried out to test the per-

formances of both detectors.

The remainder of this paper is organized as follows: Section 2.2 presents an

interference-plus-noise covariance matrix model and formulates the detection prob-

lem, Section 2.3 derives the GLRT detector and Rao test, Computer simulations

and the detectors’ performances are illustrated in Section 2.4; Finally, conclusions

are drawn in Section 2.5.

2.2 Problem Formulation

The radar system under consideration is a pulsed Doppler radar residing on an

airborne platform. The radar antenna is a uniformly spaced linear array antennas

of S elements. The radar transmits a burst of T pulses in a coherent processing

interval (CPI) and samples from N range rings are collected to cover the range
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interval. A radar data cube consists of S×T×N complex-valued data. Let the xstn

be the complex sample from the sth sensor element, tth pulse, at the nth range gate,

and xt,n be the S×1 vector of antenna element outputs, or a spatial snapshot, at tth

pulse and the nth range gate. Then a ST × 1 vector, xn = vec(x1,n x2,n · · · xT,n),

is termed the space-time snapshot. Now assume that we have observed data from

N snapshots, X = [x1 x2 · · · xN ] and each xn is a M × 1 complex vector with

M = ST , which obeys a zero-mean multivariate complex Gaussian distribution

xn ∼ CN (0,Cn) for n = 1, 2, · · · , N .

The airborne radar data mainly contains of three types of interference and

noise: clutter, jamming, and thermal noise, and these three unwanted components

are assumed to be mutually uncorrelated [6]. Clutter is the most complicated

because it is distributed in both angle and range and is spread in Doppler frequency

due to platform motion. The interference-plus-noise covariance matrices Cn for

n = 1, 2, · · · , N are modelled (with jamming neglected) as follows [7]

Cn = σ2I+ σ2
nR;n = 1, 2, · · · , N (2.1)

where σ2 is the power of the thermal noise, and σ2
n represents the range-dependent

clutter power. We do not assume prior knowledge of these power parameters.

They are considered as unknown real parameters in our model, which is often

the case in practice. I is an M ×M identity matrix representing the normalized

thermal noise covariance matrix. R is a normalized clutter covariance matrix for

the snapshots from all N considered ranges, which is not dependent on the range

and is assumed to be known. Typically, R is an Toeplitz-block-Toeplitz matrix,
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consisting of T × T block matrices, where each block is an S × S cross-covariance

of the spatial snapshots from two pulse repetition intervals (PRI) [6].

If the N range-dependent clutter power parameters σ2
n’s are all equal to each

other for all n = 1, 2, · · · , N , then the interference-plus-noise covariance matrices

for these N ranges data are stationary. Otherwise, there is a non-stationarity/non-

homogeneity existing. The objective is to detect such a nonstationarity if exists.

With the covariance matrix model shown in (2.1), the detection problem is equiv-

alent to choose between the following hypotheses

H0 : σ2
1 = σ2

2 = · · · = σ2
N = σ2

0, σ
2 = σ2

h0;

H1 : σ2
1, σ

2
2, · · · , σ2

N are not all equal, σ2 = σ2
h1,

where, σ2
h0 and σ2

h1 are the thermal noise power under H0 and H1 respectively.

Note that σ2’s are nuisance parameters for this hypothesis testing problem.

2.3 GLRT and Rao test for detecting the nonstationarity

In this section, we present two detectors for the aforementioned detection

problem. The first detector is formed by the GLRT, which is widely used because

of its asymptotic optimality property for large data records, and other favorable

properties such as consistency and unbiasedness [14]. The second detector employs

a Rao test which attains the same asymptotic (as N → ∞) detection performance

as the GLRT. For finite data records (finite N), the GLRT usually outperforms

Rao test. However, the Rao test only requires an MLE under the null hypothesis

H0, so its computational cost can be remarkably less than the GLRT. This can be a
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desirable property in real-time STAP where the volume of radar data processed is

huge. Trade-offs can be made between detection performance and computational

complexity when choosing an appropriate detector.

2.3.1 GLRT for detecting the nonstationarity

Next, GLRT detector for detecting the nonstationarity of the interference-

plus-noise covariance matrices is derived. It can be readily written

LG(X) =
p(X; σ̂2

1, σ̂
2
2, · · · , σ̂2

N , σ̂
2
h1,H1)

p(X; σ̂2
0, σ̂

2
h0,H0)

> γ (2.2)

where σ̂2
n are the MLEs of the unknown parameters σ2

n underH1 for n = 1, 2, · · · , N

; σ̂2
0 is the MLE of σ2

0 under H0; σ̂
2
h0 and σ̂2

h1 are the MLEs of σ2 under H0 and

H1, respectively. Let

Ĉ0 = σ̂2
0R+ σ̂2

h0I

Ĉn = σ̂2
nR+ σ̂2

h1I, n = 1, 2, · · · , N

Recall the assumption that xn ∼ CN (0,Cn) for n = 1, 2, · · · , N . Then we have

p(X; σ̂2
1, σ̂

2
2, · · · , σ̂2

N , σ̂
2
h1,H1) =

N∏
n=1

1

πM |Ĉn|
exp

(
−xH

n Ĉ
−1
n xn

)
and

p(X; σ̂2
0, σ̂

2
h0,H0) =

N∏
n=1

1

πM |Ĉ0|
exp

(
−xH

n Ĉ
−1
0 xn

)
,

where | · | denotes determinant. Then, the GLRT test statistic becomes

TG(X) = 2 lnLG(X)

= 2
N∑

n=1

[
ln

(
|Ĉ0|
|Ĉn|

)
+ xH

n

(
Ĉ−1

n − Ĉ−1
0

)
xn

]
> γ′,

(2.3)
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Note that, due to the complexity, approximate MLEs σ̂2
0, σ̂

2
1, · · · , σ̂2

N , σ̂
2
h0 and σ̂2

h1

must be used and are to be found in Appendix 2.5 instead of exact MLEs.

2.3.2 Rao test for detecting the nonstationarity

As shown in (2.3), the GLRT requires MLEs to be computed under both

hypotheses. When the computational cost becomes a priority, it is necessary to

have an alternative detector with lower computational cost and reasonably good

performance. The Rao test can serve well as such a detector. The following

presents the Rao test detector for detecting the nonstationarity. In order to form

the Rao test, the following parameter transformation is made first. Let

θs1 = σ2
1

θ1 = σ2
2 − σ2

1

θ2 = σ2
3 − σ2

1

...

θN−1 = σ2
N − σ2

1

θs2 = σ2 (2.4)

Denote θr = [θ1 θ2 · · · θN−1]
T which is an (N − 1) × 1 parameter vector for the

testing problem, θs = [θs1 θs2]
T which is a 2×1 nuisance parameter vector, and let

θ = [θT
r θT

s ]
T which is an (N + 1) × 1 vector containing all unknown parameters

for the testing problem. With these notations, the testing problem is equivalent
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to choosing between the following two hypotheses

H0 : θr = 0,θs

H1 : θr ̸= 0,θs

The Rao test can be determined to be

TR(X) =

∑N
n=2

[
tr(xnx

H
n Ĉ

−1
0 RĈ−1

0 )− tr(RĈ−1
0 )
]2

tr((RĈ−1
0 )2)

+

[∑N
n=2

(
tr(xnx

H
n Ĉ

−1
0 RĈ−1

0 )− tr(RĈ−1
0 )
)]2

tr((RĈ−1
0 )2)

where, Ĉ0 = σ̂2
0R+ σ̂2

h0I, and σ̂2
0, σ̂

2
h0 are the MLEs of σ2

0, σ
2 under H0 respectively.

The latters are derived in Appendix 2.5. The derivation of the Rao test is given

in Appendix 2.5. Note that the Rao test shown in (2.5) only requires MLEs under

H0.

2.4 Computer Simulations

Several computer simulations are carried out to evaluate the performances

of the proposed GLRT and Rao test detectors for the nonstationarity. To have

meaningful results relevant to a real scenario, we choose a normalized clutter

covariance matrix R likely to be of practical interest. The details of choosing the

R can be found in Appendix 2.5.

Some important parameter settings remaining the same for all simula-

tions are listed in Table 2.1, where we set the PRF to be 4KHz, the antenna
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platform speed to be 100 m/s, the radar operating wavelength to be 0.1 m,

and the sensor space to be 0.1 m. Since the number of array elements is

S = 5 and the number of pulses is T = 10, the corresponding clutter covariance

matrixR is a 50×50 matrix. The modulus of the designedR is given in Figure 2.4.

Moreover, the thermal noise power is σ2 = 1 under both hypotheses, the clut-

ter power under H0 is σ2
0 = 5 for all N ranges, and under H1 is σ2

n = 5α(n−1) with

0 < α < 1 so the clutter power decays with range bin number n.The nonstation-

arity modeled is the clutter power loss with range [6]. The decaying ratio α can

be viewed as an indicator of the degree of nonstationarity of the covariance ma-

trices. Two different simulation set-ups are considered by changing the decaying

ratio α parameter for comparison. In simulation 1, we let α = 0.9. The receiver

operating characteristic (ROC) curves, giving the relationship between detector’s

probability of detection (Pd) and probability of false alarm (Pfa), for both GLRT

and Rao detector are shown in Figure 2.1. Both the GLRT and Rao test detectors

yield “perfect” detection performance in this simulation setting. In simulation 2,

for α = 0.95, the degree of the nonstationarity of the covariance matrices becomes

smaller than that of simulation 1. The ROCs for simulation 2 are given in Figure

2.2. Comparing with the ROCs in simulation 1, both the GLRT and Rao test’s

performances drop by certain level, with the GLRT slightly outperforming the Rao

test.
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Figure 2.1. ROC curves for GLRT and Rao test detectors with α = 0.9 in Simu-
lation 1
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Figure 2.2. ROC curves for GLRT and Rao test detectors with α = 0.95 in
Simulation 2
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Table 2.1. Simulations Parameter Setting
Parameters Values
number of array element S 5
number of pulses per CPI T 10
number of ranges N 15
PRF fr 4KHz
receive platform speed v 100m/s
radar operating wavelength λ 0.1m
inter-sensor spacing d 0.1m

2.5 Conclusions

In STAP, the possible heterogeneity of the training data may result in a degra-

dation in performance and should be taken into consideration. In this paper, we

presented two detectors to detect the non-homogeneity of the clutter covariance

matrices, which further can be utilized to choose suitable training datasets for

STAP in airborne radar signal processing scenarios. The first detector employs

the GLRT; therefore, it inherits the asymptotic optimality property. The second

detector is based on the Rao test with its intrinsic property of only requiring MLEs

under the null hypothesis, so it can be used in a situation where the computational

cost of the STAP system is of high consideration. Simulations attempting to model

a practical situation are performed to test the performances of both detectors. The

proposed nonstationarity detectors in this paper can be used as a pre-processing

stage in STAP and by employing them, improved output SINR of STAP can be

obtained.
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Appendix A–Computing the MLEs σ̂2
n, σ̂

2
0,σ̂

2
h0 and σ̂2

h1

This section derives the approximate MLEs σ̂2
n’s for n = 1, 2, · · · , N and σ̂2

h1

under H1, and σ̂2
0, and the exact MLE σ̂2

h0 under H0.

Exact MLEs under H0

Under H0, σ
2
0 and σ2 = σ2

h0 are the unknown parameters. For n = 1, 2, .., N ,

we have xn ∼ CN (0,C0),where

C0 = σ2
0R+ σ2

h0I.

The joint probability distribution function (pdf) can be expressed as following:

p(X;σ2
0, σ

2) =
N∏

n=1

p(xn;σ
2
0, σ

2) =
N∏

n=1

1

πM |C|
exp

[
−xH

n C
−1xn

]
=

1

πMN |σ2
0R+ σ2I|N

exp

[
−

N∑
n=1

xH
n (σ

2
0R+ σ2I)−1xn

]
(2.5)

Maximizing (2.5) with respect to σ2
0 and σ2

h0 is equivalent to maximizing

ln p(X; σ2
0, σ

2
h0)

ln p(X; σ2
0, σ

2) = −MN ln π −N ln |σ2
0R+ σ2I| −

N∑
n=1

xH
n (σ

2
0R+ σ2I)−1xn.

Furthermore, it is equivalent to minimizing the following function J(σ2
0, σ

2) over

σ2
0 and σ2

J(σ2
0, σ

2) = N ln |σ2
0R+ σ2I|+

N∑
n=1

xH
n (σ

2
0R+ σ2I)−1xn

Unfortunately, an analytical solution is not available. One solution is to carrying

out a 2-dimensional grid-search over σ2
0 and σ2 to find the values that minimizes

J(σ2
0, σ

2). As an alternative we can reduce the computational cost by employing
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the transformation α = σ2
0/σ

2 and β = σ2. Then it becomes equivalent to a grid

search of α̂ which minimizes

J ′(α) = MN ln

(
1

NM

N∑
n=1

xH
n (αR+ I)−1xn

)
+N ln |αR+ I|

and

β̂ = σ̂2 =
1

NM

N∑
n=1

xH
n (α̂R+ I)−1xn

Then we have σ̂2 = β̂ and σ̂2
0 = α̂β̂. To this end, the approximate MLEs under

H0 are found.

Approximate MLEs under H1

Next, the approximate MLEs σ̂2
n’s for n = 1, 2, · · · , N and σ̂2

h1 under H1 are

derived. Under H1, xn ∼ CN (0,Cn) for n = 1, 2, · · · , N , where

Cn = σ2
nR+ σ2I.

Under the assumption that the xn’s are mutually independent, the PDF is

p(X;σ2
1, σ

2
2, . . . , σ

2
n, σ

2) =
N∏

n=1

p(xn;σ
2
n, σ

2) =
N∏

n=1

1

πM |Cn|
exp(−xH

n C
−1
n xn)

Using the fact that Cn is Hermitian and positive definite for n = 1, 2, · · · , N , we

can diagonalize Cn by a unitary matrix Vn such that VH
n Vn = VnV

H
n = I and

VH
n CnVn is a diagonal matrix whose diagonal elements are real. Then, we have

VH
n CnVn = VH

n (σ
2I+ σ2

nR)Vn

= σ2VH
n Vn + σ2

nV
H
n RVn

= σ2I+ σ2
nV

H
n RVn
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Since VH
n CnVn and σ2I are diagonal, VH

n RVn is also a diagonal matrix. Let

Λ = VH
n RVn which is defined as Λ = diag(λ1, λ2, . . . , λN). We use the linear

transformation

yn = VH
n xn, for n = 1, 2, · · · , N (2.6)

Thus, each yn is distributed according to

yn ∼ CN (0,V H
n CnV n)

∼ CN (0, σ2I+ σ2
nΛ)

Now, by letting Y = [y1 y2 · · · yN ], we can write

p(Y;σ2
1, σ

2
2, · · · , σ2

N , σ
2) =

N∏
n=1

p(yn;σ
2
n, σ

2)

=
N∏

n=1

(
1

πM |VH
n CnVn|

exp
[
−yH

n (V
H
n CnVn)

−1yn

])

=
N∏

n=1

(
1

πM |σ2I+ σ2
nΛ|

exp
[
−yH

n (σ
2I+ σ2

nΛ)−1yn

])

=
N∏

n=1

 1

πM
M∏
k=1

(σ2 + σ2
nλk)

exp

[
−

M∑
k=1

|[yn]k|2

σ2 + σ2
nλk

]

=
1

πMN
M∏
k=1

N∏
n=1

(σ2 + σ2
nλk)

exp

− M∑
k=1

N∑
n=1

N∑
n=1

|[yn]k|2

σ2 + σ2
nλk


Taking the ln(·) of both sides:

ln p(Y;σ2
1, σ

2
2, · · · , σ2

N , σ
2) = −MN ln π−

N∑
n=1

M∑
k=1

ln(σ2+σ2
nλk)−

N∑
n=1

M∑
k=1

|[yn]k|2

σ2 + σ2
nλk

Maximizing the ln p(Y; σ2
1, σ

2
2, · · · , σ2

N , σ
2) is equivalent to minimizing the following
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J ′′(σ2
1, σ

2
2, . . . , σ

2
n, σ

2):

J ′′(σ2
1, σ

2
2, . . . , σ

2
n, σ

2) =
N∑

n=1

M∑
k=1

ln(σ2 + σ2
nλk) +

N∑
n=1

M∑
k=1

|[yn]k|2

σ2 + σ2
nλk

(2.7)

To find the values of unknown parameters σ2
1, σ

2
2, . . . , σ

2
n, σ

2 that minimize J ′′, the

derivatives ∂J ′′

∂σ2
n
for n = 1, 2, · · · , N are formed as

∂J ′′

∂σ2
n

=
M∑
k=1

[
λk

σ2 + σ2
nλk

− λk|[yn]k|2

(σ2 + σ2
nλk)2

]

=
M∑
k=1

λk(σ
2 + σ2

nλk)− λk|[yn]k|2

(σ2 + σ2
nλk)2

The approximation (σ2 + σ2
nλk)

2 ≈ (σ2
nλk)

2 for σ2
nλk >> σ2,n = 1, 2, · · · , N (

i.e. high clutter-to-noise ratio) are made in order to proceed on an analytical

computation. By doing so, we have the following simplification

∂J ′′

∂σ2
n

≈ 1

σ4
n

M∑
k=1

λk(σ
2 + σ2

nλk)− λk|[yn]k|2

λ2
k

=
1

σ4
n

M∑
k=1

(
σ2 + σ2

nλk

λk

− |[yn]k|2

λk

)

=
1

σ4
n

M∑
k=1

(
σ2
n −

|[yn]k|2 − σ2

λk

)

Setting the derivative to be zero, we obtain the approximate MLEs σ̂2
n for n =

1, 2, · · · , N

∂J ′′

∂σ2
n

=
M∑
k=1

(
σ̂2
n −

|[yn]k|2 − σ2

λk

)

= Mσ̂2
n −

M∑
k=1

|[yn]k|2 − σ2

λk

= 0
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Solving the equation, produce

σ̂2
n =

1

M

M∑
k=1

|[yn]k|2

λk

− 1

M

M∑
k=1

σ2

λk

. (2.8)

Recalling that yn = VH
n xn, we have

σ̂2
n =

1

M

M∑
k=1

|[VH
n xn]k|2

λk

− 1

M

M∑
k=1

σ2

λk

=
1

M
xH
n VnΛ

−1VH
n xn −

σ2

M
tr(Λ−1),

and with Λ = VH
n RVn, we have

σ̂2
n =

1

M
xH
n R

−1xn −
σ2

M
tr(R−1) (2.9)

We now have the approximate MLEs σ̂2
n for n = 1, 2, · · · , N . The next step is

plugging these approximate MLEs into the PDF of data set X, so that the PDF

only depends on σ2 as follows:

p(X; σ̂2
1, σ̂

2
2, · · · , σ̂2

N , σ
2) =

N∏
n=1

p(xn; σ̂
2
n, σ

2)

=
N∏

n=1

1

πM |Ĉn|
exp(−xH

n Ĉ
−1
n xn)

=
1

πMN

N∏
n=1

1

|σ̂2
nR+ σ2I|

exp
[
−xH

n (σ̂
2
nR+ σ2I)−1xn

]
Then,

ln p(X; σ̂2
1, σ̂

2
2, · · · , σ̂2

N , σ
2) = −MN lnπ−

N∑
n=1

ln |σ̂2
nR+σ2I|−

N∑
n=1

xH
n (σ̂

2
nR+σ2I)−1xn.

Maximizing the log-lkelihood function above over σ2 is equivalent to minimizing

the following function over σ2

J2(σ̂
2
1, σ̂

2
2, · · · , σ̂2

N , σ
2) =

N∑
n=1

ln |σ̂2
nR+ σ2I|+

N∑
n=1

xH
n (σ̂

2
nR+ σ2I)−1xn
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Using (2.9), it reduces to minimizing

J ′
2(σ

2) = J(σ̂2
1, σ̂

2
2, · · · , σ̂2

N , σ
2)

=
N∑

n=1

ln

∣∣∣∣[ 1

M
xH
n R

−1xn −
σ2

M
tr(R−1)

]
R+ σ2I

∣∣∣∣
+

N∑
n=1

xH
n

([
1

M
xH
n R

−1xn −
σ2

M
tr(R−1)

]
R+ σ2I

)−1

xn

over σ2. We resort it to grid search to find the value of σ2 minimizing J ′
2(σ

2), and

the minimizing value is σ̂2 under H1. Then substituting σ̂2 of (2.9) produces the

remaining numerical MLEs σ̂2
n. Thus, all the approximate MLEs under H1 are

found.

Appendix B–Derivation of the Rao test Detector

This section derives the Rao test. Let

θs1 = σ2
1

θ1 = σ2
2 − σ2

1

θ2 = σ2
3 − σ2

1

...

θN−1 = σ2
N − σ2

1

θs2 = σ2 (2.10)

Denote θr = [θ1 θ2 · · · θN−1]
T which is the parameter vector for the testing

problem, θs = [θs1 θs2]
T which is the 2 × 1 nuisance parameter vector, and let

θ = [θT
r θT

s ]
T , which is a (N + 1)× 1 vector contains all unknown parameters for

the testing problem. With these notations, the testing problem is equivalent to
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testing between the following two hypotheses

H0 : θr = 0,θs

H1 : θr ̸= 0,θs

First,

ln p(X;σ2
ns′) = ln p(X;θ) = ln

1

πNM
−

N∑
n=1

[
xH
n C

−1
n xn + ln |Cn|

]
, (2.11)

where

C1 = σ2
1R+ σ2I = θs1R+ θs2I,

Cn = σ2
nR+ σ2I = (θn−1 + θs1)R+ θs2I, n = 2, 3, · · · , N.

Then,

∂ ln p(X;θ)

∂θ
=



−
∑N

n=1

∂[xH
n C−1

n xn+ln |Cn|]
∂θ1

−
∑N

n=1

∂[xH
n C−1

n xn+ln |Cn|]
∂θ2

...

−
∑N

n=1

∂[xH
n C−1

n xn+ln |Cn|]
∂θN−1

−
∑N

n=1

∂[xH
n C−1

n xn+ln |Cn|]
∂θs1

−
∑N

n=1

∂[xH
n C−1

n xn+ln |Cn|]
∂θs2



=



−∂[xH
2 C−2

2 x2+ln |C2|]
∂θ1

−∂[xH
3 C−3

3 x3+ln |C3|]
∂θ2
...

−∂[xH
NC−1

N xN+ln |CN |]
∂θN−1

−
∑N

n=1

∂[xH
n C−1

n xn+ln |Cn|]
∂θs1

−
∑N

n=1

∂[xH
n C−1

n xn+ln |Cn|]
∂θs2



(2.12)

Furthermore, we have for n = 2, 3, · · · , N

∂ ln |Cn|
∂θn−1

=
∂ ln |Cn|
∂σ2

n

= tr
(
R(σ2

nR+ σ2I)−1
)
= tr

(
RC−1

n

)
,
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∂xH
n C

−1
n xn

∂θn−1

=
∂xH

n C
−1
n xn

∂σ2
n

= tr(xnx
H
n

∂C−1
n

∂σ2
n

) = −tr(xnx
H
n C

−1
n RC−1

n );

And also for n = 1, 2, · · · , N

∂ ln |Cn|
∂θs1

= tr
(
RC−1

n

)
,

∂xH
n C

−1
n xn

∂θs1
= tr(xnx

H
n

∂C−1
n

∂θs1
) = −tr(xnx

H
n C

−1
n RC−1

n );

∂ ln |Cn|
∂θs2

= tr
(
C−1

n

)
,

∂xH
n C

−1
n xn

∂θs2
= tr(xnx

H
n

∂C−1
n

∂θs2
) = −tr(xnx

H
n C

−1
n C−1

n ).

Therefore,

∂ ln p(X;θ)

∂θ
=



tr(x2x
H
2 C

−1
2 RC−1

2 )− tr
(
RC−1

2

)
tr(x3x

H
3 C

−1
3 RC−1

3 )− tr
(
RC−1

3

)
...

tr(xNx
H
NC

−1
N RC−1

N )− tr
(
RC−1

N

)∑N
n=1

[
tr(xnx

H
n C

−1
n RC−1

n )− tr (RC−1
n )
]∑N

n=1

[
tr(xnx

H
n C

−1
n C−1

n )− tr (C−1
n )
]


(2.13)

Next, we are to compute the Fisher Information Matrix (FIM) I(θ) .

I(θ) = −E

(
∂2 ln p(X;θ)

∂θ∂θT

)
=

[
Irr Irs

Isr Iss

]

=

[
(N − 1)× (N − 1) (N − 1)× 2

2× (N − 1) 2× 2

] (2.14)

Notice that the block Irr is a diagonal matrix, given that Cn is not dependent

on θm−1 when n ̸= m for n,m = 2, 3, · · · , N .
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And, for n = 2, 3, · · · , N we have

[Irr]n−1,n−1 = −E

(
∂
[
tr(xnx

H
n C

−1
n RC−1

n )− tr(RC−1
n )
]

∂θn−1

)

= 2E
(
tr(xnx

H
n C

−1
n RC−1

n RC−1
n )
)
− tr

(
RC−1

n RC−1
n

)
= 2tr(CnC

−1
n RC−1

n RC−1
n )− tr

(
RC−1

n RC−1
n

)
= tr

(
RC−1

n RC−1
n

)
,

(2.15)

and

[Irs]n−1,1 = −E

(
∂
[
tr(xnx

H
n C

−1
n RC−1

n )− tr(RC−1
n )
]

∂θs1

)

= 2tr(CnC
−1
n RC−1

n RC−1
n )− tr

(
RC−1

n RC−1
n

)
= tr

(
RC−1

n RC−1
n

)
,

(2.16)

[Irs]n−1,2 = −E

(
∂
[
tr(xnx

H
n C

−1
n RC−1

n )− tr(RC−1
n )
]

∂θs2

)

= 2tr(C−1
n RC−1

n )− tr
(
RC−1

n C−1
n

)
= tr

(
C−1

n RC−1
n

)
.

(2.17)

With a similar calculation procedure, we have

[Iss]1,1 =
N∑

n=1

tr
(
RC−1

n RC−1
n

)
(2.18)

[Iss]1,2 =
N∑

n=1

tr
(
RC−1

n C−1
n

)
(2.19)

and

[Iss]2,2 =
N∑

n=1

tr
(
C−1

n C−1
n

)
(2.20)

With the property that FIM is a symmetric matrix, we already have it as:
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I(θ) =


tr
(
(RC−1

2 )2
)

0 · · · tr
(
(RC−1

2 )2
)

tr
(
RC−2

2

)
0 tr

(
(RC−1

3 )2
)

· · · tr
(
(RC−1

3 )2
)

tr
(
RC−2

3

)
...

... · · · ...
...

tr
(
(RC−1

2 )2
)

tr
(
(RC−1

3 )2
)

· · ·
∑N

n=1 tr ((RC−1
n )2)

∑N
n=1 tr (RC−2

n )

tr
(
RC−2

2

)
tr
(
RC−2

3

)
· · ·

∑N
n=1 tr (RC−2

n )
∑N

n=1 tr (C
−2
n )


(2.21)

Under H0, where C1 = C2 = · · · = CN = Ĉ0 = θ̂s1R + θ̂s2I = σ̂2
0R + σ̂2

h0I,

with σ̂2
0 and σ̂2

h0 denoting the MLEs of σ2
0 and σ2 under H0 respectively, the FIM

reduces to

I(θ)|H0
=


tr((RĈ−1

0 )2) 0 · · · tr((RĈ−1
0 )2) tr(RĈ−2

0 )

0 tr((RĈ−1
0 )2) · · · tr((RĈ−1

0 )2) tr(RĈ−2
0 )

...
... · · · ...

...

tr((RĈ−1
0 )2) tr((RĈ−1

0 )2) · · · Ntr((RĈ−1
0 )2) Ntr(RĈ−2

0 )

tr(RĈ−2
0 ) tr(RĈ−2

0 ) · · · Ntr(RĈ−2
0 ) Ntr(Ĉ−2

0 )

(2.22)

=

 tr((RĈ−1
0 )2)I(N−1)×(N−1) tr((RĈ−1

0 )2)1(N−1)×1 tr(RĈ−2
0 )1(N−1)×1

tr((RĈ−1
0 )2)11×(N−1) Ntr((RĈ−1

0 )2) Ntr(RĈ−2
0 )

tr(RĈ−2
0 )11×(N−1) Ntr(RĈ−2

0 ) Ntr(Ĉ−2
0 )


(2.23)

In the Rao test, we treat θs as a nuisance parameter, so we calculate the FIM
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of the testing parameter vector θr as follows.

[I(θ)]θrθr

∣∣∣
H0

=
[
Irr − IrsI

−1
ss Isr

]∣∣
H0

(2.24)

= tr((RĈ−1
0 )2)I(N−1)×(N−1)

−


tr
(
(RĈ−1

0 )2
)

tr
(
RĈ−2

0

)
tr
(
(RĈ−1

0 )2
)

tr
(
RĈ−2

0

)
...

tr
(
(RĈ−1

0 )2
)

tr
(
RĈ−2

0

)

 · 1

N

[
tr((RĈ−1

0 )2) tr(RĈ−2
0 )

tr(RĈ−2
0 ) tr(Ĉ−2

0 )

]−1

.


tr
(
(RĈ−1

0 )2
)

tr
(
RĈ−2

0

)
tr
(
(RĈ−1

0 )2
)

tr
(
RĈ−2

0

)
...

tr
(
(RĈ−1

0 )2
)

tr
(
RĈ−2

0

)



T

To compute the inverse of FIM [I−1(θ)]θrθr

∣∣∣
H0

we apply Woodbury’s identity

(
Irr − IrsI

−1
ss Isr

)−1
∣∣∣
H0

=
[
I−1
rr + I−1

rr Irs(Iss − IsrI
−1
rr Irs)

−1IsrI
−1
rr

]∣∣
H0

It can be shown that

(Iss − IsrI
−1
rr Irs)

∣∣
H0

=

 tr((RĈ−1
0 )2) tr(RĈ−2

0 )

tr(RĈ−2
0 )

Ntr(Ĉ−2
0 )tr((RĈ−1

0 )2)−(N−1)tr2(RĈ−2
0 )

tr((RĈ−1
0 )2)


and then

(Iss − IsrI
−1
rr Irs)

−1
∣∣
H0

=
1

Ntr(Ĉ−2
0 )tr((RĈ−1

0 )2)−Ntr2(RĈ−2
0 )

·

 Ntr(Ĉ−2
0 )tr((RĈ−1

0 )2)−(N−1)tr2(RĈ−2
0 )

tr((RĈ−1
0 )2)

−tr(RĈ−2
0 )

−tr(RĈ−2
0 ) tr((RĈ−1

0 )2)


It can be shown that

Irs(Iss − IsrI
−1
rr Irs)

−1Isr
∣∣
H0

= tr((RĈ−1
0 )2)


1 1 · · · 1

1 1 · · · 1
...

... · · · ...

1 1 · · · 1


(N−1)×(N−1)
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(
Irr − IrsI

−1
ss Isr

)−1
∣∣∣
H0

=
[
I−1
rr + I−1

rr Irs(Iss − IsrI
−1
rr Irs)

−1IsrI
−1
rr

]∣∣
H0

=
1

tr((RĈ−1
0 )2)




1 0 · · · 0

0 1 · · · 0
...

... · · · ...

0 0 · · · 1

+


1 1 · · · 1

1 1 · · · 1
...

... · · · ...

1 1 · · · 1




(2.25)

Finally, the Rao test can be formulated as follows

TR(X) =

[
∂ ln p(X;θ)

∂θr

T [
I−1(θ)

]
θrθr

∂ ln p(X;θ)

∂θr

]∣∣∣∣∣
H0

(2.26)

=


tr(x2x

H
2 Ĉ

−1
0 RĈ−1

0 )− tr
(
RĈ−1

0

)
tr(x3x

H
3 Ĉ

−1
0 RĈ−1

0 )− tr
(
RĈ−1

0

)
...

tr(xNx
H
NĈ

−1
0 RĈ−1

0 )− tr
(
RĈ−1

0

)



T

· 1

tr((RĈ−1
0 )2)




1 0 · · · 0

0 1 · · · 0
...

... · · · ...

0 0 · · · 1

+


1 1 · · · 1

1 1 · · · 1
...

... · · · ...

1 1 · · · 1




·


tr(x2x

H
2 Ĉ

−1
0 RĈ−1

0 )− tr
(
RĈ−1

0

)
tr(x3x

H
3 Ĉ

−1
0 RĈ−1

0 )− tr
(
RĈ−1

0

)
...

tr(xNx
H
NĈ

−1
0 RĈ−1

0 )− tr
(
RĈ−1

0

)

 (2.27)

=

∑N
n=2

[
tr(xnx

H
n Ĉ

−1
0 RĈ−1

0 )− tr(RĈ−1
0 )
]2

tr((RĈ−1
0 )2)

+

[∑N
n=2

(
tr(xnx

H
n Ĉ

−1
0 RĈ−1

0 )− tr(RĈ−1
0 )
)]2

tr((RĈ−1
0 )2)

where, Ĉ0 = σ̂2
0R+ σ̂2

h0I, and σ̂2
0, σ̂

2
h0 are MLE of the σ2

0, σ
2 under H0 respectively,

which are derived in Appendix A.
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Appendix C–Design of normalized covariance matrix R

This section presents in detail the choice of the normalized covariance matrix

R used in the simulations. The clutter covariance matrix R can be modeled as

Toeplitz-block-Toeplitz structure assuming that the clutter patches are mutually

uncorrelated and the antenna is an ideal uniform linear array [6]. It can be briefly

summarized as follows. The clutter component of a certain space-time snapshot

from nth range cell can be expressed as [6]

xc =
Nc∑
k=1

βks(w̄k, v̄k)

where βk is the random amplitude from the kth clutter patch, Nc is the number of

independent clutter patches evenly distributed in a certain range, and s(w̄k, v̄k) is

the spatial-temporal steering vector at kth clutter patch

s(w̄k, v̄k) = b(w̄k)⊗ a(v̄k)

where

b(w̄k) = [1 ej2πw̄k · · · ej(S−1)πw̄k ]T

is the S × 1 temporal steering vector with normalized Doppler frequency w̄k and

a(v̄k) = [1 ej2πv̄k · · · ej(T−1)πv̄k ]T

represents T ×1 the spatial steering vector at normalized spatial frequency v̄k, and

the operator ⊗ is the Kronecker product. Also

w̄k =
2v

frλ
sin θk cosϕk

60



v̄k =
d

λ
sin θk cosϕk

where, fr is the PRF, λ is the radar operating wavelength, and d is the inter-sensor

distance, the values used can be found in Table 2.1, also θk and ϕk are the azimuth

and elevation of kth clutter patch respectively. Then the clutter covariance can be

expressed as

R = E{xcx
H
c }

= σ2′
Nc∑
k=1

ϵk[b(w̄k)b(w̄k)
H ]⊗ [a(v̄k)a(v̄k)

H ], (2.28)

where σ2′ and ϵk are constants. Thus, the clutter covariance matrix R is an S×S

block matrix, and each block is a T × T cross-covariance of the spatial snapshots

from two pulsess, which is Toeplitz. Thus, the R is of Toeplitz-block-Toeplitz

strucure.

In our simulation, the R is formed by the inverse of a two-dimensional Fourier

transform of an angle-Doppler power spectral density (PSD). In general, the

clutter ridge,which is the locus of the PSD distribution, may span a portion of the

Doppler space, or the whole Doppler space, depending on the platform velocity,

the operating wavelength, and the radar pulse repetition frequency (PRF) [6].

Also, the Doppler spectrum of the ground clutter can be modeled as Gaussian

model, as reported in [15] and [16]. Therefore, the angle-Doppler PSD of the

clutter is modelled as shown in Figure 2.3., which is a two dimensional Gaussian

distribution along the clutter ridge.
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Figure 2.3. Angle-Doppler Power Spectral Density of the normalized clutter co-
variance R

With the parameter settings in Table 2.1, we have β = 0.25, the slope of

the clutter line, representing the number of half-interelement spacings traversed

by the platform during one PRI. The two-dimensional inverse Fourier transform

of the clutter angle-Doppler PSD results in the the clutter covariance matrix R,

whose modulus is plotted in Figure 2.4.
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Abstract

The Rao test is an important method in signal detection in the presence of

unknown parameters. The traditional approach to the problem when the unknown

parameters are complex-valued is to form a corresponding real-valued parameter

vector and then to use the real Rao test. Alternatively, we present a complex

parameter Rao test by reformulating the calculations with respect to the complex-

valued quantities directly. Two important examples of the application of the com-

plex parameter Rao test are given to illustrate the procedure.

3.1 Introduction

The Rao test is an important and useful tool in signal detection. It is asymp-

totically equivalent to the generalized likelihood ratio test (GLRT). However, it

does not require the maximum likelihood estimates (MLEs) of testing parameters

and only needs the MLEs of nuisance parameters (if present) under the null hypoth-

esis [1, pp. 209-217]. Therefore, it often has lower computational complexity and is

much easier to use in practice. These properties of the Rao test are advantageous

and desirable especially in applications when computational cost is of concern.

As an example, compared with GLRT, the Rao test reduces computational cost

substantially, but maintains good performance in detecting the nonstationarity

of radar signal in space-time adaptive processing [4]. Moreover, the Rao test is

employed to form an adaptive detector for testing the presence of a deterministic

signal with unknown parameter in noise of unknown autoregressive parameterized

spectra [5]. It has been shown that under several detection problems commonly
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encountered in practice such as the detection of subspace signals in the presence

of subspace interference and Gaussian noise with unknown covariance, the Rao

test is statistically equivalent to the GLRT and Wald test [6]. When the unknown

parameters are real-valued, the Rao test is well-known and can be found in [1, pp.

209-217].

However, in many applications, such as radar [18] and sonar [19], the data and

unknown parameters are both complex-valued. Traditionally, to find the Rao test

for such problems requires one to form real-valued vectors and substitute them

into the Rao test. The procedure of this straightforward approach can be found in

several literature with practical applications. For example, it is used in distributed

target detection in compound-Gaussian noise [14], in testing a target in partially

homogeneous environment [15] and in testing a signal in homogeneous environment

when the covariance matrix is unknown [16]. As an alternative and hopefully more

insightful procedure, a more natural method is presented that formulates the Rao

test for complex-valued data and parameters, termed the complex parameter Rao

test. A similar attempt can be found in [3]; however, the extension of the Rao test

to complex parameters given there is only valid (if ignoring a factor of two) under

the special condition of the real Fisher information matrix (FIM) of the unknown

parameter having a special form. Note that even under the special condition,

the Rao test statistic given in [3] is incorrect by a factor of two. This can cause

problems if the usual asymptotic statistics for the Rao test [1, pp. 473-526] are

used to compute the probabilities of false alarm and detection.
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The complex parameter Rao test can be applied to many applications. For

instance, the Rao test for complex parameters derived in [3] have been applied

to detect a subspace signal in colored noise with unknown covariance matrix in

[7],to detect a distributed target in interference and noise with unknown covariance

matrix in [8]. In addition, the complex parameter Rao test derived in this paper

has been used to test the bandedness of a complex-valued covariance matrix [17].

The paper is organized as follows. Section 3.2 describes the standard real

parameter and real data Rao test. The extension to the complex data and complex

parameters is given in Section 3.3. A simplified version, which is valid when the

FIM satisfies certain conditions is derived in Section 3.4. In Section 3.5, some

important practical examples, such as complex linear model and autoregressive

model, are used to illustrate the theorems. Finally, conclusions are given in Section

3.6.

Notation: Scalar quantities are denoted by lower-case symbols. Vectors are

denoted by boldface lowercase symbols. The matrices are denoted by boldface

uppercase symbols (except Θ̃, which is a vector). All complex-valued quantities

are labeled with “tilde” while real-valued quantities are not. The symbols T , H

and ∗ denote transpose, Hermitian and complex conjugate respectively. A lower-

case letter with footnote such as bi and bij denote the ith element of a vector b

and ijth element of a matrix B respectively. The symbol “| · |” represents the

modulus of a complex scalar. The symbol E(·) denotes expectation of a random

quantity. vec(·) represents the vectorization of a matrix. j =
√
−1. Lastly, ⊗
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denotes Kronecker product.

3.2 Real Vector Parameter Rao Test

We first set up some notations that will be useful in the formulation of the

complex parameter Rao test. Then, we summarize the usual real vector approach

to implementing the test. Suppose we observe a complex data vector x̃ = u+ jv ∈

CN×1. We form the real data vector as x = [uT vT ]T ∈ R2N×1. Similarly, assume

the probability density function (PDF) depends upon the unknown parameters

θ̃ = α + jβ, where α ∈ Rp×1, β ∈ Rp×1 and θ̃ ∈ Cp×1. We denote ξ = [αT βT ]T ,

so ξ ∈ R2p×1. Note that we can represent the PDF as px(x; ξ) or equivalently as

px̃,x̃∗(x̃, x̃∗; θ̃, θ̃
∗
). For the simplicity of notation, we will write it as px̃(x̃; θ̃).

We focus on discussing complex Rao test when no nuisance parameter is

present in this paper, and the case of nuisance parameters will be treated in a

follow-up work. The real Rao test statistic for deciding between the hypotheses

H0 : ξ = ξ0 versus H1 : ξ ̸= ξ0 (without nuisance parameters) is [1, pp. 221-230]

TR(x) =
∂ ln px(x; ξ)

∂ξ

∣∣∣∣T
ξ0

I−1(ξ0)
∂ ln px(x; ξ)

∂ξ

∣∣∣∣
ξ0

, (3.1)

where I(ξ) is the FIM of ξ and can be partitioned as

I(ξ) =

[
Iαα Iαβ

Iβα Iββ

]
(3.2)

where Iαα, Iββ, Iβα, Iαβ ∈ Rp×p, ITαα = Iαα, I
T
ββ = Iββ, and ITαβ = Iβα.

Our objective is to replace the real parameter vector ξ by the complex pa-

rameter vector θ̃. We will derive the complex parameter Rao test statistic for

the unknown complex parameter θ̃ by carrying out the mathematical operations
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with respect to the complex-valued quantities instead of using the real Rao test

statistic of (3.1). Note that in doing so the PDF will then be expressed in terms

of its original complex data x̃ and complex parameter vector θ̃ as px̃(x̃; θ̃). This

allows us to differentiate the log-likelihood function with respect to the complex

parameters while also maintaining the complex nature of the data, thus leading to

a more intuitive and direct means of constructing the Rao test.

3.3 Complex Parameter Rao Test

Observe that px̃(x̃; θ̃) is a real function of θ̃ and thus, must depend on θ̃

and θ̃
∗
. To make this apparent, we will denote the PDF px̃(x̃; θ̃) at times as

px̃(x̃; Θ̃) ≡ px̃(x̃; θ̃, θ̃
∗
), where Θ̃ =

[
θ̃
T
θ̃
H
]T

and Θ̃ ∈ C2p×1 [9]. Also, for

z̃ = x + jy we have 2x = z̃ + z̃∗ and 2jy = z̃ − z̃∗, and the complex partial

derivatives of a real scalar function g(z̃, z̃∗) ≡ f(x, y) are given by [9]

∂g(z̃, z̃∗)

∂z̃
=

1

2

(
∂f

∂x
− j

∂f

∂y

)
(3.3)

and

∂g(z̃, z̃∗)

∂z̃∗
=

1

2

(
∂f

∂x
+ j

∂f

∂y

)
. (3.4)

Finally, for a real function g of complex vectors z̃ and z̃∗, the complex gradient is

given by [
∂g(z̃, z̃∗)

∂z̃

]
i

=
∂g(z̃, z̃∗)

∂z̃i
(3.5)[

∂g(z̃, z̃∗)

∂z̃∗

]
i

=
∂g(z̃, z̃∗)

∂z̃∗i
. (3.6)

With these definitions, we are able to formulate the complex parameter Rao

test.
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Theorem 1 (Complex parameter Rao test). The complex parameter Rao test

statistic for testing the hypotheses H0 : θ̃ = θ̃0 versus H1 : θ̃ ̸= θ̃0 is given as

TR̃(x̃) =
∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗

∣∣∣∣∣
H

Θ̃0

Ĩ
−1
(Θ̃0)

∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗

∣∣∣∣∣
Θ̃0

(3.7)

where

∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗ =

[
∂ ln px̃(x̃;Θ̃)

∂θ̃∗
∂ ln px̃(x̃;Θ̃)

∂θ̃

]
, (3.8)

and the 2p× 2p Fisher information matrix is

Ĩ(Θ̃) = E

(
∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗

∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗

H
)

(3.9)

=

[
Ĩ(θ̃) J̃(θ̃)

J̃∗(θ̃) Ĩ∗(θ̃)

]
. (3.10)

Each block in the FIM has dimension p× p and is defined as

Ĩ(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∂ ln px̃(x̃; θ̃)

∂θ̃
∗

H
)

(3.11)

and

J̃(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∂ ln px̃(x̃; θ̃)

∂θ̃

H
)
. (3.12)

The elements of the variance matrices are more conveniently evaluated by using

second derivatives as

[ Ĩ(θ̃)]kl = −E

(
∂2 ln px̃(x̃; θ̃)

∂θ̃∗k∂θ̃l

)
(3.13)

and

[ J̃(θ̃)]kl = −E

(
∂2 ln px̃(x̃; θ̃)

∂θ̃∗k∂θ̃
∗
l

)
(3.14)

for k = 1, 2, . . . , p and l = 1, 2, . . . , p.
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The complex parameter form of the Rao test statistic as given by (3.7) is

numerically identical to the Rao test statistic as given by (3.1) so that TR̃(x̃) =

TR(x).

Note that Ĩ(Θ̃) is a 2p × 2p complex hermitian matrix, and hence, TR̃(x̃) is

real.

The reader should observe that no assumptions have been made on the form

of I(ξ). For a proof of this theorem see Appendices A and C.

3.4 Complex Parameter Rao Test - Special Fisher Information Matrix

Next we consider a special form of the complex FIM, which is common in

practice.

Theorem 2 (Special Form of Fisher Information Matrix). Assume the real FIM

as given by (3.2) has the special form

I(ξ) = 2

[
E −F

F E

]
(3.15)

where E ∈ Rp×p, F ∈ Rp×p so that I(ξ) ∈ R2p×2p, ET = E, and FT = −F. Then,

TR(x) can be equivalently expressed as

TR̃(x̃) = 2
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣∣
H

θ̃0

Ĩ−1(θ̃0)
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣∣
θ̃0

(3.16)

where

Ĩ(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∂ ln px̃(x̃; θ̃)

∂θ̃
∗

H
)
. (3.17)

Note that Ĩ(θ̃) is a p× p complex Hermitian matrix.
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For a proof see Appendix B. In this case it is shown in Appendix B that

J̃(θ̃) = 0 and therefore the complex FIM of (3.9) is block diagonal, leading to the

simplification of the complex parameter Rao test.

3.5 Some Examples

In this section we apply the theorems to two important problems. The first

case is the general complex classical linear model [2, pp. 529-531], in which the

Fisher information matrix takes on the special form. The second case is the testing

of complex covariance matrix parameters in a complex Gaussian distribution, in

which no special form applies in general.

3.5.1 Complex Classical Linear Model

Assume the data is modeled as follows [2, pp. 529-531]

x̃ = H̃θ̃ + w̃, (3.18)

where H̃ ∈ CN×p is a known matrix with N > p and full rank, θ̃ is an unknown

complex p × 1 parameter vector, and w̃ is a complex N × 1 random vector with

PDF w̃ ∼ CN (0, C̃), with C̃ ∈ CN×N . Then, by the properties of the complex

Gaussian PDF

x̃ ∼ CN (H̃θ̃, C̃) (3.19)

with C̃ not dependent on θ̃ or θ̃
∗
. The PDF is (omitting the θ̃

∗
dependence)

p(x̃; θ̃) =
1

πN det (C̃)
exp [−(x̃− H̃θ̃)HC̃−1(x̃− H̃θ̃)]. (3.20)

For this example it has been shown that the real FIM I(ξ) has the special

form required [2, pp.529-531]. Hence, we can use Theorem 2 in formulating the
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Rao test. We use some previously derived results which are [1, pp.484-485]

∂ ln px̃(x̃; θ̃)

∂θ̃
∗ = H̃HC̃−1(x̃− H̃θ̃), (3.21)

and

Ĩ(θ̃) = H̃HC̃−1H̃. (3.22)

Inserting these expressions into (3.16), we have that

TR̃(x̃) = 2(x̃− H̃θ̃0)
HC̃−1H̃(H̃HC̃−1H̃)−1H̃HC̃−1(x̃− H̃θ̃0). (3.23)

For the particular case in which θ̃0 = 0 and C̃ = I, this reduces to

TR̃(x̃) =
x̃HH̃(H̃HH̃)−1H̃H x̃

σ2/2
, (3.24)

which agrees with the generalized likelihood ratio test (GLRT) previously derived

results in [1, pp. 484-485]. In fact, the result that the GLRT, the Rao test, and

the Wald test are identical for the real linear model is also true for the complex

linear model. Another example follows.

3.5.2 Complex autoregressive filter parameter

To illustrate that the special form of the real FIM does not always hold, we

consider the problem of testing the complex parameter of a complex autoregressive

(AR) random process. Even this simple case can involve some difficult calculations

so that we restrict our example to a data set with N = 3.

In addition, it shows that the special FIM form does not hold in general for the

unknown parameters of the covariance matrix of a multivariate complex Gaussian
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PDF, with proof given in Appendix D and calculations of the AR example are

consistent with the general results.

Suppose we have a complex Gaussian AR(1) random process sampled atN = 3

times to form the complex data vector x̃ = [x̃1 x̃2 x̃3]
T . Assuming the process is

zero mean and has parameters ã, the filter parameter, and σ2
ũ = 1, the excitation

noise variance. That is, for n = 2, 3, · · · , N ,

x̃n = −ãx̃n−1 + ũn (3.25)

where ũn is a complex white Gaussian noise with variance σ2
ũ = 1. Then, it has

the following PDF

px̃(x̃; ã) =
1

π3 det(C̃)
exp

[
−x̃HC̃−1x̃

]
, (3.26)

where the covariance matrix is [13, pp.114-119]

C̃ =
1

1− |ã|2

 1 −ã∗ (−ã∗)2

−ã 1 −ã∗

(−ã)2 −ã 1

 . (3.27)

The inverse covariance matrix is

C̃−1 =

 1 ã∗ 0

ã 1 + ãã∗ ã∗

0 ã 1

 (3.28)

Upon differentiating, we have

∂ ln px̃(x̃; ã)

∂ã
= −∂ ln det(C̃)

∂ã
− ∂x̃HC̃−1x̃

∂ã

= − ã∗

1− |ã|2
− (x̃2

∗x̃1 + ã∗x̃2
∗x̃2 + x̃3

∗x̃2).

(3.29)
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Now to determine whether J̃∗(θ̃) = J̃∗(θ̃) = 0, we have from (3.14) with θ̃ = ã

and Θ̃ = [ã ã∗]T

E

(
∂ ln px̃(x̃; ã)

∂ã

∂ ln px̃(x̃; ã)

∂ã

)
= −E

(
∂2 ln px̃(x̃; ã)

∂ã∂ã

)
=

(ã∗)2

(1− |ã|2)2
(3.30)

̸= 0,

showing that the special form does not hold for ã ̸= 0. Hence, the Rao test must

make use of Theorem 1. Then we have from (3.29) that

∂ ln px̃(x̃; ã)

∂ã∗
= − ã

1− |ã|2
− x̃2x̃1

∗ − ã|x̃2|2 − x̃3x̃2
∗. (3.31)

Thus,  ∂ ln px̃(x̃;ã)
∂ã∗

∂ ln px̃(x̃;ã)
∂ã

 = −

 ã
1−|ã|2 + ã|x̃2|2 + x̃2x̃1

∗ + x̃3x̃2
∗

ã∗

1−|ã|2 + ã∗|x̃2|2 + x̃2
∗x̃1 + x̃3

∗x̃2

 . (3.32)

To find the FIM we use the second derivative form from (3.13) and (3.14)

Ĩ

 ã

ã∗

 =

 −E
[
∂2 ln px̃(x̃;ã)

∂ã∗∂ã

]
−E

[
∂2 ln px̃(x̃;ã)

∂ã∗∂ã∗

]
−E

[
∂2 ln px̃(x̃;ã)

∂ã∂ã

]
−E

[
∂2 ln px̃(x̃;ã)

∂ã∂ã

]  . (3.33)

From (3.29) and (3.31) we have that

−∂2 ln px̃(x̃; ã)

∂ã∗∂ã
= |x̃2|2 +

1

(1− |ã|2)2
, (3.34)

−∂2 ln px̃(x̃; ã)

∂ã∗∂ã∗
=

ã2

(1− |ã|2)2
, (3.35)

and therefore since

E[|x̃2|2] =
1

1− |ã|2
, (3.36)

we have that

Ĩ(Θ̃) = Ĩ

 ã

ã∗

 =

[
2−|ã|2

(1−|ã|2)2
ã2

(1−|ã|2)2
ã∗

2

(1−|ã|2)2
2−|ã|2

(1−|ã|2)2

]
. (3.37)
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Note that for ã ̸= 0, the FIM is not diagonal (see Appendix B) and hence I(ξ) will

not have the special form of (3.15). Using the FIM and also

∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗ =

 ∂ ln px̃(x̃;ã)
∂ã∗

∂ ln px̃(x̃;ã)
∂ã

 (3.38)

from (3.32) in Theorem 1 produces the complex parameter Rao test statistic. As

a special case, if ã0 = 0, then we see that Ĩ(Θ̃0) = 2I2 and also that

∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗

∣∣∣∣∣
Θ̃0

= −

 x̃2x̃1
∗ + x̃3x̃2

∗

x̃2
∗x̃1 + x̃3

∗x̃2

 , (3.39)

and therefore we have from (3.7) that

TR̃(x̃) = |x̃∗
1x̃2 + x̃∗

2x̃3|2 (3.40)

or in general we would have

TR̃(x̃) =
2

N − 1

∣∣∣∣∣
N−1∑
n=1

x̃∗
nx̃n+1

∣∣∣∣∣
2

. (3.41)

The Rao test is then just a test of the estimated autocorrelation sequence (ACS)

at lag one, after it is magnitude-squared. Clearly, for noise only the theoretical

ACS at lag one would be zero while for the case of a signal present it would be∣∣∣∣∣
N−1∑
n=1

x̃∗
nx̃n+1

∣∣∣∣∣
2

≈ |(N − 1)r̃x̃[1]|2

=

∣∣∣∣(N − 1)
−ã

1− |ã|2

∣∣∣∣2
=

(N − 1)2|ã|2

(1− |ã|2)2
. (3.42)

Note also that for this parameter value, i.e., ã0 = 0, the FIM has the special form

and so (3.16) could have been used instead.
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In fact, the special form of FIM does not hold in general for the unknown

parameters of the covariance matrix of a multivariate complex Gaussian PDF.

Therefore, the Theorem 2 can not be applied in this case. Instead, it must employ

the Theorem 1. Suppose we observe a N × 1 complex-valued vector x̃, which is

multivariate complex Gaussian distributed. Its mean is zero, and its covariance

matrix is C̃ = C̃(Θ̃) = C̃(θ̃, θ̃
∗
), parameterized by an unknown p × 1 complex

parameter vector θ̃.That is,

x̃ ∼ CN (0, C̃(Θ̃)), (3.43)

and

px̃(x̃; Θ̃) =
1

πN det (C̃(Θ̃))
exp [−x̃HC̃−1(Θ̃)x̃]. (3.44)

It is derived in Appendix D that the J̃∗(θ̃) element of the FIM Ĩ(Θ̃) is found to

be nonzero in general,

J̃∗(θ̃) = E

{
∂ ln p(x̃; θ̃)

∂θ̃

∂ ln p(x̃; θ̃)

∂θ̃∗

H}
=

(
Dθ̃C̃

)T (
C̃−1 ⊗ C̃−T

)
KN

(
Dθ̃C̃

)
, (3.45)

where Dθ̃C̃ = ∂ vec(C̃)

∂θ̃
T is the Jacobian matrix of C̃ with respect to θ̃ and KN is a

N2 × N2 commutation matrix. Therefore, Theorem 2 can not be applied to this

case.

As an example, we show that this general result (3.45) applies to the AR
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example. First,

DãC̃

=
∂ vec(C̃)

∂ã

= vec

 1

(1− ãã∗)2

 ã∗ −(ã∗)2 (ã∗)3

−1 ã∗ −(ã∗)2

2ã− ã2ã∗ −1 ã∗




= vec

(
∂C̃

∂ã

)
. (3.46)

Then, with (3.45), we have that

J̃∗(ã) = (DãC̃)T (C̃−1 ⊗ C̃−T )K3(DãC̃)

= (DãC̃)T (C̃−1 ⊗ C̃−T ) vec

(∂C̃

∂ã

)T


= (DãC̃)T vec

C̃−T

(
∂C̃

∂ã

)T

C̃−T

 .

(3.47)

While,

C̃−T

(
∂C̃

∂ã

)T

C̃−T =

 0 −1 0

0 −ã∗ −1

0 0 0

 . (3.48)

Plugging equations (3.46) and(3.48) into (3.47), we have

J̃∗(ã) =
ã∗ã∗

(1− ãã∗)2
, (3.49)

which is the same result with (3.30).

3.6 Conclusions

We have derived the Rao test for complex data and complex parameters. It

can be used as an alternative to representing the data and parameters as con-

catenated real vectors. The alternative approach described computes the Rao test
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statistic directly from the complex data with complex parameters rather than the

approach of concatenating the complex parameter vector into a real vector. When

the Fisher information matrix of the real parameters satisfies some special con-

ditions, then the complex parameter Rao test resembles the real parameter Rao

test, except for a factor of two. This result clarifies some supposedly but incorrect

extensions of the real Rao test to the complex case. The important example of the

complex linear model, in which the special conditions are satisfied has been given.

Furthermore, the problem of testing of a complex covariance matrix parameter

indicates a case in which the special conditions are not satisfied and hence, the

slightly more complicated form of the complex parameter Rao test is required.
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Appendix A - Proof of Theorem 1

We use some results from [9]. With Θ̃ = [θ̃
T
θ̃
H
]T and since θ̃ = α + jβ,

then by the definition of the complex gradient, we have

∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗ =

[
∂ ln px̃(x̃;Θ̃)

∂θ̃∗
∂ ln px̃(x̃;Θ̃)

∂θ̃

]

=

[
1
2
∂ ln px̃(x̃;Θ̃)

∂α
+ j

2
∂ ln px̃(x̃;Θ̃)

∂β
1
2
∂ ln px̃(x̃;Θ̃)

∂α
− j

2
∂ ln px̃(x̃;Θ̃)

∂β

]

=

[
1
2
Ip

j
2
Ip

1
2
Ip − j

2
Ip

][
∂ ln px̃(x̃;Θ̃)

∂α
∂ ln px̃(x̃;Θ̃)

∂β

]

= T
∂ ln px̃(x̃; Θ̃)

∂ξ
,

(3.50)

where Ip is a p× p identity matrix, and ξ = [αT βT ]T . Therefore,

Ĩ(Θ̃) = E

(
∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗

∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗

H
)

= E

(
T
∂ ln px̃(x̃; Θ̃)

∂ξ

∂ ln px̃(x̃; Θ̃)

∂ξ

H

TH

)

= T

[
E

(
∂ ln px(x; ξ)

∂ξ

∂ ln px(x; ξ)

∂ξ

T
)]

TH

= T I(ξ) TH .

(3.51)
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Note that x̃ = u+ jv ∈ CN×1 while x = [uTvT ]T ∈ R2N×1. Hence, we have

TR̃(x̃) =

(
T
∂ ln px(x; ξ)

∂ξ

∣∣∣∣
ξ0

)H (
TI(ξ0)T

H
)−1

· T∂ ln px(x; ξ)

∂ξ

∣∣∣∣
ξ0

=
∂ ln px(x; ξ)

∂ξ

∣∣∣∣T
ξ0

TH(TH)−1 I−1(ξ0) T
−1

·T ∂ ln px(x; ξ)

∂ξ

∣∣∣∣
ξ0

=
∂ ln px(x; ξ)

∂ξ

∣∣∣∣T
ξ0

I−1(ξ0)
∂ ln px(x; ξ)

∂ξ

∣∣∣∣
ξ0

= TR(x). (3.52)

Appendix B - Proof of Theorem 2

We can write Ĩ(Θ̃), where Ĩ(Θ̃) ∈ C2p×2p, in block form from (3.9) as

Ĩ(Θ̃) = E

[ ∂ ln px̃(x̃;θ̃)

∂θ̃
∗

∂ ln px̃(x̃;θ̃)

∂θ̃

][
∂ ln px̃(x̃;θ̃)

∂θ̃
∗

∂ ln px̃(x̃;θ̃)

∂θ̃

]H
=

[
Ĩ(θ̃) J̃(θ̃)

J̃∗(θ̃) Ĩ∗(θ̃)

]
,

(3.53)

where

Ĩ(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∂ ln px̃(x̃; θ̃)

∂θ̃
∗

H
)
, (3.54)

J̃(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∂ ln px̃(x̃; θ̃)

∂θ̃

H
)
, (3.55)

J̃∗(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃

∂ ln px̃(x̃; θ̃)

∂θ̃
∗

H
)
, (3.56)

and

Ĩ∗(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃

∂ ln px̃(x̃; θ̃)

∂θ̃

H
)
. (3.57)
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Note Ĩ(θ̃), J̃(θ̃), Ĩ∗(θ̃), J̃∗(θ̃) ∈ Cp×p. According to the definition of complex par-

tials, we have

∂ ln px̃(x̃; θ̃)

∂θ̃
∗ =

1

2

∂ ln px̃(x̃; θ̃)

∂α
+

j

2

∂ ln px̃(x̃; θ̃)

∂β

=
1

2

∂ ln px(x; ξ)

∂α
+

j

2

∂ ln px(x; ξ)

∂β
.

(3.58)

Then, given with the special form of real FIM

I(ξ) = 2

[
E −F

F E

]
, (3.59)

we have

J̃(θ̃)

= E

(
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∂ ln px̃(x̃; θ̃)

∂θ̃

H
)

=
1

4
(Iαα + jIαβ + jIβα − Iββ)

=
1

4
(2E− j2F+ j2F− 2E)

= 0. (3.60)

Thus,

Ĩ(Θ̃) =

[
Ĩ(θ̃) 0

0 Ĩ∗(θ̃)

]
. (3.61)

Now, from (3.7)

TR̃(x̃) =

[
∂ ln px̃(x̃;θ̃)

∂θ̃
∂ ln px̃(x̃;θ̃)

∂θ̃∗

]∣∣∣∣∣
T

θ̃0

[
Ĩ−1(θ̃0) 0

0 Ĩ−∗(θ̃0)

]

·

[
∂ ln px̃(x̃;θ̃)

∂θ̃∗

∂ ln px̃(x̃;θ̃)

∂θ̃

]∣∣∣∣∣
θ̃0

= 2Re

{
∂ ln px̃(x̃; θ̃)

∂θ̃

∣∣∣∣∣
T

θ̃0

Ĩ−1(θ̃0)
∂ ln px̃(x̃; θ̃)

∂θ̃∗

∣∣∣∣∣
θ̃0

}
,

(3.62)
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where, Ĩ−∗(θ̃) denotes the inverse of Ĩ∗(θ̃). Also, note that

∂ ln px̃(x̃;θ̃)

∂θ̃

∣∣∣T
θ̃0

Ĩ−1(θ̃0)
∂ ln px̃(x̃;θ̃)

∂θ̃∗

∣∣∣
θ̃0

is real. Therefore,

TR̃(x̃) = 2
∂ ln px̃(x̃; θ̃)

∂θ̃

∣∣∣∣∣
T

θ̃0

Ĩ−1(θ̃0)
∂ ln px̃(x̃; θ̃)

∂θ̃∗

∣∣∣∣∣
θ̃0

= TR(x). (3.63)

Appendix C - Expression of complex Fisher information matrix with
second derivatives of PDF

This section is to express complex Fisher information matrix in terms of second

derivatives of PDF. We follow the lead of [9] to do so. First we consider

Ĩ(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∂ ln px̃(x̃; θ̃)

∂θ̃
∗

H
)

(3.64)

where Ĩ(θ̃) ∈ Cp×p. Then, we will expand the result to the case

Ĩ(Θ̃) =

[
Ĩ(θ̃) J̃(θ̃)

J̃∗(θ̃) Ĩ∗(θ̃)

]
. (3.65)

Recall

J̃(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∂ ln px̃(x̃; θ̃)

∂θ̃

H
)
, (3.66)

and θ̃ = α + jβ, ξ = [αT βT ]T . Then, if the following regularity condition is

satisfied

E

(
∂ ln px̃(x̃; θ̃)

∂θ̃

)
= 0, (3.67)

then, according to (3),(4),(5), and (6), we have

E

(
∂ ln px̃(x̃; ξ)

∂ξ

)
= 0. (3.68)

Then, we have for 1 ≤ m,n ≤ 2p [2],

E

(
∂ ln px̃(x̃; ξ)

∂ξm

∂ ln px̃(x̃; ξ)

∂ξn

)
= −E

(
∂2 ln px̃(x̃; ξ)

∂ξm∂ξn

)
(3.69)
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With all these quantities, we have for 1 ≤ k, l ≤ p,

[
Ĩ(θ̃)

]
kl

= E

(
∂ ln px̃(x̃; θ̃)

∂θ̃∗k

∂ ln px̃(x̃; θ̃)

∂θ̃l

)

= E

[
1

2

(
∂ ln px̃(x̃; θ̃)

∂αk

+ j
∂ ln px̃(x̃; θ̃)

∂βk

)
˙

1

2

(
∂ ln px̃(x̃; θ̃)

∂αl

− j
∂ ln px̃(x̃; θ̃)

∂βl

)]
=

1

4
E

(
∂ ln px̃(x̃; θ̃)

∂αk

∂ ln px̃(x̃; θ̃)

∂αl

+ j
∂ ln px̃(x̃; θ̃)

∂βk

∂ ln px̃(x̃; θ̃)

∂αl

− j
∂ ln px̃(x̃; θ̃)

∂αk

∂ ln px̃(x̃; θ̃)

∂βl

+
∂ ln px̃(x̃; θ̃)

∂βk

∂ ln px̃(x̃; θ̃)

∂βl

)
= −1

4
E

(
∂2 ln px̃(x̃; θ̃)

∂αk∂αl

+ j
∂2 ln px̃(x̃; θ̃)

∂βk∂αl

− j
∂2 ln px̃(x̃; θ̃)

∂αk∂βl

+
∂2 ln px̃(x̃; θ̃)

∂βk∂βl

)
= −1

4
E

[
∂

∂αk

(
∂ ln px̃(x̃; θ̃)

∂αl

− j
∂ ln px̃(x̃; θ̃)

∂βl

)
+ j

∂

∂βk

(
∂ ln px̃(x̃; θ̃)

∂αl

− j
∂ ln px̃(x̃; θ̃)

∂βl

)]
= −E

[
∂

∂θ̃∗k

(
1

2

∂ ln px̃(x̃; θ̃)

∂αl

− j

2

∂ ln px̃(x̃; θ̃)

∂βl

)]

= −E

[
∂2 ln px̃(x̃; θ̃)

∂θ̃∗k∂θ̃l

]
(3.70)

This shows that Ĩ(θ̃) can be computed via second derivatives of PDFs element-

wisely. Now by (3.65), it reduces to find J̃(θ̃) to express Ĩ(Θ̃) in terms of second
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derivatives of PDFs. Similarly, we have for 1 ≤ k, l ≤ p,

[
J̃(θ̃)

]
kl

= E

(
∂ ln px̃(x̃; θ̃)

∂θ̃∗k

∂ ln px̃(x̃; θ̃)

∂θ̃∗l

)

= E

[
1

2

(
∂ ln px̃(x̃; θ̃)

∂αk

+ j
∂ ln px̃(x̃; θ̃)

∂βk

)
·

1

2

(
∂ ln px̃(x̃; θ̃)

∂αl

+ j
∂ ln px̃(x̃; θ̃)

∂βl

)]
=

1

4
E

(
∂ ln px̃(x̃; θ̃)

∂αk

∂ ln px̃(x̃; θ̃)

∂αl

+ j
∂ ln px̃(x̃; θ̃)

∂βk

∂ ln px̃(x̃; θ̃)

∂αl

+ j
∂ ln px̃(x̃; θ̃)

∂αk

∂ ln px̃(x̃; θ̃)

∂βl

− ∂ ln px̃(x̃; θ̃)

∂βk

∂ ln px̃(x̃; θ̃)

∂βl

)

Continuing the computation, we have

[
J̃(θ̃)

]
kl

= −1

4
E

(
∂2 ln px̃(x̃; θ̃)

∂αk∂αl

+ j
∂2 ln px̃(x̃; θ̃)

∂βk∂αl

+ j
∂2 ln px̃(x̃; θ̃)

∂αk∂βl

− ∂2 ln px̃(x̃; θ̃)

∂βk∂βl

)
= −1

4
E

[
∂

∂αk

(
∂ ln px̃(x̃; θ̃)

∂αl

+ j
∂ ln px̃(x̃; θ̃)

∂βl

)
+ j

∂

∂βk

(
∂ ln px̃(x̃; θ̃)

∂αl

+ j
∂ ln px̃(x̃; θ̃)

∂βl

)]
= −E

[
∂

∂θ̃∗k

(
1

2

∂ ln px̃(x̃; θ̃)

∂αl

+
j

2

∂ ln px̃(x̃; θ̃)

∂βl

)]

= −E

[
∂2 ln px̃(x̃; θ̃)

∂θ̃∗k∂θ̃
∗
l

]
(3.71)

This completes the expression of Ĩ(Θ̃) with second derivatives of PDF.
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Appendix D - Discussion on the Fisher Information Matrix Form of
Covariance Parameters

This example discuss the case when the unknown parameters parameterize

covariance matrix. It shows that the FIM of covariance parameters does not have

the special FIM form in general and it can not employ Theorem 2 in this case.

Suppose we observe aN×1 complex-valued vector x̃, which is multivariate complex

Gaussian distributed with its mean being zero and its covariance matrix being

C̃ = C̃(Θ̃). Then,

px̃(x̃; Θ̃) =
1

πN det (C̃(Θ̃))
exp [−x̃HC̃−1(Θ̃)x̃], (3.72)

and

∂ ln px̃(x̃; Θ̃)

∂θ̃
= −∂ ln det C̃(Θ̃)

∂θ̃
− ∂x̃HC̃−1(Θ̃)x̃

∂θ̃
. (3.73)

Our notations in the following part are based on [10]. Also, from [10] the Jacobian

matrix DZ̃F̃(Z̃, Z̃
∗) of F̃ with respect to Z̃ can be computed as

DZ̃F̃(Z̃, Z̃
∗) =

∂ vec(F̃(Z̃, Z̃∗))

∂ vecT (Z̃)
. (3.74)

Then, we have

Dθ̃

(
ln det C̃(Θ̃)

)
=

(
∂ ln det C̃(Θ̃)

∂θ̃

)T

, (3.75)

and

Dθ̃

(
x̃HC̃−1(Θ̃)x̃

)
=

∂
(
x̃HC̃−1(Θ̃)x̃

)
∂θ̃

T

. (3.76)

By the Chain rule[10], we have
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Dθ̃(ln det C̃) =
[
DC̃(ln det C̃)

]
Dθ̃C̃

= vecT
(
C̃−T

)
Dθ̃C̃, (3.77)

where, we have applied that DC̃∗(ln det C̃) = 0. Similarly,

Dθ̃(x̃
HC̃−1x̃) = DC̃−1

(
x̃HC̃−1x̃

)
DC̃

(
C̃−1

)
Dθ̃C̃

= vecT (x̃∗x̃T )
(
−C̃−T ⊗ C̃−1

)
Dθ̃C̃, (3.78)

where we have applied DC̃−∗

(
x̃HC̃−1x̃

)
= 0 and DC̃∗C̃−1 = 0. Thus,

∂ ln p(x̃; θ̃)

∂θ̃
= −

[
Dθ̃

(
ln det C̃

)]T
−
[
Dθ̃

(
x̃HC̃−1x̃

)]T
=

[
vecT (x̃∗x̃T )

(
C̃−T ⊗ C̃−1

)
Dθ̃C̃

]T
−
[
vecT (C̃−T )Dθ̃C̃

]T
= (Dθ̃C̃)T

(
C̃−1 ⊗ C̃−T

)
vec(x̃∗x̃T )

−
(
Dθ̃C̃

)T
vec(C̃−T )

= (Dθ̃C̃)T vec
(
C̃−T (x̃∗x̃T )C̃−T

)
−(Dθ̃C̃)T vec(C̃−T ). (3.79)

The result

(
C̃−1 ⊗ C̃−T

)
vec
(
x̃∗x̃T

)
= vec

(
C̃−T

(
x̃∗x̃T

)
C̃−T

)
(3.80)
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has been used above. Also, the regularity condition is met as shown as below.

E

{
∂ ln p(x̃; θ̃)

∂θ̃

}
= (Dθ̃C̃)T vec

(
C̃−TE{x̃∗x̃T}C̃−T

)
−(Dθ̃C̃)T vec(C̃−T )

= (Dθ̃C̃)T vec
(
C̃−T C̃T C̃−T

)
−(Dθ̃C̃)T vec(C̃−T )

= 0. (3.81)

Next, we explore to see if in this case the FIM of θ̃ has the special form as shown

in Theorem 2. That reduces to see if the following equation is met.

E

{
∂ ln p(x̃; θ̃)

∂θ̃

∂ ln p(x̃; θ̃)

∂θ̃
T

}
= 0. (3.82)

For the purpose of simplifying notations, we denote Dθ̃C̃ = G̃, then G̃ ∈ CN2×p,

and vec
(
C̃−T (x̃∗x̃T )C̃−T

)
= f̃ , then f̃ ∈ CN2×1, and vec(C̃−T ) = h̃, h̃ ∈ CN2×1.

Note the relationship E{f̃} = h̃. Let B̃ = E

{
∂ ln p(x̃;θ̃)

∂θ̃

∂ ln p(x̃;θ̃)

∂θ̃
T

}
. Then,

B̃ = E{G̃T (f̃ f̃T − f̃ h̃T − h̃f̃T + h̃h̃T )G̃}

= G̃T
[
E{f̃ f̃T} − h̃h̃T

]
G̃ (3.83)

and

E{f̃ f̃T} = E

{(
C̃−1 ⊗ C̃−T

)
vec(x̃∗x̃T )

vecT (x̃∗x̃T )
(
C̃−T ⊗ C̃−1

)}
=

(
C̃−1 ⊗ C̃−T

)
E{vec(x̃∗x̃T )

vecT (x̃∗x̃T )}
(
C̃−T ⊗ C̃−1

)
. (3.84)
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It reduces to find E{vec(x̃∗x̃T ) vecT (x̃∗x̃T )}, which is denoted as W̃.Observe that

vec(x̃x̃H) = x̃∗ ⊗ x̃ and vec(x̃∗x̃T ) = KN,N vec(x̃x̃H), where KN,N is N2 × N2

commutation matrix, denoted as KN for simplicity, and it has special property

KN = (KN)T [11]. Then,

W̃ = E{KN vec(x̃x̃H) vecT (x̃x̃H)(KN)T}

= KNE{vec(x̃x̃H) vecT (x̃x̃H)}KN . (3.85)

Let Ṽ = vec(x̃x̃H) vecT (x̃x̃H), then E{vec(Ṽ)} is the fourth moment of x̃ [12].

E{vec(Ṽ)} = E{vec(x̃x̃H)⊗ vec(x̃x̃H)}

= E{(x̃∗ ⊗ x̃)⊗ (x̃∗ ⊗ x̃)}

= vec[vec(C̃) vecT (C̃)] + vec((C̃T ⊗ C̃)KN).

(3.86)

Therefore, we have

E{Ṽ} = vec(C̃) vecT (C̃) + (C̃T ⊗ C̃)KN . (3.87)

Substituting (3.87) in (3.85)

W̃ = KN
[
vec(C̃) vecT (C̃) + (C̃T ⊗ C̃)KN

]
KN

= vec(C̃T ) vecT (C̃T ) +KN(C̃T ⊗ C̃). (3.88)

The properties of the commutation matrix KN that KN vec(C̃) = vec(C̃T ) and

KNKN = I have been used above. Substituting (3.88) in (3.85) and (3.84) and
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denoting P̃ = C̃−1 ⊗ C̃−T , then

E{f̃ f̃T} = P̃
[
vec(C̃T ) vecT (C̃T ) +KN(C̃T ⊗ C̃)

]
P̃T

= vec(C̃−T ) vecT (C̃−T ) + P̃K. (3.89)

Using (3.89) in (3.83), we have

B̃ = E

{
∂ ln p(x̃; θ̃)

∂θ̃

∂ ln p(x̃; θ̃)

∂θ̃
T

}
= J̃∗(θ̃)

= G̃T P̃KNG̃

=
(
Dθ̃C̃

)T (
C̃−1 ⊗ C̃−T

)
KN

(
Dθ̃C̃

)
(3.90)

which is not zero in general. Thus, Theorem 2 cannot be applied to this case.

91



MANUSCRIPT 4

The Rao Test for Testing Bandedness of Complex-Valued Covariance
Matrix

by

Zhenghan Zhu and Steven Kay

published in

in Proc. of the 41st IEEE International Conference on Acoustics, Speech and

Signal Processing, pp.3960–3963, Shanghai, Mar. 2016.

92



Abstract

Banding the inverse of covariance matrix has become a popular technique to

estimate a high dimensional covariance matrix from limited number of samples.

However, little work has been done in providing a criterion to determine when a

matrix is bandable. In this paper, we present a detector to test the bandedness

of a Cholesky factor matrix. The test statistic is formed based on the Rao test,

which does not require the maximum likelihood estimates under the alternative

hypothesis. In many fields, such as radar signal processing, the covariance matrix

and its unknown parameters are often complex-valued. We focus on dealing with

complex-valued cases by utilizing the complex parameter Rao test, instead of the

traditional real Rao test. This leads to a more intuitive and efficient test statistic.

Examples and computer simulations are given to investigate the derived detector

performance.

4.1 Introduction

In statistical signal processing, such as used in a radar signal processing sys-

tem, the sample covariance matrix plays an essential role. [1]. It is often esti-

mated from N adjacent sample data vectors [x0 x1 · · · ,xN−1], where xn’s are

assumed to be L × 1 identical and independent distributed (IID) complex-valued

data vectors, with the general maximum likelihood covariance matrix estimate

Ĉ = 1
N

∑N−1
n=0 xnx

H
n [3], where H denotes hermitian. A good covariance matrix

estimate usually requires N to be large. For example, it requires N ≥ 2L in

space-time adaptive processing (STAP) to have a good clutter covariance matrix

93



estimate [2] . In practice, however, this is not valid due to the nonstationary envi-

ronment. For example, the data for a STAP system is often nonstationary due to

the heterogeneous clutter [1]. The number of data sufficiently IID (homogeneous)

can be relatively small N ≤ L [2].

A popular solution to the problem is adopting banding/tapering techniques.

Wu and et al. proposed to estimate the covariance matrix by banding the cholesky

factor matrix and applying kernel smoothing estimation [4]. Bickel demonstrated

that within the bandable class of covariance matrices, the estimator Ĉ−1 obtained

by banding the cholesky factor matrix of the covariance matrix’s inverse is

consistent [5]. However, little work is available to provide a guideline/criterion

on deciding if a covariance matrix or the cholesky factor matrix of its inverse

is bandable. Such a criterion is important and useful to decide if the banding

technique is a suitable strategy. Other covariance estimation methods, such as

modeling the covariance matrix as a time-varying autoregressive moving average

(ARMA) model [8] also requires testing to decide if the model is a good fit. Some

recent hypothesis tests for bandedness can be found in [6].

In this paper, a new test based on the Rao test is presented to test the band-

edness of a Cholesky factor matrix. The Rao test has an asymptotic optimal-

ity property for large data records, yet it requires noticeably lower computation

cost than some other detectors, ie., generalized likelihood ratio test (GLRT), as

it only needs the maximum likelihood estimates (MLE) under the null hypotheses
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[9]. This property in computational cost of the Rao test can be an advantage

in high-dimensional multivariate signal processing. We consider a complex-valued

covariance matrix and unknown parameters in this paper. We adopt the complex

parameter Rao test, which offers a more intuitive detector than the traditional

real Rao test for testing complex-valued parameters [7]. It should be pointed out,

however, that the concept of utilizing the Rao test for testing the bandedness of a

matrix can also be easily applied to the real-valued covariance matrix case via the

real Rao test.

The paper is organized as follows: Section 4.2 formulates the problem; Sec-

tion 4.3 derives the Rao test detector for testing the bandedness of the cholesky

factor matrix; Examples and computer simulations for evaluating the detector’s

performance are given in Section 4.4; Finally, conclusions are drawn in Section 4.5.

4.2 Problem Formulation

Assume that we have N IID observed data vectors, X = [xT
0 xT

1 · · · xT
N−1]

T ,

where T denotes transpose and each xn is an L × 1 complex-valued data vec-

tor, which obeys a zero-mean multivariate complex Gaussian distribution xn ∼

CN (0,C) for n = 0, 1, · · · , N − 1, and the xn’s are mutually independent. We

assume the N ≤ L limitation. The L × L covariance matrices C is a Hermitian

matrix, so its inverse can be decomposed via the Cholesky decomposition as

C−1 = DHD,
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where D is a lower triangular L× L matrix with a testing model as follows.

D = DB +
M∑
k=1

bkΦk

DB is a known banded lower triangular matrix, with the bandwidth to be m,

the bk’s are unknown complex-valued parameters, and the Φk’s are known basis

matrices. Specifically,

b1 = [D]m+2,1, Φ1 = em+2e
T
1

b2 = [D]m+3,2, Φ2 = em+3e
T
2

...
...

bL−m−1 = [D]L,L−m−1, ΦL−m−1 = eLe
T
L−m−1

bL−m = [D]m+3,1, ΦL−m = em+3e
T
1

bL−m+1 = [D]m+4,2, ΦL−m+1 = em+4e
T
2

...
...

bM = [D]L,1, ΦM = eLe
T
1

where M = (L−m−1)(L−m)
2

and each ek is an L × 1 vector with kth element being

one and the rest being all zeros. The objective is to test if the lower triangular

Cholesky factor matrix D is equal to the banded lower triangular matrix DB. Let

b = [b1 b2 ... bM ]T . The detection problem is equivalent to choosing between the
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following hypotheses:

H0 : b = 0;

H1 : b ̸= 0;

4.3 The Rao test for testing the bandedness

In this section, we derive the complex parameter Rao test for the aforemen-

tioned detection problem. The Rao test attains the asymptotic (as N → ∞)

performance as the GLRT but avoids requiring MLEs under the alternative hy-

pothesisH1, so its computation cost is often substantially less than the GLRT. This

can be a desirable property in high-dimensional signal processing, such as real-time

STAP. The derivation of the Rao test statistics follows. Let b∗ = [b∗1 b∗2 ... b∗M ]T ,

where ∗ denotes conjugate, and b = [bT bH ]T , which is an 2M ×1 complex-valued

parameter vector. The complex parameter Rao test detector can be formed [7]

TR(X) =
∂ ln p(X;b)

∂b∗

∣∣∣∣H
b=0

I−1(b)
∣∣
b=0

∂ ln p(X;b)

∂b∗

∣∣∣∣
b=0

(4.1)

where,

∂ ln p(X;b)

∂b
=

[
∂ ln p(X;b)

∂b

T ∂ ln p(X;b)

∂b∗

T]T
,

∂ ln p(X;b)

∂b
=
[∂ ln p(X;b)

∂b1

∂ ln p(X;b)

∂b2
· · · ∂ ln p(X;b)

∂bM

]T
,

∂ ln p(X;b)

∂b∗ =

[
∂ ln p(X;b)

∂b∗1

∂ ln p(X;b)

∂b∗2
...

∂ ln p(X;b)

∂b∗M

]T
,
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are based on Wirtinger derivatives. We next find each element ∂ ln p(X;b)
∂bk

as follows.

Firstly,

ln p(X;b) = ln
N−1∏
n=0

p(xn;b)

= ln

[
1

πNL
∏N−1

n=0 det(C)
exp(−

N−1∑
n=0

xH
n C

−1xn)

]

= ln(
1

πNL
)−

N−1∑
n=0

xH
n D

HDxn +N ln det(DHD),

(4.2)

and
∂ ln p(X;b)

∂bk
= N

∂ ln det(DHD)

∂bk
−

N−1∑
n=0

∂xH
n D

HDxn

∂bk

= N
∂ ln det(DHD)

∂bk
−

N−1∑
n=0

∂tr(Dxnx
H
n D

H)

∂bk
,

(4.3)

for k = 1, 2, · · · ,M , where

∂ ln det(DHD)

∂bk
= tr(D−1Φk), (4.4)

and

∂tr(Dxnx
H
n D

H)

∂bk
= tr(xnx

H
n D

HΦk). (4.5)

Thus,

∂ ln p(X;b)

∂bk
= Ntr(D−1Φk)−

N−1∑
n=0

tr(xnx
H
n D

HΦk), (4.6)

Under H0, where b = 0,

∂ ln p(X;b)

∂bk

∣∣∣∣
b=0

= Ntr(D−1
B Φk)−

N−1∑
n=0

tr(Φkxnx
H
n D

H
B ) (4.7)

Also, we have

∂ ln p(X;b)

∂b∗k
= Ntr(D−HΦH

k )−
N−1∑
n=0

tr(Dxnx
H
n Φ

H
k ), (4.8)
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and its value under H0

∂ ln p(X;b)

∂b∗k

∣∣∣∣
b=0

= Ntr(D−H
B ΦH

k )−
N−1∑
n=0

tr(DBxnx
H
n Φ

H
k ) (4.9)

We next compute I(b) .

I(b) = E

(
∂ ln p(X;b)

∂b∗
∂ ln p(X;b)H

∂b∗

)
=

[
A B∗

B A∗

]

=

[
M ×M M ×M

M ×M M ×M

] (4.10)

where,

A = E
(

∂ ln p(X;b)
∂b∗

∂ ln p(X;b)H

∂b∗

)
B = E

(
∂ ln p(X;b)

∂b
∂ ln p(X;b)T

∂b

)
For each element [A]k,l and [B]k,l for 1 ≤ k, l ≤ M , we can compute as follows,

Ak,l = −E

(
∂2 ln p(X;b)

∂b∗k∂bl

)
= E

(
N−1∑
n=0

tr(Φlxnx
H
n Φ

H
k )

)

= Ntr(ΦlD
−1D−HΦH

k )

(4.11)

Under H0, where b = 0, we have

Ak,l|b=0 = Ntr(ΦlD
−1
B D−H

B ΦH
k ) (4.12)

In a similar fashion, we have

Bk,l = −E

(
∂2 ln p(X;b)

∂bk∂bl

)
= Ntr(D−1ΦlD

−1Φk)

(4.13)
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and its value under H0

Bk,l|b=0 = Ntr(D−1
B ΦlD

−1
B Φk) (4.14)

Using equations (4.7), (4.9), (4.10), (4.12), (4.14) and the complex parameter Rao

test equation (4.1) will produce the Rao test statistic.

An explicit example is presented next to evaluate the performance of the

detector.

4.4 Numerical Examples and Computer Simulations

Consider a simple example, where we only have the N = 4 observed data set

X = [xT
0 xT

1 xT
2 xT

3 ]
T , each xn’s is a 4 × 1 complex-valued IID Gaussian vector,

xn ∼ CN (0,C). Also, C−1 = DHD, and D = DB + b1Φ1 with Φ1 = e4e
T
1 and

DB =


0.45 0 0 0

−0.25 + 0.25j 0.5 0 0

−0.12 + 0.12j −0.3 + 0.3j 0.55 0

0 −0.15− 0.15j 0.2− 0.2j 0.6


We are testing if the cholesky factor matrix D is banded and equal to the known

DB. It is equivalent to testing if b1 = 0 versus b1 ̸= 0. The Rao test for this

example can be shown to be (4.15).

To evaluate the Rao test performance for this example, we consider three

cases under the alternative hypothesis H1, b1 = 0.8 − j; b1 = 0.5 + 0.5j; b1 =

−0.2 + 0.4j respectively. The receiver operating characteristic (ROC)s, showing

the relationship of the probability of detection (Pd) versus the probability of false

alarm (Pfa) of the derived Rao test is given in Figure 4.1.

The Rao test statistic under the null hypothesis H0 is chi-squared distributed
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TR(X) =

Re

{(
4tr(D−1

B Φ1)−
∑3

n=0 tr(xnx
H
n DH

BΦ1)
)2

tr∗(D−1
B Φ1D

−H
B ΦH

1 )

}
2
[
|tr(Φ1D

−1
B D−H

B ΦH
1 )|2 − |tr(D−1

B Φ1D
−1
B Φ1)|2

]

−
Re

{(
4tr(D−1

B Φ1)−
∑3

n=0 tr(xnx
H
n DH

BΦ1)
)2

tr(D−1
B Φ1D

−1
B Φ1)

}
2
[
|tr(Φ1D

−1
B D−H

B ΦH
1 )|2 − |tr(D−1

B Φ1D
−1
B Φ1)|2

]
(4.15)

with one degree of freedom, TR(X) ∼ χ2
2. The performance of the Rao test can

be found asymptotically or as N → ∞. An estimated probability density function

(PDF), shown as a bar plot, and the theoretical PDF (N → ∞) are shown in

Figure 4.2.

4.5 Conclusions

The banding technique have become an important technique in high-

dimensional covariance matrix estimation with a limited number of samples. How-

ever, before adopting the technique, it is important to test if the matrix is ”band-

able”. We have introduced the Rao test of bandedness of Cholesky factor matrix

of inverse of the covariance matrix in this paper.The Rao test’s computational cost

is relatively lower than other detectors such as GLRT, yet with reasonably good

performance. A concise form of the Rao test for testing bandedness of a complex-

valued covariance matrix with complex-valued unknown parameters is present. An

example and a simulation are also given to evaluate the proposed detector. The

method can be easily applied to the real-valued covariance matrix and parameters

case. Moreover, the detector can be applied to test if any element is zero in a
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Figure 4.1. ROC curve of the Rao test detector with different b1

matrix, by changing the basis matrix Φk accordingly. The derived detector can

be used as a pre-processing stage before adopting banding, or certain modeling

method, such as ARMA modeling techniques in covariance matrix estimation.
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Abstract

In this paper, we derive a Bayesian model order selection rule by using the ex-

ponentially embedded family (EEF) method, termed Bayesian EEF. Unlike many

other Bayesian model selection methods, the Bayesian EEF can use vague proper

priors and improper non-informative priors to be objective in the elicitation of

parameter priors. Moreover, the penalty term of the rule is shown to be the sum

of half of the parameter dimension and the estimated mutual information between

parameter and observed data. This helps to reveal the EEF mechanism in selecting

model orders and may provide new insights into the open problem of choosing an

optimal penalty term for model order selection and a good prior from information-

theoretic viewpoints. The important example of linear model order selection is

given to illustrate the algorithms and arguments. Lastly, the Bayesian EEF that

uses Jeffreys’ prior coincides with the EEF rule derived by frequentist strategies.

This shows another interesting relationship between the frequentist and Bayesian

philosophies for model selection.

5.1 Introduction

Model order selection is an important problem of active research in signal

processing. It finds a wide range of applications. For example, determination of the

number of sources in array signal processing [1] is essentially a model order selection

problem. Overestimating the order fits the noise in the data; underestimating the

order, on the other hand, fails to describe the data precisely [1]. Hence, a good

model order selection rule is crucial for signal processing applications.
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As a multiple hypotheses testing problem, model order selection lacks an op-

timal solution [9]. The generalized likelihood ratio test (GLRT) always favors the

more complex model [7]. A typical model order selection algorithm introduces a

penalty term to the GLRT, and it is the penalty term that makes one model order

selection rule different from another. A model order selection rule derived from a

Bayesian viewpoint typically tries to strike a balance between goodness of fit and

model complexity [18].

Some leading algorithms, both frequentist and Bayesian, in literature [5] are

Akaike’s information criterion (AIC) [2], the minimum description length (MDL)

[3], Bayesian information criterion (BIC) [4] and maximum a posteriori (MAP) [9].

For example, AIC and BIC rules are respectively

ln p(x|θ̂)− k; AIC

ln p(x|θ̂)− k
2
lnL; BIC

where ln p(x|θ̂) is the maximum log-likelihood under a certain model, k is the

dimension of the model parameters, L is the data record length. As seen the AIC

penalty is a constant k and BIC has a penalty k
2
lnL.

As an alternative, an EEF model order selection rule derived from a frequentist

viewpoint is introduced in [8]. It is consistent and superior to others for several

situations and has been adopted in many applications such as source enumeration,

classification and sensor fusion [1],[12]-[14]. Different from [8], we derive in this

paper the EEF rule from a Bayesian viewpoint, termed the Bayesian EEF, as a

novel Bayesian model order selection rule. Using Bayesian strategies allows us the
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possibilities to investigate the EEF mechanism in a new framework and from new

viewpoints such as information theory and leads to the main contributions of this

paper:

• A new Bayesian model order selection method, Bayesian EEF, is derived.

It is proved that the Bayesian EEF can use both vague proper prior and

improper non-informative prior for unknown parameters, both of which are

usually forbidden for many Bayesian methods. The Bayesian EEF also does

not have th Lindley’s paradox or the Information paradox.

• An intuitive justification is given in interpreting the Bayesian EEF penalty

term. The penalty term is a sum of half the model parameter dimension and

the estimated mutual information between model parameters and observed

data.

• It also shows that the Bayesian EEF using Jeffrey’s prior coincides with

the EEF derived from a frequentist viewpoint. This is another case of the

interesting interaction between the frequentist and Bayesian philosophies and

may provide useful insights into the discussion on the difference between the

two.

The paper is organized as follows. In Section 5.2 we derive the Bayesian EEF

order selection rule that uses a vague proper prior for linear model and discuss some

desirable properties of the Bayesian EEF. In Section 5.3 we justify the Bayesian

EEF penalty term. In Section 5.4 we derive the Bayesian EEF via improper non-
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informative prior, Jeffreys’ prior and discuss its interaction with frequentist EEF.

Finally, some conclusions are given in Section 5.5.

5.2 Bayesian EEF rule for model selection via vague proper prior

Suppose there are M candidate models, M0,M1, · · · ,MM−1, where M0 is

a null/reference model which has no unknown parameters and the model Mi (for

i = 1, · · · ,M − 1) has an unknown parameter vector θi of dimension ki × 1. The

probability density functions (PDF) of the observed data x of dimension N × 1

for model Mi is denoted as pi(x). From the frequentist viewpoint, the unknown

parameters are deterministic. The EEF model order selection rule proposed in [8]

adopts this assumption and hence is termed frequentist EEF in this paper. On the

other hand, a Bayesian model order selection method views the parameter vectors

as random. The Bayesian EEF adopts this philosophy. If we know the the model

parameter priors, we can compare marginal PDFs of x of different models or use

a MAP rules to choose a model order. But in practice no prior information is

available and the first question that arises for a Bayesian model order selection

method is the specification of the prior distributions for the unknown parameter

vector θi. Which prior to choose is a controversial and difficult task [17]. Ideally

we want to use a prior with minimal influence on the Bayesian inference. Improper

non-informative priors such as uniform distribution and vague prior distributions

(a proper prior with large spread) seem to be natural choices because they are

objective in that they do not favor one parameter value over another. However,

they can, unfortunately, lead to non-sensible answers when used in many Bayesian
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model selection methods. As shown next Bayesian EEF, on the other hand, can

employ these two types of priors and still produce good results. This is a desirable

property for a Bayesian model order selection algorithm. In this section, we derive

the Bayesian EEF by assigning vague proper priors to unknown parameters. The

resultant EEF is called the reduced Bayesian EEF. For illustration purposes, we

focus on the normal linear model order selection problem. In Section 5.5, we give

the Bayesian EEF that uses the improper non-informative Jeffreys’ prior.

The vague proper prior adopted herein is constructed by letting the hyper-

parameter of a g-prior goes to infinity. G-prior is widely used in Bayesian in-

ference because of its conjugacy and computational efficiency in computing the

marginal likelihoods and its simple, understandable interpretation [16][21]. The g-

prior places less prior distribution mass in areas of the parameter space where the

data is expected to be more informative about the unknown parameters. Assume

we want to choose a model from the following linear model candidates

Mi : x = Hi θi+w, i = 1, · · · ,M − 1.

where θi is a ki × 1 unknown parameter vector, Hi is a N × ki design matrix, and

w ∼ N (0, σ2I) is additive noise with I being a N × N identity matrix. There

is also a null model M0 : x = w which does not contain unknown parameters.

Without loss of generality, we assume that ki ≤ kj for i ≤ j.

We first assign θi a vague proper prior, πi(θi), which is a g-prior with an
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infinite hypeparameter gi [21] as

πi(θi) = N
(
0, giσ

2(HT
i Hi)

−1
)
and gi → ∞.

The marginal PDF pi(x) under the Mi model is then

pi(x) =

∫
pi(x|θi)πi(θi)dθi

= N (0, σ2I+ giσ
2Pi) and Pi = Hi(H

T
i Hi)

−1HT
i

= N (0,Ci) (5.1)

where pi(x|θi) = N (Hi θi, σ
2I) is the conditional PDF of x on θi under model

Mi and the covariance matrix Ci = σ2I + giσ
2Pi. The PDF of x under the null

model is

p0(x) = N (0, σ2I) = N (0,C0), (5.2)

where C0 = σ2I is the covariance matrix of p0(x). Then for each pi(x), i =

1, · · · ,M − 1, we can construct a new PDF, p(x; ηi) by exponentially embedding

it with p0(x), which is parameterized by an embedding parameter ηi:

p(x; ηi) =
pηii (x)p

1−ηi
0 (x)∫

pηii (x)p
1−ηi
0 (x)dx

= exp(ηiTi(x)−K0(ηi) + fc(x)) (5.3)

with

sufficient statistic: Ti(x) = ln
pi(x)

p0(x)

natural parameter: 0 ≤ ηi ≤ 1

log-normalizer: K0(ηi) = ln

∫
pηii (x)p

1−ηi
0 (x)dx = lnE0

(
eηiTi(x)

)
carrier density: fc(x) = ln p0(x)
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As shown the resulting PDF is an exponential family PDF and consequently in-

herits a multitude of mathematical and practical properties of the family. For

example the statistic Ti(x) is a minimal and complete sufficient statistic for ηi;

its moments can be easily found and K0(ηi) is a convex function. The new PDF

p(x; ηi) is called the Bayesian EEF for the model Mi in that we employ both

Bayesian philosophies and exponentially embedding to construct it. From the

information-geometric viewpoints, the log-Bayesian EEF ln p(x; ηi) can be viewed

as a point on the geodesic that connects ln pi(x) and ln p0(x) [8][10]. As seen from

(5.3), the Bayesian EEF p(x; ηi) reduces to p0(x) when ηi = 0 and pi(x) when

ηi = 1.

Plugging pi(x) of (5.1) and p0(x) of (5.2) into (5.3) produces the reduced

Bayesian EEF p(x; ηi) for the linear model as follows.

p(x; ηi) =
pηii (x)p

1−ηi
0 (x)

exp(K0(ηi))

=

[
1√

|2πCi|
exp(−1

2
xTC−1

i x)

]ηi [
1√

|2πC0|
exp(−1

2
xTC−1

0 x)

]1−ηi

exp(K0(ηi))

= c1 exp
[
− 1

2
xT
(
ηiC

−1
i + (1− ηi)C

−1
0

)︸ ︷︷ ︸
C−1

ηi

x
]

where c1 is a constant normalization term and Cηi =
(
ηiC

−1
i + (1− ηi)C

−1
0

)−1
. It

shows that the constructed EEF is also a zero mean normal distribution with a
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covariance matrix Cηi depending on ηi. Explicitly,

Cηi =
[
ηi(σ

2I+ giσ
2Pi)

−1 + (1− ηi)(σ
2I)−1

]−1

= σ2

[
ηi(I−

gi
gi + 1

Pi) + (1− ηi)I

]−1

= σ2

(
I− ηigi

gi + 1
Pi

)−1

= σ2

(
I+

ηi
1− ηi +

1
gi

Pi

)
→ σ2I+

ηi
1− ηi

σ2Pi as gi → ∞

So the reduced Bayesian EEF for Mi is

p(x; ηi) = N (0, σ2I+
ηi

1− ηi
σ2Pi). (5.4)

Then a model order selection algorithm based on the Bayesian EEF in (5.4)

consists of two steps.

• Step1: Find the MLE of ηi, 0 ≤ η̂i ≤ 1, which maximizes p(x; ηi);

For the linear model EEF in (5.4) we have

η̂i =


0 if xTPix < kiσ

2

xTPix−kiσ
2

xTPix
otherwise

(5.5)

where ki is the dimension of θi.

• Step2: Compare the values of the M − 1 maximized EEF p(x; η̂i) or equiva-

lently the log-likelihood ratio (LLR) ln p(x;η̂i)
p0(x)

and choose the model which is
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associated with the maximum value.

For the linear model, plugging η̂i into (5.4) produces the maximized LLR

ln
p(x; η̂i)

p0(x)
=

(
xTPix

2σ2
− ki

2
− ki

2
ln

xTPix
σ2

ki

)
u

(
xTPix

2σ2
− ki

2

)
.

where u(·) is a unit step function. In fact, the term xTPix
2σ2 is the maximized

LRT of the conditional PDF pi(x|θ̂i) and p0(x), termed as lGi
:

lGi
= ln

maxθi
pi(x|θi)

p0(x)

= ln
maxθi

1√
|2πσ2I|

exp
(
−1

2
(x−Hi θi)

T (σ2I)−1(x−Hi θi)
)

1√
|2πσ2I|

exp
(
−1

2
xT (σ2I)−1x

)
= ln

pi(x|θ̂i)

p0(x)
with θ̂i = (HT

i Hi)
−1HT

i x

=
xTPix

2σ2

In summary, we can write the linear model Bayesian EEF as

ln
p(x; η̂i)

p0(x)
=

(
lGi

− ki
2
− ki

2
ln

lGi

ki/2

)
u

(
lGi

− ki
2

)
. (5.6)

5.2.1 Rationale of Bayesian EEF model order selection algorithm

We now present the rationale for Bayesian EEF model order selection algo-

rithm given above. First, when ηi is chosen as its MLE η̂i,

∂ ln p(x; ηi)

∂ηi
= Ti(x)−K ′

0(ηi) = 0

follows from (5.3). That is Ti(x) = K ′
0(ηi) evaluated at ηi = η̂i. Moreover, it holds

in general
∫
p(x; ηi)Ti(x)dx = K ′

0(ηi) for the exponential family [8]. Therefore[∫
p(x; ηi)Ti(x)dx

] ∣∣∣∣
ηi→η̂i

= Ti(x) (5.7)
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And consequently we have

KL(p(x; η̂i)||p0(x)) =

∫
p(x; η̂i) ln

p(x; η̂i)

p0(x)
dx

=

∫
p(x; η̂i) [η̂iTi(x)−K0(η̂i)] dx

= η̂iTi(x)−K0(η̂i)

= ln
p(x; η̂i)

p0(x)
(5.8)

where KL(·||·) denotes Kullback Libler divergence (KLD).

Moreover, a Pythagorean-like relationship holds asymptotically for large data

record among KLD quantities for EEF [8]

KL(pt(x)||p(x; η̂i)) = KL(pt(x)||p0(x))−KL(p(x; η̂i)||p0(x)),

where pt(x) denotes the true PDF of the data, which is unknown but fixed. The

distance KL(pt(x)||p0(x)) is fixed, hence the model that maximizes the distance

KL(p(x; η̂i)||p0(x)) or equivalently ln p(x;η̂i)
p0(x)

, among all models has the minimum

KL(pt(x)||p(x; η̂i))-the “distance” from the true PDF pt(x). This is the reason

why the Bayesian EEF model selection rule chooses the model with the maximum

of the maximized EEF’s of all models.

5.2.2 Discussion on paradoxes

The EEF model order selection algorithm has many desirable properties such

as consistency [1] and better performances than many other algorithms in the low

signal-to-noise ratio regime [8]. In addition to these properties, we now show that

the newly derived Bayesian EEF has additional desirable properties-it does not
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have Lindley’s paradox nor the Information paradox. On the contrary, many other

Bayesian model selection methods based on marginal bayes factor (BF) may suffer

from these paradoxes [16]. Lindley’s paradox can be understood as: “large spread

of the prior induced by the non-informative choice of hyper-parameter has the

unintended consequence of forcing the BF to favor the null model, the smallest

model, regardless of the information in the data [16]”. As shown in (5.6), the

reduced Bayesian EEF does not necessarily favor the null model even if we let the

hyper-parameter gi → ∞. This indicates that the reduced Bayesian EEF rule has

no “Lindley’s paradox”. The Information paradox is “a paradox related to the

limiting behavior of the BF. The BF yields a constant even when there is infinite

amount of information supporting to choose a model [16].” For instance, the linear

model BF resulted from assigning the parameter θi a g-prior with a certain gi is[16]

BF (Mi : M0) =
(1 + gi)

(N−1−ki)/2

(1 + gi(1−R2
r))

(N−1)/2

where R2
r is the ordinary coefficient of determination of the regression model Mi.

When there is overwhelming information supporting to choose Mi instead of M0,

R2
r → 1; however, the BF yields a constant (1+gi)

(N−1−ki)/2 instead of infinity. This

information limiting behavior is called the information paradox. When R2
r → 1 or

equivalently xTPix ≫ kiσ
2 we have η̂i → 1 from (5.5). In this case, the reduced

Bayesian EEF ln p(x;η̂i)
p0(x)

in (5.6) also goes to infinity. This shows that the Bayesian

EEF has no information limiting behavior and hence no Information paradox. In

fact, these two nice properties of the Bayesian EEF model selection rule are due to

its mechanism of choosing the value of ηi. It uses the MLE η̂i which is dependent
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on data.

5.3 The Penalty Term of Reduced Bayesian EEF

The penalty term is the key term for a model order selection rule. Its function

is to penalize the maximum log-likelihood with a measure of model complexity

so that the model order selection rule can strike a tradeoff between goodness-

of-fit and model complexity. In light of the general relationship KLD=SNR-MI

[6], the reduced Bayesian EEF penalty term is found to possess a very intuitive

interpretation. This not only helps further understanding EEF’s mechanism in

model selection but also provides new insights into the problem of choosing a good

penalty term for model selection. As shown next, the EEF penalty term can be

viewed as the sum of a term proportional to the parameter dimension, ki
2
, and

estimated mutual information between the parameter and received data, ki
2
ln

2lGi

ki
.

First note that if assigning the unknown parameter θi a prior that depends

upon the embedding parameter ηi:

π′(θi; ηi) = N (0,
ηi

1− ηi
σ2(HT

i Hi)
−1),

the marginal PDF for model Mi becomes the reduced Bayesian EEF in (5.4)

pi(x) =

∫
pi(x|θi)π

′(θi; ηi)dθi

= N
(
0, σ2I+

ηi
1− ηi

σ2Pi

)
= p(x; ηi).

Note that this new pi(x) is in fact parameterized by ηi because π′(θi; ηi) depends

upon ηi. Hence we denote it as pi(x; ηi). Then we can write pηi(x) = p(x; ηi).
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Together with the relationship in (5.8), we have the following decomposition [6]

holds for ηi = η̂i

ln
p(x; ηi)

p0(x)
≈ KL(p(x; ηi)||p0(x))

= KL(pηi(x)||p0(x))

=

∫ ∫
pηi(x,θi) ln

pηi(x|θi)

p0(x)
dθi dx︸ ︷︷ ︸

ŜNR

−
∫ ∫

pηi(x,θi) ln
pηi(x|θi)

pηi(x)
dxdθi︸ ︷︷ ︸

M̂I

(5.9)

Note pηi(x,θi) denotes the joint PDF of x and θi and pηi(x|θi) = N (Hi θi, σ
2I)

is the conditional PDF. This says that the reduced EEF can be decomposed into

two terms. As shown next, the first term is in fact an estimated SNR and hence

is denoted as ŜNR and the second term is an estimated MI between parameter θi

and data x, denoted as M̂I. Note they are estimated terms in the sense that ηi is

replaced by its MLE η̂i.
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5.3.1 The estimated SNR term

First, we have for ηi = η̂i

ŜNR =

∫ ∫
pηi(x,θi) ln

pηi(x|θi)

p0(x)
dθi dx (5.10)

=

∫
θi

π′(θi)

[
KL(pηi(x|θi)||p0(x))

]
dθi

=

∫
θi

π′(θi)

[
KL
(
N (Hi θi, σ

2I)|| N (0, σ2I)
) ]

dθi

=

∫
θi

π′(θi)

[
1

2

θT
i HT

i Hi θi

σ2

]
dθi (5.11)

=

∫
θi

e
− 1

2
θT
i

[
ηi

1−ηi
σ2(HT

i Hi)
−1)

]−1
θi√∣∣∣2π ηi

1−ηi
σ2(HT

i Hi)−1

∣∣∣
[
1

2

θT
i HT

i Hi θi

σ2

]
dθi

∣∣∣∣
ηi=η̂i

(5.12)

=
1

2

xTPix

σ2
− ki

2

= lGi
− ki

2
(5.13)

where we have used the η̂i in (5.5), treated as a constant, to replace ηi. The eqn

(5.11) indicates that the first term is an average ratio of signal energy ||Hi θi ||2

and the noise power σ2, and indeed is a measure of SNR; furthermore by (5.13)

we see that ŜNR has introduced a penalty term ki/2, which is proportional to the

parameter dimension. In fact, (5.13) holds not only for linear model but in general.

First, we can rewrite the ŜNR term as

ŜNR =

∫ ∫
pη̂i(x,θi) ln

pη̂i(x|θi)

p0(x)
dθi dx

=

∫
x

pη̂i(x)

∫
θi

π(θi |x)
[
ln

pη̂i(x|θi)

p0(x)

]
dθi dx, (5.14)
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where π(θi |x) is the posterior distribution of θi after observing x. For large data

records we have approximately [15]

π(θi |x) = N (θ̂i, I
−1(θ̂i)),

where I(θ̂i) is the Fisher information matrix (FIM) of θi evaluated at its MLE θ̂i.

And using the Laplace approximation we have∫
θi

π(θi |x) ln
pη̂i(x|θi)

p0(x)
dθi ≈

∫
θi

π(θi |x)
[
ln

pη̂i(x|θ̂i)

p0(x)︸ ︷︷ ︸
lGi

−1

2
(θi −θ̂i)

T I(θ̂i)(θi−θ̂i)

]
dθi

= lGi
− ki

2
.

Therefore from (5.14)

ŜNR ≈
∫

pη̂i(x)

[
lGi

− ki
2

]
dx

=

∫
p(x; η̂i)(Ti(x)−

ki
2
)dx

= Ti(x)−
ki
2

= lGi
− ki

2
(5.15)

where we have used
[∫

p(x; ηi)Ti(x)dx
] ∣∣

ηi=η̂i
= Ti(x) in (5.7). This shows that

the difference between lGi
and the estimated SNR is asymptotically half of the

parameter dimension.

5.3.2 The estimated mutual information term

We now consider the second term M̂I in the decomposition (5.9). For linear

model it is ki
2
ln

2lGi

ki
as given in (5.6). It is shown next that in general it is the esti-
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mated MI between θi and x. First we have from definition of mutual information,

M̂I =

∫ ∫
pη̂i(x,θi) ln

pη̂i(x|θi)

pη̂i(x)
dxdθi (5.16)

=

∫
θi

π′(θi)|ηi=η̂i

∫
x

pη̂i(x|θi) ln
pη̂i(x|θi)

pη̂i(x)
dxdθi

=

∫
θi

π′(θi)|ηi=η̂iKL

(
pη̂i(x|θi)||pη̂i(x)

)
dθi

=

∫
θi

π′(θi)|ηi=η̂iKL

(
N (Hi θi, σ

2I)|| N (0, σ2I+
η̂i

1− η̂i
σ2Pi)

)
dθi

=

∫
θi

π′(θi)|ηi=η̂i

[
1

2
ln

|σ2I+ η̂i
1−η̂i

σ2PH|
|σ2I|

+
1

2
tr

(
σ2(σ2I+

η̂i
1− η̂i

σ2PH)
−1 − I

)
+
1

2
(Hθ)T (σ2I+

η̂i
1− η̂i

σ2PH)
−1Hθ

]
dθi

=
1

2
ln

|σ2I+ η̂i
1−η̂i

σ2PH|
|σ2I|

+
1

2
tr

(
σ2(σ2I+

η̂i
1− η̂i

σ2PH)
−1 − I

)
+

∫
θi

[
π′(θi)|ηi=η̂i

1

2
(Hθ)T (σ2I+

η̂i
1− η̂i

σ2PH)
−1Hθ

]
dθi

=
1

2
ln

∣∣∣σ2I+ η̂i
1−η̂i

σ2Pi

∣∣∣
|σ2I|

=
ki
2
ln

(
1

1− η̂i

)
(5.17)

=
ki
2
ln

(
xTPix

kiσ2

)
(5.18)

=
ki
2
ln

2lGi

ki
(5.19)

This verifies that the term ki
2
ln

2lGi

ki
of (5.6) is indeed an estimated mutual infor-

mation term. As a measure of the statistical dependence of the parameter and

observed data, the estimated MI is a reasonable measure of model complexity.

First, the estimated MI can be viewed as averaged KLD distance between the

pηi(x|θi) and pηi(x), see (5.16), which assesses the “modeling potential” of the

conditional distribution. Second, the estimated MI also measures the difference

between the prior and posterior distributions of the unknown parameter and thus
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relates to the “difficulty of estimation”[20]. From (5.17) we see that for linear

model M̂I is monotonic with both the parameter dimension ki and the embedding

parameter η̂i. As η̂i goes to zero, M̂I → 0. This is in agreement with the expecta-

tion from (5.3) in that when ηi → 0, the Bayesian EEF p(x; ηi) reduces to the null

model PDF p0(x). When η̂i increases, the resulting Bayesian EEF p(x; ηi) moves

closer towards pi(x) as shown in (5.3). The estimated MI simultaneously increases

to reflect the increasing model complexity.

As shown, the Bayesian EEF penalty term takes into account three levels of

model complexity, namely, parameter dimension, the prior of the unknown param-

eter π′
i(θi) and the functional form on how the model is parameterized, the latter

two of which contribute to the estimated MI. On the other hand, AIC only ac-

counts for the dimension of unknown parameters ki; BIC takes into consideration

the parameter dimension ki and the number of independently identical distributed

(IID) data samples [2],[4] and [19].

5.3.3 An alternative interpretation of the estimated mutual informa-
tion term

A closer look at the estimated mutual information term in (5.19) leads to an

alternative intuition. Using the approximate relationship of ŜNR and lGi
(5.15) in

(5.19) we have

M̂I =
ki
2
ln

2lGi

ki

= ki

[
1

2
ln

(
1 +

ŜNR

ki/2

)]
︸ ︷︷ ︸

M̂I per dim
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The estimated mutual information term is the multiplicative result of parameter

dimension ki and the estimated MI per parameter dimension 1
2
ln
(
1 +

ˆSNR
ki/2

)
. As an

example, for the normal linear model we have from (5.18) that M̂I = ki
2
ln
(

xTPix
kiσ2

)
and

xTPix = xTHi(H
T
i Hi)

−1HT
i x

= xTHi(H
T
i Hi)

− 1
2 (HT

i Hi)
− 1

2HT
i x

= || (HT
i Hi)

− 1
2HT

i x︸ ︷︷ ︸
y

||2

= ||(HT
i Hi)

− 1
2HT

i (Hi θi +w)||2

= || (HT
i Hi)

− 1
2HT

i Hi θi︸ ︷︷ ︸
θ′
i

+(HT
i Hi)

− 1
2HT

i w︸ ︷︷ ︸
w′

||2

where we have denoted θ′
i = (HT

i Hi)
− 1

2HT
i Hi θi = (HT

i Hi)
1
2 θi. It is of dimension

ki×1 and can be viewed as a signal coordinate vector. Alsow′ = (HT
i Hi)

− 1
2HT

i w is

of dimension ki×1 and is a noise coordinate vector. Finally we denote y = θ′
i+w′,

which is of dimension ki × 1.

With these notations, the estimated MI can be rewritten as

M̂I =
ki
2
ln

(
||θ′

i +w′||2

kiσ2

)
(5.20)

=
ki
2
ln

(
1
ki

∑ki
j=1(θ

′
i[j] + w′[j])2

σ2

)
(5.21)

where θ′i[j] and w′[j] are the jth elements of the vector θ′
i and w′ respectively.

Furthermore, we have the distributions of θ′
i and w′ based on the PDFs of θi

and w, as

θ′
i ∼ N (0,Cθ′

i
)
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with

Cθ′
i

= (HT
i Hi)

1
2

ηi
1− ηi

σ2(HT
i Hi)

−1(HT
i Hi)

1
2

=
ηi

1− ηi
σ2︸ ︷︷ ︸

σ2
θi

Iki ,

where Iki denotes the identity matrix of dimension ki and we have introduced

σ2
θi
= ηi

1−ηi
σ2 to simply the notation. This shows that by using the g-prior on θi,

the coordinate vector θ′
i has a scaled identity matrix as its covariance matrix; that

is each element of the resulting vector θ′
i is identically independently distributed

(IID). The g-prior equalizes the distribution of each parameter of θi.

Similarly, we have the distribution of w′ as

w′ ∼ N (0,Cw′)

with

Cw′ = (HT
i Hi)

− 1
2HT

i σ
2INHi(H

T
i Hi)

− 1
2

= σ2Iki

This shows that w′ still has a zero mean normal distribution with a covariance

matrix being σ2Iki . Then we have the PDF of y = θ′
i+w′, p(y) as

p(y) = N (0,Cθ′
i
+Cw′)

= N
(
0, (σ2 + σ2

θi
)Iki
)

In fact the term 1
ki

∑ki
j=1(θ

′
i[j] +w′[j])2 in (5.21) is the estimate of σ2+σ2

θi
and the
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hence (5.21) can be expressed alternatively as

M̂I = ki
1

2
ln(

̂σ2 + σ2
θi

σ2
)︸ ︷︷ ︸

M̂I per dim

The term M̂I per dim is the standard estimated mutual information for the

case of Gaussian signal in additive Gaussian noise [22] for each signal compo-

nent/parameter dimension. Since by employing the g-prior each element of the

signal θ′
i is IID, the total estimated MI is simply a multiplication of the M̂I per

dim and the parameter dimension ki. This provides another intuition on how the

estimated MI depends on the parameter dimensions and the mechanism of the

g-prior.

5.4 Bayesian EEF via Jeffreys’ prior

Jeffreys’ prior is another compelling non-informative prior [17] due to its prop-

erty of invariance to reparameterization. In this section, we use the Jeffreys’

prior in Bayesian EEF and derive the asymptotic Bayesian EEF. For each model

Mi we assign a Jeffreys’ prior πi(θi) to the unknown θi. The Jeffreys’ prior

PDF of θ is proportional to the square root of the determinant of FIM of θi;

that is, πi(θi) ∝
√

|I(θi)|. A motivation for the Jeffreys’ prior is that Fisher

information I(θi) is an indicator of the amount of information brought by the

model/observations about unknown parameter θi. Favoring the values of θi for

which I(θi) is large, is equivalent to minimizing the influence of the prior [17]. By

the Laplace approximation we have

pi(x|θi) ≈ pi(x|θ̂i)e
− 1

2
(θi−θ̂i)

T I(θ̂i)(θi−θ̂i).
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Moreover when assuming that πi(θi) is flat around θ̂i, which is valid for large data

records, we have approximately

pi(x) =

∫
θi

pi(x|θi)πi(θi)dθi

≈ pi(x|θ̂i)πi(θ̂i)

∫
e−

1
2
(θi−θ̂i)

T I(θ̂i)(θi−θ̂i)dθi

=
pi(x|θ̂i)πi(θ̂i)

(2π)−
ki
2

√
|I(θ̂i)|

Substituting this approximation into the EEF definition, we have

ln
p(x; ηi)

p0(x)
= ηi ln

pi(x)

p0(x)
−K0(ηi)

≈ ηi ln

pi(x|θ̂i)πi(θ̂i)

(2π)−
ki
2

√
|I(θ̂i)|

p0(x)

− lnE0 exp

ηi ln

pi(x|θ̂i)πi(θ̂i)

(2π)−
ki
2

√
|I(θ̂i)|

p0(x)


= ηi ln

pi(x|θ̂i)

p0(x)
− lnE0 exp

(
ηi ln

pi(x|θ̂i)

p0(x)

)

Assigning θi a Jeffreys’ prior, the term πi(θ̂i)

(2π)−
ki
2

√
|I(θ̂i)|

becomes a constant and thus

the marginal PDF pi(x) becomes the multiplication of the maximized conditional

PDF pi(x|θ̂i) with the constant. From the derivation, it shows that by employing

EEF mechanism, the resulting Bayesian model selection rule does not suffer from

problems when
∫ √

I(θi)dθi → ∞ as the FIM term is eliminated by the log-

normalization term K0(ηi) using the Jeffreys’ prior. This is one of many examples

showing that the embedded family derives many of its useful properties from the

use of the normalization term K0(ηi)[8]. And it is this property that makes the

approximate Bayesian EEF yield the same result as the frequentist EEF in [8].
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For the normal linear model problem, the reduced Bayesian EEF, approximate

Bayesian EEF methods and the reduced frequentist EEF all coincide with each

other. This coincidence stems from the fact that the FIM for all θi are the same

under a certain model Mi in that I(θi) =
HT

i Hi

σ2 . In this case the Jeffreys’ prior,

π(θi) ∝
√

|I(θi)|, becomes an improper uniform distribution, π(θi) = c > 0, where

c is a positive constant. This example also shows that Bayesian EEF can employ

improper uniform prior without suffering from integration problems.

5.5 Conclusion

We have derived the Bayesian EEF, a new Bayesian model order selection

rule, by using the EEF strategy in a Bayesian framework. The Bayesian EEF is

shown to possess some desirable properties. To avoid introducing subjectivity in

choosing parameter priors, the Bayesian EEF can utilize a vague proper prior as

well as an improper non-informative prior, both of which are natural choices of non-

informative priors but are usually forbidden by Bayesian model selection methods.

It is also demonstrated that the EEF model order selection rule has a very intuitive

penalty term as the sum of the parameter dimension and the estimated MI between

parameter and received data. This interpretation not only helps in understanding

the mechanisms at work in the EEF method but also provides new insights into

the open question of designing an optimal penalty term for model selection. Some

interesting interactions and coincidences between the EEF model order selection

rules derived from Bayesian and frequentist viewpoints are also explained.
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Abstract

The penalty term plays an important role in model order selection. The

Exponentially Embedded Families (EEF) has been proposed as an alternative ap-

proach for model order estimation. In this paper we show that part of the EEF

penalty term is estimated mutual information (MI) between unknown parameters

and received data. The finding is a result of an important relationship between

Kullback-Leibler Divergence (KLD), signal-to-noise ratio (SNR) and MI in esti-

mation/detection of random signals, which is also introduced.

6.1 Introduction

Model order selection is a fundamental problem in signal processing because

observed data in practice usually is composed of an unknown number of signal

components. For example, one may need to determine the number of sources in

array signal processing [1]. Overestimating the order actually fits the noise in

the data; underestimating the order, on the other hand, fails to describe the data

precisely [1].

Model order selection problem, as a multiple hypotheses testing problem, lacks

an optimal solution [11]. The traditional generalized likelihood ratio test (GLRT)

tends to overestimate the order [7]. As a result, a typical model order selection

algorithm introduces a penalty term to form a decision rule. Several popular al-

gorithms are Akaike’s information criterion (AIC) [2], the minimum description

length (MDL) [3], Bayesian information criterion (BIC) [4] and maximum a pos-

teriori (MAP) [11]. The reference [5] provides a review in this regard.
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In addition to the aforementioned rules, EEF has been introduced in [8] as an

alternative. It embeds two PDFs into a family of PDFs that are indexed by one

or more parameters, and the new embedded family inherits many mathematical

and optimality properties of the exponential family. It proves effective in model

order selection and even superior under certain conditions. It has been shown to be

consistent, i.e., as the data length N → ∞, the probability of selecting the correct

model goes to one [1]. The penalty term plays a central role in the EEF model

order selection algorithm. In this paper we show that the EEF penalty term

is actually the estimated mutual information between the unknown parameters

and the received data. This hopefully can shed further light to understanding in

choosing an optimal penalty term for model order selection. We limit the discussion

in the context of linear normal model. A more general discussion will be our future

work.

The paper is organized as follows. In Section 6.2 we introduce an use-

ful relationship between KLD, SNR and MI, which holds in general in estima-

tion/detection of random signals. In Section 6.3 a brief introduction is given to

EEF. In Section 6.4 we discuss the EEF penalty term with an illustrative example.

We then extend the discussion to the linear model in Section 6.5. Finally, some

conclusions are drawn in Section 6.6.
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6.2 An important relationship among KLD, SNR and MI

In signal processing, we often encounter problems of estimation/detection of

random signals. Suppose we want to decide between the following hypotheses

H0 : x = w

H1 : x = t+w

where w is noise and t is a random signal. Denote p1(x) and p0(x) as the proba-

bility density function (PDF) of the received data x under H1 and H0 respectively,

and π(t) as the prior PDF of t. An interesting and useful relationship is [6]

D(p1(x)||p0(x)) = Et[D(p1(x|t)||p0(x))]− I(x; t), (6.1)

where D(p1(x)||p0(x)) is KLD, Et(·) denotes taking expectation according to t,

p1(x|t) is the conditional PDF of x conditioned on t under H1 and I(x; t) is

the MI of t and x under H1. A related result has been used to compute MI in

order to obtain the channel capacity per unit cost [10]. The derivation of (6.1) is

straightforward

ln
p1(x)

p0(x)
= ln

p1(x|t)
p0(x)

− ln
p1(x|t)
p1(x)

= ln
p1(x|t)
p0(x)

− ln
p1(x, t)

p1(x)π(t)

and taking the expected value with respect to p1(x, t) produces

Ex,t

[
ln

p1(x)

p0(x)

]
= EtEx|t

[
ln

p1(x|t)
p0(x)

]
− Ex,t

[
ln

p1(x, t)

p1(x)π(t)

]
(6.2)
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to yield (6.1). Also, p1(x) can be written as an averaged conditional PDF by

averaging p1(x|t) over t, as

p1(x) =

∫
t

p(x, t)dt =

∫
t

p1(x|t)p(t)dt (6.3)

Thus the term D(p1(x)||p0(x)) is the KLD of the averaged conditional PDF p1(x)

from the PDF p0(x).

Furthermore the MI I
(
x; t
)
is also an averaged KLD obtained by averag-

ing KLD of the conditional PDF p1(x|t) from the unconditional PDF p1(x),

D(p1(x|t)||p1(x)), over all possible signals t

I(x; t) =

∫
t

∫
x

p1(x, t) ln
p1(x, t)

p1(x)p(t)
dxdt

=

∫
t

∫
x

p(t)p1(x|t) ln
p1(x|t)
p1(x)

dxdt

=

∫
t

p(t)D(p1(x|t)||p1(x))dt (6.4)

Therefore, all three terms of the decomposition (6.1) can be interpreted re-

spectively as a special distance measurement in the KLD sense. Alternatively, we

can write the relationship as [6]

D(p1(x)||p0(x))︸ ︷︷ ︸
KLD

= Et[D(p1(x|t)||p0(x))]︸ ︷︷ ︸
SNR

− I(x; t)︸ ︷︷ ︸
MI

. (6.5)

A simple example is next given to illustrate this important relationship. As-

sume t,w are both independent N × 1 random vectors and have distributions as

t ∼ N(0, σ2
t I) and w ∼ N(0, σ2I) respectively. Then we have

x ∼ N
(
0, σ2I

)
under H0

x ∼ N
(
0, (σ2 + σ2

t )I
)
under H1
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The KLD term is

D(p1(x)||p0(x)) =
1

2
ln

|σ2I|
|(σ2 + σ2

t )I|

+
1

2
tr
[
(σ2 + σ2

t )I(σ
2I)−1 − I

]
=

N

2

σ2
t

σ2
− N

2
ln

(
1 +

σ2
t

σ2

)
. (6.6)

Next, for a given t, the conditional PDF p1(x|t) is a Gaussian distribution with

mean t and variance σ2I, so

D(p1(x|t)||p0(x)) =
1

2

tT t

σ2
.

Thus, we have

Et[D(p1(x|t)||p0(x))] =

∫
t

p(t)
1

2

tT t

σ2
dt

=
N

2

σ2
t

σ2

which is indeed a measure of SNR. Lastly, it is easy to show that

I(x; t) =
N

2
ln

(
1 +

σ2
t

σ2

)
.

Clearly, (6.5) applies to this simple example. This relationship (6.5) provides many

insights into various problems. For instance, it suggests that MI measures the loss

in detection performance between a matched filter, which is based on t known, and

an estimator-correlator, which is based on an average t [6]. In this paper, however,

we focus on using the relationship to justify the meaning of EEF penalty term.

This hopefully will further the understanding of the problem of discrimination

between normal linear models in [12].
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6.3 Introduction of EEF

Assume that we have two distinct PDFs p1(x) and p0(x), and they model

the data x = [x0 x1 · · · xN−1]
T under a general alternative model hypothesis

H1 and a reference hypothesis H0. The EEF, denoted as p(x, η), is an exponential

embedded PDF parameterized by an embedding parameter η, which takes on values

0 ≤ η ≤ 1.

p(x; η) =
pη1(x)p

1−η
0 (x)∫

pη1(x)p
1−η
0 (x)dx

. (6.7)

Equivalently, the EEF is expressed as [8]

p(x; η) = exp [ηT (x)−K0(η) + ln p0(x)]

where T (x) = ln p1(x)
p0(x)

, K0(η) = lnE0(exp(ηT (x))), and E0(·) denotes expectation

under H0. If the PDF p1(x) = p(x;θ) has unknown parameters θ, a p× 1 vector

and under H0, θ = θ0, then upon taking a reduced form and using an asymptotic

approximation for the PDF, the EEF reduces to [8]

EEF = max
η

[η ln
1

pT ′(T ′(x);θ0)
−K0(η)]

where T ′(x) = ln p(x;θ̂)
p(x;θ0)

and θ̂ is the maximum likelihood estimate of the θ.

6.4 EEF penalty term-DC level in WGN

In this section we start the discussion of the penalty term of the EEF with

a familiar example x = A1 + w, where A is assumed to be an unknown scalar,

w is white Gaussian noise (WGN) with covariance σ2I, and 1 = [1 1 · · · 1]T is a

N × 1 vector. The EEF, termed EEFd, where the subscript “d” indicates that A
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is assumed deterministic, is given in [8] as

EEFd = max
η

(
η
Nx̄2

2σ2
+

1

2
ln(1− η)

)
,

where x̄ = 1
N

∑N−1
n=0 xn. With η̂ = 1 − σ2

Nx̄2 (η̂ = 0 if Nx̄2 < σ2), we have for

0 < η̂ < 1

EEFd =
1

2

(
Nx̄2

σ2
− 1

)
− 1

2
ln

(
Nx̄2

σ2

)
.

To verify the relationship between KLD, SNR and MI, we now assume the DC

level A is a zero-mean Gaussian random variable with variance k σ2

N
instead, and

let k → ∞. That is, we assign a vague proper prior to the unknown parameter in

an attempt to assigning a non-informative prior. Then, we have

H0 : x ∼ N(0, σ2I)

H1 : x ∼ N(0, σ2I+ k
σ2

N
11T ),

and the resultant EEF PDF pη(x) can be shown to be

pη(x) = N(0, σ2I+
η

1− η

σ2

N
11T ). (6.8)

Proof. pη(x) is an exponentially embedded PDF of two zero mean normal distri-

butions PDFs with variance matrices being C0 = σ2I and C1 = σ2I + k σ2

N
11T

respectively. According to (6.7), the resultant EEF pη(x) is also a zero mean
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normal distribution with variance matrix C(η), depending on η, as [8]

C(η) =
(
ηC−1

1 + (1− η)C−1
0

)−1

=

(
η[σ2I+ k

σ2

N
11T ]−1 +

1− η

σ2
I

)−1

=

(
η

σ2

[
I− k

k + 1

1

N
11T

]
+

1− η

σ2
I

)−1

=

(
1

σ2

[
I− ηk

k + 1

1

N
11T

])−1

= σ2

(
I−

− ηk
k+1

−ηk
k+1

+ 1

1

N
11T

)
k→∞→ σ2I+

η

1− η

σ2

N
11T

We denote Cη = σ2I+ η
1−η

σ2

N
11T . Alternatively, we consider to assign a prior

to Aη,

π(Aη) = N(0,
η

1− η

σ2

N
)

for the following model

xη = Aη1+w

Then we have pη(x) = p(xη); that is, the two are equivalent PDFs. This shows

that EEF method can use vague proper prior and can find an equivalent PDF

with a prior on unknown parameter relates to the embedding parameter η. This

will be proved rigorously in an extended paper. On the other hand, it is generally

a bad idea for many other Bayesian model selection methods to use vague proper

prior[13].
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Then, the EEF for this case, termed EEFr, where the subscript “r” indi-

cates that A is considered to be the outcome of a random variable, is KLD

D(pη̂(x)||p0(x)). To compute it, we first should find the η̂. It is also the value

of η that maximizes the following likelihood ratio [8].

Lη(x) = 2 ln
pη(x)

p0(x)

= 2 ln

1√
(2π)N |Cη |

exp(−1
2
xTC−1

η x)

1√
(2π)N |σ2I|

exp(−1
2
xT (σ2I)−1x)

= xT
[
(σ2I)−1 −C−1

η

]
x− ln

|σ2I+ η
1−η

σ2

N
11T |

|σ2I|

=
η

Nσ2
xT11Tx− ln

∣∣∣∣I+ η

1− η

1

N
11T

∣∣∣∣
=

η

Nσ2
xT11Tx− ln

(
1 +

η

1− η

)
(6.9)

Then the η̂ is the value of η for which the derivative is equal to zero and hence,

solves the equation

∂Lη(x)

∂η
=

1

Nσ2
xT11Tx− 1

1− η
(6.10)

Incorporating the definition of the embedding parameter 0 ≤ η ≤ 1, we have

η̂ =


0 if xT11Tx < Nσ2

xT11Tx−Nσ2

xT 11Tx
otherwise

When η̂ = 0, the corresponding EEFr penalty term is zero. We focus on the third

case, 0 < η̂ < 1, in the rest of the paper, which is of main interest. The resulting
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EEFr is

EEFr = D(pη̂||p0)

=
1

2
tr

[
η̂2σ2

A

σ2
11T

]
− 1

2
ln

|η̂2σ2
A11

T + σ2I|
|σ2I|

=
1

2

xT11Tx

Nσ2
− 1

2
− 1

2
ln

(
xT11Tx

Nσ2

)
=

1

2

(
Nx̄2

σ2
− 1

)
− 1

2
ln

(
Nx̄2

σ2

)
. (6.11)

This shows that EEFr = EEFd, that is, the resulting EEFs for the two different

problems of a deterministic A and a random A are the same. Note that when

taking expectation according to pη̂(x), η̂ is considered as a constant parameter,

not a function of x.

It is easy to prove that the penalty term of EEFr,
1
2
ln
(
xT 11Tx
Nσ2

)
is indeed

I(xη̂;Aη̂), the mutual information, since we have

I(xη̂;Aη̂) = EAη̂
D(p(xη̂|Aη̂)||p(xη̂))

=
1

2
ln
(xT11Tx

Nσ2

)
Strictly speaking, it is an estimated mutual information in that we only have the

estimated PDF pη̂(x), or equivalently pxη̂
, instead of the true PDF.

This is a direct result of the equivalency of pη(x) and p(xη) and the decompo-

sition (6.5) when applied under the estimated PDF pη̂(x) since the reduced EEFr

is an asymptotic KLD D(pη̂||p0). A modified version of decomposition (6.5) can

be expressed as follows

EEFr = ŜNR− M̂I

where ŜNR, M̂I are the estimated SNR and estimated MI, respectively.
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6.5 EEF penalty term of linear model

We now generalize the previous results to show that the EEF penalty term of

model order selection for the linear model is the estimated MI. The linear model is

an important one in practice and so a detailed analysis of this result is warranted.

The linear model is x = Hθ+w where H is N × p, θ is a p × 1 vector and

w ∼ N(0, σ2I). Different models have different orders p and observation matrices

H. The model order selection problem is to decide the value of p to best model

the data. It can be shown that assuming θ is a deterministic unknown parameter

yields the same EEF as assuming it is a random vector with a given prior PDF

[8],[9]. We assume the latter by assigning to the unknown parameter θ the prior

PDF N(0, ξ
2

p
σ2(HTH)−1). When ξ2 is assumed unknown, the EEF is proved to be

equivalent to the model structure determination (MSD) [9]. If we reparameterize

ξ2 by letting

ξ2

p
=

η

1− η
,

then a one-to-one transformation from ξ2 to η (0 < η < 1) is effected and finding

η̂ is equivalent to finding ξ̂2. With this setup, we have

x ∼ N(0, σ2I+
ξ2

p
σ2PH) under pη(x)

where PH = H(HTH)−1HT . It is shown in [9] that the EEF for model Mp, i.e.,

with p unknown parameters, is

EEFr(p) = max
ξ2

p

[
1

2σ2

ξ2

p

1 + ξ2

p

xTPHx− p

2
ln(1 +

ξ2

p
)

]
.
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The estimate ξ̂2

p
, which maximizes EEFr(p) is

ξ̂2

p
=

xTPHx

pσ2
− 1

and hence, the maximized EEF is

EEFr(p) =
1

2

(
xTPHx

σ2
− p

)
− p

2
ln

xTPHx
σ2

p
. (6.12)

Since xTPHx
σ2 obeys a χ2

p distribution under the null hypothesis [7],[8], the term

1
2

(
xTPHx

σ2 − p
)
subtracts out the mean p under H0, thereby producing ŜNR. The

term p
2
ln

xTPHx

σ2

p
is the estimated M̂I as shown next. First, we have the following

D(pη(x|θ)||pη(x))

=
1

2
ln

|σ2I+ ξ2

p
σ2PH|

|σ2I|
+

1

2
tr

(
σ2(σ2I+

ξ2

p
σ2PH)

−1 − I

)
+
1

2
(Hθ)T (σ2I+

ξ2

p
σ2PH)

−1Hθ

=
1

2
ln

|σ2I+ ξ2

p
σ2PH|

|σ2I|
+

1

2
tr

(
−

ξ2

p

ξ2

p
+ 1

PH

)

+
1

2σ2
(Hθ)T (I−

ξ2

p

ξ2

p
+ 1

PH)Hθ .

Then the computation of the estimated MI between x and θ follows.

Iη̂(x;θ) = EθD(pη̂(x|θ)||pη̂(x))

=
1

2
ln

|σ2I+ ξ̂2

p
σ2PH|

|σ2I|
+

1

2
tr

−
ξ̂2

p

ξ̂2

p
+ 1

PH


+ Eθ

[
1

2σ2

1
ξ̂2

p
+ 1

(Hθ)THθ

]

=
1

2
ln

|σ2I+ ξ̂2

p
σ2PH|

|σ2I|
=

p

2
ln

xTPHx
σ2

p
(6.13)
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where we have applied

Eθ

[
1

2σ2

1
ξ̂2

p
+ 1

(Hθ)THθ

]
=

1

2σ2

1
ξ̂2

p
+ 1

tr(
ξ̂2

p
σ2PH),

(I + ξ̂2

p
PH)

−1 = I −
ξ̂2

p

ξ̂2

p
+1

PH and
∣∣I + ξ̂2

p
PH

∣∣ = (
1 + ξ̂2

p

)p
. Thus, (6.13) proves

that the EEF penalty term for the linear model in (6.12) is indeed the estimated

MI. This is intuitively appealing in the sense that the model order selection rule

should not take into account the information contributed by the distributional

knowledge of the unknown parameters, which increases with its dimension [12].

As a special case, when H = 1 and θ = A then this example reduces to the DC

level in WGN example for which p = 1. Thus, the estimated MI term in (6.13)

reduces to 1
2
ln
(

xT11Tx
Nσ2

)
, which is the estimated MI in (6.11).

6.6 Conclusions

In this paper, we first introduce the important relationship KLD = SNR−MI.

By employing this relationship, we have proved that the EEF penalty term in

model order estimation is an estimated MI between the unknown parameters and

the data. Intuitively, the estimated MI measures how much information of the data

is contributed by the parameter θ. The EEF model order selection rule therefore

subtracts it out so that the comparison among different models tends to be more

fair.
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Abstract

Complex-valued signal processing is a fundamental task in many signal pro-

cessing areas such as radar, sonar and communications. Modeling complex data as

noncircular may provide better fitting of physical conditions. However, it requires

more complicated signal processing algorithms and hence has more computations.

Testing of noncircularity and estimating its degree are helpful in choosing a model.

In this paper we focus on estimating the degree of noncircularity if the data is de-

cided noncircular. It essentially a model order selection problem; therefore, we

adopt the recently proposed exponentially embedded family (EEF) rule. Com-

puter simulations are given to evaluate the EEF’s performance and compare it

with the minimum description length (MDL).

7.1 Introduction

In many areas, such as communication[1], radar[15] and sonar[16], a signal

processing designer often deals with complex-valued data. One necessary consid-

eration when designing algorithm is to model the complex data as noncircular

or circular. A complex-valued random vector x ∈ CN×1 is circular if its proba-

bility distribution is invariant to rotation in the complex plane, or equivalently,

if its pseudocovariance matrix P = E(xxT ) = 0, where T represents transpose.

Conversely, it is noncircular if P ̸= 0 [1]. In many cases, circularity is tradition-

ally assumed for simplification of computation, and this modeling is satisfyingly

adequate[1]. On the other hand, there are cases where this simplified modeling

fails and consequently produces very poor signal processing performance. Taking
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the noncircularity of the data into account can achieve significant performance

gains [1]. However, the noncircular modeling often requires more complicated sig-

nal processing algorithms and requires more computational resources. Therefore,

an estimator of the degree of noncircularity is helpful in deciding which model to

use.

A generalized likelihood ratio test (GLRT) has been proposed to test the non-

circularity for Gaussian distributed data [2]. The probability distribution of the

GLRT test statistic is shown to be a χ2 distribution in [3]. It has then been ex-

tended to non-Gaussian cases [4]. In this paper we are concerned with the estima-

tion of the degree of noncircularity, which is the number of nonzero noncircularity

coefficients as defined in section 7.2. It is shown that this is essentially a model

order selection problem. A GLRT-based sequential hypothesis test for estimating

the degree of noncircularity is proposed in [5]. However, as viewed as a multiple

hypotheses testing problem, the model order selection problem lacks an optimal

solution [13]. Several important methods are Akaike’s information criterion (AIC)

[9], the minimum description length (MDL) [10], Bayesian information criterion

(BIC) [11] and maximum a posteriori (MAP) [13]. A review in this regard can be

found in [12].

A most recent alternative is the EEF model order selection method introduced

in [6]. It embeds two PDFs into a family of PDFs that are indexed by one or

more parameters, and the new embedded family inherits many mathematical and

optimality properties of the exponential family. The rationale of the EEF for
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model order estimator is: choosing the model order k̂ that is associated with the

maximum EEF makes the estimated PDF of the received data closest to its true

PDF in Kullback-Leibler divergence (KLD) sense [6]. It proves effective in model

order selection and superior under certain conditions such as in low signal-to-noise

ratio cases. It has also been shown to be consistent, i.e., as the data lengthN → ∞,

the probability of selecting the correct model goes to one [14]. In this paper we

employ the EEF rule to estimate the degree of noncircularity of the complex data.

Computer simulations will be given to evaluate its performance and to compare it

with the MDL since EEF rule has a similar computational load as MDL [14].

The paper is organized as follows. The problem under consideration is formu-

lated in Section 7.2. Then, EEF rule for estimating the degree of noncircularity

is derived in Section 7.3. Computer simulations and results are given to evalu-

ate the performance of the proposed method 7.4. Finally, Section 7.5 draws some

conclusions.

Notation: Throughout the paper, transpose of a vector/matrix will be denoted

by T , H denotes conjugate transpose or hermitian, ∗ denotes conjugate, E(·)

denotes expectation.

7.2 Problem Modeling

Assume we observe M independent identically distributed (IID) data vectors

x1, x2, · · · , xM and each xm for m = 1, 2, · · · ,M is a N × 1 complex-valued

Gaussian random vector with its mean being zero, µ(x) = 0. We will denote

the received data as X = [x1x2 · · ·xM ]. For a noncircular complex vector x, the
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conventional covariance matrix C

C = E(xxH)

is not sufficient to fully describe its second-order properties. The pseudo-covariance

matrix P

P = E(xxT )

is required as complementary information. In fact, an argumented covariance

matrix defined as the covariance matrix of the argumented random vector x =

[xTxH ]T ,

R = E(xxH) =

[
C P

P∗ C∗

]
is used to characterize the second-order properties of the noncircular complex-

valued random variables [1]. As is shown, it is composed of C and P. The proba-

bility density function (PDF) of the noncircular vector x is then

p(x : C,P) =
1

πN |R | 12
exp

(
−1

2
xH R−1 x

)

When the data is circular, then P = 0, and the PDF reduces to a regular circularly

complex Gaussian distribution.

Now, the circularity coefficients λk’s for k = 1, 2, · · · , N are defined as singular

values of the coherence matrix C−1/2PC−T
2 [7]. Without loss of generality, let

λ1 ≥ λ2 ≥ · · · ≥ λN

Testing if the random vector is circular is equivalent to test if all of its circularity

coefficients are equal to zero. On the other hand, if the data is noncircular, then
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at least one of the circularity coefficients are nonzero. The test of noncircularity

is in choosing between the following two hypotheses.

H0 : λ1 = λ2 = · · · = λN = 0 (circular)

H1 : at least one of the λk is nonzero (noncircular)

And the estimate of the degree of noncircularity is to estimate the number of

nonzero λ’s. In practice, the argumented covariance matrix of the Gaussian dis-

tribution from which the IID data is drawn is unknown and should be estimated.

Thus maximum likelihood estimates (MLEs) Ĉ and P̂ are used to replace the

unknown C and P respectively,

Ĉ =
1

M

M∑
k=1

(xk − µx)(xk − µx)
H

and

P̂ =
1

M

M∑
k=1

(xk − µx)(xk − µx)
T ,

where µx = 1
M

∑M
k=1 xk is the sample mean. Then the MLEs of the λk’s, λ̂k’s are

the ordered (from the largest to the smallest ) singular values of the estimated

coherence matrix

Ĉ− 1
2 P̂Ĉ−T

2

The goal is to estimate the number of nonzero circular coefficients, which is

the degree of noncircularity, denoted as Ns. The problem is equivalent to choose
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one of the following models.

M1 : λ1 > λ2 = · · · = λN = 0

...

Mk : λ1 ≥ · · · ≥ λk > λk+1 = · · · = λN = 0

...

MN : λ1 ≥ λ2 ≥ · · · ≥ λN > 0 (7.1)

Under the model Mk, the degree of noncirculairty is k, and it has dk unknown pa-

rameters, written as a vector θk. A good selection algorithm chooses the one is the

true model or closest to the true model from all possible modelsM1,M2, · · · ,MN .

7.3 Estimate the degree of noncircularity via EEF

In this section, we derive the EEF rule for estimating the degree of noncircu-

larity. The EEF rule chooses the k which maximizes the following [6]

EEFk = lk(X)− dk

[
ln

(
lk(X)

dk

)
+ 1

]
u (lk(X)− dk) ,

where

lk(X) = 2 ln
p(X; θ̂k)

p(X;θ = 0)

θ̂k is the MLE of the unknown parameters and u(·) is the unit-step function. To

evaluate the specific EEF rule for estimating the degree of noncircularity, we first

find GLRT test statistic for each possible case corresponding to each degree of

noncircularity as follows. We have

lk(X) = 2 ln
maxC,Pk

p(X;Hk)

maxC,0 p(X;H0)
= 2 ln

p(X; Ĉ, P̂k)

p(X; Ĉ,P = 0)
,
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where P̂k is the constrained MLE of the pseudo-covariance matrix Pk, for which

the degree of noncircularity is Ns = k, and Ĉ is the unconstrained MLE of C.

First, let

p(X;HN) = p(X; Ĉ, P̂)

It has been shown in [7] and [5] that

max
C,Pk

p(X;C,Pk) = p(X; Ĉ, P̂)ΠN
i=k+1(1− λ̂2

i )
M
2

And specifically,

p0(X) = p(X; Ĉ, P̂)ΠN
i=1(1− λ̂2

i )
M
2

Then we have the log-likelihood ratio as

lk(X) = 2 ln
maxC,Pk

p(X;C,Pk)

p0(X)

= −M ln
(
Πk

i=1(1− λ̂2
i )
)

Note that under hypothesis Hk or equivalently the model Mk, the number of

unknown parameters is dk = k(2N − k + 1) more than that under H0 [8][5]. We

now can form the EEF rule as follows

EEFk =

{
−M ln

(
Πk

i=1(1− λ̂2
i )
)

− dk

ln
−M ln

(
Πk

i=1(1− λ̂2
i )
)

dk

+ 1

}

· u
(
−M ln

(
Πk

i=1(1− λ̂2
i )
)
− dk

)
,

where dk = k(2N − k + 1).
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The estimate of the degree of noncircularity, k̂, is the k associated with EEFk

which is the maximum among all EEF’s for k = 1, · · · , N .

Note that the MDL rule for estimating the degree of noncircularity is [10][5]

MDLk = −M ln
(
Πk

i=1(1− λ̂2
i )
)
− dk lnM, (7.2)

MDL rule chooses the k from 1, · · · , N that maximizes (7.2).

7.4 Computer Simulations

In this section, a series of computer simulations with a similar setup as that

in [5] are used to evaluate the performance of the EEF estimator for the degree of

noncircularity.

For the first simulation, we generate M = 100 vectors for each trial which are

drawn IID from a N = 6 variate CN distribution CN (0,C,P). Moreover, C = I is

an identity matrix and the pseudo-covariance matrix P = Λ is a diagonal matrix

with k nonzero diagonal elements, circularity coefficients, generated independently

from the uniform distribution U(0.05, 0.99) for each vector. In total, we run 1000

trials to calculate the correct estimate rate, i.e. the number of correct estimates

when k̂ = true k, over the number of trials. We repeat this for each k = 1, · · · , d.

In Figure 7.1, we list the probability of correct order of both EEF method and the

MDL method for each true k. It is shown that the EEF generally has better per-

formance over MDL. Note the GLRT-based sequential hypothesis testing method

proposed in [5] requires setting a probability of false alarm (PFA) which affects the
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probability of correct order, thus we are not comparing with it directly.

For simulation 2, the number of vectors, M is increased from 100 to 500

without changing the other setup parameters. The probability of correct order

corresponding to different true model orders of both EEF and MDL are displayed

in Figure 7.2. It is no surprise that with longer observed data record, both methods

achieve higher accuracy rate. However, EEF again outperforms the MDL in this

case.

A third simulation investigates the estimation performances of EEF and MDL

in a more difficult situation,i.e., the nonzero noncircularity coefficients on aver-

age are smaller, closer to zero, compared with those from the first two simula-

tions. We keep M = 500 for this simulation but generate circularity coefficients

by using a uniform distribution U(0.05, 0.50) instead of the previous distribution

U(0.05, 0.99). The rest of setup remains unaltered. It is expected that both meth-

ods’ performances will be degraded. The results, shown in Figure 7.3 agree with

the theoretical expectation. It shows that the difference between the performances

of the EEF and the MDL increases in this more “difficult” task.

To complete the performance evaluation, we modify the distribution from

which the nonzero noncircularity coefficients are drawn from U(0.05, 0.50) to

U(0.5, 0.99), and let the number of observation M = 100. The estimation per-

formances of both methods are given in Figure 7.4, which should be compared

with Figure 7.1. It is seen that both methods have very good performances, with

the probabilities of correct order being close to one, since this is an easy scenario.

153



1 2 3 4 5 6

true k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 o

rd
er

EEF
MDL

Figure 7.1. Performance Comparison between EEF and MDL of simulation 1 with
100 observations

In this case, the MDL method seems to have slightly better performance than the

EEF.

7.5 Conclusions

In this paper, we have derived an EEF rule for estimating the degree of non-

circularity of a complex-valued random vector. This estimator can be employed to

decide whether to model complex random data as noncircular or circular with a

trade-off between accuracy of modeling and algorithm complexity/computational

cost when designing a signal processing algorithm. Computer simulations have

shown that EEF method achieves good performance. It outperforms the MDL in
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Figure 7.2. Performance Comparison between EEF and MDL of simulation 2 with
500 observations
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Figure 7.3. Performance Comparison between EEF and MDL for simulation 3 with
smaller circularity coefficients and 500 observations

156



1 2 3 4 5 6

true k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 o
rd

er

EEF
MDL

Figure 7.4. Performance Comparison between EEF and MDL for simulation 4 with
larger circularity coefficients and 100 observations
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general, especially in difficult situations.
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APPENDIX

Future Work

In this chapter, we discuss some future work that can be built upon the

presenting work.

• The work in “Information-theoretic optimal radar waveform design” in Chap-

ter 1 considers the optimal waveform design for detecting a stationary ex-

tended target. This research can be extended in many dimensions:

– In practice, it is often of great interests to detect a moving target. Hence

a future work will be devoted to investigate the problem of designing

optimal transmit signals for detecting an extended target that is moving

and fluctuating. This will require modeling the target impulse response

as a two-dimensional function of both time and range. Mathematically,

the response will be modeled as a linear time varying (LTV) random

process. In frequency domain, the movement and fluctuation of the tar-

get lead to Doppler shift and Doppler spread of the target power spectral

density (PSD). The target PSD is a 2-D function of both transmit sig-

nal frequency and Doppler frequency. Designing an optimal signal for

detection of moving extended targets given the knowledge of the 2-D

PSD is the first step of future research. Furthermore, in practice some

parameters of the target PSD may be unknown, e.g., unknown Doppler

shift. The lack of these information will require designing estimation
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algorithms and the transmit signal at the same time. This will be the

second research step.

– It is of practical interests to pose some constraints on the waveform such

as constant modulus and similarity constraint and the Peak-to-average

ratio (PAR) constraint. The constant modulus and/or PAR constraints

stem from the physical limitations of the radar amplifier and system.

A similarity constraint is applicable when the signal waveform designer

wants to use an existing waveform as a benchmark. The existing wave-

form is often known to have good properties, e.g. ambiguity. Hence

designing optimal waveform with such constraints will make the solu-

tion easier to be implemented.

– Design optimal signal waveform for multiple input multiple output

(MIMO) radar. MIMO system transmits multiple probing signals and

uses multiple receivers, hence provides extra degrees of freedom and has

better detection and estimation performance. It has become a leading

radar technique. It is thus useful to extend the waveform design for

MIMO system.

• In the work of “On detection of nonstationarity of the Covariance Matrix in

radar signal processing” in Chapter 2, we have assumed the complete knowl-

edge of the normalized clutter covariance matrix R. As a future work, we

may extend the GLRT and Rao detectors of nonstationarity of the covariance

matrix to the case where R is not completely known.
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• In the work of “ the complex parameter Rao test” in Chapter 3, it is assumed

that no nuisance parameter is present in the hypothesis testing problem.

In many practical problems, some nuisance parameters may appear in the

hypothesis testing, it is hence useful to extend the complex parameter Rao

test for the cases of nuisance parameters.

• In the work of “On the Bayesian exponentially embedded family for model

order selection” in Chapter 5 we have focused on the linear model. Future

work will consider model order selection for nonlinear models in which data

depends on unknown parameter through nonlinear functions. As shown the

penalty term of the EEF model order selection is the sum of the unknown

parameter dimension and the estimated mutual information between the un-

known parameter and received data. With these new insights, future work

will also be devoted to the open question on how to design an optimal penalty

term for the model order selection algorithm.
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